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Distributed Optimization Using the Primal-Dual
Method of Multipliers

Guoqiang Zhang and Richard Heusdens

Abstract—In this paper, we propose the primal-dual method of
multipliers (PDMM) for distributed optimization over a graph. In
particular, we optimize a sum of convex functions defined over a
graph, where every edge in the graph carries a linear equality con-
straint. In designing the new algorithm, an augmented primal-dual
Lagrangian function is constructed which smoothly captures the
graph topology. It is shown that a saddle point of the constructed
function provides an optimal solution of the original problem.
Further under both the synchronous and asynchronous updating
schemes, PDMM has the convergence rate of O(1/K) (where K
denotes the iteration index) for general closed, proper, and convex
functions. Other properties of PDMM such as convergence speeds
versus different parameter-settings and resilience to transmission
failure are also investigated through the experiments of distributed
averaging.

Index Terms—ADMM, distributed optimization, PDMM,
sublinear convergence.

I. INTRODUCTION

IN RECENT years, distributed optimization has drawn in-
creasing attention due to the demand for big-data processing

and easy access to ubiquitous computing units (e.g., a computer,
a mobile phone or a sensor equipped with a CPU). The basic
idea is to have a set of computing units collaborate with each
other in a distributed way to complete a complex task. Popular
applications include telecommunication [3], [4], wireless sen-
sor networks [5], cloud computing and machine learning [6].
The research challenge is on the design of efficient and robust
distributed optimization algorithms for those applications.

To the best of our knowledge, almost all the optimization
problems in those applications can be formulated as optimiza-
tion over a graphic model G = (V, E):

min
{xi }

∑

i∈V
fi(xi) +

∑

(i,j )∈E
fij (xi ,xj ), (1)
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Fig. 1. Demonstration of Problem (1) for edge-functions being linear con-
straints. Every edge in the graph carries an equality constraint.

where {fi |i ∈ V} and {fij |(i, j) ∈ E} are referred to as node
and edge-functions, respectively. For instance, for the appli-
cation of distributed quadratic optimization, all the node and
edge-functions are in the form of scalar quadratic functions (see
[7]–[9]).

In the literature, a large number of applications (see [10])
require that every edge function fij (xi ,xj ), (i, j) ∈ E , is es-
sentially a linear equality constraint in terms of xi and xj .
Mathematically, we use Aijxi + Aj ixj = cij to formulate the
equality constraint for each (i, j) ∈ E , as demonstrated in Fig. 1.
In this situation, (1) can be described as

min
{xi }

∑

i∈V
fi(xi) +

∑

(i,j )∈E
IAi j xi +Aj i xj =ci j

(xi ,xj ), (2)

where I(·) denotes the indicator or characteristic function de-
fined as IC(x) = 0 if x ∈ C and IC(x) =∞ if x /∈ C. In this
paper, we focus on convex optimization of form (2), where every
node-function fi is closed, proper and convex.

The majority of recent research have been focusing on a
specialized form of the convex problem (2), where every edge-
function fij reduces to Ixi =xj

(xi ,xj ). The above problem is
commonly known as the consensus problem in the literature.
Classic methods include the dual-averaging algorithm [11], the
subgradient algorithm [12], the diffusion adaptation algorithm
[13]. For the special case that {fi |i ∈ V} are scalar quadratic
functions (referred to as the distributed averaging problem), the
most popular methods are the randomized gossip algorithm [5]
and the broadcast algorithm [14]. See [15] for an overview of
the literature for solving the distributed averaging problem.

The alternating-direction method of multipliers (ADMM) can
be applied to solve the general convex optimization (2). The key
step is to decompose each equality constraint Aijxi + Aj ixj =
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cij into two constraints such as Aijxi + zij = cij and zij =
Aj ixj with the help of the auxiliary variable zij . As a result,
(2) can be reformulated as

min
x,z

f(x) + g(z) subject to Ax + Bz = c, (3)

where f(x) =
∑

i∈V fi(xi), g(z) = 0 and z is a vector ob-
tained by stacking up zij one after another. See [16] for
using ADMM to solve the consensus problem of (2) (with
edge-function Ixi =xj

(xi ,xj )). The graphic structure is implic-
itly embedded in the two matrices (A,B) and the vector c.
The reformulation essentially converts the problem on a general
graph with many nodes (2) to a graph with only two nodes (3),
allowing the application of ADMM. Based on (3), ADMM then
constructs and optimizes an augmented Lagrangian function
iteratively with respect to (x,z) and a set of Lagrangian multi-
pliers. We refer to the above procedure as synchronous ADMM
as it updates all the variables at each iteration. Recently, the
work of [17] proposed asynchronous ADMM, which optimizes
the same function over a subset of the variables at each iteration.

We note that besides solving (2), ADMM has found many
successful applications in the fields of signal processing and
machine learning (see [10] for an overview). For instance, in
[18] and [19], variants of ADMM have been proposed to solve
a (possibly nonconvex) optimization problem defined over a
graph with a star topology, which is motivated from big data
applications. The work of [20] considers solving the consensus
problem of (2) (with edge-function Ixi =xj

(xi ,xj )) over a gen-
eral graph, where each node function fi is further expressed as
a sum of two component functions. The authors of [20] propose
a new algorithm which includes ADMM as a special case when
one component function is zero. In general, ADMM and its vari-
ants are quite simple and often provide satisfactory results after
a reasonable number of iterations, making it a popular algorithm
in recent years.

In this paper, we tackle the convex problem (2) directly instead
of relying on the reformulation (3). Specifically, we construct
an augmented primal-dual Lagrangian function for (2) without
introducing the auxiliary variable z as is required by ADMM.
We show that solving (2) is equivalent to searching for a sad-
dle point of the augmented primal-dual Lagrangian. We then
propose the primal-dual method of multipliers (PDMM) to iter-
atively approach one saddle point of the constructed function.
It is shown that for both the synchronous and asynchronous
updating schemes, the PDMM converges with the rate of
O(1/K) for general closed, proper and convex functions.

Further we evaluate PDMM through the experiments of dis-
tributed averaging. Firstly, it is found that the parameters of
PDMM should be selected by a rule (see VI-C1) for fast conver-
gence. Secondly, when there are transmission failures in the
graph, transmission losses only slow down the convergence
speed of PDMM. Finally, experimental comparison suggests
that PDMM outperforms ADMM and the two gossip algorithms
in [5] and [14].

This work is mainly devoted to the theoretical analysis of
PDMM. In the literature, PDMM has already been success-
fully applied for solving a few other problems. The work of [21]

investigates the efficiency of ADMM and PDMM for distributed
dictionary learning. In [22], we have used both ADMM and
PDMM for training a support vector machine (SVM). In the
above examples it is found that PDMM outperforms ADMM in
terms of convergence rate. In [23], the authors describes an ap-
plication of the linearly constrained minimum variance (LCMV)
beamformer for use in acoustic wireless sensor networks. The
proposed algorithm computes the optimal beamformer output
at each node in the network without the need for sharing raw
data within the network. PDMM has been successfully applied
to perform distributed beamforming. This suggests that PDMM
is not only theoretically interesting but also might be powerful
in real applications.

II. PROBLEM SETTING

In this section, we first introduce basic notations needed in
the rest of the paper. We then make a proper assumption about
the existence of optimal solutions of the problem. Finally, we
derive the dual problem to (2) and its Lagrangian function,
which will be used for constructing the augmented primal-dual
Lagrangian function in Section III.

A. Notations and Functional Properties

We first introduce notations for a graphic model. We denote a
graph as G = (V, E), where V = {1, . . . , m} represents the set
of nodes and E = {(i, j)|i, j ∈ V} represents the set of edges
in the graph, respectively. We use �E to denote the set of all
directed edges. Therefore, |�E| = 2|E|. The directed edge [i, j]
starts from node i and ends with node j. We useNi to denote the
set of all neighboring nodes of node i, i.e.,Ni = {j|(i, j) ∈ E}.
Given a graph G = (V, E), only neighboring nodes are allowed
to communicate with each other directly.

Next we introduce notations for mathematical description
in the remainder of the paper. We use bold small letters to
denote vectors and bold capital letters to denote matrices. The
notation M � 0 (or M � 0) represents a symmetric positive
semi-definite matrix (or a symmetric positive definite matrix).
The superscript (·)T represents the transpose operator. Given a
vector y, we use ‖y‖ to denote its l2 norm.

Finally, we introduce the conjugate function. Suppose h :
Rn → R ∪ {+∞} is a closed, proper and convex function. Then
the conjugate of h(·) is defined as [24, Definition 2.1.20]

h∗(δ) Δ= max
y

δT y − h(y), (4)

where the conjugate function h∗ is again a closed, proper and
convex function. Let y′ be the optimal solution for a particular
δ′ in (4). We then have

δ′ ∈ ∂yh(y′), (5)

where ∂yh(y′) represents the set of all subgradients of h(·) at y′

(see [24, Definition 2.1.23]). As a consequence, since h∗∗ = h,
we have

h(y′) = y′T δ′ − h∗(δ′) = max
δ

y′T δ − h∗(δ), (6)

and we conclude that y′ ∈ ∂δh∗(δ′) as well.
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B. Problem Assumption

With the notation G = (V, E) for a graph, we first reformulate
the convex problem (2) as

min
x

∑

i∈V
fi(xi) s.t. Aijxi +Aj ixj = cij ∀(i, j)∈E , (7)

where each function fi : Rni → R ∪ {+∞} is assumed to
be closed, proper and convex, and x = [xT

1 ,xT
2 , . . . ,xT

m ]T .
For every edge (i, j) ∈ E , we let (cij ,Aij ,Aj i) ∈
(Rni j , Rni j ×ni , Rni j ×nj ). The vector x is thus of dimension
nx =

∑
i∈V ni . In general, Aij and Aj i are two different ma-

trices. The matrix Aij operates on xi in the linear constraint of
edge (i, j) ∈ E . The notation s.t. in (7) stands for “subject to”.
We take the reformulation (7) as the primal problem.

The primal Lagrangian for (7) can be constructed as

Lp(x, δ)=
∑

i∈V
fi(xi)+

∑

(i,j )∈E
δT

ij (cij−Aijxi−Aj ixj), (8)

where δij is the Lagrangian multiplier (or the dual variable)
for the corresponding edge constraint in (7), and the vector δ is
obtained by stacking all the dual variables δij , (i, j) ∈ E , on top
of one another. Therefore, δ is of dimension nδ =

∑
(i,j )∈E nij .

The Lagrangian function is convex in x for fixed δ, and concave
in δ for fixed x. Throughout the rest of the paper, we will make
the following (common) assumption:

Assumption 1: There exists a saddle point (x� , δ�) to the
Lagrangian function Lp(x, δ) such that for all x ∈ Rnx and
δ ∈ Rnδ we have

Lp(x� , δ) ≤ Lp(x� , δ�) ≤ Lp(x, δ�).

Or equivalently, the following optimality (KKT) conditions hold
for (x� , δ�):

∑

j∈Ni

AT
ijδ

�
ij ∈ ∂fi(x�

i ) ∀i ∈ V (9)

Aj ix
�
j + Aijx

�
i = cij ∀(i, j) ∈ E . (10)

C. Dual Problem and Its Lagrangian Function

We first derive the dual problem to (7). Optimizing Lp(x, δ)
over δ and x yields

max
δ

min
x

Lp(x, δ)

= max
δ

∑

i∈V
min
xi

(
fi(xi)−

∑

j∈Ni

δT
ijAijxi

)
+

∑

(i,j )∈E
δT

ijcij

= max
δ

∑

i∈V
−f ∗i

(
∑

j∈Ni

AT
ijδij

)
+

∑

(i,j )∈E
δT

ijcij , (11)

where f ∗i (·) is the conjugate function of fi(·) as defined in (4),
satisfying Fenchel’s inequality

fi(xi) + f ∗i

(
∑

j∈Ni

AT
ijδij

)
≥

∑

j∈Ni

δT
ijAijxi . (12)

Under Assumption 1, the dual problem (11) is equivalent to the
primal problem (7). That is suppose (x� , δ�) is a saddle point

of Lp . Then x� solves the primal problem (7) and δ� solves the
dual problem (11).

At this point, we need to introduce auxiliary variables to
decouple the node dependencies in (11). Indeed, every δij , as-
sociated to edge (i, j), is used by two conjugate functions f ∗i
and f ∗j . As a consequence, all conjugate functions in (11) are
dependent on each other. To decouple the conjugate functions,
we introduce for each edge (i, j) ∈ E two auxiliary node vari-
ables λi|j ∈ Rni j and λj |i ∈ Rni j , one for each node i and j,
respectively. The node variable λi|j is owned by and updated
at node i and is related to neighboring node j. Hence, at every
node i we introduce |Ni | new node variables. With this, we can
reformulate the original dual problem as

max
δ,{λi }

−
∑

i∈V
f ∗i (AT

i λi) +
∑

(i,j )∈E
δT

ijcij

s. t. λi|j = λj |i = δij ∀(i, j) ∈ E , (13)

where λi is obtained by vertically concatenating all λi|j , j ∈
Ni , and AT

i is obtained by horizontally concatenating all AT
ij ,

j ∈ Ni . To clarify, the product AT
i λi in (13) equals to

AT
i λi =

∑

j∈Ni

AT
ijλi|j . (14)

Consequently, we let λ = [λT
1 ,λT

2 , . . . ,λT
m ]T . In the above re-

formulation (13), each conjugate function f ∗i (·) only involves
the node variable λi , facilitating distributed optimization.

Next we tackle the equality constraints in (13). To do so,
we construct a (dual) Lagrangian function for the dual problem
(13), which is given by

L′d(δ,λ,y)= −
∑

i∈V
f ∗i (AT

i λi) +
∑

(i,j )∈E
δT

ijcij

+
∑

(i,j )∈E

[
yT

i|j (δij−λi|j )+yT
j |i(δij−λj |i)

]
, (15)

where y is obtained by concatenating all the Lagrangian multi-
pliers yi|j , [i, j] ∈ �E , one after another.

We now argue that each Lagrangian multiplier yi|j , [i, j] ∈ �E ,
in (15) can be replaced by an affine function of xj . Suppose
(x� , δ�) is a saddle point of Lp . By letting λ�

i|j = δ�
ij for every

[i, j] ∈ �E , Fenchel’s inequality (12) must hold with equality at
(x� ,λ�) from which we derive that

0 ∈ ∂λi |j

[
f ∗i (AT

i λ�
i )

]−Aijx
�
i

= ∂λi |j

[
f ∗i (AT

i λ�
i )

]
+ Aj ix

�
j − cij ∀[i, j] ∈ �E .

One can then show that (δ� ,λ� ,y�) where y�
i|j = Aj ix

�
j − cij

for every [i, j] ∈ �E , is a saddle point of L′d . We therefore restrict
the Lagrangian multiplier yi|j to be of the form yi|j = Aj ixj −
cij so that the dual Lagrangian becomes

Ld(δ,λ,x)=
∑

i∈V

(
−f ∗i (AT

i λi)−
∑

j∈Ni

λT
j |i(Aijxi − cij )

)

−
∑

(i,j )∈E
δT

ij (cij −Aijxi −Aj ixj ). (16)
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We summarize the result in a lemma below:
Lemma 1: If (x� , δ�) is a saddle point of Lp(x, δ), then

(δ� ,λ� ,x�) is a saddle point of Ld(δ,λ,x), where λ�
i|j = δ�

ij

for every [i, j] ∈ �E .
We note that Ld(δ,λ,x) might not be equivalent to

L′d(δ,λ,y). By inspection of the optimality conditions of
(16), not every saddle point (δ� ,λ� ,x�) of Ld might lead to
{λ�

i|j = λ�
j |i , (i, j) ∈ E} due to the generality of the matrices

{Aij , [i, j] ∈ �E}. In next section we will introduce quadratic
penalty functions w.r.t. λ to implicitly enforce the equality con-
straints {λ�

i|j = λ�
j |i , (i, j) ∈ E}.

To briefly summarize, one can alternatively solve the dual
problem (13) instead of the primal problem. Further, by re-
placing y with an affine function of x in (15), the dual La-
grangian Ld(δ,λ,x) share two variables x and δ with the primal
Lagrangian Lp(x, δ). We will show in next section that the spe-
cial form of Ld in (16) plays a crucial role for constructing the
augmented primal-dual Lagrangian.

III. AUGMENTED PRIMAL-DUAL LAGRANGIAN

In this section, we first build and investigate a primal-dual
Lagrangian from Lp and Ld . We show that a saddle point of
the primal-dual Lagrangian does not always lead to an optimal
solution of the primal or the dual problem.

To address the above issue, we then construct an augmented
primal-dual Lagrangian by introducing two additional penalty
functions. We show that any saddle point of the augmented
primal-dual Lagrangian leads to an optimal solution of the pri-
mal and the dual problem, respectively.

A. Primal-Dual Lagrangian

By inspection of (8) and (16), we see that in both Lp and Ld ,
the edge variables δij are related to the terms cij −Aijxi −
Aj ixj . As a consequence, if we add the primal and dual
Lagrangians, δij will cancel out and the resulting function con-
tains node variables x and λ only.

We hereby define the new function as the primal-dual
Lagrangian below:

Definition 1: The primal-dual Lagrangian is defined as

Lpd(x,λ) = Lp(x, δ) + Ld(δ,λ,x)

=
∑

i∈V

[
fi(xi)−

∑

j∈Ni

λT
j |i(Aijxi − cij )−f ∗i (AT

i λi)
]
. (17)

Lpd(x,λ) is convex in x for fixed λ and concave in λ for
fixed x, suggesting that it is essentially a saddle-point problem
(see [25], [26] for solving different saddle point problems). For
each edge (i, j) ∈ E , the node variables λi|j and λj |i substitute
the role of the edge variable δij . The removal of δij enables to
design a distributed algorithm that only involves node-oriented
optimization (see next section for PDMM).

Next we study the properties of saddle points of Lpd(x,λ):
Lemma 2: If x� solves the primal problem (7), then there

exists a λ� such that (x� ,λ�) is a saddle point of Lpd(x,λ).

Proof: If x� solves the primal problem (7), then there ex-
ists a δ� such that (x� , δ�) is a saddle point of Lp(x, δ) and
by Lemma 1, there exist λ�

i|j = δ�
ij for every [i, j] ∈ �E so that

(δ� ,λ� ,x�) is a saddle point of Ld(δ,λ,x). Hence

Lpd(x� ,λ) = Lp(x� , δ) + Ld(δ,λ,x�)

≤ Lp(x� , δ�) + Ld(δ� ,λ� ,x�)

= Lpd(x� ,λ�)

≤ Lp(x, δ�) + Ld(δ� ,λ� ,x) = Lpd(x,λ�).

�
The fact that (x� ,λ�) is a saddle point of Lpd(x,λ), however,

is not sufficient for showing x� (or λ� ) being optimal for solving
the primal problem (7) (for solving the dual problem (13)).

Example 1 (x� not optimal): Consider the following prob-
lem

min
x1 ,x2

f1(x1) + f2(x2) s.t. x1 − x2 = 0, (18)

where

f1(x1) = f2(−x1) =

{
x1 − 1 x1 ≥ 1

0 otherwise
.

With this, the primal Lagrangian is given by Lp(x, δ12) =
f1(x1) + f2(x2) + δ12(x2 − x1), so that the dual function is
given by −f ∗1 (δ12)− f ∗2 (−δ12), where

f ∗1 (δ12) = f ∗2 (−δ12) =

{
δ12 0 ≤ δ12 ≤ 1

+∞ otherwise
.

Hence, the optimal solution for the primal and dual problem is
x�

1 = x�
2 ∈ [−1, 1] and δ�

12 = 0, respectively. The primal-dual
Lagrangian in this case is given by

Lpd(x,λ) = f1(x1) + f2(x2)− f ∗1 (λ1|2)− f ∗2 (−λ2|1)

− x1λ2|1 + x2λ1|2 . (19)

One can show that every point (x′1 , x
′
2 , λ

′
1|2 , λ

′
2|1) ∈ {(x1 , x2 ,

0, 0)| − 1 ≤ x1 , x2 ≤ 1} is a saddle point of Lpd(x,λ), which
does not necessarily lead to x′1 = x′2 .

It is clear from Example 1 that finding a saddle point of Lpd

does not necessarily solve the primal problem (7). Similarly, one
can also build another example illustrating that a saddle point
of Lpd does not necessarily solve the dual problem (13).

B. Augmented Primal-Dual Lagrangian

The problem that not every saddle point of Lpd(x,λ) leads
to an optimal point of the primal or dual problem can be solved
by adding two quadratic penalty terms to Lpd(x,λ) as

LP(x,λ) = Lpd(x,λ) + hPp
(x)− hPd

(λ), (20)

where hPp
(x) and hPd

(λ) are defined as

hPp
(x) =

∑

(i,j )∈E

1
2
‖Aijxi + Aj ixj − cij‖2P p , i j

(21)

hPd
(λ) =

∑

(i,j )∈E

1
2

∥∥λi|j − λj |i
∥∥2

P d , i j
, (22)
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where P = Pp ∪ Pd and

Pp = {P T
p,ij = P p,ij � 0|(i, j) ∈ E}

Pd = {P T
d,ij = P d,ij � 0|(i, j) ∈ E}.

The 2|E| positive definite matrices in P remain to be specified.
Let X = {x|Aijxi + Aj ixj = cij ,∀(i, j) ∈ E} and Λ =
{λ|λi|j = λj |i ,∀(i, j) ∈ E} denote the primal and dual feasible
set, respectively. It is clear that hPp

(x) ≥ 0 (or −hPd
(λ) ≤ 0 )

with equality if and only if x ∈ X (or λ ∈ Λ). The introduction
of the two penalty functions essentially prevents non-feasible x
and/or λ to correspond to saddle points of LP(x,λ). As a con-
sequence, we have a saddle point theorem for LP which states
that x� solves the primal problem (7) if and only if there exits
λ� such that (x� ,λ�) is a saddle point of LP(x,λ). To prove
this result, we need the following lemma.

Lemma 3: Let (x� ,λ�) and (x′,λ′) be two saddle points of
LP(x,λ). Then

LP(x′,λ�) = LP(x′,λ′) = LP(x� ,λ�) = LP(x� ,λ′). (23)

Further, (x′,λ�) and (x� ,λ′) are two saddle points of LP(x,λ)
as well.

Proof: Since (x� ,λ�) and (x′,λ′) are two saddle points of
LP(x,λ), we have

LP(x′,λ�) ≤ LP(x′,λ′) ≤ LP(x� ,λ′)

LP(x� ,λ′) ≤ LP(x� ,λ�) ≤ LP(x′,λ�).

Combining the above two inequality chains produces (23).
In order to show that (x′,λ�) is a saddle point, we
have LP(x′,λ) ≤ LP(x′,λ′) = LP(x′,λ�) = LP(x� ,λ�) ≤
LP(x,λ�). The proof for (x� ,λ′) is similar. �

We are ready to prove the saddle point theorem for LP(x,λ).
Theorem 1: If x� solves the primal problem (7), there exists

λ� such that (x� ,λ�) is a saddle point of LP(x,λ). Conversely,
if (x′,λ′) is a saddle point of LP(x,λ), then x′ and λ′ solves
the primal and the dual problem, respectively. Or equivalently,
the following optimality conditions hold

∑

j∈Ni

AT
ijλ
′
j |i ∈ ∂xi

fi(x′i) ∀i∈ V (24)

Aijx
′
i + Aj ix

′
j − cij = 0 ∀(i, j)∈ E (25)

λ′i|j − λ′j |i = 0 ∀(i, j)∈ E . (26)

Proof: If x� solves the primal problem, then there exists a
λ� such that (x� ,λ�) is a saddle point of Lpd by Lemma 2.
Since x� ∈ X and λ� ∈ Λ, we have hPp

(x�)− hPd
(λ�) = 0,

∂xhPp
(x�) = 0 and ∂λhPd

(λ�) = 0, from which we conclude
that (x� ,λ�) is a saddle point of LP(x,λ) as well.

Conversely, let (x′,λ′) be a saddle point of LP(x,λ). We first
show that x′ solves the primal problem. We have from Lemma 3
that LP(x′,λ�) = LP(x� ,λ�), which can be simplified as

Lp(x′, δ�) + Ld(δ� ,λ� ,x′) + hPp
(x′)

= Lp(x� , δ�) + Ld(δ� ,λ� ,x�),

from which we conclude that hPp
(x′) = Lp(x� , δ�)−

Lp(x′, δ�) ≤ 0 and thus hPp
(x′) = 0 so that x′ ∈ X .

In addition, since (x′,λ�) is a saddle point of LP(x,λ) by
Lemma 3, we have

∑

j∈Ni

AT
ijδ

�
ij =

∑

j∈Ni

AT
ijλ

�
j |i ∈ ∂xi

fi(x′i),∀i ∈ V,

and we conclude that x′ solves the primal problem as required.
Similarly, one can show that λ′ solves the dual problem.

Based on the above analysis, we conclude that the optimality
conditions for (x′,λ′) being a saddle point of LP are given
by (24)–(26). The set of optimality conditions {cij−Aj ix

′
j ∈

∂λi |j

[
f ∗i (AT

i λ′i)
] |[i, j] ∈ �E} is redundant and can be derived

from (24)–(26) (see (4)–(6) for the argument). �
Theorem 1 states that instead of solving the primal problem

(7) or the dual problem (13), one can alternatively search for
a saddle point of LP(x,λ). To briefly summarize, we consider
solving the following min-max problem in the rest of the paper

(x� ,λ�) = arg min
x

max
λ

LP(x,λ). (27)

We will explain in next section how to iteratively approach the
saddle point (x� ,λ�) in a distributed manner.

IV. PRIMAL-DUAL METHOD OF MULTIPLIERS

In this section, we present a new algorithm named primal-
dual method of multipliers (PDMM) to iteratively approach a
saddle point of LP(x,λ). We propose both the synchronous and
asynchronous PDMM for solving the problem.

A. Synchronous Updating Scheme

The synchronous updating scheme refers to the operation
that at each iteration, all the variables over the graph update
their estimates by using the most recent estimates from their

neighbors from last iteration. Suppose (x̂k , λ̂
k
) is the estimate

obtained from the k − 1th iteration, where k ≥ 1. We compute

the new estimate (x̂k+1 , λ̂
k+1

) at iteration k as
(
x̂k+1

i , λ̂
k+1
i

)
=arg min

xi

max
λi

LP
([

. . . , x̂k,T
i−1,x

T
i , x̂k,T

i+1, . . .
]T

,

[
. . . , λ̂

k,T

i−1,λ
T
i , λ̂

k,T

i+1, . . .
]T)

i ∈ V. (28)

By inserting the expression (20) for LP(x,λ) into (28), the
updating expression can be further simplified as

x̂k+1
i = arg min

xi

[
∑

j∈Ni

1
2

∥∥∥Aijxi + Aj ix̂
k
j − cij

∥∥∥
2

P p , i j

−xT
i

(
∑

j∈Ni

AT
ij λ̂

k

j |i

)
+fi(xi)

]
i ∈ V (29)

λ̂
k+1
i = arg min

λi

[
∑

j∈Ni

(
1
2

∥∥∥λi|j − λ̂
k

j |i
∥∥∥

2

P d , i j

+λT
i|jAj ix̂

k
j

−λT
i|jcij

)
+f ∗i (AT

i λi)

]
i ∈ V. (30)
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Equation (29)–(30) suggest that at iteration k, every node i
performs parameter-updating independently once the estimates

{x̂k
j , λ̂

k

j |i |j ∈ Ni} of its neighboring variables are available. In

addition, the computation of x̂k+1
i and λ̂

k+1
i can be carried out

in parallel since xi and λi are not directly related in LP(x,λ).
We refer to (29)–(30) as node-oriented computation.

In order to run PDMM over the graph, each iteration should
consist of two steps. Firstly, every node i computes (x̂i , λ̂i) by
following (29)–(30), accounting for information-fusion. Sec-
ondly, every node i sends (x̂i , λ̂i|j ) to its neighboring node j
for all neighbors, accounting for information-spread. We take
x̂i as the common message to all neighbors of node i and λ̂i|j
as a node-specific message only to neighbor j. In some appli-
cations, it may be preferable to exploit broadcast transmission
rather than point-to-point transmission in order to save energy.
We will explain in Section IV-C that the transmission of λ̂i|j ,
j ∈ Ni , can be replaced by broadcast transmission of an inter-
mediate quantity.

Finally, we consider terminating the iterates (29)–(30). One
can check if the estimate (x̂, λ̂) becomes stable over consecutive
iterates (see Corollary 1 for theoretical support).

B. Asynchronous Updating Scheme

The asynchronous updating scheme refers to the operation
that at each iteration, only the variables associated with one node
in the graph update their estimates while all other variables keep
their estimates fixed. Suppose node i is selected at iteration k.

We then compute (x̂k+1
i , λ̂

k+1
i ) by optimizing LP based on the

most recent estimates {x̂k
j , λ̂

k

j |i |j ∈ Ni} from its neighboring

nodes. At the same time, the estimates (x̂k
j , λ̂

k

j ), j �= i, remain
the same. By following the above computational instruction,

(x̂k+1 , λ̂
k+1

) can be obtained as
(
x̂k+1

i , λ̂
k+1
i

)
=arg min

xi

max
λi

LP
([

. . . , x̂k,T
i−1,x

T
i , x̂k,T

i+1, . . .
]T

,

[
. . . , λ̂

k,T

i−1,λ
T
i , λ̂

k,T

i+1, . . .
]T)

(31)

(x̂k+1
j , λ̂

k+1
j ) = (x̂k

j , λ̂
k

j ) j ∈ V, j �= i. (32)

Similarly to (29)–(30), x̂k+1
i and λ̂

k+1
i can also be com-

puted separately in (31). Once the update at node i is complete,
the node sends the common message x̂k+1

i and node-specific

messages {λ̂k+1
i|j , j ∈ Ni} to its neighbors. We will explain in

next subsection how to exploit broadcast transmission to replace
point-to-point transmission.

In practice, the nodes in the graph can either be randomly acti-
vated or follow a predefined order for asynchronous parameter-
updating. One scheme for realizing random node-activation is
that after a node finishes parameter-updating, it randomly ac-
tivates one of its neighbors for next iteration. Another scheme
is to introduce a clock at each node which ticks at the times
of a (random) Poisson process (see [5] for detailed informa-
tion). Each node is activated only when its clock ticks. As for
node-activation in a predefined order, cyclic updating scheme is

most straightforward. Once node i finishes parameter-updating,
it informs node i + 1 for next iteration. For the case that node i
and i + 1 are not neighbors, the path from node i to i + 1 can
be pre-stored at node i to facilitate the process. In Section V-D,
we provide convergence analysis only for the cyclic updating
scheme. We leave the analysis for other asynchronous schemes
for future investigation.

Remark 1: To briefly summarize, synchronous PDMM
scheme allows faster information-spread over the graph through
parallel parameter-updating while asynchronous PDMM
scheme requires less effort from node-coordination in the graph.
In practice, the scheme-selection should depend on the graph
(e.g., wireless sensor networks) properties such as the feasibil-
ity of parallel computation, the complexity of node-coordination
and the life time of nodes.

C. Simplifying Node-Based Computations and Transmissions

It is clear that for both the synchronous and asynchronous
schemes, each activated node i has to perform two minimiza-
tions: one for x̂i and the other one for λ̂i . In this subsection, we
show that the computations for the two minimizations can be
simplified. We will also study how the point-to-point transmis-
sion can be replaced with broadcast transmission. To do so, we
will consider two scenarios:

1) Avoiding Conjugate Functions: In the first scenario, we
consider using fi(·) instead of f ∗i (·) to update λ̂i . Our goal is to
simplify computations by avoiding the derivation of f ∗i (·).

By using the definition of f ∗i in (4), the computation (30)

for λ̂
k+1
i (which also holds for asynchronous PDMM) can be

rewritten as

λ̂
k+1
i = arg min

λi

[
∑

j∈Ni

(
1
2

∥∥∥λi|j − λ̂
k

j |i
∥∥∥

2

P d , i j

+λT
i|jAj ix̂

k
j

−λT
i|jcij

)
+max

wi

(
wT

i AT
i λi−fi(wi)

)]
. (33)

We denote the optimal solution for wi in (33) as wk+1
i . The

optimality conditions for λ̂
k+1
i|j , j ∈ Ni , and wk+1

i can then be
derived from (33) as

0 ∈ AT
i λ̂

k+1
i − ∂wi

fi(wk+1
i ) (34)

cij =P d,ij (λ̂
k+1
i|j −λ̂

k

j |i)+Aj ix̂
k
j +Aijw

k+1
i j ∈ Ni , (35)

where (14) is used in deriving (35). Since P d,ij is a nonsingular

matrix, (35) defines a mapping from wk+1
i to λ̂

k+1
i|j :

λ̂
k+1
i|j = λ̂

k

j |i +P−1
d,ij (cij−Aj ix̂

k
j −Aijw

k+1
i ), j ∈Ni , (36)

With this mapping, (34) can then be reformulated as

∑

j∈Ni

AT
ij

(
λ̂

k

j |i +P−1
d,ij (cij−Aj ix̂

k
j −Aijw

k+1
i )

)

∈ ∂wi
fi(wk+1

i ). (37)
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By inspection of (37), it can be shown that (37) is in fact an
optimality condition for the following optimization problem

wk+1
i = arg min

wi

[
fi(wi) +

1
2
‖cij−Aj ix̂

k
j −Aijwi‖2P −1

d , i j

−wT
i

∑

j∈Ni

AT
ij λ̂

k

j |i
]
. (38)

The above analysis suggests that λ̂
k+1
i can be alternatively

computed through an intermediate quantity wk+1
i . We summa-

rize the result in a proposition below.
Proposition 1: Considering a node i ∈ V at iteration k, the

new estimate λ̂
k+1
i|j for each j ∈ Ni can be obtained by following

(36), where wk+1
i is computed by (38).

Proposition 1 suggests that the estimate λ̂
k+1
i can be easily

computed from wk+1
i . We argue in the following that the point-

to-point transmission of {λ̂k+1
i|j , j ∈ Ni} can be replaced with

broadcast transmission of wk+1
i .

We see from (36) that the computation of the node-specific

message λ̂
k+1
i|j (from node i to node j) only consists of the

quantities wk+1
i , λ̂

k

j |i and x̂k
j . Since λ̂

k

j |i and x̂k
j are available at

node j, the message λ̂
k+1
i|j can therefore be computed at node j

once the common message wk+1
i is received. In other words, it

is sufficient for node i to broadcast both x̂k+1
i and wk+1

i to all

its neighbors. Every node-specific message λ̂
k+1
i|j , j ∈ Ni , can

then be computed at node j alone.
Finally, in order for the broadcast transmission to work, we

assume there is no transmission failure between neighboring
nodes. The assumption ensures that there is no estimate in-
consistency between neighboring nodes, making the broadcast
transmission reliable.

2) Reducing Two Minimizations to One: In the second sce-
nario, we study under what conditions the two minimizations
(29)–(30) (which also hold for asynchronous PDMM) reduce to
one minimization.

Proposition 2: Considering a node i ∈ V at iteration k, if
the matrix P d,ij for every neighbor j ∈ Ni is chosen to be
P d,ij = P−1

p,ij , then there is x̂k+1
i = wk+1

i . As a result,

λ̂
k+1
i|j = λ̂

k

j |i +P p,ij (cij−Aj ix̂
k
j −Aij x̂

k+1
i ) j ∈ Ni . (39)

Proof: The proof is trivial. By inspection of (29) and (38)
under P d,ij = P−1

p,ij , j ∈Ni , we obtain x̂k+1
i = wk+1

i . �
Similarly to the first scenario, broadcast transmission is also

applicable for the second scenario. Since x̂k+1
i = wk+1

i , node
i only has to broadcast the estimate x̂k+1

i to all its neighbors.

Each message λ̂
k+1
i|j from node i to node j can then be computed

at node j directly by applying (39). See Table I for the procedure
of synchronous PDMM.

V. CONVERGENCE ANALYSIS

In this section, we analyze the convergence rates of PDMM
for both the synchronous and asynchronous schemes. Inspired
by the convergence analysis of ADMM [27], [28], we construct

TABLE I
SYNCHRONOUS PDMM WHERE FOR EACH i ∈ V , P d ,ij = P−1

p ,ij

Initialization: {xi } and {λi |j }
Repeat

for all i ∈ V do

x̂k + 1
i = arg minxi

[
fi (xi )−xT

i (
∑

j ∈Ni
AT

i j λ̂
k

j |i )

+
∑

j ∈Ni

1
2 ‖Ai j xi +Aj i x̂

k
j − ci j ‖2P p , i j

]

end for

for all i ∈ V and j ∈ Ni do

λ̂
k + 1
i |j = λ̂

k

j |i + P p , i j (ci j −Aj i x̂
k
j −Ai j x̂k + 1

i )

end for

k ← k + 1

Until some stopping criterion is met

a special inequality (presented in V-B) for LP(x,λ) and then
exploit it to analyze both synchronous PDMM (presented in
V-C) and asynchronous PDMM (presented in V-D).

Before constructing the inequality, we first study how to prop-
erly choose the matrices in the set P (presented in V-A) in order
to enable convergence analysis.

A. Parameter Setting

In order to analyze the algorithm convergence later on, we first
have to select the matrix set P properly. We impose a condition
on each pair of matrices (P p,ij � 0,P d,ij � 0), (i, j) ∈ E , in
LP :

Condition 1: In the function LP , each matrix P d,ij can be
represented in terms of P p,ij as

P d,ij = P−1
p,ij + ΔP d,ij ∀(i, j) ∈ E , (40)

where ΔP d,ij � 0.
Equation (40) implies that P p,ij and P d,ij can not be cho-

sen arbitrarily for our convergence analysis. If P p,ij is small,
then P d,ij has to be chosen big enough to make (40) hold,
and vice versa. One special setup for (P p,ij ,P d,ij ) is to let
P d,ij = P−1

p,ij , or equivalently, ΔP d,ij = 0. This leads to the
application of Proposition 2, which reduces two minimizations
to one minimization for each activated node.

One simple setup in Condition 1 is to l l the matrices in P
take scalar form. That is setting (P p,ij ,P d,ij ), (i, j) ∈ E , to be
identity matrices multiplied by positive parameters:

(P p,ij ,P d,ij ) = (γp,ijIni j
, γd,ijIni j

) (41)

where γp,ij > 0, γd,ij > 0 and γd,ij γp,ij ≥ 1. It is worth noting
that matrix form of (P p,ij ,P d,ij ) might lead to faster conver-
gence for some optimization problems.

B. Constructing an Inequality

Before introducing the inequality, we first define a new func-
tion which involves {fi, i ∈ V} and their conjugates:

p(x,λ) =
∑

i∈V

[
fi(xi)+f ∗i (AT

i λi)− 1
2

∑

j∈Ni

cT
ijλi|j

]
. (42)



180 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 4, NO. 1, MARCH 2018

By studying (7) and (13) at a saddle point (x� ,λ�) of LP , one
can show that p(x� ,λ�) = 0.

With p(x,λ), the inequality for LP can be described as:
Lemma 4: Let (x� ,λ�) be a saddle point of LP . Then for

any (x,λ), there is

0 ≤
∑

i∈V

∑

j∈Ni

[
(λi|j − λ�

i|j )
T
(
Aj ixj − cij

2

)

− (xi − x�
i )

T AT
ijλj |i

]
+ p(x,λ), (43)

where equality holds if and only if (x,λ) satisfies

0 ∈ ∂xi
fi(x�

i )−
∑

j∈Ni

AT
ijλj |i ∀i ∈ V (44)

0 ∈ ∂xi
fi(xi)−

∑

j∈Ni

AT
ijλ

�
j |i ∀i ∈ V. (45)

Proof: Given a saddle point (x� ,λ�) of LP , the right hand
side of the inequality (43) can be reformulated as

∑

i∈V

[
∑

j∈Ni

(
−λ

�,T
i|j

(
Aj ixj − cij

2

)
+ x�,T

i AT
ijλj |i

−λT
i|jcij

)
+fi(xi)+f ∗i (AT

i λi)

]

=
∑

i∈V

[
∑

j∈Ni

(
−λ

�,T
j |i Aijxi + (Aj ix

�
j − cij )T λi|j

)

+fi(xi)+f ∗i (AT
i λi) +

1
2

∑

j∈Ni

cT
ijλ

�
i|j

]

=
∑

i∈V

[
∑

j∈Ni

(
−λ

�,T
i|j Aijxi − x�,T

i AT
ijλi|j

)
+fi(xi)

+f ∗i (AT
i λi) +

1
2

∑

j∈Ni

cT
ijλ

�
i|j

]
, (46)

where the last equality is obtained by using (x� ,λ�) ∈ (X, Λ).
Using Fenchel’s inequalities (12), we conclude that for any
i ∈ V , the following two inequalities hold

f ∗i (AT
i λi)−x�,T

i (AT
i λi) ≥ −fi(x�

i ) (47)

fi(xi)− xT
i (AT

i λi)� ≥−f ∗i (AT
i λ�

i ). (48)

Finally, combining (46)–(48) and the fact that p(x� ,λ�) = 0
produces the inequality (43). The equality holds if and only if
(47)–(48) hold, of which the optimality conditions are given by
(44)–(45) (see (4)–(6) for the argument). �

Lemma 4 shows that the quantity on the right hand side of
(43) is always lower-bounded by zero. In the next two subsec-
tions, we will construct proper upper bounds for the quantity
by replacing (x,λ) with real estimate of PDMM. The algorith-
mic convergence will be established by showing that the upper
bounds approach to zero when iteration increases.

The conditions (44)–(45) in Lemma 4 are not sufficient for
showing that (x,λ) is a saddle point of LP . The primal and dual

feasibilities x ∈ X and λ ∈ Λ are also required to complete the
argument, as shown in Lemma 5, 6 and 7 below. Lemma 5 and
6 are preliminary to show that (x,λ) is a saddle point of LP as
presented in Lemma 7. These three lemmas will be used in the
next two subsections for convergence analysis.

Lemma 5: Let (x� ,λ�) be a saddle point of LP . Given x =
x′ which satisfies (45) and x′ ∈ X , then (x′,λ�) is a saddle
point of LP .

Proof: By using (45) and the fact that x′ ∈ X and λ� ∈ Λ,
it is immediate from (24)–(26) that (x′,λ�) is a saddle point of
LP . �

Lemma 6: Let (x� ,λ�) be a saddle point of LP . Given λ = λ′

which satisfies (44) and λ′ ∈ Λ, then (x� ,λ′) is a saddle point
of LP .

Proof: The proof is similar to that for Lemma 5. �
Lemma 7: Let (x� ,λ�) be a saddle point of LP . Given

(x,λ) = (x′,λ′) which satisfy (44)–(45) and (x′,λ′) ∈ (X,Λ),
then (x′,λ′) is a saddle point of LP .

Proof: It is known from Lemma 5 and 6 that in addition to
(x� ,λ�), (x′,λ�) and (x� ,λ′) are also the saddle points of LP .
By using a similar argument as the one for Lemma 3, one can
show that (x′,λ′) is a saddle point of LP . �

C. Synchronous PDMM

In this subsection, we show that the synchronous PDMM
converges with the sub-linear rate O(K−1). In order to obtain
the result, we need the following two lemmas.

Lemma 8: Let (x� ,λ�) be a saddle point of LP . The esti-

mate (x̂k+1 , λ̂
k+1

) is obtained by performing (29)-(30) under
Condition 1. Then there is

∑

i∈V

∑

j∈Ni

[
(λ̂

k+1
i|j −λ�

i|j )
T
(
Aj ix̂

k+1
j − cij

2

)
−(x̂k+1

i −x�
i )

T

·AT
ij λ̂

k+1
j |i

]
+p(x̂k+1 , λ̂

k+1
) ≤

∑

i∈V

∑

j∈Ni

dk+1
i|j , (49)

where dk+1
i|j is given by

dk+1
i|j =

1
2

(∥∥∥P
1
2
p,ijAj i(x̂k

j −x�
j )+P

− 1
2

p,ij (λ
�
j |i−λ̂

k

j |i)
∥∥∥

2

−
∥∥∥P

1
2
p,ijAj i(x̂k+1

j − x�
j )+P

− 1
2

p,ij (λ
�
j |i−λ̂

k+1
j |i )

∥∥∥
2

−
∥∥∥P

1
2
p,ij (Aij x̂

k+1
i +Aj ix̂

k
j −cij )+P

− 1
2

p,ij (λ̂
k+1
i|j −λ̂

k

j |i)
∥∥∥

2

+‖ΔP
1
2
d,ij (λ

�
j |i−λ̂

k

j |i)‖2−‖ΔP
1
2
d,ij (λ

�
j |i−λ̂

k+1
j |i )‖2

−‖ΔP
1
2
d,ij (λ̂

k+1
i|j −λ̂

k

j |i)‖2
)
, (50)

where P p,ij = P
1
2
p,ijP

1
2
p,ij and ΔP d,ij = ΔP

1
2
d,ijΔP

1
2
d,ij .

Proof: See the proof in Appendix A. �
Lemma 9: Every pair of estimates (x̂i

k+1 , λ̂
k+1
i|j ), i ∈ V , j ∈

Ni , k ≥ 0, in Lemma 8 is upper bounded by a constant M under
a squared error criterion:

∥∥∥P
1
2
p,ijAj i(x̂k+1

j − x�
j )+P

− 1
2

p,ij (λ
�
j |i−λ̂

k+1
j |i )

∥∥∥
2
≤M. (51)
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Proof: One can first prove (51) for k = 0 by performing
algebra on (49)–(50). The inequality (51) for k > 0 can then be
proved recursively. �

Upon obtaining the results in Lemma 8 and 9, we are ready
to present the convergence rate of synchronous PDMM.

Theorem 2: Let (x̂k , λ̂
k
), k = 1, . . . , K, be obtained by per-

forming (29)–(30) under Condition 1. The average estimate

(x̄K , λ̄
K ) = ( 1

K

∑K
k=1 x̂k , 1

K

∑K
k=1 λ̂

k
) satisfies

0 ≤
∑

i∈V

∑

j∈Ni

[
(λ̄K

i|j−λ�
i|j )

T
(
Aj ix̄

K
j −

cij

2

)
−(x̄K

i −x�
i )

T

·AT
ij λ̄

K
j |i

]
+p(x̄K , λ̄

K ) ≤ O
( 1

K

)
(52)

lim
K→∞

[
P

1
2
p,ij (Aij x̄

K
i + Aj ix̄

K
j − cij )

+ P
− 1

2
p,ij (λ̄

K
i|j − λ̄

K
j |i)

]
= 0 ∀[i, j] ∈ �E . (53)

Proof: Summing (49) over k and simplifying the expression
yields

K−1∑

k=0

(
∑

i∈V

∑

j∈Ni

[
(λ̂

k+1
i|j −λ�
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T
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Aj ix̂
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−(x̂k+1
i −x�

i )
T AT

ij λ̂
k+1
j |i

]
+p(x̂k+1 , λ̂
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)+
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i∈V

∑

j∈N

[∥∥∥P
1
2
p,ij (Aij x̂
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i +Aj ix̂

k
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− 1
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p,ij (λ̂
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k

j |i)
∥∥∥

2]
)

≤
∑

i∈V

∑

j∈Ni

1
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(∥∥∥P
1
2
p,ij (Aj i(x̂0

j −x�
j )+P

− 1
2

p,ij (λ
�
i|j−λ̂

0
j |i)

∥∥∥
2

+ ‖ΔP
1
2
d,ij (λ

�
j |i − λ̂

0
j |i)‖2

)
. (54)

Finally, since the left hand side of (54) is a convex function
of (x,λ), applying Jensen’s inequality to (54) and using the
inequality of Lemma 4 yields (52). Similarly, applying Jensen’s
inequality to (54) and using the upper-bound result of Lemma 9
yields the asymptotic result (53). �

Finally, we use the results of Theorem 2 to show that as K

goes to infinity, the average estimate (x̄K , λ̄
K ) converges to a

saddle point of LP . �
Theorem 3: The average estimate (x̄K , λ̄

K ) of Theorem 2
converges to a saddle point (x� ,λ�) of LP as K increases.

Proof: The basic idea of the proof is to investigate if
(x̄K , λ̄

K ) satisfies all the conditions of Lemma 7. By investiga-
tion of Lemma 4 and (52), it is clear that the average estimate
(x̄K , λ̄

K ) asymptotically satisfies the conditions (44)–(45) by
letting (x,λ) = (x̄K , λ̄

K ).
Next we show that as K increases, x̄K asymptotically con-

verges to an element of the primal feasible set X and so does λ̄
K

to an element of the dual feasible set Λ. To do so, we reconsider
(53) for each pair of directed edges [i, j] and [j, i], which can be

expressed as

lim
K→∞

[
P

1
2
p,ij (Aij x̄

K
i +Aj ix̄

K
j −cij )+P

− 1
2

p,ij (λ̄
K
i|j−λ̄

K
j |i)

]
=0
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[
P

1
2
p,ij (Aij x̄

K
i +Aj ix̄

K
j −cij )+P

− 1
2

p,ij (λ̄
K
j |i−λ̄

K
i|j )

]
=0.

Combining the above two expressions produces

lim
K→∞

Aij x̄
K
i + Aj ix̄

K
j = cij ∀(i, j) ∈ E

lim
K→∞

λ̄
K
j |i = λ̄

K
i|j ∀(i, j) ∈ E .

It is straightforward from Lemma 7 that (x̄K , λ̄
K ) converges to

a saddle point of LP as K increases. �
Further we have the following result from Theorem 3:
Corollary 1: If for certain i ∈ V , the estimate x̂k

i in
Theorem 2 converges to a fixed point x′i (limk→∞ x̂k

i = x′i),
we have x′i = x�

i which is the ith component of the optimal so-

lution x� in Theorem 3. Similarly, if the estimate λ̂
k

i|j converges
to a point λ′i|j , we have λ′i|j = λ�

i|j .

D. Asynchronous PDMM

In this subsection, we characterize the convergence rate
of asynchronous PDMM. In order to facilitate the analysis,
we consider a predefined node-activation strategy (no ran-
domness is involved). We suppose at each iteration k, the
node i = mod(k,m) + 1 is activated for parameter-updating,
where m = |V| and mod(·, ·) stands for the modulus operation.
Then naturally, after a segment of m consecutive iterations,
all the nodes will be activated sequentially, one node at each
iteration.

To be able to derive the convergence rate, we consider
segments of iterations, i.e., k ∈ {lm, lm + 1, . . . (l + 1)m−
1}, where l ≥ 0. Each segment l consists of m iterations.
With the mapping i = mod(k,m) + 1, it is immediate that
k = ml activates node 1 and k = (l + 1)m− 1 activates
node m. Based on the above analysis, we have the following
result.

Lemma 10: Let k1 , k2 be two iteration indices within a seg-
ment {lm, lm + 1, . . . , (l + 1)m− 1}. If k1 < k2 , then i1 <
i2 , where the node-index iq = mod(kq ,m) + 1, q = 1, 2.

Upon introducing Lemma 10, we are ready to perform con-
vergence analysis.

Lemma 11: Let (x� ,λ�) be a saddle point of LP . A seg-

ment of estimates {(x̂k+1 , λ̂
k+1

)|k = lm, . . . , (l + 1)m− 1},
is obtained by performing (31)–(32) under Condition 1. Then
there is

∑
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∑

j∈Ni

[(
λ̂

(l+1)m
i|j −λ�

i|j
)T(

Aj ix̂
(l+1)m
j −cij

2

)
−

(
x̂

(l+1)m
i −x�

i

)T

·AT
ij λ̂

(l+1)m
j |i
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+ p
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)
≤

u<v∑
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dl+1

uv , (55)
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where dl+1
uv is given by

dl+1
uv =

1
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Proof: See the proof in Appendix B. Lemma 10 will be used
in the proof to simplify mathematic derivations. �

Remark 2: We note that Lemma 11 corresponds to Lemma 8
which is for synchronous PDMM. The right hand side of (55)
consists of |E| quantities {dl+1

uv } (one for each edge (u, v) ∈ E)
as opposed to that of (49) which consists of |�E| quantities {dk+1

i|j }
(one for each directed edge [i, j] ∈ �E).

Lemma 12: Every pair of estimates (x̂(l+1)m
v , λ̂

(l+1)m
v |u ),

(u, v) ∈ E , u < v, l ≥ 0, in Lemma 11 is upper bounded by
a constant M under a squared error criterion:

‖P 1
2

p,uvAvu(x̂(l+1)m
v − x�

v ) + P
− 1

2
p,uv(λ�

v |u−λ̂
(l+1)m
v |u )‖2≤M.

Theorem 4: Let the K ≥ 1 segments of estimates

{(x̂k+1 , λ̂
k+1

)|k = 0, . . . , Km− 1} be obtained by perform-
ing (31)–(32) under Condition 1. The average estimates

(x̌K , λ̌
K )=( 1

K

∑K
l=1 x̂lm , 1

K

∑K
l=1 λ̂
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∀(u, v)∈E , u<v (58)

lim
K→∞
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p,uv (Auv x̌K
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Proof: The proof is similar to that for Theorem 2. �
Similarly to synchrounous PDMM, by using the results of

Theorem 4, we can conclude that:
Theorem 5: The average estimate (x̌K , λ̌

K ) of Theorem 4
converges to a saddle point (x� ,λ�) of LP as K increases.

Corollary 2: If for certain u ∈ V , the estimate x̂lm
u in

Theorem 4 converges to a fixed point x′u (liml→∞ x̂lm
u = x′u ),

we have x′u = x�
u which is the uth component of the optimal so-

lution x� in Theorem 5. Similarly, if the estimate λ̂
lm

u |v converges
to a point λ′u |v , we hvae λ′u |v = λ�

u |v .

VI. APPLICATION TO DISTRIBUTED AVERAGING

In this section, we consider solving the problem of distributed
averaging by using PDMM. Distributed averaging is one of the
basic and important operations for advanced distributed signal
processing [5], [15].

A. Problem Formulation

Suppose every node i in a graph G = (V, E) carries a scalar
parameter, denoted as ti . ti may represent a measurement of
the environment, such as temperature, humidity or darkness.
The problem is to compute the average value tave = 1

m

∑
i∈V ti

iteratively only through message-passing between neighboring
nodes in the graph.

The above averaging problem can be formulated as a
quadratic optimization over the graph as

min
{xi }

∑

i∈V

1
2
(xi − ti)2 s.t. xi − xj = 0 ∀(i, j) ∈ E . (60)

The optimal solution equals to x�
1 = . . . = x�

m = tave , which is
the same as the averaging value.

The quadratic problem (60) is inline with (7) by letting

fi(xi) =
1
2
(xi − ti)2 ∀i ∈ V (61)

(Aij ,Aj i , cij ) = (1,−1, 0) ∀(i, j) ∈ E , i < j. (62)

In next subsection, we apply PDMM for distributed averaging.

B. Parameter Computations and Transmissions

Before deriving the updating expressions for PDMM, we first
configure the set P in LP . For distributed averaging, all the
matrices in P become scalars. For simplicity, we set the value
of the primal scalars and the dual scalars as

P p,ij = γp ∀(i, j) ∈ E (63a)

P d,ij = γd ∀(i, j) ∈ E , (63b)

where the two parameters γp > 0 and γd > 0.
We start with the synchronous PDMM. By inserting

(61)–(63) into (29), (36) and (38), the updating expression for

(x̂k+1 , λ̂
k+1

) at iteration k can be derived as

x̂k+1
i =

ti +
∑

j∈Ni
(γp x̂

k
j + Aij λ̂

k
j |i)

1 + |Ni |γp
∀i ∈ V (64)

λ̂k+1
i|j = λ̂k

j |i−
1
γd

(
Aj i x̂

k
j +Aijw

k+1
i

)
∀[i, j] ∈ �E , (65)

where

wk+1
i =

∑
j∈Ni

(x̂k
j +γdAij λ̂

k
j |i)+γdti

|Ni |+ γd
∀i ∈ V. (66)
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For the case that γd = γ−1
p , it is immediate from (64) and (66)

that x̂k+1
i = wk+1

i , which coincides with Proposition 2.
The asynchronous PDMM only activates one node per iter-

ation. Suppose node i is activated at iteration k. Node i then
updates x̂i and λ̂i|j , j ∈ Ni , by following (64)–(65) while all
other nodes remain silent. After computation, node i then sends
(x̂i , λ̂i|j ) to its neighboring node j for all neighbors.

As described in Section IV-C, if no transmission fails in
the graph, the transmission of λ̂i|j , j ∈ Ni , can be replaced
by broadcast transmission of wi as given by (66). Once wi is
received by a neighboring node j, λ̂i|j can be easily computed
by node j alone using wi , x̂j and λ̂j |i (see (65)). If instead the
transmission is not reliable, we have to return to point-to-point
transmission.

C. Experimental Results

We conducted three experiments for PDMM applied to dis-
tributed averaging. In the first experiment, we evaluated how dif-
ferent parameter-settings w.r.t. (γp , γd) affect the convergence
rates of PDMM. In the second experiment, we tested the non-
perfect channels for PDMM, which lacks theoretical analysis
at the moment. Finally, we evaluated the convergence rates of
PDMM, ADMM and two gossip algorithms.

The tested graph in the three experiments was a 10× 10
two-dimensional grid (corresponding to m = 100), implying
that each node may have two, three or four neighbors. The
mean squared error (MSE) 1

m ‖x̂− tave1‖22 was employed as
performance measurement.

1) Performance for Different Parameter Settings: In this ex-
periment, we evaluated the performance of PDMM by testing
different parameter-settings for (γp , γd). Both synchronous and
asynchronous updating schemes were investigated.

At each iteration, the synchronous PDMM activated all
the nodes for parameter-updating. As for the asynchronous
PDMM, the nodes were activated sequentially by follow-
ing the mapping i = mod(k,m) + 1, where the iteration
k ≥ 0 (See Section V-D). As a result, after every segment
of m = 100 iterations, all the nodes were activated once.
In the experiment, we counted the number of iterations
for the synchronous PDMM and the number of segments
(each segment consists of m iterations) for the asynchronous
PDMM.

For each parameter-setting, we initialized (x̂0
i , λ̂

0
i ) = (ti ,0)

for every i ∈ V . The algorithm stops when the squared error is
below 10−4 .

Fig. 2 displays the numbers of iterations (or segments) of
PDMM under different parameter-settings. Each ◦ or � symbol
represents a particular setting for (γp , γd). The settings denoted
by � are for the case that γpγd < 1 while the ones by ◦ are for
the case that γpγd ≥ 1.

It is seen from the figure that large γp or γd can only make the
algorithm converge slowly. The optimal parameter-setting that
leads to the fastest convergence lies on the curve γdγp = 1 for
both the synchronous and the asynchronous updating schemes.
Further, it appears that the two optimal settings for the two
updating schemes are in a neighborhood.

Fig. 2. Performance of PDMM for different parameter settings. Each value
in subplot (a) represents the number of iterations required for the synchronous
PDMM. On the other hand, each value in subplot (b) represents the number
of segments of iterations for the asynchronous PDMM, where each segment
consists of 100 iterations. The convex curve in each subplot corresponds to
γp γd = 1.

Finally, we note that the settings denoted by � correspond
to the situation that γpγd < 1. The experiment for those set-
tings demonstrates that Condition 1 is only sufficient for algo-
rithmic convergence. We also tested the setting γp = γd = 0.5.
We found that the above setting led to divergence for both syn-
chronous and synchronous schemes. This phenomenon suggests
that γp and γd cannot be chosen arbitrarily in practice.

2) Performance With Transmission Failure: In this experi-
ment, we studied how transmission failure affects the perfor-
mance of PDMM given the fact that no convergence guaranty
is derived at the moment. As discussed in Section IV-C, we
could not use broadcast transmission in the case of transmission
loss. Instead, each activated node i has to perform point-to-point
transmission for λ̂i|j from node i to node j ∈ Ni .

Due to transmission failure, PDMM was initialized differently
from the first experiment. Each time the algorithm was tested,

the initial estimate (x̂0 , λ̂
0
) was set as

(x̂0 , λ̂
0
) = (0,0), (67)

which guarantees that every node in the graph has access to the
initial estimates of neighboring nodes without transmission.

Fig. 3 demonstrates the performance of PDMM under three
transmission losses: 0%, 20% and 40%. Subplot (a) and (b)
are for the asynchronous and synchronous schemes, respec-
tively. Each curve in the two subplots was obtained by averaging
over 100 simulations to mitigate the effect of random transmis-
sion losses. It is seen that transmission failure only slows down
the convergence speed of the algorithm. The above property is
highly desirable in real applications because transmission losses
might be inevitable in some networks (e.g., see [29] for investi-
gation of packet-loss over wireless sensor networks in different
environments).
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Fig. 3. Performance of synchronous/asynchronous PDMM under different
transmission losses (%).

Finally, it is observed that for each transmission-loss in sub-
plot (a), the error goes up in the first few hundred of iterations
before deceasing. This may be because of the special initial-
ization (67). We have tested the initialization {x̂0

i = ti} for 0%
transmission loss, where the MSE decreases along with the it-
erations monotonically.

3) Performance Comparison: In this experiment, we inves-
tigated the convergence speeds of four algorithms under the
condition of no transmission failure. Besides PDMM, we also
implemented the broadcast-based algorithm in [14] (referred to
as broadcast), the randomized gossip algorithm in [5] (referred
to as gossip) and ADMM. Unlike PDMM and ADMM that can
work either synchronously or asynchronously, both broadcast
and gossip algorithms can only work asynchronously. While
broadcast algorithm randomly activates one node per iteration,
gossip algorithm randomly activates one edge per iteration for
parameter-updating.

Similarly to the first experiment, we also evaluated PDMM
for both the synchronous and asynchronous schemes. For
the asynchronous scheme, we tested all the four algorithms
introduced above while for the synchronous scheme, we
focused on PDMM and ADMM. The implementation of the
synchronous/asynchronous ADMM follows from [10] and [17],
respectively. The asynchronous ADMM [17] is similar to the
gossip algorithm in the sense that both algorithms activates one
edge per iteration.

We note that the asynchronous ADMM essentially activates
two neighboring nodes per iteration. To make a fair comparison
between PDMM and ADMM, we implemented two versions of
PDMM for the asynchronous scheme. The first version follows
Section IV-B where each iteration randomly activates one node
as the gossip algorithm, referred to as one-node PDMM. The
second version of PDMM randomly activates two neighboring
nodes per iteration as the broadcast algorithm, referred to as
two-node PDMM.

Both PDMM and ADMM have some parameters to be spec-
ified. To simplify the implementation, we let γp = γd = 1 in
PDMM (which is not the optimal setting from Fig. 2). Simi-
larly, we set the parameter in ADMM to be 1.

Fig. 4. Performance comparison under perfect channel. The two curves in
subplot (b) at iteration 1 have a noticeable gap compared to subplot (a). This is
because under the synchronous scheme, all the parameters of each method are
updated per iteration, leading to a relatively big performance difference in the
beginning.

TABLE II
AVERAGE EXECUTION TIMES (PER ITERATION) AND THEIR STANDARD

DEVIATIONS FOR THE FOUR METHODS

one-node
PDMM

two-node
PDMM ADMM broadcast gossip

PDMM
(syn)

ADMM
(syn)

ave.
(μs)

5.46 8.92 6.54 2.10 0.24 380 384

std
(10−6 )

5.04 8.58 8.09 4.55 1.73 216 285

In the experiment, the gossip and broadcast algorithms were
initialized according to [5] and [14], respectively. The initial-
ization for PDMM was the same as in the first experiment. The
estimates of ADMM were initialized similarly as for PDMM.

Fig. 4 displays the MSE trajectories for the four methods
while Table II lists the average execution times (per iteration)
and their standard deviations. Similarly to the second experi-
ment, the performance of each method for the asynchronous
scheme was obtained by averaging over 100 simulations to
mitigate the effect of randomness introduced in node or edge-
activation. We now focus on the asynchronous scheme. It is seen
from Fig. 4(a) that the two-node PDMM converges the fastest
in terms of number of iterations while the gossip algorithm re-
quires the least execution time on average. The above results
suggest that for applications where signal transmission is more
expensive than local computation (w.r.t. energy consumption),
PDMM might be a good candidate as it may save number of
iterations.

Fig. 4(b) demonstrates the MSE performance of PDMM and
ADMM for the synchronous scheme. Both algorithms appear to
have linear convergence rates. This may be because the objective
functions in (60) are strongly convex and have gradients which
are Lipschitz continuous. It is seen from Table II that both
methods take roughly the same execution time. By combining
the above results, we conclude that under synchronous scheme,
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PDMM converges faster than ADMM w.r.t. the execution time,
which may be due to the fact that PDMM avoids the auxiliary
variable z used in ADMM.

VII. CONCLUSION

In this paper, we have proposed PDMM for iterative op-
timization over a general graph. The augmented primal-dual
Lagrangian function is constructed of which a saddle point
provides an optimal solution of the original problem, which
leads to the design of PDMM. PDMM performs broadcast
transmission under perfect channel and point-to-point transmis-
sion under non-perfect channel. We have shown that both the
synchronous and asynchronous PDMMs possess a convergence
rate ofO(1/K) for general closed, proper and convex functions
defined over the graph. As an example, we have applied PDMM
for distributed averaging, through which properties of PDMM
such as proper parameter-selection and resilience against trans-
mission failure are further investigated.

We note that PDMM is natural when performing node-
oriented optimization over a graph as compared to ADMM
which involves computing the edge variable z introduced in (3).
A few applications in [21], [22] and [23] suggest that PDMM is
practically promising. While convergence properties of ADMM
under different conditions (e.g., strong convexity and/or the gra-
dients being Lipschitz continuous) are well understood, the con-
vergence properties of PDMM for those conditions remain to
be discovered.

APPENDIX A
PROOF FOR LEMMA 8

Before presenting the proof, we first introduce a basic in-
equality, which is described in a lemma below:

Lemma 13: Let f1(x) and f2(x) be two arbitrary closed,
proper and convex functions. x� minimizes the sum of the two
functions, i.e., x� = arg minx(f1(x) + f2(x)). Then, there is

f1(x)− f1(x�) ≥ (x� − x)T r(x�) ∀x, (68)

where r(x�) ∈ ∂xf2(x�).
The above inequality is wildly exploited for the convergence

analysis of ADMM and its variants [10], [27], [28]. We will also
use the inequality in our proof.

Applying (68) to the updating (29)–(30) for (x̂k+1 , λ̂
k+1

), we
obtain a set of inequalities for all (x,λ) ∈ (R
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Adding (69)–(70) over all i ∈ V , and substituting (x,λ) =
(x� ,λ�), the saddle point of LP , yields
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P d,ij (λ̂

k

j |i−λ̂
k+1
j |i )+Aj i(x̂k+1

j −x̂k
j )

) ]

−
∑

(i,j )∈E

(
‖cij −Aijx

k+1
i −Aj ix̂

k+1
j ‖2P p , i j

+ ‖λ̂k+1
i|j − λ̂

k+1
j |i ‖2P d , i j

)
, (71)

where the last equality follows from the two optimality condi-
tions (25)–(26).

To further simplify (71), one can first insert the alternative
expression (40) for every P d,ij into (71). After that, the expres-
sion (49) can be obtained by simplifying the new expression
using (25)–(26) and the following identity

(y1 − y2)
T (y3 − y4)

≡ 1
2
(‖y1 +y3‖2−‖y1 +y4‖2−‖y2 +y3‖2 +‖y2 +y4‖2).

APPENDIX B
PROOF OF LEMMA 11

The basic idea for the proof is similar to that for Lemma 8 as
presented in Appendix A. However, since asynchronous PDMM
activates one node i ∈ V per iteration, it is difficult to tell which
neighbors of i have been recently activated and which have
not yet. The above difficulty requires careful treatment in the
convergence analysis. We sketch the proof in the following for
reference.

We focus on the parameter-updating for a particular segment
of iterations k ∈ {ml,ml + 1, . . . , ml + m− 1}, where l ≥ 0.
For simplicity, we denote the activated node i at iteration k
as i(k). To start with, we apply (68) to the updating (31) for

the estimate (x̂k+1
i(k) , λ̂

k+1
i(k) ) of node i(k). In order to do so, we

first have to consider the estimates of its neighbors. It may
happen that some neighbors have already been activated within
the segment while others are still waiting to be activated. If a

neighbor j ∈ Ni(k) is still waiting, we then have (x̂k
j , λ̂

k

j ) =

(x̂lm
j , λ̂

lm

j ). Conversely, if a neighbor j ∈ Ni(k) has already
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been activated, we then have (x̂k
j , λ̂

k

j ) = (x̂(l+1)m
j , λ̂

(l+1)m
j ).

From Lemma 10, it is clear that if j < i(k) (or j > i(k)), then the
neighbor j has been activated (not yet activated). For simplicity,
we use a function s(k, j) to denote the value lm or (l + 1)m for
a neighbor j ∈ Ni(k) at iteration k

s(k, j) =

{
lm j > i(k)

(l + 1)m j < i(k)
. (72)

As for the activated node i(k), we have (x̂k+1
i(k) , λ̂

k+1
i(k) ) =

(x̂(l+1)m
i(k) , λ̂

(l+1)m
i(k) ). As a result, the two inequalities for x̂k+1

i(k)

and λ̂
k+1
i(k) are given by

∑

j∈Ni (k )

[
P d,i(k)j (λ̂

s(k,j )
j |i(k) −λ̂

(l+1)m
i(k)|j )−Aj i(k)x̂

s(k,j )
j

+ ci(k)j

]T(
λi(k)|j−λ̂

(l+1)m
i(k)|j

)

≤f ∗i(k)

(
AT

i(k)λi(k)

)
−f ∗i(k)

(
AT

i(k) λ̂
(l+1)m
i(k)

)
(73)

∑

j∈Ni (k )

[
P p,i(k)j

(
−Ai(k)jx

(l+1)m
i(k) −Aj i(k)x̂

s(k,j )
j

+ ci(k)j

)
+ λ̂

s(k,j )
j |i(k)

]T

Ai(k)j

(
xi(k) − x̂

(l+1)m
i(k)

)

≤ fi(k)
(
xi(k)

)− fi(k)

(
x̂

(l+1)m
i(k)

)
, (74)

where lm ≤ k < (l + 1)m.
Next adding (73)–(74) over all lm ≤ k < (l + 1)m and sub-

stituting (x,λ) = (x� ,λ�) yields

∑

i∈V

∑

j∈Ni

[ (
λ̂

(l+1)m
i|j −λ�

i|j
)T(

Aj ix̂
(l+1)m
j −cij

2

)
−

(
x̂

(l+1)m
i −x�

i

)T

·AT
ij λ̂

(l+1)m
j |i

]
+ p

(
x̂(l+1)m , λ̂

(l+1)m
)
− p(x� ,λ�)

≤
(l+1)m−1∑

k= lm

∑

j∈Ni (k )

[[
P d,i(k)j

(
λ̂

s(k,j )
j |i(k) − λ̂

(l+1)m
i(k)|j

)

+ Aj i(k)

(
x̂

(l+1)m
j − x̂

s(k,j )
j

) ]T (
λ̂

(l+1)m
i(k)|j −λ�

i(k)|j
)

+
[
P p,i(k)j

(
ci(k)j −Ai(k)jx

(l+1)m
i(k) −Aj i(k)x̂

s(k,j )
j

)

+ λ̂
s(k,j )
j |i(k) − λ̂

(l+1)m
j |i(k)

]T

Ai(k)j

(
x̂

(l+1)m
i(k) − x�

i(k)

)]

=
(l+1)m−1∑

k= lm

∑

j∈Ni (k )

g(k, i(k), j)−
∑

(i,j )∈E

(∥∥∥λ̂
(l+1)m
i|j −λ̂

(l+1)m
j |i

∥∥∥
2

P d , i j

+
∥∥∥cij −Aij x̂

(l+1)m
i −Aj ix̂

(l+1)m
j

∥∥∥
2

P p , i j

)
, (75)

where the function g(k, i(k), j) is defined as

g(k, i(k), j)

=
[
P d,i(k)j

(
λ̂

s(k,j )
j |i(k) − λ̂

(l+1)m
j |i(k)

)

+Aj i(k)

(
x̂

(l+1)m
j − x̂

s(k,j )
j

) ]T (
λ̂

(l+1)m
i(k)|j −λ�

i(k)|j
)

+
[
P p,i(k)jAj i(k)

(
x̂

(l+1)m
j − x̂

s(k,j )
j

)

+ λ̂
s(k,j )
j |i(k) − λ̂

(l+1)m
j |i(k)

]T

Ai(k)j

(
x̂

(l+1)m
i(k) − x�

i(k)

)
,

where lm ≤ k < (l + 1)m and j ∈ Ni(k) .
Now we are in a position to analyze the right hand side of (75).

By using the fact that each node i has |Ni | different functions
g(k, i(k), j), we can conclude that each edge (u, v) ∈ E is as-
sociated with two functions g(k1 , u(k1), v) and g(k2 , v(k2), u),
where iteration k1 and k2 activate u and v, respectively. From
(75), it is clear that each edge (u, v) is also associated with the
other two functions ‖cuv −Auv x̂(l+1)m

u −Avu x̂(l+1)m
v ‖2P p , u v

and ‖λ̂(l+1)m
v |u − λ̂

(l+1)m
u |v ‖2P d , u v

. We show in the following that
the combination of the above four functions for every edge
(u, v) ∈ E is independent of k1 and k2 . In order to do so, we
assume k1 < k2 (or equivalently, u < v from Lemma 10). From
(72), we know that s(k1 , v) = lm and s(k2 , u) = (l + 1)m.
Based on the above information, the four functions for (u, v) ∈
E can be simplified as

g(k1 ,u(k1),v)+g(k2 ,v(k2),u) −‖λ̂(l+1)m
v |u −λ̂

(l+1)m
u |v ‖2P d , u v

− ‖cuv −Auv x̂(l+1)m
u −Avu x̂(l+1)m

v ‖2P p , u v

= g(k1 , u(k1), v)− ‖λ̂(l+1)m
v |u − λ̂

(l+1)m
u |v ‖2P d , u v

− ‖cuv −Auv x̂(l+1)m
u −Avu x̂(l+1)m

v ‖2P p , u v

=
[
P d,uv

(
λ̂

lm

v |u − λ̂
(l+1)m
v |u

)
+Avu

(
x̂(l+1)m

v − x̂lm
v

) ]T

·
(
λ̂

(l+1)m
u |v −λ�

u |v
)

+
[
P p,uvAvu

(
x̂(l+1)m

v − x̂lm
v

)
+λ̂

lm

v |u

−λ̂
(l+1)m
v |u

]T

Auv

(
x̂(l+1)m

u −x�
u

)
−‖λ̂(l+1)m

v |u −λ̂
(l+1)m
u |v ‖2P d , u v

− ‖cuv −Auv x̂(l+1)m
u −Avu x̂(l+1)m

v ‖2P p , u v
(76)

= dl+1
uv u < v, (77)

where dl+1
uv is given by (56), of which the derivation is similar to

that for dk+1
i|j in (50). The term u(k1) in (76) is simplified as u

since we already assume that at iteration k1 , node u is activated.
The quantity dl+1

uv is a function of m and l instead of k1 . Finally,
combining (75) and (77) produces (55).

REFERENCES

[1] G. Zhang, R. Heusdens, and W. B. Kleijn, “On the convergence rate of the
Bi-Alternating direction method of multipliers,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process., May 2014, pp. 3897–3901.



ZHANG AND HEUSDENS: DISTRIBUTED OPTIMIZATION USING THE PRIMAL-DUAL METHOD OF MULTIPLIERS 187

[2] G. Zhang and R. Heusdens, “Bi-Alternating direction method of multipli-
ers over graphs,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Apr. 2015, pp. 3571–3575.

[3] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge U.K.:
Cambridge Univ. Press, 2008.

[4] G. Zhang, R. Heusdens, and W. B. Kleijn, “Large scale LP decoding with
low complexity,” IEEE Commun. Lett., vol. 17, no. 11, pp. 2152–2155,
Nov. 2013.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530,
Jun. 2006.

[6] D. Sontag, A. Globerson, and T. Jaakkola, “Introduction to dual decompo-
sition for inference,” in Optimization for Machine Learning. Cambridge,
MA, USA: MIT Press, 2011.

[7] Y. Zeng and R. Heusdens, “Linear coordinate-descent message-passing for
quadratic optimization,” Neural Comput., vol. 24, no. 12, pp. 3340–3370,
2012.

[8] C. C. Moallemi and B. V. Roy, “Convergence of min-sum message pass-
ing for quadratic optimization,” IEEE Trans. Inf. Theory, vol. 55, no. 5,
pp. 2413–2423, May 2009.

[9] G. Zhang and R. Heusdens, “Convergence of min-sum-min message-
passing for Quadratic Optimization,” in Proc. Eur. Conf. Mach. Learn.,
2014, pp. 353–368.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[11] J. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for dis-
tributed optimization: Convergence analysis and network scaling,” IEEE
Trans. Autom. Control, vol. 57, no. 3, 2012, pp. 592–606, Mar. 2012.
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