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ABSTRACT

Indoor localisation is an important research topic with several pos-
sible applications. For example, knowing a user’s location can be
used as navigation aid in hospitals and malls, or for better targeted
marketing. In this paper we consider the case where the environ-
ment of interest is equipped with several receivers (with known loca-
tion) from which time-difference-of-arrival (TDOA) measurements
are obtained and used to localise the source. We will present a
distributed algorithm for localising the source. More specifically,
we experimentally show that the distributed algorithm, which only
uses time-of-arrival (TOA) measurements obtained from neighbour-
ing receivers to calculate the TDOAs, performs as well as a cen-
tralised solution that has access to all TOA measurements in the net-
work. In addition, we propose a method for discarding erroneous
TOA measurements which considerably improves the performance
in noisy and reverberant environments.

Index Terms— Indoor localisation, time difference of arrival,
distributed algorithm, pruning erroneous TOA measurements

1. INTRODUCTION

Localisation techniques are becoming increasingly important in ev-
ery aspect of daily life. In many applications with multiple sensors,
the relative sensor positions are required to be known. For example,
in the hospital, the position of patients can be obtained by medi-
cal staff if patients take sensors with them. In supermarkets, cus-
tomers with sensors can be provided with specific sales information
based on their current location. In outdoor environments, the global
positioning system (GPS) performs well and is widely used. How-
ever, GPS does not work well in indoor environments because of
many obstacles and line-of-sight is not guaranteed. Instead, alterna-
tive techniques for indoor localisation are proposed, such as meth-
ods based on received signal strength (RSS), time-of-arrival (TOA),
time-difference-of-arrival (TDOA), or angle-of-arrival (AOA).

TOA based techniques estimate the location of sources through
the intersection of the range of the receivers. The range information
can be obtained from the TOA measurements by multiplying them
with the propagation speed of the signals [1]. TOA based techniques
can be used in indoor environments because they are robust against
multipath effects. However, TOA based techniques have to deal with
the unknown onset time, the time that signals are generated, and the
unknown internal delay, the time that a receiver uses to register the
signal as received after the signal reaches the receiver [2]. In order
to obtain accurate TOA measurements, precise synchronisation is
required among transmitters and receivers [1]. Different from TOA
based techniques, TDOA based techniques use the time differences
of arrival between several receivers to locate sources. TDOA of-
ten uses the generalised cross correlation of the received signals to

compute the TDOAs. In order to compute the generalised cross cor-
relation, receivers must have a data link between each other to share
the received signals, which requires large bandwidth and power con-
sumption [3]. Since the difference of arrival time is used for locali-
sation, only the receivers are required to be synchronised and there is
no need to eliminate the effect of the unknown onset time. Similar to
TOA based techniques, TDOA based techniques are robust against
multipath effects [4]. In addition, TDOA based techniques can ob-
tain the same accuracy as TOA based techniques [5]. Alternatively,
angle information or received signal strength can be used for local-
isation. The basic principle of AOA is that the intersection between
the angles of received signals can locate the sensors [1]. AOA based
techniques are not always considered for localisation because they
require large dimensions of directional antennas. The advantage of
AOA based techniques is that they are robust to large scale fading
[6]. RSS based techniques are always connected with fingerprints
[7]. The cost is low and most receivers can estimate the received
signal strength. Nevertheless, the accuracy is relatively poor since
the strength of the received signals is sensitive to noise and interfer-
ers [1].

There are several existing methods for distributed TDOA local-
isation, for example, [8] estimated the location distributedly with
TDOA measurements in OFDM signals, [9] proposed a distributed
algorithm based on gossip algorithms, and [10] tracked a moving
target with distributed TDOA localisation. Our paper presents a lo-
calisation algorithm with TDOA based techniques that can be used
in indoor environment for various types of signals and can be solved
distributedly using standard solvers. The paper is organised as fol-
lows. In Section 2, we formulate the problem. We describe the
centralised and distributed TDOA based localisation algorithms in
Section 3. In addition, we propose a method to prune out incorrect
TOA measurements in Section 4. We present experiment results in
Section 5 and finally, we draw conclusions in Section 6.

2. PROBLEM FORMULATION

Consider a scenario with M receivers with known location and N
transmitters whose locations are to be estimated using time differ-
ence of arrival (TDOA) techniques and the transmitters cannot be
disambiguated. Assume the receivers are perfectly synchronised,
but not synchronised with the transmitters. We consider sensors lo-
cated on a plane and the extension to a three dimensional space is
straightforward. Let r1, r2, . . . , rM denote the location of receivers
and s1, s2, . . . , sN denote the location of transmitters. For receiver
i from transmitter j, the time of arrival (TOA) information is given
by

tij = ‖ri − sj‖+ nij (1)

where c is the propogation speed of the signal, and nij is the mea-
surement noise of receiver i with respect to transmitter j where we
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assume E[nij ] = 0 and Var[nij ] = σ2
ij < ∞, with E[·] denotes the

expectation and Var[·] denotes the variance. It is noteworthy that the
localisation methods work for various types of signals, but in this
paper we will focus on the acoustic scenario in this paper, i.e., the
speed of the signal is set as c = 340 m/s. Moreover, we assume the
measurement noise is uncorrelated across different receivers. TDOA
measurements can be obtained by the subtraction of TOA measure-
ments. In our model, each receiver calculates its own TOA mea-
surement and communicates its TOA measurements to neighbours
to obtain TDOA measurements. Since we can estimate the location
of the transmitters independently in parallel, for simplicity, we use
s to denote the location of the transmitter to be estimated and tj
to denote the TOA measurements for receiver j. In a two dimen-
sional space, the coordinates of receivers and the estimated trans-
mitter can be represented by rj = (xj , yj) where 1 ≤ j ≤ M and
s = (x0, y0). Without loss of generality, we choose that receiver 1
as the reference sensor and assume receiver 1 is at the origin, i.e.,
r1 = (0, 0). The network of all the receivers is represented as a
graph G = (V ,E), where V is the set of vertices and E is the set
of edges, which indicate the communication links in the network.

3. LOCALISATION ALGORITHMS

With the position of receivers and the corresponding TOA measure-
ments, we can locate the transmitter with TDOA based techniques.
In this section, we present centralised and distributed TDOA based
localisation methods.

3.1. Centralised Localisation

We first present a centralised localisation method with a fixed refer-
ence sensor, where all TOA measurements are transmitted to a cen-
tral computer [11]. Receiver 1 is assumed to be the reference sensor
to compute TDOAs. Let ∆t1j denote the TDOA measurement at
receiver j with respect to receiver 1, 2 ≤ j ≤M , which is given by

∆t1j = t1 − tj =
‖s− r1‖

c
− ‖s− rj‖

c
+ n1j , (2)

where n1j ∼ N (0, σ2
1j) is Gaussian distributed measurement noise

of TDOA measurement between receiver 1 and receiver j. Because
of uncorrelated measurements, σ2

1j = σ2
1 + σ2

j .
The distance difference between receiver j and receiver 1, say

dj1, can be calculated from the TODAs by multiplying it with the
propagation speed of the signal, so that

dj1 = dj − d1 = c∆t1j , (3)

where d2j = (xj − x0)2 + (yj − y0)2 denotes the distance between
the transmitter and receiver j. Hence we have

(dj1 + d1)2 = d2j = (xj − x0)2 + (yj − y0)2. (4)

Let K2
j = x2j + y2j , so that we can rewrite (4) as

−xjx0 − yjy0 = dj1d1 +
1

2
(d2j1 −K2

j ). (5)

We write (5) in vector form with 2 ≤ j ≤M [11],

As = d1b + c, (6)

where

A =


x2 y2

...
...

xM yM

 , s =

[
x0
y0

]
,

b =

−d21...
−dM1

 , c =
1

2

 K2
2 − d221

...
K2

M − d2M1

 .
Since the measurements are noisy, a least-squares location estimate
can be found by solving

min
s
||As− (d1b + c)||22. (7)

The solution is given by

ŝ = (ATA)−1AT (d1b + c). (8)

Combining the solution with d21 = x20 + y20 , the location of the
transmitter can be estimated [11]. The Cramer-Rao lower bound for
centralized localisation is given by [12].

3.2. Centralised Localisation With Arbitrary Reference Sensor

All TOA measurements are transmitted to a central computer. We
now extend the approach in Section 3.1 to the case of an arbitrary
reference sensor. The benefit of this is that we can improve the es-
timation accuracy by averaging over all possible estimates obtained
by using different reference receivers. Assume that receiver k is cho-
sen as the reference receiver, and the corresponding estimated source
location is denoted as sk. With this, the problem can be formulated
as

min
sk
||Aksk − (dkbk + ck)||22, (9)

where

Ak =



x1 − xk y1 − yk
...

...
xk−1 − xk yk−1 − yk
xk+1 − xk yk+1 − yk

...
...

xM − xk yM − yk


, sk =

[
x0k
y0k

]
,

bk =



−d1k
...

−dk−1k

−dk+1k

...
−dMk


, ck =

1

2



K2
1 −K2

k − d21k
...

K2
k−1 −K2

k − d2k−1k

K2
k+1 −K2

k − d2k+1k

...
K2

M −K2
k − d2Mk


.

The estimated source location is given by the least-squares solution
to problem (9),

ŝk = (AT
k Ak)−1AT

k (dkbk + ck). (10)

Given the M estimations, which are computed at M different refer-
ence receivers, we can average them to get a more accurate estimate.
That is, we compute

ŝ =
1

M

M∑
k=1

ŝk. (11)
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3.3. Distributed Localisation With Full Information

We would like to decentralize the problem step by step. In contrast
to previous methods, we estimate the location of the source locally
at each receiver. That is to say, we can get rid of the central com-
puter. Assume each receiver gets access to complete TOA informa-
tion. Based on received information from neighbours, the receivers
can update its local estimate until they reach consensus among the
estimated position. With this, our problem can be expressed as

min
sk

M∑
k=1

||Aksk − (dkbk + ck)||22,

subject to sk = sj , ∀(k, j) ∈ E , (12)

which can be solved using standard solvers, like ADMM [13] and
PDMM [14].

3.4. Distributed Localisation With Neighbouring Information

In the previous subsection, the information of all receivers in the net-
work was used to locally compute an estimate of the position. How-
ever, this implies that the network is fully connected, which is not
realistic in many real applications. Considering decentralised locali-
sation, each receiver computes a local estimated transmitter location
with the TOA information from its neighbouring nodes only. As-
sume the neighbouring nodes of receiver k are denoted by k1, ..., kMk ,
where Mk is the degree of each receiver. We assume the degree of
each receiver is greater than 1, i.e., Mk ≥ 2. With this, our problem
can be expressed as

min
sk

Mk∑
k=1

||Aksk − (dkbk + ck)||22,

subject to sk = sj ,∀(k, j) ∈ E , (13)

where

Ak =


xk1 − xk yk1 − yk

...
...

xkM − xk ykM − yk

 , sk =

[
x0k
y0k

]
,

bk =

−dk1k

...
−dkMk

 , ck =
1

2

 K2
k1 −K2

k − d2k1k

...
K2

kM −K2
k − d2kMk

 .
Since (13) is of the same form as (12), it can be solved by a standard
solver, like ADMM and PDMM.

4. PRUNING OUT ERRONEOUS TOA MEASUREMENTS

As mentioned before, due to measurement noise, we obtain erro-
neous TOA measurements. Here erroneous refers to an error that
is beyond that small error due to sampling of the signal; these are
errors due to noise and reverberation and increase with decreasing
signal-to-noise ratio (SNR) and increasing reverberation time T60.
Even one erroneous time-of-arrival (TOA) measurement may result
in a completely wrong estimate of the localisation algorithms. In
this section, we describe an algorithm that selects a subset of accu-
rate TOAs from a set of measured TOAs. Without loss of generality,
we assume that the propogation speed of the signal is c = 1 and that
the internal delays and the onset time are compensated [15]. In a

multiple transmitters scenario, the observed TOA at the ith receiver
to the jth transmitter is given by (1). For the next step in the deriva-
tion we assume that there is no observations noise. Subtracting the
square of equation (1) for i = 1 and j = 1, we obtain

−(ri − r1)T (sj − s1) = 0.5(t2ij − t21j − t2i1 + t211), (14)

for i = 2, ...,M and j = 2, ..., N . With this, we can express (14) in
the vector form,

−LS
T

= T , (15)

where L ∈ R(M−1)×3 is the relative receiver location (to r1) matrix,
S ∈ R(N−1)×3 is the relative transmitter location (to s1) matrix and
Ti−1,j−1 = 0.5(t2ij − t21j − t2i1 + t211) ∈ R(M−1)×(N−1).

According to (15), if there is no erroneous TOA measurements,
matrix LS

T
is at most rank 3. This property can be used to find the

correct subset of TOA measurements.
For all M receivers, from N transmitters, the set of TOA mea-

surements is denoted as SN . The set of all N − 1 unique combina-
tions of SN is then given by

UN−1 =

(
SN

N − 1

)
. (16)

Take a specific combination u from UN−1 to construct Tu ∈
R(M−1)×(N−2) for j = u and compute the error, which is defined
as

eu = ‖Tu‖2F =

Nr∑
i=1

λ2
i (Tu), (17)

where Nr = min(M − 1, N − 2) and λi(Tu) is the singular value
of Tu. If all TOA measurements are correct, the errors are close to
equal and the minimum error can represent the most reliable TOA
measurements if they are different. When no TOA measurement
is correct, all errors are small but the maximum error is relatively
large compared to the error of all correct TOA measurements. As a
consequence, the subset of TOA measurements can be selected as

So =

{
arg minu Var{eu} if max eu < α

SN otherwise
. (18)

The iterative method to prune all erroneous TOA measurements
is summarised in Algorithm 1. The minimum transmitters required
for a successful localisation is given by [15]

Nmin =

⌈
4M − 7

M − 4

⌉
, (19)

where d·e denotes the ceiling operator.

5. EXPERIMENTS

In this section, we describe how we set up our experiments and dis-
cuss the result. We conducted two experiments, one for TDOA lo-
calisation and one for pruning out incorrect TOA measurements.

In the first experiment, one transmitter is placed randomly on
a 10 × 10 m plane and eight receivers are placed uniformly on the
boundary of the plane. We assume two receivers can communicate
with each other if the distance between them is less than 10 m. In ad-
dition, the velocity is set to c = 340 m/s. We change the variance of
TOA measurement and record the variance of localisation error. The
result of the simulation is also an average of 1000 independent ex-
periments. The result is shown in Figure 1. From the figure, we
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Algorithm 1 Pruning incorrect TOA measurements
1. For n = 0, 1, N −Nmin

2. Generate the set of all possible combinations of the set SN−1

UN−n+1 =

(
SN

N − n+ 1

)
3. For each u ∈ UN−n+1, construct Tu and compute the error.
4. Update the best TOA sets,

SN−n+1 =

{
arg mins eu if min eu/max eu < α

SN−n otherwise

5. End if SN−n+1 = SN−n

can reach three conclusions. Firstly, the variance of localisation
increases with the variance of TOA measurements. Secondly, de-
centralised methods can achieve approximately equal performance
as centralised methods. Lastly, accessing neighbouring information
only does not decrease accuracy.
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Fig. 1. TDOA Localisation

In the second experiment, we simulated a 6× 5× 4 m acoustic
room with the source-image method [16]. 8 receivers were posi-
tioned randomly within a rectangular space of 2 × 2 × 1 m and 30
transmitters were distributed randomly in a one meter cubic space.
The reverberation time T60 was varied between 0 s and 0.6 s and
SNR was varied between 0 dB and 30 dB. We executed the algorithm
and measured hits and false alarms. A hit is defined as an erroneous
TOA measurement being detected while a false alarm occurs when a
correct TOA measurement is classified as erroneous. We also count
a hit when the algorithm has deemed correctly all TOAs to be inad-
equate for localisation and a false alarm when this decision is made
erroneously. The outcome of the experiment is shown in Figure 2.
The figure shows that the erroneous TOA measurements have been
pruned correctly with only a small number of false alarms.

6. CONCLUSIONS

In this paper, we presented how to determine the location with
TDOA measurements. We described centralised and decentralised

1.4 Conclusions 5

0 5 10 15 20 25 30
0

20

40

60

80

100

%
 h

its

 

 

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

SNR(dB)

%
 fa

ls
e 

al
ar

m
s

T60 = 0s T60 = 0.15s T60 = 0.3s T60 = 0.45s T60 = 0.6s

Figure 1.1: Accuracy of the algorithm for finding erroneous TOAs in terms of hits (top) and false alarms (bottom).

positioned randomly within a rectangular space of 2 × 2 × 1 m in the centre of the room and J = 30 sources were

randomly distributed in a one meter cubic space positioned at random in the room; ten different source-microphone

configurations were generated and all results presented are an average of these configuration. Each source-point

was defined by the acoustic impulse response (AIR) and emulates an instantaneous location of the moving acoustic

source. The calibration signal was a 1.33 ms Gaussian modulated sinusoidal pulse (GMSP) emitted at intervals of

Tp = 0.1 s and a sampling rate of fs = 48 kHz. We assumed white Gaussian additive noise. The noise level was

adjusted with reference to the free-field unit impulse and with respect to the weakest signal – the calibration signals

for the largest source-microphone distance – according to a desired SNR and was then held constant for the other

calibration signals; SNRs between 0 dB and 30 dB were considered. In this way, the weakest signal for the impulse

was completely obscured by the noise at SNR=0 dB. Furthermore, a random internal delay between 0 and 0.1 s was

applied to each microphone. The resulting signal was processed with a POTS filter limiting the bandwidth.

We executing the algorithm on all simulated scenarios described above and measured hits and false alarms. A hit

is defined as an erroneous acoustic event j being detected while a false alarm occurs when a correct acoustic event

is classified as erroneous. We also count a hit when the algorithm has deemed correctly all TOAs to be inadequate

for localization and a false alarm when this decision is made erroneously. The outcome of the experiment is shown

in Fig. 1.1 where it can be seen that in all cases but one, the erroneous acoustic events have been pruned correctly

with only a limited number of false alarms. Note that a false alarm is – unless it deems the TOAs inadequate for

localization – not harmful for the localization procedure.

1.4 Conclusions

c© Delft University of Technology

Fig. 2. Accuracy of the algorithm for pruning incorrect TOA mea-
surements.

methods for localisation and compared the accuracy of algorithms
with CRLB. From the experiment, we proved that accessing to
neighbouring information does not decrease the accuracy. Further-
more, we proposed a method to prune out erroneous TOA measure-
ments, which improves the performance in indoor environments.
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