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ABSTRACT

Large-scale networks of computing units, often characterised by the
absence of central control, have become commonplace in many ap-
plications. To facilitate data processing in these large-scale net-
works, distributed signal processing is required. The iterative be-
haviour of distributed processing algorithms combined with energy,
computational power, and bandwidth limitations imposed by such
networks, place tight constraints on the transmission capacities of
the individual nodes. In this paper we investigate the effects of sub-
tractive dithered uniform quantisation in PDMM for the synchronous
distributed averaging problem. This is done by deriving expressions
for the mean squared error (MSE) that include quantisation noise.
Also, the required data rate for quantised PDMM is considered. It
was found that for practical applications quantisation in PDMM can
be applied with a fixed-rate quantiser, such that significant data rate
reduction can be achieved, without compromising the rate of conver-
gence.

Index Terms— PDMM, quantisation, subtractive dithering.

1. INTRODUCTION

Over the past years there has been a considerable growth in the num-
ber of large-scale sensor networks. These networks consist of a large
number of nodes, each having a sensing, data processing, and com-
munication component. Examples of these networks are the ‘Internet
of Things’ (IoT), ad-hoc wireless sensor networks, peer-to-peer net-
works, mobile networks of vehicles, and social networks [1]. These
large-scale networks are characterised by the absence of a central
control or processing unit (fusion centre), and as a consequence
nodes use their own processing ability to locally carry out simple
computations and transmit only the required and partially processed
data to neighbouring nodes. The decentralised settings in which al-
gorithms then have to operate are typically dynamic, in the sense
that sensors can be added or removed in an unpredictable way. As
a consequence, these algorithms must allow for a decentralised im-
plementation, must be easily scalable, must be robust against (small)
changes in the network topology, and, in the case of wireless sensor
networks, must be robust to possible transmission failures.

There are three popular methods to solve signal processing prob-
lems in a distributed manner, namely methods based on distributed
consensus algorithms [1], algorithms for probabilistic inference [2],
and algorithms based on convex optimisation [3]. In either case, the
problem boils down to how to reformulate the problem at hand in a
form that allows for an efficient and robust distributable implementa-
tion. Over the last decade, the alternating-direction method of mul-
tipliers (ADMM) has gained considerable attention to solve convex

signal processing problems in a distributed manner [4, 5]. Recently,
an alternative approach has been introduced, called the primal-dual
method of multipliers (PDMM) [6, 7, 8] which has the advantage
over ADMM that it is completely node-based (which allows for an
efficient asynchronous implementation) whilst being robust against
transmission failures (packet loss).

Both ADMM and PDMM are iterative algorithms. In applica-
tions involving sensor networks, this means that at each iteration the
partially processed data needs to be communicated to neighbouring
nodes. In order to do so, the data needs to be quantised and repre-
sented by a finite number of bits prior to transmission. The more
precise the representation, the higher the data rate in the channels
and, as a consequence, the higher the total transmission power. Since
the algorithm converges for any initialisation of the node variables,
we could start the iterations with a course (low-rate) representation
of the data, thereby saving transmission power, and gradually in-
crease the accuracy with increasing iterations. On the other hand,
the amount of information that needs to be transmitted will decrease
with increasing iterations since the difference between successive
messages will become (close to) zero when the algorithm converges,
which suggests that we can use a low-rate representation throughout
the iterations and still end-up with accurate results.

The effect of quantisation on the final accuracy and the conver-
gence rate of some distributed (iterative) algorithms has been inves-
tigated [9, 10, 11], including ADMM [12], but no such results are
known for PDMM. In this paper we make a first attempt to inves-
tigate what the effect of quantisation is for synchronous PDMM.
To do so, we restrict ourself to distributable consensus problems,
in particular distributed averaging. The main motivation to focus
on this particular class of algorithms is its mathematical tractability
(it will result in linear update equations) and the numerous appli-
cations of consensus algorithms that have been proposed recently,
such as power control in smart grids, load balancing, formation of
autonomous agents like cars or unmanned aerial vehicles, wireless
sensor networks, and coordination of mobile robots [1, 13].

2. PRIMAL-DUAL METHOD OF MULTIPLIERS

The primal-dual method of multipliers (PDMM) for iteratively solv-
ing a separable convex optimisation problem defined over a graph
G = (V,E) has been proposed in [6, 7, 8]. Here, V and E denote
the set of nodes and directed edges, respectively, with |V | = n, the
total number of nodes in the network. PDMM solves a problem of
the form

min
x

∑
i∈V

fi(xi)

subject to Aijxi +Ajixj = cij , ∀(i, j) ∈ E,
(1)
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where xi ∈ Rni , x = (xT1 , . . . ,x
T
n )T , with ni the dimension of xi.

In this paper, PDMM is applied to the distributed scalar averaging
problem with local objectives fi(xi) = 1

2
(xi − ti)2, where ti de-

notes the measurement data at node i [8]. This is a consensus prob-
lem with scalar node variables xi, such that x = (x1, . . . , xn)T ∈
Rn, and equality constraints xi = xj on every edge (i, j) ∈ E.
Hence we have Aij = 1 for i > j and Aij = −1 otherwise. As
shown in [14], the PDMM update steps for this problem can be split
in a primal update

x
(k)
i =

ti +
∑
j∈N(i)

(
Aijµ

(k−1)

j|i + ρpx
(k−1)
j

)
1 + diρp

, ∀i ∈ V, (2)

where N(i) = {j ∈ V |(i, j) ∈ E} denotes the set of neighbouring
nodes and |N(i)| = di the degree of node i, and a dual update

µ
(k)

i|j = µ
(k−1)

j|i − ρdAij
(
x
(k)
i − x

(k−1)
j

)
, ∀(i, j) ∈ E, (3)

where the superscript (k) refers to iteration k. In this paper it is
assumed that the ρ-parameters are chosen as ρp = ρ−1

d = ρ > 0.

2.1. Linear system of equations

In order to analyze the quantisation effects for PDMM, we con-
sider the vector µ = (µ1|2, . . . , µ1|n, . . . , µn|1, . . . , µn|n−1)T ∈
Rn(n−1) of all dual variables in a complete (fully connected) n-node
graph. In the case the network is not fully connected, we exclude the
dual variables associated to non-existing edges, resulting in the vec-
tor µ ∈ Rd, with d =

∑
i di. We combine the primal and dual

variables in a vector y = (xT ,µT )T ∈ Rn+d. As a result, the
update equations (2) and (3) can be compactly represented as

y(k) = Fy(k−1) + u

= F ky(0) +

k−1∑
i=0

F iu, (4)

where u ∈ Rn+d is a vector containing the measurement data.
In order to simplify upcoming equations, we will assume that

y(0) = 0 although similar results can be obtained for nonzero ini-
tialisation. As a consequence, the first term in (4) vanishes. Further-
more, let us assume that F is diagonalisable1, that is, we can express
F as F = V ΛV −1, where Λ = diag(λ1, . . . , λn+d) is a diagonal
matrix containing the eigenvalues of F on the main diagonal and V
is a matrix whose columns consist of the eigenvectors of F . With
this, (4) can be expressed as

y(k) = V

(
k−1∑
i=0

Λi
)
V −1u. (5)

From the convergence analysis in [8] it follows that the magni-
tude of the eigenvalues are bounded by one. In addition, in [15] it is
shown that the eigenvalues having magnitude one are real. Let V =
(V1 V2), where range(V1) and range(V2) are the subspace spanned
by the eigenvectors associated to unit magnitude eigenvalues and
the subspace spanned by the eigenvectors associated to eigenval-
ues |λi| < 1, respectively. It then follows that V T1 V2 = O and

1If F is not diagonalisable, we can express F in its Jordan normal form
and derive similar results as presented here.

V +
1 u = 0, where the superscript + denotes pseudo-inversion [15].

Hence, (5) reduces to

y(k) = V2

(
k−1∑
i=0

Λi2

)
V +
2 u, (6)

where Λ2 contains the complex eigenvalues having magnitude
strictly less than unity.

2.2. Convergence analysis

Let y∗ denote the fixed point of the iterations. By inspection of (6),
y∗ can be written as

y∗ = V2

(
∞∑
i=0

Λi2

)
V +
2 u = V2 (I − Λ2)−1 V +

2 u, (7)

which follows from rewriting the infinite geometric series, assuming
that |λi| < 1, which holds by the definition of Λ2. With this, the
error e(k) = y(k) − y∗ can be expressed as

e(k) = −V2Λk2 (I − Λ2)−1 V +
2 u

= E(k)u, (8)

which shows that the algorithm converges at a linear rate determined
by the magnitude of the largest eigenvalue |λ2,max| of Λ2.

Some remarks are in place here. Due to our choice y(0) = 0,
there will be no information in the subspace spanned by the columns
of V1. If we initialise with arbitrary y(0), however, this will result
in an additional contribution. Since the columns of V1 are the eigen-
vectors associated to the unit magnitude eigenvalues, this additional
contribution is either present in every iteration (due to the eigenval-
ues λi = 1) or will alternate between successive iterations (due to
eigenvalues λi = −1). However, as shown in [15], all eigenvectors
associated to the unit magnitude eigenvalues have its first n entries
zero, which implies that the primal variables will converge to a fixed
point, while the dual variables could start alternating between two
values, depending on the actual choice of y(0). Since we are primar-
ily interested in the information contained in the primal variables,
this is no issue here. However, as we will see later when we consider
quantisation noise which will end up in the subspace spanned by the
columns of V1 even though we initialise y(0) = 0, this issue will
becomes relevant.

The error vector can be split in an error in the primal and dual
variables as e = (eTx , e

T
µ )T ∈ Rn+d. Introducing a selection matrix

Sx = (In O) ∈ Rn×(n+d) allows us to write the primal error as
ex = Sxe ∈ Rn. Let the primal normalized squared error (SE)

ζ(k)x =
1

n
tr
(
e(k)
x e(k)H

x

)
=

1

n
tr
(
SxE

(k)uuHE(k)HSHx

)
, (9)

be defined as the sum of the squared error in all the primal variables
divided by the number of elements, where the superscript H denotes
the Hermitian transpose and tr(·) denotes the trace of a matrix. By
taking the expectation, the following expression for the primal mean
squared error (MSE) is obtained

E
[
ζ(k)x

]
=

1

n
tr
(
SxE

(k)ΣuE
(k)HSHx

)
, (10)

where E[·] denotes the expectation operator and Σu = cov (u),
where cov (·) denotes the covariance matrix. Note, that the property
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E[tr(·)] = tr(E[·]) is used and that Σu is defined by the distribution
of the measurements ti. The primal MSE is of main interest since
the estimate of the average value is stored in the primal variables.
From (8) it can be seen that the primal MSE, E[ζ

(k)
x ], introduced in

(10), converges at a rate |λ2,max|2k.

3. UNIFORM SUBTRACTIVE-DITHER QUANTISATION

Let ŷ(k) = Q(ỹ(k)) = ỹ(k) + n
(k)
q be the uniformly quantised ver-

sion of the vector ỹ(k), where n
(k)
q denotes the quantisation noise

caused by the uniform quantisation operation and ỹ(k) is the vec-
tor calculated based on previously received quantised vectors. This
allows us to rewrite (4) as

ỹ(k) = F
(
ỹ(k−1) + n(k−1)

q

)
+ u = y(k) +

k−1∑
i=0

F k−in(i)
q .

In this paper, we add a so-called dither signal n(k)
d before quan-

tisation, resulting in a dithered output signal ỹ(k)
d = ỹ(k) + n

(k)
d ,

to give the quantisation noise certain desirable properties to be dis-
cussed below. The dither signals are generated by a pseudo-random
generator at the transmitting side and subtracted at the receiving side,
which has a pseudo-random generator with the same seed. This seed
needs to be communicated only once at the start of the iterations. Let
∆(k) be the distance between the reproduction values of the uniform
quantiser at iteration k. If we choose the dither realisations to be
i.i.d. uniformly distributed on the interval [−∆(k),∆(k)], then the
quantisation noise realisations will also be zero-mean i.i.d. uniform
distributed with variance ∆2

(k)/12 and they will be independent of
the quantiser input [16, Theorem 4]. If, in addition, the dither real-
isations are statistically independent in time of one another, then so
are the quantisation noise realisations [16, Theorem 5].

3.1. Convergence analysis

The error ẽ(k) = ỹ(k) − y∗ for quantised PDMM is given by

ẽ(k) = e(k) +

k−1∑
i=0

F k−in(i)
q = e(k) + e(k)

q .

When only considering the primal error ẽ(k)
x , the primal normalised

squared error (SE), ζ̃(k)x = n−1‖ẽ(k)
x ‖22, can be used to express the

primal MSE

E
[
ζ̃(k)x

]
= E

[
ζ(k)x

]
+ E

[
ζ(k)q,x

]
, (11)

where cross terms of e(k)
x and e

(k)
q,x dropped out since they are made

independently by dithering. Here, the first term E[ζ
(k)
x ] in (11) was

given in (10). Let us introduce F (k)
2 = V2Λk2V

+
2 . From [15, Propo-

sition A.6.3] it can be shown that SxV1 = O, such that SxF k =

SxF
(k)
2 . By combining this with earlier introduced properties, it is

shown in [15] that the second term E[ζ
(k)
q,x ] in (11) can be expressed

as

E
[
ζ(k)q,x

]
=

1

12n

k∑
i=1

∆2
(k−i) tr

(
SxF

(i)
2 F

(i)H
2 SHx

)
. (12)

Note that tr(SxF
(i)
2 F

(i)H
2 SHx ) → 0 at a rate |λ2,max|2i as i → ∞.

Hence, if we choose

∆(k) = |λ2,max|k∆(0), (13)

then E[ζ
(k)
q,x ] converges at a rate k · |λ2,max|2k, while E[ζ

(k)
x ] con-

verges at a rate |λ2,max|2k. Since E[ζq,x], in contrast to E[ζx], is
dependent on ∆(k) and therefore on ∆(0), we can make E[ζq,x] ar-
bitrarily small by making ∆(0) sufficiently small. By doing so, the
rate of convergence will be unaffected during the first number of it-
erations. This duration can be made arbitrarily long by making ∆(0)

smaller, such that any required precision for a practical application
can be achieved without compromising the rate of convergence. This
all comes, however, at the cost of a higher data rate since a more pre-
cise quantiser is required for every iteration. This will be evaluated
in the next subsection.

3.2. Data rate analysis

Using a quantiser with decreasing cell width suggests an increase in
data rate with increasing iterations. On the other hand, the amount
of information that needs to be transmitted will decrease with in-
creasing iterations. To analyse this, a quantised difference vector
v̂(k) = Q(ṽ(k)) = ṽ(k) + n

(k)
q will be transmitted, where ṽ(k) =

ỹ(k)−ŷ(k−2), with ŷ(k) = 0 ∀k ≤ 0. Note that we consider the dif-
ference between two successive iterations for reasons mentioned in
Section 2.2. If the same previously seen dither signal n(k)

d is added
before quantisation, we obtain the source vector for the quantiser

ṽ
(k)
d =

2∑
i=1

F
(k−i)
2 u +

k−2∑
i=0

(
F

(k−i)
2 − F (k−2−i)

2

)
n(i)

q

+ Fn(k−1)
q + n

(k)
d , (14)

where the quantisation noise vector n(k)
q will be a realisation from

the same i.i.d. uniform distribution as before. Therefore, the conver-
gence properties do not change. With (14), the covariance matrix of
the quantiser input can be expressed as

cov
(
ṽ
(k)
d

)
=

(
2∑
i=1

F
(k−i)
2

)
Σu

(
2∑
i=1

F
(k−i)
2

)H

+

k−2∑
i=0

∆2
(i)

12

(
F

(k−i)
2 − F (k−2−i)

2

)(
F

(k−i)
2 − F (k−2−i)

2

)H
+

∆2
(k−1)

12
FFH +

∆2
(k)

12
In+d. (15)

Let the messages v(k)i with 1 ≤ i ≤ n be the first n elements of ṽ(k)
d .

Each message is composed of a linear combination of Gaussian and
uniformly distributed variables. These messages have a source vari-
ance, denoted by σ2

vi,(k)
, equal to the first n diagonal elements of

the covariance matrix in (15), which can be used to upper bound the
differential entropy of v(k)i . For any source this upper bound is given
by the differential entropy of a Gaussian source with the same vari-
ance [17]. With this, the discrete entropy of the quantiser output can
be upper bounded at high-rate by

H
(
v̂i

(k)
)
≤ 1

2
log2

(
2πeσ2

vi,(k)

∆2
(k)

)
, (16)

where it is assumed that ∆(k) is the same for every node i [18].
All but the second term in (15) converge at a rate |λ2,max|2k.

The second term converges at a rate k · |λ2,max|2k, such that the ratio
in (16) gradually increases for the choice ∆(k) = |λ2,max|k∆(0).
Therefore, it is not possible to obtain a constant data rate for this
specific choice of ∆(k). However, as can be seen in the next section,
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Fig. 1. The SE ζ̃x for quantised PDMM with and without subtractive
dithering with decreasing cell width ∆(k) with ∆(0) = 10−1.

the second term in (15) is negligible small compared to the other
terms, such that for practical applications a fixed-rate quantiser can
be used.

4. SIMULATION RESULTS

In this section we present results obtained by computer simulations.
The simulations were generated using the same random n = 10
node network, with each comprised of 500 iterations. The penalty
parameter was chosen as ρ = 1/n = 0.1. Only the primal MSE was
considered.

To ensure the convergence of the primal MSE in the case of
quantised transmission, a variable ∆(k) with a linear decreasing rate
|λ2,max|k, similar to the non-quantised MSE, was introduced. In Sec-
tion 3 it was shown that ∆(0) plays an important role in the perfor-
mance in terms of the convergence rate. Therefore, results for two
different values of ∆(0) are demonstrated.

Fig. 1 and 2 contain the non-quantised reference ζx, the SE ζ̃x
for the same realisations of the measurements ti, and the MSE of the
noise contribution E[ζq,x] when subtractive dither is used. By com-
paring Fig. 1 and 2, it can be seen that a smaller ∆(0) in Fig. 1 causes
E[ζq,x] to reduce, which minimises the influence of the quantisation
noise. For a small enough ∆(0), ζ̃x will be identical to ζx, however
this comes with the cost of a higher transmission data rate as can be
seen from Fig. 3. The SE ζ̃x without subtractive dither is plotted in
purple to show the benefits of subtractive dither.

In Section 3 it was shown that for an exponentially decreasing
cell width ∆(k), E[ζq,x] from (12) has a different rate of convergence
than E[ζx] from (10). This different rate of convergence is most ap-
parent in Fig. 2, where the red and the blue dashed line have dis-
tinctly different slopes. However, regardless the initial selection of
∆(0), asymptotically E[ζq,x] will always dominate E[ζx] after a cer-
tain number of iterations. However, for practical applications, with
small enough ∆(0), this point can be made to occur after the required
precision has been achieved. As such, an exponentially decreasing
∆(k) is sufficient to maintain the convergence rate of unquantised
PDMM.

Fig. 3 shows the required data rate for quantised PDMM for
three different values ∆(0) when difference messages are transmit-
ted. The lines represent n−1∑

iH(v̂i
(k)), the mean over ten nodes

of the upper bound on the data rate from (16). Based on (15), (16)
and Fig. 3, it can be noted that a smaller ∆(0) requires a higher
data rate, since there are more quantisation cells to represent with a
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Fig. 2. The SE ζ̃x for quantised PDMM with and without subtractive
dithering with decreasing cell width ∆(k) with ∆(0) = 5 · 10−1.
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Fig. 3. The mean required data rate to quantise v(k)i for a variable
cell width for three different values of ∆(0).

smaller cell width. Furthermore, it can be seen that during the first
iterations the data rate is relatively high. This corresponds with the
effect of a very fast decrease in the SE during the first iterations,
which requires more information to be transmitted. Lastly, the near
horizontal lines for the later iterations indicate that a fixed-rate quan-
tiser will be sufficient for practical applications that stop transmitting
data after the required precision has been achieved.

5. CONCLUSIONS

In this paper we examined the influence of quantisation on the con-
vergence of PDMM for the synchronous distributed averaging prob-
lem. We showed that it is possible to apply quantisation in PDMM
and thereby reduce the data rate while maintaining the same con-
vergence rate by exponentially decreasing the quantiser cell width at
every iteration with the same rate as the linear convergence bound.
The expressions for the MSE and the figures in Section 4 empha-
sise the role that the initial quantiser cell width plays in this. The
presented conclusions, however, only hold for practical applications
which demand a finite precision such that the algorithm stops after
a certain number of iterations. This is because the rate of conver-
gence of quantised PDMM asymptotically becomes k · |λ2,max|2k for
an exponentially decreasing cell width, due to the part of the MSE
caused by the quantisation noise. This means, that for the proposed
decreasing cell width scheme, an infinite precision can never be ob-
tained without compromising convergence performance.
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