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ABSTRACT
In recent years, signal processing with ad hoc microphone arrays
has attracted a lot of attention. Speech enhancement in noisy, inter-
fered, and reverberant environments is one of the problems targeted
by ad hoc microphone arrays. Most of the proposed solutions require
knowledge of fingerprints, such as acoustic transfer functions, which
may not be known as accurately as required in practical situations. In
this paper, a distributed signal subspace filtering method is proposed
which is not restricted to a special graph topology. Here, the maxi-
mum signal to interference-plus-noise ratio (max-SINR) criterion is
used with the primal-dual method of multipliers for distributed filter-
ing. The paper investigates the convergence of the algorithm in both
synchronous and asynchronous schemes, and also discusses some
practical pros and cons. The applicability of the proposed method is
demonstrated by means of simulation results.

Index Terms— Speech enhancement, max-SINR, ad hoc micro-
phone array, distributed filtering, primal-dual method of multipliers.

1. INTRODUCTION

Speech enhancement is a necessity for goals such as listening com-
fort, better perception, and improved intelligibility. It is performed
in different ways, e.g., by noise removal and interference rejection
in which cases the enhancement process is usually done by filter-
ing. The single-channel filtering is usually done in time-domain,
frequency-domain, or short-time Fourier transform (STFT) domain
[1]. In multichannel speech enhancement, microphone arrays, which
can be viewed as multi-input multi-output (MIMO) acoustic sys-
tems [2], are used for their spatial filtering capability, namely beam-
forming, that usually result in better performance over the single-
channel approach [3, 4].

Unfortunately, effective beamforming requires prior knowledge
or estimation of spatial, or similar, fingerprints such as acoustic
transfer functions (ATFs), relative transfer functions (RTFs), direc-
tion of arrivals (DOAs), pseudo-coherencies, etc. Luckily, subspace
techniques can be used in enhancement algorithms for estimating the
required fingerprints on the fly or implicitly in blind enhancement
algorithms. Recently, RTFs have been estimated using the gener-
alized eigen-value decomposition (GEVD) in multiple interference
suppression [5], the multichannel Wiener filter (MWF) has been
expanded to the assumption of low-rank speech signal subspace [6],
and finally a family of variable span linear filters has been proposed
for using the GEVD to trade–off between known techniques [7, 8].
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The aforementioned methods are applicable to a centralized ap-
proach with a fusion center (FC); however, there are emerging ap-
plications for which such a centralized approach is inefficient (e.g.,
huge bandwidth or power requirements) or even inapplicable (e.g.,
irrealizable computational complexity). Ad hoc microphone arrays
are among the acoustic systems in which microphones are embedded
in distributed portable devices (nodes). Several challenges are inher-
ent to ad hoc microphone arrays including power, computational,
and bandwidth limitations, scalability, packet-loss, synchronization,
etc. [9]. In recent years, various distributed solutions have been pro-
posed to overcome these challenges. In [10], three distributed tech-
niques, namely LC-DANSE [11], D-LCMV [12], and DGSC [13],
have been compared with regard to their computational, communica-
tion, and adaptivity characteristics. Unfortunately, these algorithms
assume fully connected wireless networks or partially connected net-
works with a tree structure, which may be violated in ad hoc scenar-
ios, unless a tedious reconfiguration step is employed.

Other distributed algorithms have been proposed without such a
restricting assumptions on the geometry, e.g., the distributed delay–
and–sum beamformer has been implemented with the randomized
gossip algorithm [14], and the distributed minimum variance distor-
tionless response (MVDR) beamformer has been implemented with
a message passing algorithm in [15], and with the diffusion adapta-
tion paradigm in [16]. Recently, the primal-dual method of multipli-
ers (PDMM) [17], formerly BiADMM [18, 19], has been proposed
for distributed convex optimization. In [20], it has been shown that
PDMM has superior convergence compared to the alternating direc-
tion method of multipliers (ADMM) [21]. Due to its advantageous
properties, the PDMM algorithm has recently been used in vari-
ous distributed speech enhancing algorithms, e.g., in the distributed
ATF-based linearly constrained minimum variance (LCMV) beam-
forming [22], in the distributed coherency-based MVDR beamform-
ing [23], and in the distributed sparse MVDR beamforming [24].

All of the aforementioned distributed enhancement techniques
demand knowledge of the spatial fingerprints or equivalent cues,
which are very hard to estimate in the ad hoc arrays, for their random
and dynamic geometries. To overcome this challenge, the idea of us-
ing subspace methods in enhancement algorithms has been extended
to the distributed scheme, e.g., the signal covariance matrix has been
estimated using the GEVD (in a fully connected network) [25], and
a projection-based subspace estimation has been used in the LCMV
beamforming [26]. Unfortunately, the idea behind these algorithms
is to estimate the covariance matrices locally in nodes with the num-
ber of microphones greater than the required dimension of the sub-
space, then to use compression to reduce communications per node.
This assumption is restricting in the ad hoc microphone arrays, since
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arbitrary nodes may have insufficient number of microphones.
The contribution of this paper is to employ the signal subspace

into a distributed speech enhancement algorithm that does not rely
on any restricting assumption on the graph. To this end, the max-
imum signal to interference-plus-noise (max-SINR) enhancement
technique is implemented using the PDMM algorithm. The pro-
posed algorithm, based on the generalized eigen-vectors (GEVC),
has three advantages: 1) it employs the subspace structure in the
distributed optimization problem, 2) the iterative algorithm is appli-
cable to the synchronous or the asynchronous schemes, and to a free
graph structure, and 3) it is ready to be turned into a fully blind al-
gorithm, using a distributed GEVC estimator.

In the rest of this paper, we first introduce the distributed max-
SINR speech enhancement technique. Section 2 establishes the the-
oretical foundations. The signal model is presented, and the max-
SINR optimization problem is solved by the extended Karush-Kuhn-
Tucker (KKT) condition. Next, the signal subspace of the general-
ized eigenvalue problem is discussed. Finally, the distributed opti-
mization algorithm in which each node uses its respective element
from the principal eigenvector is presented. The experiments are
presented in Section 3, and the paper is concluded in Section 4.

2. DISTRIBUTED MAX-SINR FILTERING

2.1. Signal Model

We consider an ad hoc microphone array with M nodes (micro-
phones) that constitute a random geometric graph. Our goal is to
enhance the desired speech signal from a point source that is con-
taminated by noise and other interfering sources. The desired and
the interference-plus-noise components are assumed to be uncorre-
lated, zero mean, stationary, broadband, and real. The acoustic en-
closure is assumed to be reverberant. We study the problem in the
STFT-domain, but we omit the frequency index k and time index t
for simplicity, if there is no ambiguity.

In the following, S is the speech source, Ym is the received sig-
nal at node m, with Xm and Vm being its desired and interference-
plus-noise components. Then, the signal model using the acoustic
transfer function (time-invariant or at least slowly varying) is

Ym = Gm(k)S + Vm = Xm + Vm. (1)

By stacking vectors y = [Y1 · · · YM ]T , x = [X1 · · · XM ]T ,
v = [V1 · · · VM ]T , and g(k) = [G1(k) · · · GM (k)]T ,
where the transcript T is the matrix transposition operator, we have

y = g(k)S + v = x + v. (2)

Then, the covariance matrices for the received signal, the desired
signal, and the interference-plus-noise component respectively are

Φx = E[xxH ] = φSg(k)gH(k),

Φv = E[vvH ],

Φy = E[yyH ] = Φx + Φv = φSg(k)gH(k) + Φv, (3)

where φS = E[SS∗] is the power spectral density of the source
signal, and ∗ and H are the complex conjugate and the Hermitian
transpose operators.

2.2. Centralized Maximum SINR Filtering

To establish the optimization problem, we consider a linear filter
which provides the enhanced signal:

Z = hHy, (4)

where h = [H1 · · · HM ]T is the array weight vector that may
be found by solving different optimization problems. As indicated
earlier, the objective of this paper is to investigate the maximum
SINR filtering problem, so that the optimization problem is

max
h

hHΦxh

hHΦvh
= max

h

hHΦyh

hHΦvh
− 1. (5)

The left and right hand sides of (5) are equivalent assuming that
the desired and the interference-plus-noise components are uncor-
related.

The unconstrained optimization problem in (5) is equivalent to
the constrained optimization problem of the form:

max
h

hHΦyh s.t. hHΦvh = 1, (6)

or, equivalently,

min
h

−hHΦyh s.t. hHΦvh ≤ 1, (7)

in which h is constrained to be inside a closed Euclidean ellipsoid.
The equivalency of the optimization problems in (6) and (7) is gov-
erned by two facts. Firstly, the global maximum of a convex max-
imization objective with a convex constraint occurs at an extreme
point of the constraint set [27], so that substituting hHΦvh = 1 in
(6) by hHΦvh ≤ 1 does not alter the optimal solution. Secondly,
maximization of a non-negative objective function is equivalent to
minimizing its additive inverse.

Neither the problem in (6) nor the problem in (7) are standard
convex minimization (or concave maximization) problems, to be
solved for example with PDMM; however, as stated in [28], the
first-order KKT conditions with an associated Lagrange multiplier
γ ≥ 0, complemented with the condition that (−Φy +γΦv) is pos-
itive semidefinite, characterize a global solution to (7). “In such a
case one can assert that, roughly speaking, the maximization prob-
lem is a convex problem in a hidden form.” Therefore, we expect
that PDMM and ADMM to be able to solve (7).

With this consideration, the optimal solution of (7) is founded
by equating the gradient of its Lagrangian to zero:

L(h, γ) = −(hHΦyh) + γ(hHΦvh− 1),

~∇hHL(h, γ) = −(Φyh) + γΦvh = 0

Φyh = γΦvh. (8)

Then, the optimal weight vector is equal to the eigenvector regarding
the largest eigenvalue of the generalized eigenvalue problem in (8).
In most cases, it is preferable to solve this problem using the gener-
alized Schur algorithm. Alternatively, if Φv is invertible, (8) can be
transformed into the standard Hermitian eigenvalue problem, i.e.,(

Φ−1/2
v ΦyΦ−1/2

v

)
h = γh. (9)

In this case, for numerical considerations, if M is up to a few thou-
sands, Φv’s Cholesky decomposition can be used instead of its
square root. In the sequel, we use the standard Hermitian eigenvalue
decomposition of Φ̃y = Φ

−1/2
v ΦyΦ

−1/2
v in (9).

2.3. Signal Subspace

Assuming that the problem of interest is not under-determined, Φ̃y

can be decomposed into its eigen-space:

Φ̃y =

M∑
n=1

λ̃nq̃nq̃H
n , (10)
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where non-zero eigenvalues are sorted in a descending order

λ̃1 ≥ · · · ≥ λ̃M > 0. (11)

Since matrix Φ̃y is Hermitian symmetric, its eigenvectors will be
orthonormal, i.e. q̃H

n q̃n = 1 and q̃H
n q̃m = 0, ∀n 6= m.

Here, we assume a desired point source for which, according to
Cauchy-Schwarz inequality, we can write

|hH q̃1|2 ≤ ‖h‖22‖q̃1‖22. (12)

By constraining hH q̃1 = 1 and considering ‖q̃1‖22 = 1,

1 = |hH q̃1|2 ≤ ‖h‖22. (13)

A quadratic penalty term can be augmented to the objective of (7) to
force h to take the lowest allowed `2 norm in (13), i.e. hHh = 1.
This implies that the convex optimization problem:

min
h

−(hHΦyh) + ε‖h‖22 s.t. hH q̃1 = 1 (14)

is equivalent to (7). As discussed in Subsection 2.2, the optimization
problem in (14) is feasible if (−Φy + εIM×M ) is positive semidef-
inite which is governed by a proper selection of parameter ε. Pro-
vided that the principal component is calculable using power itera-
tion and familiar approaches, and each node is aware of its respective
element in the principal vector. In the following subsection, we pro-
vide algorithms that can be used to solve this optimization problem
in a distributed manner.

2.4. Distributed Algorithms

If the optimization objective and the constraint in (14) are decoupled
into local terms, distributed convex optimization algorithms can be
used. Suppose that the ad hoc microphone array is mapped to the
graph G = (V, E) with vertexes V (nodes) and edges E . For practi-
cal reasons, each node m ∈ V may only be connected to a subset of
nodes in its neighborhood,N (m). In order to decouple the objective
function, we define auxiliary local terms at node m

Zm(t− l) = hHy(t− l) =
∑
m∈V

H∗mYm(t− l), (15)

where y(t − l), l ∈ {0, . . . , L − 1}, are the stored received signal
vector of the latest L time-frames.

Following the familiar approach in [22,23], the decomposed pri-
mal optimization problem equivalent to (14) is obtained

min
ωm

∑
m∈V

ωH
mQωm

s.t.
∑
m∈V

(Amωm − b) = 0, (16)

where

ωm =
[
Zm(t− L+ 1), . . . , Zm(t), h∗m

]T
,

Q = diag
( −1
ML

, . . . ,
−1
ML

, ε
)
,

Am =


1 0 −MYm(t− L+ 1)

. . .
...

0 1 −MYm(t)
0, · · · , 0 q̃1,m

 ,
b =

[
0, · · · , 0, 1

M

]T
, (17)

q̃1,m is the m-th element of q̃1, and diag(·) produces diagonal ma-
trix. As shown in [22, 23], the dual problem of (16) is solved with
the PDMM in a systematic way. This targeted dual problem is

min
µm

∑
m∈V

(
µH

mΩmµm − 2<
{

bHµm

})
s.t. µm = µn ∀(m,n) ∈ E , (18)

where µm is the so-called primal-dual parameter at node m, and

Ωm = AmQ−1AH
m,

ωm = Q−1AH
mµm. (19)

At iteration i, PDMM updates the primal-dual variable µ(i)
m and

its dual-dual variable ν(i)

m|n, which is defined locally at node m with
regard to its neighboring node n ∈ N . The PDMM updates are

µ(i)
m =

(
Ωm +

∑
n∈N (m)

Rmn

)−1

(
b +

∑
n∈N (m)

(
Rmnµ

(i−1)
n +

m− n
|m− n|ν

(i−1)

n|m
))

ν
(i)

m|n = ν
(i−1)

n|m − rRmn

(
µ(i)

m − µ
(i−1)
n

)
, (20)

where regularizing matrix Rmn should be optimized to achieve
fastest convergence.

3. EXPERIMENTS

As proof-of-concept, we will here consider an illustrative example,
by which the applicability and convergence of the proposed method
is inspected; however not in dept, as it is done in previous theoretical
and applied works on the PDMM algorithm, e.g. in [17, 20, 22, 23].

An ad hoc microphone array with 9-node random geometric
graph is used to enhance the contaminated signal in the setup shown
in Fig. 1a. A 5m×5m×3m room is simulated with T60 = 150 ms,
using the image method [29]. All microphones are omnidirectional.
A sampling frequency of 8000 Hz is used with 1024-point DFT and
75% overlapping Hanning window. Speech signals from the TSP
speech database are used. A mixture from a desired source (black
diamond), and two interferers (marked with red squares), with equal
power, is received by randomly distributed microphones (blue trian-
gles). Spatially white Gaussian noise is added to the received signals,
about 6 dB bellow the desired components. The desired signal re-
ceived by a random nodem is shown in the STFT-domain in Fig. 1b.
The contaminated received signal by nodem is shown in Fig. 1c. As
observed in the figure, the signal is degraded a lot because of closer
interfering sources, which resulted in a powerful interfering-plus-
noise component. In the simulations, it is assumed that each node is
only aware of the one element in the principal generalized eigenvec-
tor, which is regarding itself. The PDMM algorithm is then used to
solve the optimization problem in (14), albeit in a distributed man-
ner, to obtain the solution of the max-SINR optimization problem
originally formulated in (5). Here, nodes update their local variables
without explicit knowledge of the raw data at other nodes. Both syn-
chronous and asynchronous update schemes are simulated. For the
asynchronous update scheme a randomly picked node is updated at
each iteration, then the dual variables are broadcasted.

To study convergence of the proposed method, and to compare
different updating schemes, first the residual of the primal-dual vari-
able, µm, is calculated at iteration i:

ζim =
∥∥µ(i)

m − µ
(i−1)
m

∥∥, m ∈ V, (21)
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(a) Geometry of the experiment (b) The desired signal at a random node (c) The received signal at the same node

(d) Convergence curves, for synchronous (blue) and
asynchronous (red) schemes

(e) The enhanced signal at 45 transmissions (f) The enhanced signal at 900 transmissions

Fig. 1. Max-SINR speech enhancement with ad hoc microphone arrays exploiting a random geometric graph

Figure 1d shows the convergence for a few hundred transmissions.
On the one hand, the synchronous updating scheme results in very
little ripples which are vanishing with increased number of trans-
missions. On the other hand, the asynchronous updating scheme
causes steady fluctuations; however it is also converging “on aver-
age” with a similar convergence rate to the convergence rate of the
synchronous scheme. A question is how one can be sure that vari-
ables are converging toward a desirable point.

As indicated earlier, the theoretical background on PDMM, e.g.
in [17], has been verified in previously proposed algorithms, e.g.,
by using the relative convergence plots, by studying some variables
that have known global values, or by studying converging point of
the array gain as in [23]. In this work, the enhanced signals at two
different iterations are used. As shown in Fig. 1e, just with 45 trans-
missions, which is equivalent to 5 iterations in synchronous updating
scheme, most unwanted parts of the received signal have been sup-
pressed while preserving the structure of desired component. Using
900 transmissions, equivalently 100 synchronous iterations, the sig-
nal is enhanced to a greater extent as can be seen in Fig. 1f. However,
it is also observable that some desired components are also reduced
at both stages, but more heavily with increased number of iterations.
This is, of course, inherent to the max-SINR speech enhancement,

and would also be visible in the centralized enhancement. Moreover,
there are certain methods to overcome this drawback, e.g., using
variable span filtering techniques. Another point of problem in both
Fig. 1e and Fig. 1f is the few isolated points at which the PDMM
algorithm is diverging. This can in fact be a result of unfulfilled
assumptions, e.g., from problematic matrix rank deficiency. Again,
this is not a problem solely for the proposed distributed algorithm;
however, as this experience suggests, selection of some regularizing
parameters such as ε and Rmn can be critical at some point, which
of course can be solved with better selections.

4. CONCLUSIONS

In this paper, we have proposed a distributed algorithm, which em-
ploys the signal subspace to obtain the optimal solution with respect
to the max-SINR criterion. We have shown that such an optimization
problem can be solved successfully with the PDMM algorithm. The
convergence of the algorithm has been compared under synchronous
and asynchronous updating schemes, and the results suggest similar
behavior on average. Moreover, some practical considerations re-
garding the distributed max-SINR algorithm are discussed within an
experiment.
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