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ABSTRACT

A computer being able to estimate the geometry of a room could
benefit applications such as auralization, robot navigation, virtual
reality and teleconferencing. When estimating the geometry of a
room using multiple microphones, the main challenge is to identify
which reflections, or echoes, originate from the same wall and can,
therefore, be modeled by a virtual source outside the room using the
mirror image source model. In this paper we present a new and ef-
ficient method to disambiguate the echoes using a graph theoretical
approach where echo combinations are modeled as nodes in a graph
and the problem is stated as a maximum independent set problem.
Once the echoes are correctly labelled, we know the locations of the
virtual sources from which we can infer the room geometry. Experi-
ments for shoe-box shaped rooms show that we can reliably estimate
the room geometry within seconds on contemporary hardware and
achieve centimeter precision on finding the vertices of the room.

Index Terms— room geometry estimation, mirror image source
model, independent sets

1. INTRODUCTION

Recently there has been an increasing interest in developing com-
puter algorithms that can measure the shape of a room using acous-
tic echoes. This can benefit several applications. In auralization one
needs to model the source, receiver and transmission medium, of
which the latter can be accurately modeled only if information about
the room geometry is available. For teleconferencing one may want
to take into account the reflections of sound, also called reverber-
ation, prior to the excitation of a sound signal. Robot navigation
benefits from it in in the sense that it aids to avoid unsafe conditions
and dangerous situations such as collisions.

Reflections, or echoes, contain information about the geometry
of the room. The reflections can be modeled by virtual sources using
the mirror image source model [1], and finding the virtual sources
implies finding the surfaces in a room. When using multiple mi-
crophones, the echoes from each wall do not necessarily arrive at
each microphone in the same order. The main challenge is to disam-
biguate the echoes and label them according to the wall they origi-
nate from.

Several methods for obtaining the room shape from acoustic
echoes have been proposed. In [2], a 2D room shape is found by
identifying echoes in the room impulse response from a source to
a single microphone, whereas in [3] the 2D room shape is found
using multiple sources and microphones. In [4] a method for esti-
mating 3D room shapes is presented, where the arrangement of mi-
crophones is kept small enough so that we can assume that echoes
will cluster together in time. Its applicability, however, is restricted
due to the many restrictions on the microphone and source locations.
In [5], Dokmanić et al. describe a method for room shape estimation
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Fig. 1: Illustration of different order of arrival of wall reflections.

by recording the echoes of a single source using five microphones
which can be placed arbitrarily in the room. They utilize the proper-
ties of Euclidean distance matrices and use multidimensional scaling
to iteratively find the room shape. Although this method can be very
accurate, it is computationally expensive and, in particular for real-
istic 3D scenarios, only suitable for off-line calculations.

In this paper we propose a high-accuracy efficient method to
obtain the room shape in 3D scenarios. The proposed algorithm uses
five microphones and N ≥ 2 sources (or one single source excited
at different locations), and uses a graph theoretical approach where
echo combinations are modeled as nodes and the problem is stated
as finding the maximum independent set in the graph. In this paper
we will restrict ourselves to shoe-box shaped rooms, although the
method itself can be used for arbitrary room shapes.

2. LOCALIZATION OF IMAGE SOURCES

In order to estimate the geometry (walls) of a shoe-box shaped room,
we need to locate both the source and the six virtual sources corre-
sponding to the first-order reflections of the walls, floor, and ceiling.
These locations can be computed using trilateration once we know
the distance between the different sources and the microphones,
where the distances itself can be obtained from the time-of-arrivals
(TOAs) of the different reflections. Although the estimation of the
TOAs, and therefore the distances, is straightforward, it is not clear
which echo originates from which wall since reflections may arrive
in different order at the microphones. This ambiguity in the echoes
is illustrated in Figure 1. In order to correctly identify which echo
originates from which wall, we follow the approach of [5], which
makes use of the properties of a Euclidean distance matrix (EDM).
The EDM of a set of N points (locations), say x1, . . . , xN , is an
N × N matrix containing all squared Euclidean distances between
the points of consideration. That is, entry (i, j) of the EDM is
given by ‖xi − xj‖2, and as a consequence, its diagonal entries are
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zero. It can be shown [6] that the rank of an EDM, for points in
three-dimensional space, must have a rank less than or equal to five.

Consider the 3D point set containing the known (relative) posi-
tions of the M microphones, say r1, . . . , rM . Using this set, we can
construct an EDM R ∈ RM×M , which has, assuming M ≥ 5 and
microphones are not co-located, rank five. If we would augment this
matrix by adding the distances from the M microphones to one par-
ticular virtual source, resulting in an augmented EDM R̃, the rank
of the augmented matrix will not increase. If we augment R by dis-
tances to different virtual sources, however, the augmented matrix
is not an EDM anymore and the rank of R̃ will be larger than five.
Hence, a brute force method for identifying which echo originates
from which wall is to try out every possible echo combination and
check whether a certain combination gives rise to an EDM. Except
from the fact that finding the correct echo combination is a NP-hard
problem, the method breaks down in case there is measurement noise
in the TOAs, which will always be the case in any practical applica-
tion.

In [5] this problem is tackled using multidimensional scaling
(MDS) by iteratively finding the best matching EDM. However, the
algorithm, although being asymptotically optimal, is computation-
ally expensive and not suitable for real-time applications like robot
navigation. In the following section we will present an alternative
method to reduce the computational complexity of finding the cor-
rect echo combination. We first exclude some echo combinations
based on the singular values of the augmented EDM, after which the
remaining echo combinations are modeled as nodes in a graph and
the problem is formulated as a maximum independent set problem.

2.1. Complexity reduction

In order to reduce the search space of possible echo combinations,
we will first exclude echo combinations based on the singular values
of the augmented EDM R̃. In the case we augmented R by a correct
echo combination, we have that rank(R̃) = 5, which implies that
the SVD of R̃ contains only five nonzero singular values. If, on the
other hand, we used an incorrect echo combination or there were
measurement errors in the TOAs, we have rank(R̃) > 5. As a
consequence, excluding all augmented EDMs having a rank larger
than five would exclude correct echo combinations in the presence
of measurement noise. To overcome this possible problem, we note
that if we perturb a rank-5 matrix by adding a distortion matrix, say
D, then σ6 ≤ ‖D‖2 [7, Theorem 2.5.3], where σ6 denotes the sixth
largest singular value of R̃. Hence, noise has a definable effect on
our ability to detect rank; if the singular values are larger than ‖D‖2
we know they did not just come from the noise. Therefore, instead
of considering the rank of the augmented matrix, we will consider
the ε-rank [7] of R̃, which is defined as

rank(R̃, ε) = min
‖R̃−X‖2≤ε

rank(X).

As a consequence, by excluding all R̃ having a ε-rank larger than
five, we will exclude echo combinations that give rise to an aug-
mented EDM having more than five singular values larger than a
tolerance ε. Since the tolerance can not be set arbitrarily low, there
will be false positives which need to be excluded in a second stage.

Given our reduced set of candidate echo combinations, sayCε =
{ci}, ci ∈ RM , we need to find a subset of six elements ci, each
containing the distances from one particular image source to all the
M receivers. A key observation we can make here is that these six
vectors are very unlikely to have elements in common. This will

only happen by special construction and means that different first-
order image sources have identical distance to a particular receiver.
As a consequence, we can reduce our search space to the set of cis
that have no elements in common.

To illustrate this, we consider the following 2D toy example in
which there are three microphones and four walls. Assuming we can
identify the first-order reflections, we find four distances for each of
the three receivers. Next, assume that after applying the ε-rank test,
the (reduced) set of possible echo combinations is given by

Cε =


c0 c1 c2 c3 c4 c5 c6 c7

r1 10 11 11 11 12 12 14 14
r2 20 20 21 22 22 21 24 24
r3 30 31 31 31 33 31 31 34

. (1)

Since there are four walls, we need to find four candidate echo com-
binations ci ∈ Cε that have unique distances to the three receivers.
By inspection of (1), we conclude that the subset (c0, c2, c4, c7)
is the required subset since this is the only four-element combina-
tion of cis that do not have common elements; the other elements
(c1, c3, c5, c6) are spurious echo combinations that happened to pass
the rank test. Note that in general, there can be more than one four-
element set (or, in the 3D shoe box room case, six-element set) that
have no elements in common. In that case we need to find all these
subsets and we have to decide afterwards which one is the correct
one. In the next subsection we will describe an efficient method for
finding the required set(s) based on graph theory.

2.1.1. Independent sets

A graph is an abstract representation of a set of objects where some
pairs of the objects are connected by links. The interconnected ob-
jects are represented by mathematical abstractions called vertices or
nodes, and the links that connect some pairs of vertices are called
edges. A graph, denoted by G, thus consists of some finite number,
say n, of nodes, which will be labeled and represented as a vertex
set V = {1, . . . , n}, and edges representing connections between
the nodes represented by E ⊆ V × V . We write G = (V,E). Typ-
ically, a graph is depicted in diagrammatic form as a set of dots for
the vertices, joined by lines or curves for the edges (see Figure 2 for
an example). In this paper we will focus on undirected graphs only.

Let each candidate echo combination ci ∈ Cε be represented by
a node i ∈ V , where |V |, the cardinality of the vertex set, is equal
to the number of echo combinations that passes the ε-rank test. For
every two candidates ci, cj ∈ Cε that have one or more elements
in common, we define an edge in E. Figure 2 illustrates the above
definitions using the toy example presented in the previous section.
Hence, there a eight nodes in total where each node i represents echo
combination ci. In this example, echo combination c0 has one ele-
ment in common with echo combination c1, and c2 has two elements
in common with c1, and so on, whereas there are no common ele-
ments between the echo combinations c0 and c2. By inspection of
Figure 2 we conclude that the node set {0, 2, 4, 7} (indicated by the
blue-colored nodes) is a set of vertices no two of which are adjacent.
That is, it is the set of vertices that do not have a direct interconnec-
tion, and is generally referred to as an independent set [8]. There
can, however, be many independent sets in a graph. By definition,
each subset of an independent set is also an independent set. A max-
imal independent set is an independent set such that it is not possible
to include any other node from the graph in the set without it ceasing
to be an independent set. For the problem at hand, we have to find
the independent set of largest possible size, which is referred to as
the maximum independent set. In our toy example, this size is four,
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Fig. 2: Representing echo combinations as nodes in a graph. The set
of blue nodes correspond to the (maximum) independent set.

and we conclude that the independent set {0, 2, 4, 7} is a maximum
independent set and, therefore, solves our problem.

Finding a maximum independent set is an NP-hard problem.
It can, however, be solved more efficiently than the trivial O(2n)
bound given by a naive brute force method. For example, [9] pre-
sented an exponential space algorithm using time O(20.276n) to
solve the problem. Since there can be more than one maximum in-
dependent set in a graph, we need to find all maximum independent
sets. One way to do this is solving the so-called maximal inde-
pendent set listing problem [10]. Listing all maximal independent
sets also yields all maximum independent sets, since a maximum
independent set is a maximal independent set by definition.

2.2. Finding the correct echo locations

Let Smax denote the set of maximum independent sets in a graph. In
terms of the room geometry estimation problem, each maximum in-
dependent set contains echo combination that do not have elements
in common. If Smax contains only one element, we have found the
correct echo combination from which we can infer the room geom-
etry. If, however, Smax contains more than one such set, we have
to decide which one is the correct one. In this paper we propose
to use the source localization algorithm proposed by Pollefeys [11]
which gives, given the distances between sources and receivers, the
location of both sources and receivers up to a unitary transform (ro-
tation, reflection) and translation.

Pollefeys’ method requires at least ten sources and five micro-
phones. Using the image source method, we can model reflections as
virtual sources and we conclude that we need to do at least two mea-
surements, yielding two real sources and 12 image sources. Given
N = 2 sources, we construct the input data for the Pollefeys method
as

∆ =
[
S E1 E2

]
, (2)

where S ∈ RM×N contains the distances from the M microphones
to the N real sources, and E1, E2 ∈ RM×6 contain distances from
the microphones to six echo combinations originating from source
1 and 2, respectively, found by the maximum independent set algo-
rithm.

The Pollefeys method gives us the coordinates of the receivers
and sources given that the input data corresponds to the correct com-
bination of echoes. If the echo combination is not correct, the es-
timated coordinates will, in general, be completely wrong. Since
we know the pairwise distances between the microphones, we can
compare the estimated microphone locations using Procrustes align-
ment [12] with the true microphone locations to find out whether the

Average localization error 0.0235 m
Localization error variance 2.21× 10−3

Minimum localization error 1.08× 10−3 m
Average run time 2.43 s
Run time variance 0.51
Minimum run time 1.35 s

Table 1: Average results for estimating room geometry for shoe-box
shaped rooms

input data was correct or not. If the receiver locations turn out to
be correct, the (image) source coordinates will be correct as well.
As a consequence, we will try out all possible combinations E1 and
E2 and select the one that gives the smallest receiver reconstruction
error.

3. ROOM RECONSTRUCTION

In order to determine the room geometry, we first have to determine
which echo originates to which wall. To do so, let si denote the lo-
cation of source i and sij the location of the image source of source
i with respect to wall j. With this the normal vector of wall j is
given by nj = si − sij for all i = 1, . . . , N . Given the estimated
source locations obtained by the Pollefeys method, denoted by ŝi
and ŝij , we can compute ŝi − ŝij for all i, j, and cluster the re-
sult into six 2-element sets using the k-means clustering algorithm
[13, 14]. As a result, we have collected all image sources belonging
to the same wall in one cluster, and we can estimate points on wall
j as wij = (ŝij + ŝi)/2 for every source i. Figure 3a shows an
example shoe-box shaped room where we randomly placed N = 2
sources and M = 5 microphones. The blue squares indicate the
source locations whereas the black dots indicate the microphone lo-
cations. Figure 3b shows the result of the procedure described above.
The purple triangles show the estimated image source locations and
the green circles the estimated wall points wij . Having the wall
points estimated, the vertices of the room are simply found as the
intersection of the lines through the different wall points.

We can improve the accuracy of our room geometry estima-
tion by including more than two sources. In general, when we use
N ≥ 2 sources, the input to Pollefeys’ method is given by (2)
where E1, E2 ∈ RM×6 contain distances from the M microphones
to six echo combinations originating from source i and j, where
1 ≤ i, j ≤ N, i 6= j. Since we can make

(
N
2

)
such combinations,

we get 2
(
N
2

)
estimated image sources in total, resulting in

2

N

(
N

2

)
=

(N − 1)!

(N − 2)!
= N − 1,

estimations per image source. Figure 4a shows the result in case we
have N = 5 sources, resulting in four estimated locations per im-
age source, and as a consequence, in 4N wall points per wall. The
wall itself is obtained by a least-squares fit through the wall points.
Figure 4b zooms in on the bottom part of the room depicted in Fig-
ure 4a. Obviously, adding more sources will improve the estimation
performance but will increase the computational complexity as well.
Depending on the application, a compromise needs to be found be-
tween performance gain and computational cost.
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(a) Initial room setup

(b) Estimated room geometry

Fig. 3

4. EXPERIMENTAL RESULTS

In this section we will present experimental results obtained by com-
puter simulations for 3D shoe-box shaped rooms. To verify the pro-
posed method, we generated rooms of 12 different dimensions hav-
ing volumes in the range of 120 − 500 m3. For every room ge-
ometry, experiments were repeated 50 times. The experiments were
done for N = 51 sources and M = 5 microphones, where the sam-
ple frequency was 96 kHz. For a particular setting, room impulse
responses from sources to microphones were generated using room
acoustics simulation software [15]. After estimating the room geom-
etry, we measured the performance of the algorithm by computing
the 2-norm of the location errors of the room vertices. Experiments
were run on a MacBook Pro Mid 2012, 2.3 GHz Core i7 processor
in Python 3.4.3 using Scipy [16], Numpy [17] and NetworkX [18].
Table 1 shows results averaged over all (600) experiments.

In order to compare these results to results obtained by the
method described in [5], we observed that finding a particular set
of six image sources (with comparable accuracy as presented in
Table 1) for a particular source takes approximately one hour. We
could, however, apply the same complexity reduction method as
proposed in Section 2.1. By doing so, the computation time per set

1Informal tests showed that using five sources gave rise to an acceptable
computational complexity given the location accuracy.

(a) Estimated room geometry using N = 5 sources

(b) Zoomed-in version of the results shown in Figure 4a

Fig. 4

of image source was reduced to approximately 50 seconds. Note
that the newly proposed algorithm takes about 2.4 seconds to find
all sets of image sources which is a few orders of magnitude faster
than state-of-the-art solutions.

5. CONCLUSIONS

In this paper we considered the problem of estimating the room ge-
ometry using acoustic echoes. The proposed solution is based on
jointly estimating the source and receiver locations of a set of candi-
date echo combinations, and compare the receiver location estimates
thus obtained with the known (relative) receiver locations. In order
to reduce the computational complexity of the proposed method, we
first exclude some echo combinations based on the singular values of
the augmented EDM using a ε-rank test, after which the remaining
echo combinations are modeled as nodes in a graph and the prob-
lem is formulated as a maximum independent set problem. The pro-
posed method uses N ≥ 2 sources and five microphones to esti-
mate the room geometry of a shoe-box shaped room. Experimental
results obtained by computer simulation showed that the proposed
algorithm estimates the vertices of the rooms with an average error
of 2.35 cm within a few seconds (2.43 seconds on average), which
is a few orders of magnitude faster than existing methods.
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[5] Ivan Dokmanić, Reza Parhizkar, Andreas Walther, Yue M Lu,
and Martin Vetterli, “Acoustic echoes reveal room shape,” Pro-
ceedings of the National Academy of Sciences, vol. 110, no. 30,
pp. 12186–12191, 2013.

[6] John Clifford Gower, “Properties of euclidean and non-
euclidean distance matrices,” Linear Algebra and its Appli-
cations, vol. 67, pp. 81–97, 1985.

[7] G.H. Golub and C.F. Van Loan, Matrix Computations, North
Oxford Academic, Oxford, third edition, 1983.

[8] R. Diessel, Graph Theory, vol. 173 of Graduate Texts in Math-
ematics, Springer-Verlag, Heidelberg, fourth edition, 2010.

[9] John Michael Robson, “Algorithms for maximum independent
sets,” Journal of Algorithms, vol. 7, no. 3, pp. 425–440, 1986.

[10] David Eppstein, “All maximal independent sets and dynamic
dominance for sparse graphs,” ACM Trans. Algorithms, vol. 5,
no. 4, pp. 38:1–38:14, Nov. 2009.

[11] Marc Pollefeys and David Nister, “Direct computation
of sound and microphone locations from time-difference-of-
arrival data.,” in ICASSP, 2008, pp. 2445–2448.

[12] J.C. Gower and G.B. Dijksterhuis, Procrustes Problems, Ox-
ford University Press, Oxford, 2004.

[13] E. W. Forgy, “Cluster analysis of multivariate data: Efficiency
versus interpretability of classifications,” Biometrics, vol. 21,
pp. 768–780, 1965.

[14] Leonard Kaufman and Peter J. Rousueeuw, Finding Groups
in Data: An Introduction to Cluster Analysis, John Wiley &
Sons, 1990.

[15] Andrew Wabnitz, Nicolas Epain, Craig Jin, and André van
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