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ABSTRACT

While most contributions on speech reinforcement only con-
sider the presence of environmental noise, late reverberation
can also severely degrade the intelligibility of speech. In
this paper we address the problem of speech reinforcement
in noisy and reverberant environments. We use a short-time
version of a recently presented approximation of the speech
intelligibility index, which we optimize locally. The result-
ing time-frequency dependent amplification depends on both
the noise and late reverberation power spectral density. The
latter is estimated using the Polack model and assumes that
prior knowledge of the room geometry is available. Speech
intelligibility improvements of around 20% are observed.

Index Terms— Speech reinforcement, speech intelligi-
bility, additive noise, late reverberation, approximated SII

1. INTRODUCTION

Users of speech communication systems like public address or
conference systems often experience a degradation of speech
intelligibility due to the presence of environmental noise in the
vicinity. Pre-processing the speech signal prior to playback
in the noisy environment can partly restore the intelligibility,
even in challenging noisy conditions. This problem attracted
an increased research interest over the last few years, e.g.,
[1, 2, 3, 4, 5, 6, 7, 8]. Among recent contributions we see
a growing interest to optimize for quantitative measures of
speech intelligibility, e.g., [3, 4, 5, 6, 7, 9]. An often used quan-
titative measure is the speech intelligibility index (SII) [10],
for example [3, 4, 7]. The SII can predict the effects of addi-
tive stationary noise on intelligibility by comparing the long-
term average speech and noise energy within critical bands.
Extensions to model speech intelligibility in non-stationary
noise have also been proposed, e.g., based on a short-time
variant of SII, often referred to as extended SII (ESII) [11].

Besides SII-based measures, other measures have been
considered as well. For example, in [9] a speech intelligibility
model based on the mutual information between the original
and the processed noisy speech was presented and optimized,
while in [6] a spectro-temporal perceptual distortion measure
presented in [12] was optimized in order to optimally redis-
tribute speech energy over frequency and time.

This work was supported in part by the Dutch Technology
Foundation STW and Bosch Security Systems B.V.

Besides background noise, late reverberation can also
severely degrade the speech intelligibility [13], in particular
in applications like public address systems. Despite this fact,
the case with both additive noise and reverberation has only
rarely been treated. Two examples where only reverberation
is taken into account are [14, 15].

In this paper we investigate whether late reverberation
and additive noise can be jointly taken into account, while
optimizing for a quantitative measure of intelligibility under
an energy constraint. The energy constraint is used to over-
come too loud sounds that might damage the human auditory
system or loudspeakers. As optimization criterion we use an
SII-based measure. Despite the simplicity of the original SII
model, constrained optimization of SII leads to a non-convex
optimization problem, which is a reason to introduce approxi-
mations to the original SII model. We employ the approxima-
tion of the SII model presented in [7], which we refer to as the
approximated SII (ASII). Because late reverberation is non-
stationary, we use a short-time version of ASII denoted by
ASIIST. As global optimization would result in a non-convex
problem, we perform the optimization locally per time frame
for all frequency bands taking the reverberation generated by
a fixed number of past time frames into account.

2. NOTATION AND ASSUMPTIONS

Let x(n) denote the observed noisy reverberated speech pro-
cess with time-sample index n, given by

x(n) = (h ∗ sp)(n) + w(n) = e(n) + z(n) + w(n), (1)

with h the time-invariant room impulse response, sp(n) a
processed version of the original speech s(n), w(n) addi-
tive noise uncorrelated with s(n), and, e(n) and z(n) the
early and late reverberation of the processed speech, re-
spectively. Processing will be done per critical band and
time frame. Let gi be the impulse response of the ith crit-
ical band filter with its discrete Fourier transform (DFT)
for frequency bin k given by Gi(k). Further, we denote
the DFT coefficient of a speech frame at the loudspeaker
for frequency-bin k and time frame starting at sampling-
index m by S(m, k). Similarly we define the noise and late
reverberant DFT coefficients by W (m, k) and Z(m, k), re-
spectively. The speech, noise, and late reverberant energy
per critical band and time frame are then given by S2(m, i) =
∑

k
|S(m, k)|2|Gi(k)|2, W2(m, i) =

∑

k
|W (m, k)|2|Gi(k)|2
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and Z2(m, i) =
∑

k
|Z(m, k)|2|Gi(k)|2, respectively. The

critical band energy of the processed speech is given by
α2(m, i)S2(m, i), with α(m, i) the time frame and criti-
cal band dependent amplification. Let E[·] be the sta-
tistical expectation operator. DFT domain variances of
the speech, noise and late reverberation are then defined
as σ2

S(m, k) = E[|S(m, k)|2], σ2
W (m, k) = E[|W (m, k)|2]

and σ2
Z(m, k) = E[|Z(m, k)|2], respectively, and the corre-

sponding variances per critical band and time frame are
given by σ2

S(m, i) =
∑

k
σ2

S(m, k)|Gi(k)|2, σ2
W(m, i) =

∑

k
σ2

W (m, k)|Gi(k)|2, and σ2
Z(m, i) =

∑

k
σ2

Z(m, k)|Gi(k)|2
respectively.

We will use the ASIIST to find the locally optimal am-
plification factors α(m, i) under an energy constraint. The
ASII was proposed in [7] because constrained optimization of
the SII constitutes a non-convex problem. Whereas the orig-
inal ASII models the speech intelligibility as a function of the
long-term signal-to-noise ratio (SNR) per critical band, we
use a short-time variant of the ASII, (similar to ESII [11]), to
take the time time-varying nature of late reverberation into
account. We therefore assume speech and noise processes to
be stationary and ergodic within a time-frequency unit and
use SNR estimates per time frame and critical band.

Using σ2
S(m, i) and σ2

W(m, i), the SNR is given by

ξ(m, i) =
σ2

S(m, i)

σ2
W(m, i)

. (2)

Let γi denote the critical-band importance function given in
[10]. In analogy to the ASII presented in [7], the ASIIST for
a time-frame m is then given by

ASIIST,m =
∑

i

γi

ξ(m, i)

ξ(m, i) + 1
. (3)

3. ASII INCLUDING LATE REVERBERATION

Although early reflections contribute to speech intelligibility
(e.g., [16]), we consider for simplicity a worst case scenario
and neglect these. We set the direct part of the processed
signal as the desired signal and assume that the damping ∆
from loudspeaker to listener location is inversely proportional
to the distance. Further we define n∆ = ∆−1fsc−1 as the
delay from loudspeaker to listener location in samples with
fs the sampling frequency and c the speed of sound. Let
n0 = n∆ +τ denote the starting sample of the late reflections
of the impulse response, with τ a 50 ms pause between the
direct path and the start of the late reverberation [16].

Let σ2
Zp

(m, i) denote the late reverberation of the pro-
cessed speech per critical band and time frame. To take both
late reverberation and additive noise into account, we define
the SNR as the ratio of the variance of the processed speech
per critical band and time frame (i.e., after amplification by
α(m, i)) at the listener location, that is, α2(m, i)σ2

S(m, i)∆2,
and the sum of the noise variance and late reverberation vari-
ance present n0 samples after play out by the loudspeaker.
That is,

ξ(m + n∆, i) =
α2(m, i)σ2

S(m, i)∆2

σ2
Zp

(m + n0, i) + σ2
W(m + n∆, i)

. (4)

Next to σ2
W , we also need the late reverberation variance σ2

Zp
,

which will be derived below.

To model the late reflections of the impulse response we
use the Polack model [17], that is,

h(l) = al−n0 u(l − n0), l ≥ n0, (5)

with u(l) an uncorrelated white stationary Gaussian noise
process with variance σ2

u and a a damping factor.
Let v(·) be a length-N window. Using a result from [18],

a useful expression for the late reverberation DFT coefficient
can be derived under the assumption that the impulse re-
sponse is time-invariant during a time-frame [18]. That is,

Z(m, k) =

m+N−1
∑

n=m

v(n − m)

+∞
∑

l=n0

h(l)s(n − l)e−j2πk
(n−m)

N

≈
+∞
∑

l=n0

h(l)

m+N−1
∑

n=m

v(n − m)s(n − l)e−j2πk
(n−m)

N

=

+∞
∑

l=n0

h(l)S(m − l, k).

Let R = N/2 be the frame shift. Using the assumption
that speech is stationary over a time frame, and that u and
S are two independent processes, we obtain the following ex-
pression for σ2

Z(m, k) using the geometric series

σ2
Z(m, k) = σ2

u

+∞
∑

p=0

σ2
S(m − n0 − pR, k)

a2pR(1 − a2N )

1 − a2
. (6)

Using the diffuse room impulse response energy ρ2 =
∑+∞

l=n0
E[h2(l)], σ2

u is given by σ2
u = (1 − a2)ρ2 [19]. Taking

the amplification α2(m, i) into account we finally obtain

σ2
Zp

(m, i) = ρ2
(

1 − a2N
)

×
P −1
∑

p=0

a2pRα2(m − n0 − pR, i)σ2
S(m − n0 − pR, i),

(7)

where, compared to (6), we have truncated the summation
over p to P time frames (reflecting the late reverberation).

4. OPTIMIZING ASIIST,M

In this section we maximize ASIIST locally for all critical
bands in time-frame m, by finding optimal values of α2(ℓ, i)
for all critical bands i and ℓ ∈ L with L = {m − (P −
1)R, m − (P − 2)R, ..., m}. For time-frame m we then get the
cost function

J =
∑

i

γiα
2(m, i)σ2

S(m, i)∆2

α2(m, i)σ2
S(m, i)∆2+σ2

W(m+n∆, i)+σ2
Zp

(m+n0, i)
,

with σ2
Zp

(m, i) as in (7). Notice that σ2
Zp

(m + n0, i) depends

on α2(ℓ, i) with ℓ ∈ L.
For each critical band i, both the numerator and denomi-

nator of the terms in J consist of positive terms only. Setting
any of the α2(ℓ, i) with ℓ ∈ L \ ℓ = m to zero (i.e., any α2 ex-
cept α2(m, i))) will always increase the value of J . Setting all
α2(ℓ, i) with ℓ ∈ L \ ℓ = m to zero, we obtain the maximum
of J with respect to α2(ℓ, i) for ℓ ∈ L \ ℓ = m, leaving only
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α2(m, i) undetermined. This argumentation follows from the
fact that the cost function has only has a local view on the
problem and does not take distortions into account that re-
sult from setting gains to zero in past time frames. With this
result we can define a new (simplified) cost function as

J1 =

∑

i

γiα
2(m, i)σ2

S(m, i)∆2

α2(m, i)σ2
S(m, i) (∆2 + ρ2 (1 − a2N )) + σ2

W(m + n∆, i)
.

As max J ≥ J1 ≥ J , we come to the following problem for-
mulation

max
α2(m,i) ∀ i

J1 (8)

s.t.
∑

i

∑

∀ℓ∈L

α2(ℓ, i)σ2
S(ℓ, i) =

∑

i

∑

∀ℓ∈L

σ2
S(ℓ, i) (9)

α2(ℓ, i) = 0, for ℓ ∈ L \ ℓ = m and (10)

α2(m, i) ≥ 0, . (11)

Eqs. (8)-(11) form a convex optimization problem as the
objective function is concave in α2(m, i) and the constraints
are all linear in α2(ℓ, i) with ℓ ∈ L. The Karush-Kuhn-
Tucker (KKT) conditions are therefore necessary and suffi-
cient conditions to find a maximum. Calculating the KKT
conditions and solving for α2(m, i) we finally find

α2(m, i) =
max

(

σW (m+n∆,i)
√

γi∆√
ν

− σ2
W(m+n∆, i), 0

)

σ2
S(m, i)(∆2 + ρ2 (1 − a2N ))

(12)

α2(ℓ, i) = 0, for ℓ ∈ L \ ℓ = m (13)

∑

i

max

(

σW(m + n∆, i)
√

γi∆√
ν

− σ2
W(m + n∆, i), 0

)

= r(∆2 + ρ2
(

1 − a2N
)

) .

(14)

Calculating α2(m, i) in (12) depends on finding the value for
ν using a root finding procedure on (14). Among other meth-
ods, this can be done using a bisection method, followed by
substitution of ν in (12). Also, note that (8)–(11) generalizes
the problem statement in [7]. For ρ = 0 and P = 1 (i.e., no
reverberation), the solution is identical to the one in [7].

Similar to [7], the proposed algorithm only amplifies crit-
ical bands that are relevant for intelligibility. If the SNR
and amplification within the energy constraint will not help
to increase the objective function, these bands will automat-
ically be clipped to zero. Compared to [7], two differences
are present. At first, if late reverberation is present (ρ > 0),

α2(m, i) is in all bands decreased by (∆2 + ρ2
(

1 − a2N
)

),
taking into account that amplifying speech will automatically
increase the distortion introduced by the late reverberation.
The resulting energy that is left is used to amplify frequency
bands that are otherwise being clipped to zero.

Secondly, parameter P can be used to introduce dynamic
gain compression. For noisy speech, dynamic gain compres-
sion is known to increase the intelligibility [20, 8]. For rever-
berant speech, dynamic gain compression works as a steady
state suppressor where for increasing P , energy of low energy
transients is increased over the stationary high energy regions.
As described above, per time-frequency unit, P gains are

available. P −1 of these gains equal zero. Taking the average
to combine the P gains per time-frequency unit, the processed
speech energy per time frame becomes

∑

∀i
σ2

Sp
(m, i) = r

P
.

Setting r =
∑

∀l∈L
∑

∀i
σ2

S(l, i), implies the frame energy to
be set to the average energy over the last P time-frames.

5. EXPERIMENTAL RESULTS

In this section we present a comparison based on instrumen-
tal measures as well as a speech intelligibility listening test,
evaluating the presented algorithm and reference methods.
As reference methods we use the steady state suppressor of
Hodoshima et al. [21] referred to as Hodo06 and the method
presented in [7] referred to as Taal13 as this is a special case
of the presented algorithm that does not take late reverbera-
tion into account. The output of all algorithms is guaranteed
to equal the input. For the proposed approach and Taal13
we use exponential smoothing with β = 0.996 to measure
the speech variance σ2

S(m, i). These two algorithms also de-
pend on the noise power spectral density (PSD). To elim-
inate estimation errors on the noise PSD, we measure the
noise PSD based on the noise-only signal using an ideal voice
activity detector. Furthermore, we assume the room dimen-
sions and T 60 reverberation time to be known. Based on this
we can compute the diffuse room impulse response energy ρ.
The room volume is set to approximately 10 × 28 × 4 m3

(L × W × H). To calculate ρ, we make use of the direct-to-
reverberation ratio [22], in combination with Sabine’s equa-
tion (see e.g. [22]). Based on initial experiments, the value for
P is set to P = 3, introducing dynamic range compression.

The speech level is calibrated at 62.35 dB SPL, with 120
dB SPL as the maximum playback level. The noisy rever-
berant signal x(n) is generated according to (1), where the
convolution is performed in the DFT domain. We neglect
early reflections in modeling the room impulse response and
model the direct path by a delta impulse with height ∆. The
late reflections are generated using the Polack model [17],

where the exponential decay is given by a = 10
− 3

T60fs . In all
experiments, the distance between loudspeaker and listener
is is set to ∆ = 1/d with d = 5. The proposed approach is
used on a frame-by-frame basis with 32-ms frames taken with
50% overlap and windowed with a square-root Hann window.
All signals are sampled at 16 kHz.

5.1. Instrumental Comparison to Reference Methods

In generating the instrumental comparison, more than 5 min-
utes of speech was used, originating from the Timit database
[23]. The speech signals are concatenated and degraded by
stationary speech-shaped noise and babble noise at SNRs of
-5 dB and 0 dB, measured between the original unprocessed
speech (at the loudspeaker) and the background noise.

To measure the intelligibility improvements we use two
instrumental measures. We use ASIIST as this is the measure
that is being optimized in this paper. In addition we use
the extended or short-time SII, denoted as ESII [11] as it is
known to be a good predictor of intelligibility under time-
varying (uncorrelated) noise maskers. Moreover, this is the
measure that is essentially approximated by ASIIST.

The experimental results are depicted in Figs. 1-2 in terms
of instrumental intelligibility improvement over the unpro-
cessed signal as a function of the T60 ranging from 0 seconds
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Fig. 1. Instrumental intelligibility in terms of ESII and
ASIIST improvement for speech degraded by speech-shaped
noise.
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Fig. 2. Instrumental intelligibility in terms of ESII and
ASIIST improvement for speech degraded by babble noise.

to 2 seconds. The proposed method improves performance
compared to Taal13 over the whole range of T60 values,
both SNRs and noise types. When there is no reverbera-
tion (T 60 = 0), the proposed method and the method from
[7] differ only due to the dynamic range compression that is
performed in the proposed method with P = 3. With in-
creasing T60, the improvement of the proposed method over
Taal13 increases slightly as a function of T60. According to
the used instrumental intelligibility measures, Hodo06 shows
only minor improvements over the unprocessed signal.

5.2. Intelligibility Listening Test

In this section we present speech intelligibility listening test
results of Taal13, the proposed approach and the unprocessed
signal. We adopted the Dutch closed speech-in-noise intel-
ligibility test [24], which we used under noisy reverberant

conditions. The test material consists of five-word sentences
with correct grammatical structure. The listener selects via a
graphical interface the words that were understood. The pos-
sible words are arranged in a 10-by-5 matrix on a computer
screen, such that the ith column contains exactly the 10 pos-
sible alternatives for the ith word. The T60 time of the room
impulse response was set to 1 second. As noise source we
used speech-shaped noise at SNRs of -2, 0, 2 and 4 dB with
respect to the original signal as present at the loudspeaker.

Seven native Dutch speaking subjects participated in the
test. The order of presenting the different algorithms and the
SNRs were randomized, with each sentence being used only
once. For each test person, all processing conditions were
repeated four times. The signals were presented diotically
through head-phones (Sennheiser HD 600).
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Fig. 3. Intelligibility listening test results.

The average intelligibility scores with standard error of
the mean are shown in Fig. 3. This shows that under all con-
ditions, the proposed method improves over Taal13 and the
unprocessed signals. To determine the statistical significance,
a t-test [25] with a significance level α = 0.05 was performed.
From this t-test it follows that the proposed method is always
significantly better intelligible than the unprocessed signals.
Compared to Taal13, the proposed method is significantly
better for all SNRs, except at the SNR of 4 dB.

6. CONCLUSIONS

In this paper we presented an algorithm for speech intelligi-
bility enhancement in noisy reverberant conditions. We em-
ployed a short-time version of a recently presented approxi-
mation of the SII, facilitating constrained optimization. For
mathematical tractability, we optimize the ASII locally, tak-
ing a segment of past time frames into account. The late
reverberation is modeled using the Polack model.

The optimization results in critical-band and time-frame
depending amplification factors that redistribute the energy
across frequency taking into account the PSDs of the noise
and the generated late reverberation. Instrumental experi-
ments and intelligibility listening tests show an increase of the
proposed approach over the unprocessed condition, as well as
over neglecting the presence of late reverberation. An in-
crease of the intelligibility of approximately 20% is observed.
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