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Distributed Delay and Sum Beamformer for Speech
Enhancement via Randomized Gossip

Yuan Zeng and Richard C. Hendriks

Abstract—In this paper, we investigate the use of random-
ized gossip for distributed speech enhancement and present a
distributed delay and sum beamformer (DDSB). In a randomly
connected wireless acoustic sensor network, the DDSB estimates
the desired signal at each node by communicating only with its
neighbors. We first provide the asynchronous DDSB (ADDSB)
where each pair of neighboring nodes updates its data asyn-
chronously. Then, we introduce an improved general distributed
synchronous averaging (IGDSA) algorithm, which can be used
in any connected network, and combine that with the DDSB
algorithm where multiple node pairs can update their estimates
simultaneously. For convergence analysis, we first provide bounds
for the worst case averaging time of the ADDSB for the best
and worst connected networks, and then we compare the conver-
gence rate of the ADDSB with the original synchronous DDSB
(OSDDSB) and the improved synchronous DDSB (ISDDSB) in
regular networks. This convergence rate comparison is extended
to randomly connected non-regular networks using simulations.
The simulation results show that the DDSB using the different
updating schemes converges to the optimal estimates of the cen-
tralized beamformer and that the proposed IGDSA algorithm
converges much faster than the original synchronous communi-
cation scheme, in particular for non-regular networks. Moreover,
comparisons are performed with several existing distributed
speech enhancement methods from literature, assuming that the
steering vector is given. In the simulated scenario, the proposed
method leads to a slight performance improvement at the expense
of a higher communication cost. The presented method is not
constrained to a certain network topology (e.g., tree connected or
fully connected), while this is the case for many of the reference
methods.

Index Terms—Distributed delay and sum beamformer, ran-
domized gossip, speech enhancement, wireless acoustic sensor
networks.

I. INTRODUCTION

I N MANY speech processing applications, such as mobile
telephony, hearing aids, and human-machine communi-

cation systems, speech quality and intelligibility get severely
degraded in noisy environments. In the last few decades, a large
number of speech enhancement algorithms have been devel-
oped to improve the quality and intelligibility of noisy speech
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and to reduce or eliminate the acoustical noise in speech com-
munication systems. Speech enhancement algorithms can be
categorized into two classes: single-channel and multi-channel
techniques. Although single-channel algorithms can improve
quality and have been shown to be able to improve speech
intelligibility to some extent [1], improvements are generally
modest as they can utilize only the spectral information [2]–[4].
Multi-channel speech enhancement algorithms have in theory
the potential to improve the speech quality and intelligibility
by using both spectral and spatial information about the speech
and the noise sources [5], [6]. However, this also requires
additional information such as the sensor and source locations
or the steering vectors, which are not always easy to esti-
mate in practice. The performance of multi-channel speech
enhancement algorithms generally increases with the number
of microphones. However, conventional microphone arrays
usually consider a relatively small number of microphones with
fixed locations. Recently, advances in micro electro-mechanical
systems (MEMS) enabled the emergence of small, low-cost
and low-power smart acoustic sensors with multiple functions
such as sensing, data processing and communication. Such
smart sensors enable distributed sensing and extend the sensing
range, and therefore the sensors can be placed closer to the de-
sired sources and provide a higher signal-to-noise ratio (SNR).
In addition, such acoustic sensors can construct networks via
wireless links, often referred to as wireless acoustic sensor
networks (WASNs) [7]–[9].
In principle, the observed signals of wireless microphones

can be transmitted to a fusion center where all signals are pro-
cessed. This enables the use of conventional centralized multi-
channel noise reduction algorithms. However, due to privacy
considerations, transmission range and battery limitations, such
a fusion center may be undesirable in many applications. An
alternative solution is to use distributed noise reduction algo-
rithms, e.g., [10]–[14], where each node can process data locally
and communicate with its neighbors, rather than with a fusion
center.
In [10], a distributed multi-channel Wiener filter (DB-MWF)

was proposed for the minimum mean squared error (MMSE)
estimation of a single desired source in a binaural hearing
aid where both hearing aids contain multiple microphones.
Markovich-Golan [15] considered a special case of the
DB-MWF algorithm and proposed a distributed minimum
variance distortionless response (MVDR) beamformer for a
similar binaural hearing aid system.
A more general case was presented in [16], [17], where

multiple desired sources and nodes are considered
in a so-called distributed adaptive node-specific signal estima-
tion (DANSE) algorithm. The DANSE algorithm considers
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each node in the network as a data sink, gathering compressed
signals from its neighbors, and estimates the optimal spatial
filter coefficients in an iterative fashion. The DANSE algo-
rithm was proposed for a fully connected network [16] and a
network with a tree topology [17]. Later, a distributed LCMV
beamformer was proposed in [11] by combining the framework
for the DANSE algorithm with the LCMV beamformer. Re-
lated to this, a time-recursive distributed generalized sidelobe
cancellation (GSC) for a fully connected WASN was presented
in [14]. A different strategy was constructed in [13], where
a distributed MVDR beamformer for WASNs was proposed
based on a message passing algorithm [18].
These distributed speech enhancement algorithms are as-

sumed to operate in networks with a special topology. For
example, the algorithms in [16], [17], [11], [14] are confined
to operate in fully connected networks or networks with a tree
topology. The algorithm in [13] requires the network topology
to be consistent with the noise correlation matrix, where two
nodes are neighbors if their noise cross correlation is not equal
to zero. However, WASNs may be dynamic as nodes may join
or leave the network due to a defect or an empty battery, re-
sulting in unpredictable changes in network size and topology,
a distributed beamformer which is robust to changes in net-
work topology and unreliable communication environments is
important and valuable in particular for large WASNs.
In this paper, we investigate the use of randomized gossip

[19] in distributed beamforming for speech enhancement in a
randomly connected network. Without any specialized network
routing constraint, the randomized gossip algorithm [19] is
an attractive algorithm to solve consensus problems, such as
computing the average, the minimum or the maximum in a
distributed manner. The consensus problems are solved by
performing only local information exchanges, and thus pro-
viding robust solutions for large scale WASNs with dynamic
topology. The randomized gossip algorithm is an iterative
processing scheme and uses simple computations. The original
randomized gossip algorithm in [19] was presented in two
communication schemes: asynchronous and synchronous. In
the asynchronous randomized gossip, at every iteration, one
randomly selected node wakes up, after which it communicates
with one of its neighbors chosen at random. In this scheme,
only one pair of neighboring nodes in each time-slot can update
its estimates. The distributed synchronous communication
schemes were presented for a bounded degree network and an
unbounded regular network, respectively. In the distributed
synchronous gossip algorithm, multiple communicating node
pairs can estimate the signal statistics simultaneously. Thus,
it can potentially increase the convergence rate in both the
bounded degree and the unbounded regular networks. As a
regular network is a special case of a bounded degree network,
it could be expected that the communication scheme for a
regular network is a special case of the communication scheme
of a bounded degree network. However, this is not the case.
Therefore, besides the distributed beamformer, we present a
generalization and an improvement of the original distributed
synchronous averaging (ODSA) algorithm from [19]. We first
introduce a generalized and improved synchronous communi-
cation framework for any randomly connected network with

faster convergence speed, and refer to this algorithm as the
improved general synchronous averaging (IGDSA) algorithm.
Then, we present a beamformer for distributed estimation of a
certain target signal in noise using the IGDSA algorithm. We
will show how the theory can be used to compute a distributed
delay and sum beamformer (DDSB), i.e., a beamformer where
the noise is assumed to be spatially uncorrelated across mi-
crophones. These assumptions are validated for diffuse noise
fields and/or when the distance between microphones is suf-
ficiently large. In order to take into account the correlation
of the noise across microphones, the presented theory can be
combined with the method in [13] to compute the inverse of
a noise correlation matrix in a distributed fashion. This would
allowing to compute a full MVDR beamformer in distributed
fashion. However, as we like to focus on investigating the use
of randomized gossip for distributed beamforming for speech
enhancement, we will mainly focus on the DDSB, but show
some results to demonstrate that the presented theory can also
be used to compute a distributed MVDR.
Furthermore, in order to focus on the theory and analysis of

the distributed beamformer algorithm, we assume here that the
steering vector from the speech source to each of the micro-
phones is known. The steering vector in the distributed setup can
be obtained by estimating the location of the target source and
the microphones. For an overview on sensor network self-lo-
calization and source localization algorithms see [20] and [21],
respectively. In contrast to the traditional centralized delay and
sum beamformer (CDSB), the DDSB algorithm operates in a
randomly connected network and aims to estimate the desired
signal in a distributed way via gossip processing. The proposed
DDSB algorithm is based on an iterative scheme and asymptoti-
cally converges to the optimal estimation of the CDSB. At every
iteration, each node in the DDSB algorithm estimates the de-
sired signal by using only local information and by performing
only local processing. In addition, since the DDSB algorithm
needs only local communication and local computing, there are
no requirements for a special network topology and there is no
risk of having a single point of failure making the DDSB effec-
tive for unreliable communication environments.
Some earlier initial results on the work in this paper were de-

scribed in [12] and [22]. In [12], we briefly introduced the asyn-
chronous DDSB (ADDSB) algorithm for speech enhancement
via the asynchronous gossip and derived a bound for the aver-
aging time in the case of the worst connected network. The cur-
rent paper provides more details on the convergence analysis
and bounds for the averaging time in the best and worst con-
nected networks. In [22] we presented a synchronous version
of the DDSB based on an improved version of the ODSA algo-
rithm for regular networks. However, since a regular graph is a
strong limitation for the application of the DDSB algorithm, we
now provide an improved synchronous DDSB (ISDDSB) algo-
rithm for speech enhancement based on the proposed IGDSA al-
gorithm which can operate in a randomly connected network. In
addition, we provide a comparison of the convergence rate of the
DDSB under the various presented communication schemes in
terms of an analytic convergence analysis as well as using simu-
lation experiments. The simulation results validate the theoret-
ical results, which show that the IGDSA algorithm converges
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faster than the asynchronous gossip algorithm and the ODSA
algorithm in a randomly connected network.
The remainder of this paper is organized as follows. The

problem formulation and notation are given in Section II.
In Section III, we briefly review the asynchronous gossip
algorithm and we propose the IGDSA algorithm based on the
distributed synchronous gossip algorithm. Then in Section IV,
we describe the proposed DDSB algorithm in detail. Section V
discusses the conditions for the DDSB algorithm using the
different communication schemes to converge to the optimal
CDSB solution and introduce the convergence rate analysis
of the DDSB algorithm in the asynchronous and synchronous
communication schemes. In Section VI, the performance of
the DDSB algorithm and the convergence results are illustrated
with simulations. Finally, in Section VII, conclusions are
drawn.

II. PROBLEM FORMULATION

Let us consider a WASN consisting of (wirelessly) con-
nected nodes. We assume that neighboring nodes can exchange
information through a wireless link. Each node is assumed to
consist of a microphone and processor. Each node captures
a noisy speech signal , which is assumed to consist of a
target source degraded by additive noise, given by

, where and denote the speech and
noise signals, respectively, of node at the time-sampling index
. We further assume that the speech and noise are
statistically independent. These signals are windowed and trans-
formed into the frequency domain by applying the short-time
discrete Fourier transform (DFT) leading to

(1)

where , and denote the noisy
speech, target speech and noise DFT coefficient, respectively,
at frequency-bin index , time-frame index and microphone
. We assume the DFT coefficients to be independent in time
and frequency, which allows us omit the time and frequency
indices for brevity. We define as the
-channel signal in which all are stacked, and where

indicates a matrix transposition. Similarly, we define and
as the vectors containing the speech and noise DFT co-

efficients of the nodes, respectively. We consider a single
target speech source in the network. The acoustic path from the
desired source to the nodes is modeled by the steering vector
with . We can thus formulate the WASN

signal model for all nodes as

(2)

where denotes the clean speech DFT coefficient of the target
speaker. The objective is then to estimate the desired speech
signal .

A. Centralized Beamforming

Although it is of interest to realize the above objective using
distributed processing, we will in this subsection briefly reca-
pitulate the conventional solution of a centralized beamformer.

In a centralized beamformer, each node in the network broad-
casts its noisy DFT coefficients to a central processing unit.
Then, the clean speech DFT coefficient can be estimated by
applying a complex weight to the vector with noisy DFT co-
efficients. That is,

(3)

where is an estimated clean speech DFT coefficient, and is
a vector with filter coefficients and denotes the Hermetian
transposition of a matrix. As beamforming is a well-established
research topic, there are many types of beamformers that can
be used for this purpose. An often used beamformer for speech
enhancement is the minimum variance distortionless response
(MVDR) beamformer [21]. The corresponding weight vector
is the solution to the following optimization problem

subject to (4)

where is the spectral covariance matrix of
the noisy signal with the statistical expectation operator .
Assuming that the speech signal is uncorrelated with the noise,
i.e., , the noisy spectral covariance
matrix can be written as . Then,
solving the optimization problem (4) using the Lagrange multi-
plier approach [23] and the matrix inversion lemma [24], yields
the solution for the MVDR weights, given by

(5)

In this paper, we assume that the WASN is in a diffuse noise
field and/or that the distance between nodes is sufficiently large.
With this assumption, the noise coefficient can be argued
to be approximately spatially uncorrelated with power spectral
density (PSD) . The noise correlation matrix PSD can then
be expressed as

diag (6)

However, the work presented in this paper can also be applied
in the situation where this assumption is not made and is
not diagonal, e.g., by combining the proposed algorithm with a
message passing algorithm as in [13]. To demonstrate this, we
will present some additional experimental results in Section VI,
where we show the potential of the algorithm in combination
with the method in [13] for distributed matrix inversion in order
to compute a distributed MVDR beamformer.
Combining the MVDR filter from (5) with (6), the optimal

solution, in (3) can be written as

(7)

It should be noted that this beamformer allows for different
noise PSDs per microphone, while the generally used delay and
sum beamformer requires the same noise PSD for all micro-
phones. Thus compared to the standard delay and sum beam-
former, the beamformer in (7) is more general. To compute
the optimal solution of (7) in a centralized fashion, each node
needs to transmit its noisy DFT coefficients and steering
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vector to the central processing unit. As an alternative we in-
vestigate in this paper the use of randomized gossip [19] in order
to compute the beamformer in a distributed way.

III. RANDOMIZED GOSSIP ALGORITHM

The randomized gossip algorithm [19] is a simple iterative al-
gorithm for solving average consensus problems in a distributed
way. Consider a randomly connected network, where the con-
nectivity is represented with an undirected graph .
The vertex set consists of the nodes, and
the edge set denotes the communication links between every
set of two nodes. denotes the set of neigh-
bors of node . In the connected network , we assume that each
node has an initial value . The randomized gossip algo-
rithm aims to find the average value of
the initial values at each node by using only local informa-
tion and local processing. The active communicating node pairs
in the randomized gossip algorithm are constrained to be dis-
joint. This constraint was referred to as the gossip constraint in
[19] and guarantees that each node only communicates with
one neighboring node at each iteration. In [19], the random-
ized gossip algorithm was considered in an asynchronous com-
munication scheme and a synchronous communication scheme.
In the asynchronous communication scheme, only one pair of
neighboring nodes can update its data per iteration. The syn-
chronous averaging algorithms were proposed in order to obtain
multiple communicating node pairs at the same time, assuming
that this increases the convergence rate. The synchronous com-
munication schemes were considered for an unbounded degree
regular graph and a bounded degree graph. A regular graph, is
a graph where each node has an equal number of neighbors.
Obviously, this is a strong limitation for the application of dis-
tributed speech enhancement. The scheme for a bounded de-
gree graph is more general but still has a relatively low con-
vergence speed as it depends on the node with highest degree,
i.e., the node with the maximum number of neighbors. Fur-
thermore, the averaging procedure between two nodes is can-
celed when more than one active node contacts a non-active
node simultaneously. This slows down the convergence speed
of the algorithm unnecessarily. While the regular graph is a
special case of a bounded degree graph, the synchronous com-
munication scheme for regular graphs is not a special case of
the synchronous communication scheme for bounded degree
graphs. To obtain a more general framework and faster conver-
gence rate, we present in this section a distributed synchronous
averaging algorithm for a randomly connected network meant
for distributed speech enhancement, based on the original dis-
tributed synchronous averaging (ODSA) algorithms [19] and
we refer to this algorithm as the improved general distributed
synchronous averaging (IGDSA) algorithm.

A. Asynchronous Communication

In the asynchronous gossip algorithm [19], a pair of nodes is
randomly selected based on the asynchronous time model. Each
node runs a Poisson process of rate 1 independently, which is
equivalent to a global clock of rate and uniform selection of

the active node. Here we denote as the instant of the th tick
of the global clock and as the value of node at the end of
time-slot . In each time-slot , when node ’s clock ticks, it ran-
domly selects one neighboring node with probability . All
probability elements are stacked in a dimensional
probability matrix , where if node and node are
neighbors, otherwise . At each iteration , with proba-
bility , a pair of neighboring nodes and in the
network is randomly selected to exchange and update their cur-
rent estimates as

(8)

Except for the two active nodes, all other nodes in the network
keep the estimates from the previous time-slot . When each
pair of neighboring nodes in the connected network gossips fre-
quently enough, the estimates of each node are guaranteed to
converge to the average value . We discuss the convergence
conditions in the analysis in Section V.

B. Improved Synchronous Communication

In the asynchronous communication scheme, only one pair
of neighboring nodes and performs an update per iteration,
while the other nodes keep their estimates. Therefore, the asyn-
chronous communication scheme may converge slow in time.
This problem becomes worse when the network is a large sparse
network; then the optimally estimated signal can only be
obtained at the cost of a large number of iterations. A reason-
able solution is to increase the number of simultaneously com-
municating node pairs, i.e., multiple node pairs may update their
estimates at each iteration, as also suggested in [19] for a reg-
ular and bounded degree network with the aforementioned lim-
itations. As an alternative, we present the IGDSA algorithm in
order to obtain a general framework for synchronized commu-
nication. The algorithm is inspired by the ODSA algorithms in
[19], but is generalized to randomly connected networks and is
improved for faster convergence rate. In contrast to the ODSA
algorithms, the IGDSA algorithm for a regular graph is a special
case of the IGDSA algorithm for a bounded degree graph. An
additional drawback of the ODSA algorithms is that an inactive
node fails to have contact with any other node when more than
one node, say nodes, contact node during the same iteration.
This means that node has a decreased probability of contacting
its neighboring active node . An improvement that overcomes
this drawback is to allow the inactive node to select randomly
one of the requesting neighboring nodes with probability if
contacted by active nodes.
Given a randomly connected network of nodes, each node
at each iteration is active with probability independently.
An active node randomly contacts one neighboring inactive
node with probability and ignores all requests from other
active nodes. The corresponding probability matrix has the same
definition as the probability matrix in the asynchronous com-
munication scheme. An inactive node randomly selects a node
with probability from the active nodes that contact it. After
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that, nodes and update their estimates according to (8). The
probability that node pair is selected, is given by

(9)
where is the size of , i.e., the number of neighbors of node
. and is the set of active nodes that contact node . de-

pends on the specific combination taken from the

possible combinations when there are active nodes contacting
node ; is an indicator function which is when the set

is empty and otherwise. For a regular network,
(a graph where each node has exactly neighbors), can be
simplified using the Binomial Theorem resulting in

(10)

At each iteration , the probability can be com-
puted as follows: node is inactive with probability ; ,

, neighboring nodes of a node become active
and contact the inactive node with probability .
The active node is randomly selected by the inactive node
with probability while the remaining nodes do not
contact node with probability . Note that
besides node , the inactive node has other neighbors

and thus, is the combination of selecting

active nodes out of remaining neighboring nodes of node
. The IGDSA is guaranteed to converge to the average value
if a sufficient number of iterations is used. We will give a

detailed convergence rate analysis in Section V.

IV. DISTRIBUTED DELAY AND SUM BEAMFORMER

The algorithm proposed in this paper is referred to as the dis-
tributed delay and sum beamformer (DDSB), since its objec-
tive is to estimate the centralized beamformer from (7) in a dis-
tributed way. Unlike the centralized beamformer where the in-
formation from all nodes is gathered at a central processing unit,
the DDSB allows each node in a randomly connected network
to broadcast its data to only one of its neighbors with the aim
to obtain the same optimally estimated signal as in (7) at each
node by using only local information and local processing.
In a randomly connected WASN, we assume that each node

has two initial values for a given time frame
and , where the noisy signal is obtained
from the observation of the microphone at node ; the steering
vector and the noise PSD have to be estimated. In order
to keep the focus on the theory and analysis of the distributed
beamformer algorithm, we assume here that the steering vec-
tors are known. An estimate of in the distributed setup can
be obtained by estimating the location of the target source and

the microphones. For an overview on sensor network self-local-
ization and source localization algorithms see [20] and [21], re-
spectively. To estimate the noise PSD , we make use of the
noise PSD estimator presented in [25]. Based on the two ini-
tial values and , the optimal centralized beamformer
from (7) can be obtained as

(11)

Equation (11) shows that the distributed beamformer can be
written as a ratio of two averages, and thus, it can be seen as
an averaging consensus problem. Let
and denote the averages of all nodes’
initial values and , respectively. The objective of the
DDSB algorithm is then to find the average value and
in a distributed manner. The DDSB considered here is based on
the randomized gossip algorithm and is an iterative and random-
ized scheme, since each pair of communicating neighboring
nodes is randomly selected at each iteration. In addition, we
classify the DDSB as asynchronous DDSB (ADDSB), original
synchronous DDSB (OSDDSB) and improved synchronous
DDSB (ISDDSB) depending on the different communication
schemes of the randomized gossip algorithm. Although we
focus on the DDSB, the same reasoning can be used to compute
an MVDR beamformer in distributed manner. In that case,

can be computed, for example, the message
passing algorithm presented in [13]. Subsequently,
can be computed in a distributed fashion using randomized
gossip, similar to the DDSB.
Before describing the DDSB, we introduce some additional

notation. Let denote a stacked
-dimensional vector consisting of initial values for all

nodes , and let the -dimensional vector denote a stacked
vector of all initial values . Similarly, we use the stacked
vector notation and denoting vectors and at iter-
ation , respectively. Then a general vector form of the DDSB
which describes the estimate at iteration is given by

(12)

(13)

(14)

where denotes the estimated output signal of node at
iteration , and is a randomly selected dimensional
update matrix. Thematrix is selected independently across
time and it is computed as

(15)

where denotes the dimensional identity matrix,
is an -dimensional unit vector with the

th component equal to 1, and is a set of all communicating
node pairs in the th time-slot. The update matrix is a doubly
stochastic matrix, which implies and

with denoting a vector of all ones. These properties are
necessary for the randomized gossip algorithm to converge [19].
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Given the initial vectors and , the DDSB algorithm
is realized by the following steps:
1) Initialize the iteration index .
2) Select communicating neighboring nodes and via the
chosen communication scheme.

3) Update the estimates , , and of all
selected averaging node pairs as in (8). This implies
that the weight matrix in (15) is updated in the general
vector form of the DDSB, and thus, all nodes update their
local information and by using equations (12)
and (13).

4) Update the DDSB output of each node in the net-
work in (14).

5) .
6) Return to step 2 until convergence has been achieved (see
Section V) or after a fixed amount of iterations.

The time domain signal is then obtained by applying a win-
dowed frame-wise inverse DFT followed by overlap-add.

V. CONVERGENCE ANALYSIS

Given that the network is connected, the iterative randomized
gossip algorithm guarantees that all nodes’ estimates converge
to the optimal average value when the update matrix in each
time-slot is a doubly stochastic matrix [19]. Since the update
matrix of the DDSB is symmetric and doubly stochastic
in each iteration, the convergence of to and

to is guaranteed for any and . The
convergence of the parameters and guarantees that
the output of the DDSB converges to the optimal centralized
solution if .
To analyze the convergence rate of the presented algorithms,

we use the convergence error defined as

(16)

With the convergence error , the convergence rate of the
algorithm can in analogy with [19] be defined as the first time-
slot where the convergence error is smaller than a desired error
with high probability . This time is referred to as the
-averaging time and is given by

(17)

The averaging time can be shown to be bounded by
the second largest eigenvalue of the expected value of the update
matrix, , as [19]

(18)

As a consequence, the convergence rate of the DDSB depends
on the second largest eigenvalue of ; the smaller the mag-
nitude of , the faster the convergence. The general def-
inition of the expected value of the update matrix is given
as follows:
1) The entry in the -th row and the -th column of the update
matrix is for , with probability ;

otherwise, . Thus, the entry of the expected value
is

(19)

2) When , the entry of the update matrix is with
probability ; otherwise .
Then the expected value is

(20)

where is the probability that nodes and are selected
to update their estimates. Note that in this paper we assume
that there is no self-communication in the network, i.e.,

, as this will not lead to changes in the data.
Similarly, we denote the expected value of the ADDSB
and the ISDDSB as and , respectively. From
the above definitions of the expected values, it follows that

can be written in a general vector form as

(21)

where is a diagonal matrix with
. As we discussed two different

communication schemes in Section III, matrix has two
different possible expressions ( and ) depending on
the communication scheme.

In this section, based on the bound given in (18), and in
combination with the expected values and of
the DDSB using the ADDSB and ISDDSB, respectively, we
first give a convergence analysis of the ADDSB, and then we
present convergence rate comparisons between the different
DDSB algorithms.

A. Convergence Analysis of Asynchronous Gossip

The upper bound given in (18) is theminimum averaging time
of the algorithm for a given connected network to guarantee

. In practice, the exact network topology is
unknown. To be more specific about the averaging time of the
ADDSB algorithm expressed in terms of sensors in the network,
we now derive bounds under certain conditions for the fastest
and the slowest asynchronous gossip algorithms for a network
of a given size.
As defined in Section IV, the probability matrix is a sto-

chastic matrix. In the following derivations we will assume for
ease of analysis that the matrix is doubly stochastic. In that
case, from (21) in combination with , it follows that the ex-
pected value of the ADDSB is given by (see also [19])

(22)

with . From the bound given in (18), and
in combination with (22), we see that , and thus,

, depend on the matrix and hence, on the un-
derlying network topology.
Given the network size, the connectivity of a randomly con-

nected network will be between the connectivity of the worst
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connected network and the best connected network.Wewill first
derive an upper bound for the averaging time for the best con-
nected network, and then an upper bound for the averaging time
for the worst connected network, under the constraint that is
doubly stochastic.
1) Best Connected Networks: Since the expected value

is a symmetric positive semidefinite doubly stochastic
matrix [19], the eigenvalues of are nonnegative and
equal to or smaller than 1 in magnitude. We denote them as

(23)
By the definition of the probability matrix , we have
, which means that . Combining this with
(22), it then follows that

(24)

From (23) in combination with (24), it follows that
is at its minimal when all for

are equal. From (24), it then follows that
, and thus, the

smallest second largest eigenvalue is
and the corresponding second largest eigenvalue of is

.
An example of a -matrix with such an eigenvalue distribu-

tion is the matrix given by

(25)

This is intuitively satisfying, as this probability matrix is
the -matrix corresponding to a fully connected network where
the probability that a node communicates with any other neigh-
boring node is uniformly distributed.
Altogether, the network that converges fastest when using

the asynchronous gossip algorithm has a second eigenvalue
. For this , we get the

upper bound of the -size network as

(26)

Using the Taylor series expansion

, the upper bound of the averaging time
can be written in terms of the number of nodes

as

(27)

In summary, the upper convergence bound grows less than
linear with the number of microphones. Furthermore, it can be
shown that a network with a corresponding eigenvalue distribu-
tion is given by a fully connected network with uniform proba-
bilities on the graph.
2) Worst Connected Networks: On the other hand, an ex-

ample of a worst-possible connected network is given by a set of
sensors that are connected as a string. In this section we assume

that there is no self-loop in the network and the probability ma-
trix is a doubly stochastic matrix. Therefore, the string should
form a closed circle (ring), where the probability that a node
connects to the next (clockwise) node is denoted by and the
probability that it connects to the previous (anti-clockwise) node
is . This leads to the following probability matrix,

. . .
. . .

. . .
. . .

. . .
. . .

. . .

(28)

For this doubly stochastic matrix , matrix in (22) is also
doubly stochastic with real eigenvalues and is given by

. . .
. . .

. . .
. . .

. . .
. . .

. . .

(29)

This -matrix is a special case of a Toeplitz matrix and
is known as a Gear-matrix [26]. More specifically, it is a
Gear-matrix scaled by a factor 0.5. The eigenvalues of a
scaled Gear-matrix have a special form and are given by
[26] , with , and

. Since is an identity matrix with eigenvalues
, the second largest eigenvalue of is

given by , where
the subscript WA indicates the second eigenvalue of the worst
converging network when the asynchronous gossip is used.
Using (18), this leads to the following upper bound of the
averaging time

(30)

Using the Taylor series expansion

for and [27] we can write
the following worst case upper bound for the averaging time in
terms of

(31)
The averaging time in the worst connected network, grows

thus with the order , while the averaging time for the
best connected network grows with the order . However,
in many practical applications, the network graph will certainly
be better connected than the worst case scenario, but worse con-
nected than the best connected network, as we will be show in
Section VI.

B. Convergence Rate Comparisons

The synchronous communication schemes are proposed to
converge faster than the asynchronous gossip algorithm since
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they allow multiple node pairs to update simultaneously. To in-
vestigate this, we compare the convergence rate of the asyn-
chronous gossip algorithmwith the ODSA algorithm in [19] and
the IGDSA algorithm. The convergence analysis will be made
for a regular network.
In a -regular graph, where each node has exactly neigh-

bors, we define the probability matrix as if node
is connected with node and otherwise. Combining
this probability matrix with , the simplification of for
regular graphs given in (10) and with (21), the expected values

and in a -regular graph are given by

(32)

(33)

where the subscripts RA and RI indicate that these are the ex-
pected values of the asynchronous gossip and IGDSA algo-
rithm, respectively, and . The expected
value of the ODSA algorithm can be shown to be [19]

(34)

with . The number of neighboring nodes is
then given by the range and we assume that
. Since both and are monotonically decreasing functions
as a function of , they can be bounded as

(35)

and

(36)

To compare the convergence rate of the asynchronous gossip
algorithm with the ODSA algorithm in a -regular graph, their
second largest eigenvalues can be compared as

(37)
where the subscript RO indicates that this is for a regular graph
and the ODSA algorithm.
From (35), it follows that the upper bound of

is monotonically decreasing as a function of . Then,
using the fact that , we have that

for and
for , which

indicates that the ODSA algorithm converges faster than the
asynchronous gossip algorithm with high probability if
and it converges slower with high probability if . A sim-
ilar eigenvalue comparison can be given between the IGDSA
algorithm and the asynchronous gossip algorithm as

(38)
From (38) and the bound given in (36), in combination

with and the fact that the upper bound of
is monotonically decreasing as a function of , it

follows that for
and for . Thus,
the IGDSA algorithm converges faster than the asynchronous
gossip algorithm with high probability if , while the
IGDSA algorithm converges slower than the asynchronous
gossip algorithm when there are less than 5 nodes in the regular
network.
The convergence rate comparison between the IGDSA algo-

rithm and the ODSA algorithm in a -regular graph is given by

(39)

Similarly, from (39) and the fact that , we
have for all .
This implies that the IGDSA algorithm converges faster than
the ODSA algorithm with high probability.
The above convergence rate comparisons show that the

synchronous communication schemes converge faster than
the asynchronous communication scheme if there are enough
nodes in a regular network. In [19], the authors also proposed a
distributed synchronous averaging algorithm for more general
graphs, i.e., bounded degree graphs. Although it is interesting
to directly compare the convergence rate of the presented
IGDSA algorithm with the ODSA algorithm in a randomly
(non-regular) connected network, it is not straightforward to
do this using analytic expressions, due to the general nature
of the IGDSA algorithm. Therefore, in order to compare the
convergence behavior of the two algorithms in a randomly
connected network, we will use simulations as discussed in
Section VI.

VI. SIMULATIONS

In this section, we illustrate the performance of all the pre-
sented algorithms via a simulated WASN. We first provide sim-
ulation results to demonstrate the accuracy of the convergence
analysis of the distributed averaging algorithms in Section V
using synthetic data. Then, we will consider speech data to eval-
uate the performance of the DDSB algorithm using the different
communication schemes.

A. Synthetic data

In this subsection, we perform simulations using synthetic
data in which each node in the network has the initial value
, and are independent and identically distributed

Gaussian variables. We first consider a randomly generated
WASN, to compare the convergence error with the bounds
for the fastest and slowest averaging time of the asynchronous
gossip algorithm. Then, we compare the convergence rate of
the asynchronous gossip algorithm with the proposed IGDSA
algorithm and the ODSA algorithm from [19] for regular
networks. Finally, we give a comparison of the convergence
behavior between the IGDSA algorithm, the ODSA algorithm,
and the asynchronous gossip algorithm for a randomly con-
nected network.
1) Worst and Best Case Bounds for a WASN of a Given Size:

To illustrate that the derived bounds for the worst and the best
case averaging time of the randomized gossip algorithm for a
WASN of a given size guarantee a desired convergence error
with high probability , we simulate a WASN where 20
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Fig. 1. The convergence error across different realizations.

nodes are randomly connectedwith 60 edges.We repeat the sim-
ulation 20 times and use different initial values at all nodes. To
compare how different the is from the desired convergence
error for , we evaluate the for the asynchronous
gossip algorithm using different fixed numbers of iterations. In
the asynchronous gossip algorithm, we first use which
is based on the upper bound in (18) combined with the optimal
-matrix from [19]. Then we compare this to the upper bound
that would be obtained for best connected network in
(26) and the upper bound that would be obtained for the worst
connected network in (30).
Fig. 1 shows that both with and with the optimal

, the of the asynchronous gossip algorithm is lower
than the desired , and that with the is higher
than the desired . As expected, for a given , of the
asynchronous gossip algorithm is the least number of iterations
to guarantee convergence for a given connected network, and

is the least number of iterations to guarantee conver-
gence given only the network size when using the asyn-
chronous gossip algorithm with the assumption that matrix is
doubly stochastic.
2) Convergence Comparison in Regular Graphs: In

Section V, we showed a comparison of the convergence
rate of the asynchronous gossip algorithm with the IGDSA
algorithm for regular graphs. To demonstrate the accuracy
of the convergence analysis of the distributed algorithms, we
simulate four simple regular graphs where
nodes are fully connected. At each iteration , we will use the
convergence error given in (16) as a measure to assess the
performance of the algorithms.
Fig. 2(a) shows a simulation result with four fully connected

nodes. The curves in Fig. 2(a) correspond to the three different
communication schemes of the randomized gossip algorithm
and show that the asynchronous scheme converges faster than
the IGDSA and the ODSA algorithm. The simulation results
with five, six and seven fully connected nodes are shown in
Figs. 2(b)–2(d), respectively, and show that the asynchronous
gossip algorithm converges slower than the IGDSA algorithm
when there are more than four nodes in the network. Fig. 2(a)

Fig. 2. The convergence error versus number of iterations. (a) .
(b) . (c) . (d) .

and 2(b) show that the asynchronous gossip algorithm con-
verges faster than the ODSA algorithm if , and in
Fig. 2(d) we see that the ODSA algorithm converges faster than
the asynchronous communication scheme when . These
results are in line with the convergence analysis in Section V-B.
3) Convergence Comparison in Non-Regular Graphs: Since

it is not straightforward to perform a convergence rate compar-
ison in a non-regular graph using analytic expressions, we show
in this subsection simulation results to compare the convergence
rates of the proposed IGDSA algorithm with the ODSA algo-
rithm and the asynchronous gossip algorithm in non-regular
networks. We simulate three different randomly connected net-
works where 20 nodes are randomly connected with 60, 80, and
100 edges. The probability matrix in this simulation is defined
as if node and node are neighbors, where is the
number of neighbors of node ; otherwise. We investi-
gate the convergence error given in (16) versus the number
of iterations.
In Figs. 3(a)–3(c), we show a results of the randomized gossip

algorithm in a randomly connected network where 20 nodes are
randomly connected with 60, 80 and 100 edges respectively.
Not surprisingly, the IGDSA algorithm converges faster than the
ODSA algorithm and the asynchronous gossip algorithm. How-
ever, note that the asynchronous gossip algorithm converges
faster than the ODSA algorithm. This can be explained by the
fact that in the ODSA algorithm, the probability that two neigh-
boring nodes’ average is inversely proportional to the maximum
degree of the network. The detailed mathematical analysis of the
ODSA was provided in [19], which showed that the probability
of two neighboring nodes average in the ODSA is smaller than
the probability in asynchronous gossip algorithm, if the max-
imum degree of the network is relatively large.
Comparing Fig. 3(a), 3(b) and 3(c), we can also observe that

by increasing the number of edges, the convergence speed of
the IGDSA increases. This can be explained by the fact that in-
creasing the number of edges will lead to more disjoint pairs
of nodes that can communicate simultaneously in the IGDSA.
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Fig. 3. The convergence error versus number of iterations. (a) Randomly
connected network with 60 edges. (b) Randomly connected network with 80
edges. (c) Randomly connected network with 100 edges.

Fig. 4. The transmissions versus number of edges.

However, the convergence speed of the ODSA has no significant
change, since increasing the number of edges will increase the
maximum degree of the network and partly decrease the proba-
bility that two neighboring nodes perform averaging.
Fig. 4 depicts the total number of required transmissions of

the presented algorithms for reaching a desired convergence
error as a function of the number of edges.We simulate
some randomly connected networks where 20 nodes are ran-
domly connected with 30, 40, 50, 60, 70, 80, 90 and 100 edges,
respectively. For each simulated network, we repeat the exper-
iment 1000 times and average the required transmissions over
the 1000 realizations. The simulation results show that the re-
quired transmissions for reaching the desired convergence error
is decreased by increasing the number of edges of a given size
network. This is consistent with the simulation results in Fig. 1,
where a better connected network requires less transmissions to
reach the desired convergence error. Notice that the difference
between the total number of required transmissions of the three
algorithms is very small. The reason is that all three distributed
algorithms are based on the pairwise communication scheme.

However, as the IGDSA allows multiple pairs of nodes to com-
municate simultaneously per iteration, it needs much less iter-
ations compared to the ODSA and the asynchronous averaging
as shown in Fig. 3.

B. Wireless Acoustic Sensor Networks

In this section, we provide experimental results obtained
using speech data. First, the simulation environment and per-
formance measures are described. Then, the performance of
the DDSB algorithm in regular and non-regular networks is
discussed. Lastly, the performance of the DDSB algorithm
is compared with some existing distributed noise reduction
algorithms.
1) Simulation Environment and Performance Measures:

We simulate regular networks and non-regular networks with
acoustic sensor nodes. In each network, we consider that
wireless microphones, a speech source and a noise source are
randomly distributed in a m m rectangular area. Each
node gathers noisy speech signals at a sampling frequency of

kHz. We use a 30 s speech signal originating from
the Timit database [28] as the clean speech source and a white
Gaussian signal as the noise source. The noise PSD is estimated
during noise-only periods using an ideal VAD. Assuming a
free-field situation, the steering vector is determined by
gain and delay values as ,
where is the damping coefficient, and denotes the delay in
number of samples. In this paper, we assume that the distance
between microphone and the desired source is known. Then,
with damping , delay , and the speed of
sound m/s, the steering vector of microphone is
known. All nodes process the signals in the frequency domain
using frame-based processing, with a frame length of 32 ms
and a 50%-overlapping Hann window.
We use the mean square-error (MSE) as a measure to assess

the noise reduction performance of the presented DDSB algo-
rithm, since we are mainly interested in the performance dif-
ference compared to the centralized noise reduction algorithms.
We also assess speech quality by means of the segmental SNR,
and the speech intelligibility of the enhanced signal using the
short-time objective intelligibility measure (STOI) [29]. The
MSE for node is averaged over all time frames and is defined
as

(40)

where denotes the number of frequency bins, is the
number of time-frames and and denote the
frequency domain DFT coefficient of the beamformer output
and the desired speech signal, respectively, at frequency-bin
index and time-frame index . The segmental SNR for node
is averaged over all time frames and is given by

(41)
2) The DDSB Algorithm in Regular Networks: We simulate

two different regular networks with 20 microphones, a fully
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Fig. 5. The MSE of node 1 with 1 dB input SNR versus iteration. (a) A fully
connected network. (b) A ring network.

connected and a ring-connected network, which are the best and
worst connected networks, respectively, for a doubly stochastic
-matrix. In the simulation, the input SNR of microphone 1 in
the network is set to 1 dB.We investigate the performance of the
DDSB algorithm using the different communication schemes
and compare the convergence rate of the ADDSB with the OS-
DDSB and the ISDDSB.
Fig. 5 shows the MSE between the output of all DDSB al-

gorithms at node 1 and the desired speech signal and the MSE
between the CDSB and the desired speech signal. It is observed
that the MSE of the DDSB algorithm using the different com-
munication schemes decreases with increasing number of iter-
ations. It is also seen that all presented DDSB algorithms reach
the same performance as the CDSB when enough iterations
are used. As expected, the DDSB algorithm using synchronous
communication schemes converges faster than the ADDSB al-
gorithm in both sub-figures, since there are enough nodes in the
regular network. The ISDDSB has the fastest convergence, al-
though the difference with OSDDSB in these regular networks
is relatively small. The simulation results corroborate the con-
vergence rate analysis of the DDSB algorithm in regular net-
works.
3) The DDSB Algorithm in Non-Regular Networks: We now

show a convergence rate comparison of all presented DDSB
algorithms for a randomly connected network. We simulate a
non-regular network where 20 microphones are randomly con-
nected with 60 edges. The input SNR ofmicrophone 1 in the net-
work is 2 dB. In [19], the authors described a distributed method
for finding an optimal probability matrix in the asynchronous
gossip algorithm. We use this optimal probability matrix in
the experiment for all presented DDSB algorithms, since the
ADDSB has the fastest convergence speed using the optimal
probability matrix in a randomly connected network.
Fig. 6 shows that the DDSB algorithm using the different

communication schemes reaches the same performance as the
CDSB when each pair of neighboring nodes communicates

Fig. 6. The MSE of node 1 with 2 dB input SNR versus iteration.

frequently enough. As expected, the ISDDSB converges faster
than the ADDSB and the OSDDSB algorithm. On the other
hand, the ADDSB algorithm converges faster than the OS-
DDSB algorithm, since the maximum degree of the network is
not small enough.
4) Comparison with Reference Methods: Here, we compare

the presented framework for distributed beamforming with a
method from the literature [17] in terms of performance and re-
quired number of transmissions. We simulate a randomly con-
nected WASN where nine acoustic sensor nodes are randomly
connected with 24 edges. One target speech source and ten noise
sources are present in a meter rectangular area. The ten
noise sources are simulated by five independent white Gaussian
noise signals and five independent babble noise signals. Each
node consists of one microphone and the input SNR of micro-
phone 1 is 1 dB. The noise PSD tracking algorithm in [25] is
used to estimate the noise PSD .
Several existing methods are used to compare the perfor-

mance of the ISDDSB. First, we consider the single-micro-
phone Wiener filter in order to compare the performance to
a single-microphone algorithm. The Wiener filter was imple-
mented using the decision-directed approach [3] to estimate
the SNR and the MMSE based noise PSD estimator from [25].
Second, we consider the DANSE algorithm [17]. Since the
single-microphone Wiener filter can be applied as a post-filter
on the beamformer output, we additionally include simulation
results of the ISDDSB and DANSE with the single channel
Wiener filter as post-processor, referred to as ISDDSB-WF
and DANSE-WF, respectively. To compare the distributed
beamformers with their centralized versions and evaluate
any performance loss, we also use the centralized adaptive
node-specific signal estimation (CANSE) algorithm, the
CDSB, the CANSE-WF and the CDSB-WF, which incorporate
a Wiener as post-processor. Since the DANSE algorithm is
confined to perform in a network with a tree topology, we con-
vert the randomly connected network into a network with tree
topology when the DANSE algorithm is used. Furthermore,
since the DANSE algorithm is time recursive and needs some
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Fig. 7. (a) The MSE of node 1 with 1 dB input SNR versus average number of
transmissions per time frame per node. (b) The STOI of node 1 with 1 dB input
SNR versus average number of transmissions per time frame per node. (c) The
SNR of node 1 with 1 dB input SNR versus average number of transmissions
per time frame per node.

initialization time, we remove the first initializing 15 s when
calculating the MSE, segmental SNR and STOI.
Figs. 7(a) and 7(c) show the speech quality of the distributed

beamformers and their centralized version in terms of MSE
and SNR, respectively. Fig. 7(b) shows the predicted speech
intelligibility performance of the beamformers output. From the
perspective of the centralized algorithms, we observed that both
the noise reduction and speech intelligibility performance of the
CANSE algorithm and CANSE-WF are better than the CDSB
and CDSB-WF. This is reasonable since the CANSE algorithm
can essentially be implemented as an MVDR beamformer with
single-channel Wiener post-filter, and the MVDR beamformer
generally has better speech quality and intelligibility than the
CDSB algorithm when the noise signals of the microphones
are correlated. Figs. 7(a) and 7(c) show that the noise reduction
performance of the CANSE-WF and CDSB-WF is better than
the CANSE and CDSB. This is consistent with the fact that the
single-microphone Wiener filter can efficiently reduce noise
power. However, Fig. 7(b) shows that the speech intelligibility
of the beamformers that do not use a post-filter is better. This is
because the single-channel Wiener filter leads to much speech
distortion and relatively poor speech intelligibility, which is
also shown by comparing the STOI value of the noisy signal and
the single-channel Wiener filter output. From the perspective of
the distributed algorithms, it is observed that the ISDDSB and
the ISDDSB-WF reach the same performance as their central-
ized counterparts, the CDSB and the CDSB-WF algorithms,
respectively, when enough transmissions are used. However,
both the speech quality and the intelligibility of the DANSE
and DANSE-WF are worse than the CANSE and CANSE-WF,
respectively. An interesting observation is that the performance
of the DANSE and DANSE-WF are somewhat worse than the
DDSB and the DDSB-WF algorithm in terms of MSE, SNR
and STOI. These differences can partly be explained by the
following. First, in contrast to the DDSB, DANSE assumes no

knowledge about the steering vector, but estimates this implic-
itly using estimates of the noise, the noisy correlation matrices
and using information on the on-off behavior of the desired
signal. Secondly, the time-recursive DANSE algorithm does
not fully converge to the CANSE algorithm, which already
implies some performance loss. This might be due to the fact
that (1) the DANSE algorithm performs subsequent iterations
over different signal segments and only allows one node to
update its beamformer coefficients at each iteration, while
other nodes only gather their neighbors’ information, (2) the
used observation window length is too short for the algorithm
to estimate the signal statistics, and (3) low-SNR nodes might
affect the estimation in the reference node.
Next, Figs. 7(a), 7(b) and 7(c) show the trade-off between the

performance and the communication cost of all the distributed
algorithms. Despite the small performance improvement of the
DDSB algorithm compared to the DANSE algorithm it should
be mentioned that this is at the expense of a higher commu-
nication load. The main reason for this difference is the fact
that the DANSE algorithm employs a broadcast protocol and
performs time-recursive updates over signal frames, while the
DDSB based algorithms use a point-to-point transmission pro-
tocol per signal frame. The communication cost of the random-
ized gossip based distributed beamformers can be reduced via
clique or cluster based randomized gossip algorithms, [30], [31].
Furthermore, the DDSB assumes that the noise field is

spatially uncorrelated. This is not necessarily a problem, as
shown by the experimental results in Fig. 7. This experiment
is based on point non-stationary noise sources where clearly
this assumption is not completely valid, but where validity
depends on the inter-microphones distance. To further improve
the performance of the distributed beamformer, the proposed
algorithm can be combined with the message passing algorithm
from [13] in order to incorporate noise correlation. To demon-
strate this, we present a final experiment where we compare the
performance of the CDSB and an MVDR, with their distributed
counterparts, that are, the ISDDSB and a distributed MVDR
(DMVDR) based on the message passing algorithm from [13]
combined with the proposed in this paper randomized gossip
algorithm for distributed beamforming.
The message passing algorithm can be used to compute

in a distributed fashion. Subsequently, the pro-
posed randomized gossip algorithm can be used to compute

and in distributed fashion. As the noise
field is assumed to be stationary in this experiment, the message
passing algorithm is applied only once, in case the noise field
is changing, the algorithm must be applied repeatedly for every
time-frame.
Fig. 8 depicts the noise reduction performance of the IS-

DDSB and the DMVDR beamformer versus the number of
transmissions. We simulate a network where ten nodes are
fully connected while the input SNR of microphone 1 is 1 dB.
As expected, we see that indeed a gain of approximate dB
can be obtained by taking noise correlation into account in the
DMVDR beamformer. Of course, the potential improvement
by incorporating noise correlation depends on the number
of noise sources and their locations. In addition, both the
DMVDR and ISDDSB converge to their centralized version,
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Fig. 8. The MSE of node 1 with 1 dB input SNR versus average transmission
per time frame.

after sufficient iterations. Note that the DMVDR takes some
extra transmissions to estimate compared to the
ISDDSB algorithm.

VII. CONCLUSIONS

In this paper, we introduced a distributed delay and sum
beamformer (DDSB) algorithm using both asynchronous and
synchronous communication schemes for decentralized esti-
mation of the clean speech signal in a randomly connected
wireless acoustic sensor network. The algorithm is based on
randomized gossip. In addition, we presented an improved
general distributed synchronous averaging (IGDSA) algorithm
that can be applied to any connected network. The DDSB al-
gorithm using the different communication schemes converges
asymptotically to the centralized beamformer. We described
worst and best case convergence bounds for the asynchronous
DDSB algorithm for a network of a given size and we com-
pared analytically the convergence rate of the DDSB algorithm
using the proposed IGDSA with the asynchronous DDSB
(ADDSB) algorithm and the original synchronous DDSB
(OSDDSB) algorithm in an unbounded regular network. The
simulation results demonstrated that the proposed algorithm for
simultaneous updating increases the convergence rate of the
DDSB when there is a sufficient amount of nodes in the regular
network. Furthermore, simulation results with non-regular
networks showed a large gain in convergence speed for DDSB
using the proposed IGDSA compared to the DDSB using the
existing communication algorithm for non-regular networks.
Experiments on the comparisons between the proposed al-

gorithm and several distributed speech enhancement reference
algorithms from literature indicated the trade-off between the
speech enhancement performance and the communication cost
of the distributed algorithms. Specifically, with the advantage
of not having a topology constraint, the proposed algorithm
has better performance than the referenced distributed adaptive
node-specific signal estimation (DANSE) algorithm at the ex-
pense of a higher communication cost. To further reduce the
communication costs, use can be made of clique and cluster

based distributed beamforming. This is studied in [30], where
the communication cost of the DDSB is further decreased, by
investigating the use of cliques and clusters for the randomized
gossip algorithm in a randomly connected network. In contrast
to the DANSE algorithm where the steering vector is estimated
implicitly, the proposed algorithms make use of prior knowl-
edge on the steering vector. Ongoing research investigates how
these steering vectors can be estimated in a distributed way and
how correlated noise fields and reverberation can be taken into
account explicitly. Finally, to bring distributed noise reduction
algorithms to practice, practical aspects such as clock synchro-
nization of the different sensors in the WASN has to be taken
into account.
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