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a b s t r a c t

In this paper, we consider a privacy preserving scenario where users in the network want
to perform distributed target source estimation with a wireless acoustic sensor network
(WASN), without revealing the actual source of interest to other entities in the network.
This implies that users do not share the steering vector of the beamformer with any other
party. For distributed multi-channel noise reduction in WASNs, distributed estimation of
the inverse noise or noiseþtarget correlation matrix is an important aspect and in general
a challenging problem.

To make both privacy preservation and distributed multi-channel noise reduction
possible, we make use of the fact that recursive estimation of the inverse correlation
matrix can be structured as a consensus problem and can be realized in a distributed
manner via the randomized gossip algorithm. This makes it possible to compute the
MVDR in distributed manner without revealing the steering vector to any of the other
entities in the network, and providing privacy about the actual source of interest. We
provide theoretical analysis and numerical simulations to investigate the convergence
error between the gossip-based estimated correlation matrix and the centralized
estimated correlation matrix. It is shown that the convergence error accumulates across
time without using a sufficient number of transmissions in the gossip-based algorithm.
To eliminate this convergence error, we propose in addition a clique-based algorithm for
distributed estimation of the inverse correlation matrix (CbDECM). Theoretical analysis
shows that the CbDECM algorithm converges to the centralized estimate of the matrix
inverse.

We investigate the performance of the presented clique-based distributed framework
in combination with a distributed privacy preserving MVDR beamformer, where informa-
tion about the actual source of interest is kept private. Simulations show that the
proposed algorithm converges to the centralized MVDR beamformer.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

To improve the quality and intelligibility of speech proces-
sing applications under noisy environments, it is customary
to equip them with a single- or multi-microphone noise
reduction algorithm (for an overview see e.g., [1–3]).
As multi-microphone noise reduction algorithms can take
advantage of spatial diversity, they usually lead to better
speech quality and intelligibility than their single-
microphone counterparts. In particular it is the number of
microphones and their placement that determine the poten-
tial performance of a multi-microphone noise reduction
algorithm. However, as most mobile speech processing
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devices have relatively small dimensions, the number of
microphones as well as their placement is rather restricted.

Using the so-called wireless acoustic sensor networks
(WASNs), it is possible to use a much larger number of
microphones that are distributed in the environment and
where their placement is not restricted by the device itself.
This allows a further increase in noise reduction perfor-
mance. However, the conventional multi-microphone
noise reduction algorithms (e.g. [2,3]) are characterized
by having one processor where all data is processed
centrally. Such centralized algorithms are less suitable for
a WASN, as they may require higher energy consumption
or transmission bandwidth than necessary. The fact that
the sensors in a WASN are all equipped with a (simple)
processor potentially owned by different users allows us to
perform intermediate processing of data without the need
to first send all data to a single point in the network. This
has recently led to an increased research interest to
distributed speech enhancement algorithms, see e.g., [4–7].

As the processors and sensors in the WASN context are
not necessarily anymore owned by a single user, distrib-
uted processing might come with serious privacy risks.
These could range from an increased risk of being eaves-
dropped to an increased risk that private data or informa-
tion becomes public. Within the speech enhancement
context, such privacy issues were first addressed in [8,9]
for two scenarios. The scenario in [8] considered the case
where a user keeps the exact source of interest private for
other users, while [9] considered the scenario where
eavesdropping by untrusted third parties is overcome.
Both contributions employed homomorphic encryption [10]
to provide the necessary privacy. However, homomorphic
encryption is computationally very complex, and requires
very high bit rates for data transmission. In the current
paper, we consider a different approach and develop a
framework for distributed signal estimation employing a
WASN, while providing the user a certain level of privacy
with respect to the source of interest. We consider the
case where the users of the network do not want to share
to which specific source in the environment they are listen-
ing, while they do want to make use of the WASN to
estimate their signal of interest.

More specifically, the application scenario that we
consider in this paper is the one where multiple users
make use of a WASN that consists of many processors
(including their own) and where each processor is
equipped with multiple microphones. The users can use
the additional sensors in the WASN to obtain an improved
estimate of their signal of interest, which can be different
for each user and is usually determined by the steering
vector of the beamformer. However, due to privacy rea-
sons, the users want to keep their source of interest private
(i.e., the steering vector). Although the microphone signals
might be public, hiding the steering vector will overcome
that the exact combination of microphone signals required
for specific target signal estimation is publicly known.
Moreover, hiding the steering vector makes sure that none
of the entities with access to the network is able to reveal
which conversation or source is apparently of interest for a
particular user. This will guarantee a certain amount of
privacy to the users of the network. One way to guarantee
privacy preservation on the source of interest would be to
send all data to all nodes and compute a conventional
beamformer in every node. In this way, users do not need
to make the steering vector public. However, this requires
a lot of data transmission. Performing calculations in a
distributed way will reduce the number of data transmis-
sions, due to the fact that local nodes perform intermedi-
ate calculations. This leads to a data compression
depending on the number microphones per node. We
investigate thus the possibility that each user in the WASN
estimates his signal of interest by performing distributed
computations on the WASN data, while keeping the
particular source of interest private. To do so, we concen-
trate on distributed estimation of one of the most well-
known beamformers, the minimum variance distortionless
response (MVDR) beamformer.

The MVDR beamformer depends on the inverse of the
noise or noiseþtarget spectral correlation matrix. Com-
puting this inverse in a distributed manner is not trivial, as
the data in a WASN is not centrally present and each
element of the inverse of the correlation matrix is a
function of the statistics of the noise or the noiseþtarget
at multiple microphones. In [7], a distributed MVDR was
presented based on a randomized gossip algorithm [11]
where the inversion of the noise correlation matrix was
overcome by assuming the correlation matrix to be diag-
onal. This simplifies distributed computation of the MVDR,
but it also compromises the performance as the noise is
assumed to be uncorrelated across microphones. In [12]
the MVDR was computed using a message passing algo-
rithm [13]. However, this requires the network topology to
be consistent with the noise correlation matrix, where two
nodes are neighbors if their noise cross correlation is
unequal to zero. This would require to adjust the transmis-
sion range of the nodes in the network to the correlation
matrix and consequently, increase the energy usage for
transmission or decrease the connectivity in the network.
In [5] and [6], computation of the inverse of the correlation
matrix was overcome by employing the generalized sidelobe
canceller structure. However, this algorithm also constrains
the topology of the network to be fully connected.

The contribution of this paper is twofold. First, we
present a method where each user can estimate a different
signal of interest from a mix of many different signals by
means of a distributed MVDR beamformer without the
need to reveal the source of interest to other entities in the
network. In order to do this, we develop an algorithm that
enables distributed estimation of the inverse of a correla-
tion matrix, which is the second contribution of this paper.
This algorithm for distributed estimation of the matrix
inverse is based on the observation that in practice,
correlation matrices are usually estimated recursively by
exponential smoothing. Using the Sherman–Morrison for-
mula [14], estimation of the inverse of the correlation
matrix can be seen as a consensus problem and can be
realized using gossip algorithms. Although the conver-
gence error per time frame is decreased with increasing
number of iterations when using gossip algorithms, esti-
mation errors might accumulate. This is caused by the fact
that the correlation matrix is recursively estimated across
time. These convergence errors can be eliminated using
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the distributed clique-based algorithm that we propose in
this paper. The performance of the proposed clique-based
distributed estimation of the inverse correlation matrix is
compared with the centralized estimation approach in
terms of data transmissions in the scenario at hand where
users want to estimate their signal of interest without
revealing this to other entities. In addition, we show that
this algorithm for distributed matrix inverse estimation
can be used in the privacy preserving scenario to estimate
a certain signal of interest.

The remainder of this paper is organized as follows.
In Section 2 we introduce the notation that we will use
throughout this paper and describe the problem. To guide
the reader, we give in Section 3 a brief overview of gossip
based algorithms. In Section 4 we show how estimation of
the inverse correlation matrix can be seen as a consensus
problem, and in Section 5 we introduce a framework to
compute a privacy preserving MVDR beamformer in a
distributed way, after which we show in Section 6 how
this can be turned into a distributed estimation problem
using gossip techniques. Then, in Section 7 we introduce a
clique-based distributed algorithm in order to reduce the
convergence error of the estimated inverse correlation
matrix, which might otherwise accumulate across time.
In Section 8 we present simulation results to demonstrate
the presented algorithm and compare its performance in
terms of computational costs with centralized estimation.
Finally, in Section 9 conclusions are drawn.
2. Notation and problem description

Let Ymðf ; kÞ denote a degraded speech short-time dis-
crete Fourier transform (DFT) coefficient obtained on a
frame-by-frame basis at a microphone with index-number
m, frequency-bin index f and time-frame index k. The
challenge for a speech enhancement algorithm is to
estimate the underlying clean speech, given realizations
of the noiseþtarget DFT coefficients.

A common model that often underlies such algorithms
is an additive noise model where the different sources are
assumed to be mutually uncorrelated. Let Smðf ; kÞ and
Vmðf ; kÞ denote the target and the disturbance DFT coeffi-
cient, respectively. The noiseþtarget DFT coefficients are
then given by

Ymðf ; kÞ ¼ Smðf ; kÞþVmðf ; kÞ; ð1Þ

with Smðf ; kÞ ¼ dmðf ; kÞSðf ; kÞ and Sðf ; kÞ being the clean
speech at the target location, and dmðf ; kÞ being the
acoustic transfer function. Let index i denote a user (i.e.,
node) in the network. In the scenario that we consider,
each user (i.e., each node) in the network can have a
different target source Sðf ; kÞ, say Siðf ; kÞ, thus with a
different acoustic transfer function (notice that this allows
multiple microphones per node/user). The remaining
sources are considered as disturbance (noise) for this user
and are symbolized by the disturbance or noise DFT
coefficient Viðf ; kÞ. What is considered to be noise for one
user might be the target signal for another user. As such,
(1) is different for all users. However, to simplify notation,
we consider here the noise model for one specific user.
The target and noise DFT coefficients are often assumed
to be independent across time and frequency. This allows
us to omit the time and frequency indices for notational
convenience. Further, we will use a stacked vector nota-
tion, that is, Y¼ ½Y1;…;YM�T , with M being the total
number of microphones in the network and ð�ÞT denotes
the transposition of a vector or a matrix. We use bold
symbols to represent vectors or matrices, while scalars are
denoted by non-bold symbols. For symbols representing
random variables, we use the upper case to denote the
random variable, and the corresponding lower case to
denote its realization. The speech and noise vectors
S and V are defined in the same way as Y. Let
d¼ ½d1;…;dM�T denote the steering vector representing
the acoustic transfer function from the speech source to all
microphones. Altogether this gives for one specific user

Y¼ dSþV¼ SþV:

We assume that the M microphones in the WASN are
grouped in N nodes. Each node has Mi microphones with
M¼∑N

i ¼ 1Mi. The different nodes in the network are
connected via wireless links, while the microphones
within the same node are assumed to be connected via
wired connections. Each node in the network symbolizes a
different device in the network potentially owned by a
different user (hearing aid, mobile phone, etc.).

The goal of a multi-microphone noise reduction algo-
rithm is to make an estimate of the clean speech DFT
coefficient, say Ŝ. Although many alternatives exist, an
often used multi-microphone noise reduction algorithm is
the MVDR beamformer. The MVDR beamformer is given
by [2]

w¼ R�1
Y d

dHR�1
Y d

ð2Þ

where RY ¼ E½YYH�, with E½�� denoting the statistical expec-
tation operator, and ð�ÞH denoting the Hermitian transposi-
tion. Similarly we define RV ¼ E½VVH �. Alternatively,
applying the matrix inversion lemma to (2) in combination
with the assumption that target and noise are uncorre-
lated, the MVDR beamformer can also be written as

w¼ R�1
V d

dHR�1
V d

: ð3Þ

The problem statement in this paper is to allow all
users in the network to estimate their own signal of
interest in a distribute way using a WASN with the MVDR
beamformer by means of (2), while keeping the source of
interest private. This implies that the steering vector di for
user (node) i should not be shared with other users.
In practical applications, the steering vector di has to be
estimated. In order to concentrate on the distributed
estimation of the inverse of the correlation matrix, we
assume here that each user i knows the steering vector
towards the source of his or her interest. Among other
methods, the steering vector can be determined by esti-
mation of the microphone locations and location/direction
of the source of interest or by estimation of the relative
transfer function [15].
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By keeping the steering vector private, each node i can
estimate its own source of interest Si without revealing to
other users which particular source this is. In this scenario
it is thus the exact linear combination specified by the
steering vector di that is kept secret. With this assumption,
an estimate of the target Si can be obtained as

Ŝi ¼
dH
i R

�1
Y Y

dH
i R

�1
Y di

: ð4Þ

We will consider distributed estimation of the MVDR
beamformer using the noiseþtarget correlation matrix RY

in the remaining part of this paper. In case the objective is
to estimate the MVDR based on the noise correlation
matrix (as in (3)), the proposed algorithm can be com-
bined with a voice activity detector (VAD) to distinguish
between noiseþtarget and noise-only segments.

An often used procedure to estimate the correlation
matrix is recursive exponential smoothing, that is,

R̂YðkÞ ¼ λR̂Yðk�1Þþð1�λÞYðkÞYHðkÞ; ð5Þ
where 0rλr1 denotes the exponential weighting factor
and R̂YðkÞ denotes an estimate of RY at time-frame k. With
conventional centralized processing, this operation would
be performed in a fusion center, where the observations
for all nodes are gathered and the correlation matrix is
estimated and transmitted to other nodes in the network
that would require this estimate. In this work we employ
an alternative way to estimate the inverse correlation
matrix based on the Sherman–Morrison formula. This
appears to be an important aspect, as it not only enables
us to compute the inverse correlation matrix in a distrib-
uted way, but also enables us to compute the MVDR
beamformer in a distributed fashion without the need to
share the steering vector with other users.

3. Gossip algorithms

To guide the reader, this section presents a brief over-
view of gossip algorithms. Gossip algorithms have been
widely studied for in-network information processing in
wireless sensor networks [11]. They can be used to solve
consensus problems in a distributed way without any
requirement of network topology. Given a randomly con-
nected network of N nodes and an initial value gið0Þ at
each node i, a possible objective of a gossip algorithm
could be to estimate the average value gave ¼ ð1=NÞ∑N

i ¼ 1
gið0Þ of the initial values at each node i by using only local
processing. By allowing neighboring nodes to exchange
information and update this with a convex combination of
their own and neighboring values (i.e., a linear combination
of points with non-negative weights that sum up to one),
convergence will be reached under certain conditions.

Gossip algorithms can be categorized into two classes:
randomized, where each pair of neighboring nodes is
chosen randomly based on a probabilistic model to update
information; and deterministic, where neighboring nodes
are chosen in a deterministic way (e.g., by using knowl-
edge on the network topology) to update information.
With deterministic gossip the consensus will be achieved
asymptotically, and with randomized gossip, consensus
will be achieved asymptotically almost surely [16].
In typical gossip algorithms, nodes in the connected net-
work make a convex combination of their own value and
their values received from their neighbors. Let gi(t) denote
the value of node i at the end of iteration t. In a given time-
slot t, a typical iteration of a gossip algorithm consists of
the selection of multiple nodes, e.g., the pair (i,j), and
communication and update of their estimates, for exam-
ple, giðtÞ ¼ gjðtÞ ¼ ðgiðt�1Þþgjðt�1ÞÞ=2. Depending on the
exact protocol, the averaging operations can be performed
asynchronously or synchronously.

4. The estimated correlation matrix

This section discusses that estimation of the inverse
correlation matrix can be seen as a consensus problem.

The Sherman–Morrison formula [14] provides an expli-
cit formula for the inverse of a matrix B¼AþuvT , where A
is an invertible M �M matrix and u and v are the
M-dimensional column vectors. Matrix B is invertible if
and only if 1þvTA�1ua0. In this case, the Sherman–
Morrison formula is given by

B�1 ¼A�1�A�1uvTA�1

1þvTA�1u
: ð6Þ

From (5) and (6), the inverse correlation matrix R̂
�1
Y ðkÞ

can be obtained as [17]

R̂
�1
Y kð Þ ¼ λ�1R̂

�1
Y k�1ð Þ

�λ�2ð1�λÞR̂ �1
Y ðk�1ÞYðkÞYHðkÞR̂ �1

Y ðk�1Þ
1þλ�1ð1�λÞYHðkÞR̂ �1

Y ðk�1ÞYðkÞ
: ð7Þ

Notice that the computational complexity of (7) in each

time-frame is only OðM2Þ when a previous time-frame

estimate R̂
�1
Y ðk�1Þ is available, while the computational

complexity of directly computing the inverse in R̂
�1
Y ðkÞ is

OðM3Þ. Besides the lower computational complexity of (7)
over the inverse that results from (5), the structure of (7)
makes it possible to estimate the inverse correlation
matrix in a distributed fashion. More specifically, each

node will have an estimate R̂
�1
Y ðk�1Þ available from the

iteration performed in the previous time frame k�1. To

compute R̂
�1
Y ðkÞ, it is required to compute R̂

�1
Y ðk�1ÞYðkÞ

and YHðkÞR̂ �1
Y ðk�1ÞYðkÞ in a distributed way.

Let r1;…; rM be the columns of R̂
�1
Y ðk�1Þ. We then

have

R̂
�1
Y ðk�1ÞYðkÞ ¼ ½r1;…; rM �YðkÞ ¼ ∑

M

m ¼ 1
rmYm; ð8Þ

i.e., a weighted sum of the columns of R̂
�1
Y ðk�1Þ, where

the weights are determined by the noiseþtarget DFT

coefficients in YðkÞ. In addition, let a¼ R̂
�1
Y ðk�1ÞYðkÞ. We

can then write

YHðkÞR̂ �1
Y ðk�1ÞYðkÞ ¼ YHðkÞa¼ ∑

M

m ¼ 1
Yn

mam; ð9Þ

which is a weighted sum over a with the noiseþtarget
DFT coefficients as weights. Obviously, given YðkÞ and
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R̂
�1
Y ðk�1Þ, the expressions in (8) and (9) can also be seen

as averaging operations, if a normalization over the num-
ber of nodes N would be included. Such averaging opera-
tions can be computed in a distributed manner using
gossip algorithms. To do so, we need two rounds of gossip
iterations. The first gossip round is used to compute

E1
ave kð Þ ¼ 1

N
R̂

�1
Y k�1ð ÞY kð Þ; ð10Þ

and the second round is used to compute

E2
ave kð Þ ¼ 1

N2Y
H kð ÞR̂ �1

Y k�1ð ÞY kð Þ: ð11Þ

For notational convenience we will denote intermediate
estimates of E1

aveðkÞ in frame k, iteration t and node i by
E1
i;tðkÞ and intermediate estimates of E2

aveðkÞ in frame k and
iteration t by E2

i;tðkÞ.

5. Distributed privacy preserving MVDR computation

This section introduces an approach to perform a
distributed MVDR beamformer based on the presented
distributed estimation of the inverse correlation matrix
with privacy preservation of a source of interest. We first
demonstrate how any user in the network can employ the
presented framework for (distributed) matrix inverse
estimation in order to compute an MVDR beamformer in
a distributed fashion without revealing their source of
interest.

Given that (8) and (9) are computed in a distributed
fashion, every user can compute an estimate of the inverse

correlation matrix by means of (7), that is R̂
�1
Y ðkÞ. By

means of (8), every user has a local estimate of

a¼ R̂
�1
Y ðk�1ÞYðkÞ. Given that the user knows the steering

vector for his source of interest, say di, the target that is of
interest for the user at node i can be estimated as

Ŝi ¼ dH
i a=d

H
i R̂

�1
Y ðk�1Þdi. Here di denotes the steering

vector towards the source of interest for user i (at node i).
Both a and RY are computed in distributed fashion using
gossip techniques. This means that no shared central pro-
cessor is needed, but that every user has its own estimates of
a and RY . The steering vector di is only known locally by the
user. In this way, every user can compute his signal of
interest without sharing the steering vector. An alternative
to the presented distributed MVDR would be the use of one
centralized MVDR that calculates R�1

Y in one centralized
node and subsequently transmits this matrix together with
YðkÞ to all other nodes. However, as will be shown in
the analysis in Section 6, this will lead to a much larger
transmission cost compared to distributed computation.
Using distributed computations, intermediate calculations
can be performed that compress the data prior to
transmission.

6. Gossip-based distributed estimation of the correlation
matrix

In this section, we first discuss a gossip-based algo-
rithm for distributed estimation of the inverse correlation
matrix. Next, we give a convergence error analysis of the
algorithm and show that the convergence errors accumu-
late across time due to the recursive estimation procedure.
Therefore, we present in Section 7 an alternative approach
that eliminates the accumulating convergence error.
Although our interest is to estimate the inverse correlation
matrix, the error analysis will be based on the correlation
matrix as this will be more insightful.

6.1. Estimation of R�1
Y ðkÞ using gossip

Let R̂
�1
Y;i ðkÞ denote the estimated inverse of the correla-

tion matrix at node i and time-frame k. To estimate R�1
Y ðkÞ

recursively as given in (7), we assume that at each node i
initializes the inverse of the noiseþtarget correlation

matrix as R̂
�1
Y;i ð0Þ ¼ I, where I is a M �M dimensional unit

matrix. This requires that the dimension M, i.e., the total
number of microphones in the network is known. When
this is unknown, it can be estimated using gossip based
techniques, see e.g., [18] and references therein.

Before starting gossip iterations between nodes in a
time-frame k, first the initial value E1

i;0ðkÞ needs to be
determined for each node i. This is obtained by computing
E1
i;0ðkÞ ¼∑mAMirmYm. Notice that E1

i;0ðkÞ is an M � 1 dimen-
sional vector, since rm is M � 1 dimensional vector. Then,

gossip iterations can be used to estimate ð1=NÞR̂ �1
Y

ðk�1ÞYðkÞ in frame k in a distributed manner, by comput-
ing the average in each iteration t between two nodes i

and j, i.e., ðE1
i;tðkÞþE1

j;tðkÞÞ=2. Let E1
i;T1

ðkÞ denote the final
estimate of round 1 at node i and iteration T1. According to
the convergence properties of gossip algorithms, the esti-
mates E1

i;T1
at all nodes are guaranteed to converge to the

average value (10) after a sufficient number of iterations.
As soon as E1

i;T1
ðkÞ is known accurately enough at all

nodes, a second gossip round can be started to estimate

ð1=N2ÞYHðkÞR̂ �1
Y ðk�1ÞYðkÞ. First, each node i determines

the initial value E2
i;0ðkÞ, that is, E2

i;0ðkÞ ¼∑mAMi
Yn

m½E1
i;T1

ðkÞ�m,
where ½��m indicates the mth element of the corresponding
vector. Given E2

i;0ðkÞ, gossip iterations can be performed to

estimate E2
aveðkÞ, by computing the average in each itera-

tion t between two nodes i and j, e.g., ðE2
i;tðkÞþE2

j;tðkÞÞ=2.
The final E2

i;T2
at all nodes are guaranteed to converge to

the average value (11) when using enough iterations T1
and T2 in both gossip rounds. Notice that the convergence
error in the second estimation round depends on the
convergence error in the first estimation round. Based on
the estimates of E1

i;T1
ðkÞ and E2

i;T2
ðkÞ, each node i can locally

update the estimate R̂
�1
Y;i ðkÞ using (7) as

R̂
�1
Y;i kð Þ ¼ λ�1R̂

�1
Y;i k�1ð Þ�

λ�2ð1�λÞN2E1
i;T1

ðkÞE1;H
i;T1

ðkÞ
1þλ�1ð1�λÞN2E2

i;T2
ðkÞ

: ð12Þ

6.2. Convergence error analysis

To assess the performance of the gossip-based distrib-
uted estimation algorithm, we define the squared error
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(SE) between the inverse of the gossip-based distributed
estimate of the inverse correlation matrix and the centra-
lized optimal estimate of the correlation matrix for a given
time-frame k as

SEðkÞ ¼ ‖R̂Y;T1 ;T2 ðkÞ� R̂Y;cðkÞ‖fro; ð13Þ
where ‖ � ‖fro denotes the Frobenius norm, R̂Y;cðkÞ denotes
the centralized estimated correlation matrix using (5) and
R̂Y;T1 ;T2 ðkÞ is the inverse of the estimated inverse correla-
tion matrix using T1 and T2 iterations in the first and
second gossip rounds, respectively. Depending on T1, T2
and the network topology, a convergence error might be
introduced by the gossip-based algorithm, and as the
matrix inverse is computed recursively across time, these
errors might accumulate. To investigate this, we define the
error introduced by the gossip operation at time-frame k
by the matrix Δk as

Δk ¼ R̂Y;T1 ;T2 ðkÞ�λR̂Y;T1 ;T2 ðk�1Þ�ð1�λÞYðkÞYHðkÞ: ð14Þ
From (14) in combination with the initial value

R̂Y;T1 ;T2 ð0Þ, we can write R̂Y;T1 ;T2 ðkÞ as

R̂Y;T1 ;T2 ðkÞ ¼ ∑
k

n ¼ 1
λk�nΔnþλkR̂Y;T1 ;T2 ð0Þ

þ ∑
k

n ¼ 1
λk�nð1�λÞYðnÞYHðnÞ: ð15Þ

Further, we can write R̂Y;cðkÞ as

R̂Y;cðkÞ ¼ λkR̂Y;cð0Þþ ∑
k

n ¼ 1
λk�nð1�λÞYðnÞYHðnÞ: ð16Þ

From (15) and (16) in combination with (13) and the
fact that R̂Y;T1 ;T2 ð0Þ ¼ R̂Y;cð0Þ ¼ I, it then follows that

SEðkÞ ¼ ∑
k

n ¼ 1
λk�nΔn

����
����
fro
: ð17Þ

Eq. (17) shows that the SE depends on the summation
of the gossip error across all time frames, which indicates
that the SE between the output of the gossip-based
distributed estimation and the output of the centralized
estimation accumulates with increasing number of time
frames. The reason that the SE accumulates across time
frames is that the correlation matrix is recursively updated
across time frames and the gossip algorithms have a
convergence error at each time frame. This depends on
the number of iterations and on the way the sequence of
gossip operations is performed. Although it is interesting
to analyze the changes of the SE as a function of time
frames, it is not straightforward to do this using analytic
expressions. In Section 8, we will use simulations to
illustrate the SE behavior versus time frames.

7. Clique-based distributed estimation of the inverse
correlation matrix

One way to eliminate the convergence error described
in Section 6.2 is to make sure that the gossip algorithm
aggregates the information from all nodes. To do this in an
efficient manner, we first compress the graph using non-
overlapping cliques as previously presented in [19] for
gossip-based estimation. For this compressed graph we
then determine the spanning tree.

A clique is a fully connected sub-graph. The cliques of a
graph G can be overlapping, since each node can belong to
multiple cliques. Here we consider non-overlapping cli-
ques only, where each node belongs to only one clique.
In this section, we first present a clique-based distributed
(CbD) algorithm based on the non-overlapping cliques of a
graph G. Then we study the performance of the CbD
algorithm and compare the clique-based distributed esti-
mation of the inverse correlation matrix with a centralized
estimation algorithm in terms of required data transmis-
sions. The performance comparison will be made for a
fully connected and string connected network.

7.1. Clique-based distributed algorithm

In [19] it was proposed how a method determines all
non-overlapping cliques in a distributed fashion given a
randomly connected graph G. We assume that there are C
non-overlapping cliques in graph G. These cliques can be
used to compress the original graph G by representing
each clique by a single node in G1. An example is given in
Fig. 1. The nodes are here denoted by gi, with i the node
index, while the cliques are denoted by hj, with j the index
of the clique. Notice that graph G1 is a compressed version
of the original graph G, since all nodes in a clique are
represented by a single node in G1 and multiple edges
between two neighboring cliques are compressed into a
single edge in G1. In the compressed graph G1, two cliques
are said to be neighbors if there is at least one direct link
joining them. If more than one such links exist, only one of
them is activated by random selection. The end nodes of
active links are called gateway nodes. To eliminate the
convergence error of gossip-based distributed algorithms
and reduce the computational complexity of the CbD
algorithm, the compressed graph G1 is further pruned
to a spanning tree. Many approaches were proposed to
define and compute spanning trees, see e.g., [20]. Let Gt

denote a tree graph which is pruned from the compressed
graph G1, let L denote the total number of levels of the
graph Gt and let Cl denote the number of cliques in the lth
level of Gt . We assume that each node i in G has an initial
value gið0Þ. In the current case of estimating NE1

ave, gið0Þ is
given by gið0Þ ¼ E1

i;0ðkÞ ¼∑mAMirmYm. Based on the tree
graph Gt , the CbD algorithm is described in Table 1. For the
given initialization, this will finally lead to NE1

ave. In a
similar way N2E2

ave can be estimated by initializing gið0Þ as
gið0Þ ¼∑mAMiY

n

m½NE1
aveðkÞ�m.

It is worth pointing out that the CbD algorithm can
reach the summation of all initial node values in the
network in a distributed manner. Thus, using the CbD
algorithm, exact values for NE1

ave and N2E2
ave in (10) and

(11), respectively, are obtained, while the randomized
gossip approach described in the previous section will
always have a (small) convergence error. In combination
with the Sherman–Morrison formula (6), the inverse
correlation matrix can be obtained in a distributed manner
in a similar way as with (12). We refer to this distributed
algorithm as a clique-based distributed estimation of the
correlation matrix (CbDECM).



Table 1
CbD algorithm.

1. Initialize the level index l¼1 and gi ¼ gið0Þ, where gi denotes the current value of node i
2. Each clique cl, where cl denote a clique in the lth level, updates its estimation as hcl ¼∑iA cl gi . To do so, each node i in the clique cl broadcasts its

value gi to all other nodes in the clique
3. Each clique cl sends its estimates hcl to its neighboring clique clþ1 via gateway nodes one level up in the tree. The gateway node jAclþ1 updates its

estimation as gj ¼ gjð0Þþhcl

4. l-lþ1
5. Return to step 2 until l¼L
6. The root clique cL at the top level updates its estimation as hcL ¼∑iA cL gi and sends the updated estimation hcL back to all other nodes in the lower

levels of Gt

Sensor node

Gateway node

root clique

Fig. 1. (a) The original graph G. (b) The compressed graph G1. (c) The tree graph Gt .
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7.2. Transmission cost analysis

This subsection discusses the required number of
transmissions of the CbD algorithm. We assume that one
transmission is the sending of a scalar value from one node
to another. Given a connected network G, the required
number of transmissions of the CbD algorithm will be
explained below and is given by Td ¼∑L

l ¼ 1t
l with

tl ¼ ∑
Ĉ
l

cl ¼ 1
Kcl þCl 1r loL;

KcL þ2ðC�1Þ l¼ L;

8>><
>>:

ð18Þ

where tl is the required number of transmissions of the
CbD algorithm in the lth level of Gt , Kcl is the number of

nodes in a clique cl, and Ĉ
l
is the number of non-

overlapping cliques which consist of more than one node.

Notice that Ĉ
lrCl, since Cl is the total number of non-

overlapping cliques in the lth level of Gt .
In G, C non-overlapping cliques can be determined and

represent C nodes in G1. The compressed graph G1 is then
pruned to a tree graph Gt and the C cliques are distributed
in the different levels of Gt . For the CbD algorithm, we go
through the tree Gt from the lowest level, l¼1 up to the
root L. When l is smaller than L, each node i in a clique cl

broadcasts their data to all other nodes in the clique. The
required number of transmissions for all nodes in the lth

level is ∑Ĉ
l

c1 ¼ lKcl . In addition, each clique cl needs one

transmission to send the updated estimates to its neigh-

boring clique clþ1 in the ðlþ1Þ th level. Thus, the required
number of transmissions in lth (loL) level is equal to

∑Ĉ
l

cl ¼ 1Kcl þCl.
At the top level of Gt , there is only one clique which is

the root clique of Gt . Similar to the other cliques, each node
i in the root clique broadcasts their data to all other nodes
in the clique. On the other hand, the root clique has to
send the updated estimates to all other nodes in the lower
levels. Since the number of remaining cliques in Gt is C�1
and each clique requires one transmission to receive data
from its neighboring clique and one transmission to
synchronize all nodes in this clique with the updated data,
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the required number of transmissions for sending data
from the root clique to all other nodes is 2ðC�1Þ. There-
fore, at the top level of Gt , the total required number of
transmissions is KcL þ2ðC�1Þ.

Notice that tl is the upper bound of the required
number of transmissions, since there are some cliques
that might consist of only one node. Moreover, the CbD
algorithm costs one transmission less when a gateway
node has two neighboring gateway nodes in two different
cliques.
7.3. Performance comparison

This subsection analyzes the relative performance
between the proposed CbDECM algorithm and a centra-
lized way for matrix inverse estimation in terms of data
transmissions. This comparison is done in the given
scenario where the source of interest (by means of the
steering vector) is considered to be private. In such a
scenario, each user is in need of the estimated inverse

correlation matrix, i.e., R̂
�1
Y , as well as R̂

�1
Y Y. Given

knowledge of these two quantities, in combination with
the locally known steering vector di, every user (node) can
estimate his source of interest by constructing the MVDR

beamformer (by means of Ŝi ¼ dH
i R̂

�1
Y Y=dH

i R̂
�1
Y di).

Although the proposed algorithm also inherently delivers

an estimate of R̂
�1
Y Y, we concentrate this comparison

solely on the number of data transmissions required to
compute the matrix inverse at each user's processor. For
the centralized approach, which is our reference method,
we therefore first gather all data at a single processor
(which is assumed to be one of the nodes), after which the
inverse correlation matrix is computed in a centralized
fashion according to (7) and transmitted back to all users
such that it can subsequently be used to estimate their
signal of interest. Similarly, for the proposed approach,
where (7) is computed in a distributed way based on the
CbD algorithm presented in this section.

Consider a WASN with given size, the number of data
transmissions for both the CbDECM and the centralized
algorithm depends on the network topology. However, in
practice, the exact network topology is unknown, compli-
cating a comparison using analytic expressions in a ran-
domly connected network. We therefore compare the
CbDECM with the centralized algorithm in terms of the
number of data transmissions in a fully connected network
and a string connected network. In general, the fully
connected topology has the best connectivity, while the
string connected network has the worst connectivity.
To do the performance comparison with analytic expres-
sions, we assume that each clique in the network consists
of K nodes and each node i has Mi ¼ u microphones. This
means that there are N¼KC nodes and M¼Nu micro-
phones in the network and the inverse correlation matrix
is an M �M dimensional matrix. This assumption is only
made for ease of analytical analysis, but not required in
practice.

In a fully connected network, M–u data transmissions
are needed to gather all observed signals in the central
processor and then M2=2þM=2 data transmissions are
needed to send the lower or upper triangle of the
estimated inverse correlation matrix back to all other
nodes. Thus, the required number of data transmissions
TC;F is given by

TC;F ¼
M2

2
þ3M

2
�u; ð19Þ

where the subscripts C and F indicate the centralized
algorithm and a fully connected network, respectively.
Further, we use subscripts D and S to indicate the CbDECM
algorithm and a string connected network, respectively.

The CbDECM algorithm requires two rounds of proces-
sing in order to compute the sums in (8) and (9). As a fully
connected network can be seen as a single clique, the
compressed graph G1 will consist of just one node and tree
pruning is not necessary. Thus, the number of levels is
given by L¼1. Based on (18), it then follows that for a
scalar value it requires Td ¼ Kc1 transmissions. As the
number of cliques in a fully connected network is C¼1,
and the number of nodes in that clique is K ¼N¼M=u, it
requires K ¼M=u transmissions for one scalar value. The
distributed estimation of the matrix inverse requires an
estimate of a vector of length M (by means of (8)) and a
scalar value (by means of (9)), which then leads to M2=u
and M=u data transmissions, respectively. Thus, the total
required number of data transmissions TD;F is given by

TD;F ¼
M2þM

u
: ð20Þ

To compare the computational cost of the CbDECM
with the centralized algorithm in a fully connected net-
work, their required number of data transmissions can be
compared as

TC;F�TD;F ¼
M2uþ3Mu�2M2�2M

2u
�u: ð21Þ

We assume that M42. From (21), we then have that
TC;FoTD;F for u¼1 and TC;F4TD;F for uZ2. This indicates
that the computational cost of the centralized algorithm is
larger than those of the CbDECM algorithm if there is more
than one microphone per node. Table 1 gives a numerical
comparison between TC;F and TD;F for M¼500 and C¼10
and various combinations of K and u. This shows that for a
fully connected network, and when the number of micro-
phones per node is u41, the proposed CbDECM algorithm
always requires fewer data transmissions than the centra-
lized approach.

In a string connected network where all C cliques are
connected as a string, we assume that one node in the
center of the string serves as the fusion center. The data is
transmitted from both sides to this fusion center. The
number of transmissions depends on C being odd or even.
For compactness we only consider the case that C is even.
For odd C a similar analysis can be carried out. When C is
even, one side consists of C=2 cliques and the other side
consists of C=2�1 cliques. The required number of data
transmissions for both sides sending data to the gateway
nodes in the central clique is 2Ku∑C=2

c ¼ 1cþ2Ku∑C=2�1
c ¼ 1 c.

Next, the required number of data transmissions for the
central clique sending the data to the central node is



Y. Zeng, R.C. Hendriks / Signal Processing 107 (2015) 109–122 117
KuðC�1ÞþðK�1Þu. The central node updates the esti-
mates of the inverse correlation matrix and sends the
estimates back to all other nodes in G. Since the correlation
matrix is a symmetric matrix, the central node only needs
to transmit the upper or lower triangle of the correlation
matrix, which consists of M2=2þM=2 variables. The
required number of transmissions for all nodes to receive
this information is 2ðC�1Þþ1, since the central node
needs one transmission to broadcast the estimates to all
other nodes in the central clique and 2ðC�1Þ transmis-
sions to send the data to the nodes in the remaining C�1
cliques. Here, each clique requires one transmission to
send data to its neighboring clique and one transmission
to synchronize all nodes in this clique with the updated
estimates. Therefore, the required number of data trans-
missions of the centralized algorithm TC;S is given by

TC;S ¼ C�1
2

� �
M2þ 3

2
Cþ1

2

� �
M�u: ð22Þ

For the CbDECM algorithm, the data transmissions can
be obtained using the transmission analysis given in
Section 7.2. In a string connected network, there are L¼C
levels of graph Gt , and each level consists of only one

clique (by means of Cl ¼ Ĉ
l ¼ 1). Since we assume that each

clique consists of K nodes, we have Kcl ¼ K , 8 l. Thus, the
required number of transmissions for the level loL is
Kþ1. For the top level of Gt , the required number of
transmissions is Kþ2ðC�1Þ. Combining the transmissions
with the fact that an M-dimensional vector is transmitted
per transmission in the first round and a scalar value is
transmitted per transmission in the second round, the
required number of data transmissions TD;S is given by

TD;S ¼ ðMþ1ÞfðKþ1ÞðC�1ÞþKþ2ðC�1Þg ¼ ðMþ1ÞðNþ3C�3Þ:
ð23Þ

We compare TC;S and TD;S for a given size network with
M¼500 and C¼10. The required number of data transmis-
sions of both the CbDECM and the centralized algorithm
are given in Table 2 for various combinations of u and K,
such that M=C ¼ Ku¼ 50.

This shows that the number of data transmissions for
the proposed CbDECM algorithm is always smaller than for
the centralized algorithm for the string connected network
under the given parameter setting. It should be noted that
this comparison in terms of required data transmissions is
under the privacy preserving scenario where each user
(processing node) is in need of the matrix inverse. If the
constraints on the privacy preserving aspect are loosened,
and the centralized processor directly estimates the target
Table 2
The required number of data transmissions of the CbDECM algorithm and
the centralized algorithm.

K, u TC;F TD;F TC;S TD;S

K ¼ 1;u¼ 50 125 700 5010 2 382 700 18 537
K ¼ 2;u¼ 25 125 725 10 020 2 382 725 23 547
K ¼ 5;u¼ 10 125 740 25 050 2 3827 40 38 577
K ¼ 10;u¼ 5 125 745 50 100 2 382 745 63 627
K ¼ 25;u¼ 2 125 748 125 250 2 382 748 138 777
K ¼ 50;u¼ 1 125 759 250 500 2 382 749 264 027
signal followed by transmission of the estimated target
signal, the required transmissions are significantly reduced.
8. Simulations

In this section, we first illustrate the performance of the
gossip-based algorithm and the CbDECM algorithm when
estimating the inverse correlation matrix in a simulated
WASN. Secondly, we demonstrate the use of the proposed
CbDECM algorithm in combination with the MVDR.
8.1. Simulation environment

We simulate a wireless network with 6 cliques (C¼6),
where each clique consists of 3 acoustic sensor nodes
(K¼3 and N¼18) and where each acoustic node consists of
2 microphones (u¼2). The distance between the two
microphones is 2 cm. The 6 cliques are (wirelessly) con-
nected as depicted in the network in Fig. 2. A network like
this could be obtained from a randomly connected net-
work by first compressing it into a compressed network by
finding the non-overlapping cliques in the network. Sub-
sequently, the network can be pruned into a spanning tree.
We consider a scenario where all sensor nodes, three
speech sources and a noise source are placed in a 10 m�
8 m rectangular area. The overall node positions relative to
the target signal are shown in Fig. 3. Furthermore, the
speech sources consist of 30 s speech signals sampled at
16 kHz originating from the Timit database [21], and the
noise source is a White Gaussian noise signal. To model the
microphone-self noise, an independent additive white
noise source is added to each microphone signal at the
SNR of 40 dB measured at the microphone that is furthest
away from the target source. In this paper, the simulation
environment is assumed to be free of reverberation. The
steering vectors di per user can then be calculated by gain
and delay values as di ¼ ½ai;1e� jωf τi;1 ;…; ai;Me� jωf τi;M �T ,
where ai;m ¼ 1=li;m is the damping coefficient, and τi;m ¼
ðli;m=cÞf s is the delay in number of samples with li;m being
the distance between microphone m and the desired
speech source and c¼340 m/s being the speed of sound.
The smoothing constant λ, see e.g., (5), is set at λ¼ 0:997.
All nodes process the signals in the frequency domain
using frame-based processing, with a frame length of
32 ms and a 50%-overlapping Hann window. Notice that
all simulations in the following subsections are performed
according to the environment given in this subsection.
root clique

Fig. 2. Example of a network with tree topology with six cliques.
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8.2. Estimation of R�1
Y

In this subsection, we compare the two methods
presented in Sections 6 and 7, that are, the gossip-based
algorithm and the CbDECM algorithm for distributed
estimation of the inverse correlation matrix, with a cen-
tralized estimator for the inverse correlation matrix.

The gossip operations in the gossip-based distributed
processing algorithm are based on the clique-based algo-
rithm presented in [19], which performs randomized
gossip [11] across non-overlapping cliques.

To quantify the performance of the distributed estima-
tion algorithms, we define the error between the esti-
mated R�1

Y from the distributed algorithms and the
estimation results from the centralized algorithm as

Erri kð Þ ¼ 20 log10
1
F

∑
F

f ¼ 1

‖R̂
�1
Y;i ðf ; kÞ�R̂

�1
Y;c ðf ; kÞ‖fro

‖R̂
�1
Y;c ðf ; kÞ‖fro

: ð24Þ

where ErriðkÞ is the normalized square error at node i and
frame k, and F denotes the number of frequency bins, and

R̂
�1
Y;i ðkÞ and R̂

�1
Y;c ðkÞ denote the estimated inverse correla-

tion matrix obtained from one of the distributed algo-
rithms and the centralized algorithm, respectively.
To aggregate information across frequency and time,
ErriðkÞ is averaged across time, that is

MEi ¼
1
~K

∑
~K

k ¼ 1
Erri kð Þ; ð25Þ

with ~K the number of time-frames.
Fig. 4 shows the error Err1 between the gossip-based
estimated inverse correlation matrix and the centralized
estimated inverse correlation matrix for various numbers of
randomized gossip iterations, and the error Err1 between
the inverse correlation matrix estimated using the proposed
CbDECM method and a centralized estimate. It is observed
that the error Err1 when using the gossip-based distributed
algorithm increases across time. This is in line with the
convergence analysis given in Section 6.2. As expected, the
error Err1 is decreased by increasing the number of itera-
tions. In addition, as the number of iterations is increased,
the increase of the error across time slows down. Moreover,
we observe that the CbDECM algorithm converges to a very
accurate estimate of the inverse correlation matrix after an
initial increase of the error (which is due to the floating-
point relative accuracy of the Matlab).

Fig. 5 depicts the estimation performance of the gossip-
based distributed estimation algorithm and the proposed
CbDECM algorithm as a function of the number of data trans-
missions per time frame. From Fig. 5, we see that the error
ME1 of the gossip-based distributed estimation algorithm is
decreased by increasing the number of data transmissions per
time frame. In addition, we observe that both the transmis-
sion costs and the error of the gossip-based processing for
distributed estimation of the inverse correlation matrix are
higher than that for the proposed CbDECM algorithm.

8.3. Estimation of a target signal

This section discusses the performance when the pro-
posed framework for distributed matrix inverse estimation



0 1 2 3 4 5 6

x 104

−300

−200

−100

0

100

200

300

data transmissions per time frame

M
E

1 (
dB

)

Performance comparision

CbDECM
Gossip−based

Fig. 5. The mean error ME of node 1 with 1 dB input SNR versus data transmissions per time frame.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−400

−300

−200

−100

0

100

200

300

400

time frame

E
rr

1 (
dB

)

Gossip T1=T2=100
Gossip T1=T2=200
Gossip T1=T2=300

CbDECM

Fig. 4. The error Err of node 1 with 1 dB input SNR versus time frame.

Y. Zeng, R.C. Hendriks / Signal Processing 107 (2015) 109–122 119
is used in combination with an MVDR beamformer. The
scenario in this experiment considers the case where the
source of interest for a node i is private and selected from
one of the available sources in the environment depicted
in Fig. 3. The steering vector di from the desired source of
node i to all microphones in the network is assumed to be
known only locally. For comparison, we use the distributed
delay and sum beamformer (DDSB) presented in [19]. This
DDSB is essentially an MVDR defined as in (3) where RV is
assumed to be diagonal. This DDSB thus does not need the
full correlation matrix, but is only in need of the diagonal
elements, i.e., the noise PSD per microphone. The
distributed MVDR beamformer with the CbDECM algo-
rithm and the DDSB is based on similar setup where a
clique-based graph is used and the steering vectors are
assumed to be known a priori. To compare the distributed
beamformers with their centralized versions and evaluate
their performance, we also compare to the centralized
MVDR (CMVDR) beamformer and the centralized delay
and sum beamformer (CDSB) in this experiment. For the
DDSB and the CDSB, the noise power spectral density
(PSD) tracking algorithm in [22] is used to estimated the
noise PSD. Moreover, for a fair comparison we set the
number of data transmissions in the DDSB such that it is
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equal to the number of required data transmissions in the
CbDECM.

To compare the performance of the proposed CbDECM
algorithm and the centralized estimation algorithm for
estimating the inverse correlation matrix, we employ the
estimated inverse correlation matrices of the CbDECM
algorithm and the centralized algorithm in the MVDR
beamformer as

Ŝi kð Þ ¼ dH
i R̂

�1
Y ðk�1ÞYðkÞ

dH
i R̂

�1
Y ðk�1Þdi

; ð26Þ

where ŜiðkÞ is the frequency domain DFT coefficient of the
beamformer output, and R̂

�1
Y is the estimated inverse

correlation matrix. Notice that we explicitly mention here
the dependency on time-frame k for clarity. Since each
node in the network has the estimates of R̂

�1
Y ðk�1Þ,

R̂
�1
Y ðk�1ÞYðkÞ and R̂

�1
Y ðkÞ at time frame k, an alternative

approach to incorporate the estimated inverse correlation
matrix from frame k instead of k�1 as in (26) is given by

Ŝi kð Þ ¼ dH
i R̂

�1
Y ðkÞðR̂ �1

Y ðk�1ÞÞ�1R̂
�1
Y ðk�1ÞYðkÞ

dH
i R̂

�1
Y ðkÞdi

: ð27Þ

Obviously, the computational complexity of (27) is

higher, since (27) requires in addition to compute R̂
�1
Y ðkÞ

ðR̂ �1
Y ðk�1ÞÞ�1. To distinguish the estimation methods in
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(26) and (27), we denote the algorithm in (26) by
CbDECM1, and the algorithm in (27) by CbDECM2.

To evaluate the performance of the proposed algorithm
we compute the mean square-error (MSE) between the
estimated desired signal and the clean speech signal. The
MSE for node i is averaged over all time frames and
frequency bins, and is give by

MSEi ¼
1
~KF

∑
~K

k ¼ 1
∑
F

f ¼ 1
jŜi f ; kð Þ�Si f ; kð Þj2; ð28Þ

where Siðf ; kÞ is the frequency domain DFT coefficient of the
desired speech signal of node i. In addition, we qualify the
speech quality and the speech intelligibility of the estimated
desired signal in terms of the segmental SNR and the short-
time objective intelligibility measure (STOI) [23], respectively.
The segmental SNR for node i is defined as

SNRi;seg ¼
1
~K

∑
~K

k ¼ 1
10 log10

∑F
f ¼ 1jSiðf ; kÞj2

∑F
f ¼ 1jŜiðf ; kÞ�Siðf ; kÞj2

: ð29Þ

Fig. 6(a) and (b) shows the noise reduction perfor-
mance of the distributed beamformers and their centra-
lized versions in terms of the segmental SNR and the MSE,
respectively, while Fig. 6(c) show the instrumental speech
intelligibility of the beamformer output. In Fig. 6(a)
and (b), we observe that the speech quality of the
CbDECM1 is very close to the CMVDR and the CbDECM2.
More specifically, the difference between the segmental
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SNR of the CbDECM1 algorithm and the CMVDR in Fig. 6(a)
is decreased from 0.3 dB to 0.1 dB with increasing SNR of
the noiseþtarget input signal. Similarly, the difference
between the MSE of the CbDECM1 algorithm and the
CMVDR in Fig. 6(b) decreases from 0.3 dB to 0.1 dB. This
is reasonable since the CMVDR uses the estimated inverse
correlation matrix of the current time-frame k to estimate
the desired signal, while the CbDECM1 algorithm uses the
estimated inverse correlation matrix of the previous time
frame k�1. Fig. 6(c) shows that the speech intelligibility in
terms of STOI of the CbDECM1 algorithm is identical to the
CMVDR and the CbDECM2 algorithm. All three figures in
Fig. 6 show that both the speech quality and the speech
intelligibility of the CbDECM2 reach the same performance
as the CMVDR. This can be explained by the fact that the
estimated inverse correlation matrix of both CbDECM
based algorithms converge to the estimated inverse corre-
lation matrix of the centralized estimation algorithm. This
is consistent with the experiment results given in Figs. 4
and 5. In addition, all three figures in Fig. 6 show that
the improvement of the MVDR beamformers (CMVDR,
CbDECM1 and CbDECM2) over the DDSB and the CDSB is
increased from 1 to 10 dB in terms of the segmental SNR
with increasing input SNR. A similar performance
improvement is shown in terms of MSE and STOI. This
should not come as a surprise, since the potential improve-
ment of the MVDR beamformer is obtained by taking noise
correlation into account. Moreover, all distributed beam-
formers (DDSB, CbDECM1 and CbDECM2) converge to their
centralized versions with sufficient data transmissions per
time frame.
9. Conclusions

In this paper, we proposed a framework for distributed
estimation of the inverse correlation matrix in a randomly
connected network. The proposed framework is based on
the fact that using recursive exponential smoothing in
combination with the Sherman–Morrison formula, the
estimation of the inverse correlation matrix can be struc-
tured as two rounds of averaging consensus problems. We
first investigated the use of gossip processing for distrib-
uted estimation of the inverse correlation matrix, since
gossip processing is an well known approach for solving
averaging consensus problems. However, due to the fact
that the inverse correlation matrix is updated recursively
across time, the convergence error between the gossip-
based estimated correlation matrix and the centralized
estimated correlation matrix accumulates across time.
In addition, we therefore also proposed a clique-based
distributed algorithm to eliminate this convergence error.
This algorithm is referred to as clique-based distributed
estimation of the inverse correlation matrix (CbDECM).

The proposed CbDECM is analyzed and compared with
a centralized estimator in terms of transmission costs. The
comparison is done in a scenario, where the source of
interest of a user in the network is considered to be
privacy preserving by hiding the information of the steer-
ing vectors. In such a privacy preserving scenario, each
user in the network is assumed to know the steering
vectors locally, and thus each user requires an estimate of
the inverse correlation matrix.

Simulation results with the gossip-based estimation
approach showed that the convergence error of the
estimated inverse correlation matrix increases across time,
while the CbDECM algorithm converges to the same
estimate as the centralized estimator. Moreover, experi-
ments on the comparisons between the proposed CbDECM
algorithm and the distributed delay and sum beamformer
in referenced literature illustrated the performance
improvement of the proposed CbDECM algorithm by
incorporating noise correlation. Compared with other
distributed adaptive beamformers, the proposed distribu-
ted MVDR beamformer in this paper make use of prior
knowledge on the steering vectors. For future research it
will be interesting to investigate how to estimate the
steering vectors in a distributed way while still preserving
the users' privacy with respect to his source of interest.
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