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Multizone Speech Reinforcement
João B. Crespo and Richard C. Hendriks

Abstract—In this article, we address speech reinforcement
(near-end listening enhancement) for a scenario where there are
several playback zones. In such a framework, signals from one
zone can leak into other zones (crosstalk), causing intelligibility
and/or quality degradation. An optimization framework is built by
exploring a signal model where effects of noise, reverberation and
zone crosstalk are taken into account simultaneously. Through the
symbolic usage of a general smooth distortion measure, necessary
optimality conditions are derived in terms of distortion measure
gradients and the signal model. Subsequently, as an illustrative
example of the framework, the conditions are applied for the
mean-square error (MSE) expected distortion under a hybrid
stochastic-deterministic model for the corruptions. A crosstalk
cancellation algorithm follows, which depends on diffuse rever-
beration and across zone direct path components. Simulations
validate the optimality of the algorithm and show a clear benefit
in multizone processing, as opposed to the iterated application
of a single-zone algorithm. Also, comparisons with least-squares
crosstalk cancellers in literature show the profit of using a hybrid
model.

Index Terms—Near-end listening enhancement, speech rein-
forcement, multizone, public address system.

I. INTRODUCTION

R ECENTLY, the field of near-end (source-based) listening
enhancement, also termed speech reinforcement, has

gained increasing interest in the research community. While
traditional speech enhancement systems apply a time-frequency
weighting to a received noisy speech signal to enhance speech
components with respect to the noise [1], source-based systems
(e.g., [2]–[6]) apply the weighting at a clean speech source in
the hope that, when played back in—and corrupted by some
acoustic communication channel, degradation is minimized at
the listener. Examples of applications which could benefit from
speech reinforcement range from mobile telephones or hearing
aids to conference or public address (PA) systems.
In general terms, speech reinforcement works as depicted in

Fig. 1. A certain source speech signal (e.g., public announce-
ment) is pre-processed (“reinforced”) before being played back
in a corruptive acoustic channel, and is listened to by a re-
ceiver submerged in the environment. The channel can be mod-
eled convolutive, e.g., if the environment is reverberant, and/or
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Fig. 1. Speech reinforcement concept.

Fig. 2. Two-zone speech reinforcement system example (train station). Speech
in one platform can leak into the other. Black boxes are loudspeakers, with cor-
responding directivity diagrams.

noise-additive for the situation that there are noise sources in
the vicinity of the listener. Also, the reinforcement algorithm
can take advantage of knowledge about the channel through the
measurement of its properties (e.g., noise spectral densities or
reverberation parameters).
Current source-based systems only consider a single play-

back region where some kind of speech reinforcement is
applied. However, many practical scenarios consist of multiple
regions or zones, e.g., consider public addressing in airports,
train stations or shopping malls. In such a multizone situation,
signals played back in one region can interfere with other
regions, a phenomenon which we call acoustic leakage or
crosstalk. To illustrate how this phenomenon can be a source of
nuisance, consider a two-zone public address system installed
on two platforms of a train station (Fig. 2), with some recip-
rocal crosstalk between zones. Consider also a conventional
single-zone signal recovery strategy in each zone (e.g., [2]). In
this scenario, each zone working autonomously will potentially
consider the speech coming from the other zone as noise,
trying to amplify its own speech such as to mask the speech
from the other zone. Due to the direct (linear) relation between
playback level and leakage, a competition effect arises where
each zone always tries to amplify even more than the other
zone up to the level that the reinforced signals saturate. The
instable positive feedback situation that arises hereby motivates
the importance of the study of reinforcement taking multiple
zones into account. Note that, although an ideal noise estimator
would be designed not to detect the crosstalk speech as noise, a
practical noise estimator will always provide for speech leakage
into the noise estimate (e.g., due to false negatives in voice

2329-9290 © 2013 IEEE



CRESPO AND HENDRIKS: MULTIZONE SPEECH REINFORCEMENT 55

activity detection [1]), and this leakage would get aggravated
in a multizone situation.
In contrast to the sub-optimal usage of independently

working conventional single zone schemes with their potential
issues as described above, we aim to pre-process all speech
signals from the different zones jointly. As far as the authors’
knowledge goes, multizone speech reinforcement as described
in this paper has not been previously studied, and constitutes
the main novelty of this paper.
Also, many speech reinforcement schemes are designed

taking empirical and/or heuristic considerations into account
without a formal quantitative methodology for pre-processing
(e.g., [2], [3], [7]–[9]). In contrast, in our approach, we work
by quantifying the degradation between source and received
speech at the listener by a general functional measure ,
dubbed as the distortion measure. The measure could either
model quality or intelligibility degradation by making use of an
adequate model which, e.g., could come from a psycho-acous-
tical model of distortion detectability [10]–[12] or from some
speech intelligibility model [13]–[15]. See [16] for a compara-
tive overview on some distortion and intelligibility measures.
Another observation about current speech reinforcement al-

gorithms is that they either disregard explicit channel infor-
mation [17], [8], [7], [9], or the dependence is only on noise,
not taking any convolutive (reverberant) effects into account
[18], [2]–[6]. Although some work has also been done on rever-
berant channels [19]–[21], the so-called “reverberation pre-pro-
cessing” algorithms, that work does in turn not take the ef-
fect of noise into account. In a multiple source/receiver set-
ting, crosstalk cancellation schemes (e.g., [22]–[25]) also fail
to take noise into account. For an overview on all of these al-
gorithms, see Section II. In opposition to the described partial
contributions, we synergize effects of reverberation, crosstalk
and noise by developing a framework for multizone speech re-
inforcement with a signal model which considers the three ef-
fects simultaneously. On the basis of a suitable quantification
of speech distortion (and/or intelligibility), we undergo a math-
ematical optimization problem, where we search for the optimal
joint processing scheme for all zones which minimizes the ex-
pected global distortion, also measured jointly for all zones.
We follow an abstract methodology, by splitting the solution
of the minimization problem in two steps. In the first place,
we derive general necessary conditions for the optimality of
any smooth distortion measure. These conditions are given in
terms of the acoustic channel from the proposed signal model,
and of gradients of the distortion measure. Subsequently, we
apply the derived conditions to a particular distortion measure.
This two-stepmethodology has the advantage of reusability, i.e.,
given the abstract conditions, several choices of distortion mea-
sures can be made, each one delivering a different algorithm op-
timized to the characteristics of its own distortion model. Note
that algorithms based on optimization of a merit or cost figure
(as here described) have been studied in the past [18], [5], [6],
but these schemes do not use an abstract functional formulation
(distortion measure ) and/or do only consider a single zone.
For the sake of simplicity, and to demonstrate the use of

the general derivations, we choose the error distortion mea-
sure (euclidean distance) for concretizing the general optimality

conditions in our work. Thereby, we derive a pre-processing
scheme using a hybrid deterministic-stochastic description of
the acoustic channel. The scheme is an acoustic crosstalk can-
cellation scheme, and is given in terms of direct-path compen-
sating terms which are perturbed by a stochastic component
modeling late reverberation. In the limit case of low reverber-
ation, the scheme boils down to pure direct path compensa-
tion as in conventional crosstalk cancellers [26]. Although the
simple scheme derived takes a form similar to known crosstalk
cancellers [26], [24], the problem setting devised here is struc-
turally different. Indeed, in crosstalk cancellation, one is faced
with a filter design problem, where an overall impulse response
should be matched to a desired response [23], whereas in our
work, we are minimizing distortion between source and repro-
duction signals by means of our multizone framework. Due to
the observed relation between multizone speech reinforcement
and crosstalk cancellation, we review work in the latter subject
in Section II-C.
Also, the derived algorithm will be seen to be independent of

noise statistics (see Section V), not making full use of the syner-
getic framework described above. Nevertheless, we would like
to stress that this fact is dictated by the simple nature of the
distortion measure chosen for application in the general frame-
work, and that by choosing an adequate (more complex) distor-
tion measure, noise-dependent algorithms can be derived (see
Section VII for a discussion).
The paper is organized as follows. In Section II, we review

previous work on speech reinforcement, reverberation pre-pro-
cessing and on the related subject of acoustic crosstalk can-
cellation. Section III constructs the mathematical framework
for multizone reinforcement that will be used throughout the
paper. Section IV contains the core of the work; here, we de-
rive necessary optimality conditions for the solution of the op-
timization problem motivated in the introduction and formally
stated in Section III. Section V applies the derived conditions to
the -error distortion measure with a hybrid deterministic-sto-
chastic channel model, resulting in a crosstalk cancellation al-
gorithm. In Section VI, we present simulations validating the
algorithm of Section V. Section VII reflects upon the devel-
oped theory, points out some limitations thereof and states some
challenges for future work. Finally, Section VIII concludes the
article.

II. RELATED WORK

A. Speech Reinforcement for the Noisy Channel

Pioneering research on source-based speech processing with
the aim of bridging intelligibility degradations concentrated
on simple degradations and pre-processing. The algorithms
were based on empirical studies that concluded that higher
frequencies and the frequently thereto associated consonant
components of speech are more important for intelligibility than
low frequencies and vowels, respectively [27]–[29]. Within
the noisy channel context (without reverberation), Thomas and
Niederjohn [30] introduced a speech reinforcement system
consisting of a high pass filter followed by an infinite clipper.
Griffiths [18] derived a linear filter which was optimal with
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respect to the Articulation Index [27], [31] objective intel-
ligibility measure under power constraints. The filter had a
high-pass characteristic which, independently of noise statis-
tics, whitened processed speech. Also in a power constrained
setting, Niederjohn and Grotelueschen [17] introduced dynamic
range compression for intelligibility enhancement. Indeed, it
can be noted that these schemes were designed to shift the
energy of speech upwards in frequency (through high-pass
filtering), and to reinforce consonants (through the additional
usage of compressive mechanisms).
More recently, Hall and Flanagan [8] revisited the problem,

applying comparable high-pass filtering techniques for speech
in babble noise. Also, Chanda and Park [32] proposed the usage
of a time-variant high-pass filter which provided for an initial
consonant boost on a vowel-consonant transition. Skowronski
and Harris [7] applied consonant-vowel energy ratio boosting
by means of a voicing detector, in turn based on spectral flat-
ness thresholding. The boosting ratio was chosen using empir-
ical considerations.
The empirical observation that transient components in

speech are more important than stationary ones [33], [34] led to
algorithms enhancing transients. Yoo et al. [9] used a high-pass
filter followed by a signal splitter in transient and quasi-steady
state (QSS) components, boosting the former components with
respect to the latter by a heuristically determined amount.
In parallel, still within the noisy channel context, researchers

focus also on time-frequency (TF) weighting algorithms. In
[2], Sauert and Vary studied reinforcement in a power un-
constrained setting. They proposed heuristically motivated
weightings which perform SNR recovery, by setting the en-
hanced speech power spectrum at a certain fixed log distance
from the noise power spectrum. Shin et al. [35] proposed
a similar idea, where instead of the SNR, they recover the
perceptual loudness in each frequency. In [3], Sauert and Vary
extended their previous work into the power constrained set-
ting by proposing a frame-by-frame normalization procedure.
With this method, redistribution of energy across frequency
is possible. Also, a new heuristic weighting was introduced
where, in opposition to the SNR recovery case, frequency bands
corresponding to high SNR are reinforced in exchange for low
SNR bands. The new approach was motivated by modeling
cognitive processing of speech in the human brain through the
usage of a Wiener filter as a pre-processing step. The proposed
TF weightings were simulated and validated using the Speech
Intelligibility Index (SII) [36].
A less empirical/heuristic and more mathematically driven

methodology has been employed in the work hereafter.
In [4] and [5], Sauert and Vary optimized the SII in a TF
weighting framework in the power unconstrained and con-
strained scenarios, respectively. The authors showed that the
new algorithms outperform the empirical algorithms previ-
ously proposed by them. Finally, Taal et al. [6] developed a
TF weighting working in an internal auditory domain which
redistributes energy in time and frequency, by optimizing a
perceptual distortion measure [11] analytically. The algorithm
inherits the short-time sensitivity of the distortion measure it is
optimized for, resulting in amplified transients.

B. Reverberation Pre-Processing

All schemes described above concern the case where speech
reinforcement is applied to increase robustness with respect to
corruption in a noisy channel without reverberation effects. Al-
though not as extensively as in the noisy channel case, some
work has also been done for the reverberant channel. As men-
tioned in Section I, this work does not take noise corruptions
into account. Langhans and Strube [37] introduced modulation
filtering to pre-process reverberant speech. There, the speech
signal is filtered in such a way that the signal power in critical
bands gets enhanced by a fixed transfer function. However, no
modulation depth increase could be observed after reverbera-
tion. Kusumoto et al. [19] applied heuristically designed and
data-derived modulation filters to assess whether intelligibility
could be increased in reverberant conditions.
Besides modulation filtering, steady-state suppression has

been proposed for source-based reverberation processing. The
rationale behind this kind of processing is that intelligibility
degradation occurs in reverberated speech when the rever-
berant tails of high energy steady-state components mask
subsequent low-energy regions. By decreasing the energy of
these steady-state regions, masking can be commensurably
decreased and intelligibility is recovered. Hodoshima et al.
[20] explored this idea using a steady state suppressor, which
thresholds a measure based on the sum of squares of linear
regression slopes of multiband speech envelopes.
Finally, reverberation pre-processing schemes have been pro-

posed on the basis of optimization procedures. In [38], the au-
thors shaped the global system response (reverberant channel
composed with a pre-processing filter) to a desired response
by minimizing their distance. In [21], an -norm based ap-
proach was undertaken, with an objective function given by
a (log) ratio of undesired to desired global impulse response
segments.

C. Acoustic Crosstalk Cancellation

In the following, we overview work on the subject of acoustic
crossstalk cancellation, which is a topic related to multizone re-
inforcement. In crosstalk cancellation, the aim is to pre-filter
and mix a set of multiple sources, such that when the sources
are corrupted by a convolutive mixing channel (similarly to the
multizone case, see Section III), each source gets through to its
corresponding destination without crosstalk (signals from other
sources). The idea was introduced for the two-source/receiver
case byAtal and Schroeder [39], where two loudspeakers should
deliver two signals to the ears of a listener separately to create
a virtual 3D sound impression. Basic schemes work with the
pure deterministic inverse of the channel transfer, which is fre-
quently modeled as a direct-path delay [26]. Nevertheless, this
kind of schemes is inherently unrobust with respect to loud-
speaker-listener positioning, only working in a small listening
region (“sweet spot”). To bridge this difficulty, in [22], the au-
thors derive optimal loudspeaker positions which minimize the
condition number of the channel transfer matrix.
Subsequent work concentrates on robust filter design tech-

niques which minimize some distance measure between desired
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(multichannel) filter responses and the global response of the
system. In [23], a least-squares approach was proposed for this
purpose. Optimum filters were derived for a single head posi-
tion and taking multiple positions into account by spatial av-
eraging. Kallinger and Mertins [24] model the channel by in-
cluding a stochastic perturbation term, deriving thereby optimal
filter coefficients in the squared sense. In addition to traditional
-norm based distances, other cost criteria have also been used

in designing the filter coefficients. Examples are approaches
using regularized least-squares [40], approaches based on the
-norm [41] (minimax approaches) and based on the more

general -norm [42]. Also, this last work combines crosstalk
cancellation with the reverberation pre-processing strategies of
[21] (described in Section II-B), and it was extended in [25]
to include stochastic perturbations and a regularized objective
function.

III. PRELIMINARIES

In this section, we build an optimization framework for
speech reinforcement based on an affine signal model and
an unconstrained optimization problem, where the objective
function is given by the expected value of a general real-valued
smooth (continuously differentiable) distortion measure.

Beginning with notation, will be used for defining func-
tions and operators. For scalars we will use lowercase regular
font, whereas for vectors, we use lowercase bold and for ma-
trices uppercase bold letters. A vector of size containing ones
in all entries will be denoted by . The norm will be de-
noted by . Furthermore, we denote vector/matrix transpo-
sition, conjugation and conjugate transposition by
and , respectively. Indexing vector and matrix expressions
will be done using the notation and , respectively, where
(resp. ) is the index. The operator builds a
(block) diagonal matrix using the argument scalars/matrices as
diagonal entries. For a vector input

is understood as . Also, we notate
random variables by upright letters (e.g., v, ) and their realiza-
tions by their slanted equivalent . Deterministic variables
are also notated slanted. The imaginary unit will be denoted by
. As to differential calculus, we will use the notation to
denote the transposed Jacobian matrix of a multivariate func-
tion with respect to vector argument , using thus the Hessian
formulation for differentiation (gradients as column vectors).
As motivated in Section I, we consider a speech rein-

forcement scenario working across multiple zones, say
zones. We consider frame-based signal

representations in the discrete Fourier transform (DFT) do-
main. These could come, e.g., in the context of a ubiquitous
DFT-based speech processing scheme. The signal processing
flow we consider is shown in Fig. 3. We depart from the clean
speech signal. Denote the -th DFT frequency bin of the
clean speech of zone by

, where is the DFT size. For reasons of
notational convenience in writing down the signal model of
Fig. 3, we consider a vector of clean speech stacked up for all

Fig. 3. Multizone speech reinforcement model for fixed frequency
(index omitted). The channel is a mixing matrix of filters

.

zones for each fixed frequency , denoted by , and
given by

(1)

For a convenient compact notation, we will further pack the
“per-frequency” vectors together for all frequencies ,
defining the joint clean speech vector for all zones and fre-
quency bins by

(2)

We also note that this model supports a source signal which is
the same for all zones (single source broadcast), in which case
we have for some single-zone source speech
DFT coefficient .
The sources packed in get jointly processed by

pre-processing functions (functions in Fig. 3),
thereby producing pre-processed signals, denoted by
and , in analogy to (1) and (2), respectively. In general, the
processed speech is a function of the clean speech signal
and of noise and channel statistics. The source and processed
speech will be modeled to be deterministic along our analysis,
due to the fact that in source-based speech processing, the
source realizations are directly available, without the necessity
for an estimation process.
The received signal in each zone is then modeled as a com-

bination of appropriately weighted signals from all (pre-pro-
cessed) zone sources, plus a local noise term, as can be seen in
Fig. 3. More formally, as we did for the pre-processed speech,
we define the received speech and additive noise term

in analogy to (1) resp. (2). These are modeled as sto-
chastic processes, where we assume a zero-mean behavior of
the noise process for all frequencies . As to the acoustic
channel transfer between pre-processed and received speech,
also modeled as a stochastic process, we denote the -th DFT
frequency bin of the transfer function between zone and zone
by , where is the zone where the speech is played back
and is the target (reception) zone. In analogy to (1), wework on
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a per-frequency notation by fixing frequency component and
collecting all frequency response values of the transfers

, in an -by- matrix :

...
...

. . .
...

(3)

As presented in Section I, effects of reverberation, crosstalk and
noise can be included simultaneously in our framework. This
is done by adequately modeling the components for re-
verberation, for crosstalk, and for additive
noise effects. In addition, for compacting the channel informa-
tion for all , we define the joint channel matrix by the
block-diagonal matrix

(4)

Using the symbols introduced, is formally modeled by (see
Fig. 3)

(5)

for all frequencies . In this affine model,
the matrix product

(6)

models the mixing operation occurring from all zones into a
specific zone , and each term in the matrix product
models convolution, which got mapped into a product in the
frequency domain. The noise term on the right hand side of
(5) reflects the local additive noise model which was postulated.
A more compact notation of (5) reads

(7)

where the definitions of (2) (and extensions) and (4) were used.
The aim of our work is then, given a mathematical descrip-

tion of an overall distortion measure , to find the opti-
mally preprocessed signal which minimizes the expected dis-
tortion. We assume the distortion measure to be real-valued and
continuously differentiable (in class ) when viewed as a (real)
function of the real variables unraveled by , obtained by
taking its real and imaginary parts and , respectively. See
Section VII for a discussion on the choice of this category of
distortion measures. In a mathematical formulation, we want to
find the minimizer of the optimization problem

(8)

where the affine function is the one of (7).

IV. OPTIMALITY CONDITIONS

In this section, we derive necessary conditions for the pro-
cessed speech to solve the problem expressed in (8). We ar-
rive at expressions given in terms of expectations of gradients
of the distortion measure and of the acoustical channel.

To do so, we first consider the function
defined by , i.e., the objec-
tive function of (8) taken as a function of the real and imaginary
components of . We note that if
is in , then so is , since it is an integral
of functions of , corresponding to the expectation
operator worked out, composed with a signal model

, corresponding to the function in (7).
Furthermore, it is also known from calculus, that if is
a locally optimal point of (i.e., if it maximizes or minimizes
in an epsilon neighborhood), then its gradient should vanish:

(9)

By introducing the complex differential operators ([43], Ch. 13,
Sec. 2)

(10)

and weighting and combining (9) accordingly, we arrive at the
equivalent conditions

(11)

where . As the distortion measure is a
real-valued (complex argument) function, it follows from the
property in ([43], Ch. 13, Sec. 2.3(b)) that the two branches in
(11) are equivalent. In practice, this means that we only have to
solve for one of the conditions of (11), since the other condition
will be automatically satisfied.
We now work out the left-hand side of (11) (lower branch).

We get the succession of equalities

(12)

(13)

(14)

(15)

In (12), we assume that the tail of the probability density func-
tion (PDF) of converges to zero fast enough so that we can
exchange differentiation and integration (expectation) order; in
(13) we use the chain rule for the complex differential opera-
tors in question ([43], Ch. 13, Sec. 2.2); in (14), we use the fact
that is a complex analytical function to state ([43], Ch. 13,
Sec. 2.1) , letting thereby the first summand of (13)
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vanish, and we use further properties of the complex differential
operators ([43], Ch. 13, Sec. 2.3(b)); (15) uses (7) and computes
the (transposed) Jacobian matrix .
If we compare (15) with (11) (lower branch), we find out that

the necessary conditions for a pre-processed speech vector to
optimize the expected value of the distortion measure
are

(16)

By taking the block diagonal structure of in (4) into account,
we can write (16) using the per-frequency gradient entries as

(17)

In words, optimality of the pre-processed speech is achieved
when, for each frequency bin , the complex gradient vector of
the distortion measure with respect to the received DFT bins
in all zones, , is orthogonal to all columns of the
channel matrix .
We can simplify (17) if we make further assumptions with

respect to the distortion measure. Indeed, if we assume the dis-
tortion measure to be additive over frequency, i.e., if we take a
distortion measure of the form

(18)

for some intermediate distortion measure operating on the
per-frequency sub-variables, all terms but the one with
vanish while differentiating in (17). The condition simplifies to

(19)

V. APPLICATION EXAMPLE

We now apply the optimality condition derived in Section IV
to a specific distortion measure, namely, to the error (eu-
clidean distance) between the clean and received complex
speech DFT coefficients. After working out the optimality con-
dition, we model the channel present in the resulting equation
as a hybrid deterministic-stochastic process. The determin-
istic component models the direct path in each zone transfer,
whereas the stochastic component models the production of a
late diffuse sound field.
Consider the distortion measure given by

(20)

where and collect all the frequency and zones of the clean
and received speech signals as in (2). It is easy to see that the
measure of (20) is additive over frequency; it is of the form of
(18) with

(21)

If we calculate its complex gradient vector with respect to
and apply (19), we get the raw form of the optimality condition,
namely

(22)

We can now work out the optimality condition of (22) by
using the signal model of (5). We get

(23)

Finally, we make the assumption that all zone transfers are un-
correlated with the noise DFT bins for all zones, and argue that
for a non-degenerate distribution of for all , the correla-
tion matrix is positive definite. With these as-
sumptions, the correlation matrix is invertible and the processed
signal can be given as

(24)

As can be seen in (24), the MSE optimally pre-processed
speech signal is a stochastic pseudoinverse-like solution, given
in terms of first and second order moments of the convolutive
channel . Also, due to the assumption that the noise and
channel terms are uncorrelated, the solution does not depend on
noise statistics.
The MSE optimal algorithm of (24) is abstract in the sense

that no assumptions have been made what respects to the form
of the channel . In the following, we deduce a concrete
reinforcement algorithm by incorporating a parametric hybrid
deterministic-stochastic model in the channel, and subsequently
giving the abstract algorithm of (24) in terms of the parameters.
Specifically, we model the impulse response of the zone

transfer from zone to zone as

(25)

where is the direct path amplitude, is a
decaying exponential parameter, is the discrete Heaviside
step function, are delays satisfying

, and is a real white stationary random process with
first and second order moments given by

(26)

for all , and
. In words, we model each impulse response between

two zones as a sum of a deterministic direct path response with
a stochastic response corresponding to a diffuse sound field. We
thus simplify the early impulse response by neglecting early re-
flections and the late response by assuming that all reflections
are stochastically described by an idealized response, similar to
the Polack model [44]. Furthermore, we also assume this ideal-
ized response to be uncorrelated in time and across zones. See
also Fig. 4 for a schematic picture of the impulse response.
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Fig. 4. Impulse response between zones (example).

To perform the computation of the channel matrix com-
ponents for all zones and
frequencies , we transform (25) into the
frequency domain using the continuous Discrete-Time Fourier
Transform (DTFT) , and sample the DTFT at an
evenly spaced grid . The vector dimension will
be considered large enough so that time-domain aliasing has
negligible effect on the model. The result is given by

(27)

We are now ready to compute the first and second order mo-
ments and , respectively, by simple
stochastic manipulation rules. As is zero-mean, (26), we
obtain

(28)

For the second order moments, we have

(29)

(30)

(31)

In (30), we use (27), linearity of the expectation operator, the
moments of (26) and the Kronecker delta notation equal to
one when and equal to zero when ; in (31), we
compute the sum of the geometric series of base . In matrix
notation, the first and second moments are given by

(32)

(33)

where is the direct path matrix, with each component
equal to the direct path transfer function of the corresponding
cross-channel (zone pair), i.e.,

(34)

and the diagonal matrix is built from the (real-valued)
reverberation vector , with entries given
by

(35)

for . We can relate the reverberation vector
directly to the diffuse component of the impulse response by
noting that, from (25), the diffuse response energy of cross-
channel is equal to

(36)

Indeed, if we compare (35) and (36), we find out that for each
component , the reverberation vector is expressed as a sum of
the diffuse response energies of the channels from that zone to
all other zones, i.e., we have

(37)

Summarizing, by incorporating the newly acquired informa-
tion in (24), we state that the optimal processing scheme for the
distortion measure with a channel matrix following the model

of (25) is given by

(38)

where and are given componentwise in (34) and (35),
respectively.

VI. SIMULATIONS

A. Room Model and Simulation Parameters

To assess the performance of the proposed MSE optimal al-
gorithm of Section V, we apply it in a multizone speech rein-
forcement context, with zones. The multizone channel
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Fig. 5. Rectangular box room model (schematic). Black dots denote zone
placement. (a) 3D sideview, (b) Top view.

is used to model a room with a rectangular box form of di-
mensions 20 20 5 m (L W H), where the four zones
are put at the corners (Fig. 5) at a height m. This room
setup can be seen as an idealization of the practical scenario
of, e.g., a museum room, where there are multiple exhibited
paintings, and around each painting, some interpretive speech
segment is played back continuously. A guard distance of half
a wavelength is used with respect to the walls, since the ap-
proximation of a diffuse late impulse response as in (25) is only
valid starting from that distance [45]. For this, we used a ref-
erence wavelength cm, with
m/s equal to the speed of sound, corresponding to the frequency

Hz. The distance between loudspeaker (source)
and microphone (receiver) in different zones is approximated
by the point distance between zones as depicted in Fig. 5. As
to loudspeaker-microphone pairs in the same zone, we set their
distance to 10% of the smallest point distance between zones,
which results in m. The criterion to choose
this distance is that it is much smaller than the distance between
zones, so that the approximation of using the point distance for
loudspeaker-microphone separation in different zones remains
accurate.
With this shoebox model, the parameters of the stochastic

model in Section V are determined as follows. The direct path
magnitudes in (34) are modeled using a standard free-field
law,

(39)

where is the distance between zone and . The direct path
phase delays are computed from these distances using the
distance-time relation of a travelling wave. As to the rever-
beration vector components of (37), we first model the di-
rect-to-reverberation ratio, (by definition),
using [45]

(40)

where we simplified the sources (loudspeakers) to be omnidi-
rectional, is the 60 dB reverberation time, and and are

the room surface and volume, respectively. Using (39) and (40),
we come to diffuse reverberation response energies given by

(41)

We note that these energies are independent of the zone pair
(index) , since all zones are placed in the same room and the
diffuse sound field is homogeneous. Consequently, we also have
reverberation components which are independent of zone ,
and which are given by

(42)

where we used (37) and (41), and noted the independence of
on the zone pair.
Finally, the reverberation parameters and for the gen-

eration of the channel in (25) and (26) are computed using the
definition of 60 dB reverberation time and (36). Also here it
holds that they are index independent, and they are given by

(43)

where is the sampling frequency used. Last but not least, we
would like tomention that we set the diffuse response delay
equal to and use pseudorandom white Gaussian noise to
produce the stochastic component of (25).

B. Signal-to-Distortion Ratio (SDR)

Per zone, one hundred sentences are used, randomly chosen
out of the TIMIT database [46], each sentence having a duration
of at least two seconds. The sentences are silence-trimmed at the
extremities, processed and passed through the signal model ac-
cording to (5). In total, 19.1minutes of speech are used.We eval-
uate four noise types for , namely white Gaussian noise,
speech-shaped Gaussian noise (SSN), recorded babble noise
and a noise sample of trains passing by. The first two types
are rigorously wide-sense stationary, whereas the third type is a
real-life approximation to stationary noise, and the fourth type is
highly non-stationary. We vary the reverberation time from
10 ms to 10 s exponentially in steps of and the Signal-to-
Noise ratio (SNR) from 20 to 60 dB in steps of 10 dB. We use
three pre-processing cases for comparison, namely the original
proposed algorithm of (38), a single zone variant, where we run
the proposed algorithm independently for each zone (adapting
the equations for the case ), and a reference unpro-
cessed situation. Finally, besides evaluating the algorithm for
a multi-source broadcast as described, we evaluate the single
source broadcast case, , by setting the single
source speech as the speech of zone one of the multi-source
case. A total number of conditions are
thus evaluated. We compute the signal-to-distortion ratio (SDR)

(44)
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TABLE I
SIMULATION PARAMETERS USED IN SECTIONS VI-B AND VI-C

where denotes averaging across frames, for each condition.
All signals are sampled at a sample frequency kHz.

For the reconstruction of , we use a weighted overlap-add
(WOLA) mechanism, with frame and DFT size

, corresponding to 1.024 s speech segments. This unusu-
ally long frame size is used to accommodate the long reverbera-
tion tails of the impulse responses between zones for high rever-
beration times. Also, square-root Hann analysis and synthesis
windowing is used with 50% overlap. Regarding the filtering
operation in (6) (product on the right hand side of the equation),
a standard (non-weighted) overlap-add method is used. Finally,
the computation of the SDR in (44) is done with resource to
a short-time DFT (STDFT) analysis. The frame and DFT size
are again set to 16384, and a Hann analysis window with 50%
overlap is used. All parameters used for the simulation are sum-
marized in Table I.
Due to the large dimension of the results, only a represen-

tative selection will be shown here. In Fig. 6, we plot the dif-
ference between SDR in the processed and the unprocessed
cases, for the SSN noise type and multi-source input. The pre-
dicted error of this difference, measured by 95% confidence in-
tervals (CI’s), was calculated under the assumption of indepen-
dent Gaussian distortion samples , where is the frame
number. The magnitude of this error lies within 0.33 dB for all
SNR and values. Furthermore, we have found out that the
noise type has no influence on SDR results and, as such, we
perform the analysis for this exemplifying noise type only. We
observe that the proposed algorithm performs best for high SNR
and low reverberation times , corresponding in the limit to
a non-noisy and non-reverberant direct path component in the
channel of (25) and (5). In fact, it can be seen from (38) that for
this limiting case, the proposed algorithm boils down to

(45)

as for low the diffuse component vanishes. In words,
in the limit of low reverberation times, the proposed algorithm
boils down to a direct path compensation, as in early crosstalk
cancellation works [26]. The single-zone variant cannot achieve
the same performance due to the fact that only the intra-zone
path is compensated, being the direct paths of other zones not
taken into account.
We also observe that a decrease in SNR degrades perfor-

mance gradually, down to the level that no benefit is obtained by
the processing scheme. This is motivated by the additive noise
model and the noise independency of the proposed algorithm.

Fig. 6. SDR benefit upon processing compared to the unprocessed case, as a
function of and SNR. Multi-source broadcast scenario.

Furthermore, when varying in the high SNR region,
minimum performance is achieved in the order of one second,
and for higher again improvements are obtained, although
they are much lower than improvements for low reverberation.
We note that the characteristic which provides this dip in
performance is unrelated to the chosen frame size , as was
confirmed by simulations with a larger frame size (results not
shown).
Also, for high values, both multi- and single zone ap-

proaches perform approximately equally well, with only a slight
gain for the multizone case. Themotivation for this can be found
in the fact that the diffuse response energy gets larger than the
direct path energy for high (i.e., the DRR gets smaller than
one). Indeed, when this happens, the reverberant component
of the algorithm dominates and, seen that this component is
zone-independent for the proposed room scenario, multizone
specific processing fades.
The results described above concern the case where multiple

source signals are pre-processed in our multi-zone context. For
the case that the same source signal is used for all zones (single
source broadcast), a similar distortion figure as in Fig. 6 is ob-
tained (not shown). A difference of about 1 to 2.5 dB is observed
in the optimal operating region of low and high SNR (the
multi-source case performing the best), whereas in the other re-
gions no difference is observed. Also, the iterated single zone
algorithm shows the largest differences.

C. Objective Intelligibility Measures

The assessment in Section VI-B was further extended,
under the same test conditions, to two objective intelligi-
bility measures, namely to the running speech variant of the
speech transmission index (STI) ([14], Section IIA) and to the
short-time objective intelligibility (STOI) [15] measures. The
STI is a good estimator of speech intelligibility under rever-
berant corruption [47] and the STOI measure was designed for
time-frequency weighted (noisy) speech [15]. Both measures
are able to estimate speech intelligibility degradation caused
by additive noise correctly. Although no unified intelligibility
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Fig. 7. Simulated STI and STOI as a function of and SNR.

measure exists which was designed to predict corruptions
caused by source-based time-frequency weighting and rever-
berant corruption and additive noise simultaneously, we still
attempt to gain some insight on speech intelligibility with the
analysis of these measures applied in our framework. We also
note that we should not expect mandatory improvements a
priori of the proposed algorithm under these measures, since
the algorithm was optimized for the quadratic measure of (20)
and not for these more complex measures.
Fig. 7 shows the computed STI and STOI values as a function

of SNR and for the SSN and train noise conditions, for the
case of a multiple source broadcast. The white and babble noise
conditions display behavior similar to the SSN condition. Also,
for the STI, a CI analysis is more difficult to perform than for
the SDR of Section VI-B, since the STI is the result of a whole
chain of complex operations applied to a population average,
which in turn comes from power spectral density estimates [14].
For the STOI, the analysis is straightforward, since the STOI
is directly defined as a population average. Confidence errors
smaller than were obtained for the STOI, again under in-
dependent Gaussian assumptions.
As intuition tells, both intelligibility measures are monoton-

ically increasing for increasing SNR and decreasing . The
only exception to this is the STI measure for the train noise;
here, we find an unexpected increase of predicted intelligibility
with decreasing SNR. This can be motivated by the fact that the
STI operates on long-term power spectra of the signals being
compared, in contrast to short-time measures as STOI. Conse-
quently, the STI cannot incorporate temporal fluctuations of the
noise signal and is inadequate for non-stationary noise.
Furthermore, we observe that for low values, we can sort

from highest to lowest intelligibility as follows: multizone, iter-
ated single zone and unprocessed speech (not clearly visible for
low SNR from the angle used in the figure). This order is in-
tuitive since, as explained in Section VI-B, the multizone algo-
rithm then applies perfect direct path cancellation, whereas the
single zone variant applies partial compensation. In the other
extreme of high , we observe the inverse order: apart from
the STI for train noise analysed above, there is some predicted

intelligibility degradation, or at least no improvement, when ap-
plying the proposed algorithms (and more so for multizone than
for iterated single zone processing). The authors cannot be sure
if the predictions in this region are accurate, since neither STOI
was designed for reverberant corruptions nor STI for general
time-frequency weighted speech. Nevertheless, the figures do
stress the fact that optimization of a simple distortion measure
like the error may not always guarantee an intelligibility im-
provement, thereby motivating the inclusion of more complex
perceptual features in the distortion measure (e.g., [48], [12],
[10]). See Section VII for a discussion on this.
We have also evaluated the two objective intelligibility mea-

sures for the case that a same (single) source is provided as input
(results not shown). We observe less predicted intelligibility in
the multi-source case than for a single source. Equivalently, we
can state that a single source is predicted to be less prone for
intelligibility degradation than multiple sources. This is to be
expected, since in the single source case, crosstalk has the same
effect as if there were extra reverberation sources contributing
to the received speech. Since the presence of reverberation (spe-
cially of the early components [45]) is less critical to intelligi-
bility than the presence of “real” crosstalk, better intelligibility
can be expected for a single source.

D. Least Squares Crosstalk Canceller

As the proposed algorithm in fact behaves as a crosstalk can-
celler, we compare it to the crosstalk canceller of Kallinger
and Mertins [24]. This canceller adopts a deterministic least-
squares (pseudoinverse) type of solution, but where an extra sto-
chastic term is included to compensate for deviations from the
known impulse response. The stochastic term is parameterized
by the radius around which the system should remain robust
upon physical displacement, which we will denote by . Due
to the costly memory consumption of the algorithm, derived
from its usage of large convolution matrices representing the
acoustic (reverberant) channel, we restrict ourselves to smaller
impulse responses of length (128 ms). We also use a
smaller room of dimensions 4.22 3.10 2.6 m (L W H)
with the same guard distance to the walls as previously.
We reduce the number of zones to , putting the zones at
the edges of the longitudinal dimension. The microphones are
placed at the distance between the two zones (closer to
the corresponding zone). The proposed algorithm is run with
the smaller frame and DFT sizes as well.
The rest of the parameters is left essentially the same as in
Section VI-B. Also, since our algorithm adopts a stochastic ap-
proach and the algorithm in [24] departs from a deterministi-
cally known channel, we need to make a fair comparison. For
this, we generate 10 different realizations of the channel in (25)
and average the performance (ordinate) while delivering the dif-
ferent realizations as an input to [24].
For a running from 1 ms to 100 ms exponentially in

steps of , we assess the (averaged) SDR of (44), the STI
and STOI for the pre-processings: unprocessed; proposed algo-
rithm of (38); Kallinger [24] with no stochastic compensation

; Kallinger with the proposed radius in [24],
m; and Kallinger with a radius m. For simplicity, we
assume a noise-free scenario. The first usage case of Kallinger
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Fig. 8. SDR, STI and STOI of proposed algorithm and several least-squares
crosstalk cancellers based on [24], as a function of .

corresponds to a fully deterministic traditional least-
squares (pseudoinverse) solution, whereas the last case (

m) corresponds to having a displacement around half a
wavelength, for which the impulse response decorrelates with
respect to the original response. The results are displayed in
Fig. 8.
We observe that for low , where the direct paths are the

predominant contribution for the channel, the purely determin-
istic approach performs the best. There, we have a plateau of
about 175 dB SDR for the lowest reverberation times (not vis-
ible). Our approach also manages to perform good direct path
compensation, which is perceptually as good as the determin-
istic approach (confirmed by informal listening and by the STI
and STOI performance in the lower part of Fig. 8). When in-
cluding a stochastic compensation term in [24], the higher the
compensation radius is, the more degraded crosstalk com-
pensation performance is. The tradeoff of this performance de-
crease is directly seen in the high region. High compensa-
tion radii lead to better (average) performance under stochas-
tically described reverberant channels. There, the deterministic
approach performs the worst, while the stochastic approaches
manage to compensate for diffuse reverberation. The proposed
approach is the best performing algorithm for ms, and
performance approaches the one for the highest compensation
radius m, for the highest reverberation times. All in
all, we can thus conclude that our algorithm joins the best of de-
terministic direct path compensation and stochastic diffuse field
compensation, by showing good tradeoff performance both for
low as for high reverberation times.

E. Number of Zones

Finally, we assess the algorithm performance with an
increasing number of zones. In a noise-free environment,
we compute the SDR of (44), varying from 10 ms
to 10 s in decades, and the number of zones in the range

, corresponding to maximally spanned
room constellations of 2 1, 2 2, 3 2, 3 3, 4 3 and
4 4 grids, respectively. The same guard distances to the walls
and remaining settings were used as in Sections VI-A and VI-B.

Fig. 9. Simulated SDR as a function of the number of zones for selected re-
verberation times. Markers: simulated points; lines: least-squares fitted regres-
sion lines.

Fig. 9 plots the resulting SDR as a function of the number
of zones, in conjunction with least-squares lines fitted to the re-
sults. The general trend is observed that as the number of zones
increases, SDR decreases (distortion increases) in the unpro-
cessed and single-zone cases, while multizone processed SDR
manages to stabilize. This effect is specially prominent for high
reverberation times ( ms).
We compared the SDR slopes in Fig. 9 to each other by means

of Analysis of Covariance (ANOCOVA) tests. The result is that
for all assessed reverberation times with ms, the
processing condition has a significant effect on the slope (

; and
for equal to 100 ms, 1 s and 10 s,

respectively). Multiple comparison tests indicate that the unpro-
cessed condition has a significantly lower slope than the multi-
zone processed condition (95% CI’s used) for the three cases.
From this result, we conclude that the proposed algorithm is
able to significantly bridge SDR deteriorationwith an increasing
number of zones, or at least so if is large enough.

VII. DISCUSSION

In this work, we used a smooth (continuously differentiable)
distortion measure, which could either quantify quality or intel-
ligibility degradation, to build an optimization framework. Al-
though traditional intelligibility measures suffer from the fact
that they do apply non-smooth techniques, such as hard clip-
ping [36], [14], we would like to note that research has focused
lately on building mathematically tractable intelligibility mea-
sures that are more amenable for optimization. For example, in
[15], the authors present a measure which is based on a (smooth)
Pearson’s correlation coefficient of speech temporal envelopes.
In [49], the hard clipping procedure of the Speech Intelligi-
bility Index (SII) [36] is approximated by a smooth concave
clipping function. Furthermore, the observation that speech re-
inforcement and enhancement algorithms which are designed
having speech intelligibility in mind can degrade speech quality
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[3], [6], [16], makes us believe that quality modeling should be
somehow included in speech reinforcement, as is already done
in the domains of audio and speech coding. These remarks and
the mathematical simplicity of the approach motivate the choice
of smooth distortion measures in this work.
We have also seen in Section V that, although the optimiza-

tion framework we developed caters for noise, reverberation
and crosstalk simultaneously, the application of the developed
theory to the simple error measure delivered us a crosstalk
cancellation scheme which acts independently of the noise
process. Nevertheless, the authors have recently shown that by
applying the framework developed here to a spectral magnitude
distortion measure, a noise dependent algorithm follows [50].
Using this insight, we conjecture that applying our framework
to more complex distortion measures than the error leads
to more elaborate, complex and meaningful schemes than
pure crosstalk cancelling. For example, one could think of
bringing perceptual features into play in speech reinforcement
by applying this work to analytically defined audibility mea-
sures (e.g., [10], [11]) or to speech distortion measures such as
the Log-Spectral Distance or the Itakura-Saito measure [51].
Also, the application of this work to intelligibility models,
which frequently exhibit non-smooth behavior (see above), is
a challenge in itself.
Concerning the hybrid stochastic-deterministic channel

model which was chosen for the concretization of the de-
rived MSE optimal algorithm, we remark that the impact of
this choice on the algorithm is that it relies on a good esti-
mation of the direct path (deterministic) components in the
channel transfer matrix. Indeed, a small displacement of the
listener in the room can introduce errors in the direct path esti-
mates, thereby degrading algorithm performance. Furthermore,
dynamic channel conditions also make channel estimation diffi-
cult, and non-updated or non-accurate estimates also contribute
to a degraded algorithm performance. A practical scenario
where dynamic channels could be an issue is a train station,
where a train passing by changes space acoustics significantly.
For bridging these difficulties, one could extend stochastic
descriptions in the modeled channel, e.g., by including a
stochastically described perturbation (error) term on the direct
path components.

VIII. CONCLUSION

In this work, we studied speech reinforcement (source-based
listening enhancement) in a multiple zone scenario, where the
goal is to optimize an overall expected distortion of multiple
mutually interfering source-receiver constellations. The ap-
proach is abstract and works upon a functional quantification of
degradation (distortion measure). After building an optimiza-
tion framework including effects of noise, reverberation and
crosstalk simultaneously, we derived analytical necessary con-
ditions for optimality. Subsequently, we applied the conditions
for the case of a simple distortion measure, namely the error
measure (euclidean distance).
Using the applied conditions and considering a hybrid

deterministic-stochastic model for the acoustic channel, a
Mean-Square Error (MSE) optimal algorithm was derived,

which eventually boiled down to a crosstalk cancellation
technique. Also, the general and abstract approach undertaken
leaves space open for the development of more complex algo-
rithms which feature more than plain crosstalk cancellation.
The algorithm was thoroughly evaluated; a clear benefit of
multizone processing could be established versus the iterated
application of the corresponding single zone algorithm, and we
showed that the algorithm combines the best of deterministic
and stochastically compensated least-squares crosstalk cancel-
lation approaches existing in literature.
To the best of the authors’ knowledge, this work constitutes

the first approach in solving speech reinforcement in a multi-
zone scenario, i.e., upon existence of adjacent channels with
mutual crosstalk. Also, we stress the importance of the novel
abstraction level undertaken, which provides conditions for
reusability of the work.
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