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SUMMARY

Wireless networks have revolutionized nowadays world by providing real-time cost-
efficient service and connectivity. Even such an unprecedented level of service
could not fulfill the insatiable desire of the modern world for more advanced tech-
nologies. As a result, a great deal of attention has been directed towards (mo-
bile) wireless sensor networks (WSNs) which are comprised of considerably cheap
nodes that can cooperate to perform complex tasks in a distributed fashion in ex-
tremely harsh environments. Unique features of wireless environments, added
complexity owing to mobility, distributed nature of the network setup, and tight
performance and energy constraints, pose a challenge for researchers to devise sys-
tems which strike a proper balance between performance and resource utilization.

We study some of the fundamental challenges of wireless (sensor) networks associ-
ated with resource efficiency, scalability, and location-awareness. The pivotal point
which distinguishes our studies from existing literature is employing the concept
of sparse reconstruction and compressive sensing (CS) in our problem formulation
and system design. We explore sparse structures embedded within the models we
deal with and try to benefit from the undersampling offered by incorporating spar-
sity and thereby developing sparsity-aware system-level solutions. We prove that
looking at these challenges from our perspective not only guarantees an expected
cost efficiency due to taking less measurements, but also if properly designed, can
promise an acceptable accuracy.

We start by looking at the location-awareness of mobile wireless networks as a key
enabler for meaningful data extraction. Given the elegance and simplicity of mul-
tidimensional scaling (MDS) for network localization, we combine subspace per-
turbation expansion (SPE) with classical MDS and derive a model-independent dy-
namic version of MDS which can be employed to track a network of mobile nodes
using only pairwise distance measurements. We further extend our low-complexity
dynamic MDS paradigm in two different ways (adaptive inner-iterations and geo-
metrical reconstruction) to be able to operate in partially connected networks where
some of these pairwise distances are missing. We also study a model-dependent
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viii Summary

case where the movement process of the nodes is known. In such a case, we pro-
pose to linearize the nonlinear set of measurements w.r.t. the location of the anchor
nodes in the network and track the mobile nodes using a Kalman filter (KF) instead
of a suboptimal extended KF (EKF). In both directions, we illustrate promising
results confirming the efficiency of our proposed ideas.

We then study a related multi-source localization problem where some of the nodes
in the network are considered to be pure signal emitters or so-called sources. The
important feature of such sources, which is essentially the origin of the complexity
of this problem, is the fact that these sources cannot be distinguished based on the
signals they transmit. This introduces a complex assignment problem to decom-
pose the received signals (typically the summation of the transmitted signals) and
relate them to their respective sources to be able to localize them. We propose in-
novative ideas to solve this problem using time-difference-of-arrival (TDOA) and
received-signal-strength (RSS) measurements. The general approach we propose is
based on discretizing the area under consideration and performing fingerprinting.
We then exploit the spatial sparsity of the sources in the discretized domain and
propose sparsity-aware solutions which can offer a superb performance in terms of
the number of identifiable sources. We further extend our TDOA-based approach
to be able to localize off-grid sources with an acceptable accuracy. Both for the
RSS-based approach in indoor environments as well as for an underground micro-
seismic monitoring scenario, we further extend our proposed ideas to operate in a
fully blind fashion w.r.t. the statistics of the source signals. We present extensive
simulation results to corroborate our claims.

Finally, we turn our attention towards the sensor selection problem in WSNs in
order to satisfy a specific estimation performance metric. In line with the main fla-
vor of this thesis, this time, we explore the sparsity of the selected sensors among
the total number of sensors in the network and propose sparsity-aware solutions for
both cases where the noise experienced by the sensors is uncorrelated or correlated.
To circumvent the limitations of a centralized approach for large-scale WSNs, we
extend both algorithms to distributed ones where each sensor has to rely only on
local information and has to decide whether it should contribute in the estimation
task or not. Our detailed convergence proofs, quantified computational and com-
munication costs, as well as our simulation results all confirm the applicability and
efficiency of our newly introduced sensor selection paradigm.

Keywords: Mobile network localization, multi-source localization, sensor selec-
tion, sparse reconstruction, distributed optimization.
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If you can’t explain it simply, you don’t under-
stand it well enough.

ALBERT EINSTEIN
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1
INTRODUCTION

This thesis is concerned with exploring sparse structures within some fundamental
problems in wireless (sensor) networks such as network localization, multi-source
localization, and sensor selection. Upon exploring such sparse structures, we in-
corporate this prior knowledge into our modeling and propose sparsity-aware so-
lutions. We prove that looking at these problems from our newly introduced angle
results in a substantial performance gain. We start this chapter by elaborating on
the overall motivation of this thesis followed by introducing the concept of loca-
tion awareness and distributed estimation in sensor networks. We then provide an
outline of the presented work along with highlighting our main contributions.

1.1 Motivation

Nowadays world is blessed with an unprecedented wireless connectivity realized by
a variety of wireless networks ranging from cellular connections to satellite broad-
casting. This dramatic growth can be attributed to both technological advances as
well as a tremendous demand. We envisage a future of ubiquitous wireless connec-
tivity all around the globe. The unique nature of wireless networks (unpredictable
wireless channels and complex network analysis) has made their design a chal-
lenging problem which has received an upsurge of attention over the past decades.
In line with the development of wireless technologies, advances in miniaturization
and integration of sensing and computation has made the emergence of wireless
sensor networks (WSNs) possible.

WSNs consist of a large number of tiny sensor nodes (as shown in Fig. 1.1) with
limited computational and communication capabilities. Nonetheless, when prop-
erly networked and programmed they can cooperate to perform advanced signal
processing tasks with significant versatility and robustness. This potential has made
them an attractive but at the same time cost-efficient technology for a wide variety
of applications, such as remote sensing, environmental and wildlife monitoring,
and asset tracking, to name a few [1]. WSNs are envisioned to be the building
blocks of tomorrow’s proactive computing world (as shown in Fig. 1.2).

3



4 1. Introduction

Figure 1.1: UC Berkeley sensor dots (Courtesy of UC Berkeley).

Figure 1.2: Applications of WSNs in our everyday life.

As research in wireless (sensor) networks proliferates, the problem of location
awareness within such networks becomes significantly important, since it is a key
feature enabling many other applications. Location awareness is for instance cru-
cial for meaningful data inference when part of or the whole infrastructure of the
network is mobile. Even though this mobility is a privilege raising the level of
flexibility in the network, at the same time it introduces complications that have to
be taken care of. Examples of such are designing proper dynamic localization, in-
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formation retrieval, and data management algorithms as well as bandwidth-limited
communication protocols and power-limited mobile nodes. Even in static but large
scale WSNs the latter issue, i.e., designing resource-efficient and scalable (possibly
distributed) paradigms has to be well investigated and then properly addressed. An
example of such a scalable resource-efficient WSN management algorithm is the
design of a distributed sensor selection algorithm to determine a minimum number
of sensors to be activated within the network to accomplish a given task with a
desired level of accuracy.

In this thesis, we look at the aforementioned challenges from a different angle.
Particularly, we try to explore embedded sparse structures and propose sparsity-
aware solutions.

1.2 Location Awareness in Wireless Networks

The paradigm of context-aware computing has received an upsurge of attention in
the past few decades. Context-aware computing systems aim to adapt themselves to
the variations in their surrounding environment autonomously, and also customize
their behavior accordingly [2]. This paradigm puts a significant step towards the
vision of ubiquitous computing [3]. Location-aware computing is an important sub-
set of the context-aware computing paradigm. Nowadays, location awareness has
become an indispensable feature of wireless networks. The overwhelming reason
is that the buck of information collected by the components (for instance, sensor
nodes) of a wireless network is in practice meaningless if one cannot attach them to
location information. Examples of such scenarios are diverse among which we can
point out environmental monitoring [4] and asset tracking [5]. Location informa-
tion also facilitates the process of establishing a connection, routing and communi-
cation among adjacent (sensor) nodes, especially when dealing with a large scale
network.

The process of acquiring location information is called localization. This process
normally has two stages; the initial stage is a measurement stage in which the
measurements are conducted, and the next stage is an estimation stage in which
the locations are estimated based on the measurements [6, 7]. Common measure-
ment types usually employed for localization purposes are received signal strength
(RSS), time-of-arrival/flight (TOA/F), time-difference-of-arrival (TDOA), angle-
of-arrival (AOA), or a combination of those in order to attain a better accuracy [6].
Measurements are normally corrupted due to noise, multipath, blockage, interfer-
ence, and other environmental effects [8]. That is why the measured information
will not be so accurate which leads to coarse location estimations. In practice,
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TOA, AOA and TDOA measurements are more expensive to acquire and provide
finer resolutions compared to RSS which usually comes for free as a built-in feature
found in many wireless devices.

From a broader perspective, the problem of localization in wireless networks can
be looked at from a few different angles. Examples are, for instance:

˛ Range-based vs. range-free: Range-based algorithms rely on range-related
measurements such as the ones mentioned earlier (RSS, TDOA, TOA/F, and
AOA) to estimate the location whereas the range-free algorithms [9, 10] work
with the connectivity (or sometimes called proximity) information between
the neighboring nodes. Generally speaking, range-free algorithms are rough
in terms of accuracy compared to range-based algorithms. In this thesis, we
consider range-based localization.

˛ Centralized vs. distributed: In a centralized algorithm, measurement infor-
mation collected by nodes is sent to a central processing unit (CPU) or some-
times called fusion center (FC) to be analyzed and exploited for location es-
timation. On the other hand, in distributed localization algorithms, the nodes
only make use of local information (measured themselves and/or provided
by their neighboring nodes) to self-localize themselves. In comparison, dis-
tributed algorithms are more appropriate for large-scale networks. In this
thesis, we mainly focus on centralized localization algorithms, even though
as a special case, we also consider the case of partially connected networks
where part of the measurements can be missing.

˛ Indoor vs. outdoor: Traditional outdoor localization systems, such as the
global positioning system (GPS), are not necessarily a proper choice for net-
work localization, especially when the nodes of the network are sensors with
limited computational and communication capabilities. This issue calls for
the design of proper resource-constrained localization algorithms. On top of
that, traditional outdoor algorithms do not provide acceptable accuracy for
indoor scenarios where a lot of reflection and multipath effects exist. For
such challenging environments, ultrawide bandwidth (UWB) transmission
technology is a promising alternative since it benefits from a superior sig-
nal penetration through obstacles and offers a finer delay resolution [11].
The complications of the wireless channel in indoor environments has also
motivated another category of localization algorithms based on wireless fin-
gerprinting [12, 13]. Fingerprinting consists of the the following two phases.
In a training phase, a dictionary (fingerprinting map) is constructed by dis-
cretizing the area of interest into a mesh of grid points and by recording
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the fingerprints from every single grid point. Next, in the real-time phase,
the measurements are compared with the atoms of the dictionary (usually its
columns) to determine where the source(s) is (are) located [13].

˛ Static vs. mobile/dynamic: The nodes to be localized can be static or mobile.
Moreover, there exist scenarios in which the whole network is mobile. In this
thesis, we consider both mobile and static localization algorithms.

Another fundamental angle from which we would like to distinguish between local-
ization paradigms, is whether the nodes/components in the network can be uniquely
identified based on the signals they transmit or not. This property plays a pivotal
role in this thesis, because if the nodes cannot be distinguished based on the sig-
nals they transmit, many of the existing network algorithms will not operate any-
more. This motivates us to classify the localization paradigms into “network” and
“source” localization scenarios, as discussed in the following.

1.3 Network Localization

The first scenario we consider is network localization. Such a network is typically
comprised of a few nodes with known location, sometimes called anchors, and
some other nodes with unknown locations [14–17]. An essential assumption here
is that all the nodes can be uniquely identified based on their transmitted signals.
In special cases such as low-cost sensors deployed in harsh environments, it is
possible that no anchors exist. Such a network localization paradigm is commonly
addressed as anchorless [18]. In anchoreless scenarios, the ultimate goal is to find
only the relative locations or the configuration of the network up to an ambiguity.
We study both anchored and anchorless scenarios in this thesis.

We can divide the studies in network localization into two categories based on the
notion of cooperation. From this viewpoint, the network localization algorithms
are classified as:

˛ Non-cooperative network localization: This is the case when the unknown-
location nodes do not cooperate with each other. An example could for
instance be a wireless local area network (WLAN) setup where the access
points (APs) act as the anchors and mobile stations (MSs) either try to self-
localize themselves, or they will be localized at a FC in the backbone net-
work. Typically, in such a case, long-range transmissions from MSs to APs
are feasible.
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Figure 1.3: Network localization: Cooperative vs. non-cooperative.

˛ Cooperative network localization [6, 7, 16, 18–21]: Here, the cooperation
among unknown-location nodes eliminates the need for them to be within
the communication range of multiple anchors, and therefore, a high anchor
density or long-range transmissions are no longer necessary. Moreover, the
fact that the unknown-location nodes can receive information from nodes of
the same type as well as from anchors within their communication range
results in a superior performance in terms of accuracy and coverage for co-
operative localization algorithms. On the other hand, this calls for a more
elaborate and thus more expensive design of the nodes circuitry and their
communication protocols.

Fig. 1.3 illustrates the advantage of cooperative network localization compared to
non-cooperative in a simple setup. As can be seen, the unknown-location nodes 4
and 5 each can communicate only with two anchor nodes out of three, and thus only
based on range estimations they cannot determine their locations. However, when
they cooperate (the red link), they can uniquely determine their own locations and
eliminate other ambiguous locations (red circles with “?” on top). In this thesis, we
mainly focus on cooperative network localization.

1.4 Multi-Source Localization

The other major scenario that we consider in this thesis is the problem of multi-
source localization. Notably, single-source localization, can simply be considered
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Figure 1.4: Multi-source localization scenario; case of heterogeneous sources.

as a case of network localization when a group of anchor nodes try to localize an
unknown-location source (sometimes called emitter) node based on different mea-
surement types available within a covered area [14, 22–25]. In this context, given
the fact that source nodes are not sensor nodes anymore as they can be in Subsec-
tion 1.3, we prefer to divide the nodes into source(s) and sensors. Now, the princi-
pal question is what happens if we have multiple of such signal sources/emitters?
The answer is actually up to the pivotal point we mentioned earlier. If the sources
can be distinguished based on any unique signature (signal type they transmit, fre-
quency band or time slot they occupy, etc.) the problem transforms back to the
case of network localization, for instance by decomposing the problem into multi-
ple single-source localization problems. On the other hand, if the sources cannot
be distinguished based on the signal they transmit, for many practical signals such
as electromagnetic and acoustic signals, the sensor nodes will receive a summation
of signals transmitted by the sources. More importantly, they cannot decompose
the received sum to the contribution of each source. This basically complicates the
localization process by imposing an embedded assignment problem to determine
which part of the received sum belongs to which source. A typical multi-source
scenario is shown is Fig. 1.4 where the two source signals are of the same type, and
thus are indistinguishable.

Similar to the case of network localization, the notion of cooperation (in a different
sense from Subsection 1.3) splits the studies into the following two directions.
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˛ Cooperative sources [26–29]: In this context, these are sources from which
we have some information about the nature of the transmitted signals such as
their statistics. Even though this information is not sufficient to decompose
the sum of the received signals and assign them to their sources.

˛ Non-cooperative sources [30, 31]: The case of multiple non-cooperative
sources is a formidable problem because in principle, nothing is known from
the sources or transmitted signals. This necessitates coming up with solu-
tions which are blind to the source signal information.

We study both cooperative and non-cooperative cases for multi-source localization.

1.5 Distributed Sensor Selection

WSNs are often large-scale self-organized networks with no pre-established infras-
tructure or a topology that can dynamically alter. In order to deduce meaningful
and accurate information from such a network, raw data (signals) collected by dif-
ferent sensors should somehow be combined and processed, which is referred to as
data fusion [32]. This can either happen in a centralized fashion by broadcasting
all this data to a FC or it can be done in a distributed fashion. The centralized ap-
proach calls for a high communication bandwidth and transmission power, which
is usually lacking due to limited capabilities of sensor nodes [1]. Moreover, the FC
is potentially a single point of failure in a network, i.e., if the FC is compromised or
jammed, the whole network fails to operate. A distributed approach eliminates the
need for an FC. That is why often a distributed approach is preferred for large-scale
WSNs owing to its scalability in term of communication and computational costs.

1.5.1 Distributed Estimation over WSNs

To be more specific, distributed processing means that instead of transmitting all
the data collected by the sensors to an FC in order to make a decision or accomplish
the final goal of the network, each sensor should rely only on local information re-
ceived by itself and the sensors in its vicinity. This presents a formidable challenge
to design appropriate distributed signal processing algorithms at local sensors to
reduce data transmissions [32]. On the other hand, relying only on the information
received by a single sensor (or a small group of them) might not necessarily lead to
the overall precision required by the network. Thus, appropriate information shar-
ing and collaborative processing algorithms should also be put in place to ensure a
reliable inference [32, 33]. In a nutshell, distributed processing makes large-scale
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sensor networking possible by striking a proper trade-off between performance and
resource utilization.

It is worth highlighting that designing distributed signal processing algorithms is
a challenging task which can sometimes lead to suboptimal solutions with inferior
performance compared to the case of centralized algorithms. In general, given the
fact that all the required information is present in one place (FC), the centralized
algorithms are expected to show superior performance and hence, they can be used
as performance metrics for the assessment of the distributed algorithms.

1.5.2 Sensor Selection

In this thesis, we particularly consider a parameter estimation problem over WSNs
where the network is supposed to estimate a vector of parameters with a fixed length
using measurements given by

yi “ fpxq ` ηi, (1.1)

where subscript i indicates being associated with the i-th sensor, yi and ηi are re-
spectively the measurement and additive noise at the i-th sensor, x is the parameter
vector of interest, and fp.q can be a linear or nonlinear function representing the
way the yi’s are related to x. Notably, in typical parameter estimation problems,
the parameter of interest is either fixed or varies slowly over time (like temperature,
humidity, etc.) which permits applying iterative solutions [34].

Within this parameter estimation framework which can in turn be centralized or
distributed, an important question is that if a parameter is supposed to be estimated
within a medium-to-large-scale sensor network, do we need all the sensors to be
activated to satisfy our desired estimation performance? Maybe it is enough to
activate only some of the sensors to do the job. If yes, which sensors should be se-
lected? This reminds us of the classical problem of sensor selection [35–37] which
is about selecting k sensors out of m to satisfy a network estimation performance.

In this thesis, we formulate the problem in a rather general framework and solve
the following closely related selection problem. We are interested in selecting the
minimum number of sensors a priori based on our knowledge of fp.q so that a
specific performance metric related to the estimation of x is satisfied. From this
perspective, our look at the problem is somehow closer to what is called robust
sensing [38] or informative-sensor identification [39]. Moreover, given the afore-
mentioned advantages of distributed implementation (cost and robustness), a major
part of our study is devoted to developing a distributed sensor selection paradigm
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wherein based on local information each sensor decides itself about its status of
being active or inactive.

1.6 Thesis Outline and Contributions

The fundamental challenges we discussed earlier on location-awareness and re-
source efficiency in wireless (sensor) networks are the principal motives behind
our contributions. In this thesis, our primary focus is on exploring embedded sparse
structures within the network localization, source localization and distributed sen-
sor selection problems. In other words, this thesis takes a step forward along the
path to sparsity-aware wireless (sensor) networks. We illustrate that exploring such
sparse structures, reformulating the problems at hand by incorporating the prior
knowledge of sparsity, and solving them using proper sparsity-aware algorithms
yields a significant performance gain over the existing algorithms which ignore
this information.

This thesis consists of five main parts. In short, Part I contains this introduction in
Chapter 1, and some preliminaries in Chapter 2. In the preliminaries, we briefly
discuss multidimensional scaling (MDS), subspace perturbation expansion, com-
pressive sensing, and the alternating direction method of multipliers (ADMM) in
order to provide the reader with the basic mathematical and signal processing tools
we employ in this thesis. The next three parts (Parts II-IV) present our main con-
tributions which are concisely specified here and further elaborated on later in this
section. More specifically, Part II, which includes Chapters 3-4, is devoted to our
contributions to mobile network localization. Part III presents our contributions
to sparsity-aware multi-source localization using TDOA (in Chapter 5) and RSS
(in Chapter 6) for wireless channels, as well as for a different case study related
to microseismic signals (in Chapter 7). In Part IV, which includes Chapters 8-9,
we tackle the problem of sparsity-aware sensor selection in a distributed fashion.
Finally, Part V contains Chapter 10 on conclusions and future research recommen-
dations. In the following, we further elaborate on our main contributions in each
part.

1.6.1 Contributions on Mobile Network Localization

The first problem we focus on is to find a solution for cooperative localization of
a dynamic network of mobile sensor nodes with low computational complexity.
This problem becomes very challenging for anchorless networks where there is no
pre-existing infrastructure to rely on. Knowing the elegance of classical multidi-
mensional scaling (MDS) for static anchorless localization, we have generalized it
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to a dynamic MDS paradigm to handle a mobile network. In simple terms, classical
MDS accepts a matrix of pairwise distances between all the nodes as input, and by
the help of signal subspace analysis returns the configuration of those nodes.

1. Dynamic MDS

The idea is that under some conditions (detailed in Chapter 3) for small time in-
tervals the next configuration of a network of nodes can be modeled as a pertur-
bation of its previous configuration. Besides, subspace perturbation expansion
(SPE) tells us how subspaces of a matrix alter by applying a perturbation. This
triggered the idea of combining MDS and SPE to devise a dynamic MDS that
can keep track of the configuration of a mobile network with low complexity.
We also present a similar approach using a combination of MDS and orthogonal
iterations to track the invariant subspace of our measurement matrix and thus to
track the network of mobile nodes. The trick is to do only a single orthogonal
iteration per step and to use the subspace estimated from the previous time step

as the initial guess. This way there is no need for a large number of iterations
and we avoid divergence.

We illustrate in Chapter 3 that compared to recently proposed competitors based
on the extended and unscented Kalman filter (EKF and UKF), the proposed algo-
rithms have a considerably lower computational complexity. Furthermore, model-
independence, scalability as well as an acceptable accuracy make our proposed
approach a good choice for practical mobile network localization.

MDS is known to be a good choice for a fully connected network of nodes. How-
ever, in practice, not all the nodes in a sensor network can communicate with each
other. This motivates us to extend our contribution in this context to the case where
some of the communication links are missing which is sometimes called a partially
connected network. We have tackled this problem in two different but conceptually
related ways.

2. Dynamic MDS for a partially connected network

The first idea, presented in Chapter 3, is to include an inner iteration (by re-
peating estimation-modification-estimation) per time step in our proposed dy-
namic MDS to account for the missing links. The other idea, presented in Chap-
ter 4, explores the geometric relationships of the pairwise distances of the sensor
nodes and in an intelligent local-to-global fashion reconstructs the missing links
as good as possible or uses the previous estimates for the links that could not be
reconstructed. This way we fill in the missing links in each step of our dynamic
process and then use our previously proposed dynamic MDS idea.
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We show that in terms of computational complexity as well as estimation per-
formance our proposed algorithms for partially connected networks are excellent
choices and they can handle situations where the network is moderately connected.

The earlier contributions for network localization are model-independent approaches.
We also study the problem from a model-based perspective where statistical proper-
ties of measurement and process models are available. In the model-based context,
most of the existing works employ Kalman filter (KF)-based approaches. However,
since the distance measurements are by nature nonlinear, they have to use the EKF
or other similar approaches based on computing partial derivatives of the measure-
ments. This motivates us to try to look at the problem in a different way. Notably,
this part is not presented in this thesis.

3. Linearize and use KF instead of EKF

The idea is that the knowledge of the location of the anchor nodes helps to lin-
earize the nonlinear distance measurements with respect to (w.r.t.) the location
of the unknown nodes. Next, based on this “linearized” measurement model, we
can use the KF itself instead of a suboptimal EKF. The downside is that we have
to estimate the corresponding unknown measurement noise covariance matrix
using an iterative process, which comes at a price.

The simulation results illustrate that the proposed algorithm (only within a few
iterations to account for the new covariance matrix estimation) attains the posterior
Cramér-Rao bound (PCRB) of mobile location estimation and clearly outperforms
related anchorless and anchored mobile localization algorithms.

Our contributions in this context are published in the following papers. The first
two are respectively contained in Chapters 3-4, and the rest are omitted for the sake
of brevity.

[J1] H. Jamali-Rad and G. Leus, “Dynamic Multidimensional Scaling for Low-Complexity
Mobile Network Tracking,” IEEE Trans. on Sig. Proc. (TSP), vol. 60, no. 8, pp. 4485-
4491, Aug. 2012.

[C4] H. Jamali-Rad, H. Ramezani, and G. Leus, “Cooperative Localization in Partially
Connected Mobile Wireless Sensor Networks Using Geometric Link Reconstruction,” in
Proc. of IEEE Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), pp. 2633- 2636,
Japan, Mar. 2012.

[C3] H. Jamali-Rad, T. van Waterschoot, and G. Leus, “Cooperative Localization Using
Efficient Kalman Filtering for Mobile Wireless Sensor Networks,” in Proc. of European

Sig. Proc. Conf. (EUSIPCO), pp. 1984-1988, Spain, Aug.-Sep. 2011.
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[C2] H. Jamali-Rad, T. van Waterschoot, and G. Leus, “Anchorless Cooperative Localiza-
tion for Mobile Wireless Sensor Networks” in Proc. of The Joint WIC/IEEE SP Symp. on

Info. Theory and Sig. Proc. in the Benelux (WICSP), Belgium, May 2011.

[C1] H. Jamali-Rad, A. Amar, and G. Leus, “Cooperative Mobile Network Localization

via Subspace Tracking,” in Proc. of IEEE Conf. on Acoustics, Speech and Sig. Proc.

(ICASSP), pp. 2612 - 2615, Czech Republic, May 2011.

Other contributions related to the context of network localization which are not
presented in this thesis revolve around localization of a fixed node and tracking of
a mobile node in an underwater medium with an isogradient sound speed profile.
Knowing the nonlinear dependency of the traveled distance and the required time
in such a medium, we try to analytically relate the acoustic wave TOFs between
two nodes to their positions. Then, we respectively adopt Gauss-Newton and EKF
for localization and tracking purposes.

Our results prove the efficiency of our proposed algorithms by showing that we can
attain related performance bounds. Our contributions in this context are published
in the following papers but they are omitted in this thesis for the sake of brevity.

[J2] H. Ramezani, H. Jamali-Rad, and G. Leus, “Target Localization and Tracking for an
Isogradient Sound Speed Profile,” IEEE Trans. on Sig. Proc. (TSP), vol. 61, no. 6, Mar.
2013.

[C5] H. Ramezani, H. Jamali-Rad, and G. Leus, “Localization and Tracking of a Mobile

Target for an Isogradient Sound Speed Profile,” in Proc. of IEEE Intl. Conf. on Communi-

cations (ICC), pp. 3654 - 3658, Canada, Jun. 2012.

1.6.2 Contributions on Multi-Source Localization

Studying cooperative network localization problems, triggers thinking about the
case where the unknown-location nodes are simply sources from which not much
information is available. As we discussed earlier, we define this as multi-source
localization. Our study on this topic contains a large body of work and casts a
big portion of this thesis. One of the major problems we tackle in this context in
Chapter 5 is the problem of source localization using TDOA1 measurements, which
turns out to be a non-convex and complex problem due to its hyperbolic nature. The
problem becomes highly involved for multi-source case where TDOAs should be
assigned to their unknown respective sources.

1Our ideas here immediately apply to multi-source TOA Localization too.
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4. Linearize by fingerprinting, explore the spatial sparsity

Our idea is to first simplify this problem by linearizing it via a novel TDOA
fingerprinting model. Now, at every receiver pair, we are left with an assignment
problem to relate the TDOA values to their respective sources. The key idea is to
sum the value of the TDOAs and construct a linear set of equations according to
the fingerprinting model. We then explore the fact that the sources are sparse in
the spatial domain (within the discretized area of interest) and solve the problem
using an ℓ1-norm minimization.

The above approach allows us to solve the problem within a sparse representa-
tion framework with a limited performance in terms of the number of identifiable
sources. It also holds only for sources which are on the grid points (GPs) we have
defined for fingerprinting. However, in real life, the sources are not always on-grid.
These issues prompt us to think further and extend our proposed framework. The
fact that the values of the TDOAs are known (but it is unclear to which source they
belong), is an important observation and origin of the next idea.

5. Not only sum of TDOAs, but also sum of any nonlinear function of TDOAs!

The idea is that we are not only able to use the values of the TDOAs in our linear
sets of equations, but we can also apply any non-linear function to these values
and create new linear sets of equations without taking new measurements!

We show that these new sets can be added to the initial set of equations and sig-
nificantly improve our performance in terms of number of identifiable sources. We
even show that under some conditions we can keep on creating new sets of equa-
tions until we convert the given underdetermined problem to an overdetermined one
that could be solved using classical least squares (LS). We also tackle the problem
of off-grid source localization as follows.

6. Find the closest GPs, then solve an LS

The idea is to look at the problem as a case of grid mismatch where the effect
of off-grid sources leads to a perturbation in the fingerprinting map. We then
propose a two-step solution in which we first find the closest GPs using the
sparse total least squares (STLS) and then having the closest GPs we solve the
grid mismatch of each of the sources using a classical LS.

To the best of our knowledge, our work is the first solution to the multi-source
TDOA localization problem from a sparsity-aware perspective. Our contributions
in this context are published in the following papers. The first one in the list is
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contained in Chapter 5, and the other one which is a precursor publication is omitted
for the sake of brevity.

[J3] H. Jamali-Rad and G. Leus, “Sparsity-Aware Multi-Source TDOA Localization,”
IEEE Trans. on Sig. Proc. (TSP), vol. 61, no. 19, Oct. 2013.

[C6] H. Jamali-Rad and G. Leus, “Sparsity-Aware TDOA Localization of Multiple Pas-

sive Sources” in Proc. of IEEE Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), pp.

4021-4025, Canada, May 2013.

Alongside exploiting TDOA measurements, we also inspect the multi-source lo-
calization problem using RSS measurements with an emphasis on indoor multipath
environments. This time, the complex indoor channel motivates using a finger-
printing approach resembling what we have proposed for TDOA measurements.
However, there is an important difference here; RSS measurements from multiple
sources automatically sum up at a given receiver. There exists some recent work
in literature on a sparsity-aware solution to this problem. The question is whether
the existing approaches are efficient in terms of the number of identifiable sources
or not. Delving deeper into the problem proves otherwise; the existing sparsity-
aware fingerprinting approaches only use the RSS measurements (autocorrelations)
at different receivers separately and ignore the potential information present in the
cross-correlations among the received signals.

7. Incorporate the cross-correlations, and different time lags

Our idea is to reformulate this problem to exploit the information present in
the cross-correlations by introducing a novel fingerprinting paradigm. Besides,
we further enhance this newly proposed approach by incorporating the informa-
tion present in the other time lags of the autocorrelation and cross-correlation
functions rather than only considering the zeroth time lag.

An interesting by-product of the proposed approaches is that under some condi-
tions we could convert the given underdetermined problem to an overdetermined
one and efficiently solve it using classical LS. The idea of incorporating the cross-
correlations yields a significant performance gain, but this gain comes at a price.
In order to be able to make a fingerprint which contains the cross-correlations of
the received signals one has to know about the statistical properties of the sources.
This somehow prevents us from handling multiple non-cooperative sources. Bear
in mind that one does not have to know the statistical properties of the emitted
source signals to be able to compute their TDOA or RSS; it is enough to know only
the type of the signal (electromagnetic, acoustic, etc.). Therefore, our proposed
approach works well for the case of multiple sources with the same statistical prop-
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erties, but fails to operate for hetrogenous sources with different statistical proper-
ties. This shortcoming urged us to figure out a way so that we can still gain from
the received signal cross-correlations in a blind fashion w.r.t. the signal statistical
properties.

8. A frequency-domain approach; a blind solution

The idea is to approach the problem from the frequency domain, design a proper
filter bank, explore the common sparsity support of the output of these filters
and then propose a proper modified group least absolute shrinkage and selection
operator (G-LASSO) estimator.

Our contributions in this context are published in the following papers. The first
one is contained in Chapter 6, and the other two which are precursor publications
are omitted for the sake of brevity.

[J4] H. Jamali-Rad, H. Ramezani, and G. Leus, “Sparsity-Aware Multi-Source RSS Lo-
calization,” Elsevier Sig. Proc., vol. 101, pp. 174-191, Aug. 2014.

[C8] H. Jamali-Rad, H. Ramezani and G. Leus, “Blind Sparsity-Aware Multi-Source Lo-
calization” in Proc. of European Sig. Proc. Conf. (EUSIPCO), Morocco, 2013.

[C7] H. Jamali-Rad, H. Ramezani, and G. Leus, “Sparse Multi-Target Localization using

Cooperative Access Points,” in Proc. of IEEE Sensor Array Multichannel Proc. Symp.

(SAM), pp. 353 - 356, NJ, USA, Jun. 2012.

We are eager to explore other potential domains where our sparsity-aware multi-
source ideas can be applied. Chapter 7 is the result of a short collaboration with
Shell Global Solutions International B.V., where we tried to apply our ideas to a to-
tally different context, i.e., seismic signals in an underground medium. It turns out
that finding the location of microseismic fractures (our sources in this context) is
of great interest in Geophysics because it can provide a better understanding of the
reservoir behavior and can help to optimize the hydraulic fracturing process. Inter-
estingly, creating a fingerprinting map and localizing multiple microseimic sources
depends on the knowledge of the source time-function, which is lacking in practi-
cal applications. Note that this prerequisite originates from the natural properties of
microseismic signals, and is not due to incorporating cross-correlations. However,
as is clear, there is a connection to our earlier ideas.

9. Another frequency-domain approach

The idea is again to analyze the problem in the frequency domain, explore
the shared sparsity support and propose another modified G-LASSO estima-
tor which simultaneously takes into account the group structure and the shared
sparsity support of the signals in the frequency domain.
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Our contributions in this context are published in the following paper.

[J5] H. Jamali-Rad, Z. Tang, X. Campman, A. Droujinine, and G. Leus, “Sparsity-Aware

Multiple Microseismic Event Localization Blind to the Source Time-Function,” to appear

in Geophysical Prospecting.

1.6.3 Contributions on Sensor Selection

As we explained earlier in Subsection 1.5.2, we try to find the minimum number of
sensors within a network to satisfy a certain estimation performance metric. Par-
ticularly, we do this for two reasons. First, this problem turns out to be even more
interesting than the aforementioned traditional selection problem from a practical
viewpoint. This is because from a cost efficiency perspective, we would like to
activate as few sensors as possible rather than selecting k out m. Second, this new
problem formulation allows us to explore the sparse structure embedded within this
problem.

10. Explore the sparsity

The idea is that in practice only a few sensors should be activated to satisfy
the performance constraint. Therefore, the sensors to be selected are sparse
compared to the total number of sensors in the network. This helps us to propose
a sparsity-aware solution to the problem.

The problem becomes even more interesting in a distributed configuration when
each sensor has to decide itself whether it should contribute to the estimation or
not. This is also in line with the critical limitations of WSNs for which in many
practical scenarios centralized solutions are useless. This motivates us to give the
distributed problem some thought.

11. Distributed implementation

The idea to distribute the problem is to look at the dual problem and try to
find local costs that each sensor should optimize. We solve the resulting sub-
problems using a combination of dual subgradient optimization and consensus
averaging.

In the above, we adopt a major assumption that the noise experienced by different
sensors is uncorrelated. Generally speaking, this is not the case, specially in dense
networks where the sensors are usually closely spaced. In such a case, it is expected
that neighboring sensors experience correlated noise. The problem becomes even
more complicated in this case due to the coupling effects introduced by the noise
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correlations. This triggers us to extend our proposed centralized and distributed
algorithms to operate in correlated noise scenarios.

12. Handling correlated noise in a distributed scenario

Our first idea to handle correlated noise is by considering clusters of sensors
with intra-cluster noise correlations and zero inter-cluster correlations. This
helps us to simply extend our sensor-wise operations to cluster-wise ones. Our
more elaborate approach is to incorporate ADMM inner-iterations to account
for the coupling effects, which allows us to dropping the limiting assumption of
having such clusters.

We theoretically prove the convergence of our proposed distributed algorithms as
well as analytically quantify their complexity compared to the centralized algo-
rithms.

Finally, our other contribution related to the context of sensor selection which is
not presented in this thesis is about another look at the nature of the distributed
optimization problem we solve for sensor selection. We study this problem, in a
more general framework, as a consensus-based dual decomposition and provide
detailed analysis and proofs on its performance.

Our contributions in this context are published in or submitted as the following
papers. The first two are contained in Chapters 8 and 9, and the other two are
omitted for the sake of brevity.
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PRELIMINARIES

For the sake of a self-contained thesis, in this chapter, we briefly revisit some of the
main mathematical methods we use throughout this thesis. The interested readers
are referred to the corresponding references for more elaborate details.

2.1 Multidimensional Scaling

The idea of multidimensional scaling (MDS) was initially proposed in psychomet-
rics [40] as a means of visualizing the level of similarity (or dissimilarity) of indi-
vidual cases of a dataset. In other words, the goal of MDS is to find a representation
of n points in a certain dimension so that their pairwise distances as good as possi-
ble fit a measured set of dissimilarities between these points [41]. MDS has found
a wide variety of applications in different domains such as sociology, political sci-
ences [42], machine learning [43], and signal processing [44], which is of special
concern to us.

In technical terms, MDS is normally referred to as an approach to solve the afore-
mentioned dimensionality reduction problem as we look for a representation in a
lower dimension. There exist several methods in literature to perform this proce-
dure among which we can note the following two prominent ones.

2.1.1 Classical MDS

If all the measured pairwise distances are noiseless, classical MDS is capable of
recovering the correct configuration of points (up to a translation and orthogonal
transformation) as is explained in the following. Let us consider that our n points
xi P R

d are stacked in X “ rx1, ¨ ¨ ¨ ,xns, where d is the number of dimensions
(d ă n), also called the embedding dimension [45]. Let us also define a centering
operator Γ as

Γn “ In ´ 1

n
1n1

T
n , (2.1)

where In denotes the n ˆ n identity matrix and 1n represents the n ˆ 1 vector of
all ones. The following lemma explains why Γ is called a centering operator.

23
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Lemma 2.1 (Centering operator)

Given X, Xc “ XΓn, denotes a related set of points centered at the origin.

Proof. The geometric center of X is given by

xc “ 1

n
X1n.

Thus,

XΓn “ X pIn ´ 1

n
1n 1

T
n q

“ X ´ 1

n
pX1nq1Tn

“ X ´ xc 1
T
n “ Xc,

and the claim follows. �

Next, we define an Euclidean distance matrix (EDM) rDsi,j “ d2ij , @i, j “ 1, ¨ ¨ ¨ ,
n, where d2ij “ }xi ´ xj}22. It is straightforward to verify that

D “ diagpXTXq1Tn ´ 2XTX ` 1ndiagpXTXqT . (2.2)

Let us also define

DpXq “ diagpXTXq1Tn ´ 2XTX ` 1ndiagpXTXqT ,

where diagpAq returns a vector containing the diagonal elements of A, and where
we introduce DpXq as the function that returns a noiseless EDM from the set of
points X. From (2.1), we know that Γn1n “ 1TnΓn “ 0n with 0n denoting the
nˆ 1 all-zero vector. Therefore, it is easy to confirm that

´1

2
ΓnDΓn “ ΓnX

TXΓn,

where B “ ´1

2
ΓnDΓn is a symmetric positive semidefinite (PSD) matrix. Be-

sides, B and D have some rank properties [45] (presented in the following lemma)
which play an important role in the derivation of the classical MDS.

Theorem 2.1 (Rank of D and B)

Given rankpXq “ d, rankpDq ď d` 2, and rankpBq “ d.
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Proof. Obviously, rankpXq “ d if all the xi’s do not lie on a pd ´ 1q-dimensional
hyperplane at the same time. From (2.2), defining ψ “ diagpXTXq, we have

rankpDq ď rankpψ1Tn q ` rankp2XTXq ` rankp1nψT q
ď 1 ` d` 1 “ d` 2,

where we have used rankpA ` Bq ď rankpAq ` rankpBq. Now, we can write

rankpBq “ rankpΓnX
TXΓnq “ rankpXΓnq

“ rankpXq “ d,

where we have used rankpXTXq “ rankpXq. �

Finally, given B one can recover X (and thus the points), up to a translation and
orthogonal transformation, as the solution to the following optimization problem

min
X̃

}B ´ X̃T X̃}F ,

with X̃ “ ΨXΓn, and Ψ denoting an arbitrary orthogonal transformation, where
the minimum is searched over all possible dˆn rank-dmatrices [41]. Given the sin-
gular value decomposition (SVD) of our rank-d and symmetric PSD B “ UΣUT ,
we have

X̃ “ Σ
1{2
d UT

d ,

where Σd denotes a d ˆ d diagonal matrix containing the d largest singular val-
ues, and Ud contains the corresponding orthonormal eigenvectors. Note that even
though classical MDS returns exact solutions in the noiseless case, there is no guar-
antee to return an optimal solution in noisy scenarios.

2.1.2 Stress Function Minimization

The MDS problem has also been looked at from an optimization perspective; how-
ever, enforced by the nature of the problem the proposed optimization problems
are nonlinear and non-convex. An example is to minimize a weighted version of
distance errors (instead of squared distance errors in classical MDS) the so-called
“raw Stress” as in [46]

min
X

ÿ

i,j

wij

´b
rDsi,j ´

b
rDpXqsi,j

¯2

, (2.3)
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where the weightswij are supposed to quantify the accuracy of the measured values
in D. The fact that (2.3) is also non-differentiable leads to formidable solutions
such as iterative majorization [47] and steepest decent methods [48]. An alternative
in the same family of optimization problems is the so-called “S-Stress” as in [49]

min
X

ÿ

i,j

wij prDsi,j ´ rDpXqsi,jq2 , (2.4)

which is differentiable all over its domain. On the other hand, a disadvantage of
the S-Stress function is that it favors larger distances over smaller ones [49]. The
S-Stress is solved in a distributed fashion in [41] to develop an distributed weighted
MDS (dwMDS). In this thesis, in Part II, we mainly focus on the classical MDS
due to its elegance and the simplicity of its solution.

2.2 Subspace Perturbation Expansion

Subspace perturbation expansion explains how much subspace perturbation is in-
duced by additive noise in data. This method can be used to derive optimally
weighted subspace fitting algorithms for different estimation problems [50, 51].
Here is the main message. Let us assume that B is an m ˆ n matrix with rank
p ă minpm,nq. The SVD of B can be given by

B “
“
U1 U2

‰ „
Σ1 0

0 0

 „
VH

1

VH
2


,

where p.qH stands for Hermitian, and U1 and U2 respectively represent the mˆ p

and mˆ pm´pq matrices whose columns are an orthonormal basis for the column
space and null space of B. Clearly, Σ1 contains the singular values and V1 and V2

can also be defined similar to U1 and U2. We are basically interested in colpU1q
and colpU2q where colp.q stands for the column space of a matrix. Now, let B be
perturbed as B̃ “ B `∆B. The SVD of B̃ can then be given by

B̃ “
“
Ũ1 Ũ2

‰ „
Σ̃1 0

0 Σ̃2

 „
ṼH

1

ṼH
2


.

It is shown in [50] that we can find orthonormal bases for colpŨ1q and colpŨ2q, i.e.,
a basis for the column space and null space of the perturbed matrix B̃, respectively
given by

colpŨ1q “ pU1 ` U2PqpI ` PHPq´ 1

2 , (2.5)

colpŨ2q “ p´U1P
T ` U2qpI ` PPHq´ 1

2 , (2.6)
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where P is a coefficient matrix. It turns out that P can be written as a series of
terms P “ 0`Pp1q `Pp2q ` ¨ ¨ ¨ , where Ppiq refers to a matrix product containing
∆Bi. For instance, the computations in [50] show that resorting to only first-order
terms leads to P “ Pp1q “ U2∆BV1Σ

´1

1
. Higher-order approximations of P can

be found in [50]. Now, the important question is, are there any restrictions on the
amount of perturbation reflected in ∆B for (2.5)-(2.5) to hold? The answer is yes,
and it is explained in the following remark.

Remark 2.1 (How small should the perturbations be?)

The derivations in (2.5)-(2.6) are based on the assumption that ∆B is small

enough so that the invariant subspace of the perturbed matrix B̃ (i.e., colpŨ1q)

does not contain any vector that is orthogonal to the invariant subspace of the

unperturbed matrix B (i.e., colpU1q).

As we explained in Chapter 1, we exploit the concept of subspace perturbation
expansion in Part II to derive a dynamic MDS.

2.3 Power Method

The power method is used to compute the dominant eigenvector of a diagonalizable
matrix. A natural extension, which is of interest in this thesis, is the computation
of an invariant subspace of a diagonalizable matrix using orthogonal (power) itera-
tions. The orthogonal iterations start from an initial guess of the desired subspace
Up0q and iterates as follows

Upi`1q “ BUpiq, (2.7)

where U is the desired subspace of B and the superscript piq denotes the i-th itera-
tion. Under some conditions, (2.7) is shown to asymptotically converge to the true
subspace if in each iteration Upi`1q is orthonormalized using any possible method
such as a Gram-Schmidt process [52]. It is notable that the number of required
iterations as well as a smooth convergence of the orthogonal iterations are both de-
pendent upon the choice of the initial guess Up0q. Therefore, an improper initial
guess not only leads to a large number of iterations, but it might also result in the
divergence of the algorithm.

2.4 Sparse Reconstruction and Compressive Sensing

In this subsection, we briefly introduce the celebrated concept of sparse recon-

struction and compressive sensing (CS). This is of particular interest in this thesis



28 2. Preliminaries

Sample

(N)

Compress

(S << N)

Transmit

(S)

Receive

(S)
Decompress

(N)

Figure 2.1: Compression/decompression process. The number of samples is shown
in each block, where as can be seen the signal is N{S times compressed.

because the main flavor of the Parts III-IV revolves to a great extent around the
concept of sparsity.

Let us start by stating that in nowadays world we are drowning in a huge amount of
data measured by many different types of sensors. This huge amount of information
also called “big data” calls for either a vast amount of storage, which is lacking or
expensive in principle, or efficient ways to handle such a big buck of data. Delving
deeper into this issue from a signal processing perspective reveals that part of this
originates from the fact that many of the signals being measured have an extremely
high frequency content, for example high quality images. Therefore, following the
classical Nyquist-Shannon theorem, these signals should be sampled at a very high
rate (to be more precise, at least two times the highest frequency) in order to be
reconstructed with proper quality from the samples. This significantly increases
the number of sensors sampling at high rates resulting in a “deluge of data” [53].
A traditional wisdom to deal with this situation is to compress the buck of data and
then store/transmit it, and decompress it when it is required to be processed (see
Fig. 2.1). However, this still mandates taking all those samples, which is expensive
and might not be used after all. A promising alternative, which has received an
upsurge of attention recently, is to think of a new generation of data acquisition
systems with compressive sensors which try to measure only the required infor-
mation (thus producing a much smaller amount of data) rather than measuring a
massive amount of data and then compressing it [54]. The key idea behind this in-
novative trend is to recognize that many practical signals actually live in a very low-
dimensional space. In other words, many natural signals have a low-dimensional

model which can be due to their sparsity or low-rank structure. The idea of CS is
to exploit this low-dimensional structure in the design of signal processing algo-
rithms; the main message is to sample smarter not faster [55]!
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Figure 2.2: An underdetermined measurement system. Image is taken from [54]
and is modified.

In order to make it look like what we will be dealing with in the next parts of this
thesis, we model the sampling problem in a more general form as a linear set of
equations like

y “ Φx,

where x of sizeN ˆ1 contains the original signal (for instance, a vector containing
the pixels of an image), Φ of size M ˆ N is the measurement matrix or some-
times called sampling matrix, and y of size M ˆ 1 is the vector containing the
measurements. Now, it is well-known that if M ą N and Φ has full column rank,
recovering x is trivial through the classical LS as

x̂LS “ pΦTΦq´1ΦTy.

On the other hand, if M ă N and Φ is full row rank (similar to Fig. 2.2), i.e., an
underdetermined linear set of equations, the problem can have infinite solutions. A
simple example is to take any vector from the null-space of Φ and add it to x, the
sum will return exactly the same y. Note that this is clearly a case of dimensionality
reduction as our measurements inhabit a space with a dimension that is smaller than
the dimension of the space our natural data lives in. The larger N{M , the worse
the situation, because we lose information by this “under-sampling”.

What happens in a CS framework is that we have much less measurements than the
number of unknownsM ! N and still we would like to recover x. The key enabler
to realize this is the concept of sparsity. But what is sparsity? Generally speaking,
any x can be written as

x “
Nÿ

j“1

θjψj ,
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Figure 2.3: Sparsifying basis. Image is taken from [54] and is modified.

which is the expansion of x using a basis defined by the columns of Ψ. Fig. 2.2
illustrates a specific case where only a few columns of Ψ contribute to the con-
struction of x. This means x is sparse within the basis defined by Ψ, and thus
Ψ is sometimes referred to as the sparsifying basis. To be more specific, when
the representation of a vector has only K significant elements (and the remaining
N ´ K " K elements are almost negligible), we call it a K-sparse vector. In
plain terms, the theory of CS says that if x is sparse in some given domain, and
Φ (or better to say ΦΨ) satisfies specific properties, even though the problem is
highly underdetermined, we can recover x with a very high quality. For the sake of
simplicity of our notations, let us consider that we deal with

y “ Φx,

where x is sparse in the basis Ψ “ IN , and Φ is an M ˆ N matrix with M ! N

as shown in Fig. 2.3. Now, the point is that we are not interested in recovering
any general x, but an x with only a few (let us say K) non-zero elements. This
means we know that only K columns of Φ contribute to the construction of y.
As an intuition why such a problem can be solved, assume that we know which
columns of Φ contribute to the construction of y, or equivalently we know which
elements in x are significant. Then, after removing the irrelevant columns in Φ and
the irrelevant elements in x, we can basically solve a new problem which is not
underdetermined anymore. The difficulty is that, in practice, we do not know the
indices of the contributing columns.
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Figure 2.4: Distance preservation in projection. Image is taken from [56].

2.4.1 Restricted Isometry Property

The important question is what are the conditions that Φ should satisfy to ensure
a proper recovery of x? The answer has been studied in great detail in literature
[57, 58]. In the following, we try to specify those conditions in simple terms.
A proper Φ should be such that any randomly chosen K columns should be full
column rank (Rank-K). On top of that, we also want those K columns to be as
close as possible to orthogonal to each other. This is in principle what is called the
restricted isometry property (RIP). To clarify things better, let us look at the RIP
from a geometrical angle as is shown in Fig. 2.4. Suppose we have a set of vectors
(like x1 and x2) in R

N each of which is sparse, and thus, lives in a much lower
dimensional subspace R

K . Here, Φ acts as a projection operator which forces our
points to fit into a lower dimensional space in R

M . The RIP says that, as long as
our vectors are sparse, Φ is a proper matrix if when applied, it (approximately)
preserves the distances between the vectors as

}x1 ´ x2}2 « }Φx1 ´ Φx2}2.

Note that this distance preservation means nothing but information preservation be-
cause this way we make sure our information components will not be confused after
projection. More elaborate definitions of the RIP are based on the aforementioned
concept of distance preservation. Two such common definitions are as follows. A
popular definition is given in [54], where for K “ 1, 2, ¨ ¨ ¨ , the RIP constant δK of
a matrix Φ (with normalized columns) is the smallest number that satisfies

´δK ď }Φx}2
2

}x}2
2

´ 1 ď δK ,
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for all K-sparse x P R
N . Roughly speaking, as long as 0 ă δK ă 1, the RIP

holds. Evidently, this is an NP-hard combinatorial problem. A computationally
less demanding definition is given in [59], where δK is defined as the maximum
distance from 1 of all the eigenvalues of the

`
N
K

˘
submatrices, ΦH

ΛΦΛ, derived
from Φ, where Λ is a set of indices with cardinalityK which selects those columns
of Φ indexed by Λ. Hence, for each K, the RIP constant is given by

δK “ max
`
|λmaxpΦH

ΛΦΛq ´ 1|, |λminpΦH
ΛΦΛq ´ 1|

˘
.

2.4.2 Common Choices for the Measurement Matrix

An extensive body of research in literature shows that even though verifying the
RIP for a generic matrix is a tough problem, there are big classes of matrices for
which the RIP (approximately) holds. Three widely-used classes are given below.

˛ Gaussian matrices: An interesting example is to fill the elements of Φ with
independent identically distributed (i.i.d.) samples drawn from a Gaussian
distribution as rΦsi,j „ N p0, 1{Mq. In this case, if M “ OpK logpN{Kqq,
Φ satisfies the RIP with a very high probability.

˛ Bernoulli matrices: A Bernoulli matrix is comprised of independent and
equiprobable elements taken from t`1{

?
M,´1{

?
Mu. Similar to the case

of Gaussian matrices, if M “ OpK logpN{Kqq, Φ satisfies the RIP with a
very high probability.

˛ Fourier matrices: A Fourier matrix is constructed by randomly selecting M
rows from an N ˆ N Fourier matrix, and normalizing the columns of the
resulting matrix. It is proved in [60] that if M “ O

`
KplogpNqq6

˘
, the

RIP holds with a high probability. This result has been further improved to
M “ O

`
KplogpNqq4

˘
in [61].

2.4.3 Sparse Recovery

Before we move on, bear in mind that the ℓp norm of a given N ˆ 1 vector x is
defined as

}x}p “

$
&

%

´řN
i“1

|xi|p
¯ 1

p
0 ă p ă 8

maxp|x1|, ¨ ¨ ¨ , |xN |q, p “ 8
.

A special case is the ℓ0 norm }x}0 which counts the number of non-zero elements
of x.
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Figure 2.5: Estimation with ℓp norms for p “ 2, 1, and 0.5

Knowing that Φ is properly designed, and x is sparse, the questions is how to
recover x from y? As we discussed earlier, without any prior knowledge on x

there are infinitely many solutions for the problem at hand. One way to deal with it
is to somehow go for a favorite solution within the space of possible solutions. A
natural choice is LS; or in other words, to model the problem as

x̂ “ argmin
x

}x}2

s.t. y “ Φx,
(2.8)

which is basically seeking a minimum energy x. However, the ℓ2 norm is not an op-
timal option. This is illustrated in Fig. 2.5-(a) within a hypothetical 2-dimensional
setup. The black line represents the set of all feasible solutions. Solving (2.8)
means blowing the ℓ2 norm circle until it touches the black line. Depending on the
angle of the black line, the solution x̂ does not necessarily lie on one of the coor-
dinate axes, and thus yields a non-sparse solution. Now, the question is what is a
proper norm if ℓ2 is not. The answer clearly is the ℓ0 norm which promotes sparsity
the best as

x̂ “ argmin
x

}x}0

s.t. y “ Φx.
(2.9)

However, (2.9) is known to be combinatorial (more specifically NP-complete) and
non-convex.

The great idea is to convexify this non-convex problem and to go for the ℓ1 norm.
Then, we solve

x̂ “ argmin
x

}x}1

s.t. y “ Φx.
(2.10)
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The ground-breaking results in [57, 58, 62] illustrate that if RIP is satisfied, (2.10)
and (2.9) return exactly the same results. Furthermore, (2.10) can be solved in
polynomial time because it is essentially a linear programming (LP) problem. As
is clear from Fig. 2.5-(b) the ℓ1 norm yields a diamond which is more pointy than
a ball with a higher probability of touching the feasible set on one of the the coor-
dinate axes. Following the same line, the situation gets even better with ℓp norms
defined with 0 ă p ă 1, as is also shown in Fig. 2.5-(c) for p “ 1{2. On the
other hand, solving an ℓp-norm optimization enforces an extra computational cost.
Our focus for sparse reconstruction in this thesis is based on employing ℓ1 norms
and solving (2.10). Note that the aforementioned problems are given for noiseless
samples/measurements. In case of noisy measurements such as y “ Φx`e, where
e denotes the noise vector, instead of (2.10), we solve

x̂ “ argmin
x

}x}1

s.t. }y ´ Φx} ď ǫ.
(2.11)

2.4.4 Recovery Algorithms

A vast variety of algorithms has been developed in literature to solve the sparse re-
covery problem. In general, these algorithms fall broadly into two main categories:
greedy pursuit algorithms and convex relaxation algorithms.

Generally speaking, a greedy pursuit method refers to an algorithm which chooses
the best immediate or local optimum at each stage and it is eventually expected
to find the global optimum. The greedy pursuit algorithms operate by selecting
atoms iteratively (finding the indices of the non-zero elements in the sparse vector),
and subtracting the contribution of each selected atom from the signal residual.
This selection/removal process is repeated until a stopping criterion is met. The
stopping criterion is either to meet a target sparsity level, or to ensure that the mag-
nitude of the residual gets smaller than a pre-determined threshold. Notable exam-
ples of greedy pursuit approaches include matching pursuit (MP) [63], orthogonal
matching pursuit (OMP) [64], or a family of subspace pursuit algorithms including
CoSaMP [65].

The convex relaxation algorithms are based on relaxing the non-convex ℓ0 norm in
(2.9) with a convex objective ℓ1 norm as in (2.10) which can be solved efficiently
with existing linear (or convex) solvers. The relaxation is also commonly known
as basis pursuit (BP) [66]. In noisy conditions, especially when there is no knowl-
edge about the noise, (2.11) can be reformulated as an unconstrained optimization
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problem given by

x̂LASSO “ argmin
x

}y ´ Φx}22 ` λ}x}1, (2.12)

where λ is a regularization (fidelity) term which trades off sparsity for accuracy.
A proper value for λ can be found using a method called cross-validation (CVD)
[67]. Commonly used optimization programs to solve (2.12) are the least absolute
shrinkage and selection operator (LASSO) [68] or basis pursuit denoising (BPDN)
[66].

The greedy pursuit algorithms are usually harder to analyze in terms of perfor-
mance compared to the mathematically elegant convex relaxation algorithms. On
the other hand, the greedy pursuit algorithms have proven computationally effi-
cient and easier to implement while providing almost similar performance com-
pared to the convex relaxation based algorithms. In this thesis, we mainly focus
on convex optimization algorithms, especially LASSO. Besides, we also face with
cases where the sparse vector of interest is comprised of p non-overlapping groups
x “ rxT

1
, ¨ ¨ ¨ ,xT

p sT . Accordingly, we have Φ “ rΦ1, ¨ ¨ ¨ ,Φps. We expect spar-
sity at the group level meaning that the entire group will be either zero or non-zero.
Due to the embedded group structure, the solver for this problem is called group
LASSO (G-LASSO) [69] and it solves

x̂G-LASSO “ argmin
x

}y ´
pÿ

i“1

Φixi}22 ` λ

pÿ

i“1

}xi}2.

2.5 Distributed Optimization via ADMM

A big class of problems in nowadays world deal with an extremely large amount
of high dimensional data or so-called “big data”. Such problems arise in different
domains including machine learning, statistics, and dynamic optimization in large-
scale networks. This sort of problems prompt designing systems and algorithms
which are scalable enough to handle huge data sets in a parallel or decentralized
fashion [70]. Many of these problems can be modeled as convex optimization prob-
lems, and thus, they can be approached using well-known distributed optimization
techniques such as alternating direction method of multipliers (ADMM). Before
detailing ADMM, we would first like to briefly go over two preliminary concepts
on which ADMM is based, namely, dual decomposition and method of multipliers.
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2.5.1 Dual Decomposition

Consider an equality-constrained optimization problem

minimize fpxq
s.t. Ax “ b,

(2.13)

with x P R
n, A P R

mˆn, and f : Rn Ñ R. A specific case of such an optimization
problem occurs when the objective function is separable w.r.t. the variables as

fpxq “
Nÿ

i“1

fipxiq,

where x “ rxT
1
, ¨ ¨ ¨ ,xT

N sT , and the vectors xi P R
ni are subvectors of x. A

particular case occurs when the xi’s are single elements. Therefore, we can write

Ax “
Nÿ

i“1

Aixi,

by a proper partitioning of A as A “ rA1, ¨ ¨ ¨ ,AN s. This means that the La-
grangian of the problem can also be split as

Lpx,λq “
Nÿ

i“1

Lipxi,λq “
Nÿ

i“1

ˆ
fipxiq ` λTAixi ´ 1

N
λTb

˙
,

where λ is a properly-sized dual variable. Given the above separable structure, and
following a dual ascent optimization recursion, a solution to the above problem is

x
pk`1q
i “ argmin

xi

Lipxi,λ
pkqq, i “ 1, ¨ ¨ ¨ , N, (2.14)

λpk`1q “ λpkq ` αpkqpAxpk`1q ´ bq, (2.15)

where superscript pkq indicates the k-th iteration, (2.14) is run in parallel for all i,
and αpkq is the step size. As is clear from (2.14)-(2.15), a gather-scatter paradigm
is observed in our primal-dual update solution, where first in parallel in (2.14) the
subvectors xi are optimized based on the current value of the dual variable. Next, in
(2.15) these subvectors are gathered to evaluate the residual which is used to update
the dual variable. Notice that we are readily doing a distributed optimization. Dual
decomposition (DD) is known to be slow in terms of convergence and working only
under a strict set of conditions making it a very fragile algorithm [70, 71].
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2.5.2 Method of Multipliers

In order to cope with the performance issues of DD (being slow and fragile), usually
an augmented Lagrangian is employed. This is done by adding a (non-negative)
quadratic penalty term to the normal Lagrangian of (2.13) as

Lρpx,λq “ fpxq ` λT pAx ´ bq ` ρ

2
}Ax ´ b}22.

The solution which is called the method of multipliers (MM) is similar to the one
of DD and is given by

xpk`1q “ argmin
x

Lρpx,λpkqq,

λpk`1q “ λpkq ` ρpAxpk`1q ´ bq,

with the specific choice of step size αpkq “ ρ which leads to both primal and dual
feasibility. Notably, MM converges under much more general conditions compared
to dual ascent including even the case where fp.q is not even strictly convex [70].
On the other hand, adding the quadratic term destroys the separability of the prob-
lem, i.e., we cannot decompose the problem anymore. Now, the important question
is how can we combine the robustness of MM and separability offered by DD? A
popular answer which has drawn lots of attention is ADMM.

2.5.3 ADMM

The ADMM can solve problems of the following form

minimize
x,y

fpxq ` gpyq

s.t. Ax ` By “ c,
(2.16)

with x P R
n, y P R

m, A P R
pˆn, B P R

pˆm, and c P R
p. The only main

assumptions are that fp.q and gp.q are convex. Let us construct the augmented
Lagrangian of (2.16) as

Lρpx,y,λq “ fpxq ` gpyq ` λT pAx ` By ´ cq ` ρ

2
}Ax ` By ´ c}22. (2.17)

The solution to (2.17) which resembles a lot the one of MM can be given by

xpk`1q “ argmin
x

Lρpx,ypkq,λpkqq, (2.18)
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ypk`1q “ argmin
y

Lρpxpk`1q,y,λpkqq, (2.19)

λpk`1q “ λpkq ` ρpAxpk`1q ` Bypk`1q ´ cq. (2.20)

Note that (2.16) can clearly be seen as a small example of DD problem withN “ 2,
A “ A1, B “ A2, c “ b, fp.q “ f1p.q, and gp.q “ f2p.q. Also, notice that with
ADMM, in contrast to MM, we never optimize over both x and y at the same time
but instead we have a single pass of Gauss-Seidel pass as given by (2.18)-(2.19).
There is also a slightly modified version of ADMM in which we basically combine
the linear and quadratic terms, the so-called scaled ADMM [70]. We omit it here
for the sake of space limitation.

The assumptions on the convergence of ADMM are quite general and they are also
extensively studied in literature. The important point to highlight is that ADMM
can be very slow to converge if a high accuracy in required. However, in many
applications, such as the one we consider in Part IV, only a modest level of accuracy
is needed which can be obtained quite fast with only a few iterations.

2.5.4 Consensus with ADMM

A class of optimization problems that can be solved in a distributed fashion using
ADMM is a consensus problem given by

minimize
x

fpxq “
Nÿ

i“1

fipxq,

where fi : R
n Ñ R are convex. This is a practical problem that appears in many

contexts such as distributed wireless networks. The problem can be rewritten by
defining a dummy variable z as

minimize
txu,z

Nÿ

i“1

fipxiq

s.t. xi ´ z “ 0, i “ 1, ¨ ¨ ¨ , n.
(2.21)

This is sometimes referred to as global consensus optimization [70] as all the local
xi’s should be equal to a global z. Notice that (2.21) can be seen as a special case
of (2.16) with gp.q “ 0, A “ I, B “ ´I, y “ z, and c “ 0. In order to solve
(2.21) using ADMM, we construct the augmented Lagrangian associated with the
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problem as

Lρpx,y,λq “
Nÿ

i“1

´
fipxiq ` λT

i pxi ´ zq ` ρ

2
}xi ´ z}22

¯
.

The resulting ADMM after simplifications to eliminate the updates of the dummy
variable z can be given by

x
pk`1q
i “ argmin

xi

´
fipxiq ` pλpkq

i qT pxi ´ x̄pkqq ` ρ

2
}xi ´ x̄pkq}22

¯
,

λpk`1q “ λpkq ` ρ
´
x

pk`1q
i ´ x̄pk`1q

¯
,

where x̄pkq “ 1{N řN
i“1

x
pkq
i . In Part IV, we use the ADMM to solve a similar

consensus problem for distributed sensor selection.
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3
DYNAMIC MULTIDIMENSIONAL SCALING

FOR LOW-COMPLEXITY
MOBILE NETWORK TRACKING

Abstract

Cooperative localization of mobile sensor networks is a fundamental problem which
becomes challenging for anchorless networks where there is no pre-existing infras-
tructure to rely on. Two cooperative mobile network tracking algorithms based
on novel dynamic multidimensional scaling (MDS) ideas are proposed. The algo-
rithms are also extended to operate in partially connected networks. Compared with
recently proposed algorithms based on the extended and unscented Kalman filter
(EKF and UKF), the proposed algorithms have a considerably lower computational
complexity. Furthermore, model-independence, scalability as well as an acceptable
accuracy make our proposed algorithms a good choice for practical mobile network
tracking.

3.1 Introduction

Cost and energy prohibitive global positioning systems (GPS) motivate researchers
to focus on estimating the location of sensor nodes using their pairwise distances
in a cooperative context [6]. Studies on cooperative network localization can be
divided into two main categories, i.e., anchored and anchor-less localization. An-
chored localization algorithms rely on distance measurements between the unknown-
location nodes and the anchor nodes, whereas anchorless ones can work without
such information and determine the relative location of the sensor nodes from pair-
wise distance measurements. Such a relative location map could for instance be
useful to determine the distribution of the nodes, but other applications might re-
quire an additional relative or absolute frame of reference. One popular anchorless
localization algorithm for a static network is classical multidimensional scaling
(MDS) [72] or its distributed version [41].

43
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Surprisingly, the problem of cooperative network localization for mobile sensor
networks has not been efficiently solved yet. There are a lot of studies in the lit-
erature on single and multiple target tracking using the extended and unscented
Kalman filter (EKF and UKF) as well as particle filters (PFs) [73]; however, they
are mainly non-cooperative classical target tracking approaches. For anchored lo-
calization, studies in [14–17, 74] investigate the problem of localizing a mobile
target or network using distance measurements in an MDS-based context. In [15],
for instance, a Jacobian-like mobile network tracking algorithm is proposed by ex-
ploiting the Nyström approximation. However, this approach is non-cooperative.

On the other hand, in [7] an anchorless localization scheme for mobile network
localization based on the theory of factor graphs is proposed in which each node
requires knowledge about its own movement model as a probability distribution,
which is not so simple to acquire in a real application. In [19, 20], cooperative net-
work localization algorithms based on the EKF and the UKF are developed which
incorporate the locations of the nodes as well as their velocities in a state-space
model. Although velocity measurements of the nodes aid cooperative network lo-
calization, it requires the use of costly Doppler sensors, and hence, we avoid us-
ing it here. Inspired by the elegance of MDS localization, we propose to use two
novel subspace tracking algorithms (Section 3.2) to track the variations in the signal
eigenvectors and corresponding eigenvalues of the time-varying double-centered
distance matrix. We show that this leads to a dynamic MDS paradigm which en-
ables us to track the relative locations of a mobile network using only pairwise
distance measurements. The absolute locations of the mobile nodes can then be
recovered by the help of an absolute frame of reference provided by a few an-
chor nodes. In order to circumvent the limitations of the classical MDS, we then
also propose an extension for partially connected mobile networks (Section 3.4).
A detailed computational complexity analysis as well as the posterior Cramér-Rao
bound (PCRB) derivation (Section 3.3) together with extensive simulation results
(Section 3.5) illustrate that the proposed algorithms are scalable, acceptably ac-
curate and have a much lower computational complexity compared to algorithms
based on the EKF [20] and the UKF [19].

3.2 Dynamic Multidimensional Scaling

In this section, we formulate the problem of cooperative network localization and
develop the dynamic MDS idea.
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3.2.1 Problem Formulation

We consider a network of N mobile wireless sensor nodes, living in a D-dimensi-
onal space (D ă N ). Let xi,k be the actual coordinate vector of the i-th sen-
sor node at the k-th snapshot of the mobile network, or equivalently, let Xk “
rx1,k, . . . ,xN,ks be the matrix of coordinates. Let us consider an environment
with line-of-sight (LOS) conditions between the nodes and let us assume that time
of flight (ToF) and/or received signal strength (RSS) information is already con-
verted into noisy distance measurements as ri,j,k “ di,j,k ` vi,j,k where di,j,k “
}xi,k ´ xj,k} is the noise-free Euclidean distance and vi,j,k „ N p0, σ2v,i,j,kq is the
additive white noise both at the k-th snapshot. The problem considered herein can
now be stated as follows. Given the pairwise noisy distance measurements ri,j,k at
each snapshot of the mobile network, determine the location of the mobile nodes
and keep their track (up to a translation and orthogonal transformation). In case of a
network with fixed nodes, the squared noisy distance measurements r2i,j,k between
the nodes can be collected in a distance matrix Dk, i.e., rDksi,j “ r2i,j,k, after
which the double-centered distance matrix can be calculated as Bk “ ´1{2ΓDkΓ

using the centering operator Γ “ IN ´ 1N1TN{N , where IN denotes an N ˆ N

identity matrix and 1N represents anNˆ1 vector of all ones. For the k-th snapshot
of the mobile network, the well-known MDS approach [14, 41, 72] then finds the
locations as the solution to

min
X̃

}Bk ´ X̃T X̃}2F ,

where the minimum is taken over allDˆN matrices X̃ and }.}F denotes the Frobe-
nius norm. The solution can be found by means of the eigenvalue decomposition
(EVD) of Bk which can be expressed as

Bk “
“
U1,k U2,k

‰ „
Σ1,k 0

0 Σ2,k

 «
UT

1,k

UT
2,k

ff

, (3.1)

where U1,k and U2,k respectively represent the N ˆD and N ˆ pN ´Dq matrices
containing the orthonormal eigenvectors corresponding to the signal and noise sub-
space of Bk, and Σ1,k and Σ2,k respectively contain the eigenvalues corresponding
to the signal and noise subspace. The MDS estimate of the location matrix up to a
translation and orthogonal transformation can then be expressed as

X̃k “ Σ
1

2

1,kU
T
1,k. (3.2)
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In the noiseless case, X̃k “ ΨXkΓ where Ψ is an arbitrary orthogonal transfor-
mation and Γ translates the nodes such that their center of gravity is at the origin.
Although the above procedure can be carried out for every snapshot of the mobile
network, the complexity of computing the EVD in (3.1) can be quite intensive for
large N [52]; especially when the nodes have to be monitored continuously. The
idea behind the proposed dynamic MDS materialized by two subspace tracking al-
gorithms is that in order to calculate the location of the nodes using (3.2), we only
need to update the D signal eigenvectors in U1,k and their corresponding eigen-
values in Σ1,k [75, 76]. This can be done by more efficient iterative approaches as
follows.

3.2.2 Perturbation Expansion-Based Subspace Tracking

In this subsection, we will present the perturbation expansion-based subspace track-
ing (PEST) algorithm. The idea is that in a mobile network the new location of a
node can be considered as a perturbation of its previous location. Correspondingly,
the double-centered distance matrix Bk can also be modeled as a perturbed version
of Bk´1 (Bk “ Bk´1 ` ∆Bk). Now, if the movement of the nodes satisfies the
property that the invariant subspace (here, the signal subspace) of the next (per-
turbed) double-centered distance matrix Bk does not contain any vectors that are
orthogonal to the invariant subspace of the current Bk´1, then the two bases respec-
tively spanning the signal and noise subspace of the next double-centered distance
matrix follow the expressions [50]

Ũu
1,k “ Ũ1,k´1 ` Ũ2,k´1Pk, (3.3)

Ũu
2,k “ ´Ũ1,k´1P

T
k ` Ũ2,k´1, (3.4)

where Pk is a coefficient matrix, Ũi,k represents an orthonormal basis spanning the
same subspace as the matrix of eigenvectors Ui,k, and Ũu

i,k is an unorthonormal-

ized version of Ũi,k. Observe that in (3.3) and (3.4), different from the expressions
in [50], we do not necessarily have the matrices of eigenvectors Ui,k on the right-
hand side. In order to keep the computational complexity as low as possible, we
will resort to a first-order approximation to compute Pk. However, since we will
continuously use first-order approximations, we cannot assume that Ũ1,k´1 and
Ũ2,k´1 in (3.3) and (3.4) are orthonormal bases exactly spanning respectively the
signal and noise subspaces of Bk´1. And thus, the first-order approximation of Pk

in [50] does not hold anymore, and we need to derive a new Pk. The value of Pk

should satisfy the necessary and sufficient condition for Ũu
1,k and Ũu

2,k to be bases
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for the perturbed signal and noise subspaces. Thus, we need

ŨuT

2,kBkŨ
u
1,k “ 0. (3.5)

We can expand (3.5) by substituting (3.3) and (3.4) as follows

p´Ũ1,k´1P
T
k ` Ũ2,k´1qTBkpŨ1,k´1 ` Ũ2,k´1Pkq “

´PkŨ
T
1,k´1BkŨ1,k´1 ´ PkŨ

T
1,k´1BkŨ2,k´1Pk

`ŨT
2,k´1BkŨ1,k´1 ` ŨT

2,k´1BkŨ2,k´1Pk “ 0. (3.6)

Now by using Bk “ Bk´1 `∆Bk we can rewrite (3.6) as

´PkŨ
T
1,k´1BkŨ2,k´1Pklooooooooooooomooooooooooooon

2nd order

´PkŨ
T
1,k´1∆BkŨ1,k´1looooooooooooomooooooooooooon

2nd order

`ŨT
2,k´1∆BkŨ1,k´1

` ŨT
2,k´1∆BkŨ2,k´1Pklooooooooooooomooooooooooooon

2nd order

´PkŨ
T
1,k´1Bk´1Ũ1,k´1

`ŨT
2,k´1Bk´1Ũ1,k´1 ` ŨT

2,k´1Bk´1Ũ2,k´1Pk “ 0. (3.7)

Note that for small perturbations, Pk in (3.7) will be close to a zero matrix. Thus,
by neglecting the second-order terms, we obtain

´PkŨ
T
1,k´1Bk´1Ũ1,k´1 ` ŨT

2,k´1∆BkŨ1,k´1`
ŨT

2,k´1Bk´1Ũ1,k´1looooooooooomooooooooooon
‰0

` ŨT
2,k´1Bk´1Ũ2,k´1looooooooooomooooooooooon

‰0

Pk “ 0. (3.8)

Different from the derivations in [50], the third and fourth terms in (3.8) are close
but not equal to zero due to the successive first-order approximations as explained
earlier. It is notable that (3.8) is linear in the elements of Pk and can easily be
solved w.r.t Pk. However, this requires a DN ˆ DN matrix inverse calculation
which is undesirable due to its high complexity. Therefore, we confine our approx-
imation of Pk to the first three terms in (3.8). By defining

Σ̃1,k´1 “ ŨT
1,k´1Bk´1Ũ1,k´1, (3.9)

this results in
Pk “ ŨT

2,k´1BkŨ1,k´1Σ̃
´1

1,k´1
. (3.10)
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To avoid updating Ũu
2,k in (3.3), we use the property that

Ũ1,k´1Ũ
T
1,k´1 ` Ũ2,k´1Ũ

T
2,k´1 “ IN .

Together with (3.10), this allows us to rewrite (3.3) as

Ũu
1,k “ Ũ1,k´1 ` pI ´ Ũ1,k´1Ũ

T
1,k´1qBkŨ1,k´1Σ̃

´1

1,k´1
. (3.11)

Now, to be able to use the above formula in an iterative fashion we can normalize
it using any orthonormalization process like Gram-Schmidt (GS) factorization. We
call the orthonormalized result Ũ1,k. As can be seen from the above derivations,
Ũ1,k is an approximation of the orthonormal basis which spans the same subspace
as its corresponding signal eigenvectors in U1,k. However, to be able to calculate
the relative locations using (3.2), we have to find the matrix of eigenvectors U1,k.
To this aim, we look for a transformation matrix Ak to map Ũ1,k to U1,k as follows

Ũ1,k “ U1,kAk. (3.12)

Note that since Ũ1,k and U1,k are isometries, Ak will be a unitary matrix according
to the definition in (3.12). To be able to estimate the locations using (3.2), we also
need to calculate Σ1,k, which depends on the value of U1,k and Bk as Σ1,k “
UT

1,kBkU1,k. From (3.9), and using (3.12), we finally obtain

Σ̃1,k “ pU1,kAkqTBkpU1,kAkq “ AT
kΣ1,kAk. (3.13)

From (3.13), Ak and Σ1,k can be calculated by the EVD of Σ̃1,k. Note that, our
main goal for using perturbation expansion was to avoid computationally intensive
EVD calculations, while here we require it again. However, the point is that Σ̃1,k

is a D ˆ D matrix (the number of dimensions D is in practice at most 3), which
is very small in size compared to the N ˆ N double-centered distance matrix Bk

for large scale sensor networks. The overall PEST algorithm is summarized in Al-
gorithm 3.1. Increasing the measurement interval decreases the computational cost
but introduces larger perturbations, which leads to a degraded result. To heal this
degradation, we can divide ∆Bk in P proportional parts and run the PEST algo-
rithm P times in each snapshot by successively applying these partial perturbations
as shown by the following measurement update equation

Bk,p “ Bk´1 ` p
∆Bk

P
, p “ 1, ¨ ¨ ¨ , P.

We call this modified algorithm the Modified PEST.
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Algorithm 3.1 PEST/PIST

Initialization: Start with an initial location guess

For k “ 1 to K (movement steps)

aaaa

Calculate Ũu
1,k using (3.11) (for PEST) or (3.14) (for PIST)

GS orthonormalization Ũ1,k “ GSpŨu
1,kq

Calculate Σ̃1,k, Ak and Σ1,k using (3.9) and (3.13)
Calculate U1,k using (3.12)
Location estimation using (3.2)

End

3.2.3 Power Iteration-Based Subspace Tracking

Power iterations can also be used to efficiently calculate an invariant subspace of a
diagonalizable matrix (like Bk) [52]. Power iterations are normally used in an iter-
ative manner till an acceptable accuracy is reached. Depending on the initial guess,
the number of iterations can be large, which in turn leads to a high computational
complexity. Additionally, an inappropriate choice of the initial guess can some-
times lead to instability and divergence problems [52]. To avoid both problems
(complexity and divergence) in mobile network localization, we propose to do just
one iteration in each snapshot of the mobile network and use the previous estimate
of the orthonormal basis as the initial guess for the next estimate. This leads to a
scheme that tracks the desired invariant subspace in a similar fashion as PEST, and
we call it power iteration-based subspace tracking (PIST). Here, instead of using
(3.11) as for the PEST, an unorthonormalized version of Ũ1,k can be calculated
using

Ũu
1,k “ BkŨ1,k´1. (3.14)

Note that the resulting Ũ1,k after orthonormalization will again be an orthonormal
basis spanning the desired signal subspace. Thus, the same EVD calculations as
in (3.13) for PEST are required to obtain the matrix of eigenvectors. The overall
PIST algorithm is summarized in Algorithm 3.1. We emphasize that the proposed
algorithms are anchorless in the sense that the relative position of the mobile nodes
(also called network configuration in this context) can continuously be calculated
without requiring any anchor nodes. However, determining the absolute location
of the nodes (removing the unknown translation and orthogonal transformation)
requires a coordinate system consisting of at least D` 1 anchor nodes with known
locations. Hence, if recovering the absolute locations is also of interest, e.g., for
comparison purposes, then a possible additional step can be implemented for every
snapshot of the mobile network.
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3.3 Analysis of the Proposed Algorithms

In the following, we analyze the computational complexity and attainable accuracy
of the algorithms under consideration.

3.3.1 Computational Complexity

We define the computational complexity as the number of operations required to
estimate the locations for a single snapshot. For the sake of simplicity, we do not
count the number of additions and subtractions, due to their negligible complexity
in comparison with the other operations. Also, we consider the same complexity for
multiplications and divisions, and hence, we present the sum of them as the number
of floating point operations (FLOPS). The results of the complexity calculations for
the PEST, the PIST, the EKF, and the UKF algorithms are summarized in Table 3.1.
The last column in the table presents the maximum number of FLOPS. To calculate
this value, we assume that Gauss-Jordan elimination requiring N3 ` 6N2 multipli-
cations is used to calculate the inverse of anNˆN matrix. Further, we assume that
Newton’s method is used to calculate a scalar square root (SQRT) which requires 12
multiplications and a Cholesky decomposition is used to calculate a matrix square
root which requires 2N3{3 multiplications for an N ˆN matrix [17]. Moreover, a
GS orthonormalization process is considered which requires 2ND2 multiplications
for an N ˆ D matrix [77]. For a D ˆ D matrix EVD computation, we consider
a maximum number of D3 multiplications [77]. As can be seen in the table, both
PEST and PIST have a quadratic complexity in N while it is of order 5 and 6 in N
for the EKF and UKF, respectively. As can be seen, the considerably lower com-
putational complexity is a significant gain for the proposed algorithms, especially
for large networks (large N ). Finally, the Jacobian-like algorithm proposed in [15]
although being non-cooperative approximately leads to a complexity order of 3 in
N which is still one order of magnitude larger than our complexity. An advantage
of this low complexity is that the central unit of our algorithm can simply be one of
the nodes of the network.

3.3.2 Tracking Accuracy

To derive the tracking accuracy, let us assume that the nodes move according to the
following state-space model

sk “ Φksk´1 ` wk ` mk´1, (3.15)

rk “ hpskq ` vk, (3.16)
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where
sk “ rxT

1,k, . . . ,x
T
N,k, 9xT

1,k, . . . , 9xT
N,ksT ,

is a column vector of length 2DN containing the locations and velocities at the
k-th snapshot, and

rk “ rr1,2,k, r1,3,k, . . . , rN´1,N,ksT ,

is the column vector of pairwise distance measurements of length NpN ´ 1q{2 at
the k-th snapshot. Next, hp.q is a deterministic observation function which relates
the locations of the nodes (inside sk) to their corresponding pairwise distances and
mk´1 is an optional control input at the pk ´ 1q-th snapshot [78]. Further, wk and
vk are vectors with zero mean Gaussian entries with standard deviation (std) σw,k

and σv,i,j,k, respectively. For the sake of clarity, we denote the elements of the state
vector as sk “ rsTl,k, sTv,ksT , where sl,k of length DN represents the vectorized
version of the locations and sv,k of length DN represents the vectorized version of
the corresponding velocities. The lower bound on the mean squared error (MSE) of
estimation for any discrete-time nonlinear filtering problem can be computed via
the posterior Cramér-Rao bound (PCRB) [79]. For our problem, i.e., estimating
the locations in the state vector sk using all the previous and current measurements
r0, ¨ ¨ ¨ , rk, the lower bound on the MSE covariance matrix (matrix of the state
error) of any unbiased estimator is given by

Etrŝk ´ sksrŝk ´ sksT u ě J´1

k , (3.17)

where Ep.q stands for statistical expectation and ŝk is the state estimate. The re-
cursive PCRB derived in [79] for updating the posterior Fisher information matrix
(Jk) for our model expressed by (3.15)-(3.16) boils down to

Jk “
`
Qk ` ΦkJ

´1

k´1
ΦT

k

˘´1 ` r∇skhpskqsTR´1

k r∇skhpskqs, (3.18)

where Qk and Rk respectively represent the exact covariance matrices of the pro-
cess (movement) and measurement noise wk and vk, and the gradient ∇skhpskq
should be calculated using the true locations. Since we basically estimate the lo-
cations of the nodes and not their velocities, the PCRB of our location estimates is
given by

PCRBk “
DNÿ

i“1

rJ´1

k si,i, (3.19)

which we average over different Monte Carlo (MC) realizations of the movement
process. It is worth mentioning that the MSE of our location estimates will corre-
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spond to the errors on the absolute locations and not on those up to a translation
and orthogonal transformation. As mentioned earlier, the absolute locations can
be recovered by considering l anchor nodes with known locations. Now, if we
compute (3.18) for the location estimates of our anchorless network, ∇skhpskq and
correspondingly r∇skhpskqsTR´1

k r∇skhpskqs will be rank deficient with a rank of
at most DM ´ D ´ 1 (due to the unknown translation and orthogonal transfor-
mation in every snapshot). To resolve this problem, we try to obtain a bound by
reformulating (3.18) for a network with l anchor nodes, and modify the process and
measurement models as

s̄k “ Φ̄ks̄k´1 ` w̄k ` m̄k´1, (3.20)

r̄k “ hps̄kq ` v̄k, (3.21)

where s̄k, w̄k and m̄k´1 are 2DpN ´ lq ˆ 1 vectors calculated by removing the
elements corresponding to the locations and velocities of the anchors from sk, wk

and mk´1, respectively. Therefore, Φ̄k will be a 2DpN ´ lq ˆ 2DpN ´ lq matrix
relating the previous modified state vector s̄k´1 to the next one s̄k. For the modified
measurement model, r̄k is an pNpN ´ 1q{2 ´ |Ω|q ˆ 1 vector similar to rk but the
noisy distance measurements (ri,j,k) between the l anchors are removed (|.| denotes
the cardinality). The indices of the removed distance measurements are contained
in

Ω “ tpi´ 1qN ´ pipi´ 1q{2q ` 1, ¨ ¨ ¨ ,
pi´ 1qN ´ pipi´ 1q{2q ` l ´ i | i “ 1, 2, ¨ ¨ ¨ , l ´ 1u.

The modified sequence of the posterior FIM can then be obtained as

J̄k “
`
Q̄k ` Φ̄kJ̄

´1

k´1
Φ̄T

k

˘´1 ` r∇s̄khps̄kqsT R̄´1

k r∇s̄khps̄kqs,

where Q̄k is the 2DpN ´ lq ˆ 2DpN ´ lq process noise covariance matrix corre-
sponding to w̄k. The modified measurement noise covariance matrix R̄k will be a
pNpN ´ 1q{2 ´ |Ω|q ˆ pNpN ´ 1q{2 ´ |Ω|q diagonal matrix similar to Rk but
corresponding to v̄k. Further, ∇s̄khps̄kq is a pNpN ´ 1q{2 ´ |Ω|q ˆ 2DpN ´ lq
matrix similar to ∇skhpskq but it is calculated by taking partial derivatives from the
remainingNpN´1q{2´|Ω| distance measurements with respect to the 2DpN´lq
elements in the modified state vector s̄k.
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3.4 Extension to Partially Connected Networks

The derivations of the proposed algorithms in Section 3.2 are based on the as-
sumption that all the pairwise distance measurements are available. However, this
assumption is not valid for many practical mobile scenarios where the nodes only
have a limited communication range. Therefore, we also consider a simple finite-
range model where the distances can be measured only if they are below a certain
communication range r0, otherwise they cannot be measured and they are con-
sidered missing links. To tackle this problem, there has been a lot of research in
the literature to reconstruct the squared distance matrix Dk or correspondingly its
double-centered version Bk by exploiting their specific properties like rank and in-
ertia [80, 81]. However, we are interested in a low-complexity algorithm which also
fits to our proposed dynamic MDS model. To this aim, we propose to include an
additional inner iterative procedure (iterating P times in each snapshot) to account
for the missing links. In each snapshot, we first construct D̂k from the measured
noisy Dk as

rD̂ksi,j “

$
’&

’%

rDksi,j , pi, jq measured,

rD̂k´1si,j , pi, jq missing & rD̂k´1si,j ą r2
0

r2
0
, pi, jq missing & rD̂k´1si,j ď r2

0

(3.22)

where the link between nodes i and j is denoted by pi, jq. As is clear from (3.22),
we fill the missing links with their corresponding previously recovered distance
estimates, if their value is larger than r0; otherwise we just fill the missing links
with r0 since we know that they should be larger than r0. We then use the modified
squared distance matrix D̂k to calculate B̂k which we feed to the PEST or the
PIST to calculate the signal eigenvectors and corresponding eigenvalues. Then the
relative locations of the nodes are used to recalculate a new set of pairwise distances
and to construct a temporary squared distance matrix Ek similar to D̂k. Then, we
modify D̂k by updating the distances corresponding to the missing links from the
recently calculated Ek as

rD̂ksi,j “
#

rD̂ksi,j , pi, jq measured

rD̂k´1si,j ` ρ
´

rEksi,j ´ rD̂k´1si,j
¯
, pi, jq missing

(3.23)

where ρ P p0, 1s is a smoothing gain. This gain avoids divergence of the algorithm
for cases where the signal subspace is affected due to a large number of missing
links. Now, a new B̂k can be calculated from the recently updated D̂k which can
be used for the next (inner) iteration in the same snapshot. The final D̂k from the
inner loop will be transferred to the next snapshot. The modified iterative algo-
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Algorithm 3.2 Extension to Partially Connected Networks

Initialization: Start with an initial location guess
For k “ 1 to K (movement steps)

aaaa

Construct D̂k from Dk using (3.22)
Calculate B̂k from D̂k

aaaa

For p “ 1 to P
Use PEST/PIST to estimate locations from B̂k

Calculate new pairwise distances and construct Ek

Update D̂k using (3.23)
Calculate a new B̂k for the next (inner) iteration

End
End

rithm for partially connected networks is shown in Algorithm 3.2. Note that these
P inner iterations scale the computational complexity of the algorithms by at most
a factor P . Since in practice P ď 10 this does not increase the order of complexity
of the modified algorithms for networks with N ą 10. It is noteworthy that dif-
ferent from ranging, communication between each node and the central unit can be
accomplished by multi-hop communications.

3.5 Simulation Results

We consider a network of N mobile sensors, living in a two-dimensional space
(D “ 2). The mobile nodes are considered to be moving inside a bounded area of
100 ˆ 100 squared meters determined by its vertices located at p0, 0qm, p0, 100qm,
p100, 0qm and p100, 100qm. Note that our proposed algorithms are blind to the
movement model, but for the sake of comparison we consider a modified ran-
dom walk process where Φ “ I4N ` FTs, with Ts the measurement interval and
F “ r02Nˆ2N , I2Nˆ2N ;02Nˆ2N , 02Nˆ2N s. We set wk “ r0T , w̆T

k sT , where
we assume that w̆k is a vector with i.i.d. zero-mean Gaussian entries with std
σw. This movement model does not guarantee that the mobile nodes stay inside
the bounded area. To make this happen without greatly violating the predefined
movement model in favor of the model-based algorithms (the EKF and the UKF),
we propose to slightly change the movement pattern so that each time a node gets
closer than a threshold (d0 “ 5m) to the borders of the covered area, we grad-
ually decrease the velocity of that particular node with a centripetal force. The
center of the area is c “ p50, 50qm. Let us define the 2N ˆ 2N diagonal matrix



56 3. Dynamic MDS for Mobile Network Tracking

Gk´1 “ diagpgk´1q, where gk´1 is given by

rgk´1si “

$
’’’’’’&

’’’’’’%

0, rcs1 ´ |rsl,k´1s2i´1 ´ rcs1| ă d0
”

rcs1´|rsl,k´1s2i´1´rcs1|
rcs1

ı 1

α
, rcs1 ´ |rsl,k´1s2i´1 ´ rcs1| ě d0

0, rcs2 ´ |rsl,k´1s2i ´ rcs2| ă d0
”

rcs2´|rsl,k´1s2i´rcs2|
rcs2

ı 1

α
, rcs2 ´ |rsl,k´1s2i ´ rcs2| ě d0

with i “ 1, 2, ¨ ¨ ¨ , N . This equation investigates whether or not the nodes are
closer to the borders than the threshold. Now, the velocity of the nodes in the next
step will be computed as

sv,k “ Gk´1sv,k´1 ` Gk´1w̆k ` σwrI2N ´ Gk´1sp rcs112N ´ sl,k´1

}rcs112N ´ sl,k´1}q
looooooooooooooooooooooomooooooooooooooooooooooon

m̆k´1

,

(3.24)
where the third term m̆k´1 is the 2N ˆ1 non-zero vector in the optional control in-
put (mk´1 “ r0T m̆T

k´1
sT ) which imposes a centripetal force directed towards the

center of the area c. Note that the elements of the Gk´1 matrix are 0 for the nodes
that have passed the threshold and therefore only the third term pulls them back
into the area. For those nodes that have not passed the threshold, the elements of
Gk´1 are close to 1 since α is chosen to be a large integer 10 ă α ă 20, and there-
fore (3.24) acts very close to the classical random walk (sv,k “ sv,k´1 ` w̆k) for
those nodes. Inspired by the CRB for range estimation in additive white Gaussian
noise, following [16, 74], for a realistic free-space model we introduce a constant
γ “ d2i,j,k{σ2v,i,j,k which punishes the longer distances with larger measurement er-
rors. For a quantitative comparison, we consider the positioning root mean squared
error (PRMSE) of the algorithms at the k-th snapshot, which is defined by

PRMSEk “

dřM
m“1

řN
n“1

e2n,m,k

M
, (3.25)

where en,m,k represents the distance between the real location of the n-th node and
its estimated location at the m-th MC trial of the k-th snapshot. All simulations
are averaged over M “ 100 independent MC runs where in each run the nodes
move in random directions starting from random initial locations. For the sake of
comparison, we also simulate the cooperative network localization method of [20]
based on the EKF and also the algorithm in [19] based on the UKF modified to our
setup. Fig. 3.1 illustrates a realization of the mobile network (N “ 3) were for
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Figure 3.1: Tracking of a single realization from erroneous initial locations
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Figure 3.2: PRMSE performance for Ts “ 0.1s

the sake of clarity only the PEST is plotted (we show in the following simulations
that both algorithms have very close performances). For all simulations, to be able
to plot and/or evaluate the results based on the absolute locations, we resolve the
unknown translation and orthogonal transformation of our location estimates by
considering l “ 3 anchor nodes. In general, for all the simulations, we initialize the
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Figure 3.3: PRMSE performance for Ts “ 1s

algorithms with random erroneous initializations. Here, for the sake of visibility,
we initialize the algorithm close to the borders of the covered area, which is far
from the real initial locations. As is clear, convergence is a matter of a few steps.
During our simulations we observed that random initializations lead to divergence
of the EKF in many of its runs, while the UKF and (even better) our proposed
algorithms are robust against erroneous initializations.

Fig. 3.2 shows the PRMSE performance of the algorithms vs. γ for N “ 10,
Ts “ 0.1s, σw “ 0.1 and at the snapshot k “ 250 where all the algorithms have
converged. We also plot the performance of classical MDS and the derived PCRB
as the performance bounds of the algorithms. From the figure, the PEST and the
PIST perform very close to each other and attain the classical MDS performance
while they are much more computationally efficient. The EKF performs better than
the proposed algorithms in terms of accuracy, and the UKF is even better than the
EKF (closer to the PCRB) but they both come at the price of a much higher com-
plexity and depend on the information about the process and measurement models.
That is why if we feed both the EKF and UKF with imperfect measurement noise
covariance (IMNC) information (here, Rk with 40% error), the EKF diverges dras-
tically while the UKF degrades and performs worse than the proposed algorithms
for γ ą 50dB. Beyond the computational efficiency, this is another advantage of
our proposed model-independent algorithms over model-based ones (the EKF and
the UKF). Fig. 3.3 depicts the same results as Fig. 3.2 (N “ 10) but for Ts “ 1s
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Figure 3.4: Partial connectivity and scalability

and σw “ 0.5 and 1. Increasing σw boosts the effect of increasing Ts. From the fig-
ure, by increasing Ts and σw the EKF diverges drastically even with perfect model
information while in a similar situation the UKF is just degraded for γ ą 50dB.
The PIST performs superb and the PEST is a little bit degraded for γ ą 60dB,
which can be healed by using the Modified PEST as explained in Subsection 3.2.2.
Again we investigate the model-dependency of the EKF and the UKF by feeding
them with imperfect process noise covariance (IPNC) information, e.g., a scaled
σw is adopted here. The results are interesting since both algorithms degrade sig-
nificantly and perform worse than the proposed algorithms for all γ. Notably, the
UKF is much more robust against an increase of Ts, and the proposed algorithms
are even more robust than the UKF and this makes them cost-efficient algorithms
for practical scenarios.

Finally, Fig. 3.4 investigates two important issues, i.e., scalability and tackling par-
tial connectivity. For the sake of clarity, we plot the performance of the PIST for
γ “ 30dB and the one of the PEST for γ “ 50dB both for Ts “ 0.1s. From the fig-
ure, the performance of the algorithms in fully connected networks remains almost
the same with increasing the size of the network up to N “ 200 (i.e., scalability).
For partially connected networks, we decrease r0 from the maximum distance in
the network rmax “ 100

?
2 « 141m to r0 “ 100m, 90m and 80m. As can be seen,

the performance of the algorithms in partially connected networks (for r0 ă 100m)
gradually deviates from that of the fully connected network. In our simulations,
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we observe that r0 “ 100m and r0 “ 80m approximately correspond to respec-
tively 30% and 50% misconnectivity in the network which is considerable. Note
that decreasing r0 further leads to many possible configurations which are not rigid
anymore and thus in principle there will be no solution for the reconstruction prob-
lem. This might lead to large estimation errors by our algorithm in cases where the
signal subspace is badly damaged due to the large number of missing links.

3.6 Conclusions

We have proposed two cooperative mobile network tracking algorithms based on a
novel dynamic MDS. We have also extended the proposed algorithms to operate in
more realistic partially connected networks. The proposed algorithms are model-
independent. It has been shown that the proposed algorithms are characterized by
a low computational complexity, an acceptable accuracy, and robustness against
the measurement interval of the network, which makes them a superb choice for
practical implementations. As a future work, we will explore a distributed imple-
mentation of the proposed algorithms.



4
COOPERATIVE LOCALIZATION

IN PARTIALLY CONNECTED
MOBILE WIRELESS SENSOR NETWORKS

USING GEOMETRIC LINK RECONSTRUCTION

Abstract

We extend one of our recently proposed anchorless mobile network localization
algorithms (called PEST) to operate in a partially connected network. To this aim,
we propose a geometric missing link reconstruction algorithm for noisy scenar-
ios and repeat the proposed algorithm in a local-to-global fashion to reconstruct
a complete distance matrix. This reconstructed matrix is then used in the PEST
to localize the mobile network. We compare the computational complexity of the
new link reconstruction algorithm with existing related algorithms and show that
our proposed algorithm has the lowest complexity, and hence, is the best extension
of the low complexity PEST. Simulation results further illustrate that the proposed
link reconstruction algorithm leads to the lowest reconstruction error as well as the
most accurate network localization performance.

4.1 Introduction

Numerous applications of wireless sensor networks (WSNs) cannot rely on a pre-
existing and fixed infrastructure. In such scenarios, there are typically no anchor
nodes (with known locations) and determining the relative location of the sensor
nodes is the ultimate goal. The problem of localization in anchorless networks
becomes more challenging when the nodes of the network are mobile. In [18]
an anchorless localization scheme for mobile networks is proposed wherein each
node requires knowledge about its own movement model as a probability distri-
bution in order to do predictions, which is not so simple to acquire and addition-
ally increases the computational complexity significantly. In [20], a method based
on extended Kalman filtering is developed which incorporates the locations of the
nodes as well as their velocities in a state-space model. But, this algorithm also

61
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has a high complexity. In [75], we proposed two anchorless network localization
algorithms using novel subspace tracking ideas to adapt the classical multidimen-
sional scaling (MDS) [82] for mobile WSNs. The proposed model-independent
algorithms (PEST and PIST) have a considerably lower complexity than existing
algorithms as well as an acceptable accuracy. Surprisingly, the problem of partial
connectivity in not well investigated in a mobile WSN.

In this chapter, we propose to use a local-to-global missing link reconstruction to
end up with a reconstructed network distance measurement matrix which can be
fed to the PEST algorithm for localization. To this aim, we modify an existing link
reconstruction algorithm [81], modify the Nyström algorithm [82] for link recon-
struction, and also propose a novel geometric missing link reconstruction algorithm
and modify it by proposing a selection criterion for noisy measurements. The rest
of this chapter is organized as follows. In Section 4.2, we present the network
model and state the problem under consideration. Section 4.3 tackles the problem
of partial connectivity. Section 4.4 compares the computational complexity of the
missing link reconstruction algorithms under consideration. Section 4.5 provides
simulation results for evaluation of missing link reconstruction as well as mobile lo-
calization in a partially connected WSN. Finally, concluding remarks are presented
in Section 4.6.

4.2 Network Model and Problem Statement

We consider a network of N mobile wireless sensor nodes, living inside a bounded
2-dimensional space. Our network model is based on pairwise distance measure-
ments and these distance measurements themselves can be calculated by means of
time of flight (ToF) measurements. Hence, we assume that the ToF information is
already converted into noisy distance measurements as

ri,j,k “ di,j,k ` vi,j,k, (4.1)

where di,j,k “ }xi,k ´ xj,k} is the noise-free Euclidean distance, vi,j,k „ N p0,
σ2v,i,j,kq is the uncorrelated additive noise and xi,k is the actual coordinate vector of
the i-th sensor node, all for the k-th snapshot of a mobile scenario. For a free space
propagation model, we consider a constant

γ “ d2i,j,k{σ2v,i,j,k, (4.2)

which punishes the longer distances with larger measurement errors. Meanwhile,
we consider a simple finite-range model where the distances can be measured only
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if they are below a certain communication range r0, otherwise they cannot be mea-
sured and we call them missing links. A wide variety of movement models can
be considered for the mobile nodes since in [75] we explain that the proposed al-
gorithms, one of which is also considered here, are blind to the movement model.
The problem considered herein can be stated as follows. Having a fully connected
network, the squared noisy distance measurements r2i,j,k between the nodes can be
collected in a distance matrix Dk, i.e., rDksi,j “ r2i,j,k, after which the double-
centered distance matrix can be calculated as Bk “ ´1{2HNDkHN using the
centering operator HN “ IN ´ 1N1TN{N , where IN denotes an N ˆ N identity
matrix and 1N represents an N ˆ 1 vector of all ones. Then, Bk can be used in the
PEST to track the locations of the nodes in an iterative manner [75]. However, un-
like [75], we here consider a partially connected network. To be able to modify our
previously proposed PEST algorithm to operate in partially connected networks,
we propose to recover the missing links in a local-to-global fashion and then use
the PEST. As we use the PEST, the network localization will be anchorless.

4.3 Tackling Partial Connectivity

We first consider the problem of missing link reconstruction, which is then used in
a local-to-global fashion to reconstruct Dk.

4.3.1 Missing Link Reconstruction

In [83], a distributed algorithm for anchorless localization based on building a rel-
ative coordinate system is explained. For every node of the network a relative
coordinate system is considered which is used to localize the neighboring nodes.
We will here exploit this idea to reconstruct missing links in our mobile network.
We propose to build a local coordinate system only around 5 nodes including 3

interconnected nodes (N1 to N3) and 2 other nodes (N4 and N5) which are both
connected to the first three and the link between the last two nodes is missing as
shown in Fig. 4.1. Let us start with the noiseless case. We choose one of the first
three nodes as N1 and place it on the origin of the local coordinate system r0, 0sT .
Since we know d1,2, we can set the coordinates of N2 to rd1,2, 0sT . Now, by
calculating cospα3q using

cospα3q “
d2
1,2 ` d2

1,3 ´ d2
2,3

2d1,2d1,3
, (4.3)

the location ofN3 will then be rd1,3cospα3q, d1,3
a
1 ´ cospα3q2sT or rd1,3cospα3q,

´ d1,3
a
1 ´ cospα3q2sT , but we set it to the former. In order to acquire a rigid
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Figure 4.1: Geometric link reconstruction (GLR)

configuration (up to a translation and orthogonal transformation) we calculate the
two possible locations for N4 (also N5) similar to N3 and decide between the two
possible locations by comparing the distances dpN4, N3q and dpN 1

4
, N3q with the

available measured d3,4 and choose the one which is equal to it. For a noisy sce-
nario, however, we will have to choose the location which yields a closer distance
compared to the noisy measured r3,4. The same explanations hold for N5. Now,
having the relative location of N4 and N5 in the considered coordinate system we
can calculate their missing distance. We call this algorithm geometric link recon-
struction (GLR). Note that considering the above explanations, this 5-node setup
is the simplest configuration of nodes with unknown locations (fits in anchorless
network localization) by means of which we can recover one missing link.

For the case of noisy measurements, however, we expect that the accuracy of our
relative location estimates for N4 and N5 will depend on the choice of the base-
line nodes N1 and N2. For the sake of simplicity, let us assume that N2 is already
perfectly located using the available information. Further, the location estimation
error in both N4 and N 1

4
is similar with respect to the base-line since N3 is only

used to choose N4 or N 1
4
. Therefore, the Cramér-Rao bound (CRB) of our lo-

cation estimate will depend on the measurement vector r “ rr1,4, r2,4sT , where
ri,4 “

a
px4 ´ xiq2 ` py4 ´ yiq2. Under the above assumptions, the CRB of the

N4 location estimate for general Gaussian noise can be derived using the Fisher
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information matrix (FIM) as explained in [78]

IpN4q “
«

p Br
Bx4

qTC´1p Br
Bx4

q p Br
Bx4

qTC´1p Br
By4

q
p Br

By4
qTC´1p Br

Bx4
q p Br

By4
qTC´1p Br

By4
q

ff

`

1

2

«
trrC´1 BC

Bx4
C´1 BC

Bx4
s trrC´1 BC

Bx4
C´1 BC

By4
s

trrC´1 BC
By4

C´1 BC
Bx4

s trrC´1 BC
By4

C´1 BC
By4

s

ff

. (4.4)

For distance-dependent measurement noise (as defined by (4.1) and (4.2)), the co-
variance matrix of the measurements C will be

C “ Etpr ´ Etruqpr ´ EtruqT u “

»

–
d2
1,4

γ
0

0
d2
2,4

γ

fi

fl . (4.5)

Our derivations show that the second term of (4.4) is independent of γ and is neg-
ligible compared to the first term for large values of γ. Thus, the FIM can be
approximated by the first term of (4.4) as

IpN4q « γ

»

–
p x2

4

d4
1,4

q ` px4´d1,2q2

d4
2,4

y4p x4

d4
1,4

` x4´d1,2
d4
2,4

q
y4p x4

d4
1,4

` x4´d1,2
d4
2,4

q y2
4
p 1

d4
1,4

` 1

d4
2,4

q

fi

fl . (4.6)

Now, by considering the configuration shown in Fig. 4.1, the CRB after elaborate
simplifications can be given by

CRBN4
«

pd2
1,4 ` d2

2,4qpd2
1,4d

2
2,4q

4γA2

pN1,N2,N4q

, (4.7)

where ApN1,N2,N4q indicates the area of the triangle with vertices N1, N2 and N4.
The same calculations can be carried out for the case of distance-independent mea-
surement noise with vi,j „ N p0, σ2vq. For that case, C “ σ2vI2 and the second term
of (4.4) will be zero, and therefore, the CRB expression boils down to

CRBN4
“

σ2vd
2
1,4d

2
2,4

2A2

pN1,N2,N4q

. (4.8)

These CRB expressions provide a selection criterion (SC) for choosing the base-
line nodes N1 and N2. Considering the aforementioned assumption that N2 is per-
fectly located, the location estimates of N4 and N5 can be considered statistically
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independent which results in

SC “ CRBtotal “ CRBN4
` CRBN5

. (4.9)

The pair of nodes that provides the minimum SC in (4.9) will be chosen as N1

and N2. We call this modified algorithm for noisy scenarios, the modified GLR
(MGLR). One interesting solution proposed in [81] called linear algebraic recon-
struction (LAR) proves that if we have a similar 5-node setup as explained for the
GLR, the missing distance can be recovered by considering the singularity of the
Schur complement of Dp5q (noisy distance matrix for N1 to N5 with missing link
set to zero) with respect to Dp3q (noisy distance matrix for N1 to N3) as defined by

Dp5q “
«
Dp3q E

ET 02ˆ2

ff

. (4.10)

This will give us a second-order polynomial with two roots corresponding to the
missing distance. The root which constructs a rank-2 Bp5q matrix corresponding to
the reconstructed complete D̂p5q, will be chosen. Although the algorithm is exact
for noiseless scenarios, in a noisy scenario, none of the two roots will construct a
Bp5q matrix with rank two. A simple modification that comes to mind is to construct
both Bp5q matrices and choose the one which is closer to a rank-2 matrix. To
this aim, we can define a rank selection metric ρ “ ř

2

i“1
|λi|{

ř
5

i“3
|λi| (where

tλiu denote the eigenvalues of Bp5q) and choose the root which yields a larger ρ.
We call this algorithm the modified LAR (MLAR). The other possible solution
is to simplify the Nyström algorithm (on behalf of all Nyström-based algorithms
explained in [82]) for the case of the explained 5-node setup with one missing link.
To do this, we first calculate the relative coordinates of N1 to N3, denoted by a
2 ˆ 3 matrix Y, by doing a double-centering on Dp3q and then computing an EVD
on Bp3q as

Bp3q “ ´1

2
H3D

p3qH3, Bp3q “ UΣUT , Y “ Σ
1

2
s U

T
s ,

where Hn stands for an nˆ n centering operator and subscript s indicates the sub-
matrices corresponding to the eigenvectors with the 2 largest positive eigenvalues.
Next, we also bring the center of gravity of the group containing N4 and N5 to the
origin and exploit the known distances between N4 and N5 and the other nodes to
recover the coordinates of N4 and N5, denoted by a 2 ˆ 2 matrix Z, as in [82]

F “ ´1

2
H3EH2, Z “ Y´TF.
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Finally, the missing distance can be recovered from the dummy locations we cal-
culated in Z for the nodes 4 and 5.

4.3.2 Distance Matrix Reconstruction and Network Localization

To be able to reconstruct the network distance matrix completely, and subsequently
use it in the PEST, we propose to repeat the missing link reconstruction for all the
missing links in a local-to-global fashion. Therefore, in every snapshot of the mo-
bile network, we first discover the missing links, then for every pair of nodes with
a missing link we try to find three other nodes meeting the requirements explained
in Subsection 4.3.1. Obviously, in sparsely connected networks, there may be two
nodes for which we cannot find the three neighboring nodes as explained earlier
(irrecoverable missing links). To alleviate this problem, we should always recover
the missing links which are recoverable in a first round and in the next round there
is a good chance that some of the irrecoverable missing links can be recovered due
to previously recovered missing links. We repeat this procedure as long as we can
recover some missing links. Notably, as we recover the missing links the proba-
bility that we can find more than one group of three nodes meeting the required
conditions increases. In those cases, we choose one of these groups which meets
the following criterion

arg min
g,l

SCg,l g “ 1, 2, ¨ ¨ ¨ , G; l “ 1, 2, 3, (4.11)

whereG denotes the number of possible 3-node neighboring groups and l indicates
the index of the chosen edge determined by N1 and N2. At the end, if there are still
a few missing links not recovered, for mobile networks with slow dynamics, we
can always exploit the previously recorded distance measurements (or recovered
distance estimates) and use them instead of the shortest path estimate, which hope-
fully can give us better estimates. This can be further refined by filling the missing
distances with r0 if the previously recorded distance measurement (or recovered
distance estimate) for that link is less than r0 as

rD̂ksi,j “
#

rD̂k´1si,j if pi, jq is irrecoverable & rD̂k´1si,j ą r2
0
,

r2
0

if pi, jq is irrecoverable & rD̂k´1si,j ď r2
0
.

(4.12)

By exploiting this property of mobile networks, we depart from the existing lit-
erature that may leave some nodes not localized [83]. The reconstructed distance
matrix at the k-th snapshot (D̂k) will be fed to the PEST to recover the locations
of the mobile nodes. The whole process of localization in a partially connected
mobile network is shown in Algorithm 4.1.
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Algorithm 4.1 Localization in partially connected networks

Initialization: Start with an initial location guess
For k “ 1 to K (movement steps)

aaaa

Step I: Reconstruction

D̂k Ð Dk

While no. of recoverable missing links ą 0

aaaa
Look for groups of three appropriate nodes in D̂k

Choose one appropriate group and N1 and N2 using (4.11)
Recover the missing using MGLR and fill D̂k

End
Complete irrecoverable missing links using (4.12)
Step II: Localization

Use D̂k in PEST to recover the locations
End

Table 4.1: Reconstruction computational complexity

Algorithm Mult. SQRT Matrix inverse EVD Tot. FLOPS

MLAR 37 3 1 p3 ˆ 3q 2 p5 ˆ 5q 404

Nyström 122 2 - 1 p3 ˆ 3q 173

GLR 37 5 - - 97

MGLR 67 5 - - 127

4.4 Reconstruction Computational Complexity

We define the reconstruction computational complexity as the number of opera-
tions required to reconstruct one missing link. For the sake of simplicity, we do not
count the number of additions and subtractions due to the negligible complexity in
comparison with the other operations. Also, we consider the same complexity for
multiplications and divisions, and hence, we present the sum of them as the number
of floating point operations (FLOPS). The results of the computational complexity
for the MLAR, the Nyström, the GLR and the MGLR algorithms are summarized
in Table 4.1. To calculate the total number of FLOPS required, we assume the same
methods and complexities as explained in [75] for matrix inverse, scalar square root
(SQRT) and EVD computation. As can be seen from the last column of the table,
the GLR and the MGLR algorithms have the lowest complexities among all the
algorithms under consideration and this makes them preferable for practical imple-
mentations, especially for sparsely connected networks with a lot of missing links.
Note that this amount of complexity times the number of missing links in a given
network yields the total complexity overload imposed by the network distance ma-
trix reconstruction process. It is noteworthy that in the GLR (and MGLR), after
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fixing the locations of N1 to N3 in the relative coordinate system, we could also
use them to find the locations of N4 and N5 using classical trilateration; however,
it requires much higher complexity and thus we prefer the proposed MGLR.

4.5 Simulation Results

We start by illustrating the effect of the proposed MGLR algorithm on a 5-node link
reconstruction setup. The nodes are randomly deployed in an area of 100 ˆ 100

square meters and the link between N4 and N5 is always missing. The result is
shown in Fig. 4.2 where we plot the root mean squared error (RMSE) of missing
link reconstruction versus γ. The results are averaged over 50000 Monte Carlo
(MC) trials for 50 random configurations of nodes and 1000 realizations of the
noise. The results reveal that GLR performs better than the MLAR and the Nys-
töm. Moreover, the MGLR which exploits the proposed SC outperforms all the
other algorithms. Remember that the MGLR has a much lower complexity com-
pared to the MLAR and the Nystöm, as well. In the next simulations, we present
the results of exploiting the MLAR, the Nyström and the MGLR in distance ma-
trix reconstruction for anchorless localization of a mobile network as explained in
Subsection 4.3.2 and briefly illustrated in Algorithm 4.1. To this aim, we consider
a network ofN “ 10 mobile sensors living inside a 2-dimensional bounded area of
100 ˆ 100 square meters. Further, to be able to evaluate and plot the results based
on the absolute locations, we resolve the unknown translation and orthogonal trans-
formation of our obtained location estimates for all the algorithms by considering
3 anchor nodes. As explained earlier, the distance measurements are impaired by
additive distance dependent noise. Note that, for instance, according to (4.2) at
γ “ 30dB we can have a maximum σv,i,j,k “ 100

?
2{

?
1000 « 4.5m of error on

distance measurements. The detail of the movement model is perfectly similar to
the explanations in [20, 75] with process noise standard deviation σw “ 0.1 and
measurement time interval Ts “ 0.1s.

For a quantitative comparison, we define the positioning root mean squared error
(PRMSE) of the algorithms at the k-th snapshot as

PRMSE “

dřM
m“1

řN
n“1

e2n,m,k

M
, (4.13)

where en,m,k represents the distance between the real location of the n-th node and
its estimated location at the m-th MC trial of the k-th snapshot. All simulations are
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Figure 4.2: Missing link reconstruction error
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Figure 4.3: Results for a partially connected network with r0 “ 110m

averaged over M “ 100 independent MC runs where in each run the nodes move
toward random directions starting from random initial locations.

Fig. 4.3 depicts the performance of Algorithm 4.1 using the MLAR, the Nyström
and the MGLR for a partially connected WSN with r0 “ 110m (approximately



4.6 Conclusions 71

30 40 50 60 70 80

10
−1

10
0

10
1

10
2

10log
10

(γ)

P
R

M
S

E

 

 

Classical MDS − Fully
connected network

PEST − Fully
connected network

Shortest Path − PEST

MLAR − PEST

Nyström − PEST

Figure 4.4: Results for a partially connected network with r0 “ 100m

up to 10 missing links). We plot the performance of the classical MDS over the
same fully connected network as the lower bound of PRMSE and the PEST over
the fully connected network as a base-line algorithm for the sake of comparison
[75, 82]. Besides, we also plot the results of using the shortest path algorithm to
estimate the missing links in combination with the PEST. The results illustrate that
the PEST attains the achievable bound determined by the classical MDS for the
fully connected network. The proposed MGLR algorithm performs the best and
is very close to the performance of a fully connected network, which means it is
capable of reconstructing up to 10 missing links. Note that the shortest path fails
to recover the missing links as it does not show any improvement by increasing
γ and also the MLAR performs much worse than the MGLR and the Nyström.
Remember that considering the lowest complexity of the MGLR as well as its best
accuracy, it is the preferable choice for a partially connected network. Fig. 4.4
shows the same scenario as in Fig. 4.3 except for r0 “ 100m (approximately up to
14 missing links). It is interesting that while the Nyström shows signs of instability
and the MLAR still does not perform well, the MGLR gives the best performance
even for a network with 14{

`
10

2

˘
ą 30% missconnectivity.

4.6 Conclusions

We have proposed a geometric link reconstruction algorithm for noisy scenarios.
The proposed algorithm is then used in a local-to-global fashion to reconstruct the
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complete network distance matrix and localize the mobile network. It has been
shown that the proposed algorithm has a low computational complexity and outper-
forms comparable existing approaches in terms of link reconstruction and network
localization accuracy in noisy scenarios.
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5
SPARSITY-AWARE MULTI-SOURCE

TDOA LOCALIZATION

Abstract

The problem of source localization from time-difference-of-arrival (TDOA) mea-
surements is in general a non-convex and complex problem due to its hyperbolic
nature. This problem becomes even more complicated for the case of multi-source

localization where TDOAs should be assigned to their respective sources. We sim-
plify this problem to an ℓ1-norm minimization by introducing a novel TDOA fin-
gerprinting and grid design model for a multi-source scenario. Moreover, we pro-
pose an innovative trick to enhance the performance of our proposed fingerprinting
model in terms of the number of identifiable sources. An interesting by-product of
this enhanced model is that under some conditions we can convert the given under-
determined problem to an overdetermined one that could be solved using classical
least squares (LS). Finally, we also tackle the problem of off-grid source local-
ization as a case of grid mismatch. Our extensive simulation results illustrate a
good performance for the introduced TDOA fingerprinting paradigm as well as a
significant detection gain for the enhanced model.

5.1 Introduction

Determining the position of multiple sources in a two-dimensional or three-dimensi-
onal (2-D or 3-D) space is a fundamental problem which has received an upsurge of
attention recently [84]. Many different approaches have been proposed in literature
to recover the source locations based on time-of-arrival (ToA), time-difference-
of-arrival (TDOA) or received-signal-strength (RSS) measurements between the
source nodes (SNs) and some fixed receivers or access points (APs). A traditional
wisdom in RSS-based localization tries to extract distance information from the
RSS measurements. However, this approach fails to provide accurate location es-
timates due to the complexity and unpredictability of the wireless channel. This
has motivated another category of RSS-based positioning, the so-called location

75
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fingerprinting, which discretizes the physical 2-D or 3-D space into grid points
(GPs) and creates a map representing the space by assigning to every GP a set of
location-dependent RSS parameters, one for every AP. The location of the source is
then estimated by comparing real-time measurements with the fingerprinting map
at APs, for instance using K-nearest neighbors (KNN) [12] or Bayesian classifica-
tion (BC) [13].

A closer look at the grid-based fingerprinting localization problem reveals that the
source location is unique in the spatial domain, and can thus be represented by a 1-
sparse vector. This motivated the use of compressive sampling (CS) [85] to recover
the location of the source using only a few measurements by solving an ℓ1-norm
minimization problem. This idea (for RSS measurements) illustrated promising re-
sults for the first time in [86, 87] as well as in the subsequent works [26, 29, 88].
Existing RSS-based sparse localization algorithms only make use of the signal/RSS
readings at different receivers (or APs) separately. However, there is potential in-
formation in the cross-correlations of these received signals at different APs which
has not been exploited in the aforementioned works. In [89], we have proposed to
reformulate the sparse localization problem so that we can make use of the cross-
correlations of the signal readings at different APs, which leads to a considerable
improvement in terms of the number of identifiable sources. Notably, all the afore-
mentioned studies consider on-grid target(s) or source(s).

On the other hand, the problem of TDOA-based localization for a single (multi-
ple) source(s) has been investigated from different perspectives in literature, for
instance in the speech and acoustic domain [30, 31, 90–92]. In speech processing,
algorithms often rely on the speech non-stationarity (TDOAs can be assigned to
different sources using this assumption) which does not hold in our context. That is
why some of these studies consider disjoint sources such as [90] and in many others
linear array receivers are assumed and thus the problem basically boils down to di-
rection of arrival (DOA) estimation [92]. In a big line of research, the conversion of
phase to TDOA leads to aliasing effects at high frequencies for large receiver spac-
ings [30, 92]. In [30], for instance, a blind source separation (BSS) signal model
is considered and a beamforming procedure is proposed to produce an acoustic
map of the covered area. To obtain such a map, distance information (between
source(s) and receivers) is required which becomes computationally demanding
for a near-field assumption. In [91], a fingerprinting-like approach is proposed
and the area is discretized into a set of GPs for which an acoustic map function
is defined. Through a proper processing of the acoustic map and de-emphasizing
the effect of the dominant source, they illustrate a good performance in localizing
two sources, but in some situations their performance drops if the number of tar-
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gets is larger than three. Interestingly, none of the aforementioned studies exploits
CS or sparse reconstruction ideas and surprisingly, not much work can be found
on TDOA-based source localization within a sparse representation framework. In
[25], a single-source TDOA-based localization is proposed wherein the sparsity of
the multipath channel is exploited for time delay estimation but we are basically
interested in spatial source sparsity, i.e., we want to exploit the fact that the sources
are sparse in the 2-D or 3-D space. On the other hand, in [93], the spatial source
sparsity is exploited to simplify the hyperbolic source localization problem into an
ℓ1-norm minimization. However, the algorithm in [93] treats different sources sep-
arately, i.e., it is in principle a single-source localization approach. Besides, the
problem of off-grid source localization is not really tackled in [93]. A conference
pre-cursor of this work is presented in [94].

The contribution of this chapter is four-fold. Firstly, we formulate the problem of
sparsity-based multi-source localization by defining a novel TDOA fingerprinting
paradigm to simplify the complexity and non-convexity of the multi-source TDOA
localization problem. The proposed paradigm solves the problem of the TDOA
assignment and multi-source localization in a joint fashion. Second, we present an
appropriate grid design for our fingerprinting model. Further, we propose a novel

trick to enhance our proposed fingerprinting paradigm in terms of the number of
identifiable sources, which leads to a significant detection gain. And finally, we
extend our ideas by tackling the problem of off-grid source localization. To this
aim, we propose two algorithms inspired by the grid mismatch concept as well as
the sparse total least squares (STLS) method proposed in [95]. It is worth pointing
out that the proposed algorithms can be applied in outdoor environments where
location-based services are of interest. Therefore, there is no limitation to employ
the proposed ideas in wireless local area networks (WLANs) or wireless sensor
networks (WSNs) operating in a centralized fashion. A notation summary of the
symbols used in the following sections is given in Tabel 5.1.

The rest of this chapter is organized as follows. In Section 5.2, the TDOA network
model as well as our measurement model are explained. Section 5.3 introduces
our novel sparse multi-source TDOA localization idea as well as the proposed grid
design. Section 5.4 presents an innovative approach to enhance the performance of
our proposed multi-source algorithm. The problem of off-grid source localization
is investigated in Section 5.5. Extensive simulations in Section 5.6 corroborate
our analytical claims in several scenarios. Finally, this chapter is wrapped up in
Section 5.7 with brief concluding remarks.
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Symbol Description

skptq k-th SN’s signal

xiptq, niptq Received signal and noise at the i-th AP

rip∆q Cross-correlation w.r.t pAP1, APiq pair

∆
pkq
i k-th TDOA peak in rip∆q

ypkq Measurement vector containing ∆pkq
i ’s

∆i,k TDOA of the k-th SN in rip∆q
yk Measurement vector containing ∆i,k’s

∆
g
i,n TDOA of n-th GP w.r.t pAP1, APiq pair

y
g
n Measurement vector containing ∆g

i,n’s

hypi,k Hyperbola of k-th SN w.r.t. pAP1, APiq pair

hypg
i,n Hyperbola of n-th GP w.r.t. pAP1, APiq pair

Table 5.1: Description of the symbols

5.2 TDOA Network Model

Consider that we have M APs distributed over a 2-D or 3-D area which is dis-
cretized into N GPs. Note that the APs can be located anywhere, not necessarily
on the GPs. We consider K SNs which are randomly located either on any of these
GPs (“on-grid”) or possibly “off-grid”. We assume that the APs are connected to
each other in a wireless or wired fashion so that they can cooperate by exchanging
their signal readings. Now, if the k-th source broadcasts a time domain signal skptq,
the received signal at the i-th AP can be expressed by

xiptq “
Kÿ

k“1

hi,kskpt´ τi,kq ` niptq, (5.1)

where in general hi,k is the channel coefficient and τi,k is the time delay from the
k-th source to the i-th AP and niptq represents additive white noise. Here, for the
sake of simplicity, we have considered a single-tap flat fading channel. We only
consider a single-path scenario here, since it might be more suited to an outdoor
environment and since it simplifies the setting in order to have a better focus on the
core idea of this chapter.

In this work, we choose a set of M ´ 1 TDOA measurements (the so-called non-
redundant set) by always considering the first AP as the reference. Since we con-
sider a passive source localization scenario, taking cross-correlations of the re-
ceived signals is the optimal approach for extracting the TDOAs [96]. The signals
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skptq and niptq are assumed to be ergodic, mutually uncorrelated white sequences,
i.e.,

ż

t

skptqsk1pt´∆qdt “
#

0, k ‰ k1

δp∆q, k “ k1
, (5.2a)

ż

t

niptqnjpt´∆qdt “
#

0, i ‰ j

δp∆q, i “ j
, (5.2b)

ż

t

skptqniptqdt “ 0. (5.2c)

where δp.q stands for the unit impulse function. Therefore, by considering (5.2),
the cross-correlation between the received signal at the i-th AP and the reference
AP is given by

rip∆q “
ż

t

ˆ Kÿ

k“1

hi,kskpt´ τi,kq ` niptq
˙

ˆ

ˆ Kÿ

k1“1

h1,k1sk1pt´∆´ τ1,k1q ` n1pt´∆q
˙
dt

“
Kÿ

k“1

Kÿ

k1“1

ż

t

ˆ
hi,kskpt´ τi,kq ` niptq

˙
ˆ

ˆ
h1,k1sk1pt´∆´ τ1,k1q ` n1pt´∆q

˙
dt

“
Kÿ

k“1

ż

t

ˆ
hi,kskpt´ τi,kq ` niptq

˙
ˆ

ˆ
h1,kskpt´∆´ τ1,kq ` n1pt´∆q

˙
dt

“
Kÿ

k“1

hi,kh1,kδp∆´∆i,kq,

(5.3)

where ∆i,k “ τ1,k ´ τi,k is the TDOA of the k-th source w.r.t. the AP pair
pAP1, APiq. As is shown by (5.3), for a single-tap channel as considered here,
the K dominant peaks of rip∆q return the TDOA values t∆i,kuk related to the K
sources. Note that in this work we assume that K is known even though target
counting algorithms (such as a modified version of [29]) can be applied to estimate
K in advance.

The main problem with (5.3) is that even though we can estimate the set of TDOAs
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Figure 5.1: Artificial setup for assignment problem; definition of ∆pkq
i and ∆i,k.

Note that SN2 produces the smallest TDOA while SN3 produces the largest one.

t∆i,kuk, we do not know the source indices of the TDOAs. This leads to an as-
signment problem to relate the TDOAs to the sources. To make it more clear, as
shown in Fig. 5.1, we define the ∆

pkq
i ’s which denote the TDOAs in an increasing

order (∆
p1q
i ď ¨ ¨ ¨ ď ∆

pKq
i ). These ∆

pkq
i ’s can be measured for i “ 2, ¨ ¨ ¨ ,M

and they are stacked in the measurement vectors ypkq “ r∆pkq
2
, ¨ ¨ ¨ , ∆pkq

M sT . Note
the difference with the ∆i,k’s, which denote the TDOA values ordered according
to the source indices leading to the vectors yk “ r∆2,k, ¨ ¨ ¨ , ∆M,ksT . It is worth
mentioning that while the ypkq vectors are perfectly known, the yk vectors are not.
Now, the problem considered herein can be stated as follows. How can we assign
the TDOAs to the different sources and simultaneously localize them? We would
like to emphasize that we tackle the problem of passive multi-source localization
where we have no knowledge about the signals transmitted by the sources except
for the common assumption that they are mutually uncorrelated white sequences;
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otherwise, any sort of information about the signal (such as identification label, the
occupied bandwidth, the time slot in which they are transmitted, etc.) can help to
dissect the problem into K separate localization problems that can be solved dis-
jointly. We start our solution development by considering on-grid sources and then
we extend it to the case of off-grid sources.

5.3 Sparsity-Aware TDOA Localization

In order to assign the TDOAs to the different sources and simultaneously local-
ize them, we propose a fingerprinting procedure. We start this procedure with an
initialization phase where the fingerprinting map is determined. Then, in the run-

time phase, this map is used together with the measured TDOAs to determine the
location of the SNs.

5.3.1 Initialization Phase

In the initialization phase, we basically discretize the physical space into GPs and
create a map (the so-called fingerprinting map) representing the space by assigning
to every GP a set of location-dependent parameters. For the TDOA setup under
consideration, the location-dependent parameter set will consist of the TDOA mea-
surements from the APs. For every GP, we determine the M ´ 1 TDOAs at the
different APs w.r.t. the first AP. Next, by concatenating the measurements from N

GPs we construct a fingerprinting map Ψ of size pM ´ 1q ˆN of the form

Ψ “

»

——
–

∆
g
2,1 ¨ ¨ ¨ ∆

g
2,N

...
. . .

...

∆
g
M,1 ¨ ¨ ¨ ∆

g
M,N

fi

ffiffi
fl , (5.4)

where ∆g
i,n represents the TDOA of the received signal at the i-th AP and the

reference AP from a source located at the n-th GP. Note the difference with ∆i,k

which is the measured TDOA from the k-th source w.r.t. the pAP1, APiq pair. To
determine the ∆g

i,n’s, we can simply use the known geometric configuration of the
APs and GPs. This is highly desirable as we can avoid exhaustive classical training
procedures.

5.3.2 Runtime Phase

For the runtime phase, we make a distinction between a single-source and multi-
source scenario as explained in the following.
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Single-source scenario

In the single-source case, the location of the source is estimated by comparing
the runtime phase TDOA measurements y “ yp1q “ r∆p1q

2
, ¨ ¨ ¨ , ∆p1q

M sT 1 with the
fingerprinting map, at a central unit connected to the APs. One way to carry out this
comparison is by exploiting the source sparsity and considering that the source can
only be located at a single GP. This way, the single-source localization problem
can be cast into a sparse representation framework given by y “ Ψθ ` ǫ, with
ǫ an pM ´ 1q ˆ 1 vector containing the additive noise on the TDOAs, and θ an
N ˆ 1 vector with all elements equal to zero except for one element equal to one
corresponding to the index of the GP where the source is located. Thus, y will be a
1-sparse TDOA vector characterized by the sparsity basis Ψ and the ultimate goal
is to recover θ only by determining the index of its non-zero element.

Solving y “ Ψθ ` ǫ with classical LS produces an incorrect estimate due to the
underdetermined nature of the problem (M ´ 1 ! N ). Instead, sparse reconstruc-
tion techniques (or CS aim to reconstruct θ from y, by taking the source sparsity
concept into account. It is worth mentioning that here we have a natural compres-
sion in the problem in the sense that the number of measurements is limited to
M ´ 1 which in many practical scenarios is much less than the number of GPs
N . Therefore, we will estimate θ by solving the following ℓ1-norm minimization
problem (similar to [93]) minθ }y ´ Ψθ}2

2
` λ }θ}

1
where λ is a regularization

parameter that controls the trade-off between sparsity and reconstruction fidelity
of the estimated θ. It is worth mentioning that for a single-source scenario some
other simpler methods, like matching pursuit [97], can also be used to recover the
location of the source.

Multi-source scenario

Having explained the single-source TDOA localization within a sparse framework,
now, the question is how we can extend this single-source localization scheme to a
multi-source one. Before explaining the idea, we would like to remind the reader of
a natural phenomenon in RSS fingerprinting. Different from TDOA measurements,
the RSSs of the source signals will sum up at the APs [26, 89]. On the other hand,
TDOA measurements do not simply follow this pattern. Nevertheless, this moti-
vated us to sum up the measured ∆

pkq
i values for different sources at the APs, i.e.,

y “ ř
k y

pkq. Note that this vector is equal to y “ ř
k yk and thus automatically

1Note that only for a single-source scenario y
p1q

“ y1, but this cannot be generalized to a multi-
source scenario, i.e., in that case we generally have y

pkq
‰ yk.
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leads to a similar formulation as for the single-source case

y “ Ψθ ` ǫ, (5.5)

where here θ is a K-sparse vector (containing all zeros except for K ones) to
accommodate theK sources. We would like to emphasize again that in practice we
can only measure the ypkq vectors because it is still unknown to which source they
belong, i.e., the yk vectors cannot be separately calculated. However, the beauty of
the proposed sparsity-aware multi-source TDOA localization (SMTL) framework
is that since we work with y “ ř

k y
pkq “ ř

k yk, it does not really require such
assignment information. Therefore, similar to the single-source scenario, (5.5) can
also be solved using an ℓ1-norm minimization

θ̂SMTL “ argmin
θ

}y ´ Ψθ}2
2

` λ }θ}
1
, (5.6)

where λ is defined as earlier. Notably, outliers in the measured TDOAs y can be
handled within our sparsity-aware framework by exploiting the ideas proposed in
[98].

Remark 5.1 (Identifiability of SMTL)

To elaborate on the identifiability of localization using SMTL, it is worth men-

tioning that in a classical (2-D) TDOA localization, as long as there areM ą 3

APs (not lying on a straight line) associated with a source, that source can be

uniquely identified and localized. In a multi-source case, however, all possible

assignments between TDOAs and sources have to be checked. On the other

hand, the sparse reconstruction-based nature of SMTL imposes an extra con-

straint M ´1 ě 2K (M ą 3 should also be satisfied) because for a perfect re-

construction we require every 2K-column subset of Ψ to be full column rank so

that we can reconstruct aK-sparse θ. All in all, this leads toM ą maxp2K, 3q
as a necessary condition for identifiability and reconstruction.

5.3.3 Grid Design

In the earlier proposed TDOA formulation an unintentional grid problem shows
up. Consider that we have three APs (AP1 to AP3) and three source nodes (SN1

to SN3) as in Fig. 5.2. Now, assume that SN1 is located on p8, 6q as shown in the
figure. The set of points x “ rx, ysT that represents a constant TDOA w.r.t. AP1

and APi (∆i,1 is constant) defines a hyperbola given by

hypi,1 :
1

ν

`
dpSN1,AP1q ´ dpSN1,APiq

˘
“ 1

ν

`
dpx,AP1q ´ dpx,APiq

˘
, (5.7)
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Figure 5.2: Coincident ∆’s in a uniform GP configuration.

where dpA,Bq “
a

pxA ´ xBq2 ` pyA ´ yBq2 is the Euclidean distance between
points A and B and ν denotes the speed of the signal propagation. For i “ 2, 3

this results in the two hyperbolas (hyp
2,1 and hyp

3,1) plotted with solid blue lines in
Fig. 5.2. In general, hypi,k denotes the hyperbola related to the TDOA of the source
SNk w.r.t. the pAP1, APiq pair. Right now, if any other source falls on either one of
these two hyperbolas, that source will have a similar TDOA as SN1 w.r.t. either the
pAP1, AP2q or pAP1, AP3q pair. Because in Fig. 5.2 SN2 lies on hyp

2,1 and SN3

does not, the output of the cross-correlation related to the pAP1, AP2q pair will
contain only two dominant peaks instead of three peaks. Obviously, in such a case
this coincidence cannot be resolved based on the amplitude of the peaks because
the signals arrive at the APs with different amplitudes depending on the fading
channel. It is worth mentioning that with the uniform GP configuration as shown
in Fig. 5.2, the probability of obtaining such (approximately) equal ∆ values in
each row of (5.4) is not low and this probability increases with the number of GPs
N . Next, we propose a new grid configuration to avoid this issue, if the sources
are on-grid. Note that in many practical situations, the APs are part of the existing
infrastructure and we do not have the privilege neither to change their number nor
their location. This basically motivates the following grid design based on a fixed
AP configuration.

For a given AP configuration, we propose a sequential GP placement so that none
of the sources will have a similar TDOA w.r.t. any of the AP pairs, i.e., pAP1, APiq,
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Figure 5.3: Proposed sequential GP placement.

i “ 2, ¨ ¨ ¨ ,M . Let us consider the simple scenario shown in Fig. 5.3 where again
only three APs exist. We start by choosing a desired location for the first GP (GP1).
Note that we have no restriction on the location of GP1. Now, GP1 definesM´1 “
2 hyperbolas (hypg

2,1 and hypg
3,1) with hypg

i,n defined similar to (5.7) but for the GPs
as

hypg
i,n :

1

ν
pdpGPn,AP1q ´ dpGPn,APiqq “

1

ν
pdpx,AP1q ´ dpx,APiqq , i “ 2, 3, n “ 1, ¨ ¨ ¨ , N, (5.8)

with AP1 chosen as the reference. Each of these hyperbolas excludes a curve from
the 2-D plane of the covered area and leaves the remaining part of the plane as a
possible option to place the next GP. Therefore, if we place GP2 on either hypg

2,1

or hypg
3,1 there will be one overlapping peak in the output of the cross-correlation

corresponding to the pair pAP1, AP2q or pAP1, AP3q, respectively. After placing
GP2, two more hyperbolas should be excluded from the 2-D plane for the next GP.
This means, we should not place GP3 on any of hypg

2,1, hypg
3,1, hypg

2,2 and hypg
3,2,

as is also illustrated in Fig. 5.3. The following GPs are placed in a similar fashion
and this procedure can be continued until we find N GPs.
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Remark 5.2 (Backward Checking)

It is important to observe that hyp
g
i,n of GPn can never cross hyp

g

i,n1 of GPn1 .

This is because if they could cross, then at the crossing point we would have

∆i,n “ ∆i,n1 and considering (5.8) this would mean that the two hyperbolas

should coincide everywhere and thus GPn and GPn1 would be located on the

same hyperbola. This is impossible according to our grid design. As a result,

a hyperbola related to a GP can never cross a previously deployed GP, which

means that our proposed sequential GP placement procedure does not require

a backward checking modification when we place the GPs.

5.4 Enhanced Sparsity-Aware Multi-Source Localization (ESMTL)

The proposed sparsity-aware multi-source algorithm of Section 5.3 has a limited
source detection capability which comes from the fact that we sum the measured
TDOAs at the APs, thereby losing a significant amount of information. This basi-
cally limits the number of detectable sources (K) through the number of measure-
ments (see Remark 5.1). The question is how this problem can be solved without
taking additional TDOA measurements. The innovative trick we use here is to con-
sider not just the sum of the TDOAs as y “ ř

k y
pkq “ ř

k yk, but the sum of any
function of the TDOAs as

yfl “
ÿ

k

flpypkqq “
ÿ

k

flpykq, (5.9)

where
flpypkqq “ rfl,1p∆pkq

2
q, ¨ ¨ ¨ , fl,M´1p∆pkq

M qsT (5.10)

with fl,ip.q being any possible measurement function. If we combine a set of L
such sums, i.e.,

ȳ “ ryT
f1
,yT

f2
, ¨ ¨ ¨ ,yT

fL
sT , (5.11)

this newly defined measurement vector ȳ calls for a new fingerprinting map Ψ̄

which can accordingly be defined as

Ψ̄ “
“
f1pΨqT , ¨ ¨ ¨ , fLpΨqT

‰T
, (5.12)

where

flpΨq “

»

——
–

fl,1p∆g
2,1q ¨ ¨ ¨ fl,1p∆g

2,N q
...

. . .
...

fl,M´1p∆g
M,1q ¨ ¨ ¨ fl,M´1p∆g

M,N q

fi

ffiffi
fl , (5.13)
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and thus the model (5.5) can be extended to

ȳ “ Ψ̄θ ` ǭ. (5.14)

The new Ψ̄ has LpM ´ 1q rows instead of only M ´ 1 rows, i.e., it is capable of
detecting more sources simultaneously, if the measurement functions fl,ip.q own
certain properties. First of all, they should be nonlinear in general since linear
functions generate dependent rows in Ψ̄ which in principle does not increase the
number of independent equations in (5.14). Moreover, these functions should not
impair the restricted isometry property (RIP) [59] of Ψ̄ required for a high quality
reconstruction. Having this issue in mind, an orthonormalization procedure on the
resulting Ψ̄ can help to improve the RIP, as we also show numerically later on.

Remark 5.3 (Identifiability of ESMTL)

For the enhanced model, the expected necessary identifiability condition (as

explained in Remark 5.1) will be LpM ´ 1q ě 2K and M ą 3 which results

in M ą maxprp2K ` 1q{Ls ` 1, 3q, where r.s denotes the ceiling operator. A

detailed analysis of the dependence of the measurement functions on the iden-

tifiability is a complicated mathematical exercise which is outside the scope of

this chapter and is left for future work.

In principle, the measurement functions fl,ip.q can be any nonlinear function. We
could for instance consider a base set ofL non-linear functions denoted as tglp.quLl“1

(the glp.q functions could for example be monomials, i.e, glp.q “ p.ql) and take
fl,ip.q “ glp.q. In addition, to improve the RIP we could further apply the operator
R of size LpM ´ 1q ˆ LpM ´ 1q to the measurements, i.e., ỹ “ Rȳ, leading to
the new map Ψ̃ “ RΨ̄. One option to design R could be to force the columns of
RΨ̄ to be as close as possible to orthonormal by solving

min
R

››pRΨ̄qT pRΨ̄q ´ IN
››2
F
. (5.15)

Based on a detailed derivation in Appendix 5.A, if LpM ´ 1q ď N this results in
the following solution

R “ Σ:p1 : LpM ´ 1q, :qUT , (5.16)

while if LpM ´ 1q ą N it leads to

R “
«

Σ:

0pLpM´1q´NqˆLpM´1q

ff

UT , (5.17)
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where U and Σ come from the singular value decomposition (SVD) of Ψ̄, i.e.,
Ψ̄ “ UΣVT . Surprisingly, this corresponds to orthonormalizing the rows of Ψ̄
(see also Appendix 5.A), which has indeed been shown to improve the RIP [26].
Having said that, by employing the operator R, (5.14) should be modified to

ỹ “ Rȳ “ RΨ̄θ ` Rǭ

“ Ψ̃θ ` ǫ̃. (5.18)

Finally, (5.18) can be solved by

θ̂ESMTL “ argmin
θ

}ỹ ´ Ψ̃θ}22 ` λ }θ}
1
, (5.19)

where λ is defined as earlier.

5.4.1 RIP Investigation

As we explained earlier, Ψ and Ψ̄ are proved to be the sparsifying bases for the
SMTL and the ESMTL. Having satisfied the sparsity property, the only issue that
should be assessed is the mutual incoherence between the columns of Ψ and Ψ̄ or
alternatively the RIP. In this subsection, we try to numerically investigate the RIP
property of the proposed fingerprinting maps to illustrate that the reconstruction
will indeed have a high quality. As we discussed earlier, to improve the ℓ1-norm
reconstruction problem we apply the orthonormalization operator R to Ψ̄ (and sim-
ilarly to Ψ) and that is why we only investigate the RIP of the resulting matrices.
As is well documented in literature [59], for K “ 1, 2, ¨ ¨ ¨ the RIP constant δK of
a matrix A (with normalized columns) is the smallest number for which

´ δK ď }Ax}2
2

}x}2
2

´ 1 ď δK , (5.20)

for all K-sparse x P R
N . Roughly speaking, as long as 0 ă δK ă 1 the RIP holds.

However, the fact that we need to know all the combinations
`
N
K

˘
for K “ 1, 2, ¨ ¨ ¨

makes the problem NP-hard. For the sake of computational complexity, we use
the definition in [59] where δK is defined as the maximum distance from 1 of all
the eigenvalues of the

`
N
K

˘
submatrices, AT

ΛAΛ, derived from A, where Λ is a set
of indices with cardinality K which selects those columns of A indexed by Λ. It
means that for each K, the RIP constant is given by

δK “ max
Λ

`
|λmaxpAT

ΛAΛq ´ 1|, |λminpAT
ΛAΛq ´ 1|

˘
. (5.21)
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For the sake of feasibility of the computations, we consider the case whereM´1 “
5, N “ 25, and L “ 4 (for the ESMTL), which is also the setup considered in one
of our simulation scenarios in Section 5.6. For such a case, we have computed
the δK with K “ 1, ¨ ¨ ¨ , 10 for RΨ and Ψ̃ “ RΨ̄ as well as for matrices with
the same size containing elements drawn from a random normal distribution, i.e.,
N5ˆ25 and N25ˆ25. Note that such random matrices are proved to be a good choice
in terms of the RIP and that is why we use them as a benchmark. The results are
presented in Table 5.2.

As is clear from the table, our proposed fingerprinting map for the SMTL (RΨ) is
almost similar to N5ˆ25 and loosely satisfies the RIP up to K “ 2. However, for
K ą 2, δK starts increasing. Interestingly, we see that by the aid of the added rows
using our innovative Ψ̃ “ RΨ̄, the RIP is met for K up to 10, which is even better
than for N25ˆ25. It is also worth stressing that this way we could demonstrate that
the proposed innovative trick indeed improves the RIP of Ψ̃ “ RΨ̄ over RΨ.

5.4.2 Advantages of ESMTL

Besides the enhanced source detection capability, there are a number of other ad-
vantages in using the ESMTL approach as explained in the following.

First of all, an important advantage of this idea is that the recently added elements
of ȳ and thus ỹ are simply generated based on the existing TDOA measurements
and no extra measurements are required in the runtime phase. The same holds
for the new rows of Ψ̄ and thus Ψ̃ which can be computed from the rows of Ψ.
This important characteristic of the proposed TDOA fingerprinting avoids imposing
extra cost-prohibitive measurements on the central unit.

Another important corollary of this new Ψ̃ is healing the case of coincident∆ peaks
in the output of the cross-correlations. Now that we can have several extra equa-
tions, a simple solution to heal the issue of a uniform GP configuration (explained
in Section 5.3) is that when computing cross-correlations, say for the pAP1, APiq
pair, if we notice that some peaks are overlapping (number of dominant peaks is
less than K), we can ignore the corresponding elements in ȳ and correspondingly
the rows in Ψ̄. This means that instead of (5.19), we solve

θ̂ESMTL “ min
θ

}ỹ1 ´ Ψ̃1θ}22 ` λ }θ}
1
, (5.22)

with ỹ1 “ RTȳ and Ψ̃ “ RTΨ̄ where T is a selection matrix which removes the
elements and rows corresponding to the measurements with coincident peaks from
ȳ and Ψ̄, respectively, and with R computed based on TΨ̄ instead of Ψ̄. Note
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that this way we are actually removing some APs; however, we can live with the
uniform grid configuration until we violate the necessary identifiability condition
M ą maxprp2K ` 1q{Ls ` 1, 3q.

Moreover, it is noteworthy that by finding appropriate measurement functions we
can keep on increasing the number of rows so that we can attain a full column rank
Ψ̃ matrix. In such a case, we can drop the sparsity-awareness when complexity is
an issue or K is very large and recover θ as

θ̂LS “ Ψ̃:ỹ. (5.23)

Further, if we are given the statistics of ǫ̃ (e.g., the mean mǫ̃ and the covariance
matrix Cǫ̃), we obtain Etθ̂LSu “ Ψ̃:

Etỹu “ Ψ̃:pΨ̃θ ` mǫ̃q “ θ ` Ψ̃:mǫ̃,

and MSEpθ̂LSq “ Et}θ̂LS ´ θ}2
2
u “ tr

!
Ψ̃:Cǫ̃pΨ̃:qT

)
` mT

ǫ̃ pΨ̃:qT Ψ̃:mǫ̃, where

Et.u stands for the statistical expectation and trp.q denotes the trace operator. This
information can also be employed to solve the problem using weighted LS (WLS)
as

θ̂WLS “
´
Ψ̃TCǫ̃Ψ̃

¯´1

Ψ̃TCǫ̃ rỹ ´ mǫ̃s . (5.24)

A detailed analysis of the mean and the covariance of the error on TDOA estimation
using cross-correlations can be found in [23].

5.5 Tackling Grid Mismatch for Off-Grid Sources

The classical idea of TDOA fingerprinting as well as our proposed multi-source lo-
calization ideas (SMTL and ESMTL) are based on the assumption that the sources
are located on the GPs. However, as we will show in Section 5.6, the considered
models defined by (5.5), (5.14) and (5.18) return inaccurate estimates if the sources
are not located on their postulated GPs. This motivated us to tackle this problem for
the case of multi-source TDOA localization. One generic possibility to deal with
off-grid sources is to employ the adaptive grid refinement in [24], but this requires
several steps of refinement. Hence, we try to interpret this phenomenon in the form
of grid or map mismatch where the measurements of the sources in y, instead of
(5.5), follow a perturbed model as

y “ rΨ ` Esθ ` ǫ, (5.25)

which means that y is now K-sparse within the sparsity basis Ψ ` E. To develop
our idea of mismatch recovery, we start by analyzing the relation between the mea-
surements from off-grid sources and E for a noiseless case. For our TDOA model,
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Figure 5.4: Grid mismatch.

Fig. 5.4 illustrates the case of an off-grid source in a simple setup consisting of
a source SNk and two APs (AP1 and APi). As can be seen, every GP defines a
so-called cell where the GP forms the center of the cell. Here, we consider that the
source SNk lies in the cell related to the n-th GP, denoted as GPn, with n “ zpkq
where zp.q indicates the mapping between sources and GPs. Assuming that the
variations of ∆i,k are small within the cell related to GPzpkq, we propose to esti-
mate the value of the perturbed TDOA (∆i,k) by considering a first-order Taylor
expansion as (assuming a noiseless case)

∆i,k “ ∆
g
i,zpkq `

”
B∆ipxq

Bx |x“x
g
zpkq

B∆ipxq
By |x“x

g
zpkq

ı «
xk ´ x

g
zpkq

yk ´ y
g
zpkq

ff

, (5.26)

where x
g
zpkq “ rxg

zpkq, y
g
zpkqsT denotes the location of GPzpkq, xk “ rxk, yksT

denotes the location of SNk, and ∆ipxq is the TDOA at the location x “ rx, ysT
w.r.t. the pAP1, APiq pair given by

∆ipxq “ 1

ν
pdpAP1,xq ´ dpAPi,xqq

“ 1

ν

ˆa
px´ xAP1

q2 ` py ´ yAP1
q2 ´

b
px´ xAPi

q2 ` py ´ yAPi
q2

˙
,

(5.27)
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and thus its partial derivatives will be

B∆ipxq
Bx “

1

ν

˜
x´ xAP1a

px´ xAP1
q2 ` py ´ yAP1

q2
´ x´ xAPia

px´ xAPi
q2 ` py ´ yAPi

q2

¸

,

(5.28a)

B∆ipxq
By “

1

ν

˜
y ´ yAP1a

px´ xAP1
q2 ` py ´ yAP1

q2
´ y ´ yAPia

px´ xAPi
q2 ` py ´ yAPi

q2

¸

.

(5.28b)

In order to fit this into our network model, we can extend (5.26) for the case of M
APs again by considering AP1 to be the reference AP as

»

——
–

∆2,k

...

∆M,k

fi

ffiffi
fl

looomooon
yk

“

»

——
–

∆
g
2,zpkq
...

∆
g
M,zpkq

fi

ffiffi
fl

looooomooooon
y

g
zpkq

`

»

———
–

B∆2pxq
Bx |x“x

g
zpkq

B∆2pxq
By |x“x

g
zpkq

...
...

B∆M pxq
Bx |x“x

g
zpkq

B∆M pxq
By |x“x

g
zpkq

fi

ffiffiffi
fl

loooooooooooooooooooooomoooooooooooooooooooooon
∆Ψzpkq

«
xk ´ x

g
zpkq

yk ´ y
g
zpkq

ff

loooooomoooooon
∆xk,zpkq

.

(5.29)

It is notable that the first term on the right-hand-side of (5.29) is y
g
zpkq and corre-

sponds to the measurements received from an on-grid source. Clearly, in order to
be able to compute the grid mismatch for SNk (∆xk,zpkq), we first have to find the
closest GP corresponding to that source given by the mapping zpkq. The closer this
GP is to the real source location, the better the first-order Taylor expansion will
work. We will come back to this problem after extending (5.29) for a multi-source
scenario.

In a multi-source scenario what happens is that we receive
řK

k“1
yk instead of yk

which explicitly means that (5.29) should be solved for all the sources simultane-
ously as modeled by

Kÿ

k“1

yk “
Kÿ

k“1

y
g
zpkq `

Kÿ

k“1

∆Ψzpkq ∆xk,zpkq, (5.30)
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where assuming that the sources (through the mapping zp.q) are related to different
GPs, we have

Kÿ

k“1

yk “
Kÿ

k“1

y
g
zpkq ` ∆Ψ∆Xθ, (5.31)

with ∆Ψ “ r∆Ψ1, ¨ ¨ ¨ , ∆ΨN s and ∆X “ diagp∆x1, ¨ ¨ ¨ ,∆xN q, which de-
fines a block-diagonal matrix with ∆x1 to ∆xN as its blocks where

∆xn “
#
∆xk,zpkq, D k : n “ zpkq
don’t care, otherwise

. (5.32)

By exploiting y “ řK
k“1

yk and Ψθ “ řK
k“1

y
g
zpkq, (5.31) can be rewritten as

y ´ Ψθ “ ∆Ψ∆Xθ, (5.33)

and this can fit into the mismatch model (5.25) by taking E “ ∆Ψ∆X which
immediately gives an insight about the structure of the mismatch in our model.

In order to recover the mismatch, we now propose two approaches, both relying on
the idea that if we know the indices of the closest GPs to the sources (i.e., the set
tzpkq| k “ 1, ¨ ¨ ¨ ,Ku) given by θ, (5.33) is overdetermined and can efficiently be
solved using classical LS. More specifically, since we can derive that

∆Ψ∆Xθ “
Nÿ

n“1

∆Ψn∆xn rθsn,

“
Nÿ

n“1

∆Ψn diagprθsn b 12q∆xn “ ∆Ψ diagpθ b 12q∆x, (5.34)

where rθsn stands for the n-th element of θ and ∆x “ r∆xT
1 , ¨ ¨ ¨ ,∆xT

N sT , we
obtain

∆x “ r∆Ψ diagpθ b 12qs: ry ´ Ψθs . (5.35)

In order to solve (5.35), we have to find θ under a grid mismatch. One way to
do this is to solve the following sparse total least squares (STLS) problem using
ESMTL

min
Ẽ,ǫ̃,θ

}rẼ, ǫ̃s}2F ` λ}θ}1, (5.36a)

s.t. ỹ “ rΨ̃ ` Ẽsθ ` ǫ̃, (5.36b)

using the coordinate descent (CD) algorithm in [95] for the enhanced model (5.18).
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Algorithm 5.1 Mismatch recovery using STLS-LS

1. Run the iterative STLS CD algorithm given by (5.38) and (5.39).
2. Find the indices of the GPs corresponding to the sources.
3. Compute ∆Ψ and solve (5.35) to recover the off-grid locations.

Note that rẼ, ǫ̃s denotes the augmented matrix composed of Ẽ and ǫ̃. It is worth
pointing out that Ẽ is different from E and similarly can be written as Ẽ “ ∆Ψ̃∆X.
Therefore, instead of ∆Ψ we have to compute ∆Ψ̃ which instead of B∆ipxq{Bx
and B∆ipxq{By evaluated at x “ x

g
zpkq would contain

Bfl,i
`
∆ipxq

˘

Bx |x“x
g
zpkq

“ Bfl,i
`
∆ipxq

˘

B∆ipxq |x“x
g
zpkq

B∆ipxq
Bx |x“x

g
zpkq

, (5.37a)

Bfl,i
`
∆ipxq

˘

By |x“x
g
zpkq

“ Bfl,i
`
∆ipxq

˘

B∆ipxq |x“x
g
zpkq

B∆ipxq
By |x“x

g
zpkq

. (5.37b)

As can be seen from (5.37), the elements of ∆Ψ̃ are scaled by a multiplicative term
Bfl,i

`
∆ipxq

˘
{B∆ipxq.

Now, if we do not exploit the explored structure of the perturbations in Ẽ, the
STLS problem of (5.36) can be solved by an iterative block CD algorithm yielding
successive estimates of θ with Ẽ fixed, and alternately of Ẽ with θ fixed. Given
Ẽpmq the cost in (5.36) has the form of a LASSO problem

θ̂STLSpmq “ argmin
θ

›››ỹ ´ rΨ̃ ` Ẽpmqsθ
›››
2

2

` λ }θ}
1
, (5.38)

while given θpmq it reduces to a quadratic form with optimal Ẽpm` 1q given by

ˆ̃
ESTLSpm` 1q “

´
1 ` }θpmq}2

2

¯´1

rỹ ´ Ψ̃θpmqsθpmqT , (5.39)

where pmq denotes the m-th iteration. As explained in [95], the CD algorithm tries
to find the values of Ẽ as well as θ which has onlyK non-zero values corresponding
to the K sources. Therefore, we propose to use a two-step algorithm to solve the
problem of grid mismatch called STLS-LS. First, we use the CD algorithm to end
up with θ. Next, using the indices of the non-zero elements of the recovered θ, i.e.,
the set tzpkq| k “ 1, ¨ ¨ ¨ ,Ku, as the location of the GPs, we run the grid mismatch
recovery proposed in (5.35). It is worth mentioning that the convergence of the CD
algorithm is investigated in [95]. The overall STLS-LS algorithm is summarized in
Algorithm 5.1.
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More accurate results for θ can be acquired if we estimate the location of the closest
GPs by considering the structure of the perturbations. This becomes even more
precise if we have knowledge about the covariance matrix of ∆x (C∆x) and ǫ̃
(Cǫ̃), assuming that mǫ̃ “ 0 as is shown in [23]. Note that similar to the case of ǫ
explained at the end of Section 5.4, such information about the statistics of ∆x can
be computed by considering the fact that the elements of ∆xk,zpkq should lie within
a cell around the GP with a uniform distribution Up´a{2, a{2q in each dimension,
where a is the length of a square cell. This in turn yields C∆x “ a2I2N{12.
Next, we solve the following weighted structured STLS (WSSTLS) problem for
the enhanced model

min
∆x,ǫ̃,θ

∆xT C´1

∆x∆x ` ǫ̃T C´1

ǫ̃ ǫ̃` λ}θ}1, (5.40a)

s.t. ỹ ´ Ψ̃θ “
”
∆Ψ̃∆X

ı
θ ` ǫ̃. (5.40b)

By taking the structure of Ẽ into account, we again use (5.34), which helps us to
rewrite (5.40) as

min
∆x,ǫ̃,θ

∆xT C´1

∆x∆x ` ǫ̃T C´1

ǫ̃ ǫ̃` λ}θ}1, (5.41a)

s.t. ỹ ´ Ψ̃θ “ ∆Ψ̃ diagpθ b 12q∆x ` ǫ̃. (5.41b)

Let us start with ∆xpmq (similarly ∆Xpmq) known, which results in

min
ǫ̃,θ

ǫ̃T C´1

ǫ̃ ǫ̃` λ}θ}1, (5.42a)

s.t. ỹ “
”
Ψ̃ ` ∆Ψ̃∆Xpmq

ı
θ ` ǫ̃, (5.42b)

which by substituting ǫ̃ from (5.42b) in (5.42a) is equivalent to solving the follow-
ing convex problem (quadratic form regularized by ℓ1-norm as in LASSO)

θ̂WSSTLSpmq “ argmin
θ

´
ỹ ´

”
Ψ̃ ` ∆Ψ̃∆Xpmq

ı
θ

¯T

ˆ

C´1

ǫ̃

´
ỹ ´

”
Ψ̃ ` ∆Ψ̃∆Xpmq

ı
θ

¯
` λ}θ}1, (5.43)

Having θpmq in hand, the next step is to solve

min
∆x,ǫ̃

∆xTC´1

∆x∆x ` ǫ̃T C´1

ǫ̃ ǫ̃, (5.44a)
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Algorithm 5.2 Mismatch recovery using WSSTLS-LS

1. Run the proposed WSSTLS CD algorithm given by (5.43) and (5.45)
2. Find the indices of the GPs corresponding to the sources
3. Compute ∆Ψ̃ and solve (5.35) to recover the off-grid locations.

s.t. ỹ ´ Ψ̃θpmq “ ∆Ψ̃ diagpθpmq b 12q∆x ` ǫ̃, (5.44b)

which is quadratic in ∆x and results in

∆x̂WSSTLSpm` 1q “
“
C´1

∆x ` STC´1

ǫ̃ S
‰:
STC´1

ǫ̃ q, (5.45)

where S “ ∆Ψ̃ diagpθpmq b12q and q “ ỹ´ Ψ̃θpmq. The detailed derivation of
(5.45) is explained in Appendix 5.B. All in all, the two-step mismatch recovery pro-
cedure by using WSSTLS (called WSSTLS-LS) is summarized in Algorithm 5.2.

5.6 Simulation Results

In this section, we investigate the performance of our proposed sparsity-aware
multi-source localization algorithms (SMTL and ESMTL) in terms of the local-
ization accuracy and the number of identifiable sources. To this aim, we consider a
wireless network of size 10 ˆ 10 m2 divided into N “ 100 GPs and we consider
M APs covering the whole area and K SNs to be simultaneously localized in our
simulations. Instead of taking infinite integrals (as in (5.3)), in practice we work
with discrete-time signals of limited length and hence the computations of the au-
tocorrelations as well as the cross-correlations will not be ideal as in the derivations
of Section 5.2. As a result, the noise terms niptq will not be completely eliminated
and will affect our performance through ǫ and ǫ̃. Here, we consider a baseband sig-
nal (satisfying the properties mentioned in Section 5.2) sampled at Ts “ 1ms and
compute the autocorrelations and cross-correlations during a time-slot of length
T “ 1s. This is equal to recording Ns “ T {Ts “ 1000 samples for our compu-
tations. The speed of signal propagation is ν “ 340m/s. Meanwhile, we assume
that none of the received signals is so weak that it will be considered as noise in
rip∆q and cannot be detected. We define the signal to noise ratio (SNR) at the
i-th AP as the ratio of the received signal power to the noise power. Notably, we
consider a distance-independent noise on the received signals at the different APs
which according to [23, 99] results in an ǫ on the TDOA measurements specified
by its covariance matrix

rCǫsi,j «
#

3T 2
s p1`2SNRq

π2NsSNR2 , i “ j
3T 2

s

π2NsSNR , i ‰ j
. (5.46)
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In order to be able to quantitatively compare the performances of the algorithms un-
der consideration, we consider the positioning root mean squared error (PRMSE)

defined by PRMSE “
břP

p“1

řK
k“1

e2k,p{pPKq, where ek,p represents the dis-

tance between the real location of the k-th source and its estimated location at the
p-th Monte Carlo (MC) trial. All simulations are averaged over P “ 100 MC
runs where in each run the sources are deployed on different random locations.
In the following simulations, we consider both the uniform grid structure as well
as our proposed grid design, where for the former case if it happens that we en-
counter coincident ∆ values, we use the solution proposed in Subsection 5.4.2, i.e.,
we remove the effect of the corresponding APs from the measurement vector and
the map. For the next simulations, whenever we talk about ESMTL, we consider
L “ 2, ¨ ¨ ¨ , 5 monomial base functions, i.e., fl,ip.q “ glp.q “ p.ql, l “ 1, ¨ ¨ ¨ , L
to enhance the proposed SMTL by introducing new rows in Ψ̄. Further, we use the
explained orthonormalization technique (using R) to compute Ψ̃. This way, Ψ̃ will
be of size 5pM ´ 1q ˆN “ 45ˆ 100, while Ψ is of size pM ´ 1q ˆN “ 9ˆ 100.
For all reconstruction problems, we try to find the best λ by cross-validation [67].

For the purpose of comparison, we also simulate the conventional TDOA position-
ing method proposed in [100] (called TDOA), as well as an optimal constrained
weighted least squares method (called TDOA-CWLS) [22]. Notably, both algo-
rithms localize the sources disjointly which gives them an edge over the proposed
algorithms but of course this requires that the TDOAs can be exactly assigned to
the correct sources. We would like to point out that we do not compare our results
with the KNN, the BC, or even semi-definite relaxation (SDR)-based algorithms
because the superiority of the ℓ1-norm minimization approach compared to KNN,
BC and SDR-based algorithms for similar contexts (e.g., RSS-based localization)
is respectively illustrated in [26] and [93]. Instead, motivated by the consideration
of the aforementioned disjoint conventional methods, as a benchmark, we com-
pute the Cramér-Rao lower bound (CRLB) [78] for the location of a single source,
but averaged over the positions of the multiple sources. The corresponding fisher
information matrix (FIM) associated with SNk can be given by

Ik “
«

p Byk

Bxk
qTC´1

ǫ p Byk

Bxk
q p Byk

Bxk
qTC´1

ǫ p Byk

Byk
q

p Byk

Byk
qTC´1

ǫ p Byk

Bxk
q p Byk

Byk
qTC´1

ǫ p Byk

Byk
q

ff

` 1

2

«
trrC´1

ǫ
BCǫ

Bxk
C´1

ǫ
BCǫ

Bxk
s trrC´1

ǫ
BCǫ

Bxk
C´1

ǫ
BCǫ

Byk
s

trrC´1
ǫ

BCǫ

Byk
C´1

ǫ
BCǫ

Bxk
s trrC´1

ǫ
BCǫ

Byk
C´1

ǫ
BCǫ

Byk
s

ff

, (5.47)

where trp.q stands for the trace operator and the elements of yk as well as their
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Figure 5.5: Multi-source (K “ 10) localization with M “ 10 APs.

derivatives are defined earlier using (5.27)-(5.29). From (5.46), Cǫ is independent
of the location of the source and hence the second term on the right-hand-side of
(5.47) will be equal to zero. Therefore, corresponding to the PRMSE, the total
root-CRLB (RCRLB) of the K sources is given by

RCRLB “

dřK
k“1

trpI´1

k q
K

. (5.48)

5.6.1 Localization of On-Grid Sources

We start by investigating the performance of the proposed algorithms for the case of
on-grid sources. In the first simulation, as shown by Fig. 5.5, we consider K “ 10

sources randomly deployed over the covered area and M “ 10 APs which are
deployed uniformly at random. The SNR is assumed to be 20dB for all the APs.
We recover θ using both SMTL and ESMTL algorithms and we expect ESMTL
to be able to locate more sources simultaneously. This is shown in Fig. 5.5 where
SMTL can only localize a single source with minimum error. However, by us-
ing the ESMTL algorithm we can locate all the K “ 10 sources and this clearly
illustrates the enhanced performance of ESMTL compared to SMTL. As can be
seen, the disjoint TDOA-CWLS is capable of reaching a high accuracy, as well.
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This highlights the fact that our ESMTL can perform as good as a disjoint algo-
rithm, which is assisted with signal assignment information and treats the sources
separately.

In order to further investigate this improvement in terms of the number of identifi-
able sources, in Fig. 5.6, we illustrate the PRMSE of localization vs. the number
of sources increasing up to K “ 10. We have M “ 10 APs and the simulation
results of the ESMTL are presented for L “ 2, ¨ ¨ ¨ , 5. The SNR is again set to
20dB. As can be seen from the figure, by increasing K, the PRMSE of localization
for SMTL increases sharply while ESMTL (with L “ 5) can handle almost all the
sources simultaneously with minimum error. A notable (and expected) observation
is that by increasing L from 2 to 5 the potential capability of ESMTL gradually
increases from K “ 2 sources being localized to K “ 10. The figure also illus-
trates the considerable improvement of TDOA-CWLS over TDOA which helps it
to almost attain the CRLB. Note that we do not plot the results for K ą 10 sources
since for those cases θ is not really sparse, i.e., we do not have K ! N .

In order to investigate the localization accuracy, we also plot the PRMSE vs. SNR
for the same previous setup but with K “ 5 SNs in Fig. 5.7. As can be seen, in-
creasing the SNR leads to a gradual improvement in the performance of the ESMTL
so that for SNR ą 5dB we attain zero error. However, SMTL is in principle inca-
pable of localizing K “ 5 sources simultaneously, as it was also shown in Fig. 5.6,
and that is why its performance does not improve with SNR. It is worth mention-
ing that the performance of the TDOA and TDOA-CWLS schemes is better than
the one of ESMTL for lower SNRs. One reason for this is that the conventional ap-
proaches are disjoint, i.e., they treat the sources separately. Therefore, the measure-
ment noise does not have any effect on the disambiguation of the sources. However,
in the ESMTL, the measurement noise affects the values of the TDOAs (from the
cross-correlations) as well as the disambiguation which is solved using ℓ1-norm
minimization. Therefore, the disambiguation (assignment problem) can be badly
affected by noise for low SNRs, which can in turn lead to a large error. Another
important point worthy of being mentioned is that we attain zero error for SNR
ą 5dB, which means that we go below the benchmark CRLB. This can be justi-
fied by the fact that we consider the on-grid scenario and have a limited number
of candidates for the locations of the sources, i.e., the GPs. This feature helps the
ℓ1-norm minimization to exactly locate the sources, as long as the noise is not too
strong. More specifically, since within the region of a cell, there is only one pos-
sible point for the location of a source, the ℓ1-norm minimization becomes robust
against small noise values.

In the next simulation, we investigate the performance of the ESMTL solved with
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classical LS, which means we have to make sure that Ψ̃ has full column rank.
Hence, we prefer to keep the generated rows instead of removing them for co-
incident ∆’s and use our proposed grid design of Subsection 5.3.3. To simplify
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our simulations and reach a full rank with less complexity, we consider N “ 25

GPs and only M “ 6 APs, i.e., we require only L “ 5 functions as defined ear-
lier (in that case LpM ´ 1q “ 25). The results are shown in Fig. 5.8, where we
consider K “ 10 and 20 sources. As is clear from the figure, even though with
K{N “ 10{25 (or even further with K{N “ 20{25) θ is not sparse anymore, the
ESMTL (solved with LS) is capable of localizing the sources with minimum error
for SNR ą 35dB. However, increasing K increases the probability of wrong ∆
computations for a limited bin length Ns and thus leads to a performance degrada-
tion for K “ 20 compared to K “ 10. As can be seen, the ESMTL (no LS) will
still work here but no gain is expected over LS as the problem is not sparse. Ob-
viously, SMTL fails to operate here and is omitted for the sake of clarity. Notably,
we observe that for specific AP configurations, it might happen that the newly gen-
erated rows with monomials do not necessarily lead to fully independent columns.
As there is no restriction on the type of measurement functions, this can be healed
to some extent by using different types of nonlinear functions.

5.6.2 Localization of Off-Grid Sources

The following simulations are devoted to the performance evaluation for the case
of off-grid sources, i.e., tackling the grid mismatch problem. In Figs. 5.9 and 5.10,
the setup is almost the same as in the previous subsection (M “ 10 APs), except
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Figure 5.9: Multi-source (K = 3) localization with grid mismatch.

that here we consider a different AP configuration. As is clear from Fig. 5.9, the
sources are randomly placed within the cells. The first solution, along the lines of
existing literature, consists of using ESMTL (or SMTL) and interpolating the peaks
in the recovered θ as is also used in [95] for a single off-grid source. For the multi-
source scenario under consideration, to avoid overlapping peaks in the recovered θ,
we have considered less sources (only K “ 3) and we keep them distant from each
other. We expect that if the sources are located far enough from each other, as in
this case, we would have 4 peaks in the recovered θ corresponding to each off-grid
source (altogether 12 peaks in the recovered θ for K “ 3 sources) and then based
on those peaks (shown in Fig. 5.10-(b)) we can conduct a linear interpolation to
locate each source (ESMTL-Interp.).

On the other hand, in order to locate the off-grid sources, we use the first proposed
approach of Section 5.5 using STLS-LS summarized in Algorithm 5.1. In the first
step, the CD algorithm is used to recover a θ which satisfies (5.25). The recovered
θ is depicted in Fig. 5.10-(a) and as can be seen, the main K “ 3 peaks correspond
to the closest GPs to the sources, i.e, zpkq “ 33, 38, 93 located on p4, 3q, p4, 8q
and p10, 3q. In the second step, knowing the closest GPs, we compute ∆Ψ and
estimate the mismatch. As is clear from Fig. 5.9, our proposed mismatch recovery
algorithm is successful to locate the off-grid sources with a reasonable accuracy
and much better than the ESMTL-Interp. A notable observation is that we still face
difficulties to resolve two sources located in one cell.
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Figure 5.11: Mismatch recovery with ESMTL and STLS.

Finally, Fig. 5.11 illustrates the PRMSE performance vs. SNR for ESMTL-Interp.
as well as for the proposed mismatch recovery algorithm STLS-LS when there exist
K “ 3 off-grid sources randomly deployed over the covered area. As can be seen
from the figure, while STLS-LS is capable of locating the off-grid sources with
a PRMSE of about 9cm for a large span of SNRs, ESMTL-Interp. cannot attain
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an accuracy better than 45cm for high SNRs. This stresses the fact that in order
to obtain centimeter accuracy, the ESMTL should be modified with the proposed
mismatch recovery process for the case of multiple off-grid sources. Notably, the
conventional disjoint TDOA algorithms (TDOA and TDOA-CWLS) outperform
both ESMTL-Interp. and STLS-LS because they are provided with the signal as-
signment information and they are independent of the GPs and hence indifferent
w.r.t. the off-grid effect. We highlight that for more accurate results, the second
proposed approach based on WSSTLS-LS (summarized in Algorithm 5.2) can be
used, but it is more demanding in terms of computational cost. We would also like
to comment on the attainable accuracy of the STLS-LS for large SNRs. As is clear
from the figure, the attainable accuracy does not considerably improve with SNR
for large SNRs. This effect originates from the 1st-order Taylor expansion. Obvi-
ously, the larger the size of the cells, the larger the variations of the TDOA in the
cell and hence the worse a 1st-order Taylor expansion will work. This effect can be
healed to some extent by decreasing the cell size as is confirmed by the simulation
results for N “ 400 where a PRMSE of 3cm (three times better that N “ 100) is
attained by STLS-LS for large SNRs.

5.7 Conclusions

This chapter tackles the problem of multi-source TDOA localization. We have pro-
posed to simplify the involved issues (i.e., solving hyperbolic equations and multi-
source disambiguation) by introducing a novel TDOA fingerprinting and grid de-
sign paradigm to convert this non-convex problem to a convex ℓ1-norm minimiza-
tion. Moreover, we have proposed a novel trick to enhance the proposed model to
be capable of localizing more sources. As a result, we even become able to convert
the problem to an overdetermined one which can be efficiently solved using clas-
sical LS, if wanted. Finally, in order to extend our ideas, we have proposed two
algorithms to handle off-grid sources. Our extensive simulation results corroborate
the efficiency of the proposed algorithms in terms of localization accuracy as well
as detection capability.
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Appendix

5.A The Optimal Operator R

Let us start by rewriting (5.15) as

min
R

››pRΨ̄qT pRΨ̄q ´ IN
››2
F

“ min
Γ

››Ψ̄TΓΨ̄ ´ IN
››2
F
, (5.49)

which is due to the fact that the solution of the right-hand side is always symmetric
and allows for a decomposition as Γ “ RTR. By applying vecpABCq “ pCT b
AqvecpBq, with b denoting the Kronecker product, we can further write

vecpΨ̄TΓΨ̄q “ pΨ̄T b Ψ̄T qγ, (5.50)

where γ “ vecpΓq and vecp.q denotes the standard vectorization operator. There-
fore, (5.15) can be rewritten as the following LS problem

min
γ

››pΨ̄T b Ψ̄T qγ ´ vecpIN q
››2
2
,

with its solution given by

γ “
“
Ψ̄T b Ψ̄T

‰:
vecpIN q. (5.51)

Now, using pA b Bq: “ A: b B: and pBT q: “ pB:qT , we can further simplify
(5.51) as

γ “
“
pΨ̄:qT b pΨ̄:qT

‰
vecpIN q.

Next, we have

Γ “ ivecpγq “ ivec

ˆ “
pΨ̄:qT b pΨ̄:qT

‰
vecpIN q

˙

“ pΨ̄:qT IN Ψ̄: “ pΨ̄:qT Ψ̄:, (5.52)

with ivecp.q denoting the inverse vecp.q operation, which is indeed a symmetric
matrix as claimed earlier. Note that we are now looking for an R of size LpM ´
1q ˆLpM ´ 1q such that Γ “ RTR; therefore, the solution is not Ψ̄:. We need to
employ the singular value decomposition (SVD) to decompose Ψ̄ as Ψ̄ “ UΣVT ,
and thus Ψ̄: “ VΣ:UT , which allows us to rewrite (5.52) as

Γ “ UpΣ:qT VT VΣ: UT

“ UpΣ:qTΣ:UT “ RTR.
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Therefore, the desired operator R of size LpM ´1q ˆLpM ´1q if LpM ´1q ď N

is given by
R “ Σ:p1 : LpM ´ 1q, :qUT , (5.53)

while if LpM ´ 1q ą N , it is given by

R “
«

Σ:

0pLpM´1q´NqˆLpM´1q

ff

UT . (5.54)

This means that RΨ̄ “ RUΣVT is given by VT p1 : LpM´1q, :q if LpM´1q ď
N or rV, 0NˆpLpM´1q´NqsT if LpM ´ 1q ą N , which surprisingly means that
this is equal to row orthonormalization as proposed in [26]. �

5.B Computation of the Optimal ∆x

Substituting ǫ̃ from (5.44b) into (5.44a) while using q “ ỹ ´ Ψ̃θpmq and S “
∆Ψ̃ diagpθpmq b 12q leads to minimizing

J “ ∆xT C´1

∆x∆x ` rq ´ S∆xsT C´1

ǫ̃ rq ´ S∆xs
“ ∆xTC´1

∆x∆x ` qTC´1

ǫ̃ q ´ qTC´1

ǫ̃ S∆x

`∆xTSTC´1

ǫ̃ S∆x ´ ∆xTSTC´1

ǫ̃ q.

By taking the partial derivative of J w.r.t. ∆x and setting it equal to zero we obtain

BJ
B∆x

“ 2C´1

∆x∆x ´ 2ST C´1

ǫ̃ q ` 2ST C´1

ǫ̃ S∆x “ 0,

which results in

∆x̂WSSTLSpm` 1q “
“
C´1

∆x ` ST C´1

ǫ̃ S
‰:
ST C´1

ǫ̃ q. �





6
SPARSITY-AWARE MULTI-SOURCE

RSS LOCALIZATION

Abstract

We tackle the problem of localizing multiple sources in multipath environments
using received signal strength (RSS) measurements. The existing sparsity-aware

fingerprinting approaches only use the RSS measurements (autocorrelations) at dif-
ferent access points (APs) separately and ignore the potential information present
in the cross-correlations of the received signals. We propose to reformulate this
problem to exploit this information by introducing a novel fingerprinting paradigm
which leads to a significant gain in terms of number of identifiable sources. Be-
sides, we further enhance this newly proposed approach by incorporating the infor-
mation present in the other time lags of the autocorrelation and cross-correlation
functions. An interesting by-product of the proposed approaches is that under
some conditions we can convert the given underdetermined problem to an overde-
termined one and efficiently solve it using classical least squares (LS). Moreover,
we also approach the problem from a frequency-domain perspective and propose a
method which is blind to the statistics of the source signals. Finally, we incorporate
the so-called concept of finite-alphabet sparsity in our framework for the case where
the sources have a similar power. Our extensive simulation results illustrate a good
performance as well as a significant detection gain for the introduced multi-source
RSS fingerprinting methods.

6.1 Introduction

Precise localization of multiple sources is a fundamental problem which has re-
ceived a lot of attention recently [84]. Many different approaches have been pro-
posed in literature to recover the location of the sources based on time-of-flight
(ToF), time-difference-of-arrival (TDOA) or received-signal-strength (RSS) mea-
surements. A traditional wisdom in RSS-based localization tries to extract distance

109
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information from the RSS measurements. However, this approach fails to pro-
vide accurate location estimates due to the complexity and unpredictability of the
wireless channel. This has motivated another category of RSS-based positioning,
the so-called location fingerprinting, which discretizes the physical space into grid
points (GPs) and creates a map representing the space by assigning to every GP
a location-dependent RSS parameter, one for every access point (AP). The loca-
tion of the source is then estimated by comparing real-time measurements with the
fingerprinting map at the source or APs, for instance using K-nearest neighbors
(KNN) [12] or Bayesian classification (BC) [13].

A deeper look into the grid-based fingerprinting localization problem reveals that
the source location is unique in the spatial domain, and can thus be represented
by a 1-sparse vector. This motivated the use of compressive sampling (CS) [85]
to recover the location of the source using a few measurements by solving an ℓ1-
norm minimization problem. This idea illustrated promising results for the first
time in [86, 87] as well as in the following works [26–29, 88, 101, 102]. In [26,
101, 102], a two-step CS-based indoor localization algorithm for multiple targets is
proposed. In the first coarse localization step, the idea of cluster matching is used
to determine in which cluster the targets are located. This is followed by a fine
localization step in which CS is used to recover sparse signals from a small number
of noisy measurements. In [27, 88] it is proposed to use a joint distributed CS
(JDCS) method in a practical localization scenario in order to exploit the common
sparse structure of the received measurements to localize one target. Further, for
a similar localization scenario as [27, 88], in [28] the encryption capability of CS
is demonstrated as CS shows robustness to potential intrusions of unauthorized
entities. In [29], finally, a greedy matching pursuit algorithm is proposed for RSS-
based target counting and localization with high accuracy.

Although our focus is on RSS-based source localization in this chapter, let us also
shortly review some existing sparsity-aware studies in the TDOA domain. Interest-
ingly, not much work can be found on TDOA-based source localization within a
sparse representation framework. In [25], single-source TDOA-based localization
is proposed wherein the sparsity of the multipath channel is exploited for time-delay
estimation. On the other hand, in [93], the source sparsity is exploited to simplify
the hyperbolic source localization problem into an ℓ1-norm minimization. How-
ever, the algorithm in [93] treats different sources separately, i.e., it is in principle a
single-source localization approach. In [103], we have investigated the problem of
sparsity-aware passive localization of multiple sources from TDOA measurements.

Coming back to RSS-based sparsity-aware localization, existing algorithms only
make use of the signal/RSS readings at the different receivers (or APs), separately.
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However, there is potential information in the cross-correlations of these received
signals at the different APs, which has not yet been exploited. In [89], we have
proposed to reformulate the sparse localization problem within a single-path chan-
nel environment so that we can make use of the cross-correlations of the signal
readings at the different APs. In this chapter, we extend our basic idea in [89] by
presenting the following main contributions:

i) First of all, in contrast to [89], we consider a realistic multipath channel
model (simulated by a room impulse response (RIR) generator [104]), and we
show that our idea can also be employed in a realistic multipath environment.

ii) Second, we analytically show that this new framework can provide a consid-
erable amount of extra information compared to classical algorithms which
leads to a significant improvement in terms of the number of identifiable
sources as well as localization accuracy. To guarantee a high quality recon-
struction, we also numerically assess the restricted isometry property (RIP)
of our proposed fingerprinting maps.

iii) In order to further improve the potential of our novel framework in terms of
number of identifiable sources, we also propose to exploit extra information
in the time domain. Particularly, the information in other lags than the zeroth
lag of the autocorrelation and cross-correlation functions can be exploited to
construct a larger fingerprinting map.

iv) We propose a novel idea to deal with the cases where there is no knowledge
about the statistics of the transmitted signals by the source nodes (SNs). This
basically makes it possible to perform fingerprinting in a blind fashion with
respect to (w.r.t.) the statistics of the transmitted signals. This blind approach
is mainly based on a proper filter bank design to approach the fingerprinting
problem from the frequency domain. Moreover, we also show that incorpo-
rating this information in the frequency domain improves the performance in
terms of number of identifiable sources compared to the original proposed
approach.

v) We show that if the sources transmit the same signal power the sparse vector
of interest will contain finite-alphabet elements. In such cases, we propose to
recover the locations by taking the finite-alphabet property of the non-zero el-
ements of the sparse vector into account, which we refer to as finite-alphabet
sparsity. We show that including this information leads to a considerable
reconstruction gain.
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Note that the sources considered here are non-cooperative, i.e., the sources do not
emit radio signals with the purpose of localization, but the signals are intended for
communications and we exploit them for localization. The proposed algorithms
can be applied in indoor or outdoor environments. For instance, monitoring non-
cooperative sources broadcasting CDMA signals can be an example of our appli-
cation domain. However, there is no limitation to employ the proposed ideas in
wireless LAN (WLAN) or wireless sensor networks (WSNs) operating in a cen-
tralized fashion with a wired backbone.

The rest of this chapter is organized as follows. In Section 6.2, the signal and net-
work model under consideration are explained. In Section 6.3, the classical RSS-
based fingerprinting localization as well as our proposed fingerprinting idea are ex-
plained. The RIP of the proposed fingerprinting maps is also numerically assessed
in this section. Section 6.4 explains how extra information in the time domain
can be exploited to further enhance the performance of our proposed fingerprint-
ing idea. The idea of blind fingerprinting using frequency domain information is
presented in Section 6.5. Section 6.6 explains the idea of using finite-alphabet spar-
sity. Extensive simulation results in Section 6.7 corroborate our analytical claims
in several scenarios. Finally in Section 6.8, after a short discussion on computa-
tional complexity of the proposed algorithms, this chapter is wrapped up with brief
concluding remarks.

6.2 Problem Definition

Consider that we have M access points (APs) distributed over an area which is
discretized into N cells each represented by its central grid point (GP). The APs
can be located anywhere. We consider K non-cooperative source nodes (SNs)
which are randomly located either on these GPs (on-grid scenario) or anywhere
(off-grid scenario). We assume that the APs are connected to each other by a wired
backbone so that they can cooperate by exchanging their signal readings. We also
assume that the APs are synchronized, which is feasible especially considering the
wired backbone. Now, if the k-th SN broadcasts a time domain signal skptq, the
received signal at the m-th AP can be expressed by

xm,kptq “
Lÿ

l“1

hl,m,kskpt´ τl,m,kq ` nmptq, (6.1)

where we consider an L-path channel with hl,m,k and τl,m,k respectively denoting
the channel coefficient and time-delay of the l-th path from the k-th SN to the m-th
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AP; nmptq is the additive noise at the m-th AP. Our assumptions on the signal and
noise models are as follows:

A.1 The signals skptq are assumed to be ergodic, mutually uncorrelated sequences,
i.e., Etskptq s˚

k1pt1qu “ ηkrkpt ´ t1qδk´k1 , with ηk being the k-th signal
power, rkpτq the normalized signal correlation function with rkp0q “ 1, and
δk the unit impulse function. Meanwhile, Et.u denotes the statistical expec-
tation which is equal to temporal averaging due to the ergodic property of the
signals.

A.2 The noises nmptq are assumed to be ergodic, mutually uncorrelated white
sequences, i.e., Etnmptq n˚

m1pt1qu “ σ2nδpt´ t1qδm´m1 , with σ2n “ N0B the
variance of the additive noise with densityN0 within the operating frequency
bandwidth B, and δptq the Dirac impulse function.

A.3 The transmitted signals are uncorrelated with the additive noise, i.e., Etskptq
nmpt1qu “ 0, @t, t1 and @m, k.

A.4 Throughout this chapter we consider rkpτq “ rpτq, @k and we assume it
to be known a priori or acquired through training, unless otherwise men-
tioned. Note that under this assumption the SNs can still be considered
non-cooperative in the sense that they do not cooperate by exchanging in-
formation.

A.5 As a more general case, we sometimes also consider rkpτq ‰ rk1pτq and
assume they are unknown. This requires an approach which is blind to the
rkpτq’s.

From (6.1), the total received signal at the m-th AP can be written as

xmptq “
Kÿ

k“1

xm,kptq “
Kÿ

k“1

Lÿ

l“1

hl,m,kskpt´ τl,m,kq ` nmptq. (6.2)

It is worth pointing out that in a general sense, the problem under consideration is
a passive localization problem as xmptq cannot be be decomposed into its compo-
nents xm,kptq. The problem here is to use the total received signals at the APs to
localize the SNs simultaneously. In the following, we propose a novel RSS-based
fingerprinting paradigm to localize the SNs within a multipath environment.
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6.3 Sparsity-Aware RSS Localization

Localizing multiple SNs using their received signals is a non-trivial problem which
can be converted into a linear problem by taking into account the sparsity of the
SNs in the spatial domain. In order to be able to incorporate the sparsity, we define
a grid structure in space consisting of N GPs. Next, we perform localization in
two phases; first, we construct the fingerprinting map in an initialization phase by
either training or if possible analytical computation. More specifically, if training
is considered, a training SN (transmitting s0ptq with signal correlation rpτq and
power η0 “ 1) is put on every GP, one after the other, and the signal readings at all
the APs are used to construct the map. Alternatively, the channel coefficients and
the time-delays of the received signals at all the APs can be computed analytically
(e.g., using the RIR generator [104]) whereas the statistics of the skptq’s, i.e., the
rpτq, are assumed to be known (or measured) beforehand. Notably, an important
advantage of analytically computing the map is avoiding an exhaustive training pro-
cedure. In the second phase, the so-called run-time phase, real-time multi-source
measurements of the sources with similar statistics as in the initialization phase are
collected and processed to recover the locations of the SNs.

It is also worth highlighting that the case of off-grid source localization can for
instance be handled using adaptive mesh refinement algorithms as explained in [24]
or by finding the “grid mismatch" using sparse total least squares (STLS) ideas as
we proposed in [103], but this is left as future work due to space limitations. In this
chapter, we confine ourselves to finding the closest GPs to the off-grid sources as
explained in Subsection 6.7.3.

6.3.1 Classical Sparsity-Aware RSS Localization (SRL)

One way to compute the RSS is by taking the zeroth lag of the autocorrelation
function of the received time-domain signals at the APs as

ym “ E txmptq x˚
mptqu

“ E

# ˜
Kÿ

k“1

Lÿ

l“1

hl,m,kskpt´ τl,m,kq ` nmptq
¸

ˆ
˜

Kÿ

k1“1

Lÿ

l1“1

h˚
l1,m,k1s

˚
k1pt´ τl1,m,k1q ` n˚

mptq
¸ +
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“ E

#
Kÿ

k“k1“1

Lÿ

l“1

Lÿ

l1“1

hl,m,kh
˚
l1,m,kskpt´ τl,m,kqs˚

kpt´ τl1,m,kq
+

`E tnmptqn˚
mptqu

“
Kÿ

k“1

Lÿ

l“1

Lÿ

l1“1

hl,m,kh
˚
l1,m,krpτl1,m,k ´ τl,m,kqηk ` σ2n, (6.3)

which for a single-path channel model boils down to ym “ řK
k“1

|hm,k|2ηk ` σ2n.
Notably, the third equality follows from A.1 and A.3 and the last equality follows
from A.2 and A.4, as detailed in Section 6.2. Interestingly, if we ignore the effect
of the noise for the time being, the last expression in (6.3) shows that the RSS at
APm is a summation of K location-dependent (through delays and channel coeffi-
cients) terms

řL
l“1

řL
l1“1

hl,m,kh
˚
l1,m,krpτl1,m,k´τl,m,kq. This means that if theseK

components could be recognized, the locations can be estimated from them, which
motivates choosing them as fingerprints of the sources. Now, in order to be able
to do this, we consider that the SNs can only be located on a finite set of positions
determined by N GPs. Therefore, if we measure/compute the fingerprints of the N
GPs, the corresponding N

ψm “
«

Lÿ

l“1

Lÿ

l1“1

h
g
l,m,1h

g˚
l1,m,1rpτ gl1,m,1 ´ τ

g
l,m,1q,

¨ ¨ ¨ ,
Lÿ

l“1

Lÿ

l1“1

h
g
l,m,Nh

g˚
l1,m,Nrpτ gl1,m,N ´ τ

g
l,m,N q

ffT

, (6.4)

where p.qg denotes values being measured/computed for the GPs. Thus, using (6.4),
(6.3) can be rewritten for a grid structure as

ym “ ψT
mθ ` σ2n, (6.5)

where θ is an N ˆ 1 vector containing all zeros except for K non-zero elements
with indices related to the locations of the K sources and values equal to the ηk’s.
The same holds for the other APs with the same θ, which helps us to stack the ym’s
and ψm’s for different APs as

y “ Ψθ ` pn, (6.6)

where pn “ σ2n1M with 1M the M ˆ 1 vector of all ones, y “ ry1, ¨ ¨ ¨ , yM sT and
Ψ “ rψ1, ¨ ¨ ¨ ,ψM sT . Defining xptq “ rx1ptq, ¨ ¨ ¨ , xM ptqsT , it is clear that
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y “ Etxptq d x˚ptqu, (6.7)

where d denotes the element-wise Hadamard product. As is clear from (6.6), y is
the K-sparse RSS characterized by the fingerprinting map Ψ as given by

ΨT “
Lÿ

l“1

Lÿ

l1“1$
’’’’’&

’’’’’%

»

—————
–

h
g
l,1,1h

g˚
l1,1,1rpτ gl1,1,1 ´ τ

g
l,1,1q ¨ ¨ ¨ h

g
l,M,1h

g˚
l1,M,1rpτ gl1,M,1 ´ τ

g
l,M,1q

h
g
l,1,2h

g˚
l1,1,2rpτ gl1,1,2 ´ τ

g
l,1,2q ¨ ¨ ¨ h

g
l,M,2h

g˚
l1,M,2rpτ gl1,M,2 ´ τ

g
l,M,2q

...
. . .

...

h
g
l,1,Nh

g˚
l1,1,Nrpτ gl1,1,N ´ τ

g
l,1,N q ¨ ¨ ¨ h

g
l,M,Nh

g˚
l1,M,Nrpτ gl1,M,N ´ τ

g
l,M,N q

fi

ffiffiffiffiffi
fl

,
/////.

/////-

.

(6.8)

Note that if the SNs have different signal powers, estimating θ will also return the
signal powers as a by-product. Solving (6.6) with classical LS produces a poor
estimate due to the under-determined nature of the problem (M ă N ). Instead,
sparse reconstruction techniques (or CS) aim to reconstruct θ by taking the source
sparsity concept into account. It is worth mentioning that here we have a natural
compression in the problem, in the sense that the number of measurements is lim-
ited to the number of APs (M ), which in many practical scenarios is much less than
the number of GPs (N ). Hence, using (6.6), θ can be well-recovered by solving the
following ℓ1-norm minimization

θ̂SRL “ argmin
θ

}y ´ Ψθ}2
2

` λ }θ}
1
, (6.9)

where λ is a regularization parameter that controls the trade-off between sparsity
and reconstruction fidelity of the estimated θ. The problem (6.9) can efficiently
be solved using several algorithms including the well-known LASSO [101]. We
would like to stress that (even though modified to fit our setup) the discussed SRL
represents the existing classical sparsity-aware RSS localization idea in literature
[101] and it is modified and presented here for the sake of comparison.

Remark 6.1 (Identifiability of SRL)

To elaborate on the identifiability of localization using SRL, it is worth men-

tioning that for classical multi-source (2-dimensional) RSS-based localization,

as long as there are M ě 3 APs (not lying on a straight line), the SNs can be

uniquely identified and localized. On the other hand, the sparse reconstruction-
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based nature of SRL imposes an extra constraintM ě 2K (M ě 3 should also

be satisfied) because for a perfect reconstruction we require every 2K-column

subset of Ψ to be full column rank so that we can reconstruct aK-sparse θ. All

in all, this leads to the necessary condition M ě maxp2K, 3q for identifiability

and reconstruction.

6.3.2 Sparsity-Aware RSS Localization via Cooperative APs (SRLC)

As explained in the previous subsection, the existing sparsity-aware RSS-based
algorithms represented by the SRL, only make use of the zeroth lag of the autocor-
relation function (signal strength) of the signals received at each AP separately and
ignore the potential information present in the cross-correlation of this information.
We propose to reformulate the problem so that we can exploit this extra informa-
tion by a cooperation among the APs. This new model requires the construction
of a new fingerprinting map as will be explained subsequently. Let us instead of
the autocorrelations of the received signals at each AP, this time also compute the
cross-correlations as

ym,m1 “ E txmptq x˚
m1ptqu

“ E

# ˜
Kÿ

k“1

Lÿ

l“1

hl,m,kskpt´ τl,m,kq ` nmptq
¸

ˆ
˜

Kÿ

k1“1

Lÿ

l1“1

h˚
l1,m1,k1s

˚
k1pt´ τl1,m1,k1q ` n˚

m1ptq
¸ +

“ E

#
Kÿ

k“k1“1

Lÿ

l“1

Lÿ

l1“1

hl,m,kh
˚
l1,m1,kskpt´ τl,m,kqs˚

kpt´ τl1,m1,kq
+

`E tnmptqn˚
m1ptqu

“
Kÿ

k“1

Lÿ

l“1

Lÿ

l1“1

hl,m,kh
˚
l1,m1,krpτl1,m1,k ´ τl,m,kqηk ` σ2nδm´m1 , (6.10)

which for a single-path channel model boils down to ym,m1 “ řK
k“1

hm,kh
˚
m1,k

rpτm1,k ´ τm,kqηk ` σ2nδm´m1 . Again, the third equality follows from A.1 and A.3
and the last equality follows from A.2 and A.4, as detailed in Section 6.2. Similar
to the case of the SRL, if we ignore the noise effect for the time being, (6.10) again
introduces a location-dependent fingerprint

řL
l“1

řL
l1“1

hl,m,kh
˚
l1,m1,krpτl1,m1,k ´

τl,m,kq for the K sources. Thus, by considering the GPs as the only possible
locations of the SNs, if we measure/compute the fingerprints of the N GPs, the
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corresponding N fingerprints can be stacked in a vector as given by

ψ̃m,m1 “
«

Lÿ

l“1

Lÿ

l1“1

h
g
l,m,1h

g˚
l1,m1,1rpτ gl1,m,1 ´ τ

g
l,m1,1q,

¨ ¨ ¨ ,
Lÿ

l“1

Lÿ

l1“1

h
g
l,m,Nh

g˚
l1,m1,Nrpτ gl1,m,N ´ τ

g
l,m1,N q

ffT

, (6.11)

and therefore using (6.11), (6.10) can be rewritten for a grid structure as

ym,m1 “ ψ̃
T

m,m1θ ` σ2nδm´m1 , (6.12)

where θ is the same K-sparse vector as in the case of the SRL. In order to end
up with a similar expression as (6.6), we can stack the M2 different ym,m1’s and
ψ̃m,m1’s leading to

ỹ “ Ψ̃θ ` p̃n, (6.13)

where
ỹ “ ry1,1, ¨ ¨ ¨ , y1,M , ¨ ¨ ¨ , yM,1, ¨ ¨ ¨ , yM,M sT , (6.14)

Ψ̃ “ rψ̃1,1, ¨ ¨ ¨ , ψ̃1,M , ¨ ¨ ¨ , ψ̃M,1, ¨ ¨ ¨ , ψ̃M,M sT , (6.15)

and p̃n “ vecpσ2nIM q. Clearly, in contrast to y “ Etxptq d x˚ptqu, this time
we compute ỹ “ Etxptq b x˚ptqu where b represents the Kronecker product.
Hence, now ỹ is a K-sparse vector parametrized using a fingerprinting map of size
M2 ˆN :

Ψ̃T “
Lÿ

l“1

Lÿ

l1“1$
’’’’’&

’’’’’%

»

—————
–

h
g˚
l,1,1h

g
l1,1,1rpτ gl,1,1 ´ τ

g
l1,1,1q ¨ ¨ ¨ h

g˚
l,M,1h

g
l1,M,1rpτ gl,M,1 ´ τ

g
l1,M,1q

h
g˚
l,1,2h

g
l1,1,2rpτ gl,1,2 ´ τ

g
l1,1,2q ¨ ¨ ¨ h

g˚
l,M,2h

g
l1,M,2rpτ gl,M,2 ´ τ

g
l1,M,2q

...
. . .

...

h
g˚
l,1,Nh

g
l1,1,Nrpτ gl,1,N ´ τ

g
l1,1,N q ¨ ¨ ¨ h

g˚
l,M,Nh

g
l1,M,Nrpτ gl,M,N ´ τ

g
l1,M,N q

fi

ffiffiffiffiffi
fl

,
/////.

/////-

.

(6.16)

Remark 6.2 (Identifiability of SRLC)

For the enhanced model, we requireM2 ě 2K andM ě 3 which results in the

necessary identifiability condition M ě maxp
?
2K, 3q. Notably, for the spe-

cial case where the channel coefficients are real, i.e., ym,m1 “ ym1,m, @m, m1,
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we obtain only MpM ` 1q{2 different elements in ỹ and the same number of

rows in Ψ̃. For such a case, we require MpM ` 1q{2 ě 2K and M ě 3

which results in the necessary identifiability condition M ě maxpr´1{2 `?
16K ` 1{2s, 3q, where r.s denotes the ceiling operator.

As can be seen, in general, the newly proposed fingerprinting model given by (6.13)
provides us with a set of M2 linear equations instead of only M as in (6.6). This
added information (M2 ´ M extra rows), obtained by taking cross-correlations
of the received signals at the different APs into account, makes it possible for the
system to localize a larger number of SNs with a fixed number of APs. This partic-
ularly becomes even more important when the physical conditions of the covered
area limit the number of possible APs. By considering the statements of Remark 6.1
and Remark 6.2, this gain is illustrated in Fig. 6.1 using the minimum number of
APs required to identify K SNs simultaneously. As can be seen, the proposed fin-
gerprinting paradigm is theoretically capable of localizing the same number of SNs
with much fewer APs. The new sparsity-aware localization problem in (6.13) can
now be solved by considering the following two cases:

´ Case I: N ą M2; In this case, by considering the sparse structure of θ, the
extra information enables us to locate more SNs by solving the following
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Figure 6.1: Identifiability gain of SRLC compared to SRL



120 6. Sparsity-Aware Multi-Source RSS Localization

ℓ1-norm minimization problem (for instance using LASSO):

θ̂SRLC “ argmin
θ

›››ỹ ´ Ψ̃θ
›››
2

2

` λ }θ}
1
. (6.17)

´ Case II: N ď M2; Since Ψ̃ has generally full column rank in this case, no
matter what the structure of θ might be, even if it is not sparse, it can be
efficiently recovered by ordinary LS as

θ̂LS “ Ψ̃:ỹ, (6.18)

where p.q: represents the pseudo-inverse.

It is worth pointing out that the idea proposed in this subsection can further be
improved by exploiting extra information from the time and frequency domains.
This basically motivates Sections 6.4 and 6.5.

6.3.3 RIP Investigation

As we explained earlier, Ψ and Ψ̃ are proved to be the sparsifying bases for the SRL
and the SRLC. Having satisfied the sparsity property, the only issue that should
be assessed to guarantee a high quality reconstruction is the mutual incoherence
between the columns of Ψ and Ψ̃ or alternatively the RIP. One way to approach
the problem is following the same trend as explained in [29] because our channel
coefficients can often be considered as drawn from a random distribution (such as
Rayleigh). As is well-documented in literature [54], for K “ 1, 2, ¨ ¨ ¨ the RIP
constant δK of a matrix A (with normalized columns) is the smallest number that
satisfies

´ δK ď }Ax}2
2

}x}2
2

´ 1 ď δK , (6.19)

for allK-sparse x P R
N . Roughly speaking, as long as 0 ă δK ă 1, the RIP holds.

In [29], by exploiting the effect of the random channel coefficients it is shown that
if M “ OpK logpN{Kqq the probability that there exists a K-sparse vector that
satisfies |}Ax}2

2
{}x}2

2
´ 1| ą δK for a 0 ă δK ă 1 tends to 0, which means that

with a high probability the RIP is satisfied. The same holds in our case for Ψ.
As an alternative, we have tried to numerically investigate the RIP property of the
proposed fingerprinting maps to illustrate that the reconstruction will indeed have a
high quality. To this aim, we can use the computationally less demanding definition
in [59] where δK is defined as the maximum distance from 1 of all the eigenvalues
of the

`
N
K

˘
submatrices, AH

ΛAΛ, derived from A, where Λ is a set of indices with
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Table 6.1: RIP Test

Matrix δ1 δ2 δ3 δ4 δ5 δ6

N5ˆ36 0 0.8696 1.6167 2.2038 2.7692 3.2472

Ψ 0 0.9820 1.7978 2.5670 3.2589 3.8070

N25ˆ36 0 0.3442 0.5362 0.6581 0.7291 0.7793

Ψ̃ 0 0.5069 0.6966 0.8065 0.8609 0.9408

cardinality K which selects those columns of A indexed by Λ. It means that for
each K, the RIP constant is given by

δK “ max
`
|λmaxpAH

ΛAΛq ´ 1|, |λminpAH
ΛAΛq ´ 1|

˘
. (6.20)

For the sake of computational feasibility, we consider the case where M “ 5, and
hence M2 “ 25, and N “ 36 to generate a typical Ψ and Ψ̃ using the other
parameters adopted in Section 6.7. For such a case, we have computed the δK with
K “ 1, ¨ ¨ ¨ , 6 for Ψ and Ψ̃. We also compute the δK for matrices with the same
size containing elements drawn from a random normal distribution, i.e., N5ˆ36 and
N25ˆ36. Note that such random matrices are proved to be a good choice in terms
of the RIP and that is why we use them as a benchmark. In order to slightly heal
the RIP, we apply the orthonormalization operation proposed in [26, 103] to all the
matrices before testing the RIP. The results are presented in Table 6.1. As is clear
from the table, our proposed fingerprinting map for the SRL Ψ performs almost
similar to N5ˆ36 and loosely satisfies the RIP up to K “ 2. However, for K ą 2,
δK starts increasing for both of them. Interestingly, we observe that for Ψ̃ (also for
N25ˆ36) the RIP is met for K up to 6, which shows a considerable improvement as
compared to Ψ.

6.4 Exploiting Additional Time Domain Information (SRLC-TD)

For a fixed network, with known locations of the APs and GPs, the maximum delay
difference can be computed during the initialization phase. It can be expressed by

∆τmax “ max
m,m1,n

p|τm,n ´ τm1,n|q

“ max
m,m1,n

ˆˇ̌
ˇ̌dpAPm, GPnq ´ dpAPm1 , GPnq

ν

ˇ̌
ˇ̌
˙
, (6.21)

where dp.q denotes the Euclidean distance and ν is the velocity of signal propaga-
tion. As a result, the maximum delay difference experienced by any signal from a
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Figure 6.2: Autocorrelations and cross-correlations in a multipath environment

multipath channel is ∆τmax `γ, where γ denotes the maximum delay spread of the
multipath channel. In principle, what we do in Subsection 6.3.2 is to compute the
autocorrelations as well as the cross-correlations or in other words the zeroth lag of
the autocorrelation and cross-correlation functions. Let us start by explaining what
happens when we consider the complete autocorrelation function at each AP and
the complete cross-correlation functions of the received signals at the different APs
(SRLC-TD). As can be seen in Fig. 6.2, for a multipath channel, when we consider
the complete autocorrelation function, the output is non-zero within the time span
r´1{B ´ γ, `1{B ` γs. This means that there is potential information present in
other lags than the zeroth lag which could further be exploited. Similarly, for the
cross-correlations at the different APs, depending on the location of the SNs, we
have to scan the time span r´∆τmax ´ 1{B ´ γ, ∆τmax ` 1{B ` γs to make sure
that we have at least some non-zero rpτq values. Particularly, here we are interested
in the elements of

ỹpnq “ Etxptq b xpt´ nTsq˚u, (6.22)

which are given by

y
pnq
m,m1 “ E txmptq x˚

m1pt´ nTsqu

“
Kÿ

k“1

Lÿ

l“1

Lÿ

l1“1

hl,m,kh
˚
l1,m1,krpτl1,m,k ´ τl,m1,k ` nTsqηk ` σ2nδnδm´m1 ,

where Ts is the smallest time fraction in the system which in practice will be the
sampling time since we implement the algorithms using temporal averaging.

Therefore, we take Ns “ 1{pTsBq samples per inverse bandwidth. Accordingly,
by omitting the intermediate steps similar to the SRLC, we can compute the finger-
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printing map for ỹpnq as in (6.23) (shown below). As a result, we could consider
all lags n P t´Ns ´ rγ{Tss , ¨ ¨ ¨ , Ns ` rγ{Tssu of the complete auto-correlation
functions and all lags n P tt´p∆τmax ` γq{Tsu´Ns, ¨ ¨ ¨ , rpγ `∆τmaxq{Tss`Nsu
of the complete cross-correlation functions. This way we will compute the auto-
correlations for Nac “ 2pNs ` rγ{Tssq lags whereas we have to compute cross-
correlations for N cc “ 2pNs ` r∆τmax{Tss ` rγ{Tssq lags. Here, for the sake
of simplicity of notation, we also assume we compute N cc autocorrelation lags
and set the value of the autocorrelation function for the remaining N cc ´ Nac “
2 rp∆τmaxq{Tss lags to zero.

The additional time lags contain new information which was not used in the SRLC.
To exploit this potential information, we propose to incorporate all lags by solving

ỹTD “ Ψ̃TDθ ` 1Ncc b pδn p̃nq, (6.24)

where

ỹTD “
”`
ỹpt´p∆τmax`γq{Tsu´Nsq

˘T
, ¨ ¨ ¨ ,

`
ỹprpγ`∆τmaxq{Tss`Nsq

˘T ıT
,

and

Ψ̃TD “
”`
Ψ̃pt´p∆τmax`γq{Tsu´Nsq

˘T
, ¨ ¨ ¨ ,

`
Ψ̃prpγ`∆τmaxq{Tss`Nsq

˘T ıT
,

are the augmented versions of the measurement vectors and fingerprinting maps
computed at the different time lags. Hence, this time Ψ̃TD is a N ccM2 ˆN matrix
and thus (6.24) can be solved using LASSO or classical LS if it is underdetermined
or overdetermined, respectively. It is noteworthy that, depending on the computa-
tional complexity constraints, at the expense of the identifiability gain we can also
consider the lags to be spaced by the symbol time 1{B instead of Ts which would
result in a smaller number of lags.

6.5 Blind SRLC Using Frequency Domain Information (SRLC-FD)

Remember that for both SRLC and SRLC-TD, rpτq should be the same and known
for all the sources (A.4 in Section 6.2) to make us capable of measuring/computing
the fingerprinting map. This imposes some a priori knowledge on the problem
which might be lacking in some practical situations, and thus we are also interested
in an approach which is blind to the rkpτq’s. Here, we tackle the issue which is
specified by A.5 in Section 6.2, while we also try to take advantage of the large
bandwidth of the received signal to gain some extra information, similar to Sec-
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(6.23)
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Figure 6.3: Frequency domain filtering. F pqq denotes for the Fourier transform of
f pqqptq.

tion 6.4, and enhance the SRLC, this time by approaching the problem from the
frequency domain (SRLC-FD).
Let us start by explaining an appropriate filter bank design which plays an impor-
tant role in the following analysis. Assume that we do not have any knowledge
about the rkpτq’s. Instead, at each AP we can efficiently estimate the bandwidth of
the total received signal using appropriate spectrum estimation techniques [105];
we call it B and for the sake of simplicity of exposure it is assumed to be the
same at different APs. Next, we use a set of filters tf pqqptquQq“1

to divide B into

Q “ rBp∆τmax ` γqs adjacent subbands Bpqq “ rpq ´ 1qB{Q, qB{Qq with band-
width B{Q. A schematic view of an arbitrary signal, channel and the filter bank
is shown in Fig. 6.3. Notably, since B{Q “ B{ rBp∆τmax ` γqs ă 1{γ with 1{γ
representing the approximate coherence bandwidth of the channel, the output of
the q-th filter at the m-th AP experiences a flat fading channel H

pqq
m,k for every SNk.

Therefore, the related output signal can be written as

xpqq
m ptq “

Kÿ

k“1

”
skptq ˚ f pqqptq

ı
H

pqq
m,k ` nmptq ˚ f pqqptq

“
Kÿ

k“1

s
pqq
k ptqHpqq

m,k ` npqq
m ptq, (6.25)

where ˚ denotes the convolution operator, and s
pqq
k ptq and n

pqq
m ptq respectively de-

note the filtered versions of skptq and nmptq. Further, by simply stacking the results
for different APs, the total received signal vector can be expressed as xpqqptq “
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rxpqq
1

ptq, ¨ ¨ ¨ , xpqq
M ptqsT . Therefore, we have Q signals xpqqptq to compute ỹpqq “

Etxpqqptq b xpqq˚ptqu with its elements given by

y
pqq
m,m1 “ E

!
xpqq
m ptq xpqq˚

m1

)

“ E

#
Kÿ

k“1

s
pqq
k ptqHpqq

m,k

Kÿ

k1“1

s
pqq˚
k1 ptqHpqq˚

m1,k1

+

` E

!
npqq
m ptqnpqq

m1 ptq
)

“
Kÿ

k“1

H
pqq
m,kH

pqq˚
m1,k η

pqq
k ` σ2n

Q
δm´m1 , (6.26)

where the second equality follows from A.1 and A.3 and the last equality follows
from A.2, as detailed in Section 6.2. Now, let us ignore the effect of the noise in
(6.26) for the time being, and discover the fingerprints. Interestingly, owing to our
proposed filtering, the location-dependent fingerprints H

pqq
m,kH

pqq˚
m1,k do not depend

on the rkpτq’s and the effect of the different rkpτq’s appears in the η
pqq
k ’s, which

can be handled within the sparse vector of interest. Now, if we consider that the
sources can only be located onN GPs, we can use any training or analytical method
to compute the rkpτq-independent fingerprints at the m-th AP for the q-th subband
as

ψ
pqq
m,m1 “

”
H

pqq
m,1H

pqq˚
m1,1, ¨ ¨ ¨ , Hpqq

m,NH
pqq˚
m1,N

ıT
. (6.27)

As a result, (6.26) can be rewritten as

y
pqq
m,m1 “ pψpqq

m,m1qT θpqq ` σ2n
Q
δm´m1 , (6.28)

where θpqq is the K-sparse vector of interest for the q-th subband. The ensuing
steps are similar to those of the SRLC and we can compute the fingerprinting map
for ỹpqq as

pΨ̃pqqqT “

»

—————
–

|Hpqqg
1,1 |2 H

pqqg
1,1 H

pqqg˚
2,1 ¨ ¨ ¨ |Hpqqg

M,1 |2

|Hpqqg
1,2 |2 H

pqqg
1,2 H

pqqg˚
2,2 ¨ ¨ ¨ |Hpqqg

M,2 |2
...

...
. . .

...

|Hpqqg
1,N |2 H

pqqg
1,N H

pqqg˚
2,N ¨ ¨ ¨ |Hpqqg

M,N |2

fi

ffiffiffiffiffi
fl
.

Now, based on this analysis, depending on the statistical properties of the received
signals, i.e., spectrum of the skptq’s, the following three cases can happen.
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6.5.1 Flat Spectrum

Looking at Fig. 6.3, we understand that if the spectrum of the sum of the skptq’s is

(almost) flat, the η
pqq
k ’s will be (almost) the same in the different frequency bands

Bpqq. This basically makes it possible to construct an augmented version of the
measurements as well as the fingerprinting maps, as η

pqq
k « ηk will appear again in

θpqq “ θ for all q. This means θ will be a K-sparse signal with all elements equal
to zero except for K elements equal to ηk. Thus, the ensuing steps are similar to
those of the SRLC-TD as by constructing the augmented version of the run-time
measurements as ỹFD “ rpỹp1qqT , ¨ ¨ ¨ , pỹpQqqT sT and the one of the fingerprinting
maps as Ψ̃FD “ rpΨ̃p1qqT , ¨ ¨ ¨ , pΨ̃pQqqT sT . Finally, we solve

ỹFD “ Ψ̃FD θ ` 1Q b p̃n. (6.29)

As we explained, this time Ψ̃FD is a QM2 ˆ N matrix and thus (6.29) can be
solved using LASSO or classical LS if it is underdetermined or overdetermined,
respectively. It is worth pointing out that even for the case where the signals have
a partially flat spectrum, we can design the filters for that flat part of the spectrum
and again construct (6.29) where in such a case we will have less subbands.

6.5.2 Varying Spectrum; The Simple Solution Q “ 1

In contrast to the case where the signals have a flat spectrum, for the non-flat case,
we cannot construct augmented versions of the measurements and the maps for a
unique θ and solve a linear system similar to (6.29). Particularly, because of the
different η

pqq
k ’s in the different bands, the Ψ̃pqq’s and ỹpqq’s are related to different

θpqq’s. In this case, as a straightforward solution, we can simply take one of the
bands, for instance the first band Bp1q, and solve

ỹp1q “ Ψ̃p1q θp1q ` p̃n. (6.30)

This way, we at least have the same identifiability gain as SRLC, but more im-
portantly, we are blind to the rkpτq’s. However, we still have some information
present in the adjacent subbands which has not been exploited. This motivates the
following subsection.

6.5.3 Varying Spectrum; Enhancing the Identifiability Gain

The question is how we can exploit the information present in all the subbands to
attain an identifiability gain. An important observation which helps us to develop a
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solution is the fact that even though different subbands lead to different η
pqq
k ’s for a

non-flat spectrum, all the bands construct linear models, similar to (6.30), where in
all of them the sparse θpqq’s share a common support, i.e., the support of θpqq is the
same @q. This important property motivates a group-LASSO (G-LASSO) type of
solution to incorporate all the bands. However, note that different from classical G-
LASSO, we have different maps Ψ̃pqq for different subbands. Similar cases occur
in the framework of the multiple measurement vectors (MMV) problem [106]. To
deal with this, we propose a modified version of G-LASSO as defined by

Θ̂ “ argmin
Θ

Qÿ

q“1

}ỹpqq ´ Ψ̃pqqrΘs:,q}22 ` λ

Nÿ

n“1

}rΘsn,:}2, (6.31)

where Θ “ rθp1q, ¨ ¨ ¨ ,θpQqs. The first term on the right hand side of (6.31) is the
LS part which minimizes the error for the different subbands and the second term
enforces group sparsity. It is worth pointing out that an analysis of the algorithms
to solve (6.31) is outside the scope of this chapter and here we restrict ourselves to
standard convex optimization tools such as CVX [107] to solve the problem. Based
on the discussions presented in [106] for MMV, incorporating all the subbands
within (6.31) will result in a gain in terms of identifiability compared to (6.30), as
is also corroborated by our simulation results in Section 6.7.

6.6 Improved Localization Using Finite-Alphabet Sparsity

In particular cases where the SNs have a known equal signal power (ηk “ η, @k)
we can accommodate η within Ψ (or Ψ̃, Ψ̃TD and Ψ̃FD) and therefore θ will be a
K-sparse vector with 0 everywhere except forK elements which are 1. This means
that our sparse vector (to be reconstructed using LASSO) has a finite-alphabet
property which is not included in the optimization problem. Incorporating this
extra information can help to improve the reconstruction quality and hence the lo-
calization performance for SRL (likewise, SRLC, SRLC-TD and SRLC-FD). The
problem of sparse reconstruction under finite-alphabet constraints is investigated
in [108, 109]. In [109], efficient algorithms for multiuser detection (MUD) under
sparsity and finite-alphabet constraints are developed. More general, sparse re-
construction under finite-alphabet constraints is investigated in [108] through two
different approaches; sphere decoding and semi-definite relaxation (SDR), with a
main emphasis on the former approach. Here, we re-derive and employ the SDR-
based approach. Interestingly, when the alphabet set is t0, 1u, }θ}0 “ }θ}1 “ }θ}2

2
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and }θ}1 “ θT1 “ 1Tθ. This helps us to rewrite (6.9) (similarly also (6.17)) as

θ̂ “ arg min
θPt0,1uN

}y ´ Ψθ}2
2

` λ´ ǫ

2
pθT1 ` 1Tθq ` ǫ }θ}2

2
, (6.32)

where 0 ă ǫ ď λ. We can express the right-hand-side of (6.32) in a quadratic form
as

Jpθq “
«
θ

1

ffT «
ΨHΨ ` ǫI ´ΨHy ` λ´ǫ

2
1

´yHΨ ` λ´ǫ
2
1T yHy

ff

looooooooooooooooooooooomooooooooooooooooooooooon
Qθ

«
θ

1

ff

loomoon
θ̃

. (6.33)

Note that minimizing (6.33) is a Boolean quadratic programming problem which
permits several efficient algorithms including the quasi-maximum-likelihood SDR
of [110]. However, to be able to employ SDR we have to express Jpθq as a function
of α “ 2θ ´ 1 P t´1, 1uN . More specifically, after some simplifications we can
write Jpθq as Ipαq “ α̃TQαα̃ with α̃ “ rαT , 1sT and

Qα “

»

——
–

pΨHΨ ` ǫIq{4 pΨHΨ ` λIq1{4 ´ ΨHy{2

1T pΨHΨ ` λIq{4 ´ yHΨ{2
1T pΨHΨ ` λIq1{4 ´ yHΨ1{2
´ 1TΨHy{2 ` yHy

fi

ffiffi
fl .

(6.34)
After relaxing the rank-1 constraint on Ã (Ã “ α̃α̃T ), we solve the following
semi-definite programming (SDP) problem

min
Ã

tracepQαÃq

s.t. Ã ľ 0,

rÃsi,i “ 1, i “ 1, ¨ ¨ ¨ , N.

The next step will be to factorize Ã to estimate the best α̃ via randomization as
explained in [110]. Next, θ̂ can simply be calculated using θ̂ :“ pα̂ ` 1q{2. We
expect that including this unused information (finite-alphabet sparsity) within our
reconstruction model leads to a performance gain, as is validated by our simula-
tion results. This basically motivates using this model for reconstructing a finite-
alphabet sparse θ.

6.7 Numerical Results

In this section, we investigate the performance of the proposed algorithms in terms
of probability of detection (Pd), probability of false alarm (Pfa) and positioning
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root mean squared error (PRMSE) against 1{σ2n, the number of existing SNs K
and the number of GPs N .

To this aim, we consider a room of size 10 ˆ 10 ˆ 3 m3 even though our goal is
to find the location of the sources on the floor (in 2-D) of size 10 ˆ 10 m2. This
2-D area is divided into N “ 100 cells represented by their central GPs. The
APs are randomly placed on the ceiling at a height of 3m and our (up to K “
10) non-cooperative sources are considered to be on the floor at a height of 1.8m.
Two different scenarios are considered where in the first scenario the sources are
randomly placed but they are always on-grid whereas in the second scenario they
can be located anywhere, i.e., they can also be off-grid.

The following assumptions about the signal, channel and measurements are respec-
tively in place:

– We consider wideband BPSK signals with a rectangular pulse shape, 3dB
bandwidth of B “ 10MHz and power η “ 1. This means rpτq “ 1 ´ |τ |

B
for

the baseband equivalent signal. The carrier frequency for the passband signal
is 2.4GHz. For all simulations, rpτq is assumed to be the same and fixed for
all the sources, unless otherwise mentioned. We compute the autocorrelation
and cross-correlation functions during a time-slot of length T “ 0.1ms. This
is equal to recording T ˆ B “ 10´4 ˆ 107 “ 1000 BPSK symbols for our
computations. Hence, even for moving sources with low dynamics, which is
a realistic assumption for the networks under consideration, the length of the
time-slot (T “ 0.1ms) will not put a large constraint on the dynamics of the
sources.

– In order to assess the algorithms for a realistic channel model (with no simpli-
fying assumptions), we use synthetic data from the RIR generator provided
by [104] for the wireless system explained earlier.

– Instead of taking ideal expectations Et.u in the measurement phase, we work
with discrete-time signals of limited length and hence the computations of
the autocorrelations as well as the cross-correlations will not be ideal as in
the derivations of Section 6.3. As a result, the noise terms nmptq will not be
completely eliminated in the cross-correlations and they will be an approxi-
mation of what is considered for the autocorrelations, and therefore, this will
slightly affect our performance. Likewise, the value of the autocorrelations
and cross-correlations (in y or ỹ) will also be approximations of the ideal
computations due to this finite-length error.
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All simulations are averaged over P “ 100 independent Monte Carlo (MC) runs
where in each run the sources are deployed on different random locations. For all
the reconstruction problems, we choose λ by cross-validation as explained in [111].
For the case of on-grid sources, we concentrate on the detection performance, i.e.,
we are only interested to know which elements of the estimated θ correspond to
a source and which elements are zeros, i.e., we only care about the support of θ.
Based on this, we define Perr, Pd and Pfa as follows [112]:

– Perr :“ the probability that a source is detected when the source is in fact
not present or it is not detected when it is in fact present.

– Pd :“ the probability that a source is detected when the source is in fact
present.

– Pfa :“ the probability that a source is detected when the source in fact not

present.

Basically, Pd and Pfa specify all the probabilities of interest. However, we need
a detection threshold to be able to compute them. To find the best threshold, we
carry out a linear search within the range r0, maxpθ̂qq and select the value which
minimizes Perr. On the other hand, for off-grid sources we plot both Pd and the
positioning root mean squared error (PRMSE) defined by

PRMSE “

gffe 1

PK

Pÿ

p“1

Kÿ

k“1

e2k,p,

where ek,p represents the distance between the real location of the k-th source and
its estimated location at the p-th MC trial.

Finally, we would like to point out that we do not compare our results with the
KNN, the BC, or even semi-definite relaxation (SDR)-based algorithms because the
superiority of the ℓ1-norm minimization approaches (at least for the SRL) compared
to KNN, BC and SDR-based algorithms is respectively illustrated in [26, 102] and
[93]. Instead, the SRL will be used as the benchmark multi-source RSS-based
localization algorithm.

6.7.1 Performance Evaluation with M “ 15 APs

We start by investigating the performance of the proposed algorithms for the case
that there are M “ 15 APs. In this case, M2 “ 225 ą N , and therefore, the
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Figure 6.4: Schematic view; M “ 15, K “ 10 and 1{σ2

n “ 20dB

SRLC is expected to perform very well and be capable of recovering θ with LS
too. Note that here LS refers to the classical LS applied within the framework of
the SRLC. For the sake of simplicity, we consider the SNs to have equal power, i.e.,
ηk “ η @k. This allows us to employ and assess the idea of finite-alphabet sparsity
to recover θ, as well.

In the first simulation, we consider K “ 10 sources randomly located on the GPs.
As is clear from the schematic view of Fig. 6.4 for 1{σ2n “ 20dB, while the SRL
can only localize 3 sources, the proposed SRLC (solved by LASSO) and the SRLC
(solved by LS) are capable of localizing all the sources. This has motivated us to as-
sess the performance of the SRL solved by the finite-alphabet sparsity idea (we call
it SRL-FA) and as is clear from the figure, SRL-FA could localize 4 sources which
is improved compared to SRL. Obviously, this improvement also holds for the case
of the SRLC with finite-alphabet sparsity; however, since the SRLC is already per-
forming good enough, we do not plot those results. Note that in all the simulations
with finite-alphabet sparsity ǫ “ 0.5λ and we perform 100 randomization trials.

In order to further investigate the performance of the aforementioned algorithms,
we plot the detection and false alarm performance of the algorithms against 1{σ2n
as well as the number of existing sources K. In Fig. 6.5, we assume K “ 4
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n for M “ 15 and K “ 4
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Figure 6.6: Performance vs. K for M “ 15 and 1{σ2

n “ 20dB

sources. As is clear from the figure, the SRLC approaches (solved by LASSO and
LS) perform very good as they attain Pd “ 1 and Pfa « 0 for a large span of 1{σ2n.
The SRL-FA is clearly achieving a better Pd compared to SRL; however, it has a
higher Pfa as well when its Pd is low. Notably, for all the algorithms, the general
trend is an improvement with 1{σ2n.

Now, let us get a better understanding by taking a look at the performance of the
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algorithms for 1{σ2n “ 20dB vs. K in Fig. 6.6. As can be seen, SRLC (in either
case) can efficiently localize all the sources while for the SRL the performance
drops by increasing the number of sources. The important observation here is that
SRL-FA is almost capable of localizing up to K “ 3 sources with a very high Pd

and minimum Pfa while this number reduces to K “ 1 for the stand-alone SRL.
However, for K ą 3 even though the Pd is always better for the SRL-FA, the Pfa

also increases. Based on the observations in Figs. 6.5 and 6.6, we can conclude that
the finite-alphabet sparsity idea is useful for the range K ď 3 in this setup. At this
point, it is noteworthy that we do not plot the results for K ą 10 sources since for
those cases θ is not really sparse, i.e., we do not have K ! N .

6.7.2 Further Improvement with M “ 5 APs and Blindness to rpτq

In this subsection, we consider the case where we have only M “ 5 APs avail-
able. For such a case, M2 “ 25 ă N and thus it is expected that even the SRLC
might not be capable of localizing all theK “ 10 sources. This basically motivates
employing the SRLC-TD to incorporate other time lags and hopefully improve the
performance over the proposed SRLC. Moreover, this subsection is also meant to
investigate the performance of the SRLC-FD algorithm. To this aim, we assume
that all the sources have different ηk’s with a uniform distribution in the range of
r0.8, 1.2s and we assume that rpτq is unknown to SRLC-FD. This calls for a dif-
ferent fingerprinting map as explained in Section 6.5. We would like to emphasize
that SRLC-FD can be employed even for cases where all the sources have different
rkpτq’s. However, since this cannot be handled by the SRLC and the SRLC-TD,
we omit those results here.

Similar to the previous subsection, we consider K “ 10 sources randomly located
on the GPs. Fig. 6.7 depicts a schematic view of localization for 1{σ2n “ 20dB.
As can be seen, while SRLC is only capable of localizing K “ 2 sources, the
other three enhanced algorithms, i.e., SRLC-TD (solved with LASSO), SRLC-TD
(solved with LS) and the blind algorithm (SRLC-FD) could localize all the sources
simultaneously. Notably, for the sake of a lower computational complexity, we
consider only 6 time lags for the SRLC-TD which are spaced by 1{p2Bq (ą Ts)
in our simulations. For the SRLC-FD, we have designed Q “ 10 filters and the
proposed G-LASSO solution (explained in Subsection 6.5.3) is employed. It is
also worth mentioning that since all the sources have different ηk’s, finite-alphabet
sparsity is not applicable in this subsection.

As in the previous subsection, we would also like to further assess the proposed
algorithms in terms of Pd and Pfa. Fig. 6.8 compares the performance of the
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n for M “ 5 and K “ 4

aforementioned algorithms against 1{σ2n for K “ 4. SRLC-FD (Q “ 1) denotes
the idea of exploiting only one frequency band as explained in Subsection 6.5.2. As
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is clear from the figure, SRLC-FD (Q “ 1) is performing very close to SRLC while
it is blind to rpτq. Interestingly, SRLC-FD is performing better than SRLC while it
is blind. Notably, SRLC-TD (solved with LASSO) and SRLC-TD (solved with LS)
both are performing good and attain the best possible performance for 1{σ2n values
larger than ´1dB. This observation that SRLC-TD is less affected by noise can be
justified by referring to (6.24) where we have shown that only measurements in
the zeroth time lag are contaminated with noise and the rest of the lags are almost
clean.

Let us get a more complete picture of the performance of the algorithms by taking
a look at Fig. 6.9 where the detection and false alarm probabilities are depicted
against K for 1{σ2n “ 20dB. As can be seen, the performance drops for the SRLC
and the SRLC-FD (Q “ 1) with K and thus Pd starts decreasing whereas Pfa rises
forK ą 3. Interestingly, for a large enough 1{σ2n (i.e., small enough noise), SRLC-
FD attains an optimal performance even for K up to 10. This result corroborates
the fact that our blind algorithm with no information about rpτq, by exploiting the
information of the Q “ 10 frequency subbands could outperform SRLC in terms
of the number of identifiable sources. Note that there is a major improvement in
SRLC-FD compared to SRLC-FD (Q = 1). The SRLC-TD (both with LASSO and
LS) starts degrading for K ě 5 which can indeed be improved at the expense of
complexity by increasing the number of time lags if the signal and channel proper-
ties permit.
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6.7.3 Performance Evaluation for Off-Grid Sources

In this subsection, we intend to investigate the effect of off-grid sources on the
performance of the proposed localization paradigm. Having assessed the improve-
ments by exploiting time lags and frequency domain information via respectively
SRLC-TD and SRLC-FD, here we only concentrate on the primary algorithm SRLC.
Notably, the following off-grid experiments also demonstrate the performance of
the SRLC when the measurements are inconsistent with the fingerprinting map. In
an off-grid scenario, we expect to observe non-zero values in θ̂SRLC corresponding
to the GPs around an off-grid source if the channels observed by the neighboring
grid points are correlated with the measurements. In order to increase this regional
correlation, we should work at lower frequencies and that is why for the following
simulations fc “ 100MHz and B “ 1MHz. This means that for the same num-
ber of BPSK symbols as before, we have to record T “ 1000{106 “ 1ms of the
received signals. This is shown in Fig. 6.10 where we depict a 3-D snapshot of
θ̂SRLC for M “ 7, N “ 196, K “ 3 and 1{σ2n “ 20dB. As can be seen, mostly
the GPs around the sources return non-zero values which helps us to localize the
off-grid sources. Now that we can have continuous locations of the sources in the
2-D area of interest, it makes sense to also plot the PRMSE of our estimates where
we only constrain ourselves to finding the nearest GP to the off-grid sources. To
further elaborate on the performance, we also plot Pd where a source is considered
to be detected if it is estimated to be in a circle with a radius of

?
2 around its real
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Figure 6.11: Off-Grid Performance vs. 1{σ2

n; M “ 7, K “ 1 and 3

location. To this aim, for the sake of picturing out irrelevant location estimates to
achieve a meaningful PRMSE estimate, we consider that we know K and that is
why we omit Pfa curves. The rest of the parameters is the same as in previous
simulations, unless otherwise mentioned.

Fig. 6.11 illustrates the performance against 1{σ2n for M “ 7 APs with K “ 1 and
3 SNs randomly located on the floor (at a height of 1.8m) of the room. As can be
seen, for a single-source scenario the PRMSE goes below 1m (the cell size) and this
means the source can be very-well localized as is corroborated by the corresponding
Pd curve. However, for K “ 3 SNs PRMSE and Pd are slightly degraded. It is
worthy of being noted that for the multiple off-grid source localization, the more
distant the sources are, the better we can relate the nonzero values of the estimated θ
to the closest GP. This shows a shortcoming of SRLC for localizing off-grid sources
which constrains us to artificially avoid the sources to be located in neighboring
cells.

Further, in Fig. 6.12, we try to investigate the performance of the SRLC against
N “ 36, 64, 100, 144, 196, 324, 484, 676 and 900 while the room size is kept
fixed. The main intention is to assess how an increased correlation between the
GPs affects the performance. Note that, however, for a fair comparison in terms
of reconstruction (and hence localization), we should also keep the ratio M{N
(sometimes called compression rate) constant. In this simulation, we keep a fairly
reasonable ratioM{N “ 1{4. As can be seen, the results are plotted for two differ-
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Figure 6.13: Off-Grid Performance vs. 1{σ2

n for ρ “ 0%, 5%, 15% and 20%

ent noise levels 1{σ2n “ ´5dB and 5dB. As expected the performance is relatively
better in the lower noise level. However, even with N “ 900, the correlation be-
tween the columns of the dictionary is not so severe to spoil the reconstruction, and
the performance keeps improving with N . We would like to highlight though that
further increasing K will indeed lead to a situation where the RIP will be dras-
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tically affected and SRLC will fail. In principle, this is an inherent limitation of
any sparsity-aware localization algorithm which should be taken into account at
the preliminary system level design.

Finally, we assess the sensitivity of the SRLC w.r.t. perturbations in the trained/co-
mputed fingerprinting map Ψ̃. Such perturbations can for instance happen due to
variations in the environment during the run-time phase. To this aim, a perturba-
tion matrix ∆ drawn from a complex random Gaussian distribution is added to Ψ̃.
Accordingly, a perturbation ratio ρ is defined by ρ “ }∆}{}Ψ̃} which is set to
0% (no perturbation), 5%, 10% and 20% in our simulations. As can be seen from
Fig. 6.13, the perturbations show their effect mostly in the lower 1{σ2n’s. Particu-
larly, for K “ 2, ρ’s up to 10%, and 1{σ2n ě 5dB, the same localization accuracy
(less than 1m and Pd “ 1) as when there is no perturbation can be attained. How-
ever, increasing ρ to ρ ą 10% leads to a performance degradation even for high
1{σ2n’s. It is noteworthy that this experiment illustrates that our proposed idea can
even work when all three model non-idealities simultaneously exist, i.e, measure-
ment noise, off-grid sources and a slightly varying environment.

6.8 Computational Complexity and Conclusions

Before concluding this chapter, we would like to comment on the complexity of
the proposed approaches (SRLC, SRLC-TD, SRLC-FD) compared to the classical
approach (SRL). Obviously, the enhanced source detection capability of the pro-
posed approaches comes at a price and that is increased complexity. The proposed
approaches (SRLC, SRLC-TD and SRLC-FD) respectively require a larger dictio-
nary of size M2 ˆN , N ccM2 ˆN , and QM2 ˆN compared to the smaller one of
SRL of size M ˆN . Solving our sparse reconstruction problems using LASSO or
similarly basis pursuit denoising (BPDN) using the approach of [113] for example
requires a complexity that is linear in the number of rows of the dictionary. There-
fore, the aforementioned algorithms are respectively M , MN cc, and QM times
more demanding in terms of computational cost than the SRL.

This chapter studies the problem of localizing multiple sources using their RSS
measurements in multipath environments. We have proposed a novel fingerprint-
ing paradigm to exploit the information present in the cross-correlations of the
received signals at the different APs which is ignored in existing sparsity-aware
fingerprinting approaches. Besides, we have also proposed to further enhance
the novel paradigm by incorporating other lags than the zeroth lag of the auto-
correlation/cross-correlation functions. Moreover, we have extended our proposed
idea to be able to operate when we are blind to the statistics of the source signals.
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Finally, we have employed the concept of finite-alphabet sparsity in our framework
to deal with the sparse vectors of interest, if they contain finite-alphabet elements.
Our extensive simulation results corroborate the efficiency of the proposed algo-
rithms in terms of localization accuracy as well as detection capability.





7
SPARSITY-AWARE MULTIPLE

MICROSEISMIC EVENT LOCALIZATION
BLIND TO THE SOURCE TIME-FUNCTION

Abstract

We consider the problem of simultaneously estimating three parameters of multi-
ple microseimic events, i.e., the hypocenter, moment tensor, and origin-time. This
problem is of great interest because its solution could provide a better understand-
ing of reservoir behavior and can help to optimize the hydraulic fracturing process.
The existing approaches employing spatial source sparsity have advantages over
traditional full-wave inversion-based schemes; however, their validity and accu-
racy dependents on the knowledge of the source time-function, which is lacking in
practical applications. This becomes even more challenging when multiple micro-
seimic sources appear simultaneously. To cope with this shortcoming, we propose
to approach the problem from a frequency-domain perspective and develop a novel
sparsity-aware framework which is blind to the source time-function. Through
our simulation results with synthetic data, we illustrate that our proposed approach
can handle multiple microseismic sources and can estimate their hypocenters with
an acceptable accuracy. The results also show that our approach can estimate the
normalized amplitude of the moment tensors as a by-product, which can provide
worthwhile information about the nature of the sources.

7.1 Introduction

Microseismic event monitoring is a fundamental problem that has received an up-
surge of attention in literature. Parameter estimation of microseismic events (also
called sources), i.e., estimating their hypocenter, moment tensor components, and
origin-time, provides important information about volumetric stress/strain and fail-
ure mechanisms in reservoirs [114]. This parameter estimation is also of special
interest for earthquake monitoring in seismically active areas [115], for hazard mit-
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igation in mining operations [116] and for monitoring and assessing the amount of
adjustments during and after a hydraulic fracturing process [117], to name a few.

Most of the previous studies in this context are based on fast inversion or full-wave
inversion [118] which suffer from the following main shortcomings: they cannot
provide a simultaneous estimate of the three source parameters, they are mostly
single-source algorithms, and they are not real-time because of the large bulk of
measured seismic traces they have to deal with. Moreover, most of these meth-
ods include iterative algorithms which are sensitive to an appropriate initialization.
All these issues motivated researchers to think about grid-based approaches [119]
where run-time measurement traces are compared with a pre-constructed database
of seismic traces also known as a dictionary. On the other hand, constructing such
a dictionary requires an extra computational effort.

A deeper look into the grid-based problem reveals that (in a single-source setup) the
source hypocenter is unique in the spatial domain, and can thus be represented by
a 1-sparse (containing only one non-zero element) vector. This motivated the use
of compressive sampling [85] to recover the hypocenter of the source using a few
measurements by solving an ℓ1-norm minimization problem. This idea illustrated
promising results for the first time in [87] for localization in a signal processing
context, and also in some subsequent studies on multi-source localization [26, 103,
120], where multiple sources could occur at the same time and the received signals
could not be decomposed according to their respective sources.

Recently, in a geophysical context, similar ideas have been employed to simulta-
neously recover the aforementioned three source parameters. In [121], a sparse
representation framework is proposed to model the microseismic source activities
and it is shown that employing sparse reconstruction techniques makes it possible
to jointly estimate the source parameters with an acceptable accuracy. In [122], the
same ideas as in [121] are presented; however, by applying a further compression
step (leading to a compressive sensing framework) it is shown that the proposed
framework in [121] becomes real-time and considerably less demanding in terms
of computational cost. In [123], compressive sensing is combined with migration-
based techniques to simultaneously estimate the three source parameters. The re-
sulting migration-based problem is then analyzed in the frequency domain. No-
tably, handling multiple microseismic sources has not been explicitly considered in
[121–123]. We should further emphasize that handling a multi-source setup in the
frequency domain, as we develop here, calls for a structured approach which has
not been derived in [123].

The validity of the sparsity-aware approach presented in [121] and [122] relies
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heavily on whether a good estimation of the source time-function is available. More
specifically, the approach of [121, 122] only works if there exists one (or more)
source(s) with a source time-function exactly the same as the one used to construct
the dictionary. Practically speaking, this is a rather hard constraint because dif-
ferent sources have different natures and thus different source time-functions; this
limits the application domain of this approach. The same holds for [123] when it
comes to handling multiple sources. To overcome this limitation, in this chapter,
we propose a novel idea to eliminate this crucial need for the knowledge of the
source time-function by approaching the problem from the frequency domain. We
show that our proposed approach is capable of estimating the hypocenter of mul-
tiple microseismic sources with a high accuracy. The results are also promising
in the sense that they motivate a further study to extract the other parameters, i.e.,
exact moment tensor components and source origin-times.

This chapter is structured as follows. In Section 7.2, we explain the acquisition
setup and signal model under consideration. Section 7.3 briefly reviews the pro-
posed approach in [121, 122]. Next, our proposed frequency-domain approach
(blind to the source time-function) is explained. Section 7.4 illustrates several sim-
ulation results and finally this chapter is summarized in Section 7.5 by discussing a
few possible future research directions.

7.2 Acquisition Geometry and Signal Model

An area of interest (normally 3-D, in x, y and z), which is prone to microseismic
events (e.g., fractures) is discretized into N grid points. These grid points are the
potential candidates for the hypocenter of a microseismic event. The area of in-
terest lies somewhere underground in the vicinity of a well. Traditionally, the grid
structure is chosen to be a uniform one with a fixed grid spacing, even though a
non-uniform structure (depending on the properties of the area) can also be con-
sidered. The other components of our acquisition system are the geophones used
to measure the displacements in 3-D; we consider L of them in total. Geophones
can be arranged in the form of multiple linear (horizontal or vertical) arrays in the
traditional way or they can be more arbitrarily distributed, either on the surface or
buried underground.

The phenomena of interest, as explained earlier, are microseismic events, which
we model by a time-dependent moment tensor Mptq. Quite often it is assumed in
seismology that the time variation of the moment tensor can be separated from its
geometry (see [124] and [125]) which leads to Mptq “ Msptq with sptq defined as
the source time-function and for a general seismic source (three orthogonal linear
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dipoles) M is specified by a symmetric tensor of rank 2 given by [124]

M “

»

——
–

mxx mxy mxz

myx myy myz

mzx mzy mzz

fi

ffiffi
fl . (7.1)

Now, by considering the 6 diagonal and upper-diagonal elements of M, the n-th
component of the displacement at time t measured at a geophone located at x from
a source located at ζ can be computed by

unpx, tq “
ÿ

pq

mpqptq ˚ B
Bζ q

Gnppx, ζ, t, τq

“
ÿ

pq

mpq sptq ˚ B
Bζ q

Gnppx, ζ, t, τq, (7.2)

where B
Bζ q

Gnpp.q denotes the spatial derivative of the Green’s function character-

izing the medium between the n-th component of the geophone and the p-th com-
ponent of the source hypocenter with respect to the q-th component of the source
hypocenter. Notably, the n, p and q indices denote x, y or z. Further, τ denotes the
source origin-time, and ˚ stands for the time-domain convolution. We consider up
to K simultaneous microseismic sources to appear within each measurement time
interval. As a convention, from now on, we simply use the term source instead of
microseismic event/source.

7.3 Sparsity-Aware Parameter Estimation

The idea behind involving sparse reconstruction is the fact that in practice the num-
ber of simultaneous sources K is much smaller than the total number of grid points
N . In order to incorporate this spatial source sparsity, the received time-domain
displacement traces at the different geophones from all possible candidate source
hypocenters (grid points) are simulated (or measured) to construct a dictionary of
displacement traces. In a dictionary learning context, this is sometimes called the
“training phase”. Next, in the so-called “run-time phase”, the real-time received
displacements are compared with the content of the pre-constructed dictionary
to estimate the unknown parameters of interest; i.e., moment tensor components,
source hypocenter and source origin-time. To carry out this comparison, the em-
bedded sparsity is promoted by introducing the ℓ1-norm and by taking into account
the group structure of the variables involved. The resulting reconstruction problem
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will then be solved using the group least absolute shrinkage and selection opera-
tor (G-LASSO) [69] or alternatively with the block orthogonal matching pursuit
(BOMP) [126]. This method has already been studied in [121] and [122] for our
application of interest; however, their approach suffers from the following practical
limitation.

Motivation: In [121, 122], the dictionary is highly dependent on the source time-
function sptq, which means the source in the run-time phase should have the same
source time-function as the one which is considered to construct the dictionary
denoted as s0ptq. The situation gets even worse for the multi-source case where
skptq “ s0ptq @k (with skptq the source time-function of the k-th source) should
hold to avoid poor results. This is difficult to achieve in practice as the sources
might have a different nature and thus a different sptq. This motivated us to think
about a novel multi-source sparsity-aware framework, which does not rely on the
knowledge of sptq; or let us say it is blind to sptq. Interestingly, a solution exists
and can be developed by approaching the problem from the frequency domain as
explained in the following.

Let us start by looking at the frequency-domain representation of (7.2). To do so,
we sample the time-domain displacement traces with a sampling frequency of Fs

(Fs “ 1{Ts, with Ts the sampling interval) and take a discrete Fourier transform
(DFT) of length Nt to obtain

ũnpx, ωq “
ÿ

pq

mpq
B

Bζ q

G̃nppx, ζ, ωq s̃pωq ejωτ , (7.3)

where ω “ 2π Fs i{Nt with i “ 0, 1, ¨ ¨ ¨ , Nt ´ 1, and p̃.q emphasizes that we
deal with a frequency-domain representation. Note that the time convolution is
converted to a (sample by sample) product in the frequency domain. Now, we take
Nf frequencies ωf , with f “ 1, ¨ ¨ ¨ , Nf from the set of Nt frequencies. This
allows us to construct the matrix form for different f ’s given by

»

——
–

ũxpx, ωf q
ũypx, ωf q
ũzpx, ωf q

fi

ffiffi
fl

loooooomoooooon
ũpx,ωf q

“ s̃pωf q

»

——
–

B
Bζx

G̃xx
B

Bζy
G̃xx ¨ ¨ ¨ B

Bζz
G̃xz

B
Bζx

G̃yx
B

Bζy
G̃yx ¨ ¨ ¨ B

Bζz
G̃yz

B
Bζx

G̃zx
B

Bζy
G̃zx ¨ ¨ ¨ B

Bζz
G̃zz

fi

ffiffi
fl

looooooooooooooooooooooooooomooooooooooooooooooooooooooon
Ψ̃px, ζ, ωf q

»

—————
–

mxx

mxy

...

mzz

fi

ffiffiffiffiffi
fl
ejωf τ

looooooomooooooon
m̃pζ,ωf ,τq

,

(7.4)
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where the argument px, ζ, ωf q is omitted for the Green’s functions to simplify the
notation.

Looking at the formulation in (7.4), we see an important phenomenon in the fre-
quency domain where both the source origin-time as well as the source time-
function (represented at ωf ) are translated into two (complex) constant factors.
For the sake of consistency with the time-domain approach presented in [121] and
[122], we also keep s̃0pωf q in Ψ̃px, ζ, ωf q and thus in our dictionary. The con-
tribution of the origin-time, however, can easily be accommodated in the newly
defined sub-vector of interest m̃pζ, ωf , τq. Next, we expand (7.4) for L geophones
located at x1, ¨ ¨ ¨ ,xL as well as by considering K sources located at ζ1, ¨ ¨ ¨ , ζK
to have

ũpωf q “ rũ1pωf qT , ¨ ¨ ¨ ũLpωf qT sT

“
Kÿ

k“1

rΨ̃1pζk, ωf qT , Ψ̃2pζk, ωf qT , ¨ ¨ ¨ , Ψ̃Lpζk, ωf qT sTlooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon
Ψ̃pζk,ωf q

ˆm̃pζk, ωf , τkq,

(7.5)

where p.qT denotes the transposition operator on a vector or a matrix, Ψ̃lpζk, ωf q “
Ψ̃pxl, ζk, ωf q with xl the hypocenter of the l-th geophone, ũlpωf q “ ũpxl, ωf q
is a 3 ˆ 1 frequency-domain displacement vector observed at the l-th geophone;
accordingly ũpωf q is of size 3L ˆ 1. Again, similar to the time-domain approach,
the next step will be discretizing the space intoN grid points as the candidate points
for the hypocenter of the K sources which helps us to expand (7.5) by considering
all the grid points and construct a linear set of equations as

ũpωf q “ rΨ̃1pωf q, Ψ̃2pωf q, ¨ ¨ ¨ , Ψ̃N pωf qsloooooooooooooooooooomoooooooooooooooooooon
Ψ̃pωf q

m̃pωf q, (7.6)

where Ψ̃npωf q “ Ψ̃pηn, ωf q with ηn the location of the n-th grid point and

m̃pωf q “ rm̃1pωf qT , m̃2pωf qT , ¨ ¨ ¨ , m̃N pωf qT sT , (7.7)

is of size 6Nˆ1 where m̃npωf q “ 0 unless there is a source on ηn. Our parameters
of interest can then be obtained by solving (7.6) for m̃pωf q.

Notable Remarks:

i) The fact that we accommodate the source origin-time-related constants (ejωf τ )
in m̃pωf q describes that the dictionary is normally constructed with a zero-
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origin-time source and thus the effect of the origin-time will appear in m̃pωf q
in the form of a complex constant.

ii) By looking at (7.4) and (7.6) we observe that the dictionary can be con-
structed with a source with even unknown s0ptq (equivalently, s̃0pωq); what-
ever the source-time function in the real-time measurements is, its propor-
tional effect in the form of a constant s̃kpωf q{s̃0pωf q will appear in m̃pωf q.
This is the key point of the frequency-domain approach, which allows us to
design our (blind to sptq) approach.

iii) This framework provides the flexibility to handle different source origin-
times for different sources as well as different source time-functions. This
also has the advantage that making a huge super-dictionary as the one pro-
posed in [121] is not necessary anymore and the converted frequency-domain
data will be handled more efficiently, as will be explained in the following.

iv) The down side is that the source origin-time and the source time-function ef-
fects will appear as constant factors in m̃pωf q which makes it hard to extract
them.

A simple possibility to estimate our desired parameters is to confine ourselves to
one specific frequency and solve (7.6) using a G-LASSO type of estimator similar
to the case of the time-domain approach; however, this approach will be naive as we
do not really exploit all the information (encoded in different frequencies) available.
Therefore, the important question is how to incorporate all the frequencies (the
ωf ’s) to make a much better estimation?

Notably, different from classical G-LASSO and other similar estimators, here we
have different dictionaries Ψ̃pωf q for different frequencies, which means that our
different measurement vectors ũpωf q characterize different vectors of interest m̃pωf

q. A pictorial view of the estimation problem at hand is depicted in Fig. 7.1. The
key observation that should be taken into account to handle this problem is that even
though the m̃pωf q’s contain different values (due to s̃pωf q and ejωf τ ), they share
the same sparsity support, i.e., they are zero or non-zero at similar indices (groups).
These groups are shown in Fig. 7.1 using similar colors within the m̃pωf q’s and
across the corresponding subsections of the Ψ̃pωf q’s. In order to deal with this sit-
uation, we propose the following estimator (basically an extension of the estimator
proposed in [127] for wideband beamforming as well as the G-LASSO employed in
[121] and [122]) and we call it multi-dictionary G-LASSO (MDG-LASSO) given
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Figure 7.1: Illustration of linear sets of equations in different ωf ’s. The m̃pωf q’s
share a common sparsity support and also have the same group structure which helps
to propose a proper estimation approach.

by

Θ̂MDG-LASSO “ argmin
Θ

Nfÿ

f“1

}ũpωf q ´ Ψ̃pωf qrΘs:,f }22

`λ
Nÿ

n“1

}rΘs6pn´1q`1:6n , :}2, (7.8)
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Table 7.1: Velocity profile

Layers z margins (m) vp (m/s) vs (m/s) ρ

Layer 1 ´2920 5326 3286 2200

Layer 2 ´3125 4968 2985 2200

Layer 3 ´9000 4487 2768 2200

where Θ “ rm̃pω1q, ¨ ¨ ¨ , m̃pωNf
qs. The first term on the right hand side of (7.8)

is the least squares part, which minimizes the error for the different frequencies
and the second term enforces our specific group sparsity. It is worth pointing out
that an analysis of the algorithms to solve (7.8) is outside the scope of this chapter
and here we restrict ourselves to standard interior-point-based convex optimization
tools such as CVX [107] to solve the problem. Based on the discussions presented
in [106] for a related concept, incorporating all the frequencies within (7.8) will
result in a gain in terms of identifiability compared to simply considering a single
frequency, as is also corroborated by our simulation results in Section 7.4. To sum
up, we would like to highlight that the proposed MDG-LASSO estimator takes into
account three important features of the problem at hand, namely, the group-sparsity
in the estimated vectors, the common sparsity support among them, and the fact that
the model consists of different dictionaries for different measurements.

7.4 Evaluation Using Synthetic Data

In this section, we investigate the performance of the proposed algorithms in terms
of positioning root mean squared error (PRMSE) and probability of detection (Pd)
against signal to noise ratio (SNR), where the noise on the measured displacements
is considered to be a band-limited additive white Gaussian noise occurring within
the bandwidth of s̃pωq. We consider a three-layer elastic medium with different
velocities in each layer. The velocity profile model can be found in Table 7.1 where
primary-wave velocity, shear-wave velocity and density are respectively denoted by
vp, vs and ρ. The synthetic data is generated using a MATLAB software package
based on ray-tracing in order to compute the Green’s functions for a full moment
tensor source model in a multi-layer 3-D medium.

The acquisition setup is shown in Fig. 7.2. As can be seen, L “ 31 geophones
arranged in two arrays (vertical and horizontal) are employed to measure the dis-
placement traces. This can also be done using a single array of geophones. In-
vestigating the effect of different geophone geometries is omitted in this chapter
for the sake of limited space. The area of interest is uniformly discretized into
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Figure 7.2: Acquisition setup
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Figure 7.3: Two different sptq’s

N “ 144 grid points as is shown in Fig. 7.2 with a grid spacing of ∆ “ 20m
in three dimensions. The adopted moment tensor model is a 6-component vec-
tor (considering diagonal and upper-diagonal elements of M) with fixed compo-
nents (m “ r0.7, 1, 0.5, 0.9, 0.7, 0.8sT ) for all the sources. Note that this can be
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Figure 7.4: Received displacements

even different for all the sources and it will not affect our performance at all, as
long as none of these components is significantly larger/smaller than the others.
In order to prove that our approach is blind of sptq, we consider two different
sptq’s as shown in Fig. 7.3, and we use the first one to construct the dictionaries
(s0ptq) and the second one for the real-time measurements (without loss of gener-
ality skptq “ sptq ‰ s0ptq, @k). As is depicted in Fig. 7.3, these functions are
chosen to be the well-known Ricker wavelets with peak frequencies at 10Hz and
15Hz, respectively.

Another parameter which is clear from Fig. 7.3 is the measurement interval of 2s
corresponding to Nt “ 256 and thus Fs “ 256{2 “ 128Hz. This is obviously
larger than twice the maximum frequency of the sources (approx. 40Hz according
to Fig. 7.3) to satisfy the Nyquist criterion. Note that the source origin-times can
be integer or even non-integer multiples of Ts and their values do not affect the per-
formance. In our simulations, origin-times are chosen randomly within a range of
r0, 9sTs. Moreover, we consider only Nf “ 18 frequencies (2πr1, 3, 5, ¨ ¨ ¨ , 35sT )
which means we will have 18 dictionaries Ψ̃pωf q each of size 3Lp“ 93q ˆ 6Np“
864q. Notably, another design consideration which has carefully been taken into
account is that the length of the time-bin should be much larger than the rule of
thumb maximum possible delay of the received displacement traces. This is to
ensure that the latest displacement arrivals will be covered by measurements.
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We consider up to K “ 3 sources occurring simultaneously (during one measure-
ment interval). Most of the simulations, whenever they do not illustrate a single
snapshot, are averaged over P “ 50 independent Monte Carlo runs where in each
run the sources are deployed on different random locations (hypocenters). Increas-
ing P will result in smoother curves. For the sake of comparison, besides the
MDG-LASSO, we also consider a G-LASSO for which only an appropriate single
frequency (here f “ 15) is taken into account. Another possibility is to average
the results of this G-LASSO over all the frequencies, which is not illustrated here.
Averaging over different frequencies will not provide a much better result because
in many single frequencies the estimations are poor, especially, for the case of mul-
tiple microseismic sources.

In order to quantify the performance we consider two different metrics:

- First, the positioning root mean squared error (PRMSE) defined by

PRMSE “

gffe 1

PK

Pÿ

p“1

Kÿ

k“1

e2k,p, (7.9)

where ek,p represents the distance between the real hypocenter of the k-th
source and its estimated hypocenter at the p-th Monte Carlo trial.

- Second, the probability of detection (Pd) where a source is considered to be
detected if it is estimated to be within a sphere with radius

?
3 ˆ ∆ around

its real hypocenter with ∆ defined earlier.

Let us start with a single source located at p1525, 1585,´2900q corresponding to
our grid point with index 62. The displacements measured at the 31 geophones are
plotted in Fig. 7.4. The SNR is set to 30dB. The result of our proposed parameter
estimation algorithm is illustrated in Fig. 7.5 where as can be seen both G-LASSO
and MDG-LASSO activate the correct group of indices in m̃ (i.e., 61 ˆ 6 ` 1 “
367, ¨ ¨ ¨ , 61 ˆ 6 ` 6 “ 372). Note that for a better visualization, the amplitudes
of the estimated moment tensors contained in Θ̂MDG-LASSO are normalized, and
we plot m̃ “ řNf

f“1
m̃pωf q for MDG-LASSO. It is notable that, in contrast to G-

LASSO, the moment tensors estimated by MDG-LASSO are just scaled versions
of the real moment tensors. We would like to emphasize that according to litera-
ture [125] the normalized moment tensors contain important information about the
nature of the sources, and thus, this information will be extracted using our pro-
posed approach. Further, this is also a promising point as it motivates a further
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Figure 7.5: Estimation of m̃ for single source; selected indices and corresponding
amplitudes compared to their real values.
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Figure 7.6: Estimation of m̃ for multiple sources; selected indices and correspond-
ing amplitudes compared to their real values.

post-processing step to possibly extract the exact moment tensor values as well as
origin-times from the estimated amplitudes. This topic is left as future work.

Fig. 7.6 is similar to Fig. 7.5 but it presents the case of K “ 3 sources with dif-
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Figure 7.7: Proposed approach; localization and detection performances vs. SNR
for K “ 1 and K “ 3 on-grid and off-grid sources.

ferent origin-times. The other two sources are located at p1545, 1505,´2880q and
p1560, 1525,´2940q where the latter is off-grid (close to the grid point with in-
dex 118) and the former is on the grid point with index 3. As can be seen from
the activated indices, while MDG-LASSO can easily handle the three sources, the
(single-frequency) G-LASSO does not show an acceptable performance with a sta-
ble estimation. This is because only with 91 rows (measurements) in Ψ̃pω15q it is
impossible to accurately reconstruct a sparse vector of interest with 3 ˆ 6 “ 18

non-zero elements corresponding to the three sources. This issue is basically re-
lated to the concept of sparse reconstruction and the interested reader is referred to
[85]. The above result corroborates the idea that incorporating all the frequencies
at the same time with our proposed MDG-LASSO estimator significantly improves
the overall estimation performance. Note that for the third source (closest to the
grid point with index 118), the effect of being off-grid appears as a few other side-
groups of indices being activated with considerably smaller amplitudes compared
to the correct group, i.e., the group corresponding to the grid point with index 118.
This means that even in the case of off-grid sources, at least the closest grid points
are usually distinguishable.

Finally, Fig. 7.7 depicts the performance of the proposed approach against SNR for
K “ 1 and K “ 3 sources with P “ 50 for both on-grid and off-gird sources.
In the on-grid case, for a single source, both G-LASSO and MDG-LASSO (while
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they are blind to sptq) can attain an excellent performance in terms of both PRMSE
and Pd within a reasonably large span of SNRs r0, 24sdB. However, the effect of
the proposed modified framework to incorporate all the frequencies at the same
time shows its effect when the number of sources is increased. Interestingly, for
K “ 3, the (single-frequency) G-LASSO cannot attain an acceptable PRMSE and
Pd performance even for high SNRs. Quite the opposite, the MDG-LASSO attains
a perfect detection performance and zero hypocenter estimation error for SNRs
above 15dB. However, as can be seen, if we consider off-grid sources and only
stick to finding the closest grid points, the performance of MDG-LASSO will be
degraded in terms of both accuracy and detection performance.

7.5 Summary

In this chapter, we simply confine ourselves to finding the closest grid points to the
off-grid sources whereas there might be a possibility to derive the relationship be-
tween the hypocenter of an off-grid source and its corresponding received displace-
ments. In that case, techniques similar to the ones proposed in [103] can be em-
ployed to devise a two-step approach where in the first step the closest grid points to
the off-grid sources are found and in the next step their grid mismatch is recovered
to find the real hypocenters. The simpler the medium (single-layer homogenous in
the best case), the easier such relationships can be discovered. Moreover, currently
we only find the hypocenters of the sources and the normalized amplitudes of the
moment tensors while according to our results there is a possibility to further post-
process the results and estimate the exact moment tensor amplitudes as well as the
corresponding origin-times.
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8
SPARSITY-AWARE SENSOR SELECTION:

CENTRALIZED AND
DISTRIBUTED ALGORITHMS

Abstract

The selection of the minimum number of sensors within a network to satisfy a cer-
tain estimation performance metric is an interesting problem with a plethora of ap-
plications. We explore the sparsity embedded within the problem and propose a re-
laxed sparsity-aware sensor selection approach which is equivalent to the unrelaxed
problem under certain conditions. We also present a reasonably low-complexity
and elegant distributed version of the centralized problem with convergence guar-
antees such that each sensor can decide itself whether it should contribute to the
estimation or not. Our simulation results corroborate our claims and illustrate a
promising performance for the proposed centralized and distributed algorithms.

8.1 Introduction

We study the problem of selecting the minimum number of sensors among a net-
work of sensor nodes in order to estimate a vector of interest so that a given mean
squared error (MSE) is satisfied. This problem is of great interest in several prac-
tical application domains including robotics, target tracking, and energy efficient
network management, to name a few (see for instance [35] and references therein).
A straightforward method to solve such a problem is a combinatorial approach
considering all possible combinations of all possible sizes of candidate sensors to
satisfy the constraint, which is numerically intractable for a large number of sen-
sors and thus motivates a more intelligent and structured approach. The problem
becomes even more challenging when a distributed context is considered.

A related sensor selection problem has been studied in [35] where elegant convex
relaxations are designed for primal and dual problems. However, instead of opti-
mizing different performance metrics and fixing the number of sensors as in [35],
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we minimize the number of sensors given a performance constraint, which is gen-
erally more practical. Interestingly, this enables us to exploit the sparsity embedded
within the problem. From this angle, our look is closer to what is proposed in [38]
for selecting reliable sensors, also called “robust sensing”. However, we consider
a different constraint than the one in [38], and we do not need the sensors to take
measurements for solving the selection problem; we only need them to know their
regression coefficients. Also, in both [35] and [38], a distributed approach has not
been considered.

A decentralized implementation of [35] is proposed in [37]; however, the heuristic
assumption of two “leader” nodes violates the classical definition of a distributed
approach. Another relevant problem, but of a different nature, is considered in [39],
where a distributed algorithm is designed to identify the sensors containing relevant
information by a sparsity-aware decomposition of the measurement covariance ma-
trix. Finally, in [128], two distributed implementations of [35] based on a truncated
Newton algorithm are proposed. Compared to our work, first, [128] deals with a
slightly different problem. Second, it considers a log-barrier and truncated Hessian
approximate of the relaxed problem with no convergence (error) guarantees. Third,
private sensor information has to be broadcast in this approach whereas we avoid
that. Finally, our complexity is not a function of the number of sensors but of the
number of sensed dimensions, and hence, it is considerably lower.

8.2 Problem Definition

We consider m sensor nodes distributed over an area of interest in R
d, with d ď m,

which are supposed to estimate the unknown vector x P R
n. The sensor nodes are

equipped with (limited) computational and communication capabilities and each of
them measures

yi “ aTi x ` ηi, i “ 1, . . . ,m, (8.1)

where the ai’s P R
n span R

n (m " n) and ηi is an additive zero-mean white mea-
surement noise. Notably, considering the spatial distribution of the sensors, we
assume that the ai’s are different so that we can distinguish the sensors based on
their regressors. Here, we are interested in selecting a priori the minimum number
of sensors (namely, measurements) so that the mean squared error (MSE) of esti-
mating x is smaller than a desired value γ. Furthermore, we are interested in algo-
rithms that would enable the sensors themselves to decide their own active/inactive
status, without a centralized collection of the ai vectors, i.e., we are interested in
distributed algorithms.
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8.3 Centralized Optimization Problem

In a centralized setup, all ai’s are available in a central unit which permits us
to define the matrix A “ ra1, ¨ ¨ ¨ ,amsT . Now, we can construct y “ Ax `
η, where y “ ry1, ¨ ¨ ¨ , ymsT , and η “ rη1, ¨ ¨ ¨ , ηmsT . For the linear mea-
surement model (8.1), the MSE can be expressed as MSE “ E

“
}x ´ x̂}2

2

‰
“

trpAT C´1Aq´1, where trp.q stands for the trace operator and C is the covariance
matrix of the noise vector η [78]. Let the noise at the sensor nodes be uncorre-
lated, i.e., ErηiηTj s “ σ2i δpi ´ jq with δp.q denoting the Kronecker delta, and thus
C “ diagprσ2

1
, ¨ ¨ ¨ , σ2msq. Based on this, the MSE can be reformulated as

MSE “ tr

˜´ mÿ

i“1

ãiã
T
i

¯´1

¸

, (8.2)

where ãi “ ai{σi “ rãi,1, ¨ ¨ ¨ , ãi,nsT . The associated selection constraint on the
MSE can then be stated as

tr

˜´ mÿ

i“1

wi ãi ã
T
i

¯´1

¸

ď γ, (8.3)

where the variable wi P t0, 1u encodes whether the i-th sensor (measurement) is
to be used. In practice, only a few sensors should be activated to satisfy the MSE
constraint. Therefore, the problem can be cast as the following program

minimize
wPt0,1um,u

}w}0 (8.4a)

s.t.

« řm
i“1

wi ãi ã
T
i ej

eTj uj

ff

ľ 0, j “ 1, . . . , n, (8.4b)

||u||1 ď γ, uj ě 0, j “ 1, . . . , n, (8.4c)

where w “ rw1, . . . , wmsT is the selection vector, u “ ru1, . . . , unsT is a vector
of auxiliary variables, ej is the j-th column of the nˆn identity matrix In, and the
constraints (8.4b) and (8.4c) represented by Ωγ are a more suitable representation
of the original constraint (8.3), obtained using the Schur complement [129]. We
denote the solution to (8.4) as pw˚,u˚q. Since }w}0 in the cost function of (8.4)
and the finite-alphabet constraint on the wi’s are both non-convex, we consider
the following relaxed version of the problem called sparsity-aware sensor selection
(SparSenSe)

pŵ, ûq :“ argmin
wPr0,1sm,u

t}w}1, s.t. pw,uq P Ωγu. (8.5)
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8.4 Equivalence Theorem

In this section, we present an equivalence result, i.e., we prove that provided some
conditions, the number of selected sensors is the same for both the original prob-
lem (8.4) and the relaxed version (8.5). To this aim, the following simplifying
assumptions will be employed in this section.

Assumption 8.1: Only one element of ãi is non-zero, i.e., there exists a single j for

which ãi,j ‰ 0.

This assumption implies that the sensors can only sense one element (dimension)
of the vector of interest. Let Ij , @j be the set containing the indices of the sensors
which sense the j-th dimension, i.e., Ij “ ti P t1, 2, ¨ ¨ ¨mu | ãi,j ‰ 0u and Vj be
the set containing the corresponding values, i.e., Vj “ tãi,j | i P Iju.
Assumption 8.2: For each Vj there exists an i P Ij such that |ãi,j | ą |ãk,j | @k P
Ij , k ‰ i. We denote this ãi,j as v˚

j .

This assumption states that for each dimension j there exists a unique dominant

sensor. Based on this, the following proposition and its proof are in place.

Proposition 8.1

Under Assumption 8.1 and Assumption 8.2, there exists a lower bound γ˚ “
maxj 1{|v˚

j | řn
j“1

1{|v˚
j |, such that if γ ě γ˚, then }ŵ}0 “ }w˚}0 “ n. In

addition, in this case, the solution of the relaxed version (8.5) is unique and

corresponds to activating the sensors with v˚
j in the regressors.

Proof. The solution of the original non-convex problem has a cardinality of at least
n, i.e., }w˚}0 ě n. This is because we need to activate at least n sensors to attain a
finite MSE in (8.3). Furthermore, in general, }ŵ}0 ě }w˚}0. In the following, we
will show that under Assumption 8.1 and Assumption 8.2, }ŵ}0 “ n, and therefore
our claim holds. The core idea is that under the aforementioned assumptions we
can analytically compute pŵ, ûq as explained in the following. The linear matrix
inequality constraint (8.4b) can be written as

eTj

ˆ mÿ

i“1

wiãiã
T
i

˙´1

ej ď uj , j “ 1, . . . , n. (8.6)

Under Assumption 8.1, we can write

mÿ

i“1

wiãiã
T
i “ diag

ˆ ÿ

iPI1

wia
2

i,1, . . . ,
ÿ

iPIn

wia
2

i,n

˙
,
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which is not singular (and therefore MSE is finite) when we select at least one
sensor per dimension. This means that (8.6) yields

ÿ

iPIj

wiã
2

i,j ě u´1

j , j “ 1, . . . , n. (8.7)

Considering (8.7) and the fact that we need to minimize }w}1, we have to maximize
the uj’s w.r.t. the constraints }u}1 ď γ and uj ě 0 @j, which leads to }û}1 “ γ.
Given any u, we can compute wipuq analytically since the relaxed problem can
now be written as the following linear program (LP)

minimize
wPr0,1sm

||w||1 (8.8a)

s.t.
ÿ

iPIj

wiã
2

i,j ě u´1

j , j “ 1, . . . , n. (8.8b)

The solution of this LP lies on the vertices of the polytope defining the constraints
(following Assumption 8.2) and for uj ě 1{v˚2

j it is given by

wipuq “
#

pujv˚2
j q´1 if ãi,j “ v˚

j ,

0 otherwise.
(8.9)

This helps us to rewrite (8.5) as

û “ argmin
u, ujě1{v˚2

j

" nÿ

j“1

pujv˚2
j q´1, s.t. }u}1 “ γ

*
, (8.10)

which is convex for uj ě 0. The optimal û has to satisfy the KKT conditions given
by

û´2

j “ λv˚2
j , j “ 1, . . . , n, (8.11a)

}û}1 “ γ, (8.11b)

where λ is the Lagrange multiplier associated with }u}1 “ γ. From (8.11a), λ ě 0;
solving for ûj and substituting it into (8.11b), after some simplifications, leads to

ûj “ γ

|v˚
j | řn

j“1
1{|v˚

j | , j “ 1, . . . , n, (8.12)

which due to the convexity of (8.10) is the unique optimizer of (8.10). Substituting
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(8.12) back into (8.9) yields

ŵi “

$
&

%

řn
j“1

1{|v˚
j |

γ|v˚
j |

if ãi,j “ v˚
j ,

0 otherwise,
(8.13)

for ûj ě 1{v˚2
j , i.e., γ ě maxj 1{|v˚

j | řn
j“1

1{|v˚
j | “ γ˚. Thus, for γ ě γ˚, ŵ is

unique and has cardinality n. �

8.5 Distributed algorithm

Triggered by the localized nature of many phenomena of interest in practical appli-
cations, in this section, we develop a distributed version of the centralized approach
proposed earlier. Let us start with some notations. We call Ni the neighborhood
set of the i-th sensor including i itself, with cardinality |Ni| “ Ni (either given or
to be estimated). We also define the following convex sets:

Wi “ twi | 0 ď wi ď 1u, (8.14)

U “ tu | uj ě 0,

nÿ

j“1

uj ď γu, (8.15)

and form the Lagrangian of the problem (8.5) given by

L “
mÿ

i“1

wi ´
nÿ

j“1

tr

˜ « řm
i“1

wiãiã
T
i ej

eTj uj

ff

Gj

¸

“
mÿ

i“1

wi ´
nÿ

j“1

mÿ

i“1

tr

˜ «
wiãiã

T
i ej{m

eTj {m uj{m

ff

Gj

¸

“
mÿ

i“1

˜

wi ´
nÿ

j“1

tr

˜ «
wiãiã

T
i ej{m

eTj {m uj{m

ff

Gj

¸¸

“
mÿ

i“1

Lipwi,u,Gq, (8.16)

where Gj ľ 0, @j are appropriately sized dual variables, and G “ rG1, . . . ,Gns.
The dual function defined on L can be given by

qpGq “ min
wiPWi,uPU

mÿ

i“1

Lipwi,u,Gq (8.17)

“
mÿ

i“1

ˆ
min

wiPWi,uPU
Lipwi,u,Gq

˙
“

mÿ

i“1

qipGq.
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Notably, since both Wi and U are convex and compact sets, given a certain value of
G, the functions qipGq and their subgradient w.r.t. G, called Q and defined later
on, can be computed locally (for example using SeDuMi to solve the resulting LPs)
at each sensor [130].

Whenever γ is large enough so that we expect sparse solutions in terms of ŵ, Slater
condition holds for (8.4). In fact, in this case, we can always find a pair pŵ, ûq that
satisfies (8.4b) and (8.4c) strictly. Therefore, the original ℓ1-regularization (8.5)
leads to the differentiable dual optimization problem

maximize
G1ľ0,...,Gnľ0

mÿ

i“1

qipGq, (8.18)

with zero duality gap. This convex optimization program can be solved iteratively
in a distributed fashion using a variety of algorithms. For instance, we can use
gradient-based methods, such as the dual averaging scheme of [131] with a vari-
able stepsize, or the simpler dual subgradient of [130] with a fixed stepsize. The
latter method has the advantage of providing a recovery mechanism for the primal
solution (i.e., we recover ŵ as a by-product of the optimal G, which is in fact our
goal). Furthermore, the subgradient method of [130] has the benefit to employ a
fixed stepsize giving explicit trade-offs in terms of accuracy and feasibility of the
solution and the number of iterations. In particular, given the number of iterations
t, and the stepsize α, we can prove that (see [130, Proposition 1])

tr
´ mÿ

i“1

ŵt
i ãi ã

T
i

¯´1

ď γ ` c2

tα
, (8.19)

where ŵt
i is the recovered approximate primal solution for sensor i at iteration t,

and c2 is a positive constant that depends on the problem at hand. This equation tells
us a priori how many iterations we need to run before we reach a given infeasibility
level; or provides us with a bound on how much we should tighten the constraint
on γ to guarantee feasibility w.r.t. the MSE constraint for finite t.

In order to implement the dual subgradient of [130], each node requires a copy of
Q “ řm

i“1
∇GiqipGiq. This can be circumvented by using the method of [132]

where the local sensor nodes have different local copies of Q, say Qi, and they run
an inexact consensus procedure for ϕ times (where ϕ P N

`). If ϕ Ñ 8, we recover
the procedure of [130], while if ϕ is limited we introduce an additional error in the
distributed optimization procedure. Our proposed distributed sparsity-aware sensor
selection (DiSparSenSe) algorithm can be summarized in Algorithm 8.1.



168 8. Sparsity-Aware Sensor Selection

We would like to highlight that DiSparSenSe will converge to the solution of SparS-
enSe with an error floor dependent on α and ϕ. This can be proven using an ǫ-
subgradient argument as discussed in [130] and [132].

8.6 Numerical Results

In this section, we investigate the performance of the proposed algorithms to see if
SparSenSe actually selects a few sensors to satisfy the MSE constraint as well as to
illustrate that DiSparSenSe selects the same sensors as SparSenSe. To this aim, we
consider m “ 50 sensors to estimate a parameter of interest x of dimension n “ 2.

Algorithm 8.1 DiSparSenSe

Initialization: We call the i-th sensor version of G at iteration t, Gi,t. Let an initial value
for Gi,t be given at each sensor node (cold start Gi,0

j “ I). Initialize the ŵt
i’s with ŵ0

i “ 0.

Input: Gi,t, ŵt
i , @i, j.

aaaa

1- Dual optimization (LP): Compute, in parallel at each sensor i, the value of
qipGi,tq, its derivative Qi,t “ ∇Gi,tqipGi,tq, and the related optimal primal variable
w̄t

i . The dimension of Qi,t is the same as that of Gi,t. This step requires the solution
of an LP problem whose computational complexity is Opn3q.

2- Primal recovery: Following the primal recovery method of [130], compute

ŵt`1

i “ t ŵt
i{pt` 1q ` w̄t

i{pt` 1q.
3- Consensus:

For τ “ 1 to ϕ do

aaaa

˛ Send Qi,t to the neighboring sensor nodes. The communication cost involved
is of OpNin

3q;
˛ Perform, in parallel, one consensus step as

Qi,t Ð
ÿ

lPNi

Ql,t{Ni.

End

4- Dual recovery: Update each sensor node’s dual variable and store it in local
variables Gi as

Gi,t`1 “ Pľ0

“
Gi,t `mαQi,t

‰
,

where Pľ0 r¨s is the projection operator onto the cone of positive semidefinite
matrices. This step requires n singular value decompositions (SVDs), each of which
has a computational complexity Opn3q.

Output: Gi,t`1, ŵt`1

i , @i, j.
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Figure 8.1: Centralized vs. distributed; selected sensors.

The measurement (regression) matrix A P R
50ˆ2 is drawn from a zero-mean unit-

variance Gaussian distribution N p0, 1q. The noise experienced at different sensors
has the same σ “ 1{

?
SNR. For DiSparSenSe we assume that the sensors are

connected based on a random connectivity graph G with average node degree of
9. Further, we set the number of consensus steps to ϕ “ 5 or 8, the step-size to
α “ 0.01 and the SNR to 10dB. Notably, for SparSenSe, we consider a sensor as
active if wi ą 0, whereas for DiSparSenSe, due to the fixed step-size error floor,
we consider a sensor as active if wi ą α.

In the first simulation, depicted in Fig. 8.1, we plot ŵ estimated by SparSenSe and
DiSparSenSe for γ “ 1 and ϕ “ 5. As can be seen, only 3 sensors (out of 50)
are activated by SparSenSe to satisfy our MSE constraint which corroborates the
fact that ŵ is sparse. Note that for t “ 100 many different sensors are activated
by DiSparSenSe. However, as expected, by increasing the number of iterations
(from t “ 100 to t “ 400), the same sensors as for SparSenSe are activated by
DiSparSenSe and the magnitude of the related ŵi’s gets closer to the values esti-
mated by SparSenSe. This illustrates the fact that our distributed implementation
(as expected) converges to the centralized algorithm.

In order to be able to quantitatively assess the performance, we also define C as
the set of indices of the selected sensors by SparSenSe and D as the corresponding
set for DiSparSenSe. This helps us to define an equivalence metric between the
distributed and centralized algorithms as ξ “ 1 ´ |C X D|{maxt|C|, |D|u (i.e., if
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Figure 8.2: Equivalence metric ξ vs. t.

ξ “ 0 then D ” C). Again, γ “ 1, and we run 50 independent Monte Carlo trials.
The result is shown in Fig. 8.2, where we clearly observe from the average of the
Monte Carlo trials (the solid line) that with increasing t an equivalence is acquired
as ξ goes to zero. Finally, the convergence is faster in the case of ϕ “ 8 compared
to ϕ “ 5.

8.7 Discussion

We would like to conclude this letter by emphasizing the following points. First,
note that based on (8.3) even after rounding the wi’s to 1 our MSE metric is cer-
tainly satisfied. Second, in our distributed algorithm, each sensor itself decides
about its status of being active or inactive. More importantly, the “private” in-
formation contained in wi is not broadcast, but instead an “encoded” version Qi,t

is communicated to reach convergence. Furthermore, based upon our earlier ex-
planations, the total computational complexity of DiSparSenSe is Opn4q per node
per iteration which is considerably lower compared to the computational complex-
ity of SparSenSe Opm3q (m " n). The communication cost of DiSparSenSe is
OpϕNin

3q per node per iteration which is reasonably low as it is independent of
m. Quite a few interesting topics such as a more elaborate equivalence proof and
developing centralized and distributed algorithms for the case of correlated noise
are left for future work.
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DISTRIBUTED SPARSITY-AWARE

SENSOR SELECTION

Abstract

The selection of the minimum number of sensors within a network to satisfy a
certain estimation performance metric is an interesting problem with a plethora of
applications. The problem becomes even more interesting in a distributed config-
uration when each sensor has to decide itself whether it should contribute to the
estimation or not. In this chapter, we explore the sparsity embedded within the
problem and propose a sparsity-aware sensor selection paradigm for both uncorre-
lated and correlated noise experienced at different sensors. We also present reason-
ably low-complexity and elegant distributed versions of the centralized problems
with convergence guarantees. Moreover, we theoretically prove the convergence
of our proposed distributed algorithms as well as analytically quantify their com-
plexity compared to the centralized algorithms. Our simulation results corroborate
our claims and illustrate a promising performance for the proposed centralized and
distributed algorithms.

9.1 Introduction

We consider a typical sensor network estimation problem, where the sensors are
supposed to estimate a vector of interest in a linear measurement model. For such a
network, we study the problem of selecting the minimum number of sensors within
the network, so that a given mean squared error (MSE) estimation performance is
satisfied. This generic problem is of great interest in several practical application
domains including radar and target tracking [133], event detection [36], and energy-
efficient network management [134], to name a few. A straightforward solution to
this problem is a combinatorial approach considering all possible combinations of
all possible sizes of candidate sensors to satisfy the constraint, which is numeri-
cally intractable for a large number of sensors and thus motivates a more intelligent

171
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and structured approach. The problem becomes even more challenging when a dis-
tributed context is considered, where each sensor should itself decide about its state
of being selected (active) or not (inactive).

A related sensor selection problem has been studied in [35] where elegant con-
vex relaxations are designed for primal and dual problems. Also, in [36] the same
problem with a different optimality (selection) constraint is considered for event de-
tection in sensor networks. However, instead of optimizing different performance
metrics and fixing the number of sensors as in [36] and [35], we minimize the num-
ber of sensors given a performance constraint, which is generally more practical
from a design perspective. Interestingly, this enables us to exploit the sparsity em-
bedded within the problem and propose sparsity-aware solutions. From this angle,
our approach is closer to what is proposed in [38] for selecting reliable sensors,
also called “robust sensing”. However, we consider a different constraint from the
one in [38], and we do not need the sensors to be activated and take measurements
for solving the selection problem; we only need them to know their regression co-
efficients. Worthy of being mentioned, is the work of [133], wherein both ideas
(minimizing the number of sensors and minimizing the performance constraint)
are considered for a multiple-radar localization architecture. The problem is for-
mulated as a knapsack problem, but the sparsity is not taken into account. Also, in
all the aforementioned studies, a distributed approach has not been considered.

The problem of distributed sensor selection is of crucial importance because in
many practical network configurations, it is impossible to establish a central pro-
cessing unit to gather all the information and make centralized decisions. Even if
possible, this centralized process may drain significantly on the communication and
energy resources [71], [135]. The alternative approach is to make decisions using
in-network distributed processing [71]. A decentralized implementation of [35] is
proposed in [37]; however, the heuristic assumption of two “leader” nodes violates
the classical definition of a distributed approach. In [128], two distributed imple-
mentations of [35] based on a truncated Newton algorithm are proposed. In [136],
we have explored the sparsity embedded within the problem and have proposed a
relaxed sparsity-aware sensor selection approach. We have also presented a reason-
ably low-complexity distributed implementation of the centralized algorithm such
that each sensor can decide itself whether it should contribute to the estimation or
not. Compared to [136], the work of [128] deals with a slightly different problem
and also requires the private sensor information to be broadcast whereas the pro-
posed approach in [136] avoids that. Moreover, the distributed approach of [136]
is considerably more efficient in terms of complexity compared to [128]. Finally,
another relevant problem, but of a different nature, is considered in [39], where a
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distributed algorithm is designed to identify the sensors containing relevant infor-
mation by a sparsity-aware decomposition of the measurement covariance matrix.

In [136], we have only considered the case where the noise experienced by the sen-
sors is uncorrelated. This might be a justifiable assumption in some cases, but in
general, the noise experienced by the sensors can be correlated. Particularly, as it
is pointed out in [137] and [138], since the measurement noises of different sensors
may depend on a common “estimatee” (as is the case in our problem formulation),
the sensors can observe correlated noise. Another example occurs when the estima-
tee is observed by sensors in a common noisy environment, such as noise generated
by a jammer. In such cases, the measurement noises of the sensors are often corre-
lated. This motivates us to extend our previously proposed algorithms to be able to
operate in a more practical (and more general) framework of correlated noise.

A particular case where we can handle correlated noise is when we consider clusters
of sensors with correlated noise and assume that the inter-cluster noise correlation
is negligible, as we have proposed in [139]. This intuitive approach necessitates
considering some sensors as “cluster heads” with higher processing power. In prac-
tice, such clusters (with zero inter-cluster correlations) can not always be defined.
Furthermore, cluster heads impose extra constraints and violate the homogeneity
of the sensor network. Thus, we would like to develop a generalized approach by
dropping the cluster assumption. In this chapter, we extend our basic idea in [136]
by presenting the following main contributions.

i) First, we modify the proposed distributed approach for uncorrelated noise in
[136] by introducing a novel consensus weighting and conducting a double-
consensus, which results in a smother convergence and robustness against
the choice of regressors.

ii) Second, we formulate the centralized problem for the case of correlated
noise, as well as propose an elegant low-complexity distributed implementa-
tion of the problem, where we have no clusters and cluster heads.

iii) Further, we analyze and quantify the convergence behavior of all of our pro-
posed distributed algorithms and prove that we have convergence guarantees
to the centralized algorithms.

iv) Finally, we investigate the computational and communication complexities
involved in the proposed centralized and distributed algorithms, and promote
that it is wise to employ the proposed distributed approaches.
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Figure 9.1: Schematic view of 2-D sensor selection

The rest of this chapter is organized as follows. In Section 9.2, we define the
problem under consideration. Section 9.3 describes our proposed centralized and
distributed algorithms for the case of uncorrelated noise. Section 9.4 is devoted to
our proposed algorithms in order to handle correlated noise. In Section 9.5, the
computational and communication costs involved in the proposed algorithms are
investigated and compared. Numerical results are illustrated in Section 9.6, and
this chapter is concluded in Section 9.7.

9.2 Problem Definition

We consider a network estimation problem where m sensor nodes distributed over
an area of interest in R

d (d ď m) are supposed to estimate an unknown vec-
tor x P R

n. The elements of x can for instance represent the contribution of a
static physical phenomenon in different dimensions within the area of interest. A
schematic view of such a network deployed in order to estimate a static wave field
in a 2-D area is shown in Fig. 9.1. The sensor nodes are equipped with (lim-
ited) computational and communication capabilities and each of them measures
yi “ aTi x ` ηi, i “ 1, . . . ,m, where the regressors ai’s P R

n are assumed known
(or measured) and they should span R

n (m " n). The ηi’s are the additive noise
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experienced by different sensors, for which we need to know (or estimate) their
second-order statistics. Note that, given the spatial distribution of the sensors, it
practically makes sense that the ai’s are different so that we can distinguish the
sensors based on their regressors. Here, we are interested in selecting a priori

(without measuring yi’s) the minimum number of sensors so that the mean squared
error (MSE) of estimating x is smaller than a desired value γ. Furthermore, we are
interested in algorithms that would enable the sensors themselves to decide their
own active/inactive status, without a centralized collection of the ai vectors, i.e.,
we are interested in distributed algorithms. The next two sections of this chap-
ter, which explain our proposed algorithms, are respectively derived based on the
assumptions that the noise experience by the sensors is uncorrelated or correlated.

9.3 Sensor Selection for Uncorrelated Noise

In this section, we develop a sparsity-aware sensor selection paradigm, by consid-
ering uncorrelated noise. This is normally the case when the sensors are placed far
apart. We derive centralized and distributed algorithms and investigate the conver-
gence properties of the distributed algorithm.

9.3.1 Centralized Optimization Problem

In a centralized setup, all ai’s are transmitted to a central processing unit which
allows us to define the matrix A “ ra1, ¨ ¨ ¨ ,amsT . Now, we can construct

y “ Ax ` η, (9.1)

where y “ ry1, ¨ ¨ ¨ , ymsT , and η “ rη1, ¨ ¨ ¨ , ηmsT . We consider η „ N p0, Cq,
where the covariance matrix of the measurement noise C is by definition a sym-
metric and positive semidefinite (PSD) matrix [78]. For the centralized linear mea-
surement model (9.1) and the maximum likelihood (ML) estimator, the MSE can
be expressed as

MSE “ E
“
}x ´ x̂}22

‰
“ tr

`
pAT C´1Aq´1

˘
, (9.2)

where x̂ is the ML estimate and trp.q stands for the trace operator. Given uncorre-
lated noise, we have Erηi ηTj s “ σ2i δpi´ jq with δp.q denoting the Kronecker delta,
and thus C “ diagprσ2

1
, ¨ ¨ ¨ , σ2msq. Note that diagpxq returns a diagonal matrix

with elements of x on its diagonal. Based on this assumption, the MSE can be
reformulated as

MSE “ tr

˜

p
mÿ

i“1

ãiã
T
i q´1

¸

, (9.3)
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where ãi “ ai{σi “ rãi,1, ¨ ¨ ¨ , ãi,nsT . The associated selection constraint on the
MSE can then be stated as

tr

˜

p
mÿ

i“1

wi ãi ã
T
i q´1

¸

ď γ, (9.4)

where the variable wi P t0, 1u encodes whether the i-th sensor has to be activated.
In practice, only a few sensors should be activated to satisfy the MSE constraint,
which triggers the idea of exploiting the sparsity embedded within the problem.
Therefore, we cast the problem as the following program

minimize
wPt0,1um,u

}w}0 (9.5a)

s.t.

« řm
i“1

wi ãi ã
T
i ej

eTj uj

ff

ľ 0, @j, (9.5b)

}u}1 ď γ, uj ě 0, j “ 1, . . . , n, (9.5c)

where w “ rw1, . . . , wmsT is the selection vector, u “ ru1, . . . , unsT is a vector
of auxiliary variables, ej is the j-th column of the nˆn identity matrix In, and the
constraints (9.5b) and (9.5c) are a linear matrix inequality (LMI) representation of
the original constraint (9.4), obtained by using the Schur complement [129]. We
denote the global optimizers of (9.5) as pw˚,u˚q. Since both the cost }w}0 in
(9.5) and the finite-alphabet constraint on the wi’s are non-convex, we consider the
following relaxed version of the problem labeled as sparsity-aware sensor selection
(SparSenSe)

minimize
wPr0,1sm,u

}w}1 (9.6a)

s.t.

« řm
i“1

wi ãi ã
T
i ej

eTj uj

ff

ľ 0, @j, (9.6b)

}u}1 ď γ, uj ě 0, j “ 1, . . . , n, (9.6c)

and we denote its optimizers as pŵ, ûq. In [136], we present a detailed equivalence
result, i.e., we prove that provided some conditions, the number of selected sensors
is the same for both the original (9.5) and the relaxed problem (9.6). Note that these
conditions in [136] only help to obtain closed-form expressions in the equivalence
proof, and for all of our simulations they do not necessarily hold.
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9.3.2 Distributed Algorithm

In this subsection, we develop a distributed version of SparSenSe. Let us start with
some notations. We call Ni the neighborhood set of the i-th sensor, with cardinality
|Ni| “ Ni (either given or to be estimated). Similarly, we define sNi “ Ni Y i with
cardinality |N̄i| “ N̄i “ Ni ` 1. We also define the following convex sets to
simplify our notations

Wi “ twi | 0 ď wi ď 1u, (9.7)

U “ tu | uj ě 0, }u}1 ď γu, (9.8)

and form the Lagrangian of (9.6a)-(9.6b) given by

Lpw,u,Gq “
mÿ

i“1

wi ´
nÿ

j“1

tr

˜ « řm
i“1

wiãiã
T
i ej

eTj uj

ff

Gj

¸

“
mÿ

i“1

wi ´
nÿ

j“1

mÿ

i“1

tr

˜ «
wiãiã

T
i ej{m

eTj {m uj{m

ff

Gj

¸

“
mÿ

i“1

˜

wi ´
nÿ

j“1

tr

˜ «
wiãiã

T
i ej{m

eTj {m uj{m

ff

Gj

¸¸

“
mÿ

i“1

Lipwi,u,Gq, (9.9)

where Gj ľ 0, @j, are appropriately sized dual variables, and G “ rG1, . . . ,Gns.
The dual function of L can be given by

qpGq “ min
wiPWi,uPU

mÿ

i“1

Lipwi,u,Gq

“
mÿ

i“1

ˆ
min

wiPWi,uPU
Lipwi,u,Gq

˙
“

mÿ

i“1

qipGq. (9.10)

Note that in (9.9) and (9.10), we try to decompose the global problem into local
problems, and to this aim, we reformulate the Lagrangian and corresponding dual
function as the summation of local Lagrangians Lipwi,u,Gq and dual functions
qipGq. Given a certain value of G, the functions qipGq and their subgradient w.r.t.
G, called Q and defined later on, can be computed locally (for example, using
CVX [107] to solve the resulting linear programs (LPs)) at each sensor [130]. The
mathematical steps to model the local dual optimization problems as equivalent LP
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ones are omitted here for the sake of space limitation.

Whenever γ is large enough so that we expect sparse solutions in terms of ŵ, Slater
condition holds for (9.6), which can be formulated as the following proposition.

Proposition 9.1

Slater condition holds for (9.6), for sufficiently large γ.

Proof. For sufficiently large γ, we can always find a pair pw, uq that strictly
satisfies (9.6b) - (9.6c). �

Therefore, the original ℓ1-regularization (9.6) leads to the dual optimization prob-
lem

maximize
G1ľ0,...,Gnľ0

mÿ

i“1

qipGq, (9.11)

with zero duality gap. This convex optimization program can be solved iteratively
in a distributed fashion using a few possible algorithms. For instance, we can use
proximal-based methods, such as the dual averaging scheme of [131] with a vari-
able step-size, or the simpler dual subgradient of [130] with a fixed step-size. The
latter method has the advantage of providing a recovery mechanism for the primal
solution, i.e., we recover ŵ as a by-product of the optimal G, which is in fact our
goal. Furthermore, the subgradient method of [130] has the benefit of employing
a fixed step-size which yields a simpler implementation. That is why we opt to
employ the dual subgradient method of [130]. In order to implement the dual sub-
gradient of [130], each sensor requires a copy of the subgradient of qpGq w.r.t.
Gj , @j, i.e., each sensor requires a copy of Q “ rQ1, . . . ,Qns. Given that Wi and
U are compact and convex, we can define such a subgradient as

Qj “ ∇Gj
qipGjq “ ´

« řm
i“1

w̄iãiã
T
i ej

eTj ūj

ff

. (9.12)

where the w̄i’s and the ūj’s are optimizers of

qpGq “ min
wiPWi,uPU

mÿ

i“1

Lipwi,u,Gq. (9.13)

Note that the dimension of Q is the same as that of G. The need for this global

parameter can be circumvented by using the method of [132] where the sensors
have different local copies of both G and Q, say Gi and Qi, and they run an
inexact consensus procedure for ϕ times (ϕ P N`). In particular, to solve (9.11),
we will consider the following inexact subgradient update. We call the i-th sensor
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Algorithm 9.1 DiSparSenSe

Initialization: G
i,0
j “ In`1, w0

i “ 0, @i, j.
Input: G

i,t
j , ŵt

i , @i, j.

aaaa

1- Dual optimization (LP): Compute, in parallel at each sensor i, the value of
qipGi,tq, its derivative Qi,t using (9.12), and the related optimal primal variables w̄t

i .

2- Primal recovery: Update method of [130]:

ŵt`1

i “ t ŵt
i{pt` 1q ` w̄t

i{pt` 1q.

3- Consensus:

For τ “ 1 to ϕ

aaaa

˛ Send Gi,t and Qi,t to the neighboring sensor nodes;
˛ Perform, in parallel, one consensus step as

V
i,τ,t
j “

mÿ

p“1

rZsipVp,τ´1,t
j ,

which is initialized as in (9.14).

End

4- Dual recovery: Update each sensor’s dual variable as

G
i,t`1

j “ Pľ0

”
V

i,ϕ,t
j

ı
,@j.

Output: G
i,t`1

j , ŵt`1

i , @i, j.

version of G at iteration t, Gi,t. We start with a given initial condition G
i,0
j for

each sensor, and then @ t ě 0 we have

V
i,τ“0,t
j “ G

i,t
j ` αmQ

i,t
j , for j “ 1, ¨ ¨ ¨ , n, (9.14)

where α is the step-size. Next, we run ϕ times a consensus procedure as

V
i,τ,t
j “

mÿ

p“1

rZsipVp,τ´1,t
j , (9.15)

and finally a projection over the cone of PSD matrices as

G
i,t`1

j “ Pľ0

”
V

i,ϕ,t
j

ı
, for j “ 1, ¨ ¨ ¨ , n. (9.16)

In (9.15), Z P R
mˆm indicates a proper sensor-wise consensus matrix whose
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weights have been defined using a Metropolis weighting, i.e.,

rZsip “

$
’’&

’’%

1{pmaxtN̄i, N̄puq if p P sNi

0 if p R sNi, p ‰ i

1 ´ řm
l“1

rZsil if i “ p.

(9.17)

If we execute (9.15) for ϕ Ñ 8, we recover the procedure of [130], whereas if ϕ is
limited we introduce an additional error in the distributed optimization procedure.
Our proposed distributed SparSenSe (called DiSparSenSe) algorithm is summa-
rized in Algorithm 9.1, where we denote the primal optimizer of DiSparSenSe at
iteration t as ŵt.

Remark 9.1

It is worth highlighting that in this chapter we have modified our previously

proposed distributed algorithm in [136] in the consensus averaging step from

two aspects. First, here we apply a double-consensus on both G and Q instead

of only a consensus on Q in [136]. Second, instead of a simple consensus

averaging in [136], here we propose a symmetric consensus matrix Z. We

illustrate in Subsection 9.6.1 that these refinements lead to a smoother and

faster convergence of DiSparSenSe.

9.3.3 Convergence Properties of DiSparSenSe

We would like to highlight that DiSparSenSe will converge to the solution of SparS-
enSe with an error floor dependent on α and ϕ. This can be proven extending the
ǫ-subgradient argument discussed in [130] and [132], as is briefly summarized in
this subsection and is detailed in Appendix 9.A. We investigate both primal and
dual convergence problems in Appendix 9.A. For the latter, we prove that there
exists a finite ϕ̄ ą 0 such that if ϕ ě ϕ̄ the sequence of dual functions tqpGi,tqu
generated by DiSparSenSe converges to its optimal value within a bounded error
floor. Based on this, we prove that the convergence of the running average primal
sequence tŵtu (as defined in step 2 of the algorithm) can be formulated in terms
of a constraint violation, and an upper and lower bound on the primal function.
The results in Appendix 9.A, (9.34)-(9.35), show that the running average primal
function is upper bounded as

}ŵt}1 ď }ŵ}1 ` nG2

2tα{m ` αm p?
nQ` τq2
2

` τm
?
nG`mψ2pα,Q, ϕq.
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and it is lower bounded as

}ŵt}1 ě }ŵ}1 ´ 9nG2

2tα{m ´ αm p?
nQ` τq2
2

´ τm
?
nG´mψ2pα,Q, ϕq,

where Q is an upper bound on the norm of the dual subgradient Qi,t
j , ψ2 is a non-

negative functions monotonically increasing with α and decreasing with ϕ, and τ is
a non-negative scalar depending on̟. To sum up, these lower and upper bounds on
the primal function indicate a convergence rate of Op1{tq for the running average
primal sequence to a bounded region around the optimal primal cost }ŵ}1 (the
solution to SparSenSe). The width of this region depends on α and ϕ.

9.4 Sensor Selection for Correlated Noise

In this section, we develop a sparsity-aware sensor selection paradigm, by con-
sidering a correlated noise. This normally happens for neighboring sensors in a
dense network. We derive centralized and distributed algorithms and investigate
the convergence properties of the distributed algorithm.

9.4.1 Centralized Algorithm

Similar to the uncorrelated case in Subsection 9.3.1, we can construct (9.1) and
compute the MSE of the ML estimator as in (9.2). However, given correlated noise,
different from the case of uncorrelated noise, C is not diagonal and can even be a
full matrix if all the sensors experience correlated noise. Thus, the non-diagonal
elements rCsij , i ‰ j, should also be incorporated within our selection procedure.
In order to handle these non-diagonal elements, we define a symmetric PSD selec-
tion matrix W “ wwT , where w is our selection vector as defined earlier. Notice
that based on this new definition of W, rCsij will only be incorporated if both wi

and wj are non-zero at the same time. The associated selection constraint on the
MSE can then be stated as

tr
`
pAT rW d C´1sAq´1

˘
ď γ, (9.18)

where d stands for the Hadamard product. Note that since wi P t0, 1u, we have
diagpWq “ w, where diagpXq returns a vector containing the diagonal elements
of X. Again, by exploring the sparsity embedded within the problem, it can be cast
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as the following optimization program

minimize
W,u

}diagpWq}0 (9.19a)

s.t.

«
AT rW d C´1sA ej

eTj uj

ff

ľ 0, @j, (9.19b)

}u}1 ď γ, uj ě 0, j “ 1, . . . , n, (9.19c)

rWsi,j P t0, 1u, W ľ 0, rankpWq “ 1. (9.19d)

Similar to the derivations in Subsection 9.3.1, the constraints (9.19b) and (9.19c)
are a more suitable representation of the original constraint (9.18). We denote the
global optimizers of (9.19) as pW˚,u˚q. Clearly, the problem in (9.19) is non-
convex due to its objective (ℓ0 norm), and the first and the third terms in (9.19d)
(finite-alphabet constraint on the elements of W and rank-1 constraint, respec-
tively). Delving deeper in (9.19) reveals a problem on our way to distribute it in
the next subsection, and that is the positive semi-definiteness constraint on W in
(9.19d). Positive semi-definiteness is a global constraint and cannot be decom-
posed into corresponding sub-constraints, as we desire in the next subsection. That
is why we use the following lemma and replace the first two terms in (9.19d) with
the following sufficient condition

rWsi,j P t0, 1u, W P D
m, WT “ W, (9.20)

where D “ tX | rXsii ě ř
j‰irXsi,j ,@iu denotes the set of diagonally dominant

matrices.

Lemma 9.1

A symmetric diagonally dominant matrix with real non-negative entries is PSD.

Proof. The proof follows from Greshgorin’s circle theorem [52]. �

Finally, we relax the three non-convex terms to obtain

minimize
W,u

trpWq (9.21a)

s.t.

«
AT rW d C´1sA ej

eTj uj

ff

ľ 0, @j, (9.21b)

}u}1 ď γ, uj ě 0, j “ 1, . . . , n, (9.21c)

0 ď rWsi,j ď 1, W P D
m, WT “ W. (9.21d)
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We call this algorithm SparSenSe-C to distinguish it from SparSenSe, and we de-
note its optimizer as pŴ, ûq. A final step to recover ŵ from Ŵ is to apply a
Choleskey decomposition and a possible randomization to compensate for the re-
laxed rank-1 constraint. Alternatively, we can simply consider ŵ “ diagpŴq,
which is what we do in this chapter.

9.4.2 Distributed Algorithm

In this subsection, we develop a distributed version of SparSenSe-C. Our approach
towards the problem is to decompose it so that the i-th sensor can estimate the i-
th row of W. Looking at SparSenSe-C, we clearly observe that the non-diagonal
elements of C´1 complicate the derivation of a distributed algorithm compared
to the case of DiSparSenSe. The more non-diagonal elements, the more coupling
terms are introduced, and thus, the more computational and communication steps
are required.

Triggered by the localized nature of many phenomena of interest in practical appli-
cations, we define the following set of noise covariance matrices

C “ tC | C ľ 0, rCsi,j “ 0, if rIm ` Asi,j “ 0u, (9.22)

where A is the adjacency matrix associated with the network connectivity graph
with zero diagonal elements. This means that we consider the nodes to experience
correlated noise with their immediate neighbors. In practice, C P C is a sparse
matrix if the network is not highly connected. We can reorder C using the Cuthill-
McKee algorithm [140] to end up with a banded matrix. Note that we need to
distribute C´1 as in (9.21). One solution is to compute the inverse of such a banded
matrix in a distributed fashion using only local computations at different sensors via
algorithms such as “DICI” in [141]. The alternative solution is to approximate it.
Nonetheless, the inverse would not necessarily be a banded matrix. In general,
C “ Cd ` C̄d, where Cd and C̄d respectively stand for the matrices containing
the diagonal and non-diagonal elements of C. We can rewrite

C´1 “ C´1

d

`
Im ` C´1

d C̄d

˘´1
. (9.23)

Now, for the specific case where the autocorrelation of the noise experienced at
each sensor is much larger than the cross-correlation with its neighbors, we have
}Im}F " }C´1

d C̄d}F . For such a case, we can use Taylor’s expansion as

C´1 “ C´1

d

`
Im ´ C´1

d C̄d ` 1{2pC´1

d C̄dqTC´1

d C̄d ` ¨ ¨ ¨
˘
,
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“ C´1

d

`
Im ´ C´1

d C̄d ` 1{2C´1

d C̄2

dC
´1

d ` ¨ ¨ ¨
˘
,

which due to C̄d, C̄2

d, and the next powers of C̄d mandates single-hop, two-hop,
and multi-hop communications. To simplify our next derivations, and without loss
of generality (see Remark 2), we can confine ourselves to a first-order approxima-
tion as

C´1 « C´1

d

`
Im ´ C´1

d C̄d

˘
, (9.24)

which after reordering is again a banded matrix and easier to be distributed. To
simplify our subsequent notations, let us denote the pi, jq-th element of C, C´1

and W by cij , c
´1

ij and wij , respectively. We also denote the i-th row of W by wi.
Next, we define the following convex set

Wc
i “ twi | 0 ď wik ď 1, wii ě

ÿ

j‰i

wij , wik “ wki,@k P sNi, u. (9.25)

Note that sensor i only estimates N̄i elements out of m in wi because the rest are
known to be zeros. The banded property of our newly defined C´1 in (9.24) helps
us to expand (9.18) as

tr

¨

˝
´ mÿ

i“1

ÿ

kPĎNi

wik c
´1

ik ai a
T
k

¯´1

˛

‚ď γ,

and construct the Lagrangian of (9.21a)-(9.21b) as

LpW,u,Gq “
mÿ

i“1

wii ´
nÿ

j“1

tr

˜ « řm
i“1

ř
kPĎNi

wik c
´1

ik ai a
T
k ej

eTj uj

ff

Gj

¸

“
mÿ

i“1

˜

wii ´
nÿ

j“1

tr

ˆ « ř
kPĎNi

wik c
´1

ik ai a
T
k ej{m

eTj {m uj{m

ff

Gj

˙¸

“
mÿ

i“1

Lipwi,u,Gq. (9.26)

Both Gj and G are defined earlier. Now, the dual function of L can be given by

qpGq “ min
wiPWc

i ,uPU

mÿ

i“1

Lipwi,u,Gq

“
mÿ

i“1

ˆ
min

wiPWc
i ,uPU

Lipwi,u,Gq
˙

“
mÿ

i“1

qipGq. (9.27)
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Algorithm 9.2 ADMM

Input: ρ, G, λi,k, wi,k, @i, k.
For s “ 0 to smax ´ 1

aaaa

1- In parallel at each sensor, solve (9.28).
2- Each sensor transmits its own estimation ŵs`1

i to its neighbors.
3- Update λi,k’s as

λs`1

i,k “ λsi,k ` ρ
pws`1

i,k ´ ws`1

k,i q
2

End

Output: w̄i “ ŵ
smax
i and ū “ ûsmax .

Given a certain value of G, the functions qipGq and their subgradient w.r.t. G,
called Q and defined later on, can be computed as follows. By taking a deeper
look into (9.25), we detect another issue on our way towards a fully distributed
implementation. The problem with Wc

i is that the row-wise symmetry constraint,
wik “ wki,@k P sNi, cannot be handled only based on local information available
at sensor i because we also need to know the wki’s. That is why we propose to
modify Wc

i as

ĎWc
i “ twi | 0 ď wik ď 1, wii ě

ÿ

j‰i

wij ,@k P sNiu,

and instead of (9.27), optimize

minimize
wiP ĎWc

i ,uPU

mÿ

i“1

Lipwi,u,Gq

s.t. wik “ wki,@k P sNi,

which can be solved using the alternating direction method of multipliers (ADMM)
[70] for a fixed G. This is shown in Algorithm 9.2, where the symmetry is enforced
by the second and third terms of

pŵs`1

i , ûs`1q “ argmin
wiP ĎWc

i ,uPU

Lipwi,u,Gq `
ÿ

kPNi

λsi,kpwi,k ´
ws
i,k ` ws

k,i

2
q

`
ÿ

kPNi

ρ

2

››››wi,k ´
ws
i,k ` ws

k,i

2

››››

2

2

, (9.28)

in step 1 of the algorithm.

Notice that (9.28) can be modeled as a disjoint quadratic program (QP) on wi and



186 9. Distributed Sparsity-Aware Sensor Selection

an LP on u, and can be solved using the corresponding MATLAB functions (lin-

prog(.), quadprog(.)), which is very efficient in terms of speed and computational
complexity compared to solving it in its current form using CVX. The mathemat-
ical modeling details are omitted here for the sake of limited space. In practice,
as we also discuss in the next subsection, we only need a few iterations to con-
verge (smax ă 10). Similar to our analysis in Subsection 9.3.2, the original ℓ1-
regularization (9.21) leads to the dual optimization problem

maximize
G1ľ0,...,Gnľ0

mÿ

i“1

qipGq, (9.30)

with zero duality gap. Again, we solve (9.30) using the dual subgradient method of
[130], where each sensor requires a copy of the subgradient of qpGq w.r.t. Gj as
before

Qj “ ∇Gj
qipGjq “ ´

« řm
i“1

ř
kPĎNi

w̄ikc
´1

ik aia
T
k ej

eTj ūj

ff

, (9.31)

where w̄ik’s and ūj’s are the outputs of the ADMM iterations in Algorithm 9.2.
Similar to Subsection 9.3.2, the need for a global knowledge of Q is circumvented
using an inexact consensus procedure. The rest of the steps follow the same trend
as in DiSparSenSe except that instead of an LP to solve the dual optimization prob-
lem, here we have an extra inner-loop for ADMM. Our proposed algorithm for dis-
tributed SparSenSe in case of correlated noise (we call it DiSparSenSe-C) is sum-
marized in Algorithm 9.3, where we denote the primal optimizer of DiSparSenSe-C
at iteration t as ŵt.

Remark 9.2

We would like to highlight that our assumption on the structure of C´1 does

not limit the generality of the proposed solution, i.e., DiSparSenSe-C. In the

most generic case where C´1 is a full matrix, each sensor has to estimate a

full row instead of only a few elements (corresponding to its neighbors) in each

row of W. This calls for rounds of multi-hop communications if the network is

connected. Nonetheless, our proposed approach immediately applies.

Remark 9.3

DiSparSenSe-C can readily be applied to the case of uncorrelated noise. How-

ever, if some knowledge about the nature of the experienced noise is available

it makes sense to employ the corresponding algorithm, especially from a com-

plexity perspective.
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Algorithm 9.3 DiSparSenSe-C

Initialization: G
i,0
j “ In`1, w0

i “ 0, @i, j.
Input: G

i,t
j , ŵt, @i, j.

aaaa

1- Dual Optimization (ADMM):

aaaa
˛ Initialize Algorithm 9.2 with ρ, λi,k “ 0, @i and k P sNi, Gi,t and ŵi’s.
˛ Use outputs w̄t

i “ w̄i and ūt “ ū to compute Qi,t using (9.31).

2- Primal recovery: Update method of [130]:

ŵt`1

i “ t ŵt
i{pt` 1q ` w̄t

i{pt` 1q.

3- Consensus:

For τ “ 1 to ϕ

aaaa

˛ Send Gi,t and Qi,t to the neighboring sensor nodes;
˛ Perform, in parallel, one consensus step as

V
i,τ,t
j “

mÿ

p“1

rZsipVp,τ´1,t
j ,

which is initialized as in (9.14).
End

4- Dual recovery: Update each sensor’s dual variable as

G
i,t`1

j “ Pľ0

”
V

i,ϕ,t
j

ı
,@j.

5- Selection: Estimate the selection vector

ŵt`1 “ diag
`
rpŵt

iqT , ¨ ¨ ¨ , pŵt
iqT sT

˘

Output: G
i,t`1

j , ŵt`1, @i, j.
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9.4.3 Convergence Properties of DiSparSenSe-C

In this subsection, we first investigate the convergence of the ADMM iterations. To
this aim, we compare the solution of ADMM with the corresponding centralized
problem at time iteration t for a fixed Gi,t. We show that in practice, the proposed
ADMM iterations converge to the result of the centralized problem with a modest
accuracy, sufficient for our application, within only a few iterations. The related
centralized problem is

minimize
W,u

trpWq´

mÿ

i“1

nÿ

j“1

tr

ˆ »

–
ř

kPĎNi
wik c

´1

ik ai a
T
k

ej
m

eTj
m

uj

m

fi

fl G
i,t
j

˙

s.t. }u}1 ď γ, uj ě 0, j “ 1, . . . , n,

0 ď wi,j ď 1,@i, j, W P D
m, WT “ W,

where we denote the solution to the aforementioned problem with pŴt
cent., û

t
cent.q.

This convergence is illustrated in Subsection 9.6.2 for our simulation setup. As a
result of this fast dual optimization convergence, given that the major difference be-
tween DiSparSenSe and DiSparSenSe-C is the dual optimization part, the conver-
gence proof of DiSparSenSe-C follows the same path as the one of DiSparSenSe.
Therefore, we can prove similar expressions as (9.34)-(9.35), for DiSparSenSe-C.
The formal proof is almost identical to the one of DiSparSenSe, and thus, we omit
it in this chapter in favor of space limitation.

9.5 Complexity Analysis

Let us investigate the computational and communication complexities of the pro-
posed distributed algorithms (DiSparSenSe and DiSparSenSe-C) compared to the
centralized ones (SparSenSe and SparSenSe-C). A deeper look into the steps of
Algorithm 9.1 reveals that step 2 requires the solution of an LP problem whose
computational complexity is Opn3q, where Op.q denotes the order of complexity.
Besides, the communication cost involved in step 3 is OpϕNin

3q because n square
matrices of size n`1 are broadcast to Ni neighbors for ϕ times. Furthermore, step
4 requires n singular value decompositions, each of which requires a computational
complexity of Opn3q. Thus, the total computational complexity of DiSparSenSe is
Opn4q per sensor per iteration which is considerably lower compared to the compu-
tational complexity of SparSenSe which is Opm3q (m " n). The communication
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Table 9.1: Complexity Order Comparison

Algorithm Comp. complexity Comm. complexity

SparSenSe Opm3q ´
SparSenSe-C Opm3q ´
DiSparSenSe Opn4q OpϕNin

3q
DiSparSenSe-C Opn4 ` smaxpN3

i ` n3qq OpNipϕn3 ` smaxqq

cost of DiSparSenSe is OpϕNin
3q per sensor per iteration which is reasonably low

as it is independent of m.

DiSparSenSe-C involves almost the same computational and communication costs
as compared to DiSparSenSe. The main difference is step 1 of Algorithm 9.3,
i.e., ADMM, which requires the solution of smax local QP problems with dimen-
sion Ni and local LP problems with dimension n, resulting in a total complex-
ity of OpsmaxpN3

i ` n3qq. ADMM also calls for an extra communication cost
of Opsmax Niq because of step 2 of Algorithm 9.2. Thus, the total computational
cost of DiSparSenSe-C is Opn4 ` smaxpN3

i ` n3qq and its communication cost is
OpNipϕn3 ` smaxqq, both per sensor per iteration. Table 9.1 summarizes the dis-
cussed complexities of both centralized and distributed algorithms. From the table,
we observe that the computational and communication complexities of DiSparSen-
Se-C are relatively larger than those of DiSparSenSe due to replacing a simple LP
with ADMM iterations in order to handle the correlated noise.

9.6 Numerical Results

In this section, we investigate the performance of the proposed algorithms. First, we
would like to see whether SparSenSe and SparSenSe-C actually select a few sensors
(i.e., a sparse solution) which satisfies the MSE constraint. Then, we consider
these centralized algorithms as our selection performance metric beyond which we
cannot perform, and investigate whether their corresponding distributed algorithms
(namely, DiSparSenSe and DiSparSenSe-C) select the same sensors or not.

To this objective, we consider a medium-scale network with m “ 50 sensors to
estimate a parameter of interest x of dimension n “ 2. The regression matrix
A P R

50ˆ2 is drawn from a zero-mean unit-variance Gaussian distribution N p0, 1q.
For DiSparSenSe and DiSparSenSe-C we assume that the sensors are connected
based on a random connectivity graph G with average node degree of 5. Further, we
set the SNR to 10dB and γ “ 0.1. We could consider a sensor as active by defining
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Figure 9.2: Selected sensors for the uncorrelated case

thresholds based on our estimation error floor (a complicated function of α and ϕ)
coming from our convergence analysis in Appendix 9.A. A simpler alternative, a
rule of thumb, would be to consider a sensor as active if wi ą α{10, and this is
what we consider in our simulations.

In order to quantitatively assess the performance of the distributed algorithms, we
define an equivalence metric to investigate the normalized level of similarity be-
tween the selected sensor sets by the centralized and distributed algorithms. To this
aim, we define Sc as the set of indices of the selected sensors by the centralized
algorithms and Sd as the set for the corresponding distributed algorithms. This
helps us to define an equivalence metric between the distributed and centralized
algorithms as

ξ “ 1 ´ |Sc X Sd|{maxt|Sc|, |Sd|u,

which means that if Sc ” Sd, then ξ “ 0.

9.6.1 Case of Uncorrelated Noise

In case of uncorrelated noise, for the sake of simplicity of our simulations, we
assume that the noise experienced at different sensors has the same σ “ 1{

?
SNR.

In the first simulation, depicted in Fig. 9.2, we plot ŵ estimated by SparSenSe and
ŵt estimated by DiSparSenSe for ϕ “ 5. As can be seen, only 3 sensors (out of
50) are activated by SparSenSe to satisfy our MSE constraint, which verifies the
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Figure 9.4: Convergence of ADMM iterations

fact that ŵ is sparse. Note that for t “ 70 many different sensors are activated
by DiSparSenSe. However, as expected, by increasing the number of iterations
(from t “ 70 to t “ 300), the same sensors as for SparSenSe are activated by DiS-
parSenSe and the magnitude of the related ŵt

i’s gradually gets closer to the values
estimated by SparSenSe. However, as is clear from the figure, it is not necessary to



192 9. Distributed Sparsity-Aware Sensor Selection

attain the magnitudes estimated by SparSenSe to be able to make a decision about
the selected sensors. This result illustrates the fact that our distributed implemen-
tation (as expected from our convergence analysis) converges to the solution of the
centralized algorithm.

The next simulation result which is illustrated in Fig. 9.3, investigates the conver-
gence of DiSparSenSe over 100 independent Monte Carlo realizations of A (lead-
ing to 100 different subsets of sensors to be selected) for ϕ “ 5, and α “ 0.1 and
0.05. We also plot the standard deviation (std) of our estimates with dashed lines.
As can be seen, for both values of α we converge to the correct solution with an
error floor. The convergence is faster for α “ 0.1 as is expected from our con-
vergence analysis, (9.34)-(9.35), because the second terms on the right-hand-side
of both expressions (the ones 91{t) vanish faster with a larger α. Fig. 9.3 also
illustrates the effect of varying ϕ for α “ 0.1, where reducing ϕ from 5 down to
1 leads to a larger error floor. This can also be justified using our explanations in
Appendix 9.A on Theorem 9.2.

Notice that Fig. 9.3 depicts a smoother convergence compared to our initial results
in [136]. As we discussed earlier in Subsection 9.3.2 (Remark 1), this is due to our
modified consensus weighting and the double-consensus. We also observe in our
simulations that these modifications bring about a more robust performance against
the choice of A.

9.6.2 Case of Correlated Noise

In case of correlated noise, similar to the previous subsection, we assume that the
noise experienced at different sensors has the same σ “ 1{

?
SNR and on top of that

5% correlation with the neighbors per sensor (we set }Im}F {}C´1

d C̄d}F “ 0.05).
For the ADMM algorithm, we set ρ to 0.1 and initialize the λi,k’s with zeros.

Let us start by investigating the convergence of ADMM, based on our explanations
in Subsection 9.4.3. The result is illustrated in Fig. 9.4 where we plot the primal
convergence norm }Ŵt ´ Ŵt

cent.}2F vs. s (the number of ADMM iterations) av-
eraged over 50 iterations t. Clearly, } ¨ }F stands for the Frobenius norm. As can
be seen from the figure, in practice, ADMM converges relatively fast within only
a few (smax ă 10) iterations. Note that this is partly due to the fact that the so-
lution of DiSparSenSe-C is actually sparse, and hence, for many i and k P sNi,
wik “ wki “ 0. This means Ŵt is almost automatically symmetric and only a few
ADMM iterations would suffice to converge to a feasible solution.

In the next simulation, we plot ŵ and ŵt respectively estimated by SparSenSe-
C and DiSparSenSe-C for ϕ “ 10 in Fig. 9.5. As can be seen, only 3 sensors



9.6 Numerical Results 193

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Sensor index m

ŵ
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(out of 50) are activated by SparSenSe-C to satisfy our MSE constraint. Similar to
the case of DiSparSenSe, by increasing the number of iterations from t “ 30 to
t “ 200, the same sensors as for SparSenSe-C are activated by DiSparSenSe-C and
the magnitude of the related ŵt

i’s gradually gets closer to the values estimated by
SparSenSe-C. This result clarifies the fact that our distributed implementation (as
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expected from our convergence analysis) converges to the solution of the central-
ized algorithm.

Finally, the simulation results depicted in Fig. 9.6 investigate the convergence of
DiSparSenSe-C over 100 independent Monte Carlo trials for ϕ “ 10, and α “ 0.01

and 0.005. As can be seen from the figure, for both values of α we converge
with an error floor. Similar to the case of DiSparSenSe in the previous subsection,
the convergence is faster for the larger α “ 0.01, as is also expected from our
convergence analysis. However, we observe here that with α “ 0.005 we also get
a better equivalence performance compared to α “ 0.01. Fig. 9.6 also illustrates
the effect of varying ϕ for α “ 0.005 where reducing ϕ to 3 from 10 leads to a
larger error floor. This can be justified using our convergence results, similar to our
explanations for DiSparSenSe in the previous subsection.

9.7 Conclusions

We have proposed a framework for sparsity-aware sensor selection in centralized
and distributed fashions for cases where the noise experienced by different sensors
is either uncorrelated or correlated. In favor of the limited space, we have omit-
ted the possibility of imposing different budget constraints (such as power budget)
on the sensors. Our initial results show that involving such constraints into our
optimization problems would lead to the selection of different subsets of sensors.
Another direction to be investigated is the case of time-varying regressors. We
are currently considering dynamic sparse reconstruction algorithms to handle this
problem.
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Appendix

9.A Convergence Analysis of DiSparSenSe

In this appendix, we analyze both primal and dual convergence properties of DiS-
parSenSe. First of all, since the sets Wi and U in (9.7) and (9.8) are compact, the
subgradient Qi,t

j is bounded by a certain finite bound Q [132] as

}Qi,t
j }F ď Q, j “ 1, ¨ ¨ ¨ , n, i “ 1, ¨ ¨ ¨ ,m, t ě 0.

For the consensus matrix Z in (9.17), it is true that

Z “ ZT , Z1m “ 1m, ρ
´
Z ´ 1m1Tm

m

¯
ď ν ă 1,

where ρp¨q returns the spectral radius and ν is an upper bound on the value of the
spectral radius. In the following, we assume that the dual variable estimates Gi,t

j ’s
are bounded by a convex compact set (comprising the zero element) as

}Gi,t
j }F ď G, j “ 1, ¨ ¨ ¨ , n, i “ 1, ¨ ¨ ¨ ,m, t ě 0,

for a certain finite positive constant G. Nonetheless, if this is not the case, we can
always project them into such a bounded set, which will not considerably affect our
subsequent convergence analysis [130].

9.A.1 Dual Objective Convergence

Let us start our convergence analysis in the dual sense by the following theorem.

Theorem 9.1

Let q̂ be the optimal dual value of SparSenSe (9.10), i.e.,

q̂ “ max
G1ľ0,...,Gnľ0

mÿ

l“1

qlpGq.

Then, there exists a finite ϕ̄ ą 0 such that if ϕ ě ϕ̄ the sequence of dual

functions tqpGi,tqu generated by DiSparSenSe converges as

lim sup
tÑ8

qpGi,tq ě q̂ ´mψ1pα,Q, ϕq, i “ 1, ¨ ¨ ¨ ,m,

where ψ1 is a non-negative function of ϕ, α, and Q.
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Proof. The proof is based on Theorem 2 of [132]. The trick is to first rewrite the
steps of DiSparSenSe in a more compact way. To this aim, we define the vectors
g
i,t
j “ vecpGi,t

j q and h
i,t
j “ vecpQi,t

j q. Next, we define the convex set G as

G “ tgi,t|Gi,t
j ľ 0, j “ 1, ¨ ¨ ¨ , nu.

This helps us to rewrite the updates in DiSparSenSe (9.16) as

gt`1 “ PG

“
pZInpn`1qqϕpgt ` αmhtq

‰
, where (9.31)

gt “ rpg1,t
1

qT , ¨ ¨ ¨ , pg1,t
n qT , ¨ ¨ ¨ , pgm,t

1
qT , ¨ ¨ ¨ , pgm,t

n qT sT ,

ht “ rph1,t
1

qT , ¨ ¨ ¨ , ph1,t
n qT , ¨ ¨ ¨ , phm,t

1
qT , ¨ ¨ ¨ , phm,t

n qT sT ,

where b stands for the Kronecker product. Note that now we can see DiSparSenSe
as a subgradient method to minimize the function ´qpgq, exactly as the recursion
(8) in [132], and apply Theorem 2 of [132]. To do so, we first have to make sure
their main assumptions hold. Assumptions 1, 2, and 4 of [132] hold in our case
since the subgradient is bounded, the consensus matrix Z verifies the properties of
Assumption 2, and Assumption 4 holds given that }Gi,t

j }F ď G, @i, j. Let us also

define v
i,t
j “ vecpVi,ϕ,t

j q. Now, the term

›››vi,0
j ´ 1

m

mÿ

p“1

v
p,0
j

››› (9.32)

is bounded since we initialize the algorithm with a fixed G
i,0
j “ G0, @i, j, and

also because the subgradient is bounded. Given this, Theorem 2 of [132] yields the
claim. �

Notice that due to optimality, qpGi,tq “ řm
l“1

qlpGi,tq cannot be greater than q̂,
and therefore lim inftÑ8 |qpGi,tq ´ q̂| ď mψ1pα,Q, ϕq, i “ 1, ¨ ¨ ¨ ,m, which
guarantees convergence of the dual function to a bounded error floor around its
optimal value. The requirement ϕ ě ϕ̄ is not too restrictive, as explained in [132].
Based on the definition of gi,t

j and the definition of vi,t
j , let us define the two average

vectors ḡt and v̄t, defined as

ḡt “
” 1

m

mÿ

i“1

pgi,t
1

qT , . . . , 1
m

mÿ

i“1

pgi,t
n qT

ıT
,

v̄t “
” 1

m

mÿ

i“1

pvi,t
1

qT , . . . , 1
m

mÿ

i“1

pvi,t
n qT

ıT
,
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as well as the following two supporting sequences

yt “ PGrv̄t´1s, dt “ ḡt ´ yt. (9.33)

For the supporting sequence yt the following lemmas hold.
Lemma 9.2

The sequence yt is updated with an ǫ-subgradient method [142] to maximize

qpyq, that is

yt`1 “ PG

”
yt ` α

m
h̃t

ı
,

where the vector

h̃t “
mÿ

i“1

phi,t ` dt{αq, with hi,t “ rphi,t
1

qT , . . . , phi,t
n qT sT ,

is an ǫ-subgradient of qpyq and ǫ “ mψ2pα,Q, ϕq. Notably, PGr.s stands for

projection onto the convex set G and ψ2 is a positive function of ϕ, α, and Q.

Furthermore, dt{α is bounded, i.e., }dt{α} ď τ , for a certain non-negative

scalar τ , and

qipyq ď qpytq ` ph̃tqT py ´ ytq ` ψ2pα,Q, ϕq, @y P G.

Proof. The proof follows from the definition of the supporting sequences yt and dk

in (9.33) and, in particular, directly from [132, Lemma 5 and Theorem 2] applied
to our update sequence (9.31). �

Lemma 9.3

For the supporting sequence yt the followings hold.

(a)

´
tÿ

k“1

ph̃kqTyk ď }y1}2
2α{m ` t

αm p?
nQ` τq2
2

;

(b)

`
tÿ

k“1

ph̃kqT ŷ ď }y1 ´ 2ŷ}2
2α{m ` t

αm p?
nQ` τq2
2

` t ψ2pα,Q, ϕq,

where ŷ is the optimal dual variable.



198 9. Distributed Sparsity-Aware Sensor Selection

Proof. The result is rather standard and applies to any ǫ-subgradient method. A
concise proof for the case ǫ “ 0, can be found in [130, Proposition 3-(a)]; extending
it to any ǫ ě 0 is straightforward. �

9.A.2 Primal Objective Convergence

In this subsection, we investigate the convergence of the running average cost }ŵt}1
to the optimal value of the primal cost }ŵ}1. Our analysis is formulated in the
following theorem.

Theorem 9.2

Convergence of the primal running average sequence tŵt, ûtu can be formu-

lated as follows.

(a) The running average cost is upper bounded as

}ŵt}1 ď }ŵ}1 ` nG2

2tα{m ` αm p?
nQ` τq2
2

`

τm
?
nG`mψ2pα,Q, ϕq. (9.34)

(b) The running average cost is lower bounded as

}ŵt}1 ě }ŵ}1 ´ 9nG2

2tα{m ´ αm p?
nQ` τq2
2

´

τm
?
nG´mψ2pα,Q, ϕq. (9.35)

where ψ2pα,Q, ν, ϕq is a positive function, monotonically increasing

with α and decreasing with ϕ. The non-negative scalar τ is defined in

Lemma 9.2.

Proof. The proof is an adaptation of Proposition 3 in [130]. We start by the claim
(a). By convexity of the primal cost } ¨ }1 and the definition of w̄t

i as a minimizer of
the local Lagrangian functions, we have for t ě 1,

}ŵt}1 ď 1

t

tÿ

k“1

}w̄k}1 “ 1

t

tÿ

k“1

mÿ

i“1

´
qipgi,kq ´ pgi,kqThi,k

¯
, (9.36)

where
gi,k “ rpgi,k

1
qT , . . . , pgi,k

n qT sT .
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By Lemma 9.2, since gi,k P G

qipgi,kq ´ qipykq ď phi,kqTgi,k ` pdk{αqTgi,k´
phi,k ` dk{αqTyk ` ψ2pα,Q, ϕq.

Next, by summing over i we have

mÿ

i“1

qipgi,kq ď qpykq `
mÿ

i“1

phi,kqTgi,k `
mÿ

i“1

pdk{αqTgi,k´

ph̃kqTyk `mψ2pα,Q, ϕq,

and thus,

}ŵt}1 ď 1

t

tÿ

k“1

´
qpykq `

mÿ

i“1

pdk{αqTgi,k ´ ph̃kqTyk `mψ2pα,Q, ϕq
¯
. (9.37)

We can use Lemma 9.3-(a) to find an upper bound for the term ´ph̃kqTyk. Be-
sides, since }pdk{αqTgi,k} ď }dk{α}}gi,k} and we known from Lemma 9.2 that
}dk{α} ď τ , together with }gi,k} ď ?

nG from our earlier assumption on bounded
dual variable estimates, we obtain }pdk{αqTgi,k} ď τ

?
nG. With this in place, we

can rewrite (9.37) as

}ŵt}1 ď 1

t

tÿ

k“1

qpykq ` }y1}2
2tα{m ` αm p?

nQ` τq2
2

`mτ
?
nG`mψ2pα,Q, ϕq.

We known that by optimality qpykq ď q̂, by strong duality q̂ “ }ŵ}1, and }y1}2 ď
nG2. Therefore, the claim (a) follows.

As for claim (b), given any optimal dual solution ŷ, we have

}ŵt}1 “ }ŵt}1 ` pŷqT
´1

t

tÿ

k“1

h̃k
¯

loooooooooooooomoooooooooooooon
ω

´pŷqT
´1

t

tÿ

k“1

h̃k
¯
. (9.38)

We also know that,

ω “ }ŵt}1 ` pŷqT
´1

t

tÿ

k“1

mÿ

i“1

hi,k
¯

`mpŷqT
´1

t

tÿ

k“1

dk{α
¯
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ě }ŵt}1 ` pŷqT
´ mÿ

i“1

hi,kpŵkq
¯

´m
?
nGτ. (9.39)

Furthermore, by the saddle point property of the Lagrangian function, i.e.,

Lpŵk, ûk, ŷq ě Lpŵ, û, ŷq “ q̂ “ }ŵ}1,

we can write

}ŵt}1 ` pŷqT
´ mÿ

i“1

hi,kpŵkq
¯

´m
?
nGτ “

Lpŵk, ûk, ŷq ´m
?
nGτ ě }ŵ}1 ´m

?
nGτ. (9.40)

We can now find an upper bound for the term pŷqT
´
1

t

řt
k“1

h̃k
¯

in (9.38) as in

Lemma 9.3-(b). By substituting this bound in (9.38) and by combining it with (9.39)-
(9.40), we obtain

}ŵt}1 ě }ŵ}1 ´mτ
?
nG´ }y1 ´ 2ŷ}2

2tα{m ´ αmp?
nG` τq2
2

´mψ2pα,Q, ϕq,

and since }y1 ´ 2ŷ}2 ď 9nG2, the claim follows. �
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10
CONCLUSIONS AND

FUTURE WORKS

In this chapter, we provide concluding remarks on the main contributions of this
thesis, and also highlight some of the possible future research directions.

10.1 Concluding Remarks

In this thesis, we have tried to revisit some of the main issues and challenges of
wireless (sensor) networks (WSNs) from a different standpoint. What has distin-
guished our contributions from exsiting works is the concept of sparse reconstruc-
tion and compressive sensing (CS) which is somehow the main flavor of this thesis
as well. We have shown that sparsity (in different domains, such as spatial sparsity)
inherently exists in the structure of many of these problems. Throughout this thesis,
we have attempted to explore such sparsity embedded within our problem structure
and have come up with sparsity-aware solutions.

With regards to the organization of this thesis, except for this final part on conclu-
sions and the first part giving an introduction and mathematical preliminaries, it is
comprised of three main parts (Parts II-IV) containing our major contributions as
is outlined in the following.

Part II, which contains two chapters, is devoted to our contributions to the context
of mobile network localization. To be more specific, in Chapter 3, we have studied
the problem of mobile network localization using only pairwise distance measure-
ments. To do so, we have proposed to combine multidimensional scaling (MDS)
with subspace perturbation expansion (SPE) in order to derive a model-independent
dynamic MDS paradigm which could track a network of mobile nodes. In order
to circumvent the need for a fully connected network of nodes, in both Chapters 3
and 4, we have proposed extensions which broaden the applicability of our pro-
posed approach to partially connected networks where up to 50% of the pairwise
distances can be missing.

203
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Part III, which is comprised of three chapters, is dedicated to our contributions to
multi-source localization. In particular, in Chapter 5, we have proposed a sparsity-
aware multi-source time-difference-of-arrival (TDOA) localization paradigm which
uses an innovative trick to attain a significant source identifiablity gain and also can
localize multiple off-grid sources. In Chapter 6, we have proposed a sparsity-aware
multi-source received-signal-strength (RSS) localization paradigm which exploits
the information present in the cross-correlations of the received signal as well as
in the different time lags of the correlation functions. In Chapters 6 and 7 (re-
spectively in wireless channels and an underground medium), we have presented
ideas which are blind to the source signal information and can even handle fully
non-cooperative sources.

Part IV, which consists of two chapters, is devoted to our contributions to the con-
text of sensor selection. More specifically, in Chapters 8 and 9, we have proposed
a sparsity-aware sensor selection paradigm in order to a priori select the minimum
number of sensors within a network to satisfy a mean squared error (MSE) esti-
mation performance metric. Our ideas are developed in both centralized and dis-
tributed fashions for both uncorrelated and correlated noise experienced at different
sensors.

10.2 Recommendations for Future Directions

Particular questions arise from the research results we have presented in this thesis.
These questions mark some challenges for future research to broaden the applica-
bility of our proposed methods. The major challenges are as follows.

˛ Performance investigation in real testbeds: A very general recommendation
for future work is to implement and assess the performance of our proposed
sparsity-aware network localization and sensor selection ideas in real wire-
less (sensor) network testbeds. Several unforeseen practical challenges will
show up during establishing the real testbeds for implementing our ideas
where each of which can introduce a previously unsolved problem.

˛ Distributed dynamic MDS: An interesting step forward in line with our con-
tributions on dynamic MDS in Chapter 3, is to see how our subspace update
rules can be distributed all over the network to devise a distributed dynamic
MDS paradigm. To be more specific, one has to figure out a way to keep
updating D (number of embedding dimensions) eigenvalues and eigenvec-
tors in a distributed fashion. Such a distributed approach can tolerate even a
higher level of partial connectivity (much higher than 50%) and it is scalable
as well making it a more suitable choice for large-scale WSNs.
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˛ Multi-source TDOA localization for indoor scenarios: Our sparsity-aware
TDOA localization algorithm in Chapter 5 is mainly aimed at outdoor sce-
narios where harsh multipath effects do not exist. Therefore, extensions to
handle multipath and non-line-of-sight (NLOS) effects which can compli-
cate or degrade our approach are highly desirable. A possible workaround
which is already mentioned in Chapter 5 is to use multipath disambiguation
techniques. However, a general extension which can possibly benefit from
multipath reflections as in our RSS-based approach in Chapter 6 is an inter-
esting research direction.

˛ Distributed sparsity-aware multi-source localization: The algorithms we have
proposed in Part III are centralized by definition. It means the sensors or ac-
cess points (APs), depending upon the scenario, are assumed to be connected
to a fusion center (FC). This FC constructs the overall linear set of equations
y “ Ψθ and recovers the sparse θ. An interesting extension is to eliminate
the FC and conduct this with distributed sensors/APs. There are two possible
cases to study. First, the case where sensors can only communicate with their
neighboring sensors; however, they can sense the full θ. Second, which is
even more interesting, is the case where the sensors only sense a part of θ
and these parts can be overlapping. A possible solution to these problems is
to exploit a modified version of the distributed least absolute shrinkage and
selection operator (LASSO) for linear regression within networks such as the
one proposed in [143].

˛ More informative microseismic monitoring: In Chapter 7, we have confined
ourselves to finding the closest grid points to the off-grid sources. How-
ever, the possibility to derive the relationship between the hypocenter of an
off-grid source and its corresponding received displacement traces should be
investigated. Evidently, the simpler the medium (single-layer homogenous
in the best case), the easier such relationships can be discovered. In such
a case, our ideas in Chapter 5 for off-grid source localization can be em-
ployed to localize off-grid seismic sources with higher accuracy. Moreover,
in Chapter 7, we have only estimated the hypocenters of the sources and the
normalized amplitudes of the moment tensors. Even though these two pa-
rameters are the most important ones we would like to extract, according to
our results there is a possibility to further process the results and estimate the
exact moment tensor amplitudes as well as the corresponding origin-times.
This is another interesting extension which is worthy of giving some thought.

˛ Budget constraints for distributed sensor selection: In Chapter 9, we have
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omitted adding other constraints to our subjective performance metric, such
as power budget constraints on the sensors or logical constraints on their sta-
tus of being active/inactive. Adding such constraints yields a more realistic
WSN performance model. We expect that involving such constraints into
our optimization problems would lead to the selection of different subsets of
sensors. As an example, a total budget constraint can be enforced by adding
a weighted sum inequality as

ř
i ciwi ď Btot. to our subjective part, where

the ci’s help to model budget limitations of the sensors.

˛ Dynamic distributed sensor selection: Our proposed distributed algorithms
in Part IV fail to operate in highly varying environments where regressors
can alter quickly (e.g., less than a second). In such a case, the regressors will
acquire new values before our algorithms converge and thus the selected sen-
sors might be invalid. This motivates extending our proposed algorithms to
dynamic ones in order to operate in highly time-varying environments. To do
so, some information about this time-varying process is required. Putting this
together with the measurement equations we already have, one should devise
appropriate distributed Kalman filtering algorithms to dynamically estimate
the selected sensors.

Alongside these specific research directions directly arising from our contributions
in this thesis, there exist a number of related research questions that can be consid-
ered for possible future work. These problems which are typically more high-level
are enumerated in the following.

˛ Dynamic MDS in other contexts: The low-complexity dynamic MDS we
have proposed and its extensions to handle missing connections in Part II
can, in principle, be exploited for applications other than mobile network lo-
calization. Even though we have adapted our approach to fit into a network
localization framework, there are several other application domains where
MDS is known to be a solution (see Chapter 1 for examples such as machine
learning) and in some of those the dissimilarities are dynamically changing.
For such cases, our proposed dynamic MDS can be applied with minimum
modifications to track the variations of the configuration of comprising com-
ponents.

˛ Sparsity-aware feature assignment: We believe that our sparsity-aware ap-
proach to solve the multi-source TDOA localization problem in Chapter 5
can be generalized to cast a sparsity-aware feature assignment problem. Sup-
pose that there is a large dictionary of fingerprints/features or a large basis



10.2 Recommendations for Future Directions 207

comprised of elements and one has to find out the contributing features/elem-
ents based on multiple measurements which are weighted versions of those
features. In cases where the number of contributing features is much smaller
than the cardinality of the dictionary/basis, this sort of problems can be
solved using our ideas in Chapter 5. Deriving performance bounds in order
to quantify how much we gain by applying nonlinear functions and creating
new sets of measurements is another interesting problem but of a formidable
nature!

˛ Seismic geophone selection: An interesting domain where our sensor selec-
tion ideas can be applied is seismic monitoring. The underground medium
changes extremely slow compared to wireless channels or similar media, and
thus the regressors observed by geophones change slowly. In practice, signif-
icant variations that will affect the observed regressors might happen every
ten to hundred years. This motivates applying our sensor selection ideas in
Part IV to microseismic monitoring problems in general. More specifically
though, if one would like to apply our sensor selection ideas to sparsity-

aware microseismic localization as in Chapter 7, then sparsity appears in
two domains: first, the spatial sparsity of sources, and second, the sparsity of
sensors to be activated. Therefore, the performance constraint to be satisfied
is no longer the MSE of estimation, and a proper metric related to the quality
of sparse reconstruction (possibly related to the restricted isometry property
(RIP)) should be considered. Nonetheless, our ideas immediately apply to
traditional inversion-based approaches which are based on using classical
least squares (LS).
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SAMENVATTING

Draadloze netwerken hebben de hedendaagse wereld gerevolutionaliseerd door sne-
lle verbindingen en goedkope diensten aan te bieden. Maar zelfs deze nooit geziene
voorzieningen kunnen de drang naar meer geavanceerde technologieën niet vervul-
len. Daarom wordt er momenteel heel wat aandacht geschonken aan (mobiele)
draadloze sensornetwerken bestaande uit goedkope sensoren die op een gedistribu-
eerde manier taken kunnen uitvoeren in extreme omstandigheden. De unieke eigen-
schappen van de draadloze omgeving, de verhoogde complexiteit omwille van de
mobiliteit, de gedistribueerde aard van de taakuitvoering, en de strikte performantie-
en energiebeperkingen vormen een grote uitdaging voor onderzoekers om systemen
te bedenken die een goede balans slaan tussen performantie en energieverbruik.

Wij bestuderen enkele fundamentele uitdagingen voor draadloze (sensor)netwerken
zoals een efficiënt energieverbruik, schaalbaarheid, en besef van plaats. Wat ons
onderzoek van de beschikbare literatuur onderscheidt is dat wij in onze probleem-
stellingen en systeemontwerpen gebruik maken van concepten gerelateerd aan de
reconstructie van schaarse signalen en gecomprimeerde data-acquisitie. Wij bui-
ten de schaarse structuren uit die aanwezig zijn in de bestudeerde modellen. Als
de eerder vermelde uitdagingen vanuit dit perspectief worden bekeken, dan geeft
dit niet alleen aanleiding tot een kostreductie omdat minder metingen nodig zijn,
maar ook tot een aanvaardbare nauwkeurigheid als het systeem op de juiste manier
ontworpen wordt.

We kijken in deze thesis eerst naar lokalisatie in mobiele draadloze netwerken.
Gegeven de elegantie en eenvoud van de multidimensionele schaleringstechniek
(MDS) voor netwerklokalisatie, combineren we deelruimteperturbatietheorie met
klassieke MDS om zo een modelonafhankelijke dynamische versie van MDS te
ontwikkelen waarmee een netwerk van mobiele nodes kan gelokaliseerd worden,
enkel gebruik makende van paarsgewijze afstandsmetingen. Verder breiden we ons
goedkoop dynamisch MDS paradigma op twee manieren uit naar netwerken die
enkel gedeeltelijk verbonden zijn en waar sommige afstandsmetingen ontbreken.
We bestuderen ook een modelafhankelijke versie van MDS waarbij het bewegings-
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process van de nodes bekend is. In dat geval lineariseren we de nietlineaire af-
standsmetingen tot de ankernodes en volgen we de positie van de mobiele nodes
met behulp van een Kalman filter (KF) in plaats van een uitgebreid Kalman filter
(EKF). Voor beide onderzoeksrichtingen laten we veelbelovende resultaten zien die
de efficiëntie van onze voorgestelde methodes aantoont.

Daarna onderzoeken we een gerelateerd multi-bron lokalisatieprobleem waarbij
sommige nodes in het netwerk zendbronnen zijn. Het feit dat deze bronnen niet van
mekaar kunnen worden onderscheiden verhoogt de complexiteit van dit probleem.
Het introduceert een complex toekenningsprobleem om de ontvangen signalen (ty-
pisch de som van de uitgezonden signalen) op te splitsen in de verschillende uitge-
zonden signalen en om die dan te lokaliseren. Wij stellen innovatieve ideeën voor
om dit probleem op te lossen gebruik makende van tijdsverschil- (TDOA) en sig-
naalsterktemetingen (RSS). De algemene aanpak die we voorstellen is gebaseerd
op het herkennen van vingerafdrukken waarbij het desbetreffende spatiale domein
wordt gediscretiseerd en iedere discrete positie nu een vingerafdruk heeft. Ver-
der gebruiken we de schaarsheid van de bronnen in dit spatiale discrete domein
en stellen oplossingen voor die een ongezien aantal bronnen kunnen lokaliseren.
Ook breiden we onze TDOA-gebaseerde techniek uit om bronnen te kunnen lo-
kaliseren die tussen de discrete posities in liggen. De RSS-gebaseerde methode,
die zowel kan gebruikt worden voor binnenlokalisatie als voor het lokaliseren van
ondergrondse microseismische activiteiten, wordt daarentegen uitgebreid naar een
volledig blind scenario waarbij de statistiek van de bronsignalen niet gekend is. We
presenteren uitvoerige simulatieresultaten die onze beweringen bevestigen.

Tenslotte vestigen we onze aandacht op het sensorselectieprobleem in draadloze
netwerken. In lijn met het thema van deze thesis verkennen we de schaarsheid van
de geselecteerde sensoren in vergelijking met het totaal aantal sensoren en stellen
we oplossingen voor die gebaseerd zijn op deze schaarsheid. We doen dit voor ge-
vallen waarbij de ruis ontvangen door de sensoren al dan niet gecorreleerd is. Om
een centrale aanpak in zeer grote netwerken te vermijden, breiden we onze algo-
ritmes ook uit naar gedistribueerde versies waarbij iedere sensor enkel communi-
ceert met zijn buren en zelf beslist of hij deelneemt aan de probleemoplossing of
niet. Gedetailleerde convergentiebewijzen, gekwantificeerde bewerkings- en com-
municatiekosten, alsook onze simulatieresultaten bevestigen de bruikbaarheid en
efficiëntie van ons innovatief sensorselectieparadigma.

Zoektermen: Mobiele netwerklokalisatie, multi-bron lokalisatie, sensorselectie,
reconstructie van schaarse signalen, gedistribueerde optimisatie.
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Persian (Nastaleeq) calligraphy of a Hāfez poem.

Poem message:

“The recipe for a peaceful life: be kind to friends, show respect to enemies”.

Hāfez: A prominent Persian poet (1326-1390 CE) from Shirāz, Irān.
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