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Sparsity-Aware Sensor Selection:
Centralized and Distributed Algorithms

Hadi Jamali-Rad, Andrea Simonetto, and Geert Leus

Abstract—The selection of the minimum number of sensors
within a network to satisfy a certain estimation performance
metric is an interesting problem with a plethora of applications.
We explore the sparsity embedded within the problem and pro-
pose a relaxed sparsity-aware sensor selection approach which is
equivalent to the unrelaxed problem under certain conditions. We
also present a reasonably low-complexity and elegant distributed
version of the centralized problem with convergence guarantees
such that each sensor can decide itself whether it should contribute
to the estimation or not. Our simulation results corroborate our
claims and illustrate a promising performance for the proposed
centralized and distributed algorithms.

Index Terms—Distributed estimation, sensor selection, sparse
reconstruction.

I. INTRODUCTION

W E STUDY the problem of selecting the minimum
number of sensors among a network of sensor nodes

in order to estimate a vector of interest so that a given mean
squared error (MSE) is satisfied. This problem is of great
interest in several practical application domains including
robotics, target tracking, and energy efficient network man-
agement, to name a few (see for instance [1] and references
therein). A straightforward method to solve such a problem is
a combinatorial approach considering all possible combina-
tions of all possible sizes of candidate sensors to satisfy the
constraint, which is numerically intractable for a large number
of sensors and thus motivates a more intelligent and structured
approach. The problem becomes even more challenging when
a distributed context is considered.

A related sensor selection problem has been studied in [1]
where elegant convex relaxations are designed for primal and
dual problems. However, instead of optimizing different per-
formance metrics and fixing the number of sensors as in [1], we
minimize the number of sensors given a performance constraint,
which is generally more practical. Interestingly, this enables us

Manuscript received August 19, 2013; revised December 23, 2013; accepted
December 27, 2013. Date of publication January 02, 2014; date of current ver-
sion January 13, 2014. This work was supported in part by NWO-STW under
the VICI program (Project 10382), and in part by STW under the D2S2 project
from the ASSYS program (Project 10561). The associate editor coordinating
the review of this manuscript and approving it for publication was Prof. Alireza
Seyedi.

The authors are with the Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology, 2826 CD Delft,
The Netherlands (e-mail: h.jamalirad@tudelft.nl; a.simonetto@tudelft.nl;
g.j.t.leus@tudelft.nl).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LSP.2013.2297419

to exploit the sparsity embedded within the problem. From this
angle, our look is closer to what is proposed in [2] for selecting
reliable sensors, also called “robust sensing”. However, we con-
sider a different constraint than the one in [2], and we do not
need the sensors to take measurements for solving the selection
problem; we only need them to know their regression coeffi-
cients. Also, in both [1] and [2], a distributed approach has not
been considered.

A decentralized implementation of [1] is proposed in [3];
however, the heuristic assumption of two “leader” nodes vio-
lates the classical definition of a distributed approach. Another
relevant problem, but of a different nature, is considered in [4],
where a distributed algorithm is designed to identify the sensors
containing relevant information by a sparsity-aware decompo-
sition of the measurement covariance matrix. Finally, in [5], two
distributed implementations of [1] based on a truncated Newton
algorithm are proposed. Compared to our work, first, [5] deals
with a slightly different problem. Second, it considers a log-bar-
rier and truncated Hessian approximate of the relaxed problem
with no convergence (error) guarantees. Third, private sensor in-
formation has to be broadcast in this approach whereas we avoid
that. Finally, our complexity is not a function of the number of
sensors but of the number of sensed dimensions, and hence, it
is considerably lower.

II. PROBLEM DEFINITION

We consider sensor nodes distributed over an area of in-
terest in , with , which are supposed to estimate the un-
known vector . The sensor nodes are equipped with (lim-
ited) computational and communication capabilities and each of
them measures

(1)

where the ’s span ( ) and is an additive
zero-mean white measurement noise. Notably, considering the
spatial distribution of the sensors, we assume that the ’s are
different so that we can distinguish the sensors based on their
regressors. Here, we are interested in selecting a priori the min-
imum number of sensors (namely, measurements) so that the
mean squared error (MSE) of estimating is smaller than a de-
sired value . Furthermore, we are interested in algorithms that
would enable the sensors themselves to decide their own ac-
tive/inactive status, without a centralized collection of the
vectors, i.e., we are interested in distributed algorithms.

III. CENTRALIZED OPTIMIZATION PROBLEM

In a centralized setup, all ’s are available in a central unit
which permits us to define the matrix .
Now, we can construct , where ,
and . For the linear measurement model
(1), the MSE can be expressed as
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, where stands for the trace oper-
ator and is the covariance matrix of the noise vector
[6]. Let the noise at the sensor nodes be uncorrelated, i.e.,

with denoting the Kronecker delta,
and thus . Based on this assumption,
the MSE can be reformulated as

(2)

where . The associated selection
constraint on the MSE can then be stated as

(3)

where the variable encodes whether the -th sensor
(measurement) is to be used. In practice, only a few sensors
should be activated to satisfy the MSE constraint. Therefore,
the problem can be cast as the following optimization program

(4a)

(4b)

(4c)

where is the selection vector,
is a vector of auxiliary variables, is

the -th column of the identity matrix , and the
constraints (4b) and (4c) represented by are a more suitable
representation of the original constraint (3), obtained using
the Schur complement [7]. We denote the solution to (4) as

. Since in the cost function of (4) and the
finite-alphabet constraint on the ’s are both non-convex, we
consider the following relaxed version of the problem called
sparsity-aware sensor selection (SparSenSe)

(5)

IV. EQUIVALENCE THEOREM

In this section, we present an equivalence result, i.e., we prove
that provided some conditions, the number of selected sensors
is the same for both the original problem (4) and the relaxed
version (5). To this aim, the following simplifying assumptions
will be employed in this section.

Assumption 1: Only one element of is non-zero, i.e., there
exists a single for which .

This assumption implies that the sensors can only sense one
element (dimension) of the vector of interest. Let be the
set containing the indices of the sensors which sense the -th
dimension, i.e., and be
the set containing the corresponding values, i.e.,

.
Assumption 2: For each there exists an such that

. We denote this as .
This assumption states that for each dimension there exists

a unique dominant sensor. Based on this, the following propo-
sition and its proof are in place.

Proposition 1: Under Assumption 1 and Assumption 2, there
exists a lower bound , such that

if , then . In addition, in this case,
the solution of the relaxed version (5) is unique and corresponds
to activating the sensors with in the regressors.

Proof: The solution of the original non-convex problem
has a cardinality of at least , i.e., . This is be-
cause we need to activate at least sensors to attain a finite
MSE in (3). Furthermore, in general, . In the
following, we will show that under Assumption 1 and Assump-
tion 2, , and therefore our claim holds. The core idea
is that under the aforementioned assumptions we can analyti-
cally compute as explained in the following. The linear
matrix inequality constraint (4b) can be written as

(6)

Under Assumption 1, we can write

which is not singular (and therefore the MSE is finite) when we
select at least one sensor per dimension. This means that (6)
yields

(7)

Considering (7) and the fact that we need to minimize ,
we have to maximize the ’s w.r.t. the constraints
and , which leads to . Given any , we can
compute analytically since the relaxed problem can now
be written as the following linear program (LP)

(8a)

(8b)

The solution of this LP lies on the vertices of the polytope
defining the constraints (following Assumption 2) and for

it is given by

if
otherwise

(9)

This helps us to rewrite (5) as

(10)

which is convex for . The optimal has to satisfy the
KKT conditions given by

(11a)

(11b)

where is the Lagrange multiplier associated with .
From (11a), ; solving for and substituting it into (11b),
after some simplifications, leads to

(12)

which due to the convexity of (10) is the unique optimizer of
(10). Substituting (12) back into (9) yields

(13)
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for , i.e., .
Thus, for , is unique and has cardinality .

V. DISTRIBUTED ALGORITHM

Triggered by the localized nature of many phenomena of in-
terest in practical applications, in this section, we develop a
distributed version of the centralized approach proposed ear-
lier. Let us start with some notations. We call the neighbor-
hood set of the -th sensor including itself, with cardinality

(either given or to be estimated). We also define the
following convex sets:

(14)

(15)

and form the Lagrangian of the problem (5) given by

(16)

where are appropriately sized dual variables, and
. The dual function defined on can be

given by

(17)

Notably, since both and are convex and compact sets,
given a certain value of , the functions and their subgra-
dient w.r.t. , called and defined later on, can be computed
locally (for example using SeDuMi to solve the resulting LPs)
at each sensor [8].

Whenever is large enough so that we expect sparse solu-
tions in terms of , Slater’s condition holds for (4). In fact, in
this case, we can always find a pair that satisfies (4b) and
(4c) strictly. Therefore, the original -regularization (5) leads
to the differentiable dual optimization problem

(18)

with zero duality gap. This convex optimization program can be
solved iteratively in a distributed fashion using a variety of algo-
rithms. For instance, we can use gradient-based methods, such
as the dual averaging scheme of [9] with a variable stepsize, or
the simpler dual subgradient of [8] with a fixed stepsize. The
latter method has the advantage of providing a recovery mecha-
nism for the primal solution (i.e., we recover as a by-product
of the optimal , which is in fact our goal). Furthermore, the

subgradient method of [8] has the benefit to employ a fixed step-
size giving explicit trade-offs in terms of accuracy and feasi-
bility of the solution and the number of iterations. In partic-
ular, given the number of iterations , and the stepsize , we
can prove that (see [8, Proposition 1])

(19)

where is the recovered approximate primal solution for
sensor at iteration , and is a positive constant that depends
on the problem at hand. This equation tells us a priori how
many iterations we need to run before we reach a given infea-
sibility level; or provides us with a bound on how much we
should tighten the constraint on to guarantee feasibility w.r.t.
the MSE constraint for finite .

In order to implement the dual subgradient of [8], each node
requires a copy of . This can be circum-
vented by using the method of [10] where the local sensor nodes
have different local copies of , say , and they run an inexact
consensus procedure for times (where ). If ,
we recover the procedure of [8], while if is limited we intro-
duce an additional error in the distributed optimization proce-
dure. Our proposed distributed sparsity-aware sensor selection
(DiSparSenSe) algorithm can be summarized in Algorithm 1.

We would like to highlight that DiSparSenSe will converge
to the solution of SparSenSe with an error floor dependent on
and . This can be proven using an -subgradient argument as
discussed in [8] and [10].

Algorithm 1 DiSparSenSe

1: We call the -th sensor version of at iteration , . Let
an initial value for be given at each sensor node (cold start

). Initialize the ’s with .

2: Compute, in parallel at each sensor , the value of ,
its derivative , and the related optimal
primal variable . The dimension of is the same as
that of . This step requires the solution of an LP problem
whose computational complexity is .

3: Following the primal recovery method of [8], compute

4: For to do
• Send to the neighboring sensor nodes. The

communication cost involved is of ;
• Perform, in parallel, one consensus step as

5: Update each sensor node’s dual variable and store it in local
variables as

where is the projection operator onto the cone
of positive semidefinite matrices. This step requires
singular value decompositions (SVDs), each of which has a
computational complexity .

6: Go to 2 for the next iteration.
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Fig. 1. Centralized versus distributed; selected sensors.

VI. NUMERICAL RESULTS

In this section, we investigate the performance of the pro-
posed algorithms to see if SparSenSe actually selects a few sen-
sors to satisfy the MSE constraint as well as to illustrate that
DiSparSenSe selects the same sensors as SparSenSe. To this
aim, we consider sensors to estimate a parameter of
interest of dimension . The measurement (regression)
matrix is drawn from a zero-mean unit-variance
Gaussian distribution . The noise experienced at dif-
ferent sensors has the same . For DiSparSenSe
we assume that the sensors are connected based on a random
connectivity graph with average node degree of 9. Further, we
set the number of consensus steps to or 8, the step-size
to and the SNR to 10 dB. Notably, for SparSenSe, we
consider a sensor as active if , whereas for DiSparSenSe,
due to the fixed step-size error floor, we consider a sensor as ac-
tive if .

In the first simulation, depicted in Fig. 1, we plot estimated
by SparSenSe and DiSparSenSe for and . As can
be seen, only 3 sensors (out of 50) are activated by SparSenSe
to satisfy our MSE constraint which corroborates the fact that

is sparse. Note that for many different sensors are
activated by DiSparSenSe. However, as expected, by increasing
the number of iterations (from to ), the same
sensors as for SparSenSe are activated by DiSparSenSe and the
magnitude of the related ’s gets closer to the values estimated
by SparSenSe. This illustrates the fact that our distributed imple-
mentation (as expected) converges to the centralized algorithm.

In order to be able to quantitatively assess the perfor-
mance, we also define as the set of indices of the se-
lected sensors by SparSenSe and as the corresponding
set for DiSparSenSe. This helps us to define an equivalence
metric between the distributed and centralized algorithms as

(i.e., if then ).
Again, , and we run 50 independent Monte Carlo trials.
The result is shown in Fig. 2, where we clearly observe from
the average of the Monte Carlo trials (the solid line) that with
increasing an equivalence is acquired as goes to zero. Fi-
nally, the convergence is faster in the case of compared
to .

Fig. 2. Equivalence metric versus .

VII. DISCUSSION

We would like to conclude this letter by emphasizing the fol-
lowing points. First, note that based on (3) even after rounding
the ’s to 1 our MSE metric is certainly satisfied. Second, in
our distributed algorithm, each sensor itself decides about its
status of being active or inactive. More importantly, the “pri-
vate” information contained in is not broadcast, but instead
an “encoded” version is communicated to reach conver-
gence. Furthermore, based upon our earlier explanations, the
total computational complexity of DiSparSenSe is per
node per iteration which is considerably lower compared to the
computational complexity of SparSenSe ( ). The
communication cost of DiSparSenSe is per node per
iteration which is reasonably low as it is independent of .
Quite a few interesting topics such as a more elaborate equiv-
alence proof and developing centralized and distributed algo-
rithms for the case of correlated noise are left for future work.
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