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We tackle the problem of localizing multiple sources in multipath environments using
received signal strength (RSS) measurements. The existing sparsity-aware fingerprinting
approaches only use the RSS measurements (autocorrelations) at different access points
(APs) separately and ignore the potential information present in the cross-correlations of
the received signals. We propose to reformulate this problem to exploit this information
by introducing a novel fingerprinting paradigm which leads to a significant gain in
terms of number of identifiable sources. Besides, we further enhance this newly proposed
approach by incorporating the information present in the other time lags of the
autocorrelation and cross-correlation functions. An interesting by-product of the
proposed approaches is that under some conditions we can convert the given under-
determined problem to an overdetermined one and efficiently solve it using classical least
squares (LS). Moreover, we also approach the problem from a frequency-domain
perspective and propose a method which is blind to the statistics of the source signals.
Finally, we incorporate the so-called concept of finite-alphabet sparsity in our framework
for the case where the sources have a similar power. Our extensive simulation results
illustrate a good performance as well as a significant detection gain for the introduced
multi-source RSS fingerprinting methods.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Precise localization of multiple sources is a fundamental problem which has received a lot of attention recently [1]. Many
different approaches have been proposed in the literature to recover the location of the sources based on time-of-flight (ToF),
time-difference-of-arrival (TDOA) or received-signal-strength (RSS) measurements. A traditional wisdom in RSS-based localiza-
tion tries to extract distance information from the RSS measurements. However, this approach fails to provide accurate location
estimates due to the complexity and unpredictability of the wireless channel. This has motivated another category of RSS-based
positioning, the so-called location fingerprinting, which discretizes the physical space into grid points (GPs) and creates a map
representing the space by assigning to every GP a location-dependent RSS parameter, one for every access point (AP).
The location of the source is then estimated by comparing real-time measurements with the fingerprinting map at the source or
APs, for instance using K-nearest neighbors (KNN) [2] or Bayesian classification (BC) [3].

A deeper look into the grid-based fingerprinting localization problem reveals that the source location is unique in the
spatial domain, and can thus be represented by a 1-sparse vector. This motivated the use of compressive sampling (CS) [4] to
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recover the location of the source using a few measurements by solving an ℓ1-norm minimization problem. This idea
illustrated promising results for the first time in [5,6] as well as in the following works [7–13]. In [7–9], a two-step CS-based
indoor localization algorithm for multiple targets is proposed. In the first coarse localization step, the idea of cluster
matching is used to determine in which cluster the targets are located. This is followed by a fine localization step in which
CS is used to recover sparse signals from a small number of noisy measurements. In [10,11] it is proposed to use a joint
distributed CS (JDCS) method in a practical localization scenario in order to exploit the common sparse structure of the
received measurements to localize one target. Further, for a similar localization scenario as [10,11], in [12] the encryption
capability of CS is demonstrated as CS shows robustness to potential intrusions of unauthorized entities. In [13], finally, a
greedy matching pursuit algorithm is proposed for RSS-based target counting and localization with high accuracy.

Although our focus is on RSS-based source localization in this paper, let us also shortly review some existing sparsity-
aware studies in the TDOA domain. Interestingly, not much work can be found on TDOA-based source localization within a
sparse representation framework. In [14], single-source TDOA-based localization is proposed wherein the sparsity of the
multipath channel is exploited for time-delay estimation. On the other hand, in [15], the source sparsity is exploited to
simplify the hyperbolic source localization problem into an ℓ1-norm minimization. However, the algorithm in [15] treats
different sources separately, i.e., it is in principle a single-source localization approach. In [16], we have investigated the
problem of sparsity-aware passive localization of multiple sources from TDOA measurements.

Coming back to RSS-based sparsity-aware localization, existing algorithms only make use of the signal/RSS readings at
the different receivers (or APs), separately. However, there is potential information in the cross-correlations of these
received signals at the different APs, which has not yet been exploited. In [17], we have proposed to reformulate the
sparse localization problem within a single-path channel environment so that we can make use of the cross-correlations of
the signal readings at the different APs. In this paper, we extend our basic idea in [17] by presenting the following main
contributions:
I.
 First of all, in contrast to [17], we consider a realistic multipath channel model (simulated by a room impulse response
(RIR) generator [18]), and we show that our idea can also be employed in a realistic multipath environment.
II.
 Second, we analytically show that this new framework can provide a considerable amount of extra information
compared to classical algorithms which leads to a significant improvement in terms of the number of identifiable
sources as well as localization accuracy. To guarantee a high quality reconstruction, we also numerically assess the
restricted isometry property (RIP) of our proposed fingerprinting maps.
III.
 In order to further improve the potential of our novel framework in terms of number of identifiable sources, we also
propose to exploit extra information in the time domain. Particularly, the information in other lags than the zeroth lag of
the autocorrelation and cross-correlation functions can be exploited to construct a larger fingerprinting map.
IV.
 We propose a novel idea to deal with the cases where there is no knowledge about the statistics of the transmitted
signals by the source nodes (SNs). This basically makes it possible to perform fingerprinting in a blind fashion with
respect to (w.r.t.) the statistics of the transmitted signals. This blind approach is mainly based on a proper filter bank
design to approach the fingerprinting problem from the frequency domain. Moreover, we also show that incorporating
this information in the frequency domain improves the performance in terms of number of identifiable sources
compared to the original proposed approach.
V.
 We show that if the sources transmit the same signal power the sparse vector of interest will contain finite-alphabet
elements. In such cases, we propose to recover the locations by taking the finite-alphabet property of the non-zero
elements of the sparse vector into account, which we refer to as finite-alphabet sparsity. We show that including this
information leads to a considerable reconstruction gain.

Note that the sources considered here are non-cooperative, i.e., the sources do not emit radio signals with the purpose of
localization, but the signals are intended for communications and we exploit them for localization. The proposed algorithms
can be applied in indoor or outdoor environments. For instance, monitoring non-cooperative sources broadcasting CDMA
signals can be an example of our application domain. However, there is no limitation to employ the proposed ideas in
wireless LAN (WLAN) or wireless sensor networks (WSNs) operating in a centralized fashion with a wired backbone.

The rest of the paper is organized as follows. In Section 2, the signal and network model under consideration are
explained. In Section 3, the classical RSS-based fingerprinting localization as well as our proposed fingerprinting idea are
explained. The RIP of the proposed fingerprinting maps is also numerically assessed in this section. Section 4 explains how
extra information in the time domain can be exploited to further enhance the performance of our proposed fingerprinting
idea. The idea of blind fingerprinting using frequency domain information is presented in Section 5. Section 6 explains the
idea of using finite-alphabet sparsity. Extensive simulation results in Section 7 corroborate our analytical claims in several
scenarios. Finally in Section 8, after a short discussion on computational complexity of the proposed algorithms, the paper is
wrapped up with brief concluding remarks.

2. Problem definition

Consider that we have M access points (APs) distributed over an area which is discretized into N cells each represented
by its central grid point (GP). The APs can be located anywhere. We consider K non-cooperative source nodes (SNs) which are
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randomly located either on these GPs (on-grid scenario) or anywhere (off-grid scenario). We assume that the APs are
connected to each other by a wired backbone so that they can cooperate by exchanging their signal readings. We also
assume that the APs are synchronized, which is feasible especially considering the wired backbone. Now, if the k-th SN
broadcasts a time domain signal sk(t), the received signal at the m-th AP can be expressed by

xm;kðtÞ ¼ ∑
L

l ¼ 1
hl;m;kskðt�τl;m;kÞþnmðtÞ; ð1Þ

where we consider an L-path channel with hl;m;k and τl;m;k respectively denoting the channel coefficient and time-delay of
the l-th path from the k-th SN to the m-th AP; nm(t) is the additive noise at the m-th AP. Our assumptions on the signal and
noise models are as follows:
A.1
 The signals sk(t) are assumed to be ergodic, mutually uncorrelated sequences, i.e., EfskðtÞsnk0 ðt0Þg ¼ ηkrk ðt�t0Þδk�k0 , with ηk
being the k-th signal power, rkðτÞ the normalized signal correlation function with rkð0Þ ¼ 1, and δk the unit impulse
function. Meanwhile, Ef�g denotes the statistical expectation which is equal to temporal averaging due to the ergodic
property of the signals.
A.2
 The noises nm(t) are assumed to be ergodic, mutually uncorrelated white sequences, i.e., EfnmðtÞnn
m0 ðt0Þg ¼

s2nδðt�t0Þδm�m0 , with s2n ¼N0B the variance of the additive noise with density N0 within the operating frequency
bandwidth B, and δðtÞ the Dirac impulse function.
A.3
 The transmitted signals are uncorrelated with the additive noise, i.e., EfskðtÞnmðt0Þg ¼ 0; 8 t; t0 and 8m; k.

A.4
 Throughout the paper we consider rkðτÞ ¼ rðτÞ; 8k and we assume it to be known a priori or acquired through training,

unless otherwise mentioned. Note that under this assumption the SNs can still be considered non-cooperative in the
sense that they do not cooperate by exchanging information.
A.5
 As a more general case, we sometimes also consider rkðτÞark0 ðτÞ and assume they are unknown. This requires an
approach which is blind to the rkðτÞ's.
From (1), the total received signal at the m-th AP can be written as

xmðtÞ ¼ ∑
K

k ¼ 1
xm;kðtÞ ¼ ∑

K

k ¼ 1
∑
L

l ¼ 1
hl;m;kskðt�τl;m;kÞþnmðtÞ: ð2Þ

It is worth pointing out that in a general sense, the problem under consideration is a passive localization problem as xm(t)
cannot be decomposed into its components xm;kðtÞ. The problem here is to use the total received signals at the APs to localize
the SNs simultaneously. In the following, we propose a novel RSS-based fingerprinting paradigm to localize the SNs within a
multipath environment.

3. Sparsity-aware RSS localization

Localizing multiple SNs using their received signals is a non-trivial problemwhich can be converted into a linear problem
by taking into account the sparsity of the SNs in the spatial domain. In order to be able to incorporate the sparsity, we define
a grid structure in space consisting of N GPs. Next, we perform localization in two phases; first, we construct the
fingerprinting map in an initialization phase by either training or if possible analytical computation. More specifically,
if training is considered, a training SN (transmitting s0ðtÞ with signal correlation rðτÞ and power η0 ¼ 1) is put on every GP,
one after the other, and the signal readings at all the APs are used to construct the map. Alternatively, the channel
coefficients and the time-delays of the received signals at all the APs can be computed analytically (e.g., using the RIR
generator [18]) whereas the statistics of the sk(t)'s, i.e., the rðτÞ, are assumed to be known (or measured) beforehand. Notably,
an important advantage of analytically computing the map is avoiding an exhaustive training procedure. In the second
phase, the so-called run-time phase, real-time multi-source measurements of the sources with similar statistics as in the
initialization phase are collected and processed to recover the locations of the SNs.

It is also worth highlighting that the case of off-grid source localization can for instance be handled using adaptive mesh
refinement algorithms as explained in [19] or by finding the “grid mismatch” using sparse total least squares (STLS) ideas as
we proposed in [16], but this is left as future work due to space limitations. In this paper, we confine ourselves to finding the
closest GPs to the off-grid sources as explained in Section 7.3.

3.1. Classical sparsity-aware RSS localization (SRL)

One way to compute the RSS is by taking the zeroth lag of the autocorrelation function of the received time-domain
signals at the APs as

ym ¼ EfxmðtÞxnmðtÞg

¼ E ∑
K

k ¼ 1
∑
L

l ¼ 1
hl;m;kskðt�τl;m;kÞþnmðtÞ

 !(
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� ∑
K

k0 ¼ 1
∑
L

l0 ¼ 1
hn

l0 ;m;k0s
n

k0 ðt�τl0 ;m;k0 Þþnn

mðtÞ
 !)

¼ E ∑
K

k ¼ k0 ¼ 1
∑
L

l ¼ 1
∑
L

l0 ¼ 1
hl;m;kh

n

l0 ;m;kskðt�τl;m;kÞsnkðt�τl0 ;m;kÞ
( )

þEfnmðtÞnn

mðtÞg

¼ ∑
K

k ¼ 1
∑
L

l ¼ 1
∑
L

l0 ¼ 1
hl;m;kh

n

l0 ;m;krðτl0 ;m;k�τl;m;kÞηkþs2n; ð3Þ

which for a single-path channel model boils down to ym ¼∑K
k ¼ 1jhm;kj2ηkþs2n. Notably, the third equality follows from A.1

and A.3 and the last equality follows from A.2 and A.4, as detailed in Section 2. Interestingly, if we ignore the effect of the
noise for the time being, the last expression in (3) shows that the RSS at APm is a summation of K location-dependent
(through delays and channel coefficients) terms ∑L

l ¼ 1∑
L
l0 ¼ 1hl;m;kh

n

l0 ;m;krðτl0 ;m;k�τl;m;kÞ. This means that if these K components
could be recognized, the locations can be estimated from them, which motivates choosing them as fingerprints of the
sources. Now, in order to be able to do this, we consider that the SNs can only be located on a finite set of positions
determined by N GPs. Therefore, if we measure/compute the fingerprints of the N GPs, the corresponding N fingerprints can
be stacked in a vector expressed by

ψm ¼ ∑
L

l ¼ 1
∑
L

l0 ¼ 1
hgl;m;1h

gn
l0 ;m;1rðτ

g
l0 ;m;1�τgl;m;1Þ;…; ∑

L

l ¼ 1
∑
L

l0 ¼ 1
hgl;m;Nh

gn
l0 ;m;Nrðτ

g
l0 ;m;N

�τgl;m;NÞ
" #T

; ð4Þ

where ð�Þg denotes values being measured/computed for the GPs. Thus, using (4), (3) can be rewritten for a grid structure as

ym ¼ ψT
mθþs2n; ð5Þ

where θ is an N � 1 vector containing all zeros except for K non-zero elements with indices related to the locations of the K
sources and values equal to the ηk's. The same holds for the other APs with the same θ, which helps us to stack the ym's and
ψm's for different APs as

y¼Ψθþpn; ð6Þ

where pn ¼ s2n1M with 1M the M � 1 vector of all ones, y¼ ½y1;…; yM�T and Ψ¼ ½ψ1;…;ψM�T . Defining xðtÞ ¼ ½x1ðtÞ;…; xMðtÞ�T ,
it is clear that

y¼ EfxðtÞ � xnðtÞg; ð7Þ

where �denotes the element-wise Hadamard product. As is clear from (6), y is the K-sparse RSS characterized by the
fingerprinting map Ψ as given by

ΨT ¼ ∑
L

l ¼ 1
∑
L

l0 ¼ 1

hgl;1;1h
gn
l0 ;1;1rðτ

g
l0 ;1;1�τgl;1;1Þ ⋯ hg

l;M;1h
gn
l0 ;M;1rðτ

g
l0 ;M;1�τgl;M;1Þ

hgl;1;2h
gn
l0 ;1;2rðτ

g
l0 ;1;2�τgl;1;2Þ ⋯ hg

l;M;2h
gn
l0 ;M;2rðτ

g
l0 ;M;2�τgl;M;2Þ

⋮ ⋱ ⋮
hgl;1;Nh

gn
l0 ;1;Nrðτ

g
l0 ;1;N�τgl;1;NÞ ⋯ hgl;M;Nh

gn
l0 ;M;Nrðτ

g
l0 ;M;N

�τgl;M;NÞ

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð8Þ

Note that if the SNs have different signal powers, estimating θ will also return the signal powers as a by-product. Solving (6)
with classical LS produces a poor estimate due to the under-determined nature of the problem (MoN). Instead, sparse
reconstruction techniques (or CS) aim to reconstruct θ by taking the source sparsity concept into account. It is worth
mentioning that here we have a natural compression in the problem, in the sense that the number of measurements is
limited to the number of APs (M), which in many practical scenarios is much less than the number of GPs (N). Hence, using
(6), θ can be well-recovered by solving the following ℓ1-norm minimization:

θ̂SRL ¼ arg min
θ

Jy�ΨθJ22þλJθJ1; ð9Þ

where λ is a regularization parameter that controls the trade-off between sparsity and reconstruction fidelity of the
estimated θ. The problem (9) can efficiently be solved using several algorithms including the well-known LASSO [7]. We
would like to stress that (even though modified to fit our setup) the discussed SRL represents the existing classical sparsity-
aware RSS localization idea in the literature [7] and it is modified and presented here for the sake of comparison.

Remark 1 (Identifiability of SRL). To elaborate on the identifiability of localization using SRL, it is worth mentioning that for
classical multi-source (2-dimensional) RSS-based localization, as long as there are MZ3 APs (not lying on a straight line),
the SNs can be uniquely identified and localized. On the other hand, the sparse reconstruction-based nature of SRL imposes
an extra constraint MZ2K (MZ3 should also be satisfied) because for a perfect reconstruction we require every 2K-column
subset of Ψ to be full column rank so that we can reconstruct a K-sparse θ. All in all, this leads to the necessary condition
MZmaxð2K ;3Þ for identifiability and reconstruction. □
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Fig. 1. Identifiability gain of SRLC compared to SRL.
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3.2. Sparsity-aware RSS localization via cooperative APs (SRLC)

As explained in the previous subsection, the existing sparsity-aware RSS-based algorithms represented by the SRL,
only make use of the zeroth lag of the autocorrelation function (signal strength) of the signals received at each AP separately
and ignore the potential information present in the cross-correlation of this information. We propose to reformulate
the problem so that we can exploit this extra information by a cooperation among the APs. This new model requires the
construction of a new fingerprinting map as will be explained subsequently. Let us instead of the autocorrelations of the
received signals at each AP, this time also compute the cross-correlations as

ym;m0 ¼ EfxmðtÞxnm0 ðtÞg

¼ E ∑
K

k ¼ 1
∑
L

l ¼ 1
hl;m;kskðt�τl;m;kÞþnmðtÞ

 !
∑
K

k0 ¼ 1
∑
L

l0 ¼ 1
hn

l0 ;m0 ;k0s
n

k0 ðt�τl0 ;m0 ;k0 Þþnn

m0 ðtÞ
 !( )

¼ E ∑
K

k ¼ k0 ¼ 1
∑
L

l ¼ 1
∑
L

l0 ¼ 1
hl;m;kh

n

l0 ;m0 ;kskðt�τl;m;kÞsnkðt�τl0 ;m0 ;kÞ
( )

þEfnmðtÞnn

m0 ðtÞg

¼ ∑
K

k ¼ 1
∑
L

l ¼ 1
∑
L

l0 ¼ 1
hl;m;kh

n

l0 ;m0 ;krðτl0 ;m0 ;k�τl;m;kÞηkþs2nδm�m0 ; ð10Þ

which for a single-path channel model boils down to ym;m0 ¼∑K
k ¼ 1hm;kh

n

m0 ;krðτm0 ;k�τm;kÞηkþs2nδm�m0 . Again, the third equality
follows from A.1 and A.3 and the last equality follows from A.2 and A.4, as detailed in Section 2. Similar to the case of
the SRL, if we ignore the noise effect for the time being, (10) again introduces a location-dependent fingerprint
∑L

l ¼ 1∑
L
l0 ¼ 1hl;m;kh

n

l0 ;m0 ;krðτl0 ;m0 ;k�τl;m;kÞ for the K sources. Thus, by considering the GPs as the only possible locations of the
SNs, if we measure/compute the fingerprints of the N GPs, the corresponding N fingerprints can be stacked in a vector as
given by

~ψm;m0 ¼ ∑
L

l ¼ 1
∑
L

l0 ¼ 1
hgl;m;1h

gn
l0 ;m0 ;1rðτ

g
l0 ;m;1�τgl;m0 ;1Þ;…; ∑

L

l ¼ 1
∑
L

l0 ¼ 1
hgl;m;Nh

gn
l0 ;m0 ;Nrðτ

g
l0 ;m;N

�τgl;m0 ;NÞ
" #T

; ð11Þ

and therefore using (11), (10) can be rewritten for a grid structure as

ym;m0 ¼ ~ψ T
m;m0θþs2nδm�m0 ; ð12Þ

where θ is the same K-sparse vector as in the case of the SRL. In order to end up with a similar expression as (6), we can
stack the M2 different ym;m0 's and ~ψm;m0 's leading to

~y ¼ ~Ψθþ ~pn; ð13Þ
where

~y ¼ ½y1;1;…; y1;M ;…; yM;1;…; yM;M�T ; ð14Þ

~Ψ ¼ ½ ~ψ 1;1;…; ~ψ 1;M ;…; ~ψM;1;…; ~ψM;M�T ; ð15Þ
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and ~pn ¼ vecðs2nIMÞ. Clearly, in contrast to y¼ EfxðtÞ � xnðtÞg, this time we compute ~y ¼ EfxðtÞ � xnðtÞg where �represents
the Kronecker product. Hence, now ~y is a K-sparse vector parametrized using a fingerprinting map of size M2 � N:

~ΨT ¼ ∑
L

l ¼ 1
∑
L

l0 ¼ 1

hgnl;1;1h
g
l0 ;1;1rðτ

g
l;1;1�τg

l0 ;1;1Þ ⋯ hgnl;M;1h
g
l0 ;M;1rðτ

g
l;M;1�τg

l0 ;M;1Þ
hgnl;1;2h

g
l0 ;1;2rðτ

g
l;1;2�τg

l0 ;1;2Þ ⋯ hgnl;M;2h
g
l0 ;M;2rðτ

g
l;M;2�τg

l0 ;M;2Þ
⋮ ⋱ ⋮

hgnl;1;Nh
g
l0 ;1;Nrðτ

g
l;1;N�τg

l0 ;1;NÞ ⋯ hgn
l;M;Nh

g
l0 ;M;Nrðτ

g
l;M;N�τg

l0 ;M;N
Þ

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð16Þ

Remark 2 (Identifiability of SRLC). For the enhanced model, we require M2Z2K and MZ3 which results in the necessary
identifiability condition MZmaxð

ffiffiffiffiffiffiffi
2K

p
;3Þ. Notably, for the special case where the channel coefficients are real, i.e.,

ym;m0 ¼ ym0 ;m; 8m;m0, we obtain only MðMþ1Þ=2 different elements in ~y and the same number of rows in ~Ψ. For such a
case, we require MðMþ1Þ=2Z2K and MZ3 which results in the necessary identifiability condition MZmaxð⌈�1=2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16Kþ1

p
=2⌉;3Þ, where ⌈ � ⌉ denotes the ceiling operator. □

As can be seen, in general, the newly proposed fingerprinting model given by (13) provides us with a set of M2 linear
equations instead of only M as in (6). This added information (M2�M extra rows), obtained by taking cross-correlations of
the received signals at the different APs into account, makes it possible for the system to localize a larger number of SNs
with a fixed number of APs. This particularly becomes even more important when the physical conditions of the covered
area limit the number of possible APs. By considering the statements of Remarks 1 and 2, this gain is illustrated in Fig. 1
using the minimum number of APs required to identify K SNs simultaneously. As can be seen, the proposed fingerprinting
paradigm is theoretically capable of localizing the same number of SNs with much fewer APs. The new sparsity-aware
localization problem in (13) can now be solved by considering the following two cases:
�
 Case I: N4M2. In this case, by considering the sparse structure of θ, the extra information enables us to locate more SNs
by solving the following ℓ1-norm minimization problem (for instance using LASSO):

θ̂SRLC ¼ arg min
θ

J ~y� ~ΨθJ22þλJθJ1; ð17Þ
�
 Case II: NrM2. Since ~Ψ has generally full column rank in this case, no matter what the structure of θ might be, even if it
is not sparse, it can be efficiently recovered by ordinary LS as

θ̂LS ¼ ~Ψ† ~y ; ð18Þ
where ð�Þ† represents the pseudo-inverse.

It is worth pointing out that the idea proposed in this subsection can be further improved by exploiting extra information
from the time and frequency domains. This basically motivates Sections 4 and 5.

3.3. RIP investigation

As we explained earlier, Ψ and ~Ψ are proved to be the sparsifying bases for the SRL and the SRLC. Having satisfied the
sparsity property, the only issue that should be assessed to guarantee a high quality reconstruction is the mutual
incoherence between the columns of Ψ and ~Ψ or alternatively the RIP. One way to approach the problem is following the
same trend as explained in [13] because our channel coefficients can often be considered as drawn from a random
distribution (such as Rayleigh). As is well-documented in the literature [20], for K ¼ 1;2;… the RIP constant δK of a matrix A
(with normalized columns) is the smallest number that satisfies

�δK r
JAxJ22
JxJ22

�1rδK ; ð19Þ

for all K-sparse xARN . Roughly speaking, as long as 0oδKo1, the RIP holds. In [13], by exploiting the effect of the random
channel coefficients it is shown that if M¼OðK logðN=KÞÞ the probability that there exists a K-sparse vector that satisfies
jJAxJ22=JxJ22�1j4δK for a 0oδK o1 tends to 0, which means that with a high probability the RIP is satisfied. The same
holds in our case for Ψ. As an alternative, we have tried to numerically investigate the RIP property of the proposed
fingerprinting maps to illustrate that the reconstruction will indeed have a high quality. To this aim, we can use the
computationally less demanding definition in [21] where δK is defined as the maximum distance from 1 of all the
eigenvalues of the ðNKÞ submatrices, AH

ΛAΛ, derived from A, where Λ is a set of indices with cardinality K which selects those
columns of A indexed by Λ. It means that for each K, the RIP constant is given by

δK ¼maxðjλmaxðAH
ΛAΛÞ�1j; jλminðAH

ΛAΛÞ�1jÞ: ð20Þ
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For the sake of computational feasibility, we consider the case where M¼5, and hence M2 ¼ 25, and N¼36 to generate a
typical Ψ and ~Ψ using the other parameters adopted in Section 7. For such a case, we have computed the δK with K ¼ 1;…;6
for Ψ and ~Ψ. We also compute the δK for matrices with the same size containing elements drawn from a random normal
distribution, i.e., N5�36 and N25�36. Note that such random matrices are proved to be a good choice in terms of the RIP and
that is why we use them as a benchmark. In order to slightly heal the RIP, we apply the orthonormalization operation
proposed in [9,16] to all the matrices before testing the RIP. The results are presented in Table 1. As is clear from the table,
our proposed fingerprinting map for the SRL Ψ performs almost similar to N5�36 and loosely satisfies the RIP up to K¼2.
However, for K42, δK starts increasing for both of them. Interestingly, we observe that for ~Ψ (also for N25�36) the RIP is met
for K up to 6, which shows a considerable improvement as compared to Ψ.

4. Exploiting additional time domain information (SRLC-TD)

For a fixed network, with known locations of the APs and GPs, the maximum delay difference can be computed during
the initialization phase. It can be expressed by

Δτmax ¼ max
m;m0 ;n

ðjτm;n�τm0 ;njÞ ¼ max
m;m0 ;n

dðAPm;GPnÞ�dðAPm0 ;GPnÞ
ν

����
����

� �
; ð21Þ

where dð�Þ denotes the Euclidean distance and ν is the velocity of signal propagation. As a result, the maximum delay
difference experienced by any signal from a multipath channel is Δτmaxþγ, where γ denotes the maximum delay spread of
the multipath channel. In principle, what we do in Section 3.2 is to compute the autocorrelations as well as the cross-
correlations or in other words the zeroth lag of the autocorrelation and cross-correlation functions. Let us start by explaining
what happens when we consider the complete autocorrelation function at each AP and the complete cross-correlation
functions of the received signals at the different APs (SRLC-TD). As can be seen in Fig. 2, for a multipath channel, when we
consider the complete autocorrelation function, the output is non-zero within the time span ½�1=B�γ; þ1=Bþγ�. This
means that there is potential information present in other lags than the zeroth lag which could further be exploited.
Similarly, for the cross-correlations at the different APs, depending on the location of the SNs, we have to scan the time span
½�Δτmax�1=B�γ;Δτmaxþ1=Bþγ� to make sure that we have at least some non-zero rðτÞ values. Particularly, here we are
interested in the elements of

~y ðnÞ ¼ EfxðtÞ � xðt�nTsÞng; ð22Þ
which are given by

yðnÞm;m0 ¼ EfxmðtÞxnm0 ðt�nTsÞg

¼ ∑
K

k ¼ 1
∑
L

l ¼ 1
∑
L

l0 ¼ 1
hl;m;kh

n

l0 ;m0 ;krðτl0 ;m;k�τl;m0 ;kþnTsÞηkþs2nδnδm�m0 ;
Table 1
RIP test.

Matrix δ1 δ2 δ3 δ4 δ5 δ6

N5�36 0 0.8696 1.6167 2.2038 2.7692 3.2472
Ψ 0 0.9820 1.7978 2.5670 3.2589 3.8070
N25�36 0 0.3442 0.5362 0.6581 0.7291 0.7793
~Ψ 0 0.5069 0.6966 0.8065 0.8609 0.9408

Furthest
cross-correlation

in multipath

Furthest
cross-correlation

in multipath
Autocorrelation

in multipath

[-1/B - , 1/B + ] [ max-1/B - , max+1/B + ][- max-1/B - , - max+1/B + ]

r( )

t (sec)

Fig. 2. Autocorrelations and cross-correlations in a multipath environment.
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where Ts is the smallest time fraction in the system which in practice will be the sampling time since we implement the
algorithms using temporal averaging. Therefore, we take Ns ¼ 1=ðTsBÞ samples per inverse bandwidth. Accordingly, by
omitting the intermediate steps similar to the SRLC, we can compute the fingerprinting map for ~y ðnÞ as

ð ~ΨðnÞÞT ¼ ∑
L

l ¼ 1
∑
L

l0 ¼ 1

hgn
l;1;1h

g
l0 ;1;1rðτ

g
l;1;1�τg

l0 ;1;1þnTsÞ ⋯ hgnl;M;1h
g
l0 ;M;1rðτ

g
l;M;1�τg

l0 ;M;1þnTsÞ
hgn
l;1;2h

g
l0 ;1;2rðτ

g
l;1;2�τg

l0 ;1;2þnTsÞ ⋯ hgnl;M;2h
g
l0 ;M;2rðτ

g
l;M;2�τg

l0 ;M;2þnTsÞ
⋮ ⋱ ⋮

hgnl;1;Nh
g
l0 ;1;Nrðτ

g
l;1;N�τg

l0 ;1;NþnTsÞ ⋯ hgnl;M;Nh
g
l0 ;M;Nrðτ

g
l;M;N�τg

l0 ;M;N
þnTsÞ

2
666664

3
777775

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð23Þ

As a result, we could consider all lags nAf�Ns�⌈γ=Ts⌉;…;Nsþ⌈γ=Ts⌉g of the complete auto-correlation functions and
all lags nAf⌊�ðΔτmaxþγÞ=Tsc�Ns;…; ⌈ðγþΔτmaxÞ=Ts⌉þNsg of the complete cross-correlation functions. This way we
will compute the autocorrelations for Nac ¼ 2ðNsþ⌈γ=Ts⌉Þ lags whereas we have to compute cross-correlations for
Ncc ¼ 2ðNsþ⌈Δτmax=Ts⌉þ⌈γ=Ts⌉Þ lags. Here, for the sake of simplicity of notation, we also assume that we compute Ncc

autocorrelation lags and set the value of the autocorrelation function for the remaining Ncc�Nac ¼ 2⌈ðΔτmaxÞ=Ts⌉ lags
to zero.

The additional time lags contain new information which was not used in the SRLC. To exploit this potential information,
we propose to incorporate all lags by solving

~yTD ¼ ~ΨTDθþ1Ncc � ðδn ~pnÞ; ð24Þ
where

~yTD ¼ ½ð ~y ð⌊�ðΔτmax þ γÞ=Tsc�NsÞÞT ;…; ð ~y ð⌈ðγþΔτmaxÞ=Ts⌉þNsÞÞT �T ;
and

~ΨTD ¼ ½ð ~Ψð⌊�ðΔτmax þ γÞ=Tsc�NsÞÞT ;…; ð ~Ψð⌈ðγþΔτmaxÞ=Ts⌉þNsÞÞT �T ;
are the augmented versions of the measurement vectors and fingerprinting maps computed at the different time lags.
Hence, this time ~ΨTD is a NccM2 � N matrix and thus (24) can be solved using LASSO or classical LS if it is underdetermined
or overdetermined, respectively. It is noteworthy that, depending on the computational complexity constraints, at the
expense of the identifiability gain we can also consider the lags to be spaced by the symbol time 1=B instead of Ts which
would result in a smaller number of lags.

5. Blind SRLC using frequency domain information (SRLC-FD)

Remember that for both SRLC and SRLC-TD, rðτÞ should be the same and known for all the sources (A.4 in Section 2) to
make us capable of measuring/computing the fingerprinting map. This imposes some a priori knowledge on the problem
which might be lacking in some practical situations, and thus we are also interested in an approach which is blind to the
rkðτÞ's. Here, we tackle the issue which is specified by A.5 in Section 2, while we also try to take advantage of the large
bandwidth of the received signal to gain some extra information, similar to Section 4, and enhance the SRLC, this time by
approaching the problem from the frequency domain (SRLC-FD).

Let us start by explaining an appropriate filter bank design which plays an important role in the following analysis.
Assume that we do not have any knowledge about the rkðτÞ's. Instead, at each AP we can efficiently estimate the bandwidth
of the total received signal using appropriate spectrum estimation techniques [22]; we call it B and for the sake of simplicity
of exposure it is assumed to be the same at different APs. Next, we use a set of filters ff ðqÞðtÞgQq ¼ 1 to divide B into
Q ¼ ⌈BðΔτmaxþγÞ⌉ adjacent subbands BðqÞ ¼ ½ðq�1ÞB=Q ; qB=Q Þ with bandwidth B=Q . A schematic view of an arbitrary signal,
channel and the filter bank is shown in Fig. 3. Notably, since B=Q ¼ B=⌈BðΔτmaxþγÞ⌉o1=γ with 1=γ representing the
approximate coherence bandwidth of the channel, the output of the q-th filter at the m-th AP experiences a flat fading
B (Approximate Bandwidth)

signal
F(1)

channel
F(2) F(Q-1) F(Q)

Fig. 3. Frequency domain filtering. FðqÞ denotes for the Fourier transform of f ðqÞðtÞ.
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channel HðqÞ
m;k for every SNk. Therefore, the related output signal can be written as

xðqÞm ðtÞ ¼ ∑
K

k ¼ 1
½skðtÞnf ðqÞðtÞ�HðqÞ

m;kþnmðtÞnf ðqÞðtÞ

¼ ∑
K

k ¼ 1
sðqÞk ðtÞHðqÞ

m;kþnðqÞ
m ðtÞ; ð25Þ

where n denotes the convolution operator, and sðqÞk ðtÞ and nðqÞ
m ðtÞ respectively denote the filtered versions of sk(t) and nm(t).

Further, by simply stacking the results for different APs, the total received signal vector can be expressed as
xðqÞðtÞ ¼ ½xðqÞ1 ðtÞ;…; xðqÞM ðtÞ�T . Therefore, we have Q signals xðqÞðtÞ to compute ~y ðqÞ ¼ EfxðqÞðtÞ � xðqÞnðtÞgwith its elements given by

yðqÞm;m0 ¼ EfxðqÞm tð ÞxðqÞnm0 g

¼ E ∑
K

k ¼ 1
sðqÞk ðtÞHðqÞ

m;k ∑
K

k0 ¼ 1
sðqÞn
k0

ðtÞHðqÞn
m0 ;k0

( )
þEfnðqÞ

m tð ÞnðqÞ
m0 tð Þg

¼ ∑
K

k ¼ 1
HðqÞ

m;kH
ðqÞn
m0 ;kη

ðqÞ
k þ s2n

Q
δm�m0 ; ð26Þ

where the second equality follows from A.1 and A.3 and the last equality follows from A.2, as detailed in Section 2. Now, let
us ignore the effect of the noise in (26) for the time being, and discover the fingerprints. Interestingly, owing to our
proposed filtering, the location-dependent fingerprints HðqÞ

m;kH
ðqÞn
m0 ;k do not depend on the rkðτÞ's and the effect of the different

rkðτÞ's appears in the ηðqÞk 's, which can be handled within the sparse vector of interest. Now, if we consider that the sources
can only be located on N GPs, we can use any training or analytical method to compute the rkðτÞ�independent fingerprints
at the m-th AP for the q-th subband as

ψ ðqÞ
m;m0 ¼ ½HðqÞ

m;1H
ðqÞn
m0 ;1;…;HðqÞ

m;NH
ðqÞn
m0 ;N �T : ð27Þ

As a result, (26) can be rewritten as

yðqÞm;m0 ¼ ðψ ðqÞ
m;m0 ÞTθðqÞ þ s2n

Q
δm�m0 ; ð28Þ

where θðqÞ is the K-sparse vector of interest for the q-th subband. The ensuing steps are similar to those of the SRLC and we
can compute the fingerprinting map for ~y ðqÞ as

ð ~ΨðqÞÞT ¼

jHðqÞg
1;1 j2 HðqÞg

1;1 H
ðqÞgn
2;1 ⋯ jHðqÞg

M;1j2

jHðqÞg
1;2 j2 HðqÞg

1;2 H
ðqÞgn
2;2 ⋯ jHðqÞg

M;2j2
⋮ ⋮ ⋱ ⋮

jHðqÞg
1;N j2 HðqÞg

1;N H
ðqÞgn
2;N ⋯ jHðqÞg

M;Nj2

2
666664

3
777775:

Now, based on this analysis, depending on the statistical properties of the received signals, i.e., spectrum of the sk(t)'s, the
following three cases can happen.

5.1. Flat spectrum

Looking at Fig. 3, we understand that if the spectrum of the sum of the sk(t)'s is (almost) flat, the ηðqÞk 's will be (almost) the
same in the different frequency bands BðqÞ. This basically makes it possible to construct an augmented version of the
measurements as well as the fingerprinting maps, as ηðqÞk 	 ηk will appear again in θðqÞ ¼ θ for all q. This means θ will be a
K-sparse signal with all elements equal to zero except for K elements equal to ηk. Thus, the ensuing steps are similar to those
of the SRLC-TD as by constructing the augmented version of the run-time measurements as ~yFD ¼ ½ð ~y ð1ÞÞT ;…; ð ~y ðQÞÞT �T and the
one of the fingerprinting maps as ~ΨFD ¼ ½ð ~Ψð1ÞÞT ;…; ð ~ΨðQ ÞÞT �T . Finally, we solve

~yFD ¼ ~ΨFDθþ1Q � ~pn: ð29Þ
As we explained, this time ~ΨFD is a QM2 � N matrix and thus (29) can be solved using LASSO or classical LS if it is
underdetermined or overdetermined, respectively. It is worth pointing out that even for the case where the signals have a
partially flat spectrum, we can design the filters for that flat part of the spectrum and again construct (29) where in such a
case we will have less subbands.

5.2. Varying spectrum; the simple solution Q¼1

In contrast to the case where the signals have a flat spectrum, for the non-flat case, we cannot construct augmented
versions of the measurements and the maps for a unique θ and solve a linear system similar to (29). Particularly, because of
the different ηðqÞk 's in the different bands, the ~ΨðqÞ

's and ~y ðqÞ's are related to different θðqÞ's. In this case, as a straightforward
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solution, we can simply take one of the bands, for instance the first band Bð1Þ, and solve

~y ð1Þ ¼ ~Ψð1Þ
θð1Þ þ ~pn: ð30Þ

This way, we at least have the same identifiability gain as SRLC, but more importantly, we are blind to the rkðτÞ's. However,
we still have some information present in the adjacent subbands which has not been exploited. This motivates the following
subsection.

5.3. Varying spectrum; enhancing the identifiability gain

The question is how we can exploit the information present in all the subbands to attain an identifiability gain.
An important observation which helps us to develop a solution is the fact that even though different subbands lead to
different ηðqÞk 's for a non-flat spectrum, all the bands construct linear models, similar to (30), where in all of them the sparse
θðqÞ's share a common support, i.e., the support of θðqÞ is the same 8q. This important property motivates a group-LASSO
(G-LASSO) type of solution to incorporate all the bands. However, note that different from classical G-LASSO, we have
different maps ~ΨðqÞ

for different subbands. Similar cases occur in the framework of the multiple measurement vectors
(MMV) problem [23]. To deal with this, we propose a modified version of G-LASSO as defined by

Θ̂ ¼ arg min
Θ

∑
Q

q ¼ 1
J ~y ðqÞ � ~ΨðqÞ½Θ�:;q J22þλ ∑

N

n ¼ 1
J ½Θ�n;: J2; ð31Þ

where Θ¼ ½θð1Þ;…; θðQ Þ�. The first term on the right hand side of (31) is the LS part which minimizes the error for the
different subbands and the second term enforces group sparsity. It is worth pointing out that an analysis of the algorithms to
solve (31) is outside the scope of this paper and here we restrict ourselves to standard convex optimization tools such as
CVX [24] to solve the problem. Based on the discussions presented in [23] for MMV, incorporating all the subbands within
(31) will result in a gain in terms of identifiability compared to (30), as is also corroborated by our simulation results in
Section 7.

6. Improved localization using finite-alphabet sparsity

In particular cases where the SNs have a known equal signal power (ηk ¼ η; 8k) we can accommodate η within Ψ (or ~Ψ,
~ΨTD and ~ΨFD) and therefore θ will be a K-sparse vector with 0 everywhere except for K elements which are 1. This means
that our sparse vector (to be reconstructed using LASSO) has a finite-alphabet property which is not included in the
optimization problem. Incorporating this extra information can help to improve the reconstruction quality and hence the
localization performance for SRL (likewise, SRLC, SRLC-TD and SRLC-FD). The problem of sparse reconstruction under finite-
alphabet constraints is investigated in [25,26]. In [26], efficient algorithms for multiuser detection (MUD) under sparsity
and finite-alphabet constraints are developed. More general, sparse reconstruction under finite-alphabet constraints is
investigated in [25] through two different approaches; sphere decoding and semi-definite relaxation (SDR), with a main
emphasis on the former approach. Here, we re-derive and employ the SDR-based approach. Interestingly, when the alphabet
set is f0;1g, JθJ0 ¼ JθJ1 ¼ JθJ22 and JθJ1 ¼ θT1¼ 1Tθ. This helps us to rewrite (9) (similarly also (17)) as

θ̂ ¼ arg min
θA f0;1gN

Jy�ΨθJ22þ
λ�ϵ

2
θT1þ1Tθ
� �

þϵJθJ22; ð32Þ

where 0oϵrλ. We can express the right-hand-side of (32) in a quadratic form as

J θð Þ ¼ θ

1

� 	T ΨHΨþϵI �ΨHyþ λ� ϵ
2 1

�yHΨþ λ� ϵ
2 1T yHy

2
4

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Q θ

θ

1

� 	
|ffl{zffl}

~θ

: ð33Þ

Note that minimizing (33) is a Boolean quadratic programming problem which permits several efficient algorithms
including the quasi-maximum-likelihood SDR of [27]. However, to be able to employ SDR we have to express JðθÞ as a
function of α¼ 2θ�1Af�1;1gN . More specifically, after some simplifications we can write JðθÞ as IðαÞ ¼ ~αTQα ~α with
~α ¼ ½αT ;1�T and

Qα ¼
ðΨHΨþϵIÞ=4 ðΨHΨþλIÞ1=4�ΨHy=2

1T ðΨHΨþλIÞ=4�yHΨ=2 1T ðΨHΨþλIÞ1=4�yHΨ1=2�1TΨHy=2þyHy

" #
: ð34Þ

After relaxing the rank-1 constraint on ~A ( ~A ¼ ~α ~αT ), we solve the following semi-definite programming (SDP) problem:

min
~A

trðQα
~AÞ

s:t: ~A≽0;

½ ~A�i;i ¼ 1; i¼ 1;…;N:
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The next step will be to factorize ~A to estimate the best ~α via randomization as explained in [27]. Next, θ̂ can simply be
calculated using θ̂≔ðα̂þ1Þ=2. We expect that including this unused information (finite-alphabet sparsity) within our
reconstruction model leads to a performance gain, as is validated by our simulation results. This basically motivates using
this model for reconstructing a finite-alphabet sparse θ.
7. Numerical results

In this section, we investigate the performance of the proposed algorithms in terms of probability of detection (Pd),
probability of false alarm (Pfa) and positioning root mean squared error (PRMSE) against 1=s2n, the number of existing SNs K
and the number of GPs N.

To this aim, we consider a room of size 10� 10� 3 m3 even though our goal is to find the location of the sources on the
floor (in 2-D) of size 10� 10 m2. This 2-D area is divided into N¼100 cells represented by their central GPs. The APs are
randomly placed on the ceiling at a height of 3 m and our (up to K¼10) non-cooperative sources are considered to be on the
floor at a height of 1.8 m. Two different scenarios are considered where in the first scenario the sources are randomly placed
but they are always on-grid whereas in the second scenario they can be located anywhere, i.e., they can also be off-grid.

The following assumptions about the signal, channel and measurements are respectively in place:
�
 We consider wideband BPSK signals with a rectangular pulse shape, 3 dB bandwidth of B¼10 MHz and power η¼ 1. This
means rðτÞ ¼ 1�jτj=B for the baseband equivalent signal. The carrier frequency for the passband signal is 2.4 GHz. For all
simulations, rðτÞ is assumed to be the same and fixed for all the sources, unless otherwise mentioned. We compute the
autocorrelation and cross-correlation functions during a time-slot of length T¼0.1 ms. This is equal to recording
T � B¼ 10�4 � 107 ¼ 1000 BPSK symbols for our computations. Hence, even for moving sources with low dynamics,
which is a realistic assumption for the networks under consideration, the length of the time-slot (T¼0.1 ms) will not put
a large constraint on the dynamics of the sources.
�
 In order to assess the algorithms for a realistic channel model (with no simplifying assumptions), we use synthetic data
from the RIR generator provided by [18] for the wireless system explained earlier.
�
 Instead of taking ideal expectations Ef�g in the measurement phase, we work with discrete-time signals of limited length
and hence the computations of the autocorrelations as well as the cross-correlations will not be ideal as in the
derivations of Section 3. As a result, the noise terms nm(t) will not be completely eliminated in the cross-correlations and
they will be an approximation of what is considered for the autocorrelations, and therefore, this will slightly affect our
performance. Likewise, the value of the autocorrelations and cross-correlations (in y or ~y) will also be approximations of
the ideal computations due to this finite-length error.
All simulations are averaged over P¼100 independent Monte Carlo (MC) runs where in each run the sources are
deployed on different random locations. For all the reconstruction problems, we choose λ by cross-validation as explained in
[28]. For the case of on-grid sources, we concentrate on the detection performance, i.e., we are only interested to know
which elements of the estimated θ correspond to a source and which elements are zeros, i.e., we only care about the support
of θ. Based on this, we define Perr, Pd and Pfa as follows [29]:
�
 Perr≔the probability that a source is detected when the source is in fact not present or it is not detected when it is in fact
present.
�
 Pd≔the probability that a source is detected when the source is in fact present.

�
 Pfa≔the probability that a source is detected when the source in fact not present.
Basically, Pd and Pfa specify all the probabilities of interest. However, we need a detection threshold to be able to compute
them. To find the best threshold, we carry out a linear search within the range ½0;maxðθ̂ÞÞ and select the value which
minimizes Perr. On the other hand, for off-grid sources we plot both Pd and the positioning root mean squared error (PRMSE)
defined by

PRMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
PK

∑
P

p ¼ 1
∑
K

k ¼ 1
e2k;p

s
;

where ek;p represents the distance between the real location of the k-th source and its estimated location at the p-th
MC trial.

Finally, we would like to point out that we do not compare our results with the KNN, the BC, or even semi-definite
relaxation (SDR)-based algorithms because the superiority of the ℓ1-norm minimization approaches (at least for the SRL)
compared to KNN, BC and SDR-based algorithms is respectively illustrated in [8,9,15]. Instead, the SRL will be used as the
benchmark multi-source RSS-based localization algorithm.
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7.1. Performance evaluation with M¼15 APs

We start by investigating the performance of the proposed algorithms for the case that there are M¼15 APs. In this case,
M2 ¼ 2254N, and therefore, the SRLC is expected to perform very well and be capable of recovering θ with LS too. Note that
here LS refers to the classical LS applied within the framework of the SRLC. For the sake of simplicity, we consider the SNs to
have equal power, i.e., ηk ¼ η8k. This allows us to employ and assess the idea of finite-alphabet sparsity to recover θ, as well.

In the first simulation, we consider K¼10 sources randomly located on the GPs. As is clear from the schematic view of
Fig. 4 for 1=s2n ¼ 20 dB, while the SRL can only localize 3 sources, the proposed SRLC (solved by LASSO) and the SRLC (solved
by LS) are capable of localizing all the sources. This has motivated us to assess the performance of the SRL solved by the
finite-alphabet sparsity idea (we call it SRL-FA) and as is clear from the figure, SRL-FA could localize 4 sources which is
improved compared to SRL. Obviously, this improvement also holds for the case of the SRLC with finite-alphabet sparsity;
however, since the SRLC is already performing good enough, we do not plot those results. Note that in all the simulations
with finite-alphabet sparsity ϵ¼ 0:5λ and we perform 100 randomization trials.

In order to further investigate the performance of the aforementioned algorithms, we plot the detection and false alarm
performance of the algorithms against 1=s2n as well as the number of existing sources K. In Fig. 5, we assume K¼4 sources.
As is clear from the figure, the SRLC approaches (solved by LASSO and LS) perform very good as they attain Pd¼1 and Pfa 	 0
SNs
APs
SRL
SRL−FA
SRLC
LS

Fig. 4. Schematic view; M¼15, K¼10 and 1=s2n ¼ 20 dB.
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Fig. 5. Performance vs. 1=s2n for M¼15 and K¼4.
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for a large span of 1=s2n. The SRL-FA is clearly achieving a better Pd compared to SRL; however, it has a higher Pfa as well
when its Pd is low. Notably, for all the algorithms, the general trend is an improvement with 1=s2n.

Now, let us get a better understanding by taking a look at the performance of the algorithms for 1=s2n ¼ 20 dB vs. K in
Fig. 6. As can be seen, SRLC (in either case) can efficiently localize all the sources while for the SRL the performance drops by
increasing the number of sources. The important observation here is that SRL-FA is almost capable of localizing up to K¼3
sources with a very high Pd and minimum Pfa while this number reduces to K¼1 for the stand-alone SRL. However, for K43
even though the Pd is always better for the SRL-FA, the Pfa also increases. Based on the observations in Figs. 5 and 6, we can
conclude that the finite-alphabet sparsity idea is useful for the range Kr3 in this setup. At this point, it is noteworthy that
we do not plot the results for K410 sources since for those cases θ is not really sparse, i.e., we do not have K5N.
7.2. Further improvement with M¼5 APs and blindness to rðτÞ

In this subsection, we consider the case where we have only M¼5 APs available. For such a case, M2 ¼ 25oN and thus it
is expected that even the SRLC might not be capable of localizing all the K¼10 sources. This basically motivates employing
the SRLC-TD to incorporate other time lags and hopefully improve the performance over the proposed SRLC. Moreover,
this subsection is also meant to investigate the performance of the SRLC-FD algorithm. To this aim, we assume that all
the sources have different ηk's with a uniform distribution in the range of ½0:8;1:2� and we assume that rðτÞ is unknown to
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Fig. 6. Performance vs. K for M¼15 and 1=s2n ¼ 20 dB.
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SRLC
SRLC−TD
SRLC−TD with LS
SRLC−FD

Fig. 7. Schematic view; M¼5, K¼10 and 1=s2n ¼ 20 dB.
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SRLC-FD. This calls for a different fingerprinting map as explained in Section 5. We would like to emphasize that SRLC-FD
can be employed even for cases where all the sources have different rkðτÞ's. However, since this cannot be handled by the
SRLC and the SRLC-TD, we omit those results here.

Similar to the previous subsection, we consider K¼10 sources randomly located on the GPs. Fig. 7 depicts a schematic
view of localization for 1=s2n ¼ 20 dB. As can be seen, while SRLC is only capable of localizing K¼2 sources, the other three
enhanced algorithms, i.e., SRLC-TD (solved with LASSO), SRLC-TD (solved with LS) and the blind algorithm (SRLC-FD) could
localize all the sources simultaneously. Notably, for the sake of a lower computational complexity, we consider only 6 time
lags for the SRLC-TD which are spaced by 1=ð2BÞ (4Ts) in our simulations. For the SRLC-FD, we have designed Q¼10 filters
and the proposed G-LASSO solution (explained in Section 5.3) is employed. It is also worth mentioning that since all the
sources have different ηk's, finite-alphabet sparsity is not applicable in this subsection.

As in the previous subsection, we would also like to further assess the proposed algorithms in terms of Pd and Pfa. Fig. 8
compares the performance of the aforementioned algorithms against 1=s2n for K¼4. SRLC-FD (Q¼1) denotes the idea of
exploiting only one frequency band as explained in Section 5.2. As is clear from the figure, SRLC-FD (Q¼1) is performing
very close to SRLC while it is blind to rðτÞ. Interestingly, SRLC-FD is performing better than SRLC while it is blind. Notably,
SRLC-TD (solved with LASSO) and SRLC-TD (solved with LS) both are performing good and attain the best possible
performance for 1=s2n values larger than �1 dB. This observation that SRLC-TD is less affected by noise can be justified by
referring to (24) where we have shown that only measurements in the zeroth time lag are contaminated with noise and the
rest of the lags are almost clean.

Let us get a more complete picture of the performance of the algorithms by taking a look at Fig. 9 where the detection
and false alarm probabilities are depicted against K for 1=s2n ¼ 20 dB. As can be seen, the performance drops for the SRLC
and the SRLC-FD (Q¼1) with K and thus Pd starts decreasing whereas Pfa rises for K43. Interestingly, for a large enough
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Fig. 9. Performance vs. K for M¼5 and 1=s2n ¼ 20 dB.
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1=s2n (i.e., small enough noise), SRLC-FD attains an optimal performance even for K up to 10. This result corroborates the fact
that our blind algorithm with no information about rðτÞ, by exploiting the information of the Q¼10 frequency subbands
could outperform SRLC in terms of the number of identifiable sources. Note that there is a major improvement in SRLC-FD
compared to SRLC-FD ðQ ¼ 1Þ. The SRLC-TD (both with LASSO and LS) starts degrading for KZ5 which can indeed be
improved at the expense of complexity by increasing the number of time lags if the signal and channel properties permit.
7.3. Performance evaluation for off-grid sources

In this subsection, we intend to investigate the effect of off-grid sources on the performance of the proposed localization
paradigm. Having assessed the improvements by exploiting time lags and frequency domain information via respectively
SRLC-TD and SRLC-FD, here we only concentrate on the primary algorithm SRLC. Notably, the following off-grid experiments
also demonstrate the performance of the SRLC when the measurements are inconsistent with the fingerprinting map. In an
off-grid scenario, we expect to observe non-zero values in θ̂SRLC corresponding to the GPs around an off-grid source if the
channels observed by the neighboring grid points are correlated with the measurements. In order to increase this regional
correlation, we should work at lower frequencies and that is why for the following simulations fc¼100 MHz and B¼1 MHz.
This means that for the same number of BPSK symbols as before, we have to record T ¼ 1000=106 ¼ 1 ms of the received
signals. This is shown in Fig. 10 where we depict a 3-D snapshot of θ̂SRLC for M¼7, N¼196, K¼3 and 1=s2n ¼ 20 dB. As can be
seen, mostly the GPs around the sources return non-zero values which helps us to localize the off-grid sources. Now that we
can have continuous locations of the sources in the 2-D area of interest, it makes sense to also plot the PRMSE of our
estimates where we only constrain ourselves to finding the nearest GP to the off-grid sources. To further elaborate on the
performance, we also plot Pd where a source is considered to be detected if it is estimated to be in a circle with a radius offfiffiffi
2

p
around its real location. To this aim, for the sake of picturing out irrelevant location estimates to achieve a meaningful

PRMSE estimate, we consider that we know K and that is why we omit Pfa curves. The rest of the parameters is the same as
in previous simulations, unless otherwise mentioned.

Fig. 11 illustrates the performance against 1=s2n for M¼7 APs with K¼1 and 3 SNs randomly located on the floor (at a
height of 1.8 m) of the room. As can be seen, for a single-source scenario the PRMSE goes below 1 m (the cell size) and this
means the source can be very-well localized as is corroborated by the corresponding Pd curve. However, for K¼3 SNs PRMSE
and Pd are slightly degraded. It is worthy of being noted that for the multiple off-grid source localization, the more distant
the sources are, the better we can relate the nonzero values of the estimated θ to the closest GP. This shows a shortcoming of
SRLC for localizing off-grid sources which constrains us to artificially avoid the sources to be located in neighboring cells.

Further, in Fig. 12, we try to investigate the performance of the SRLC against N¼36, 64, 100, 144, 196, 324, 484, 676 and
900 while the room size is kept fixed. The main intention is to assess how an increased correlation between the GPs affects
the performance. Note that, however, for a fair comparison in terms of reconstruction (and hence localization), we should
also keep the ratio M=N (sometimes called compression rate) constant. In this simulation, we keep a fairly reasonable ratio
M=N¼ 1=4. As can be seen, the results are plotted for two different noise levels 1=s2n ¼ �5 dB and 5 dB. As expected the
performance is relatively better in the lower noise level. However, even with N¼900, the correlation between the columns
of the dictionary is not so severe to spoil the reconstruction, and the performance keeps improving with N. We would like to
highlight though that further increasing K will indeed lead to a situation where the RIP will be drastically affected and SRLC
x−axisy−axis

z−
ax

is

SRLC
Source location

Fig. 10. 3-D view of θ̂SRLC for M¼7, N¼196, K¼3 and 1=s2n ¼ 20 dB.
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will fail. In principle, this is an inherent limitation of any sparsity-aware localization algorithm which should be taken into
account at the preliminary system level design.

Finally, we assess the sensitivity of the SRLC w.r.t. perturbations in the trained/computed fingerprinting map ~Ψ. Such
perturbations can for instance happen due to variations in the environment during the run-time phase. To this aim, a
perturbation matrix Δ drawn from a complex random Gaussian distribution is added to ~Ψ. Accordingly, a perturbation ratio
ρ is defined by ρ¼ JΔJ=J ~Ψ J which is set to 0% (no perturbation), 5%, 10% and 20% in our simulations. As can be seen from
Fig. 13, the perturbations show their effect mostly in the lower 1=s2n's. Particularly, for K¼2, ρ's up to 10%, and 1=s2nZ5 dB,
the same localization accuracy (less than 1 m and Pd¼1) as when there is no perturbation can be attained. However,
increasing ρ to ρ410% leads to a performance degradation even for high 1=s2n's. It is noteworthy that this experiment
illustrates that our proposed idea can even work when all three model non-idealities simultaneously exist, i.e, measurement
noise, off-grid sources and a slightly varying environment.

8. Computational complexity and conclusions

Before concluding this paper, we would like to comment on the complexity of the proposed approaches (SRLC, SRLC-TD,
SRLC-FD) compared to the classical approach (SRL). Obviously, the enhanced source detection capability of the proposed
approaches comes at a price and that is increased complexity. The proposed approaches (SRLC, SRLC-TD and SRLC-FD)
respectively require a larger dictionary of size M2 � N, NccM2 � N, and QM2 � N compared to the smaller one of SRL of size
M � N. Solving our sparse reconstruction problems using LASSO or similarly basis pursuit denoising (BPDN) using the
approach of [30] for example requires a complexity that is linear in the number of rows of the dictionary. Therefore, the
aforementioned algorithms are respectively M, MNcc, and QM times more demanding in terms of computational cost than
the SRL.

This paper studies the problem of localizing multiple sources using their RSS measurements in multipath environments.
We have proposed a novel fingerprinting paradigm to exploit the information present in the cross-correlations of the
received signals at the different APs which is ignored in existing sparsity-aware fingerprinting approaches. Besides, we have
also proposed to further enhance the novel paradigm by incorporating other lags than the zeroth lag of the auto-correlation/
cross-correlation functions. Moreover, we have extended our proposed idea to be able to operate when we are blind to the
statistics of the source signals. Finally, we have employed the concept of finite-alphabet sparsity in our framework to deal
with the sparse vectors of interest, if they contain finite-alphabet elements. Our extensive simulation results corroborate the
efficiency of the proposed algorithms in terms of localization accuracy as well as detection capability.
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