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Abstract—The problem of source localization from time-differ-
ence-of-arrival (TDOA) measurements is in general a non-convex
and complex problem due to its hyperbolic nature. This problem
becomes even more complicated for the case of multi-source
localization where TDOAs should be assigned to their respective
sources. We simplify this problem to an -norm minimization by
introducing a novel TDOA fingerprinting and grid design model
for a multi-source scenario. Moreover, we propose an innovative
trick to enhance the performance of our proposed fingerprinting
model in terms of the number of identifiable sources. An inter-
esting by-product of this enhanced model is that under some
conditions we can convert the given underdetermined problem to
an overdetermined one that could be solved using classical least
squares (LS). Finally, we also tackle the problem of off-grid source
localization as a case of grid mismatch. Our extensive simulation
results illustrate a good performance for the introduced TDOA
fingerprinting paradigm as well as a significant detection gain for
the enhanced model.

Index Terms—Multi-source localization, TDOA fingerprinting,
sparse reconstruction.

I. INTRODUCTION

D ETERMINING the position of multiple sources in a
two-dimensional or three-dimensional (2-D or 3-D)

space is a fundamental problem which has received an upsurge
of attention recently [1]. Many different approaches have been
proposed in literature to recover the source locations based
on time-of-arrival (ToA), time-difference-of-arrival (TDOA)
or received-signal-strength (RSS) measurements between the
source nodes (SNs) and some fixed receivers or access points
(APs). A traditional wisdom in RSS-based localization tries
to extract distance information from the RSS measurements.
However, this approach fails to provide accurate location
estimates due to the complexity and unpredictability of the
wireless channel. This has motivated another category of
RSS-based positioning, the so-called location fingerprinting,
which discretizes the physical 2-D or 3-D space into grid points
(GPs) and creates a map representing the space by assigning
to every GP a set of location-dependent RSS parameters, one
for every AP. The location of the source is then estimated by
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comparing real-time measurements with the fingerprinting map
at APs, for instance using K-nearest neighbors (KNN) [2] or
Bayesian classification (BC) [3].
A closer look at the grid-based fingerprinting localization

problem reveals that the source location is unique in the spatial
domain, and can thus be represented by a 1-sparse vector. This
motivated the use of compressive sampling (CS) [4] to recover
the location of the source using only a few measurements by
solving an -norm minimization problem. This idea (for RSS
measurements) illustrated promising results for the first time in
[5], [6] as well as in the subsequent works [7]–[9]. Existing
RSS-based sparse localization algorithms only make use of the
signal/RSS readings at different receivers (or APs) separately.
However, there is potential information in the cross-correlations
of these received signals at different APs which has not been ex-
ploited in the aforementioned works. In [10], we have proposed
to reformulate the sparse localization problem so that we can
make use of the cross-correlations of the signal readings at dif-
ferent APs, which leads to a considerable improvement in terms
of the number of identifiable sources. Notably, all the aforemen-
tioned studies consider on-grid target(s) or source(s).
On the other hand, the problem of TDOA-based localization

for a single (multiple) source(s) has been investigated from dif-
ferent perspectives in literature, for instance in the speech and
acoustic domain [11]–[15]. In speech processing, algorithms
often rely on the speech non-stationarity (TDOAs can be as-
signed to different sources using this assumption) which does
not hold in our context. That is why some of these studies con-
sider disjoint sources such as [12] and in many others linear
array receivers are assumed and thus the problem basically boils
down to direction of arrival (DOA) estimation [15]. In a big line
of research, the conversion of phase to TDOA leads to aliasing
effects at high frequencies for large receiver spacings [13], [15].
In [13], for instance, a blind source separation (BSS) signal
model is considered and a beamforming procedure is proposed
to produce an acoustic map of the covered area. To obtain such
a map, distance information (between source(s) and receivers)
is required which becomes computationally demanding for a
near-field assumption. In [14], a fingerprinting-like approach
is proposed and the area is discretized into a set of GPs for
which an acoustic map function is defined. Through a proper
processing of the acoustic map and de-emphasizing the effect
of the dominant source, they illustrate a good performance in
localizing two sources, but in some situations their performance
drops if the number of targets is larger than three. Interestingly,
none of the aforementioned studies exploits CS or sparse recon-
struction ideas and surprisingly, not much work can be found on
TDOA-based source localization within a sparse representation
framework. In [16], a single-source TDOA-based localization
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TABLE I
DESCRIPTION OF THE SYMBOLS

is proposed wherein the sparsity of the multipath channel is ex-
ploited for time delay estimation but we are basically interested
in spatial source sparsity, i.e., we want to exploit the fact that the
sources are sparse in the 2-D or 3-D space. On the other hand,
in [17], the spatial source sparsity is exploited to simplify the
hyperbolic source localization problem into an -norm mini-
mization. However, the algorithm in [17] treats different sources
separately, i.e., it is in principle a single-source localization ap-
proach. Besides, the problem of off-grid source localization is
not really tackled in [17]. A conference pre-cursor of the current
work is presented in [18].
The contribution of this paper is four-fold. Firstly, we formu-

late the problem of sparsity-aware multi-source localization by
defining a novel TDOA fingerprinting paradigm to simplify the
complexity and non-convexity of the multi-source TDOA lo-
calization problem. The proposed paradigm solves the problem
of the TDOA assignment and multi-source localization in a
joint fashion. Second, we present an appropriate grid design
for our fingerprinting model. Further, we propose a novel trick
to enhance our proposed fingerprinting paradigm in terms of
the number of identifiable sources, which leads to a significant
detection gain. And finally, we extend our ideas by tackling the
problem of off-grid source localization. To this aim, we propose
two algorithms inspired by the grid mismatch concept as well
as the sparse total least squares (STLS) method proposed in
[19]. It is worth pointing out that the proposed algorithms
can be applied in outdoor environments where location-based
services are of interest. Therefore, there is no limitation to
employ the proposed ideas in wireless local area networks
(WLANs) or wireless sensor networks (WSNs) operating in a
centralized fashion. A notation summary of the symbols used
in the following sections is given in Table I.
The rest of the paper is organized as follows. In Section II, the

TDOA network model as well as our measurement model are
explained. Section III introduces our novel sparse multi-source
TDOA localization idea as well as the proposed grid design.
Section IV presents an innovative approach to enhance the per-
formance of our proposed multi-source algorithm. The problem
of off-grid source localization is investigated in Section V.
Extensive simulations in Section VI corroborate our analytical

claims in several scenarios. Finally, the paper is wrapped up in
Section VII with brief concluding remarks.

II. TDOA NETWORK MODEL

Consider that we have APs distributed over a 2-D or 3-D
area which is discretized into GPs. Note that the APs can
be located anywhere, not necessarily on the GPs. We consider
SNs which are randomly located either on any of these GPs

(“on-grid”) or possibly “off-grid”. We assume that the APs are
connected to each other in a wireless or wired fashion so that
they can cooperate by exchanging their signal readings. Now,
if the -th source broadcasts a time domain signal , the
received signal at the -th AP can be expressed by

(1)

where in general is the channel coefficient and is the
time delay from the -th source to the -th AP and repre-
sents additive white noise. Here, for the sake of simplicity, we
have considered a single-tap flat fading channel. We only con-
sider a single-path scenario here, since it might be more suited
to an outdoor environment and since it simplifies the setting in
order to have a better focus on the core idea of this paper.
In this work, we choose a set of TDOA measurements

(the so-called non-redundant set) by always considering the first
AP as the reference. Since we consider a passive source local-
ization scenario, taking cross-correlations of the received sig-
nals is the optimal approach for extracting the TDOAs [20]. The
signals and are assumed to be ergodic, mutually un-
correlated white sequences, i.e.,

(2a)

(2b)

(2c)

where stands for the unit impulse function. Therefore,
by considering (2), the cross-correlation between the received
signal at the -th AP and the reference AP is given by

(3)
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where is the TDOA of the -th source w.r.t.
the AP pair . As is shown by (3), for a single-tap
channel as considered here, the dominant peaks of
return the TDOA values related to the sources. Note
that in this work we assume that is known even though target
counting algorithms (such as a modified version of [9]) can be
applied to estimate in advance.
The main problem with (3) is that even though we can esti-

mate the set of TDOAs , we do not know the source
indices of the TDOAs. This leads to an assignment problem
to relate the TDOAs to the sources. To make it more clear, as
shown in Fig. 1, we define the ’s which denote the TDOAs
in an increasing order . These ’s
can be measured for and they are stacked in
the measurement vectors . Note the
difference with the ’s, which denote the TDOA values or-
dered according to the source indices leading to the vectors

. It is worth mentioning that while the
vectors are perfectly known, the vectors are not. Now,

the problem considered herein can be stated as follows. How
can we assign the TDOAs to the different sources and simultane-
ously localize them?We would like to emphasize that we tackle
the problem of passivemulti-source localization where we have
no knowledge about the signals transmitted by the sources ex-
cept for the common assumption that they are mutually uncorre-
lated white sequences; otherwise, any sort of information about
the signal (such as an identification label, the occupied band-
width, the time slot in which they are transmitted, etc.) can help
to dissect the problem into separate localization problems
that can be solved disjointly. We start our solution development
by considering on-grid sources and then we extend it to the case
of off-grid sources.

III. SPARSITY-AWARE TDOA LOCALIZATION

In order to assign the TDOAs to the different sources and
simultaneously localize them, we propose a fingerprinting
procedure. We start this procedure with an initialization phase
where the fingerprinting map is determined. Then, in the
runtime phase, this map is used together with the measured
TDOAs to determine the location of the SNs.

A. Initialization Phase

In the initialization phase, we basically discretize the physical
space into GPs and create a map (the so-called fingerprinting
map) representing the space by assigning to every GP a set of
location-dependent parameters. For the TDOA setup under con-
sideration, the location-dependent parameter set will consist of
the TDOA measurements from the APs. For every GP, we de-
termine the TDOAs at the different APs w.r.t. the first
AP. Next, by concatenating the measurements from GPs we
construct a fingerprinting map of size of the
form

...
. . .

... (4)

Fig. 1. Artificial setup for assignment problem; definition of and .
Note that produces the smallest TDOA while produces the largest
one.

where represents the TDOA of the received signal at the
-th AP and the reference AP from a source located at the -th
GP. Note the difference with which is the measured TDOA
from the -th source w.r.t. the pair. To determine
the ’s, we can simply use the known geometric configura-
tion of the APs and GPs. This is highly desirable as we can avoid
exhaustive classical training procedures.

B. Runtime Phase

For the runtime phase, we make a distinction between a
single-source and multi-source scenario as explained in the
following.
1) Single-Source Scenario: In the single-source case, the lo-

cation of the source is estimated by comparing the runtime phase
TDOA measurements 1 with the
fingerprinting map, at a central unit connected to the APs. One
way to carry out this comparison is by exploiting the source
sparsity and considering that the source can only be located at
a single GP. This way, the single-source localization problem
can be cast into a sparse representation framework given by

, with an vector containing the
additive noise on the TDOAs, and an vector with all
elements equal to zero except for one element equal to one cor-
responding to the index of the GP where the source is located.

1Note that only for a single-source scenario , but this cannot
be generalized to a multi-source scenario, i.e., in that case we generally have

.
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Thus, will be a 1-sparse TDOA vector characterized by the
sparsity basis and the ultimate goal is to recover only by
determining the index of its non-zero element.
Solving with classical LS produces an incor-

rect estimate due to the underdetermined nature of the problem
. Instead, sparse reconstruction techniques (or

CS) aim to reconstruct from , by taking the source sparsity
concept into account. It is worth mentioning that here we have a
natural compression in the problem in the sense that the number
of measurements is limited to which in many practical
scenarios is much less than the number of GPs . Therefore, we
will estimate by solving the following -norm minimization
problem (similar to [17]) where
is a regularization parameter that controls the trade-off between
sparsity and reconstruction fidelity of the estimated . It is worth
mentioning that for a single-source scenario some other simpler
methods, like matching pursuit [21], can also be used to recover
the location of the source.
2) Multi-Source Scenario: Having explained the single-

source TDOA localization within a sparse framework, now, the
question is how we can extend this single-source localization
scheme to a multi-source one. Before explaining the idea, we
would like to remind the reader of a natural phenomenon in
RSS fingerprinting. Different from TDOA measurements, the
RSSs of the source signals will sum up at the APs [7], [10].
On the other hand, TDOA measurements do not simply follow
this pattern. Nevertheless, this motivated us to sum up the
measured values for different sources at the APs, i.e.,

. Note that this vector is equal to
and thus automatically leads to a similar formulation as for the
single-source case

(5)

where here is a -sparse vector (containing all zeros except
for ones) to accommodate the sources. We would like to
emphasize again that in practice we can only measure the
vectors because it is still unknown to which source they belong,
i.e., the vectors cannot be separately calculated. However,
the beauty of the proposed sparsity-aware multi-source TDOA
localization (SMTL) framework is that since we work with

, it does not really require such assignment
information. Therefore, similar to the single-source scenario, (5)
can also be solved using an -norm minimization

(6)

where is defined as earlier. Notably, outliers in the measured
TDOAs can be handled within our sparsity-aware framework
by exploiting the ideas proposed in [22].
Remark 1 (Identifiability of SMTL): To elaborate on the iden-

tifiability of localization using SMTL, it is worth mentioning
that in classical (2-D) TDOA localization, as long as there are

APs (not lying on a straight line) associated with a
source, that source can be uniquely identified and localized. In
a multi-source case, however, all possible assignments between
TDOAs and sources have to be checked. On the other hand, the
sparse reconstruction-based nature of SMTL imposes an extra

Fig. 2. Coincident ’s in a uniform GP configuration.

constraint ( should also be satisfied) be-
cause for a perfect reconstruction we require every -column
subset of to be full column rank so that we can reconstruct
a -sparse . All in all, this leads to as a
necessary condition for identifiability and reconstruction.

C. Grid Design

In the earlier proposed TDOA formulation an unintentional
grid problem shows up. Consider that we have three APs (
to ) and three source nodes ( to ) as in Fig. 2. Now,
assume that is located on (8, 6) as shown in the figure. The
set of points that represents a constant TDOA w.r.t.

and ( is constant) defines a hyperbola given by

(7)

where is the Eu-
clidean distance between points A and B and denotes the
speed of the signal propagation. For this results in
the two hyperbolas ( and ) plotted with solid
blue lines in Fig. 2. In general, denotes the hyperbola
related to the TDOA of the source w.r.t. the
pair. Right now, if any other source falls on either one of these
two hyperbolas, that source will have a similar TDOA as
w.r.t. either the or pair. Because in
Fig. 2 lies on and does not, the output of the
cross-correlation related to the pair will contain
only two dominant peaks instead of three peaks. Obviously, in
such a case this coincidence cannot be resolved based on the
amplitude of the peaks because the signals arrive at the APs
with different amplitudes depending on the fading channel. It
is worth mentioning that with the uniform GP configuration
as shown in Fig. 2, the probability of obtaining such (approx-
imately) equal values in each row of (4) is not low and
this probability increases with the number of GPs . Next,
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Fig. 3. Proposed sequential GP placement.

we propose a new grid configuration to avoid this issue, if the
sources are on-grid. Note that in many practical situations, the
APs are part of the existing infrastructure and we do not have
the privilege neither to change their number nor their location.
This basically motivates the following grid design based on a
fixed AP configuration.
For a given AP configuration, we propose a sequential GP

placement so that none of the sources will have a similar TDOA
w.r.t. any of the AP pairs, i.e., . Let
us consider the simple scenario shown in Fig. 3 where again only
three APs exist. We start by choosing a desired location for the
first GP . Note that we have no restriction on the location
of . Now, defines hyperbolas ( and

) with defined similar to (7) but for the GPs as

(8)

with chosen as the reference. Each of these hyperbolas ex-
cludes a curve from the 2-D plane of the covered area and leaves
the remaining part of the plane as a possible option to place the
next GP. Therefore, if we place on either or
there will be one overlapping peak in the output of the cross-cor-
relation corresponding to the pair or ,
respectively. After placing , two more hyperbolas should
be excluded from the 2-D plane for the next GP. This means,
we should not place on any of and

, as is also illustrated in Fig. 3. The following GPs are
placed in a similar fashion and this procedure can be continued
until we find GPs.
Remark 2 (Backward Checking): It is important to observe

that of can never cross of . This is
because if they could cross, then at the crossing point we would
have and considering (8) this would mean that
the two hyperbolas should coincide everywhere and thus
and would be located on the same hyperbola. This is im-
possible according to our grid design. As a result, a hyperbola
related to a GP can never cross a previously deployed GP, which

means that our proposed sequential GP placement procedure
does not require a backward checking modification when we
place the GPs.

IV. ENHANCED SPARSITY-AWARE MULTI-SOURCE
LOCALIZATION (ESMTL)

The proposed sparsity-aware multi-source algorithm of
Section III has a limited source detection capability which
comes from the fact that we sum the measured TDOAs at
the APs, thereby losing a significant amount of information.
This basically limits the number of detectable sources
through the number of measurements (see Remark 1). The
question is how this problem can be solved without taking
additional TDOA measurements. The innovative trick we
use here is to consider not just the sum of the TDOAs as

, but the sum of any function of the
TDOAs as

(9)

where

(10)

with being any possible measurement function. If we
combine a set of such sums, i.e.,

(11)

this newly defined measurement vector calls for a new finger-
printing map which can accordingly be defined as

(12)

where

...
. . .

... (13)

and thus the model (5) can be extended to

(14)

The new has rows instead of only rows,
i.e., it is capable of detecting more sources simultaneously, if
the measurement functions own certain properties. First
of all, they should be nonlinear in general since linear functions
generate dependent rows in which in principle does not in-
crease the number of independent equations in (14). Moreover,
these functions should not impair the restricted isometry prop-
erty (RIP) [23] of required for a high quality reconstruction.
Having this issue in mind, an orthonormalization procedure on
the resulting can help to improve the RIP, as we also show
numerically later on.
Remark 3 (Identifiability of ESMTL): For the enhanced

model, the expected necessary identifiability condition (as
explained in Remark 1) will be and
which results in , where

denotes the ceiling operator. A detailed analysis of the
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TABLE II
RIP TEST

dependence of the measurement functions on the identifiability
is a complicated mathematical exercise which is outside the
scope of this paper and is left for future work.
In principle, the measurement functions can be any

nonlinear function. We could for instance consider a base set of
non-linear functions denoted as (the functions

could for example be monomials, i.e., ) and take
. In addition, to improve the RIP we could further

apply the operator of size to the
measurements, i.e., , leading to the newmap .
One option to design could be to force the columns of
to be as close as possible to orthonormal by solving

(15)

Based on a detailed derivation in Appendix A, if
this results in the following solution

(16)

while if it leads to

(17)

where and come from the singular value decomposition
(SVD) of , i.e., . Surprisingly, this corresponds
to orthonormalizing the rows of (see also Appendix A),
which has indeed been shown to improve the RIP [7]. Having
said that, by employing the operator , (14) should be modified
to

(18)

Finally, (18) can be solved by

(19)

where is defined as earlier.

A. RIP Investigation

As we explained earlier, and are proved to be the sparsi-
fying bases for the SMTL and the ESMTL. Having satisfied the
sparsity property, the only issue that should be assessed is the
mutual incoherence between the columns of and or alter-
natively the RIP. In this subsection, we try to numerically inves-
tigate the RIP property of the proposed fingerprinting maps to
illustrate that the reconstruction will indeed have a high quality.
As we discussed earlier, to improve the -norm reconstruction
problem we apply the orthonormalization operator to (and

similarly to ) and that is why we only investigate the RIP of
the resulting matrices. As is well documented in literature [23],
for the RIP constant of a matrix (with nor-
malized columns) is the smallest number for which

(20)

for all -sparse . Roughly speaking, as long as
the RIP holds. However, the fact that we need to know

all the combinations for makes the problem
NP-hard. For the sake of computational complexity, we use the
definition in [23] where is defined as the maximum distance
from 1 of all the eigenvalues of the submatrices, ,
derived from , where is a set of indices with cardinality
which selects those columns of indexed by . It means that
for each , the RIP constant is given by

(21)

For the sake of feasibility of the computations, we consider
the case where , and (for the
ESMTL), which is also the setup considered in one of our sim-
ulation scenarios in Section VI. For such a case, we have com-
puted the with for and aswell
as for matrices with the same size containing elements drawn
from a random normal distribution, i.e., and .
Note that such random matrices are proved to be a good choice
in terms of the RIP and that is why we use them as a benchmark.
The results are presented in Table II.
As is clear from the table, our proposed fingerprinting map

for the SMTL is almost similar to and loosely
satisfies the RIP up to . However, for starts
increasing. Interestingly, we see that by the aid of the added
rows using our innovative , the RIP is met for
up to 10, which is even better than for . It is also worth
stressing that this way we could demonstrate that the proposed
innovative trick indeed improves the RIP of over

.

B. Advantages of ESMTL

Besides the enhanced source detection capability, there are a
number of other advantages in using the ESMTL approach as
explained in the following.
First of all, an important advantage of this idea is that the

recently added elements of and thus are simply generated
based on the existing TDOA measurements and no extra mea-
surements are required in the runtime phase. The same holds for
the new rows of and thus which can be computed from the
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rows of . This important characteristic of the proposed TDOA
fingerprinting avoids imposing extra cost-prohibitive measure-
ments on the central unit.
Another important corollary of this new is healing the case

of coincident peaks in the output of the cross-correlations.
Now that we can have several extra equations, a simple solu-
tion to heal the issue of a uniform GP configuration (explained
in Section III) is that when computing cross-correlations, say for
the pair, if we notice that some peaks are overlap-
ping (number of dominant peaks is less than ), we can ignore
the corresponding elements in and correspondingly the rows
in . This means that instead of (19), we solve

(22)

with and where is a selection ma-
trix which removes the elements and rows corresponding to the
measurements with coincident peaks from and , respec-
tively, and with computed based on instead of . Note
that this way we are actually removing some APs; however, we
can live with the uniform grid configuration until we violate the
necessary identifiability condition

.
Moreover, it is noteworthy that by finding appropriate mea-

surement functions we can keep on increasing the number of
rows so that we can attain a full column rank matrix. In such
a case, we can drop the sparsity-awareness when complexity is
an issue or is very large and recover as

(23)

Further, if we are given the statistics of (e.g., the mean
and the covariance matrix ), we obtain

, and
, where

stands for the statistical expectation and denotes the
trace operator. This information can also be employed to solve
the problem using weighted LS (WLS) as

(24)

A detailed analysis of the mean and the covariance of the error
on TDOA estimation using cross-correlations can be found in
[24].

V. TACKLING GRID MISMATCH FOR OFF-GRID SOURCES

The classical idea of TDOA fingerprinting as well as our pro-
posed multi-source localization ideas (SMTL and ESMTL) are
based on the assumption that the sources are located on the GPs.
However, as we will show in Section VI, the considered models
defined by (5), (14) and (18) return inaccurate estimates if the
sources are not located on their postulated GPs. This motivated
us to tackle this problem for the case of multi-source TDOA lo-
calization. One generic possibility to deal with off-grid sources

is to employ the adaptive grid refinement in [25], but this re-
quires several steps of refinement. Hence, we try to interpret
this phenomenon in the form of grid or map mismatch where
the measurements of the sources in , instead of (5), follow a
perturbed model as

(25)

which means that is now -sparse within the sparsity basis
. To develop our idea of mismatch recovery, we start

by analyzing the relation between the measurements from off-
grid sources and for a noiseless case. For our TDOA model,
Fig. 4 illustrates the case of an off-grid source in a simple setup
consisting of a source and two APs ( and ). As can
be seen, every GP defines a so-called cell where the GP forms
the center of the cell. Here, we consider that the source
lies in the cell related to the -th GP, denoted as , with

where indicates the mapping between sources
and GPs. Assuming that the variations of are small within
the cell related to , we propose to estimate the value of
the perturbed TDOA by considering a first-order Taylor
expansion as (assuming a noiseless case)

(26)

where denotes the location of
denotes the location of , and is the

TDOA at the location w.r.t. the pair
given by

(27)

and thus its partial derivatives will be

(28a)

(28b)
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Fig. 4. Grid mismatch.

In order to fit this into our networkmodel, we can extend (26) for
the case of APs again by considering to be the reference
AP as

...
...

...
...

(29)

It is notable that the first term on the right-hand-side of (29) is
and corresponds to the measurements received from an

on-grid source. Clearly, in order to be able to compute the grid
mismatch for , we first have to find the closest
GP corresponding to that source given by the mapping .
The closer this GP is to the real source location, the better the
first-order Taylor expansion will work. We will come back to
this problem after extending (29) for a multi-source scenario.
In a multi-source scenario what happens is that we receive

instead of which explicitly means that (29) should
be solved for all the sources simultaneously as modeled by

(30)

where assuming that the sources (through the mapping ) are
related to different GPs, we have

(31)

with and
, which defines a block-diagonal matrix with to
as its blocks where

don't care otherwise
(32)

By exploiting and , (31) can
be rewritten as

(33)

and this can fit into the mismatch model (25) by taking
which immediately gives an insight about the struc-

ture of the mismatch in our model.
In order to recover the mismatch, we now propose two

approaches, both relying on the idea that if we know
the indices of the closest GPs to the sources (i.e., the set

) given by , (33) is overdetermined and
can efficiently be solved using classical LS. More specifically,
since we can derive that

(34)

where stands for the -th element of and
, we obtain

(35)

In order to solve (35), we have to find under a grid mismatch.
One way to do this is to solve the following sparse total least
squares (STLS) problem for the enhanced model (18)

(36a)

(36b)

using the coordinate descent (CD) algorithm in [19]. Note that
denotes the augmented matrix composed of and . It is

worth pointing out that is different from and similarly can
be written as . Therefore, instead of we have
to compute which instead of and
evaluated at would contain

(37a)

(37b)
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As can be seen from (37), the elements of are scaled by a
multiplicative term .
Now, if we do not exploit the explored structure of the per-

turbations in , the STLS problem of (36) can be solved by an
iterative block CD algorithm yielding successive estimates of
with fixed, and alternately of with fixed. Given the
cost in (36) has the form of a LASSO problem

(38)

while given it reduces to a quadratic form with optimal
given by

(39)

where denotes the -th iteration. As explained in [19], the
CD algorithm tries to find the values of as well as which
has only non-zero values corresponding to the sources.
Therefore, we propose to use a two-step algorithm to solve the
problem of grid mismatch called STLS-LS. First, we use the
CD algorithm to end up with . Next, using the indices of the
non-zero elements of the recovered , i.e., the set

, as the location of the GPs, we run the grid mismatch
recovery proposed in (35). It is worth mentioning that the con-
vergence of the CD algorithm is investigated in [19]. The overall
STLS-LS algorithm is summarized in Algorithm 1.

Algorithm 1:Mismatch recovery using STLS-LS

1: Run the iterative STLS CD algorithm given by (38) and
(39).

2: Find the indices of the GPs corresponding to the sources.
3: Compute and solve (35) to recover the off-grid
locations.

More accurate results for can be acquired if we estimate
the location of the closest GPs by considering the structure of
the perturbations. This becomes even more precise if we have
knowledge about the covariance matrix of and

, assuming that as is shown in [24]. Note that such
information about the statistics of can be computed by con-
sidering the fact that the elements of should lie within
a cell around the GP with a uniform distribution
in each dimension, where is the length of a square cell. This
in turn yields . Next, we solve the following
weighted structured STLS (WSSTLS) problem for the enhanced
model

(40a)

(40b)

By taking the structure of into account, we again use (34),
which helps us to rewrite (40) as

(41a)

(41b)

Let us start with (similarly ) known, which
results in

(42a)

(42b)

which by substituting from (42b) in (42a) is equivalent to
solving the following convex problem (quadratic form regular-
ized by -norm as in LASSO)

(43)

Having in hand, the next step is to solve

(44a)

(44b)

which is quadratic in and results in

(45)

where and . The
detailed derivation of (45) is explained in Appendix B. All in all,
the two-step mismatch recovery procedure by using WSSTLS
(called WSSTLS-LS) is summarized in Algorithm 2.

Algorithm 2:Mismatch recovery using WSSTLS-LS

1: Run the proposed WSSTLS CD algorithm given by (43)
and (45).

2: Find the indices of the GPs corresponding to the sources.
3: Compute and solve (35) to recover the off-grid
locations.

VI. SIMULATION RESULTS

In this section, we investigate the performance of our pro-
posed sparsity-aware multi-source localization algorithms
(SMTL and ESMTL) in terms of the localization accuracy and
the number of identifiable sources. To this aim, we consider a
wireless network of size 10 10 m divided into GPs
and we consider APs covering the whole area and SNs
to be simultaneously localized in our simulations. Instead of
taking infinite integrals (as in (3)), in practice we work with dis-
crete-time signals of limited length and hence the computations
of the autocorrelations as well as the cross-correlations will not
be ideal as in the derivations of Section II. As a result, the noise
terms will not be completely eliminated and will affect
our performance through and . Here, we consider a base-
band signal (satisfying the properties mentioned in Section II)
sampled at ms and compute the autocorrelations and
cross-correlations during a time-slot of length s. This
is equal to recording samples for our
computations. The speed of signal propagation is m/s.
Meanwhile, we assume that none of the received signals is so
weak that it will be considered as noise in and cannot
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be detected. We define the signal to noise ratio (SNR) at the
-th AP as the ratio of the received signal power to the noise
power. Notably, we consider a distance-independent noise on
the received signals at the different APs which according to
[24], [26] results in an on the TDOA measurements specified
by its covariance matrix

(46)

In order to be able to quantitatively compare the perfor-
mances of the algorithms under consideration, we consider
the positioning root mean squared error (PRMSE) defined by

, where represents
the distance between the real location of the -th source and its
estimated location at the -th Monte Carlo (MC) trial. All sim-
ulations are averaged over MC runs where in each run
the sources are deployed on different random locations. In the
following simulations, we consider both the uniform grid struc-
ture as well as our proposed grid design, where for the former
case if it happens that we encounter coincident values, we use
the solution proposed in Subsection IV-B, i.e., we remove the
effect of the corresponding APs from the measurement vector
and the map. For the next simulations, whenever we talk about
ESMTL, we consider monomial base functions,
i.e., to enhance the proposed
SMTL by introducing new rows in . Further, we use the ex-
plained orthonormalization technique (using ) to compute .
This way, will be of size , while
is of size . For all reconstruction

problems, we try to find the best by cross-validation [27].
For the purpose of comparison, we also simulate the con-

ventional TDOA positioning method proposed in [28] (called
TDOA), as well as an optimal constrained weighted least
squares method (called TDOA-CWLS) [29]. Notably, both
algorithms localize the sources disjointly which gives them an
edge over the proposed algorithms but of course this requires
that the TDOAs can be exactly assigned to the correct sources.
We would like to point out that we do not compare our re-
sults with the KNN, the BC, or even semi-definite relaxation
(SDR)-based algorithms because the superiority of the -norm
minimization approach compared to KNN, BC and SDR-based
algorithms for similar contexts (e.g., RSS-based localization)
is respectively illustrated in [7] and [17]. Instead, motivated
by the consideration of the aforementioned disjoint conven-
tional methods, as a benchmark, we compute the Cramér-Rao
lower bound (CRLB) [30] for the location of a single source,
but averaged over the positions of the multiple sources. The
corresponding fisher information matrix (FIM) associated with

can be given by

where stands for the trace operator and the elements of
as well as their derivatives are defined earlier using (27)-(29).

Fig. 5. Multi-source localization with APs.

From (46), is independent of the location of the source and
hence the second term on the right-hand-side of (47) will be
equal to zero. Therefore, corresponding to the PRMSE, the total
root-CRLB (RCRLB) of the sources is given by

(47)

A. Localization of On-Grid Sources

We start by investigating the performance of the proposed
algorithms for the case of on-grid sources. In the first simulation,
as shown by Fig. 5, we consider sources randomly
deployed over the covered area and APs which are
deployed uniformly at random. The SNR is assumed to be 20
dB for all the APs. We recover using both SMTL and ESMTL
algorithms and we expect ESMTL to be able to locate more
sources simultaneously. This is shown in Fig. 5 where SMTL
can only localize a single source with minimum error. However,
by using the ESMTL algorithm we can locate all the
sources and this clearly illustrates the enhanced performance
of ESMTL compared to SMTL. As can be seen, the disjoint
TDOA-CWLS is capable of reaching a high accuracy, as well.
This highlights the fact that our ESMTL can perform as good
as a disjoint algorithm, which is assisted with signal assignment
information and treats the sources separately.
In order to further investigate this improvement in terms of

the number of identifiable sources, in Fig. 6, we illustrate the
PRMSE of localization versus the number of sources increasing
up to . We have APs and the simulation results
of the ESMTL are presented for . The SNR is again
set to 20 dB. As can be seen from the figure, by increasing ,
the PRMSE of localization for SMTL increases sharply while
ESMTL (with ) can handle almost all the sources simul-
taneously with minimum error. A notable (and expected) obser-
vation is that by increasing from 2 to 5 the potential capability
of ESMTL gradually increases from sources being lo-
calized to . The figure also illustrates the considerable
improvement of TDOA-CWLS over TDOA which helps it to
almost attain the CRLB. Note that we do not plot the results for
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Fig. 6. PRMSE versus for and dB. The unplotted
data points correspond to zero error in logarithmic scale.

sources since for those cases is not really sparse, i.e.,
we do not have .
In order to investigate the localization accuracy, we also plot

the PRMSE versus SNR for the same previous setup but with
SNs in Fig. 7. As can be seen, increasing the SNR leads

to a gradual improvement in the performance of the ESMTL so
that for dB we attain zero error. However, SMTL is in
principle incapable of localizing sources simultaneously,
as it was also shown in Fig. 6, and that is why its performance
does not improve with SNR. It is worth mentioning that the per-
formance of the TDOA and TDOA-CWLS schemes is better
than the one of ESMTL for lower SNRs. One reason for this is
that the conventional approaches are disjoint, i.e., they treat the
sources separately. Therefore, the measurement noise does not
have any effect on the disambiguation of the sources. However,
in the ESMTL, the measurement noise affects the values of the
TDOAs (from the cross-correlations) as well as the disambigua-
tion which is solved using -normminimization. Therefore, the
disambiguation (assignment problem) can be badly affected by
noise for low SNRs, which can in turn lead to a large error. An-
other important point worthy of being mentioned is that we at-
tain zero error for dB, which means that we go below
the benchmark CRLB. This can be justified by the fact that we
consider the on-grid scenario and have a limited number of can-
didates for the locations of the sources, i.e., the GPs. This feature
helps the -norm minimization to exactly locate the sources,
as long as the noise is not too strong. More specifically, since
within the region of a cell, there is only one possible point for
the location of a source, the -norm minimization becomes ro-
bust against small noise values.
In the next simulation, we investigate the performance of the

ESMTL solvedwith classical LS, whichmeans we have tomake
sure that has full column rank. Hence, we prefer to keep the
generated rows instead of removing them for coincident ’s and
use our proposed grid design of Subsection III-C. To simplify
our simulations and reach a full rank with less complexity, we
consider GPs and only APs, i.e., we require
only functions as defined earlier (in that case
). The results are shown in Fig. 8, where we consider

and 20 sources. As is clear from the figure, even though with

Fig. 7. PRMSE versus SNR for . The unplotted data points correspond
to zero error in logarithmic scale.

Fig. 8. PRMSE versus SNR for and 20. The unplotted data points
correspond to zero error in logarithmic scale.

(or even further with ) is
not sparse anymore, the ESMTL (solved with LS) is capable
of localizing the sources with minimum error for dB.
However, increasing increases the probability of wrong
computations for a limited bin length and thus leads to a
performance degradation for compared to .
As can be seen, the ESMTL (no LS) will still work here but no
gain is expected over LS as the problem is not sparse. Obvi-
ously, SMTL fails to operate here and is omitted for the sake of
clarity. Notably, we observe that for specific AP configurations,
it might happen that the newly generated rows with monomials
do not necessarily lead to fully independent columns. As there
is no restriction on the type of measurement functions, this can
be healed to some extent by using different types of nonlinear
functions.

B. Localization of Off-Grid Sources

The following simulations are devoted to the performance
evaluation for the case of off-grid sources, i.e., tackling the grid
mismatch problem. In Figs. 9 and 10, the setup is almost the
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Fig. 9. Multi-source ( = 3) localization with grid mismatch.

Fig. 10. Recovered with ESMTL and STLS.

same as in the previous subsection ( APs), except that
here we consider a different AP configuration. As is clear from
Fig. 9, the sources are randomly placed within the cells. The
first solution, along the lines of existing literature, consists of
using ESMTL (or SMTL) and interpolating the peaks in the re-
covered as is also used in [19] for a single off-grid source. For
the multi-source scenario under consideration, to avoid overlap-
ping peaks in the recovered , we have considered less sources
(only ) and we keep them distant from each other. We ex-
pect that if the sources are located far enough from each other,
as in this case, we would have 4 peaks in the recovered cor-
responding to each off-grid source (altogether 12 peaks in the
recovered for sources) and then based on those peaks
(shown in Fig. 10(b)) we can conduct a linear interpolation to
locate each source (ESMTL-Interp.).
On the other hand, in order to locate the off-grid sources, we

use the first proposed approach of Section V using STLS-LS
summarized in Algorithm 1. In the first step, the CD algorithm

Fig. 11. Mismatch recovery with ESMTL and STLS.

is used to recover a which satisfies (25). The recovered is
depicted in Fig. 10(a) and as can be seen, the main
peaks correspond to the closest GPs to the sources, i.e.,

located on (4,3), (4,8) and (10,3). In the second step,
knowing the closest GPs, we compute and estimate the
mismatch. As is clear from Fig. 9, our proposed mismatch re-
covery algorithm is successful to locate the off-grid sources with
a reasonable accuracy and much better than the ESMTL-Interp.
A notable observation is that we still face difficulties to resolve
two sources located in one cell.
Finally, Fig. 11 illustrates the PRMSE performance versus

SNR for ESMTL-Interp. as well as for the proposed mismatch
recovery algorithm STLS-LS when there exist off-grid
sources randomly deployed over the covered area. As can be
seen from the figure, while STLS-LS is capable of locating the
off-grid sources with a PRMSE of about 9cm for a large span
of SNRs, ESMTL-Interp. cannot attain an accuracy better than
45cm for high SNRs. This stresses the fact that in order to ob-
tain centimeter accuracy, the ESMTL should be modified with
the proposed mismatch recovery process for the case ofmultiple
off-grid sources. Notably, the conventional disjoint TDOA algo-
rithms (TDOA and TDOA-CWLS) outperform both ESMTL-
Interp. and STLS-LS because they are provided with the signal
assignment information and they are independent of the GPs and
hence indifferent w.r.t. the off-grid effect. We highlight that for
more accurate results, the second proposed approach based on
WSSTLS-LS (summarized in Algorithm 2) can be used, but it
is more demanding in terms of computational cost. We would
also like to comment on the attainable accuracy of the STLS-LS
for large SNRs. As is clear from the figure, the attainable accu-
racy does not considerably improve with SNR for large SNRs.
This effect originates from the 1st-order Taylor expansion. Ob-
viously, the larger the size of the cells, the larger the variations
of the TDOA in the cell and hence the worse a 1st-order Taylor
expansion will work. This effect can be healed to some extent
by decreasing the cell size as is confirmed by the simulation re-
sults for where a PRMSE of 3cm (three times better
that ) is attained by STLS-LS for large SNRs.
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VII. CONCLUSION

This paper tackles the problem of multi-source TDOA local-
ization. We have proposed to simplify the involved issues (i.e.,
solving hyperbolic equations and multi-source disambiguation)
by introducing a novel TDOA fingerprinting and grid design
paradigm to convert this non-convex problem to a convex
-norm minimization. Moreover, we have proposed a novel

trick to enhance the proposed model to be capable of localizing
more sources. As a result, we even become able to convert the
problem to an overdetermined one which can be efficiently
solved using classical LS, if wanted. Finally, in order to extend
our ideas, we have proposed two algorithms to handle off-grid
sources. Our extensive simulation results corroborate the ef-
ficiency of the proposed algorithms in terms of localization
accuracy as well as detection capability.

APPENDIX A
THE OPTIMAL OPERATOR

Let us start by rewriting (15) as

(48)

which is due to the fact that the solution of the right-hand side
is always symmetric and allows for a decomposition as

. By applying , with
denoting the Kronecker product, we can further write

(49)

where and denotes the standard vectorization
operator. Therefore, (15) can be rewritten as the following LS
problem

with its solution given by

(50)

Now, using and , we
can further simplify (50) as

Next, we have

(51)

with denoting the inverse operation, which is in-
deed a symmetric matrix as claimed earlier. Note that we are
now looking for an of size such that

; therefore, the solution is not . We need to em-
ploy the singular value decomposition (SVD) to decompose

as , and thus , which allows us to
rewrite (51) as

Therefore, the desired operator of size
if is given by

(52)

while if , it is given by

(53)

This means that is given by
if or if
, which surprisingly means that this is equal to row

orthonormalization as proposed in [7].

APPENDIX B
COMPUTATION OF THE OPTIMAL

Substituting from (44b) into (44a) while using
and leads to minimizing

By taking the partial derivative of w.r.t. and setting it
equal to zero we obtain

which results in
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