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Abstract—In an underwater medium the sound speed is not con-
stant, but varies with depth. This phenomenon upsets the linear
dependency of the distance traveled by an acoustic wave to the
time it takes for the wave to travel that distance, and therefore
makes existing distance-based localization algorithms less effec-
tive in an underwater environment. This paper addresses the prob-
lems of localizing a fixed node and tracking a mobile target from
acoustic time-of-flight (ToF) measurements in a three-dimensional
underwater environment with an isogradient sound speed profile.
To solve these problems we first analytically relate the acoustic
wave ToF between two nodes to their positions. After obtaining
sufficient ToF measurements, we then adopt the Gauss-Newton al-
gorithm to localize the fixed node in an iterative manner, and we
utilize the extended Kalman filter for tracking the mobile target in
a recursive manner. Through several simulations, we will illustrate
that the proposed algorithms perform superb since they meet the
Cramér-Rao bound (CRB) for localization and posterior CRB for
tracking.

Index Terms—Extended Kalman filter, Gauss-Newton algo-
rithm, localization, ray tracing, sound speed profile, tracking,
underwater acoustic sensor networks.

I. INTRODUCTION

A wide variety of applications including early warning
systems for natural disasters (e.g., tsunamis), ecosystem

monitoring, oil drilling and military surveillance are the main
driving force behind exploring underwater environments [1].
Recent advances in the design of wireless sensor networks
(WSNs) motivated system designers to exploit underwater
acoustic sensor networks (UASNs) for data gathering and
ocean explorations. In order to interpret the sensed data in a
meaningful manner, we require the sensor positions either re-
motely or locally as in terrestrial WSNs. Very low bit rate, low
link quality, multi-path, time variability, and a depth-dependent
sound speed profile (SSP) are the most important characteristics
that make underwater acoustic communications a challenging
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field of research [2]. The aforementioned challenging charac-
teristics, therefore, necessitate the design and development of
new localization and tracking algorithms.
A complete survey of techniques and challenges in under-

water localization can be found in [3], [4]. In [5], the authors
propose a centralized algorithm to overcome the severe multi-
path property of the underwater environment due to scattering
from the seabed and ocean surface. In [6], a time-difference-of-
arrival-based localization scheme for stationary UASNs is pro-
posed which does not require time synchronization among net-
work nodes. In [7], depth information as well as range measure-
ments are used to localize a target node inside a three-dimen-
sional (3-D) area.
As stated before, one of the underwater localization chal-

lenges is the depth-dependent SSP which varies with tempera-
ture, pressure, and salinity [8]. Due to this property, an acoustic
ray does not propagate along a straight line, but it bends. Even if
the nodes are located at the same depth, the distance between the
two nodes in an underwater environment is not linearly propor-
tional to the wave travel time. However, in all the above men-
tioned underwater localization schemes, the propagation sound
speed is assumed constant, and thus the trajectory of the ray
will be a straight line. This assumption is unrealistic in gen-
eral and degrades the performance of underwater localization
algorithms.
In contrast to the aforementioned algorithms, [9] evaluates

the localization performance degradation of the straight-line
propagation model compared to the real propagation model.
As the target node measures the time-of-flight (ToF) from an
anchor node, the corresponding constant range interval surface
for this measured ToF is constructed. To construct such a
constant range interval surface (or a curve in a 2-D medium),
the path trajectory for each departing ray from the considered
anchor node is calculated. Then, on each path trajectory a point
is selected related to the ToF. All these points together yield
the desired constant range interval surface. After sufficient
ToF measurements are collected, the position of the target is
estimated as the point whose sum of squared distances from all
these surfaces is minimum. The main drawback of this approach
is the computational complexity which depends on the network
size and the required accuracy. In [10], it is stated that in an
underwater medium with an isogradient SSP the path trajectory
becomes an arc of a circle. Nonetheless, non-straight-line wave
propagation is neglected in [10]. Since the recovery of missing
links is the main goal of [10], the positioning error is basically
dominated by the error due to missing links. The authors of [11]
consider a real wave propagation model for UASNs localiza-
tion based on the depth information and SSP. They eliminate
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the underwater range computation by using a look up table
(LUT), which relates the travel time information to the hori-
zontal distance between two nodes. Their proposed algorithm
is very fast, but to scan the whole environment a huge LUT
is required which may not be practical. Furthermore, the SSP
in an underwater medium is subject to changes in temperature
and conductivity, and any change in SSP degrades the LUT
accuracy and therefore affects the localization performance.
Finally, [12] considers the problem of ranging in an underwater
environment. In that paper, a numerical range estimator is pro-
posed which is based on reconstructing the slanted path using
Fermat’s principle and calculus of variations. Basically, after
depth and time measurements are taken, an integral equality is
formed which is taken over the depth between the nodes. Then,
the constant defined by Snell’s law is numerically calculated,
which is used to compute the horizontal distance between the
nodes through another integral equality. The work of [12] is
really comprehensive, since with any given SSP, the horizontal
distance is computable. However, the algorithm may compute
the constant (defined by Snell’s law) with an ambiguity, since
in an underwater medium it is common that a traveling ray
from one node to another passes a given depth more than once.
As the depth of a node on a traveling ray is not a monotonic
function of the depth, this phenomenon yields an ambiguous
value for any integral taken with respect to (w.r.t.) the depth
along the traveling path.
In this work, we propose a UASN localization and tracking

approach for an underwater medium with an isogradient SSP.
The isogradient SSP is a good assumption for deep water envi-
ronments [13], [14], since the conductivity and water temper-
ature in a deep underwater medium are constant, and the only
factor that affects the SSP is the pressure which linearly depends
on the depth. Notably, the measured SSP in a deep underwater
medium is more accurate than the measured SSP in shallow wa-
ters [15]. In order to find the location of a target, we analytically
relate the position of that node to the ToFs. Using at least four
ToF measurements from four anchors, we formulate the local-
ization problem. It will be shown that the ToF measurements in
an underwater medium are a non-linear function of the target
position, and consequently the localization problem is catego-
rized as a non-linear least squares problem. The analytical rela-
tionship between the ToFs and the nodes’ positions also allows
us to compute the derivatives of the ToFs with respect to the
target’s position in closed form, and hence enables us to utilize
efficient methods to solve the non-linear least squares localiza-
tion problem, such as the Gauss-Newton method, the Leven-
berg-Marquardt method, the Powell’s Dog Leg method, and so
on. The Gauss-Newton algorithm (GNA) is the basis of many
efficient methods for solving non-linear least squares problems,
and in this paper we use this algorithm for estimating the target’s
position. In addition, since tracking is also important, we per-
form multilateration recursively by using the extended Kalman
filter (EKF). Although other trackingmethods could be adopted,
we select the EKF because of the availability of the derivative
of the measurements w.r.t. the location variables.
We do not require any depth information in our algorithms,

and we directly work with ToF measurements based on a given
SSP. However, since some autonomous acoustic vehicles are

Fig. 1. Description of a ray between a target node and an anchor node.

equipped with pressure sensors [14], [16], we also investigate
the existence of depth information in our algorithms. To the
best of our knowledge, this is the first work that analytically
solves the problem of accurate localization and tracking in
an isogradient SSP underwater environment with only ToF
binformation.
The rest of the paper is organized as follows. In Section II,

we analyze the characteristics of a ray traveling between two
points, and also explain how the positions of the two nodes are
related to the ToF. In Section III, the static localization algo-
rithm is introduced, and its corresponding Cramér-Rao bound
(CRB) is derived. We analyze the problem of mobile target
tracking in Section IV, where we calculate the posterior CRB
(PCRB). We evaluate the performance of the proposed algo-
rithms in Section V through several simulations, and finally con-
clude the paper in Section VI.

II. RAY TRACING BETWEEN TWO POINTS

We consider the problem of tracing a ray between two nodes,
e.g., A (anchor) and T (target), in a 3-D environment with an
isogradient sound speed where the SSP is only dependent on
the depth, and has the following form

(1)

where denotes the depth, indicates the sound speed at the sur-
face, and is a constant depending on the environment. Without
loss of generality, to solve the ray tracing problem between the
two nodes, we assume that the axis crosses node A. There-
fore, due to the cylindrical symmetry around the axis we can
transfer the ray tracing problem to the plane which includes both
nodes and the axis as shown in Fig. 1. In this figure,
represents the horizontal distance between the nodes, and it can
be written as

(2)

where , , , and indicate the -coordinate and -coor-
dinate of respectively point T and point A in a 3-D environment.
Since the -axis is assumed to cross point A, we actually have

but we keep it in our formulation for representation
purposes.
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Acoustic propagation is usually modeled using a ray tracing
approach which is a valid approximation for the aforementioned
isogradient SSP underwater environment. Ray tracing is guided
by Snell’s law given by [11]

(3)

where and are the ray angles at the target node and an-
chor node locations, respectively, as illustrated in Fig. 1. and
represent the depth of the anchor node and the target node,

respectively, and is constant along a ray traveling between
the nodes. Moreover, the parameters and represent the angle
and depth of a given point along the ray. From Fig. 1, we can
write

(4a)

(4b)

(4c)

where is the arc length of a ray traveling between the two
nodes, and is its corresponding travel time. Moreover, using
(1) and (3), and by taking derivatives w.r.t. and , we can write

(5)

In the following subsections, we show how the above partial
derivatives can be used for extracting the ray characteristics.

A. Time of Flight vs. Sensor Node Locations

In this part of the paper, it is shown how the ToF between the
two nodes is related to their positions. By substituting (5) into
(4a), and integrating w.r.t. we have

(6)

for the horizontal distance, and for the vertical distance between
the two nodes we can write

(7)

Dividing (7) by (6), considering we end up with

(8)

Furthermore, by substituting (1) into (3) we can write one more
equality as

(9)

By applying the change of variables , and
, (8) and (9) can be modified to

(10)

(11)

The parameter denotes the angle of the straight line between
the two nodes w.r.t. the horizontal axis, and represents the
angle at which the ray trajectory deviates from this straight line
as shown in Fig. 1. For the exceptional condition where
, (11) is not informative and should be modified to

(12)

which is extracted from (6). Now, by integrating (4c) w.r.t. ,
the ToF can be calculated as

(13)

In the above equation for the special case where , one
node is located on top of the other node, and thus according to
Snell’s law we have , or . In this exceptional
case, the ToF can be given by

for

for .
(14)

Since the occurrence probability of one node being located on
top of the other is zero, we ignore it in the rest of this paper.
Up to now, the ToF for an isogradient SSP can be computed

using (13) by first calculating from (10), substituting it into
(11) and computing , and consequently and . Since we
will adopt the GNA for the static localization and the EKF for
tracking a mobile target, in addition to the ToF as a function of
the node locations, we also need the derivatives of the ToF w.r.t.
the target location. Here, we assume that point A represents a
fixed anchor node and point T represents the target node which
can be fixed or mobile. To derive and using (13) we
take the following partial derivatives

(15a)

(15b)

The above equations depend on the partial derivatives of the
ray angles at the target and anchor location. These partial deriva-
tives can be computed from (8) and (9) as

(16a)

(16b)

(17a)

(17b)

where (16a) and (17a) are calculated from (8), and (16b) and
(17b) are derived from (9). Observe that (16) and (17) are linear
in , , , and can thus simply be solved in closed
form. By computing these values for each anchor and substi-
tuting them into (15a) and (15b), we are able to compute the
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derivative of all measured ToFs w.r.t. the target node position.
Finally, and can be derived as

(18a)

(18b)

B. Traveled Ray Length

As stated before, in an underwater medium, the traveled ray
length between two points is not the same as the distance be-
tween them. In the next section, we will see that the distance-de-
pendent noise is related to the received signal power, and con-
sequently to the ray length. The ray length in an underwater
medium with an isogradient SSP can be easily obtained by sub-
stituting (5) into (4b), and taking an integral w.r.t. , leading to

(19)

where is the traveled ray length between the nodes A and T.
Further, we will observe later on that in order to extract a

lower bound on the position estimation variance, the partial
derivatives of the traveled ray length w.r.t. the target location
are needed. Below, we compute the derivative of the ray length
w.r.t. and as a function of :

(20a)

(20b)

where and can simply be calculated from . The
partial derivatives and can be obtained from sim-
ilar to the computation of the partial derivatives of the ToF w.r.t.
and .

C. Ray Depth Overshoot

In practice, the SSP of the entire underwater medium cannot
be considered isogradient. However, the SSP can be modeled
as isogradient within a certain depth range. In other words, the
ocean environment can be divided into several isogradient SSP
layers with various thicknesses. For instance in [13], it is shown
that the SSP of the Pacific ocean from a depth of 600 m to a
depth of 5000 m can be estimated as isogradient.
In an underwater environment with an isogradient SSP, it is

probable that the depth of a node along a given ray between two
points, say A and T, exceeds the region . The depth of
a node along a given ray can be expressed as a function of the
ray angle as

(21)

where is a positive constant defined earlier in (3). It is obvious
that follows the behavior of , and its extremum occurs
at the maximum of , i.e., , since when the ray

bends towards the deeper regions whereas when the ray
bends upwards, i.e., to smaller depths. In other words, the depth
of a node on a ray exceeds the region if and only if the
sign of the ray angle at the two points differs from each other.
Thereby, when we have , the value of the minimum
or the maximum depth can be computed as

(22)

If the computed or lies within the bound-
aries of the isogradient SSP layer, then the formulas derived in
the previous subsections are valid.

D. Range Approximation Using Depth Information

The underwater nodes can also be equipped with a pressure
sensor, which allows them to estimate their depth. Using this
depth information as well as (8) to (13), the target node can
compute its horizontal distance from each anchor, and use the
traditional range-based WSN localization algorithms to find its
position [17]. However, due to the computational complexity, it
is sometimes preferable to approximate the underwater medium
as a homogeneous one. Below, we will show that if the depth
of the two nodes is known, the underwater environment can be
approximated as a homogeneous one using the assumption of a
straight-line wave propagation. By adopting such an approxima-
tion, the computational complexity of the localization scheme
decreases, but its accuracy degrades.
With the assumption of a straight-line wave propagation, the

ToF between two points can be written as

(23)

where is the angle of the straight line between the two nodes
w.r.t. the horizontal axis, as defined in (8). Hence, the average
sound speed is

(24)

where is the distance between the two points which
is related to the depth of the nodes as

(25)

It can be seen that the average sound speed, under this assump-
tion, only depends on the sound speed at the depths where the
nodes are located. Moreover, it can be shown that based on the
depth information of the nodes, (24) is the best linear approxi-
mation of the sound speed in an isogradient SSP medium. Re-
gardless of the availability of the depth information, the distance
error originating from the assumption of a constant wave prop-
agation speed can be acquired as

(26)

where is the actual ToF between the two nodes, and is the
assumed constant sound speed. This also holds for the case of
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a straight line propagation based on availability of depth infor-
mation, i.e., .

III. TARGET LOCALIZATION BASED ON TIME OF
FLIGHT MEASUREMENTS

In this paper, we consider a single target node whose posi-
tion will be determined by a number of anchor nodes. How-
ever, the extension to multiple target nodes is easy. Two sce-
narios for multiple target localization can be considered. In a
first scenario, the anchor nodes are transmitters and the target
nodes are receivers. Then, each target node can measure the
ToFs to the anchors individually and estimate its position. In a
second scenario, the target nodes are transmitters and the an-
chors are receivers. Under this condition, if the target nodes
send the ranging signal simultaneously, then there would be lots
of uncertainties and ambiguities for the localization algorithm.
Nevertheless, if we assume that each target transmits its ranging
signal while the others are silent (for instance as in a TDMA
scheme), then there will be no ambiguity and the proposed al-
gorithm can be extended to a multiple target scenario.
In real scenarios we may only know that the sound speed

varies linearly with depth, , but we do not know
the value of and . In addition, the characteristics of the envi-
ronment may change slowly with time, due to the water temper-
ature and salinity, and consequently the values of and may
change. Since we know the anchor positions, we can estimate
the value of and by a simple training phase. For instance, the
-th anchor transmits a signal to the -th anchor who can then
compute the ToF. Repeating this procedure for all combinations
of two anchors, we have ToF measurements, and
based on (10), (11) and (13) we are able to estimate the values
of and . In this way, the algorithm can cope with slow vari-
ations of the environment.
To be able to measure the ToFs between the target node and

the anchors, the target node needs to be synchronized with the
anchor nodes of the network. Quite contrary to terrestrialWSNs,
synchronizing a UASN is a difficult task. Large propagation de-
lays and possible node movements are two significant attributes
that severely affect UASN synchronization [18]. To eliminate
this problem, a ping-pong style scheme to measure the round-
trip delay between the target node and each of the anchor nodes
can be employed [19]. However, in this paper we assume that
all the nodes are synchronized, and we only focus on the error
that results from the assumption of a straight-line propagation.

A. Static Network Model

We consider a 3-D underwater wireless sensor network con-
sisting of anchor nodes with known locations and one
fixed target node. The ToF measurements are assumed to be af-
fected by Gaussian distributed noise as

(27)

where is a function relating
the actual ToFs to the target location (we omit the
superscript T for simplicity), is a vector
containing the ToF measurements between the target node and
each of the anchor nodes, and represents the measurement

noise. We assume that the noise components are mutually in-
dependent, and hence the covariance matrix of the noise vector
can be obtained as

(28)

where , is the noise variance of the
ToFmeasurement based on the -th anchor node. Since themea-
surement errors in the ToFs are mutually uncorrelated, the max-
imum likelihood (ML) solution for will be given
by

(29)

B. Proposed Positioning Algorithm

The optimization problem in (29) is non-linear w.r.t. the vari-
able , and therefore it is difficult to be solved analytically.
Here, we adopt a numerical system solver such as the GNA.
The algorithm starts with an initial point and improves the esti-
mate recursively as stated in Algorithm 1.

Algorithm 1: Gauss-Newton Algorithm

Start with an initial location guess.
Set and put a large value in .
while and do
Next state:

end while

In this algorithm,

represents the gradient of the vector w.r.t. the variable at
, where is the estimate at the -th iteration, which can

be computed using (15) and (18), and
for . Here, and are the user-defined limits on
the stopping criteria that determine when the algorithm exits
the loop. The parameter denotes the total number of itera-
tions, which depends on the required precision. In general, only
a small is required, i.e., or even less.
In terms of computational complexity, Algorithm 1 indicates

that each iteration requires two simple matrix multiplications,
namely one by multiplication (i.e., roughly
floating operations) as well as one by multiplica-
tion (again roughly floating operations), and one 3 3 ma-
trix inversion (i.e., 27 floating operations). Furthermore, we also
have to compute the elements of one matrix, ,
and one vector, , which are of order . This means
that in total we have a complexity of order for each iteration.

C. Cramér-Rao Bound

The Cramér Rao bound (CRB) expresses a lower bound on
the variance of any unbiased estimator of a deterministic pa-
rameter. In this subsection, we derive two CRBs for two dif-
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ferent noise characteristics; distance-independent noise (DIN),
for which the variance of the measurement noise is indepen-
dent of the distance between the nodes, and distance-dependent
noise (DDN), for which the variance of the measurement noise
depends on the traveled ray length between the nodes. DDN is
more realistic compared to DIN, since the accuracy of ToF es-
timation is related to the received signal power, which itself is
related to the traveled distance and transmit power. The Fisher
information matrix (FIM) for a system affected by independent
Gaussian noise can be computed as [20]

(30)
where

(31)

and

(32)

and is the -th element of , i.e, , , and .
Once the FIM is computed, the lower bound on the variance of
the estimation error can be expressed as
where is the variance of the estimation error in the -th
variable and it is defined as

(33)

For DIN, the noise covariance matrix is fixed which means that
the second term of the FIM in (30) is zero, and consequently
the CRB computation can be simplified. On the other hand, for
DDN, the noise covariance matrix depends on the distance trav-
eled between each anchor and the target node according to

(34)

where is a constant that is related to the transmission power
and the environment noise floor, and is the overall path
loss, which can be defined as [21]

(35)

where is the signal frequency, and is the traveled distance
which is taken in reference to some . The path loss exponent
models the spreading loss, which is usually in between 1 and

2. The absorption coefficient can be obtained using an
empirical formula [21].
The computation of in (32) requires the partial

derivatives for . The derivative of w.r.t. the
variable , can be calculated as

(36)

which is related to the derivatives of the traveled ray lengthw.r.t.
. Once the above expressions are computed we are able to

form for each variable , and based on that the FIM and
consequently the CRB can be calculated.

D. Localization With Available Depth Measurements

The earlier localization algorithm does not require any depth
information. In this subsection, we show how the optimiza-
tion model will change if depth measurements are available.
The result of this subsection is also useful for a comparison of
the proposed algorithm with other existing state-of-the-art al-
gorithms which mostly demand depth information. As stated in
Section II-D, the underwater target can measure its depth with
a pressure sensor, and may send this information to the central
unit to potentially improve the localization accuracy. In this sit-
uation, the function , the measurement vector, , and the
covariance matrix of the noise vector, , have to be modified
to the following format:

(37a)

(37b)

(37c)

where , is the noisy depth measurement, and is
the power of the corresponding noise. Here, like the ToF mea-
surements, it is assumed that the depth information is affected
by Gaussian noise but does not generally depend on the distance
from the anchors. As before, the ML solution for
is the same as (29). The GNA and CRB can be extended using
(37).

IV. TARGET TRACKING BASED ON TIME OF
FLIGHT MEASUREMENTS

A. Dynamic Network Model

To be able to localize a mobile target in a recursive manner
(sometimes referred to as tracking), we exploit the EKF to esti-
mate and track the position. Let us denote the location of the mo-
bile target at time instant as , and the cor-
responding state vector for the EKF as , which
contains both the location and velocity of the mobile target at
time instant .
In general, a discrete-time linear movement process model

can be considered as

(38)

where the matrix relates the state of the previous time instant
to the current one, and represents an i.i.d. Gaussian process
noise with covariance matrix .
It is noteworthy that we can further improve the accuracy of

our location estimate with the help of a depth measurement in
cases where this information can be acquired. However, for the
network to be able to exploit the depth of the mobile target, the
node will have to transmit a signal containing the depth infor-
mation to the anchors which itself is resource-demanding due to
the bandwidth limitations of the underwater channel. In order to
make this process more bandwidth efficient, we suppose that the
mobile target transmits the depth information every -th trans-
mission frame. On the other hand, scenarios can be considered
where the mobile target itself requires its location. Then, we can
consider that depth information is always available. Although
velocity measurements of the mobile target would aid the lo-
calization accuracy, in practice it requires the use of Doppler
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sensors, which increases the implementation cost as well as the
computational complexity, and hence, we avoid measuring the
velocity. Thus, the measurement model under consideration can
be described as

(39)

(40)

where is the function
relating the state of the mobile target, to the wave
travel times between the mobile target and the anchors,

(note that from (27)).
and represent the i.i.d. Gaussian noise of the measurements
with covariance matrix and variance , respectively,
where is the identity matrix. In the following,
we explain how we can utilize the EKF for localization and
tracking of a mobile target in an underwater environment.

B. Extended Kalman Filter

The EKF algorithm for underwater tracking considering the
exact SSP (EKF-ESSP) is shown in Algorithm 2. In this al-
gorithm, , , and are the covariance matrix
of the error in the state estimate, the measurement noise, and
the process noise, respectively. To linearize the measurement
equations, we compute the gradient of as

where , and
for .

Algorithm 2: EKF

Start with an initial location guess.
for to do
Next state:

Next error covariance:

if info. is not available : then
Compute the Kalman gain:

Update the state:

Update the error covariance:

else
Compute the Kalman gain:

Update the state:

Update the error covariance:

end if
end for

The gradient must be evaluated for time instant as
, where is the a posteriori location estimate at

the -th time instant. This matrix can again be computed using
(15) and (18). Following the derivation of the EKF, if depth
measurements are available, and should be modified to

and as

where denotes an all zero matrix.

C. Posterior Cramér-Rao Bound

The lower bound on the mean squared error (MSE) of estima-
tion for any discrete-time filtering problem, like the proposed
EKF, can be computed via the posterior Cramér-Rao bound
(PCRB) [22]. The recursive PCRB derived in [23] provides a
formula for updating the posterior FIM from one time instant
to the next. The posterior FIM sequence for a linear process
and a non-linear measurement model can be computed as

(41)

where all the parameters have been defined earlier, except for
, which is the measurement gradient evaluated at the true

location of the mobile target at the -th time instant. It is note-
worthy that, since we basically estimate the location of the mo-
bile target and not its velocity, the PCRB of our location esti-
mates will correspond to the sum of the first three diagonal ele-
ments of

(42)

Note that, the PCRB of the -th element of corresponds to the
-th diagonal element of .

V. NUMERICAL RESULTS

In this section, we will conduct several simulations to eval-
uate the performance of our proposed algorithms in an environ-
ment with an isogradient SSP. We assume that the sound speed
at the surface is , and it increases as a linear
function of depth with a steepness of . As a first sim-
ulation result, we compute the range error resulting from the
straight-line wave propagation model with a constant velocity.
This velocity can simply be assumed to be the sound speed at
the anchor location or the target location, at the average depth
between these two points, or the best linear approximation as
given by (24). In Fig. 2, it is shown that as the target node gets
further away from a surface anchor node, the error increases.
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Fig. 2. Error in range calculation resulting from the assumption of a straight-
line propagation with a constant speed.

Fig. 3. Random target node position around the reference point (here the an-
chors’ center of gravity).

Furthermore, it can be seen that among the different given con-
stant speeds, the best linear approximation and the average one
perform the best. However, these methods need the depth infor-
mation of the target and anchor node whichmay not be available
all the time.
At the network level, we consider four anchors that are lo-

cated on the vertices of a cube with edge length 100 m, in which
one vertex is located at the origin of the Cartesian coordinate
system as depicted in Fig. 3. Here we consider the proposed
localization algorithm (GNA-ESSP), and for the computation
of each point in the following figures, we average the solution
over independent Monte Carlo runs. In addition, for the
sake of comparison, we also consider an ordinary range-based
localization algorithm which considers a constant sound speed
defined as the average sound speed between two given nodes

(GNA-ASSP)1. In the GNA-ASSP, the distance between two
nodes is estimated via the measured ToFs, i.e., as , where is
a given constant wave velocity. In our simulations, we simply
take as the average speed over the region where the deepest
and the shallowest anchors are located. Hence, we simply set

. In each Monte Carlo
run, the mobile target is located meters away from a refer-
ence point in the 3-D environment, where has a normal distri-
bution with zero mean and standard deviation . For in-
stance, in Fig. 3, the reference point of the target location is set at
the anchors’ center of gravity, , and for each Monte
Carlo run the mobile target has a random position around this
reference point. Note that we plot the mean CRB (for the local-
ization scenarios) and mean PCRB (for the tracking scenarios)
as we average over different realizations of target locations and
trajectories, respectively.
Based on the target position, the actual ToFs between the

target and the anchors are computed. These actual ToFs can be
obtained either from the analytical formulas or by ray-tracing
simulators [24]. In order to compute the ToFs via ray-tracing
simulators, a bunch of rays with different angles (so that the
whole area is scanned) departs the transmitter and the trajecto-
ries of all the rays are computed. Among all these rays we pick
the ones which have two properties: first, they are close enough
to the receiving point, and second, they arrive sooner than the
other rays to the receiving point. Then, we restart the above pro-
cedure with another set of rays, but with a finer angular resolu-
tion. This time, the initial angles of these rays lay between the
angles of the rays studied in the previous run. We continue this
procedure until we get to the desired accuracy. Among the avail-
able simulators we have chosen the BELLHOP. The BELLHOP
is a beam tracing model for predicting acoustic pressure fields
in ocean environments and it can produce a variety of useful
outputs including transmission loss, eigenrays, arrivals, and re-
ceived time-series [25]. Notably, for the numerical results pre-
sented in this section, no reverberation due to scattering from
fish or other biodata is considered.
After the ToF computation, noise is added to these ToFs and

these noisy ToFs are used as an input to the considered localiza-
tion algorithms. For our proposed GNA-ESSP the initial point
is set to the anchors’ center of gravity, and the stopping criteria
are set to and .
In Fig. 4, we investigate the effect of the measurement noise

on the algorithms under consideration. For this simulation, the
reference point is located at the anchors’ center of gravity, and
the measurement noise variance for all measurements is con-
sidered to be the same and distance-independent. Here, the hor-
izontal axis represents the noise standard deviation (std.) on
the ToF measurements, and the vertical axis is the root mean
squared error (RMSE) of the location estimate which is given
by

(43)

where represents the expectation operation.

1For the GNA-ASSP, the same GNA as in Algorithm 1 is used, but the gra-
dient is computed according to the linear dependency of the ToF to the range in
a homogeneous medium.
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Fig. 4. Localization performance with distance-independent measurement
noise.

Fig. 5. Localization performance with distance-dependent measurement noise.

As is clear from Fig. 4, the performance of the proposed
GNA-ESSP constantly improves by increasing the ToF mea-
surement accuracy (decreasing the noise std.), and it falls on
top of the mean CRB. On the contrary, the GNA-ASSP does not
show any improvement after a given noise std. For large noise
stds, both algorithms have the same performance. In that case,
the proposed algorithm has no advantage, and the GNA-ASSP
is preferred due to its lower complexity.
In Fig. 5, we investigate the performance when the variance

of the measurement noise is distance-dependent. To evaluate the
algorithm, we introduce a parameter which is the ratio of the
expected squared travel time to the noise power:

(44)

The horizontal axis in Fig. 5 represents in dB, and the ver-
tical axis is the RMSE of the location estimate. Here, we assume

, , , and in
(34) and (35) which is valid for frequencies below 20 kHz. In
this case, the proposedGNA-ESSP falls on top of themean CRB

Fig. 6. RMSE vs. the distance of the target node from the anchors’ center of
gravity, considering DIN.

Fig. 7. RMSE vs. the distance of the target node from the anchors’ center of
gravity, considering DDN.

while the GNA-ASSP again does not follow the mean CRB after
a given . This shows that the GNA-ASSP which assumes a
constant sound propagation speed is limited and cannot perform
as efficient as the proposed algorithm.
In Figs. 6 and 7, we increase the -coordinate of the refer-

ence point around which the target node is located, while the
and -coordinate of the reference point are as the and
-coordinate of the anchors’ center of gravity. In other words,
the horizontal axis in these two figures represents how far the
reference point is from the anchor locations. We set
for the DIN scenario, and for the DDN case, all the parameters
are as defined before. From Fig. 6, it can be observed that as the
horizontal distance between the target node and the anchor po-
sitions increases, the performance of the proposed GNA-ESSP
degrades, but it still falls on top of the mean CRB. The reason
for this phenomenon can be explained by the non-linear depen-
dency of the ToF measurements to the target location, and the
non-equal distribution of the error variance on the estimated lo-
cation (it depends on the gradient of at that point). As a rule of
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Fig. 8. RMSE vs. SSP steepness.

thumb, the coordinate which has the lowest corresponding gra-
dient suffers more from the noise. Onemore thing that can be ex-
tracted from this figure is that, although the performance of the
proposed algorithm degrades as the distance between the target
node and the anchors increases, the GNA-ASSP is affectedmore
by this phenomenon and separates rapidly from the mean CRB
as the distance increases.
It can be concluded from Fig. 7 that with a distance-dependent

noise variance, not only the non-equal distribution of the error
variance on the estimated location affects the performance of the
algorithm, but also the increased noise power at larger distances
leads to a further degradation.
Fig. 8 depicts the effect of the steepness of the SSP on the

performance of the algorithms. Here, we consider a distance-
independent noise variance, and we set . As can
be seen from the figure, with an increase of the steepness of
the SSP, the performance of the GNA-ASSP gets worse, but it
has no effect on the proposed algorithm. Moreover, this effect
is more clear for the case where the target node is further away
from the center of gravity of the anchors.
Up to now, we did not consider any depth measurement. In

order to compare the proposed localization algorithm with other
existing state-of-the-art methods, we assume that the target mea-
sures its depth with a measurement noise std. of and
this information can be used in the localization algorithm. In this
comparison, themeasurement noise of the ToFs is assumed to be
DIN with . In Fig. 9, we compare the performance
of the proposed algorithm with the ones introduced in [11] and
[12]. These algorithms estimate the horizontal range between
two nodes based on the measured ToF and depth. Based on these
range estimates, ML localization is performed as in [20].
The work in [11] uses LUTs to compute the mutual horizontal

distance between two nodes. For our scenario, two LUTs have to
be built. Each LUT has two entries, namely ToF and depth, and
one output, namely the horizontal distance. Here, one LUT is re-
sponsible to estimate the horizontal distance between the target
and the anchors which are located at , and the other LUT
estimates the target’s horizontal distance from the anchors lo-
cated at . Each LUT covers a rectangular area of length

Fig. 9. RMSE vs. the distance of the target node from the anchors’ center of
gravity, considering DIN, and depth measurement.

2500 m and width 100 m with a resolution of 10 cm. Therefore,
each LUT has 25 M points. Fig. 9 shows that the localization al-
gorithm based on [11] performs well, and its performance falls
on top of the mean CRB like the proposed algorithm. However,
as mentioned before, this algorithm works well only if the SSP
of the environment remains constant. Otherwise, the computed
values in the LUT are not valid anymore, or are less accurate
than expected. The estimation of the horizontal distance in [12]
has two phases; first, by measuring the depth and ToF informa-
tion, the value of in (3) is computed numerically, and second,
by using and taking the integral w.r.t. the depth of a point on
a ray trajectory the value of the horizontal distance can be com-
puted. However, in an inhomogeneous medium, a ray trajectory
is not always a monotonic function of the depth, and as a result,
whenever a path between two nodes crosses a specific depth
more than once, which is quite common, the above algorithm is
not valid anymore. This explains why the localization based on
[12] works only for regions where the target is close to the an-
chors. Note though that, this algorithm performs optimal when
the ray trajectories to all anchors are a monotonic function of
the depth.
For the evaluation of the proposed tracking algorithm, the

movement model is chosen to be a randomwalk with a sampling
time step of . The matrix as defined in (38) is then
given by

and the process noise covariance matrix, which is assumed to
be time-independent and only affecting the velocity, is given by

where we assume that , and .
For all simulations, we set the initial location guess of the

EKF to a point where it is away from
the actual starting location of the target node. For each run, we
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Fig. 10. Tracking comparison.

consider movement steps, and we compute the po-
sitioning root mean squared error (RMSE) between the actual
and estimated trajectories at the -th time instant according to
the following formula

(45)

where we try to avoid transient effects by setting to a large
number, e.g., .
As a benchmark for our proposed tracking algorithm

(EKF-ESSP), we again show the performance of an ordinary
EKF which considers a straight-line wave propagation with
a constant sound speed defined as the average sound speed
between the depth of the deepest and the shallowest anchors
(EKF-ASSP). In the following simulations, we average over
5000 independent Monte Carlo trials and we set ,

, and , unless
otherwise mentioned.
In Fig. 10, we depict a tracking result example (a single

Monte Carlo run) of the proposed EKF-ESSP and the
EKF-ASSP algorithm, where the mobile target starts its
journey from . It is shown that the proposed
algorithm converges well to the real trajectory. However, the
EKF-ASSP algorithm always has an offset from the real trajec-
tory, and this offset increases as the mobile target gets further
away from the center of gravity of the anchors.
In Fig. 11, we investigate the effect of the measurement noise

on the algorithms under consideration. Here, the horizontal axis
represents the noise std. on the ToF measurements. As is clear
from the figure, the performance of the EKF-ESSP constantly
improves when increasing the ToF measurement accuracy (de-
creasing the noise std.), while the EKF-ASSP does not show any
improvement after a given noise std. Further, the performance
of the EKF-ASSP gets worse when the distance of the mobile
target (in its initial location) from the center of gravity of the

Fig. 11. Effect of the time measurement error.

Fig. 12. Effect of the measured depth report on the proposed tracking
algorithm.

anchors increases. For large noise stds, both algorithms have
approximately the same performance.
Fig. 12 shows the effect of the availability of depth mea-

surements on the RMSE performance of the proposed EKF-
ESSP algorithm. Increasing the index shown on the horizontal
axis means that we can less often measure the depth. From
the figure, increasing degrades the performance of the EKF-
ESSP, although this degradation stops for large values of . This
means that the algorithm can work even if it relies only on ToF
measurements.
Fig. 13 illustrates the effect of the depth measurement error

(denoted by ) on the location estimation errors in each of
the axes separately. As can be seen, the depth measurement
error mainly affects the location estimates w.r.t. the vertical
axis. The lower the depth measurement error, the better the
estimate. On the other hand, increasing the depth measurement
error has no effect on the EKF-ESSP after a given value, since
at these values, the EKF can acquire a better estimate from the
ToFs than from the measured depth, and consequently ignores
the depth information by decreasing its corresponding weight
in .
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Fig. 13. Effect of the depth measurement error on the proposed tracking
algorithm.

Fig. 14. Effect of the number of anchors on the proposed tracking algorithm.

Finally, Fig. 14 shows the effect of the number of anchors on
the performance of the algorithm. The anchors are added one
by one and are located on the vertices of the cube as defined
before. Although increasing the number of anchors improves
the performance of the algorithm slightly, it is not preferred due
to the increase in computational complexity.

VI. CONCLUSIONS

In this paper, we have considered the problem of target node
localization and tracking in an underwater environment with
an isogradient SSP. We have shown that the traditional terres-
trial approaches for localization which assume a constant sound
speed for the whole underwater environment are not so accu-
rate. It is also shown that as the distance between two under-
water nodes increases, the straight-line wave propagation model
performs worse, since it does not follow the real propagation
model. To solve this issue, we relate the ToF between two un-
derwater nodes to their locations for an isogradient SSP, and
formulate the localization problem as a time-based problem in-
stead of a range-based one. Then, we use the Gauss-Newton al-
gorithm and the extended Kalman filter with a proper formula-

tion to solve the localization and tracking problem, respectively.
It is shown that our proposed algorithms perform better than the
algorithms based on a straight-line wave propagation model, es-
pecially for large distances. Although an isogradient SSP is not
valid for all practical situations, the results can be used as an
initial step towards more elaborate SSPs, since any given SSP
can be modeled by several isogradient layers. This is a direction
of further research.
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