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ABSTRACT

The problem of source localization from time-difference-of-arrival

(TDOA) measurements is in general a non-convex and complex

problem due to its hyperbolic nature. This problem becomes even

more complicated for the case of multi-source localization where

TDOAs should be assigned to their respective sources. We simplify

this problem to an ℓ1-norm minimization by introducing a novel

TDOA fingerprinting model for a multi-source scenario. Moreover,

we propose an innovative trick to enhance the performance of our

proposed fingerprinting model in terms of the number of identifiable

sources. An interesting by-product of this enhanced model is that

under some conditions we can convert the given underdetermined

problem to an overdetermined one and efficiently solve it using clas-

sical least squares (LS) approaches. Our simulation results illustrate

a good performance for the introduced TDOA fingerprinting.

Index Terms— Multi-source localization, TDOA fingerprint-

ing, sparse reconstruction.

1. INTRODUCTION

Precise localization of multiple sources is a fundamental problem

which has received an upsurge of attention recently [1]. Many differ-

ent approaches have been proposed in literature to recover the loca-

tion of the sources based on time-of-flight (ToF), time-difference-of-

arrival (TDOA) or received-signal-strength (RSS) measurements. A

traditional wisdom in RSS-based localization tries to extract distance

information from the RSS measurements. However, this approach

fails to provide accurate location estimates due to the complexity

and unpredictability of the wireless channel. This has motivated an-

other category of RSS-based positioning, the so-called location fin-

gerprinting. This technique discretizes the physical space into grid

points (GPs) and creates a map representing the space by assigning

to every GP a set of location-dependent RSS parameters, one for ev-

ery access point (AP). The location of the source is then estimated

by comparing real-time measurements with the fingerprinting map at

the source or APs, for instance using K-nearest neighbors (KNN) [2]

or Bayesian classification (BC) [3]. A closer look at the grid-based

fingerprinting localization reveals that the source location is unique

in the spatial domain, and can thus be represented by a 1-sparse vec-

tor. This motivated the use of compressive sampling (CS) [4] to

recover the location of the source using only a few measurements

by solving an ℓ1-norm minimization problem [5, 6, 7, 8, 9]. In [10],

we have proposed to reformulate the sparse localization problem by

making use of the (not previously exploited) cross-correlations of

the signal readings at different APs which leads to a considerable

improvement in terms of the number of identifiable sources.

On the other hand, the problem of TDOA-based localization for

a single (multiple) source(s) has been investigated from different per-

This work was supported by NWO-STW under the VICI program

(10382).

spectives in literature [11, 12, 13, 14, 15, 16, 17, 18]. In the speech

and acoustic domain, some of these studies consider disjoint sources

such as [12] and in many others linear array receivers are assumed

and thus the problem basically boils down to direction of arrival

(DOA) estimation [15]. In a big line of research, the conversion of

phase to TDOA leads to aliasing effects at high frequencies for large

receiver spacings [13, 15]. In [14], a fingerprinting-like approach is

proposed and the area is discretized into a set of GPs for which an

acoustic map function is defined. Through a proper processing of the

acoustic map and de-emphasizing the effect of the dominant source,

they illustrate a good performance in localizing two sources, but in

some situations their performance drops if the number of targets is

larger than three. Surprisingly, none of the aforementioned stud-

ies exploits CS or sparse reconstruction ideas. In [19], the source

sparsity is exploited to simplify the hyperbolic source localization

problem into an ℓ1-norm minimization. However, the algorithm in

[19] is single-source and treats different sources separately.

The contributions of this work are as follows. Firstly, we for-

mulate the problem of sparsity-aware multi-source localization by

defining a novel TDOA fingerprinting model. Secondly, we propose

an innovative trick to enhance our proposed paradigm in terms of

the number of identifiable sources which leads to a significant de-

tection gain. In Section 2, the TDOA network model as well as our

measurement model are explained. Section 3 introduces our novel

sparse multi-source TDOA localization idea. Section 4 presents the

trick to enhance the performance of our proposed multi-source algo-

rithm. Simulations in Section 5 corroborate our analytical claims.

2. TDOA NETWORK MODEL

Consider M APs distributed over an area which is discretized into

N GPs. Note that the APs can be located anywhere, not necessarily

on the GPs. We consider K source nodes (SNs) which are randomly

located on any of these GPs. Note that extensions of this work to

deal with “off-grid” sources using the concept of grid mismatch can

be found in [20]. We assume that the APs are connected to each

other in a wireless or wired fashion so that they can cooperate by

exchanging their signal readings. Now, if the k-th source broadcasts

a time domain signal sk(t), the received signal at the i-th AP can be

expressed by

xi(t) =
K∑

k=1

hi,ksk(t− τi,k) + ni(t), (1)

where hi,k and τi,k respectively are the channel coefficient and time-

delay from the k-th source to the i-th AP. Here, for the sake of sim-

plicity, we have considered a single-tap flat fading channel. Fur-

ther, ni(t) (with variance σ2
ni

) represents the additive white Gaus-

sian noise (AWGN). In a classical TDOA scenario, for each selection

of a reference AP, we can collect M−1 TDOA measurements. How-

ever, the maximum number of distinct TDOA measurements, the so-

called full set, is (M − 1)M/2. Here, we choose a non-redundant
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set of M − 1 TDOA measurements by always considering the first

AP as the reference. Since we consider a passive source localization

scenario, taking cross-correlations of the received signals is the op-

timal approach for extracting the TDOAs under an AWGN assump-

tion [21]. The signals sk(t) and ni(t) are assumed to be ergodic,

mutually uncorrelated white sequences, i.e.,
∫
t
sk(t)sk′(t−∆)dt =

δ(∆)δ(k − k′),
∫
t
ni(t)nj(t − ∆)dt = σ2

ni
δ(∆)δ(i − j), and∫

t
sk(t)ni(t)dt = 0. Therefore, the cross-correlation between the

received signal at the i-th AP and the reference AP is given by

ri(∆) =

∫

t

( K∑

k=1

hi,ksk(t− τi,k) + ni(t)

)

×

( K∑

k′=1

h1,k′sk′(t−∆− τ1,k′) + n1(t−∆)

)
dt

=

K∑

k=k′=1

∫

t

(
hi,ksk(t− τi,k) + ni(t)

)

×

(
h1,ksk(t−∆− τ1,k) + n1(t−∆)

)
dt

=

K∑

k=1

hi,kh1,kδ(∆−∆i,k), (2)

where ∆i,k = τ1,k − τi,k is the TDOA of the k-th source w.r.t. the

AP pair (AP1, APi). As is shown by (2), for a single-tap channel as

considered here, the K dominant peaks of ri(∆) return the TDOA

values {∆i,k}k related to the K sources.

Remark (Multipath Scenarios): In fact, TDOAs coming from

reflective paths can be confused with the direct-path ones in a multi-

path scenario. In such scenarios, TDOA-disambiguation techniques

(see e.g. [11]) could be used as an add-on module to our proposed

algorithms to discriminate between direct-path and reflective-path

TDOAs before performing localization. Having pointed out one so-

lution, we will not consider the multipath issue in this paper. �

The main problem with (2) is that even though we can estimate

the set of TDOAs {∆i,k}k, we do not know the source indices of

the TDOAs. This leaves us with solving an assignment problem to

relate the TDOAs to the sources. To make it more clear, as shown

in Fig. 1, we define the ∆
(k)
i ’s as the TDOAs ordered in an increas-

ing fashion (∆
(1)
i ≤ · · · ≤ ∆

(K)
i ). These ∆

(k)
i ’s can be measured

for i = 2, · · · ,M and they are stacked in the measurement vectors

y(k) = [∆
(k)
2 , · · · ,∆

(k)
M ]T . Note the difference with the ∆i,k’s,

which denote the TDOA values ordered according to the source in-

dices leading to the vectors yk = [∆2,k, · · · ,∆M,k]
T . It is worth

mentioning that while the y(k) vectors are perfectly known, the yk

vectors are not. Now, the problem considered herein can be stated

as follows. Having computed the TDOAs for the explained multi-

source scenario, locate all the sources simultaneously.

3. SPARSITY-AWARE TDOA LOCALIZATION

The problem of TDOA localization becomes highly non-trivial for

the case of multiple sources since on top of the non-linear nature of

the problem, the assignment of the TDOAs to the different sources

has to be resolved. Therefore, it is of special interest to be able to

simultaneously localize the sources using a novel TDOA paradigm.

3.1. Single-Source Scenario

For the TDOA setup under consideration, the location-dependent pa-

rameter set used for fingerprinting will consist of the TDOA mea-

surements from the APs. The location of the source is then (de-

pending on the scenario) estimated by comparing the runtime phase

measurements with the fingerprinting map recorded in the training

Fig. 1. Assignment problem; definition of ∆
(k)
i and ∆i,k. Note that

SN2 produces the smallest TDOA while SN3 produces the largest.

phase, at the source (single-source problem) or as in our case at a

central unit connected to the APs. One way to carry out this com-

parison is by exploiting the source sparsity and considering that the

source can only be located at a single GP. This way the single-source

localization problem can be cast into a sparse representation frame-

work given by y = Ψθ + ǫ where for a single-source problem

we simply have1 y = y(1) = [∆
(1)
2 , · · · ,∆

(1)
M ]T and Ψ is the

(M − 1)×N fingerprinting matrix of the form

Ψ =





∆g
2,1 · · · ∆g

2,N

...
. . .

...

∆g

M,1 · · ·∆
g

M,N



 , (3)

where ∆g

i,n represents the TDOA of the received signal at the i-th
AP and the reference AP from a source located at the n-th GP. Note

the difference with ∆i,k which is the measured TDOA from the k-th

source w.r.t. the (AP1, APi) pair. Further, θ is an N × 1 vector

with all elements equal to zero except for one element correspond-

ing to the location of the source which is equal to 1. Thus, y will be

a 1-sparse TDOA vector characterized by the sparsity basis Ψ and

the ultimate goal is to recover θ only by determining the index of its

non-zero element. Solving y = Ψθ + ǫ with classical LS produces

a poor estimate due to the under-determined nature of the problem

(M − 1 ≪ N ). Instead, sparse reconstruction techniques (or CS)

aim to reconstruct θ from y, by taking the source sparsity concept

into account. Now, as long as every 2 columns of Ψ are independent,

θ can be well-recovered by solving the following ℓ1-norm minimiza-

tion problem (similar to [19]) minθ ‖y −Ψθ‖22 + λ ‖θ‖1 where λ
is the sparsity-regularizing parameter.

3.2. Multi-Source Scenario

The key question here is how we can extend this single-source lo-

calization scheme to a multi-source one. Before explaining the idea,

we would like to remind the reader of a natural phenomenon in RSS

fingerprinting. Different from TDOA measurements, the RSSs of

the source signals will sum up at the APs [7, 10]. On the other hand,

1Note that only for a single-source scenario y
(1)

= y1, but this cannot

be generalized to a multi-source scenario, i.e., in that case y
(k) 6= yk .
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TDOA measurements do not simply follow this pattern. Neverthe-

less, this motivated us to sum up the measured ∆
(k)
i values for dif-

ferent sources at the APs, i.e., y =
∑

k
y(k). Note that this vector

is equal to y =
∑

k
yk and thus automatically leads to a similar

formulation as for the single-source case

y = Ψθ + ǫ, (4)

where θ is now a K-sparse vector (containing all zeros except for

K ones) to accommodate the K sources. We would like to em-

phasize again that in practice we can only measure the y(k) vectors

because it is still unknown to which source they belong, i.e., the yk

vectors cannot be separately calculated. However, the beauty of the

proposed sparsity-aware multi-source TDOA localization (SMTL)

framework is that since we work with y =
∑

k
y(k) =

∑
k
yk,

it does not really require such assignment information. Therefore,

similar to the single-source scenario, (4) can also be solved using an

ℓ1-norm minimization (with λ as defined earlier) as

min
θ

‖y −Ψθ‖22 + λ ‖θ‖1 . (5)

4. ENHANCED SPARSITY-AWARE MULTI-SOURCE TDOA

LOCALIZATION (ESMTL)

The proposed SMTL algorithm has a limited source detection capa-

bility which comes from the concept of sparse reconstruction. This

basically limits the number of detectable sources (K) through the

number of measurements (here only M − 1). This detection capa-

bility can significantly be improved if we could somehow add extra

rows to the existing Ψ defined by (3). The question is how to add

additional rows to Ψ without taking additional measurements. The

innovative trick we use here is to consider not just the sum of the

TDOAs y =
∑

k
y(k) =

∑
k
yk, but any sum of a function of the

TDOAs as

yfl =
∑

k

fl(y
(k)) =

∑

k

fl(yk), (6)

where fl(y
(k)) = [fl,1(∆

(k)
2 ), · · · , fl,M−1(∆

(k)
M )]T with fl,i(.)

being any possible measurement function. If we combine a set of

L such sums, i.e., ỹ = [yT
f1
,yT

f2
, · · · ,yT

fL
]T , this newly defined

measurement vector ỹ calls for a new fingerprinting map Ψ̃ which

can accordingly be defined as

Ψ̃ =
[
f1(Ψ)T , · · · , fL(Ψ)T

]T
, (7)

where

fl(Ψ) =





fl,1(∆
g
2,1) · · · fl,1(∆

g

2,N )
...

. . .
...

fl,M−1(∆
g

M,1) · · · fl,M−1(∆
g

M,N )



 , (8)

and thus the model (4) can be extended to ỹ = Ψ̃θ+ ǫ̃. Again θ can

be found by solving minθ ‖ỹ− Ψ̃θ‖22 + λ‖θ‖1. For an identifiable

multi-source localization, first, there should exist M > 3 APs, and

second, every 2K columns of Ψ̃ should be linearly independent.

More details can be found in the extended version of this work [20].

4.1. Design of the Measurement Functions

The new Ψ̃ has L(M − 1) rows instead of only M − 1 rows, i.e.,

it is capable of detecting more sources simultaneously, if the mea-

surement functions fl,i(.) own certain properties. First of all, they

should be nonlinear in general since linear functions generate depen-

dent rows in Ψ̃. Moreover, these functions (suppose exponentials)

can generate very large or very small values compared to the ele-

ments of Ψ which impairs the incoherence property of Ψ̃ and hence

Algorithm 1 Optimal fl,i(.) design using scalings

1: Choose an appropriate L and solve (14) using T1 in (12)

2: Compute {cl} using (15)

3: Calculate Ψ̃ using (9)

degrades the reconstruction quality. Having this issue in mind, forc-

ing the resulting Ψ̃ to be as close as possible to an isometry with

orthonormal columns is healing and also satisfies the requirement of

sparse reconstruction, i.e., every 2K columns of Ψ̃ should be lin-

early independent. In principle, the measurement functions fl,i(.)
can be any nonlinear function. However, here we restrict ourselves

to a base set of L non-linear functions denoted as {gl(.)}
L
l=1 (the

gl(.) functions could for example be monomials, i.e, gl(.) = (.)l)
and we try to find optimal scalings of these base functions to design

our measurement functions fl,i(.) = cl,igl(.). The corresponding

measurement matrix Ψ̃ can be expressed as

Ψ̃ =




diag(c1) · · · 0

...
. . .

...

0 · · · diag(cL)



 Ψ̄, (9)

where cl = [cl,1, · · · , cl,M−1]
T and Ψ̄ = [g1(Ψ)T , · · · , gL(Ψ)T ]T .

To force Ψ̃ to be an isometry, we then minimize

min
{cl}

∥∥∥Ψ̃T ({cl})Ψ̃({cl})− I

∥∥∥
2

F
. (10)

By applying vec(ABC) = (CT ⊗A)vec(B), we can write

vec
(
Ψ̃

T
Ψ̃
)
=

(Ψ̄T ⊗ Ψ̄
T ) vec

(
Γ︷ ︸︸ ︷


diag(c1 ⊙ c1) · · · 0

...
. . .

...

0 · · · diag(cL ⊙ cL)





)

,

where ⊗ and ⊙ respectively denote the Kronecker and Hadamard

products. Let us define γ = vec(Γ) and γ̄ = diag(Γ). As a result,

we can replace (10) by the following LS problem

min
{cl}

∥∥∥(Ψ̄T ⊗ Ψ̄
T )γ − vec(I)

∥∥∥
2

2
. (11)

Now, because of the structure in γ, we have γ = T1γ̄, where T1 is

a matrix of size L2(M − 1)2 × L(M − 1) which ensures that T1γ̄

has the same structure as γ. Not that T1 can be given by

[T1]i,j =

{
1, if i = (j − 1)L(M − 1) + j,

0, otherwise.
(12)

Now, since for every γ̄ we can find at least one set {cl}, the LS

problem (11) is equivalent to

min
γ̄

∥∥∥(Ψ̄T ⊗ Ψ̄
T )T1γ̄ − vec(I)

∥∥∥
2

2
, (13)

which is a linear LS problem with the following solution

̂̄γ =
[
(Ψ̄T ⊗ Ψ̄

T )T1

]†
vec(I), (14)

Finally, we can calculate
[
ĉ
T
1 , · · · , ĉ

T
L

]T
= diag

([
ivec(T1 ̂̄γ)

] 1

2

)
, (15)

where diag(X) takes the diagonal elements of the diagonal matrix

X. The overall procedure is summarized in Algorithm 1. A more

elaborate way of designing the measurement functions using optimal

linear combinations of {gl(.)}
L
l=1 can be found in [20].
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4.2. Advantages of ESMTL

Besides the enhanced source detection capability, there are a num-

ber of other advantages in using the ESMTL approach. First of all,

an important advantage of this idea is that the recently added rows

of Ψ̃ (compared to Ψ) are simply generated based on the existing

elements of Ψ and no extra measurements are required in the train-

ing phase. The same holds for the runtime phase where the new

elements of ỹ are simply calculated based on the already measured

values of y. This important characteristic of the proposed TDOA

fingerprinting avoids imposing extra cost-prohibitive measurements

on the central unit. In some situations, ∆ peaks might coincide in

the output of the cross-correlations contained in ỹ(k) and this prob-

lem cannot be resolved. Another important corollary of the new Ψ̃ is

healing this issue (more details and solutions in [20]). Now that we

can have several extra equations, a simple solution to heal this issue

is that when computing cross-correlations, say for the (AP1, APi)
pair, if we notice that some peaks are overlapping (number of domi-

nant peaks is less than K), we can ignore the corresponding elements

in ỹ and correspondingly the rows in Ψ̃. This means that we solve

minθ ‖ỹ
′−Ψ̃′θ‖22+λ‖θ‖1 with ỹ′ = T2ỹ and Ψ̃′ = T2Ψ̃ where

T2 is a selection matrix which removes the elements and rows cor-

responding to the measurements with coincident peaks from ỹ and

Ψ̃, respectively. Moreover, if there are M > 3 APs as is required for

identifiable multi-source TDOA localization [20], by finding appro-

priate measurement functions we can keep on increasing the number

of rows so that we can attain a full column rank Ψ̃ matrix. In such a

case, no matter what the structure of θ might be (even not sparse), it

can be efficiently recovered using classical LS as θ̂LS = Ψ̃†ỹ.

5. SIMULATION RESULTS

We consider a wireless network of size 10 × 10 m2 divided into

N = 100 GPs, M = 10 APs covering the whole area, and up

to K = 10 sources. Instead of taking infinite integrals (as in

(2)), we will work with discrete-time signals of limited length and

hence the noise terms ni(t) will not be completely eliminated and

will affect our performance through ǫ. We assume that none of the

received signals is so weak that it will be considered as noise in

ri(∆) and cannot be detected. Here, we consider a baseband ultra-

wideband (UWB) BPSK signal with bandwidth B = 1GHz and

compute the autocorrelations and cross-correlations during a time-

slot of length T = 5µs. This is equal to recording T × B =
5 × 10−6 × 109 = 5000 BPSK symbols for our computations.

We define the signal to noise ratio (SNR) at the i-th AP as the ra-

tio of the received signal power to the noise power. For a quantita-

tive comparison, we consider the positioning root mean squared er-

ror (PRMSE) defined by PRMSE =
√∑P

p=1

∑K

k=1 e
2
k,p/P , where

ek,p represents the distance between the real location of the k-th

source and its estimated location at the p-th Monte Carlo (MC) trial.

All simulations are averaged over P = 20 MC runs where in each

run the sources are deployed on different random locations. For

the ESMTL, we consider L = 5 monomial base functions, i.e.,

gl(.) = (.)l, l = 1, · · · , 5 to enhance the proposed SMTL by in-

troducing new rows. Next, we use the proposed approach in Sub-

section 4.1 to find proper scalings of the base functions and compute

Ψ̃. This means Ψ̃ will be a 5(M − 1) × N = 45 × 100 matrix,

while Ψ is a (M − 1) × N = 9 × 100 matrix. As a benchmark,

we also simulate the hyperbolic positioning method proposed in [16]

(we call it classical TDOA) where we localize each source disjointly

and then compute the overall PRMSE for the K sources.

In Fig. 2, we consider K = 10 sources randomly deployed over

the covered area. The SNR is assumed to be 20dB for all the APs. As

is clear from the figure, the SMTL can only localize a single source

with minimum error. However, by using the ESMTL algorithm we

can locate all the K = 10 sources and this clearly illustrates the en-

hanced performance of ESMTL compared to SMTL. As can be seen,

ESMTL performs even (a little bit) better than the classical disjoint

hyperbolic TDOA method because the classical disjoint approach is

built on triangulation and thus the TDOA measurement errors are

directly mapped to location errors.

Fig. 3 depicts the PRMSE of localization vs. the number of

sources increasing up to K = 10. As can be seen, by increasing

K, the PRMSE of localization for SMTL increases sharply while

ESMTL can handle all the sources simultaneously with minimum er-

ror. Fig. 3 also emphasizes the effect of the proposed optimal choice

of the coefficients for the measurement functions (Subsection 4.1).

As is clear from the figure, when we use Ψ̄ (the dotted line marked

with ♦) instead of Ψ̃, the ESMTL is drastically degraded. This is

because g4 and g5 generate much larger or smaller values than the

values in Ψ which impairs the mutual incoherence in Ψ̄. Note that

we do not plot the results for K > 10 sources since for those cases

θ is not really sparse, i.e., we do not have K ≪ N .

Finally, we also plot the PRMSE vs. SNR for the number of

sources K = 5 and K = 10 in Fig. 4. As can be seen, increasing

the number of sources will degrade the performance of SMTL. How-

ever, ESMTL can attain the minimum PRMSE even with K = 10
sources for SNR values larger than 8dB. Notably, classical hyper-

bolic TDOA performs better than ESMTL for very low SNRs while

for high SNRs ESMTL performs a little bit better. We would like to

highlight that we do not compare our results with the KNN, the BC,

or even semi-definite relaxation (SDR)-based algorithms because the

superiority of ℓ1-norm minimization approaches compared to them

in similar contexts is illustrated in [7] and [19].
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