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To the kind memories of my mother.

And He (your Lord) has subjected to you whatever is in the heavens
and whatever is in the earth. Verily, in it are signs for a people who
ponder. [Al-Qur’an, 45:13]



.



Summary

Wireless communications is undergoing massive development in all forms of its
manifestations. In the field of short-range communications, technologies like ultra-
wideband (UWB) systems are promising very high data rates, fine timing resolution
and coexistence with other physical layer standards. Alongwith these benefits, the
promise of low-cost and low-complexity devices makes UWB systems a highly
sought-after option. The main reason for these benefits is the utilization of a very
large bandwidth. However, these benefits come at a price, that is the high sampling
rate required to receive such signals. According to the Nyquist sampling theorem,
a signal can be fully determined if sampled at twice its maximum frequency. This
means that the UWB signals may require a sampling rate in the order of Giga
samples per second. At the receiver, the sampling is carriedout by an analog-to-
digital converter (ADC). The power consumption of an ADC is proportional to its
sampling rate. A very high sampling rate means stressing theADC in terms of
power consumption. This can put the whole idea of low-cost and low-complexity
UWB systems in jeopardy. Therefore, using subsampling methods is indispensable.
In this regard, we propose the utilization of compressive sampling (CS) for UWB
systems. CS promises a reasonable reconstruction performance of the complete
signal from very few compressed samples, given the sparsityof the signal. In
this thesis, we concentrate on impulse-radio (IR) UWB systems. IR-UWB signals
are known to be sparse, meaning, a large part of the received signal has zero or
insignificant components. We exploit this time-domain sparsity and reduce the
sampling rate much below the Nyquist rate but still develop efficient detectors.

We propose CS-based energy detectors for IR-UWB pulse position modulation
(PPM) systems in multipath fading environments. We use the principles of general-
ized maximum likelihood to propose detectors which requirethe reconstruction of
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the original signal from compressed samples and detectors which skip this recon-
struction step and carry out detection on the compressed samples directly, thereby
further reducing the complexity. We provide exact theoretical expressions for the
bit error probability (BEP) to assess the performance of ourproposed detectors.
These expressions are further verified by numerical simulations.

We also propose CS-based differential detectors for IR-UWBsignals. These
detectors work on consecutive symbols. We develop detectors with separate recon-
struction and detection stages as well as detectors that perform these steps jointly.
We further present detectors which do not need reconstruction at all and can work
directly on the compressed samples. However, this can put some limitations on the
overall flexibility of the detector in terms of the measurement process. To assess the
performance of all these detectors, we also provide maximuma posteriori (MAP)
based detectors. We provide numerical simulations to display the detection results.

We extend the CS-based classical differential detectors tothe case of multiple
symbol differential detectors. To keep the implementationcomplexity at its min-
imum, we work only with compressed samples directly. We use the principles of
the generalized likelihood ratio test (GLRT) to eliminate the limitations on such de-
tectors, in terms of the measurement process. Apart from focusing on compressed
detectors which contain full timing information, we also propose detectors which
need such information at symbol level only. This effectively results in low-cost and
low-complexity detectors.

Finally, we present some work on the theoretical aspects of CS. We develop
algorithms which exploit the block sparse structure of the signal. This block spar-
sity is combined with varying block sizes and signal coefficients having smooth
transitions. Such signals are often encountered in a wide range of engineering and
biological fields.
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Chapter 1
Introduction

This thesis is concerned with the application of compressive sampling to wireless
communications, especially the ultra-wideband systems. Reducing the sampling
rate is a fundamental challenge in receiving signals with very large bandwidth.
Compressive sampling can be of substantial help in this regard. We start this chap-
ter by elaborating upon the overall motivation of the thesis. We then provide an
outline of the presented work along with highlighting our major contributions.

1.1 Motivation

Digital communications has become an integral part of our everyday life. Rapid
inclusion of new devices and applications is redefining human interactions. This
evolution has rendered wired communications essentially obsolete and given way to
wireless communications into taking a pivotal role. In thisregard, short-range com-
munications is attracting accelerated interest due to its ubiquitous nature. Ultra-
wideband (UWB) communications is at the forefront of short-range communi-
cations, primarily because of the benefits associated with very large bandwidth.
However, this very large bandwidth gives rise to further challenges. One of the key
challenges is the excessive sampling rate required to receive the UWB signals, since
according to the classical Shannon-Nyquist-Whittaker-Kotelnikov sampling theo-
rem [3], [4], a band limited signalx(t), i.e.,X(ω) = 0, |ω| > ωmax (rad/sec) can
be fully determined from its samplesx(iT ) if T ≤ π/ωmax. In simple words, the
sampling rate should be twice the maximum frequency. For themultiple GHz band-
width of UWB signals, the classical sampling theorem implies exorbitant sampling
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rates which can heavily stress the analog-to-digital converters (ADCs) in terms of
power consumption. To make UWB systems practically viable,the power con-
sumption must be reduced which in turn means reducing the sampling rates. Given
the sparse nature of particular UWB signals [3], one can turnto compressive sam-
pling (CS) [5, 6] which offers reasonable performance at reduced sampling rates.
This thesis basically explores the application of CS for UWBsignals, addressing
the challenges and highlighting principal gains.

1.2 Ultra-Wideband Systems

The history of UWB communications dates back to the early twentieth century
marked by the famous spark-gap experiment of Marconi. However, the present
thrust came after the federal communications commission (FCC) [7] ruling, allow-
ing the use of UWB for data communications within a band of7.5 GHz, thus paving
the way for extremely high rate data transmissions. Naturally, the utilization of such
a large bandwidth is only possible with minimal power transmission so as to reduce
interference with several other pre-allocated bands. Thus, UWB systems offer high
data rates but at a short range. In this perspective, UWB can be used in numer-
ous scenarios. Figure 1.1 shows the scenarios with a potential UWB application
as envisaged by the European Union project PULSERS [1]. Major categories are
wireless personal area networks (WPANs), sensor networks,peer-to-peer networks
and wireless local area networks (WLANs).

According to the FCC, UWB signals are defined as signals having a fractional
bandwidth greater than20% or signals having an absolute bandwidth greater than
0.5 GHz. There are two general mechanisms to generate a UWB signal. One is
termed as carrier based, which uses spreading techniques, e.g., direct sequence1,
frequency hopping or orthogonal frequency division. In general, the transceiver
architecture of carrier based techniques is complex due to the presence of mixers
and related circuitry. The other is termed as carrierless and is known as impulse-
radio (IR), which basically uses the transmission of a shortpulse in the time-domain
and thus occupies the complete frequency band2. The transceiver architecture of IR
is relatively simpler. Further, the transmit power in IR-UWB can be decreased by
exploiting spreading as well, which basically means that the same information is

1Such a spreading is possible in theory but requires extremely high chip rate which may limit its
practical implementation.

2In order to satisfy spectral requirements, the pulse can be generated as different derivatives of
the Gaussian pulse or by modulating a Gaussian pulse.
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Figure 1.1: UWB applications scenarios [1]
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Figure 1.2: UWB architecture

transmitted over multiple frames, with each frame transmitting at a very low power.
In this thesis, we concentrate on IR-UWB due to its simplicity of implementation.

IR-UWB is a baseband technique. A bandlimited impulse is transmitted di-
rectly without the need for upconversion to radio frequency(RF). Consequently,
the receiver does not need an RF to intermediate frequency (IF) step which means,
local oscillators and phase locked loop (PLL) units are not required. This partic-
ular aspect of the IR-UWB architecture saves a lot of power and makes the UWB
systems low-cost and low-complexity systems. Figure 1.2 shows a general transmit
and receive architecture of UWB systems [8, 9]. However as weshall see in the
next section, the ADC block still remains a power hungry unit, an aspect that is
addressed in this thesis.

One unique characteristic of IR-UWB signals is the exploitation of the rich
multipath environment. Each transmitted pulse is receivedin the form of hundreds
of separable echoes. In narrowband signals the different paths are not separable
and thus can be problematic. However in UWB, multiple paths can be exploited to
collect most of the received energy. The separability of thepaths is because of the
high bandwidth of the signal. Thus, the received signal comprises insignificant or
zero values between the paths. This can potentially give a sparse character to the
received UWB signal. IR-UWB signaling commonly employs simple modulation
schemes, e.g., pulse position modulation (PPM) and pulse amplitude modulation
(PAM). These modulation schemes combined with the very low duty-cycle nature
of transmitted symbols, can further promote sparsity in thereceived signal. The
sparsity in IR-UWB signals is an important aspect which we shall dwell on, in most
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Figure 1.3: IR-UWB received signal

of the thesis. Here, we elaborate on it by giving a simple example. Figure 1.3 shows
a typical, UWB PAM received signal in its Nyquist rate sampled form, highlighting
the sparse nature of the received signal.

1.3 ADC Power Consumption

The ADC is one of the most power hungry units in the receiver. Therefore, it
is important to elaborate upon the factors which can affect the amount of power
consumed in ADCs. The two major factors having a direct bearing on the amount
of power consumed in the ADCs are the sampling rate (fs) and the resolution, i.e.,
the effective number of bits (ENOB). The widely used figures of merit relatingfs

andENOB areP andF , defined in [2] as

P = 2ENOB fs (1.1)

F =
2ENOB fs

Pdiss
(1.2)

wherePdiss denotes power dissipation. From (1.1)-(1.2), we can see that P eval-
uates the collective performance ofENOB andfs, whereas,F brings power effi-
ciency into the comparison as well. Performance trends of different ADCs, w.r.t.P
andF , can be found in [2, 10], where ADCs are basically grouped in terms of their
architecture. From (1.2), we can see that the ADC performance is inversely pro-
portional to the power dissipation and the relationship between the sampling rate
and the power dissipation is almost linear. A derivation of the exact relationship
between the two is given in [11] with a couple of assumptions:i) The power is con-
sumed only at the sample-and-hold block of the ADC,ii) The input signal supplies
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Figure 1.4: ADC, Power versus sampling rate [2]

the power to charge the sample-and-hold capacitance. This relationship can then
be written as

Pmin = k T fs 10(6N+1.76)/10 [W] (1.3)

wherePmin is the minimal power,N denotes the stated number of resolution bits,
k describes Boltzmann’s constant andT is the temperature (in Kelvin). From (1.3),
we can see an exact linear relationship between the samplingrate and the power
dissipation. This relationship was confirmed by practical experiments in [2] and
the result is shown in Figure 1.4. For different architectures of ADCs, a general
trend of linearity between the sampling rate and the power consumption can be
seen. Flash ADCs provide the highest sampling rates, on the order of Giga samples
per second, but at the same time, they consume the maximum power due to their
parallel structure. Thus, reducing the sampling rates can have a drastic effect on the
ADC efficiency. The issue of reducing the sampling rate is extensively addressed
in this thesis.

Apart from the sampling rates, we can see from (1.3) that the resolution bits
have an enormous influence on the power consumption as well. Moreover, there
is an interesting relationship between ADC resolution and the sampling rate. Fig-
ure 1.5 shows this relationship for different ADC architectures. We can see that
although Flash ADCs offer the highest sampling rates, theirperformance over res-
olution is quite poor. In contrast, Sigma-Delta ADCs can offer a better resolution
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Figure 1.5: ADC, ENOB versus sampling rate [2]

performance but suffer from lower sampling rates. This gives another motivation
to reduce the ADC sampling rates. By reducing the sampling rates, we can use
those architectures of ADCs which offer low sampling rates but provide room for
improving the resolution, which can be critical in some applications.

1.4 Outline and Contributions

In this thesis, our primary focus is on the application of CS for IR-UWB systems.
We develop novel strategies for UWB energy detectors and UWBdifferential de-
tectors, operating at low sampling rates. We show that CS canreduce the sampling
rates much below the Nyquist rate and still offer reasonableperformance. We pro-
pose detectors which may need reconstruction of the received signal from its low
rate samples, as a first step and then carry out detection on the reconstructed sam-
ples, as a second step. We also propose detectors which skip the reconstruction
step altogether and carry out detection directly on the low rate samples. The latter
can further reduce the implementation complexity of a UWB receiver. To assess
the performance of our proposed CS-based detectors, we alsoderive theoretical
expressions for the bit error probability (BEP), which can easily be extended to
their Nyquist rate counterpart. We also provide simulationresults to establish the
validity of these theoretical expressions.



10

Chapter 2:

In this chapter, we provide a comprehensive overview of CS. We give a description
regarding its evolution in its present form. This description provides substantial
insight in the subject in order to pursue further research.

Chapter 3:

In this chapter, we develop CS-based energy detectors for UWB pulse position
modulation. We present detectors which require reconstruction of the original sig-
nal as well as detectors which work directly on the compressed samples. We also
provide theoretical BEP expressions as performance benchmarks. The contribu-
tions of this chapter are enlisted below.

• We first present a CS framework to reduce the receiver sampling rate for IR-
UWB PPM signals much below the Nyquist rate. For the sake of theoretical
performance evaluations of the detection algorithms, our sensing mechanism
works under two general assumptions. In the first assumption, the measure-
ment matrix consists of random elements such that the resulting rows are
approximately orthogonal to each other. In the second assumption, the or-
thogonality of the rows of the measurement matrix is assumedto be exact.

• Using the principles of GML, we develop CS-based energy detectors for the
signal reconstructed from its compressed samples. In this regard, signal re-
construction is carried out by using approximate message passing algorithm
(AMP). We also propose energy detectors which operate on thecompressed
signal directly and do not need reconstruction.

• We show that the performance of our proposed energy detectors is indepen-
dent of the spreading factor. This is in contrast to the traditional approach,
where performance worsens by increasing the number of frames per trans-
mitted symbol.

• We provide bit error probability (BEP) expressions for theproposed com-
pressed detectors for a deterministic channel as well as a Gaussian distributed
channel. We show that these expressions can be easily modified for the en-
ergy detectors based on Nyquist-rate sampling.

The chapter has been published as
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• S. Gishkori and G. Leus, “Compressive Sampling Based Energy Detection of
Ultra-Wideband Pulse Position Modulation”,IEEE Transactions on Signal
Processing, vol. 61, no. 15, pp. 3866–3879, Aug. 2013

Chapter 4:

In this chapter, we apply CS to classical differential detectors for UWB systems.
We develop detectors which carry out detection by first doingthe reconstruction
step separately and detectors which do both steps of reconstruction and detection
jointly. A theoretical performance comparison is given against maximum a poste-
riori (MAP) based detectors. The contributions of this chapter are enlisted below.

• The proposed CS-based differential detectors are noncoherent and therefore,
do not require any channel estimation.

• A direct detection method working directly on the compressed samples is
proposed, which avoids signal reconstruction. However, its performance is
limited by the fact that the measurement process must be the same for con-
secutive symbols.

• We propose a differential detector based on a two-step approach. In the first
step, the sparse regularized least squares error is minimized to reconstruct the
transmitted symbol waveforms from the compressed samples,and then, the
recovered symbol waveforms are used to perform conventional differential
detection.

• We also propose a differential detector with a joint formulation of the cost
function, as the composition of the sparse regularized least squares error for
two compressed-rate consecutive received signal waveforms and the squared
DD error, which is minimized using an iterative efficient method derived
form the elastic net optimization framework. Thus, reconstruction of the
compressed signal samples and detection of encoded information is per-
formed in a joint approach.

• Finally, a compressed-rate maximum a posteriori (MAP) based detector is
derived as performance benchmark for the proposed detectors, assuming a
Laplacian distributed channel response (i.e., the channeltaps are Laplacian
distributed).

The chapter has been published as
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• S. Gishkori, G. Leus and V. Lottici, “Compressive SamplingBased Differen-
tial Detection of UWB Impulse Radio Signals”,Elsevier Physical Commu-
nication, vol. 5, no. 2, pp. 185–195, Jun. 2012

Chapter 5:

In this chapter, we present CS-based differential detectors for multiple symbols.
The detectors work directly on the compressed samples and donot require recon-
struction. We present detectors which are fully synchronized in terms of timing
information and detectors which require the timing information at symbol level
only. The contributions of this chapter are enlisted below.

• The proposed CS-based schemes consider multiple symbols for differential
detection and are derived by avoiding the reconstruction step, i.e., they work
directly on the compressed signal samples. This results in reducing the sam-
pling rate as well as the implementation complexity relatedto the evaluation
of the correlation coefficients needed by the objective function.

• To alleviate the limitations as experienced by the CS-based noncoherent re-
ceivers working directly on the compressed symbols, the measurement pro-
cess can be either the same or different from symbol to symbol, thus offering
an additional degree of freedom that can help the receiver better adapt to
various scenarios.

• We also propose detectors which require symbol level synchronization (SLS)
only, thus the robustness to timing errors of the proposed CS-based schemes
is brought from pulse or frame level to symbol level. This feature relaxes
the performance of the timing synchronizer, so further lowering the overall
receiver complexity.

• A particular effort is put on cutting back the complexity required to optimize
the objective function over each data block for both the ideally-synchronized
CMSDD and the SLS-CMSDD, which grows exponentially in the block size.
To this end, a modified sphere decoding (SD) algorithm is derived enabling
the joint detection of blocks of tens of symbols at polynomial complexity.

The chapter is accepted for publication as

• S. Gishkori, V. Lottici and G. Leus, “Compressive SamplingBased Multiple
Symbol Differential Detection for UWB Communications”,IEEE Transac-
tions on Wireless Communications - To appear
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Chapter 6:

In this chapter, we present some work on the theoretical aspects of CS. We develop
algorithms which exploit the block sparse structure of the signal. This block spar-
sity is combined with varying block sizes and signal coefficients having smooth
transitions. The contributions of this chapter are enlisted below.

• We propose new LASSO formulations to handle block sparse smooth signals.

• We propose to combine group sparsity with element-wise sparsity, along with
sparsity in the difference of consecutive elements. This results in variable
group sizes with smooth reconstructed signal transitions.

• We also propose to use the concept of overlapping groups along with element-
wise fusion to reconstruct block sparse smooth signals of varying block sizes.

• Finally, we propose iterative solvers in the form of alternating direction. . .
method of multipliers for our proposed problem formulations.

This chapter is accepted for publication as

• S. Gishkori and G. Leus, “Compressed Sensing for Block-Sparse Smooth
Signals”,IEEE ICASSP, Florence, Italy, May 2014

Chapter 7:

In this chapter, we provide the conclusions, highlighting major results and obser-
vations from the thesis. We also provide future directions for research into this
exciting field.
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Chapter 2
Compressive Sampling

Compressive sampling or compressed sensing (CS) is primarily related to solving
a certain system of linear equations. Although the field of linear algebra provides
well established methods to solve a general system of linearequations, it has a
subclass, namely the category of solving underdetermined systems, which has only
recently been getting substantial attention. CS relates tothis subclass, especially
when the objective function exhibits sparsity. In this chapter, we describe the fun-
damental concepts relating to CS. More details can be found in [12, 13, 14].

2.1 Underdetermined Systems of Linear Equations

Let us consider a general system of equations

y = Φx (2.1)

wherex is anN×1 vector of optimization variables,Φ is anM×N matrix of mea-
surement functionals andy is anM × 1 vector of measurements. We can see that
(2.1) depicts a measurement system. Each element ofy represents a measurement
of x, obtained through the respective row ofΦ. Here,x represents the unknowns
and the problem is to findx from y givenΦ. If Φ is full column-rank, i.e.,M ≥ N

(that is to say, the number of measurements is equal or more than the number of
unknowns), the solution to (2.1) is quite elementary.

Now, consider the case in (2.1) whereΦ is full rank butM < N . This is an
instance of the set of underdetermined systems of linear equations (USLEs), i.e.,
the number of unknowns is larger than the number of measurements. This system
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does not have a unique solution. Depending upon the different combinations of
columns ofΦ, x can have an infinite number of representations [15] fromy. One
way to circumvent the problem of uniqueness is to introduce the objective function
as an argument of a convex function and to formulate the optimization problem
as the minimization of this convex function subject to the equality constraints of
(2.1). A popular choice for such a convex function is the squared ℓ2-norm. The
optimization problem can now be written as

P2 : arg min
x

‖x‖22

s.t. y = Φx. (2.2)

The unique solution to the optimization problemP2 can be easily obtained as what
is known as the minimum norm solution.

Although the squaredℓ2-norm helps to achieve a unique solution to the under-
determined systemP2, it basically measures the total energy of the objective func-
tion x rather than targeting the individual elements. Therefore,if x is sparse, i.e., it
has a few nonzero elements and many exactly zero elements,P2 fails to reproduce
them inx̂. In order to measure sparsity, i.e., the number of nonzero elements ofx,
one may replace the squaredℓ2-norm with anℓ0-norm1, which basically optimizes
the count of nonzero elements. Then (2.2) can be replaced by

P0 : arg min
x

‖x‖0

s.t. y = Φx. (2.3)

A sparse solution is made available by usingP0 instead ofP2, but answers to
whether it is unique and globally optimal, are not as straightforward as in the case
of P2, due to the nonconvex nature of theℓ0-norm. Apart from the issues of unique-
ness and optimality of the solution, even solvingP0 is very challenging. It is in
essence an exhaustive search problem, where every combination of K columns of
Φ (assumingx hasK nonzero elements, i.e.,K is the order of sparsity:‖x‖0 = K)
is tried for a possible solution. The complexity of the problem increases exponen-
tially in N and it has been established thatP0 is NP-hard in general.

Naturally, the aforementioned challenges motivate findingefficient solvers for
P0 and/or approximations ofP0. One suitable option in terms of approximating

1Note that theℓ0-norm is the limit asp → 0 of ℓp-norm, i.e.,‖x‖0 = limp→0 ‖x‖
p
p =

limp→0

PN−1
i=0 |[x]i|

p.
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Figure 2.1: Comparison of possible estimates by using anℓp-norm for different
values ofp

P0, is to replace theℓ0-norm by anℓ1-norm, which also provides sparse solutions.
The new optimization problem can then be written as

P1 : arg min
x

‖x‖11

s.t. y = Φx. (2.4)

In contrast toP0, P1 is a convex optimization problem and can be easily solved by
being cast as a linear program (LP).P1 is also known as basis pursuit (BP) [15]. In
a way,P1 offers a compromise between the two extremes ofP0 andP2. It is closer
to P0 in terms of offering sparsity and it is closer toP2 in terms of being convex.
Nonetheless, it needs to be established under what conditionsP1 produces its best
solution and when it is equivalent toP0.
In general, the comparison between the above mentioned optimization problems

is in fact a comparison between differentℓp-norms. A generic formulation of the
optimization problem based on anℓp-norm can be written as

Pp : arg min
x

‖x‖pp

s.t. y = Φx. (2.5)

For the sake of developing a general intuition into solvingPp with different values
of p, we present here a simple example. Letx ∈ R

2 with an order of sparsity
K = 1, soN = 2 andx has one zero and one nonzero element. Let only one
measurement be available, soM = 1. Now a possible solution can be obtained
by blowing anℓp-ball centered at the origin ofx, till it intersects with the feasible
set defined by the equality constraint in (2.5). Figure 2.1 provides a comparison of
such estimates for different values ofp. We can see that forp = 2, a nonsparse
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Figure 2.2: Plot of|x|p for different values ofp

solution is obtained, whereas forp ≤ 1, there is a high probability of obtaining a
sparse estimate. Note that in the extreme case, anℓ0-norm is obtained asp → 0.
Although,p ≤ 1 generates parsimonious estimates, but if0 < p < 1 the problem
becomes nonconvex. This can be seen by simply plotting theℓp-norms for different
values of the argument. In Figure 2.2, we plot theℓp-norms with a scalar argument
x, i.e., |x|p for different values ofp. We can see that for0 < p < 1, theℓp-norm
becomes nonconvex. Only in the case whenp = 1, both sparsity and convexity can
be combined.

2.2 Requisites for the Sparse Solution of a USLE

A USLE is basically an ill-posed problem. We saw in the previous section, different
formulations which can offer a sparse solution for such systems. However, there
are certain questions which should be answered in order to obtain a sparse solution
of a USLE.

• Starting withP0, what conditions must be satisfied to guarantee the unique-
ness and optimality of the sparse solution?

• Can a unique solution be guaranteed for the approximate problem formula-
tion, i.e.,P1?

• If the measurements are contaminated with noise, can the estimation errors
be bounded?
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Before we move on to answer the above mentioned questions, wefirst describe
some key concepts which play an important role in specifyingconditions for sparse
solutions of a USLE.

Spark

Spark is one of the central properties of a matrix which should be investigated in
order to guarantee a successful sparse recovery. This term was first introduced in
[16] and defined as

Definition 2.2.1 (Spark). Given a matrixΦ, spark(Φ) is the cardinality of the
smallest subset of linearly dependent columns ofΦ.

Note the difference between spark of a matrix as defined aboveand the com-
monly known rank of a matrix. Therank(Φ) indicates the largest number of
columns ofΦ that are linearly independent, whereasspark(Φ) indicates the small-
est subset of columns ofΦ with linearly dependent columns. The rank of a ma-
trix can be easily determined by various algebraic methods whereas, despite some
superficial resemblance, the spark of a matrix can only be determined through a
combinatorial search over all subsets of its columns, sinceit finds a bound on the
null space of a matrix. In some literature,spark(Φ) − 1 has also been termed as
‘Kruskal rank’ [17].

Mutual Coherence

The mutual coherence is an easily verifiable property of a matrix in order to es-
tablish its performance in sparse recovery. It was proposedin [16, 18] and can be
defined as

Definition 2.2.2(Mutual Coherence). The mutual coherence of a matrixΦ, µ(Φ),

is the maximum absolute inner product of different columns of Φ. It is denoted as

µ(Φ) = max
1≤i,j≤N,i6=j

|[Φ]T:,i [Φ]:,j|
‖[Φ]:,i‖2 ‖[Φ]:,j‖2

. (2.6)

Mutual coherence basically provides the interdependence of different columns
of the matrix. If the matrix comprises of orthogonal columns, then the mutual
coherence would be very low.
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In case of random orthogonal matrices2, it was empirically observed in [18] that
the upper bound on the mutual coherence can be related to the maximum absolute
value of the matrix which is proportional to

√

log(NM)/M with M → ∞. This
‘generic’ [18] aspect of mutual coherence leads to another definition of the mutual
coherence which was given in [19] as

Definition 2.2.3 (Mutual Coherence - Generic). The mutual coherence of an or-
thonormalizedM ×N matrix3 Θ, µg(Θ), is the largest absolute entry ofΘ. It is
given as

µg(Θ) =
√

N.max
i,j
|[Θ]i,j |. (2.7)

It basically indicates how concentrated the rows of a matrixare. Its value ranges
as1 ≤ µg(Θ) ≤

√
N . This modified definition of mutual coherence generates

further insights in providing guarantees for the sparse solution. In case the signal
is sparse only when represented in some basis, i.e.,

x = Ψs (2.8)

whereΨ is theN ×N orthonormal basis matrix (e.g., a Wavelet or Fourier matrix)
ands is anN × 1 vector of coefficients with an order of sparsity‖s‖0 = K, the
measurement process can be written as

y = Φx = Θs (2.9)

whereΘ = ΦΨ. In such scenarios, mutual coherence basically highlightsthe
correlation between the measurement matrixΦ and the signal representation basis
Ψ. As we shall see in the subsequent sections, the mutual coherence between these
two matrices can have drastic impact on sparse solutions. Note that ifΨ = IN ,
thenx = s, Θ = Φ and (2.9) reverts to (2.1).

Restricted Isometry Property

The restricted isometry property (RIP) [20] is a strong property of the measurement
matrices which can provide guarantees even when the measurements are contami-
nated with noise. It can be defined as

2Here it is implied that the resultingM × N matrix Φ is a concatenation ofM × M random
orthogonal matrices, andN is a multiple ofM .

3Note that the orthonormalization is in terms of rows of the matrix Θ.
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Definition 2.2.4 (RIP). A matrix Φ with unit ℓ2-norm columns satisfies RIP of
order K givenδK ∈ (0, 1) if

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22 (2.10)

holds for allx with maximum order of sparsityK.

The definition of the RIP implies that if a matrixΦ obeys an RIP of orderK (if
δK is not too close to unity), then it approximately preserves the Euclidean length
of K-sparse vectors, which basically means that aK-sparse vector cannot be in the
null space ofΦ and every submatrix ofΦ with less thanK columns behaves like
an orthonormal matrix.

2.2.1 Conditions for a Unique Solution ofP0

A key condition for a unique solution ofP0 can be given using the spark of a
matrix. Since the spark of a matrix puts a bound on its null space, it can be said
that if Φz = 0 (i.e.,z lies in the null space ofΦ), then it must be true that‖z‖0 ≥
spark(Φ). From Definition 2.2.1, the following theorem, as given in [16], can then
be obtained.

Theorem 2.2.1.A USLE,y = Φx, has a necessarily sparsest possible solutionx,
if it obeys,‖x‖0 < spark(Φ)/2.

Proof. Assume, apart fromx, there is an alternative solutionz satisfying the same
USLE, i.e.,y = Φz. This means,Φx −Φz = 0, implying thatx − z lies in the
null space ofΦ. From the definition of spark, we can say,‖x − z‖0 ≥ spark(Φ).
But we know that the order of sparsity of the difference cannot be greater than
the sum of the order of sparsity, i.e.,‖x − z‖0 ≤ ‖x‖0 + ‖z‖0. Now, since our
solution obeys,‖x‖0 < spark(Φ)/2, any alternative solution must have the order
of sparsity‖z‖0 > spark(Φ)/2.

Since the relation‖x‖0 < spark(Φ)/2 means that every submatrix ofΦ with
2K columns is full column-rank, Theorem 2.2.1 leads to following corollary.

Corollary 2.2.1.1. Given thatspark(Φ) > 2K, a unique sparse solution can be
guaranteed forM ≥ 2K.

So, it can be said that better results can be obtained for higher values of the
spark. Generally, the spark ranges as1 ≤ spark(Φ) ≤ M + 1. Thus if the
elements ofΦ are drawn from a Gaussian distribution,spark(Φ) = M + 1, then a
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unique solution can be guaranteed forK < M/2 since every submatrix ofΦ with
M columns is full-rank.

The spark of a matrix provides elegant guarantees for a sparse solution. How-
ever, determining its exact value for general matrices is quite hard. Nonetheless, a
lower bound on the value of the spark can be obtained easily. In this regard, [16]
gave the following relationship

spark(Φ) ≥ 1 +
1

µ(Φ)
(2.11)

whereµ(Φ) is the mutual coherence (see Definition 2.2.2). From (2.11),the fol-
lowing theorem for a unique solution can then be given as in [16]

Theorem 2.2.2.A USLE,y = Φx, has a necessarily sparsest possible solutionx,
if it obeys,‖x‖0 < 0.5(1 + 1/µ(Φ)).

Note from (2.6) that the minimum value ofµ(Φ) isµ(Φ) = 1/
√

M . Therefore,
Theorem 2.2.2 guarantees a sparse solution forK <

√
M/2 which is less than the

order of sparsity guaranteed by Theorem 2.2.1, i.e.,K < M/2.

2.2.2 Conditions for a Unique Solution ofP1

Since solvingP0 is NP-hard, the other suitable choice as mentioned earlier is to
solveP1 (also known as BP) instead. However, it needs to be established what
conditions are required for the unique solution ofP1 and/or its equivalence with
P0. In this regard, [16] claimed the following

Theorem 2.2.3.A USLE,y = Φx, has a necessarily sparsest possible solutionx

of P1 and equivalent ofP0, if it obeys,‖x‖0 < 0.5(1 + 1/µ(Φ)).

Thus, the conditions for solvingP1 are same as that of solvingP0. Therefore,
the bound on the maximum order of sparsity is also quite restricting, i.e., K <√

M/2. In this regard, [6] proved that the bound on the order of sparsity can be
relaxed and an equivalence betweenP1 andP0 holds forK ≈ O(M/ log(N)).
To make the results more concrete, [19] utilized the genericdefinition of mutual
coherence (Definition 2.2.3) and gave the following theorem

Theorem 2.2.4. For x, sparse in basisΨ, form a USLEy = ΦΨs by selecting
uniformly randomM measurement vectors inΦ. Then if

M ≥ Cµ2
g(ΦΨ)K log N (2.12)
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for C > 0, P1 gives a sparse solution with overwhelming probability. Theproba-
bility of success can be higher than1− δ, provided that

M ≥ Cµ2
g(ΦΨ)K log N/δ. (2.13)

It was because of these important results that CS started to achieve widespread
recognition. To put the results of Theorem 2.2.4 in proper perspective, some re-
marks are in order.

• The mutual coherence plays a critical role. In order to decrease the number
of measurements, coherence between the measurement matrixΦ and basis
matrixΨ should be as small as possible. An example of such an incoherent
pair can be whenΦ consists of spikes, i.e., comprises of the rows of an iden-
tity matrix, while Ψ is the Fourier matrix. This model corresponds to the
classic sampling-in-time scenario. For such a time-frequency pair, the inco-
herence is maximum as the spikes and complex exponentials have minimum
coherence [13]. Further, instead of a Fourier basis, sparsity can occur in other
bases as well, e.g., wavelet bases. Since spikes are incoherent with wavelet
bases [13], such a pair of measurement and representation bases can be very
useful especially for sensing images. In terms of the measurement matrices,
random matrices are incoherent with most of the fixed basis matrices [13].
Examples of such matrices are, Gaussian matrices or Bernoulli matrices, etc.

• One unique characteristic of Theorem 2.2.4 is that any set of random mea-
surements can guarantee a unique solution. So without specifying any spe-
cific set of measurements, information loss can still be avoided even with
fewer measurements. Also, given the incoherence ofΦ andΨ, M of the
order ofK log N can be sufficient.

• Finally, s (and eventuallyx) can be exactly reconstructed from compressed
measurements by simply minimizing a convex function. For this, one does
not need to know the exact number of nonzero entries ofs, or their location
or even their magnitude, for that matter.

From the above, one can visualize a general sensing mechanism. Sensing is done
through a random (nonadaptive), i.e., incoherent measurement procedure and then
reconstruction follows through a possible linear programming stage. Lastly, we
would also like to mention a general rule of thumb for sparse recovery, as noticed
by [6]. One can expect exact recovery, if for every nonzero element ofx, at least
four incoherent measurements are available. This is also known as the de facto
four-to-one rule.
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2.2.3 Conditions for the Sparse Solution with Noisy Measurements

Till now, we considered an ideal scenario regarding the measurementsy, without
noise or perturbations. However, in most practical situations, the measurement
process is contaminated with noise. In this section, we lookat the robustness of a
sparse solution in the presence of nonidealities. In such situations, it is hard to give
conditions of uniqueness or equivalence. Instead, the notion of a stable solution is
used to give conditions or bounds on sparse recovery.

Let v represent anM × 1 vector of bounded noise, i.e.,‖v‖2 ≤ ǫ, then the
USLE with contaminated measurements can be written as

y = Φx + v (2.14)

andP0 takes the shape

Pǫ
0 : arg min

x
‖x‖0

s.t. ‖y −Φx‖2 ≤ ǫ. (2.15)

For a stable sparse solution ofPǫ
0, [21] proposed the following theorem

Theorem 2.2.5.Consider a USLE,y = Φx + v. If x satisfies‖x‖0 < 0.5(1 +

1/µ(Φ)) and can representy within a toleranceǫ, i.e.,‖y −Φx‖2 ≤ ǫ, thenPǫ
0

has a solution̂x, such that

‖x̂− x‖22 ≤
4ǫ2

1− µ(Φ)(2K − 1)
. (2.16)

Now by relaxing theℓ0-norm by anℓ1-norm in the context of (2.14),P1 can be
rewritten as

Pǫ
1 : arg min

x
‖x‖1

s.t. ‖y −Φx‖2 ≤ ǫ (2.17)

which is also known as basis pursuit denoising (BPDN) [15], although originally
proposed in [22]. For the stable sparse solution ofPǫ

1, some very nice results have
been proposed using the RIP (Definition 2.2.4). In this regard, [23] proposed the
following

Theorem 2.2.6. Consider a USLE,y = Φx + v. If RIP holds forK such that,
δ3K + 3δ4K < 2 (or δ2K <

√
2− 1), thenPǫ

1 has a solution̂x that satisfies

‖x̂− x‖2 ≤ Cvǫ (2.18)

whereCv is a positive constant.
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It is also possible that it is not only the measurementsy that are corrupted
by noise, but the optimization vectorx is also not exactly sparse, i.e., it has a few
nonzero elements and many more with negligibly small values. LetxK be anN×1

vector that contains theK largest nonzero elements ofx and the rest set to exactly
zero. In such a scenario, [23] proposed the following modified theorem

Theorem 2.2.7. Consider a USLE,y = Φx + v. If RIP holds forK such that,
δ3K + 3δ4K < 2 (or δ2K <

√
2− 1), thenPǫ

1 has a solution̂x that satisfies

‖x̂− x‖2 ≤ (Ck/
√

K)‖x− xK‖1 + Cvǫ (2.19)

whereCk andCv are positive constants.

The results of Theorem 2.2.7 are quite strong. In casex is exactlyK-sparse,
then it guarantees stable recovery. Even ifx is not exactlyK-sparse, the solution
is as good as the one obtained by pre-selecting theK most significant nonzero
elements ofx.

2.3 Measurement Matrices

We have seen in the previous section that most of the conditions for sparse recov-
ery relate to the properties of measurement matrices. The question is how to design
such matrices. Since RIP is a very generalized property which guarantees sparse
recovery in different scenarios, one is tempted to find matrices which satisfy this
property, i.e., their different subsets of columns are nearly orthogonal. This is the
point where randomness comes into play and assumes a critical role. In the follow-
ing we present some of the most widely used measurement matrices which satisfy
RIP for substantially large values ofK, i.e., the order of sparsity.

• Gaussian Matrices: An M × N Gaussian measurement matrixΦ can be
designed by taking independent identically distributed elements from a zero-
mean normal distribution with variance1/M , i.e.,[Φ]i,j ∼ N (0, 1/M). If

M ≥ C K log(N/K) (2.20)

whereC is a positive constant, thenΦ satisfies RIP with high probability.

• Bernoulli Matrices : An M × N Bernoulli measurement matrixΦ com-
prises of independent, equiprobable elements with values±1/

√
M . Similar

to Gaussian matrices, ifΦ obeys (2.20), then RIP is satisfied with high prob-
ability.
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• Fourier Matrices : An M × N Fourier measurement matrixΦ can be de-
signed by selectingM rows, uniformly at random, from anN × N Fourier
matrix. The columns of the resulting matrix are further normalized to unitℓ2-
norm. It was proved in [24] that RIP is held with overwhelmingprobability
if

M ≥ C K(log N)6 (2.21)

which was further improved by [25] to

M ≥ C K(log N)4. (2.22)

However, satisfying (2.20) can also guarantee promising results.

2.4 Sparse Recovery Algorithms

Over the past few years, a plethora of algorithms has emergedin order to recover
sparse signals from compressed measurements. Here, we briefly describe some
of the major categories because elaborating upon a particular algorithm can be too
specific. However, in subsequent chapters we provide a detailed discussion on some
of the algorithms.

2.4.1 Greedy Algorithms

Greedy algorithms attempt to provide an approximate solution of P0. We know
thatP0 calls for an exhaustive search, in general. Greedy algorithms abandon this
approach in favor of the one-at-a-time strategy. The algorithms proceed in a se-
quential manner. In each step, a suitable column is selected, which basically re-
duces a residual error, and made part of a candidate set. Limits can be put either on
the magnitude of the residual error or the number of columns in the candidate set.
Clearly, this strategy is more feasible than an exhaustive search. However, the per-
formance can vary with different situations. Since these algorithms are myopic in
nature, finding a global optimum can be challenging. A large number of variants are
available which basically improve the complexity and/or performance, e.g., match-
ing pursuit (MP) [26, 27], orthogonal matching pursuit (OMP) [28, 29, 30], flexible
tree search based OMP (FT-OMP) [31], compressive sampling MP (CoSaMP) [32],
etc.
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2.4.2 Algorithms Based on Convex Relaxations

Algorithms based on convex relaxations basically solveP1 or Pǫ
1, also known as

BP and BPDN, respectively. These algorithms have a major difference from the
greedy approaches, in that their optimization approach is mostly global in nature.
There is a vast variety of such algorithms. After casting theproblem as an LP,
solutions can be provided by interior-point methods [15], especially for large scale
systems. Further, a number of iterative thresholding algorithms (ITH) can also be
used [33, 34, 35, 36], again especially for large scale systems. Various solvers of
the least absolute shrinkage and selection operator (LASSO) [37] problem can also
be used, e.g., least angle regression (LARS) [38] and coordinate descent methods
[39]. Similarly, some Bayesian approaches, e.g., Bayesiancompressive sampling
[40] can also be utilized.

2.4.3 Algorithms Based on Different Priors

Most of the CS literature has focused on solvingP1 or Pǫ
1, where the basic aim is

purely to recover a sparse signal. Therefore, only one prior, i.e., anℓ1-norm over
the optimization vector, has been under investigation for alarge part. However,
most of the signals are not just sparse, they also offer some special structure in
the sparsity as well. Thus, sparsity problems with priors ofdifferent types have
recently been proposed in the literature. For example, in case of block sparsity there
are algorithms like group LASSO [41], sparse group LASSO [42], etc. In order to
tackle correlations in sparse elements, algorithms like elastic net [43] have been
proposed. Similarly, smoothness in sparsity has been addressed in fused LASSO
[44].
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Abstract

Compressive sampling (CS) based energy detectors are developed for ultra-wide-
band (UWB) pulse position modulation (PPM), in multipath fading environments
so as to reduce the sampling complexity at the receiver side.Due to sub-Nyquist
rate sampling, the CS process outputs a compressed version of the received signal
such that the original signal can be recovered from this low dimensional representa-
tion. Using the principles of generalized maximum likelihood (GML), we propose
two types of energy detectors for such signals. The first typeof detectors involves
the reconstruction of the received signal followed by a detection stage. Statistical
properties of the reconstruction error have been used for the realization of such
kind of detectors. The second type of detectors does not relyon reconstruction and
carries out the detection operation directly on the compressed signal, thereby offer-
ing a further reduction in the implementation complexity. The performance of the
proposed detectors is independent of the spreading factor.We analyze the bit error
performance of the proposed energy detectors for two scenarios of the propagation
channel: when the channel is deterministic, and when it is Gaussian distributed.
We provide exact bit error probability (BEP) expressions ofthe CS-based energy
detectors for each scenario of the channel. The BEP expressions obtained for the
detectors working on the compressed signal directly, can naturally be extended to
BEP expressions for the related energy detectors working onthe Nyquist-rate sam-
pled signal. Simulation results validate the accuracy of these BEP expressions.

3.1 Introduction

Digital communications is witnessing a phenomenal growth in applications which
involve signals of very high bandwidth. Impulse-radio (IR)ultra-wideband (UWB)
signals are attractive because they offer high user capacity, fine time resolution as
well as low probability of interception and detection [45, 8]. A big hurdle in the im-
plementation of IR-UWB systems is the efficiency of the analog-to-digital convert-
ers (ADCs). According to the classical Shannon-Nyquist-Whittaker-Kotelnikov
sampling theorem [3, 4], a band-limited signalx(t) (i.e., X(ω) = 0, |ω| > ωm)
can be determined completely from its samplesx(nTs) if Ts ≤ π/ωm. So the sam-
pling rate should be at least twice the highest frequency. Therefore, if the bandwidth
of the signal is too high, ADCs can be heavily stressed causing an increase in the
power consumption [2, 10]. It could take decades before the ADC technology is
fast, precise and low-cost enough for the present-day high-bandwidth applications
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[46]. On the other hand, it has been described in [3] that mostof the signals with
large bandwidths have a small rate of information. This property of wideband sig-
nals makes them sparse in information which has led to sampling methods based on
the amount of information (or the rate of innovation). The combination of sparsity
with finite rate of innovation has been described in [47], primarily for the non-
discrete domain. Compressive sampling (CS) [5, 6] offers more flexible options to
deal with sparse signals in terms of the location of the information and the non-
uniformity of the measurements as we shall elaborate upon insubsequent sections.
In this paper, we use CS to capitalize on the time-domain sparsity of the IR-UWB
signals to reduce the sampling rate as well as the implementation complexity of
energy detectors.
Relation to prior work. We consider UWB pulse position modulation (PPM) sig-
nals. PPM is advantageous because of its simplicity and the ease of controlling
delays [45] but the disadvantage, in the context of UWB signals, is the relatively
large bandwidth associated with it, which causes a large number of visible propaga-
tion paths [48]. In this paper, we concentrate on noncoherent PPM receiver design
through energy detection [49, 50, 51] and adopt CS for reduced system complexity
as well as power consumption. The resulting detection procedure resembles a gen-
eralized maximum likelihood (GML) detector. The symbol decision is determined
by the pulse position that contains most of the energy. Note that different works on
CS in combination with UWB signals have appeared recently, e.g., in [52] for co-
herent receivers, in [53] for symbol-rate sampling but requiring pre-identification of
the channel which was then extended to [54] for channel and timing estimation, in
[55] for a GLRT-based detector which was then extended to [56] with an effective
measurement matrix design but both requiring the transmission of pilot symbols, in
[57] for joint time of arrival estimation and data decoding which requires channel
estimation, in [58] and [59] to account for narrow-band interference, in [60] and
[61] for UWB channel estimation, in [62] for time-delay estimation and in [63]
for differential detection of UWB signals. In contrast to previous methods, we
present noncoherent UWB detectors. We neither require pre-identification of the
channel, nor the transmission of pilot symbols. Most of the previous methods also
require signal reconstruction whereas, we present a methodwhich skips this step
altogether. Note that previous examples of detection with compressed symbols can
be found in [63] and [64].
Our Contributions.

• We utilize the CS framework to reduce the receiver samplingrate for IR-
UWB PPM signals much below the Nyquist rate.
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• Using the principles of GML, we develop CS-based energy detectors for the
signal reconstructed from its compressed samples. We also propose energy
detectors which operate on the compressed signal directly and do not need
reconstruction.

• We show that the performance of our proposed energy detectors is indepen-
dent of the spreading factor.

• We provide bit error probability (BEP) expressions for theproposed com-
pressed detectors for a deterministic channel as well as a Gaussian distributed
channel. We show that these expressions can be easily modified for the en-
ergy detectors based on Nyquist-rate sampling.

Organization. The paper is organized as follows. Section 3.2 presents thesystem
model. Section 3.3 provides the CS-based energy detectors using the GML criteria
for the reconstructed signal as well as for the compressed signal without reconstruc-
tion. Section 3.4 provides the theoretical BEP expressionsfor the CS-based energy
detectors when the channel is considered deterministic. Section 3.5 provides the
theoretical BEP expressions when the channel is consideredto be Gaussian dis-
tributed. Finally, Section 5.6 presents the simulations and the concluding remarks
are given in Section 3.7.

3.2 System Model

To transmit thekth information symbol, consider anM-ary PPM signalsk(t) of
length T . Every symbol consists ofNf frames, each with frame durationTf ,
so that the symbol time is given byT = NfTf . The motivation for a multiple-
frame transmission has been attributed to the federal communications commis-
sion (FCC) limits on the signal power spectral density [7]. Repeating a pulse
Nf times, reduces the energy of an individual pulse for a constant symbol en-
ergy. In PPM, the signal is modulated by delaying the transmitted pulse within
a frame. The ease of implementing these delays also reflects the simplicity of
PPM. Let the base pulse delay be defined as,TM

∆
= Tf/M, then the transmit-

ted signal for thekth information symbolak ∈ {0, 1, . . . ,M− 1} can be written
assk(t) =

∑Nf−1
j=0 q(t − (j + kNf )Tf − akTM), whereq(t) is the unit-energy

pulse waveform of durationTq such thatTq ≪ TM. If g(t) represents the impulse
response of the physical communication channel, then the received signal corre-
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TM

Tf

T = NfTf

tTh

ak = 0 ak = 1

r2(t)

L

NM

N

r2k,i

n = kN + i

Figure 3.1: The squared received signal without noise forM = 2. Labels below
the time axis show the usual time-based parameters, while the labels above the time
axis show values for the squared Nyquist-rate sampled version of r(t), i.e.,r2

k,i

sponding to thekth information symbol is given by

rk(t) = sk(t) ⋆ g(t) + vk(t)

=

Nf−1
∑

j=0

h(t− jTf − kT − akTM) + vk(t).

wherevk(t) is the additive noise corresponding to thekth information symbol and
h(t)

∆
= q(t) ⋆ g(t) is the received pulse waveform of durationTh. We can represent

rk(t) by its Nyquist-rate sampled version. We takeN samples per frame period
Tf such thatN/Tf is equivalent to the Nyquist rate. LetNM

∆
= N/M be the

integer number of Nyquist-rate samples in each slot, then the sampled received
signal corresponding to thekth information symbol in thejth frame is given by

r
(j)
k,i

∆
= rk(jTf + iTf/N) = hi−jN−kNNf−akNM

+ v
(j)
k,i , (3.1)

for i = 0, 1, . . . , N − 1, wherehi
∆
= h(iTf/N) andv

(j)
k,i

∆
= vk(jTf + iTf/N). We

assume that the elementsv
(j)
k,i are independent identically distributed (i.i.d.) zero-

mean Gaussian with varianceσ2. The support ofhi is given by[0, L − 1], where
L

∆
= ⌈NTh/Tf ⌉ (see Figure 3.1). Since we want to make the detection process

separable in the different frames/symbols, we do not want the received pulses to
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overlap and thus we requireTh ≤ TM or L ≤ NM. We can also write (3.1) in the
following vector form

r
(j)
k = u(j)(ak,h) + v

(j)
k (3.2)

wherer
(j)
k

∆
= [r

(j)
k,0, r

(j)
k,1, . . . , r

(j)
k,N−1]

T , v
(j)
k

∆
= [v

(j)
k,0, v

(j)
k,1, . . . , v

(j)
k,N−1]

T andh
∆
=

[h0, h1, . . . , hL−1]
T . Since we assume that the channel does not vary within a sym-

bol period,u(j)(ak,h) is the same for every frame, i.e.,u(0)(ak,h) = u(1)(ak,h) =

· · · = u(Nf−1)(ak,h) = u(ak,h). TheN × 1 vectoru(ak,h) consists ofM− 1

blocks of zero values and only one block withL nonzero values provided byh. Let
h̃

∆
= [hT ,0T

(NM−L)×1]
T , then the structure ofu(ak,h) can be represented as

u(ak,h)
∆
=
[

0T
akNM×1, h̃

T ,0T
(M−ak−1)NM×1

]T

which reflects the enormous amount of sparsity present in UWBPPM signals (e.g.,
the subsequent sparsity pattern ofrk(t) can be seen as in Figure 3.1). The co-

variance matrix ofv(j)
k can be written as E

{

v
(j)
k v

(j)T
k

}

= σ2IN . We can finally
convert (3.2) in the following symbol level compact form

rk =
[
1Nf×1 ⊗ u(ak,h)

]
+ vk (3.3)

whererk
∆
= [r

(0)T
k , r

(1)T
k , . . . , r

(Nf−1)T
k ]T , vk

∆
= [v

(0)T
k ,v

(1)T
k , . . . ,v

(Nf−1)T
k ]T

and1Nf×1 is a vector of ones of lengthNf .
The CS theory implies that the sparse received signal (comprisingK basis func-

tions) is operated upon by a certain transform operator which generatesM linear
measurements of the received signal such thatM ≪ N , whereN represents the
number of Nyquist-rate samples of the received signal. Thisprocess is carried
out in the analog domain [46, 65, 66]. Here, we represent thistransform operator
as anM × N measurement matrixΦ : R

N −→ R
M , with M linear function-

als as its rows. Each measurement provides a compressed sample of the received
signal which eventually leads to a lowerM -dimensional representation of theN -
dimensional signal. The ratio betweenM andN is called the undersampling ratio
µ

∆
= M/N . The measurement matrix plays an important role in recovering the

signal from its compressed samples. For this, it has to satisfy the restricted isom-
etry property (RIP) [6]. A large number of random matrices, e.g., Gaussian and
Bernoulli matrices, as well as structured matrices (with randomly selected rows),
e.g., Fourier (for signals with time-domain spasity), satisfy this property.

At this point, we would like to elucidate the structure of themeasurement ma-
trix used in the context of our work. To this end, we present the following assump-
tions.
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Assumption 1. The entries of the measurement matrixΦ are zero-mean i.i.d. with
variance1/M . As a result, its covariance matrix can be written as E{ΦΦT} =
1

µ
IM . Now, asN −→∞, it can be stated that the rows of the measurement matrix

Φ are approximately orthogonal to each other, i.e.,

ΦΦT ≈ 1

µ
IM . (3.4)

Assumption 2. Considering aΦ matrix for which the approximation (3.4) in As-
sumption 1 is exact, i.e.,

ΦΦT =
1

µ
IM . (3.5)

In other words, the rows of the measurement matrix are orthogonal and its columns
have unitℓ2-norm.
Assumption 3. Given aMM × NM matrix Φ̃ whereMM

∆
= M/M, in order to

treat each of theM slots separately, the measurement matrix can be designed as
Φ = IM ⊗ Φ̃.

Note that Assumption 3 can be used along with either Assumption 1 or 2. In
the former case, the entries of the matrixΦ̃ will be zero-mean i.i.d. with variance
1/MM, and in the latter case, the rows of the matrixΦ̃ will be orthogonal with unit
ℓ2-norm columns. Assumptions 1 and 2 play an important role in the performance
analysis of the proposed detectors. We will explain this in the related sections.

Now, applying CS to (3.2) we can write its compressed versionas

y
(j)
k

∆
= Φr

(j)
k = Φu(ak,h) + ξ

(j)
k (3.6)

wherey(j)
k is theM × 1 measurement vector for thejth frame andξ(j)

k
∆
= Φv

(j)
k is

theM × 1 noise vector. The noiseξ(j)
k is also zero-mean Gaussian with covariance

matrix

E
{

ξ
(j)
k ξ

(j)T
k

}

= ΦE
{

v
(j)
k v

(j)T
k

}

ΦT ∼= σ2

µ
IM (3.7)

depending upon Assumption 1 or 2. Note that unlike the commonly used sig-
nal models for CS, the noise in our case is also compressed. Thus the choice of
the measurement matrix becomes relevant to determine whether the resulting com-
pressed noise is i.i.d. or not. The symbol level joint model can be written as

yk =
[
INf
⊗Φ

]
rk =

[
1Nf×1 ⊗Φu(ak,h)

]
+ ξk (3.8)

whereyk
∆
= [y

(0)T
k ,y

(1)T
k , . . . ,y

(Nf−1)T
k ]T andξk

∆
= [ξ

(0)T
k , ξ

(1)T
k , . . . , ξ

(Nf−1)T
k ]T

are theNfM×1 joint compressed measurement and noise vectors for thekth sym-
bol, respectively.
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rk(t) yk 1

Nf

∑Nf−1

j=0
(·)

ȳkǔk

Uk,0, · · · , Uk,M−1 âk≷

Φ

AMP

‖ · ‖2

2

Figure 3.2: Block diagram for the CS-based ED with reconstructed signals.

3.3 CS Based Detection

For low system complexity and power consumption, we focus onthe noncoher-
ent reception of UWB PPM signals [49], which is akin to GML detection. The
received signal is sampled at a compressed rate according to(3.6). A straightfor-
ward receiver then would require the reconstruction of the actual received signal to
carry out the detection process. The other approach may be the detection from the
compressed samples directly without reconstructing the received signal. We shall
explore both approaches, i.e., the detection after reconstruction and the detection
without reconstruction of the compressed received signal (see Figures 3.2 and 3.3
for the block diagrams of the two respective proposed approaches). Either way,
we have to handle each frame individually, and we want to find an optimal way to
handle multiple frames.

3.3.1 Reconstruction Based Detectors

Signal reconstruction and error statistics

The reconstruction of a sparse signal calls for the solutionof anℓ0-norm optimiza-
tion problem. Since the related problem is NP-hard, itsℓ1-norm equivalent opti-
mization problem, i.e., the convex relaxation of theℓ0-norm, has been suggested in
the literature [15]. One way to reconstruct the received signal from its compressed
samples consists of solving the following optimization problem, (from (3.8) for
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rk(t) yk 1

Nf

∑Nf−1

j=0
(·)

ȳk

Φ

Yk,0, · · · , Yk,M−1 âk≷‖ · ‖2

2

Figure 3.3: Block diagram for the CS-based ED with compressed signals.

Nf = 1)

ûk = arg min
uk

‖uk‖11 s.t. ‖yk −Φuk‖22 ≤ ǫ (3.9)

whereuk corresponds tou(ak,h) andǫ is a constant. Theℓ1-norm minimization
problem (3.9), also known as basis pursuit (BP), can recoverthe sparse signal from
its compressed samples but the bottleneck is the size of the signal model. With
N −→ ∞, this method becomes computationally expensive (as the worst-case
complexity can be ofO(M2N1.5) for interior point algorithms). Alternatively,
matching pursuit algorithms can also be used, e.g., orthogonal matching pursuit
(OMP) [29, 30] (with a complexity ofO(KMN)). These methods are based on
iteratively selecting the columns of the measurement matrix, one by one, that are
most correlated with the observation vector and its subsequent residual vectors.
Variants of matching pursuit algorithms include other greedy algorithms that, in
contrast, select more than one column of the measurement matrix through correla-
tions. A case in point is the compressive sampling matching pursuit (CoSaMP) [32]
(with a complexity ofO(MN)), which also has elaborate performance bounds. In
CoSaMP, the signal is estimated by solving a least-squares problem on the can-
didate components in every step, which involves matrix inversion. This inversion
step remains a bottleneck in reducing the computational complexity. The itera-
tive thresholding (ITH) algorithms [67] (with a complexityofO(N log N)), on the
other hand, do not have to invert a matrix, and reconstruct a sparse signal from its
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compressed samples through the following simple iterations

û
[n+1]
k = S

(

û
[n]
k + ΦTz

[n]
k , λ[n]

)

(3.10)

z
[n]
k = yk −Φû

[n]
k (3.11)

wheren is the iteration index andS(x, λ) is the thresholding operator. Variants
of ITH are generated depending upon the thresholding to be hard, i.e.,S(x, λ)

∆
=

xI{|x|>λ} (whereI is the indicator function) or softS(x, λ)
∆
= sign(x)(|x|−λ)+. In

general, we will useS(x, λ) to denote a soft thresholding operator. To compare the
performance of different ITH algorithms with other approaches e.g., BP or OMP, a
performance measure depicting the transitions between success and failure phases
of an algorithm, named the sparsity-undersampling (SU) measure, was proposed
in [67]. The sparsityρ

∆
= K

M is the ratio between the number of non-zero com-
ponents in the sparse signal vector and the number of compressed measurements,
whereas the undersampling ratioµ is the ratio between the number of compressed
measurements and the total number of elements in the signal vector. Through ex-
haustive simulations, it was observed in [67] that althoughITH is fast and has a low
complexity, it unfortunately performs poorly on the SU measure. To retain the fast
speed of an iterative algorithm but surpass the performancebarrier on the SU mea-
sure, the following iterative algorithm, named the approximate message passing
(AMP) algorithm, was proposed in [34, 35, 36]. It can be summarized as

û
[n+1]
k = S

(

û
[n]
k + ΦTz

[n]
k , λ[n]

)

(3.12)

z
[n]
k = yk −Φû

[n]
k

+
1

µ
z
[n−1]
k

〈

S ′
(

û
[n−1]
k + ΦTz

[n−1]
k , λ[n−1]

)〉

(3.13)

whereS ′(x, λ) is the derivative of the soft thresholding operatorS(x, λ) (it gen-
erates a1 for every nonzero element ofx) and〈x〉 gives the average value of the
elements ofx, thus〈S ′(x, λ)〉 = 1

N ‖S(x, λ)‖0 whereN is the number of elements
in x. The key difference between ITH and AMP is the additional term in (3.13),

i.e.,
1

µ
z
[n−1]
k

〈

S ′
(

û
[n−1]
k + ΦTz

[n−1]
k , λ[n−1]

)〉

, altering the residual. In statistical

physics, such a term is known as the “Onsager reaction term”.For our context and
reference we name it as the correction term (CT).

AMP has been derived from the message passing (MP) algorithmwhich is used
in graphical inference models [68]. It was used in [40] for compressed sensing
through belief propagation over factor graphs [69]. The problem with the message
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passing algorithm is that instead of updating onlyN nodes at each iteration, it
updatesMN nodes, causing an increase in the computational complexity. If the
number of nodes to be updated is restricted to theN variable nodes then message
passing reduces to ITH. AMP provides the middle way. By neglecting the weakly
dependent updates in the MP algorithm, it updates onlyN nodes, but what is lost
by not updating theM measurement nodes is gained by the addition of the CT. See
[35] for a complete derivation of this approximation leading to AMP.

AMP assumes the measurement matrixΦ to be a random measurement matrix
whose elements are zero-mean i.i.d. with variance1/M . In our context, Assump-
tion 1 then becomes relevant. Note, AMP is valid underN −→ ∞. Our As-
sumption 1 also requires this tendency ofN so that (3.4) can hold. Now, the most
important feature of AMP is the statistical characterization of the reconstruction
error at every iteration. This can be understood by developing certain heuristics for
the iterative approaches. From (3.11), the correlation of the measurement matrix
with the residual vector at thenth iteration can be expanded as

ΦTz
[n]
k = (uk − û

[n]
k ) + H(uk − û

[n]
k ) + ΦT ξk (3.14)

whereH
∆
= (ΦTΦ − IN ). Now, as described in [34], if it is assumed thatH does

not correlate with the vector̂u[n]
k thenH(uk − û

[n]
k ) can be viewed as a vector of

i.i.d. Gaussian random variables and the variance of each variable can be given as
1
M ‖uk − û

[n]
k ‖22. Let the noisy estimate of the received signal be defined as

ǔ
[n]
k

∆
= û

[n]
k + ΦTz

[n]
k (3.15)

and the error in estimating the true signal from this estimate be defined as

w
[n]
k

∆
= ǔ

[n]
k − uk (3.16)

with σ
[n]2
w denoting the variance of each of its elements. If the above mentioned

heuristics are true, then the variance of the elements of theerror vectorwk can be
tracked by the following state evolution (SE) method for every iteration

σ[n+1]2
w = Ψ

(

σ[n]2
w

)

(3.17)

where the functionΨ(σ
[n]2
w ) is defined as

Ψ
(

σ[n]2
w

)
∆
=

1

µ

(

σ2 + E

{∥
∥
∥S
(

uk + σ[n]2
w n, λ[n]

)

− uk

∥
∥
∥

2

2

})

(3.18)
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wheren is a vector of zero-mean standard i.i.d. Gaussian random variables, i.e.,
n ∼ N (0, I) and we have considered E

{
(ΦT ξk)(Φ

T ξk)
T
}

= σ2

µ IN under As-
sumption 1. From (3.18), we can see that the SE also predicts the mean squared
error (MSE) of the reconstructed signal in that the SE converges to the true MSE at
every iteration asN −→ ∞ [70], i.e.,

E

{∥
∥
∥S
(

uk + σ[n]2
w n, λ[n]

)

− uk

∥
∥
∥

2

2

}

=
1

N

∥
∥
∥uk − û

[n]
k

∥
∥
∥

2

2
(3.19)

provided thatΨ
(

σ
[n]2
w

)

< σ
[n]2
w which should remain true for the SU measure

of AMP to coincide with that of other methods, such as BP. It has been observed
through extensive numerical simulations (see e.g., [36]) that SE fails to predict
the performance of ITH algorithms. The reason is the correlation betweenH and
û

[n]
k , which appears right after the first iteration and thus the above heuristics are

not true for ITH algorithms. On the other hand, the SE predicts the performance of
AMP exactly. The reason is that the CT removes or compensatesfor the correlation
betweenH andû

[n]
k at every iteration and thus the above heuristics regarding the

reconstruction noise being Gaussian and the MSE convergence remain true. Thus
the variance of each element of the vectorw

[n]
k can be written as

σ[n]2
w =

1

µ

(

σ2 +
1

N

∥
∥
∥uk − û

[n]
k

∥
∥
∥

2

2

)

(3.20)

Note that the performance comparisons described above bring the thresholding pol-
icy to the foreground as well. It would suffice to say that the optimal thresholding
value should be a function of the standard deviationσ

[n]
w , i.e.,λ[n] = τσ

[n]
w , where

τ is a constant. We will describe the thresholding policy usedfor our purpose in
Section 5.6.

GML based detection for multiple-frame reconstructed signals

Let us assume that the received signal was compressed at a compression rateµ
and then reconstructed using AMP. Here we assume that the AMPalgorithm has
reached convergence and therefore drop the iteration indices from the variables.
Let q̌k be aNfN × 1 vector containing all reconstructed frame vectorsǔ

(j)
k , i.e.,

q̌k
∆
= [ǔ

(0)T
k , ǔ

(1)T
k , · · · , ǔ(Nf−1)T

k ]T . From Section 3.3.1, we may assume that the
reconstruction error for each signal sample is i.i.d. Gaussian with varianceσ2

w. The
pdf for the reconstructed signal from (3.16) can then be written as

p(q̌k|ak,h) = C exp

{

− 1

2σ2
w

‖q̌k −
[
1Nf×1 ⊗ u(ak,h)

]
‖22
}

(3.21)
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whereC is some positive constant. Using the GML criterion, it is clear that in
order to maximize (3.21), we need to minimize the squaredℓ2-norm, which can be
expressed as

Λ(ak,h) =

Nf−1
∑

j=0

L−1∑

l=0

(h2
l − 2hl[q̌k]Pj,l

)

= Nf

L−1∑

l=0

h2
l −

L−1∑

l=0

2hl

Nf−1
∑

j=0

[q̌k]Pj,l
, (3.22)

wherePj,l = jN + akNM + l is used for notational simplicity. Taking the partial
derivative with respect tohl while keepingak fixed, we obtain

∂Λ(ak,h)

∂hl
= 2Nfhl − 2

Nf−1
∑

j=0

[q̌k]Pj,l
.

Minimizing the cost function with respect toh would mean setting every gradient
with respect tohl to zero, which yields the following optimal estimate forhl:

ĥl =
1

Nf

Nf−1
∑

j=0

[q̌k]Pj,l
. (3.23)

Now substituting (3.23) in (3.22), we finally obtain

Λ(ak, ĥ) = −Nf

L−1∑

l=0

ĥ2
l .

As a result, the symbolak can be found by solving the following problem

min
ak

Λ(ak, ĥ) = max
ak

L−1∑

l=0

ĥ2
l . (3.24)

Given Eh to be the signal energy per frame, the instantaneous SNR for multiple
frames can be defined asζ

∆
=

Nf Eh

σ2
w

. From (3.24) and (3.23), it can then be observed
that for the same instantaneous SNRζ, the decision result will be independent of
the number of framesNf . This can be explained as follows. The estimate ofĥl in
(3.23) is obtained by averaging samples over different frames, which on one hand
decreases the noise energy by a factor ofNf but on the other hand also decreases
the signal energy by a factor ofNf due to the fact that the instantaneous SNRζ is
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kept constant [71]. Hence, the performance of the estimate of hl does not change
with Nf and thus also the solution to (3.24) does not change withNf (i.e., the
spreading factor) since it only involves the estimate ofhl. Replacinĝhl in (3.24)
by the value obtained from (3.23), the optimal energy detector for the reconstructed
samples (R-ED) can be written as

â
(R−ED)
k = arg max

ak

L−1∑

l=0




1

Nf

Nf−1
∑

j=0

[q̌k]jN+akNM+l





2

. (3.25)

Replacing the reconstructed samples with Nyquist-rate samples in (3.25) gives the
optimal Nyquist-rate energy detector (N-ED) [71]. So we cansee that the optimal
procedure consists of first averaging the signal componentsover different frames
and then squaring, and the related performance is independent of the number of
framesNf if the instantaneous SNRζ is kept constant. This is in contrast to the
GML detector proposed in [49] for the Nyquist-rate sampled signal, which con-
sists of first squaring and then averaging. For the reconstructed samples, it can be
formulated as

â
(SR−ED)
k = arg max

ak

1

Nf

Nf−1
∑

j=0

L−1∑

l=0

[q̌k]
2
jN+akNM+l (3.26)

We refer to (3.26) as the spreading-factor dependent energydetector for the recon-
structed samples (SR-ED). Replacing the reconstructed samples with the Nyquist-
rate samples leads to the spreading-factor dependent Nyquist-rate energy detector
(SN-ED) [49].

Averaging process in the compressed domain

We can see that the proposed detection procedure is practically feasible. We avoid
Nyquist-rate sampling and the detection is carried out on the reconstructed sam-
ples. Still, it may require the reconstruction of all the frames which could be com-
putationally expensive. Here we can benefit from the structure of our compressed
detector and save a number of reconstruction steps by reconstructing only one (av-
erage) frame instead of all the frames. Since the transform operatorΦ is the same
for all the frames, averaging the reconstructed frames should be similar to averag-
ing the compressed frames and then reconstructing only one average frame. Now,
by averaging the compressed framesy

(j)
k , for j = 0, · · · , Nf − 1, we can define



3.3. CS Based Detection 45

the compressed average frame by theM × 1 vectorȳk as

ȳk
∆
=

1

Nf

Nf−1
∑

j=0

(

Φu(ak,h) + ξ
(j)
k

)

= Φu(ak,h) + ξ̄k (3.27)

where ξ̄k = 1
Nf

∑Nf−1
j=0 ξ

(j)
k , and from (3.4) or (3.5) the covariance matrix can

be written as E
{

ξ̄kξ̄
T
k

}

∼= σ2

µNf
IM . AMP can help us compare the performance

of the two approaches. From (3.16), we can see that it is sufficient to look at the
reconstruction error/noise statistics resulting from thetwo approaches to assess the
performance of the respective detectors. The error variance σ2

w in reconstruction
via (3.27) can be written as

σ2
w =

σ2

µNf
+

1

µN
‖uk − ûk‖22 . (3.28)

On the other hand, if each frame is first reconstructed fromy
(j)
k with j = 0, 1, · · · ,

Nf − 1, via AMP and then averaged, the variance of each element of the average

noise vector̄wk
∆
= 1

Nf

∑Nf−1
j=0 w(j) can be written as

σ2
w̄ =

σ2

µNf
+

1

µNNf

Nf−1
∑

j=0

‖uk − û
(j)
k ‖22

≈ σ2

µNf
+

1

µN
‖uk −

1

Nf

Nf−1
∑

j=0

û
(j)
k ‖22. (3.29)

Now assuminĝuk ≈ 1
Nf

∑Nf−1
j=0 û

(j)
k , (3.29) is the same as (3.28). Thus the detec-

tors based on both approaches will perform in a similar manner.

3.3.2 Direct Compressed Detectors

In the previous section we looked at detectors based on the reconstructed signals.
Here we use GML to develop a detector based on the compressed signals directly,
i.e., without reconstruction. Since we have assumed symbollevel synchronization,
the individualM pulse positions can also become accessible under Assumption
3. Further, as there is a linear transformation between the actual received signal
and its compressed samples, we should be able to segregate the samples of each
compressed received framey(j)

k for j = 0, 1, · · · , Nf − 1, intoM blocks. Thus,
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each block would then represent the compressed samples corresponding to a pulse
position of the actual received signal. Now considering a measurement matrixΦ
such that Assumption 2 and 3 hold true, we can write the pdf of the compressed
received signal from (3.8) as

p(yk|ak,x) = D exp

{

− 1

2σ2
‖yk −

[
1Nf×1 ⊗Φu(ak,h)

]
‖22
}

(3.30)

whereD is a constant andx
∆
= Φ̃h̃ is anMM×1 vector of the compressed samples

corresponding to the block inu(ak,h) carrying the transmitted pulse. Note that
Assumption 2 is important here so that the compressed noise is i.i.d. and (3.30) can
be formulated. Now in order to maximize (3.30), we need to minimize

Λ(ak,x) =

Nf−1
∑

j=0

MM−1∑

l=0

([x]2l − 2[x]l[yk]Pj,l
)

= Nf

MM−1
∑

l=0

[x]2l −
MM−1
∑

l=0

2[x]l

Nf−1
∑

j=0

[yk]Pj,l
, (3.31)

wherePj,l = jM + akMM + l. Taking the partial derivative with respect to[x]l
and setting the gradient equal to zero, yields the followingestimate for[x]l

[x̂]l =
1

Nf

Nf−1
∑

j=0

[yk]Pj,l
. (3.32)

Substituting (3.32) in (3.31), we get the following compressed samples based en-
ergy detector (C-ED)

â
(C−ED)
k = arg max

ak

MM−1
∑

l=0




1

Nf

Nf−1
∑

j=0

[yk]jM+akMM+l





2

(3.33)

which is clearly independent of the spreading factor. Thus the energy detector based
on the compressed signal directly can be realized by first averaging the compressed
samples over the number of frames and then carrying out detection on the average
compressed frame directly.

3.4 CS based Detection for a Deterministic Channel

In this section, we consider UWB communications over a deterministic channel.
We derive BEP expressions for the CS-based detectors when detection is carried
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out on the reconstructed signal as well as when it is carried out directly on the
compressed signal. For simplicity we considerM = 2, i.e., binary PPM.

3.4.1 Reconstruction Based Detection

In this section, we derive BEP expressions for the reconstruction based detector. We
consider an average compressed frame for reconstruction. Thus the need to recon-
struct all the frames has been alleviated except for one average frame. As explained
in Section 3.3.1, the expressions obtained in this section should also be valid for the
detector (3.25). Again we assume that the convergence stagehas been reached for
AMP so we will drop the iteration index. We can write the reconstructed symbol as

ǔk = u(ak,h) + wk (3.34)

wherewk ∼ N
(

0, ( σ2

µNf
+

1

µN
‖uk − ûk‖22)IN

)

under Assumption 1. Since

M = 2, every frame symbol has two pulse positions. Let us assume that thekth
symbol is a0, i.e.,ak = 0. This means we transmit the pulse in the first half of the
signal frame, and we can partition the reconstructed symbolas

ǔk,0
∆
= [ǔ(0,h)]1:N/2 = h̃ + w̃k,0 (3.35)

wherew̃k,0
∆
= [wk]1:N/2, and

ũk,1
∆
= [ǔ(0,h)](N/2+1):N = w̃k,1 (3.36)

wherew̃k,1
∆
= [wk](N/2+1):N . Now the GML-based detector can be written as

Uk,0

0
≷
1

Uk,1 (3.37)

where

Uk,0
∆
= ‖ũk,0‖22 = Eh + 2h̃T w̃k,0 + ‖w̃k,0‖22 (3.38)

with Eh
∆
= ‖h̃‖22 and

Uk,1
∆
= ‖ũk,1‖22 = ‖w̃k,1‖22 . (3.39)

Due to the statistical characterization of the reconstruction error by AMP,w̃k,0

andw̃k,1 are i.i.d. Gaussian. Now consideringh as a deterministic channel,Uk,0

is a non-central chi-square distributed random variable and Uk,1 is a central chi-
square distributed random variable, both withN/2 degrees of freedom. We can
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see that finding a closed-form expression of the probabilityof error involving these
two distributions is complicated. On the other hand, as we are dealing with the
reconstructed signal consisting ofN Nyquist-rate samples, where given the nature
of UWB signals, it is known thatN −→ ∞, we can rightly consider bothUk,0

andUk,1 as Gaussian distributed by using the central limit theorem.Now to find a
closed-form expression of the BEP, let us proceed by definingthe variable

∆recon ∆
= Uk,0 − Uk,1. (3.40)

Sinceak = 0 has been transmitted, the probability of error for the detector based
on the reconstructed signal (P

(R−BEP)
e ) can be defined as

P (R−BEP)
e

∆
= P (∆recon < 0). (3.41)

SinceUk,0 andUk,1 are assumed to be Gaussian distributed, the decision variable
∆recon can also be considered Gaussian distributed. We now proceedto find its
mean and variance.

Since E
{

h̃T w̃k,0

}

= 0, the mean ofUk,0 can be written as E{Uk,0} = Eh +

E
{

‖w̃k,0‖22
}

and the mean ofUk,1 is given by, E{Uk,1} = E
{

‖w̃k,1‖22
}

. Now

since‖w̃k,i‖22 for i = 0, 1, is a chi-square distributed random variable, its variance

is given by, Var
{

‖w̃k,i‖22
}

= 2N
2 σ4

w whereσ2
w = σ2

µNf
+

1

µN
‖uk − ûk‖22. We can

further derive that, Var
{

h̃T w̃k,0

}

= σ2
wEh where we use the fact E

{

w̃k,0w̃
T
k,0

}

=

σ2
wIN/2. Therefore, we obtain, Var{Uk,0} = Nσ4

w + 4σ2
wEh and Var{Uk,1} =

Nσ4
w. Thus the mean of the variable∆recon is

E{∆recon} = E{Uk,0} − E{Uk,1} = Eh (3.42)

and its variance is

Var{∆recon} = Var{Uk,0}+ Var{Uk,1}
= 2Nσ4

w + 4σ2
wEh. (3.43)

The probability of error for the reconstructed signal can therefore be approximated
by

P (R−BEP)
e = Q

([
Var{∆recon}
(E{∆recon})2

]− 1
2

)

= Q





[

4
σ2

w

Eh
+ 2N

(
σ2

w

Eh

)2
]− 1

2



 (3.44)
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which is the instantaneous BEP of a deterministic channel. Finding an analytical
expression for the average BEP of (3.44) is quite complicated. Therefore, the aver-
age BEP (P (R−ABEP)

e ) can be approximated by numerically averagingP
(R−BEP)
e

over different channel realizations [72], i.e.,

P (R−ABEP)
e =

1

N realiz

Nrealiz−1∑

i=0

P (R−BEP)
e (i) (3.45)

whereP
(R−BEP)
e (i) is the instantaneous BEP for theith channel realization and

N realiz is the total number of channel realizations.
The analysis provided above is for the case whenM = 2. Exact BEP expres-

sions for the case whenM > 2 are again difficult to derive. Nonetheless, an upper
bound (that is a union bound) on the BEP ofM−1 events can still be utilized [73],
i.e.,

P (R−BEP)
e /

M
2

Q





[

4
σ2

w

Es
+ 2N

(
σ2

w

Es

)2
]− 1

2



 (3.46)

whereEs
∆
= Eh log2M. The bound becomes tighter with increasing SNR and is

exact for the caseM = 2.

3.4.2 Direct Compressed Detection

To derive the BEP expressions for the direct compressed detector, we consider an
average compressed frame. Now given thatak = 0 andM = 2, the average
compressed framēyk can be partitioned into two equal parts under Assumption 3:
the signal part̄yk,0 and the non-signal part̄yk,1, i.e.,

ȳk,0
∆
= [ȳk]1:M/2 = Φ̃h̃ + ˜̄ξk,0 (3.47)

where˜̄ξk,0
∆
= [ξ̄k]1:M/2 and

ȳk,1
∆
= [ȳk](M/2+1):M = ˜̄ξk,1 (3.48)

where˜̄ξk,1
∆
= [ξ̄k](M/2+1):M . We know that̃̄ξk,i for i = 0, 1, is zero-mean with

covariance matrix, E
{
˜̄ξk,i

˜̄ξT
k,i

}

= σ2

µNf
IM/2 under Assumption 2. The energies

corresponding to (3.47) and (3.48) can be defined as

Yk,0
∆
= ‖ȳk,0‖22 = Eh̃ + 2h̃T Φ̃T ˜̄ξk,0 + ‖˜̄ξk,0‖22 (3.49)
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with Eh̃ = ‖Φ̃h̃‖22 and

Yk,1
∆
= ‖ȳk,1‖22 = ‖˜̄ξk,1‖22. (3.50)

Now the GML-based energy detector for the compressed signalcan be written as

Yk,0

0
≷
1

Yk,1 (3.51)

and the bit error probability for the compressed detectorP
(C−BEP)
e can be defined

as

P (C−BEP)
e

∆
= P (∆comp < 0) (3.52)

where

∆comp ∆
= Y0,0 − Y0,1. (3.53)

Now, due to Assumption 2,̄̃ξk,i is still zero-mean i.i.d. Gaussian. Therefore, by
using the central limit theorem, bothY0,0 andY0,1 can be assumed to be Gaussian
distributed asM −→ ∞, which implies that∆comp is also a Gaussian distributed
random variable. We can find an approximate closed-form expression for the prob-
ability of error by finding the mean and the variance of the variable∆comp.

Since E
{

h̃T Φ̃T ˜̄ξk,0

}

= 0 and E
{

‖˜̄ξk,0‖22
}

= M
2

σ2

µNf
, the mean ofYk,0

can be calculated as E{Yk,0} = Eh̃ + M
2

σ2

µNf
. Now, it can be proven that the

Var
{

h̃T Φ̃T ˜̄ξk,0

}

= σ2

µNf
Eh̃ and since‖˜̄ξ0‖22 is a chi-square distributed random

variable withM/2 degrees of freedom, Var
{

‖˜̄ξk,0‖22
}

= 2M
2

σ4

µ2N2
f

. Thus, the

variance of the decision variableYk,0 can be written as Var{Yk,0} = 4 σ2

µNf
Eh̃ +

M σ4

µ2N2
f

. Similarly, it can be shown that the mean ofYk,1, E{Yk,1} = M
2

σ2

µNf
and

its variance Var{Yk,1} = M σ4

µ2N2
f

. Thus the mean of the variable∆comp is

E{∆comp} = E{Yk,0} − E{Yk,1} = Eh̃ (3.54)

and its variance is

Var{∆comp} = Var{Yk,0}+ Var{Yk,1}

= 4
σ2

µNf
Eh̃ + 2M

σ4

µ2N2
f

. (3.55)
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Since∆comp is a Gaussian distributed random variable, the approximateclosed-
form expression for the probability of error can be derived as

P (C−BEP)
e = Q





[

4
σ2/µ

NfEh̃

+ 2M

(
σ2/µ

NfEh̃

)2
]− 1

2



 . (3.56)

Note that (3.56) leads to the probability of error of the Nyquist-rate sampled re-
ceived signal ifM is replaced byN andµ = 1. It is given by

P (N−BEP)
e = Q





[

4
σ2

NfEh
+ 2N

(
σ2

NfEh

)2
]− 1

2



 . (3.57)

We can see that (3.56) and (3.57) are expressions for the instantaneous BEP. Aver-
age BEP results can again be found by numerical averaging over different channel
realizations as in (3.45).

3.5 CS based Detection for a Gaussian Distributed Chan-
nel

In this section, we derive the BEP expressions for the proposed CS-based detectors
when the channel is Gaussian distributed. We assume that thechannel elements
are zero-mean i.i.d. Gaussian, i.e.,hi ∼ N (0, 1). For the ease of the derivations,
we further assume that the channel spreadTh = TM and thus,L = NM. The
Gaussian assumption on the channel may not be realistic but it helps to provide
some intuition regarding the influence of the channel on the average BEP. Here
again, we considerM = 2 andak = 0.

3.5.1 Reconstruction Based Detection

In this section, we look at the reconstruction based detector when the channel is
Gaussian distributed and derive a closed-form expression of its theoretical BEP.
Thus, in the context of (3.34), under Assumption 1 we can say from (3.35) and
(3.36) thaťuk,0 ∼ N (0, (1+σ2

w)IN/2) andǔk,1 ∼ N (0, σ2
wIN/2). From (3.38) and

(3.39), this means thatUk,0 andUk,1, both being the sum of Gaussian distributed
random variables are chi-square distributed withN/2 degrees of freedom. The pdf
of Uk,0 is given by [73]

pUk,0
(uk,0) =

uk,0
N
4
−1

σ
N
2

r 2
N
4 Γ
(

N
4

)
e

−uk,0

2σ2
r
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whereσ2
r

∆
= 1 + σ2

w, and the pdf ofUk,1 is given by [73]

pUk,1
(uk,1) =

u
N
4
−1

k,1

σ
N
2

w 2
N
4 Γ
(

N
4

)
e

−uk,1

2σ2
w .

Now from (3.37) the average BEP for the reconstruction baseddetector (R-ABEP),
given a zero symbol is transmitted is

P (R−ABEP)
e = P (Uk,0<Uk,1|ak = 0) . (3.58)

The probability of a correct decision given that a zero is transmitted can then be
written as

P̄c = P (Uk,1<Uk,0|ak = 0)

=

∫ uk,0

0
pUk,1

(uk,1) duk,1

which can be simplified to

P̄c =
γ
(

N
4 ,

uk,0

2σ2
w

)

Γ
(

N
4

)

whereγ(., .) is the lower-incomplete-gamma function andΓ(.) is the gamma func-
tion such thatγ(n, u) =

∫ u
0 tn−1e−tdt andΓ(n) =

∫∞
0 tn−1e−tdt, [74]. The aver-

age BEP is therefore given by

P (R−ABEP)
e = 1−

∫ ∞

0
P̄c pUk,0

(uk,0)duk,0

= 1−
∫ ∞

0

γ(N
4 ,

uk,0

2σ2
w

)

Γ(N
4 )

uk,0
N
4
−1

σ
N
2

r 2
N
4 Γ
(

N
4

)
e

−uk,0

2σ2
r duk,0. (3.59)

By using [74, Eq. (6.455.2)], we can reduce (3.59) to the following closed-form
expression

P (R−ABEP)
e = 1− 2Γ(N

2 )
N
2 [Γ(N

4 )]2

[
σrσw

σ2
r + σ2

w

]N
2

× 2F1

(

1,
N

2
;
N

4
+ 1;

σ2
r

σ2
r + σ2

w

)

, (3.60)

where2F1(., .; .; .) is the Gaussian hypergeometric function defined by [74, Eq.
(9.14.2)]. Hence, we have obtained a closed-form expression for the average BEP
of the reconstruction based energy detector for a channel with i.i.d. zero-mean
Gaussian elements.
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3.5.2 Direct Compressed Detection

In this section, we present the BEP expressions for the detector based on the com-
pressed signals when the channel is Gaussian distributed. From (3.47), we can
see that sincẽh is Gaussian,Φ̃h̃ will also be Gaussian with covariance matrix
E{(Φ̃h̃)(Φ̃h̃)T } = 1

µIM/2 under Assumptions 2 and 3. Consequently,ȳk,0 will
be zero-mean Gaussian distributed with covariance matrix E{ȳk,0ȳ

T
k,0} = 1

µ(1 +
σ2

Nf
)IM/2. Thus we can writēyk,0 ∼ N (0, σ2

c IM/2), whereσ2
c

∆
= 1

µ(1 + σ2

Nf
) and

from (3.48) we can writēyk,1 ∼ N (0, σ2
f IM/2), whereσ2

f
∆
= σ2

µNf
. Therefore, from

(3.49) and (3.50), we can say thatYk,0 andYk,1 are chi-square distributed random
variables, both withM/2 degrees of freedom.

Now from (3.51), we can observe that the average BEP for the compressed
detector (C-ABEP), given a zero transmitted-symbol

P (C−ABEP)
e = P (Yk,0<Yk,1|ak = 0) . (3.61)

The probability of a correct decision given that a zero is transmitted can then be
written as

P̄c = P (Yk,1<Yk,0|ak = 0)

=

∫ yk,0

0
pYk,1

(yk,1) dyk,1

=

∫ yk,0

0

y
M
4
−1

k,1

σ
M
2

f 2
M
4 Γ
(

M
4

)
e

−yk,1

2σ2
f dyk,1,

which can be simplified to

P̄c =

γ

(

M
4 ,

yk,0

2σ2
f

)

Γ
(

M
4

) .

The average BEP is then given by

P (C−ABEP)
e = 1−

∫ ∞

0
P̄c pYk,0

(yk,0)dyk,0

= 1−
∫ ∞
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2

c 2
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4 Γ
(

M
4

)
e

−yk,0

2σ2
c dyk,0. (3.62)
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By using [74, Eq. (6.455.2)], we can reduce (3.62) to

P (C−ABEP)
e = 1− 2Γ(M

2 )
M
2 [Γ(M

4 )]2

[

σcσ

σ2
c + σ2

f

]M
2

× 2F1

(

1,
M

2
;
M

4
+ 1;

σ2
c

σ2
c + σ2

f

)

(3.63)

which is the closed-form expression for the average BEP of the optimal compressed
energy detector for a channel with i.i.d. zero-mean Gaussian elements. Now from
(3.63), the average BEP of the ED for the Nyquist-rate sampled received signal
(N-ABEP) can be written as [75]

P (N−ABEP)
e = 1− 2Γ(N

2 )
N
2 [Γ(N

4 )]2
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σc0σf0
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× 2F1

(

1,
N

2
;
N

4
+ 1;

σ2
c0

σ2
c0 + σ2

f0

)

(3.64)

whereσ2
c0

∆
= (1 + σ2

Nf
) andσ2

f0
∆
= σ2

Nf
.

3.6 Simulations

In this section, we present some simulation results for the different detectors de-
veloped in the previous sections for the binary PPM communications scenario. We
provide two groups of simulations. One where we consider a deterministic channel
and the other where we assume the channel to be Gaussian distributed. For the
measurement matrices, Assumption 3 holds true in general. Further, we consider
a measurement matrix whose elements are random Gaussian under Assumption 1
as well as a measurement matrix whose rows have been orthogonalized under As-
sumption 2.

For the reconstruction of the signal, AMP suggests an optimal thresholding
policy in the form of the relationshipλ[n] = τσ

[n]
w at thenth iteration, but it requires

the knowledge of the original signal and therefore, it is notpractically feasible. For
our purpose, we use the following alternative relationshipas suggested in [36]

λ[n] = λ +
1

µ
λ[n−1]

〈

S ′
(

û
[n−1]
k + ΦTz

[n−1]
k , λ[n−1]

)〉

(3.65)
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whereλ is a constant. Thus the threshold value keeps developing forevery AMP
iteration. Further, for the BEP expression of the spreading-factor dependent energy
detector (3.26), we use the following expression from [49]

P (SN−BEP)
e = Q





[

4
σ2

NfEh
+ 4LNf

(
σ2

NfEh

)2
]− 1

2



 (3.66)

and the corresponding average BEP(P
(SN−ABEP)
e ) is obtained by averaging (3.66)

over the channel realizations as in (3.45).
For Figures 3.4 to 3.8, we consider the IEEE 802.15.3a CM1 (line-of-sight)

channel model [48]. The channel parameters are chosen as follows: the clus-
ter arrival rateΛch = 0.0233nsec−1, the ray arrival rate within a clusterλch =

2.5nsec−1, the cluster decay factorΓch = 2.5 and the ray decay factor within a
clusterγch = 4.3. The transmitted pulse waveformq(t) is the second derivative of
a Gaussian pulse of unit energy with pulse durationTq = 1 nsec. In general, the
frame length is taken asTf = 150 nsec and a receive filter bandwidth of3 GHz is
considered. Thus each frame hasN = 900 Nyquist-rate samples.

Figure 3.4 shows the instantaneous BER results for different detectors, i.e.,
C-ED, R-ED and N-ED, along with some theoretical BEP plots, i.e., SN-BEP, C-
BEP, R-BEP and N-BEP, with a Gaussian distributed random measurement matrix
(Assumption 1). Here, we consider signal transmission witha varying number of
frames per symbol, i.e.,Nf = 1, 10, 20. We can see that with increasing spreading
factor, the SN-BEP keeps decreasing. Whereas the BEP results for the detectors
with optimal frame combining remain consistent and do not vary with a varying
number of frames. The performance of the R-ED follows the theoretical expres-
sion R-BEP exactly. The C-ED remains a bit away from the C-BEPbecause the
Gaussian measurement matrix does not guarantee (3.5). Now with regard to the
performance of the compressed detectors against the Nyquist-rate detectors, we see
that at a compression ratio ofµ = 0.5, i.e., the sampling rate is only50% of the
Nyquist-rate, the compressed rate detectors offer a reasonably good performance
(see [76] for details on the loss incurred due to CS). The C-EDperforms better than
the reconstructed version, i.e., the R-ED. The reason is that the reconstruction pro-
cess loses some information whereas the compressed domain detection preserves
the signal information albeit in a compressed form and givesa better performance.
The difference between N-BEP and C-BEP is around2 to 3 dB at a BER of10−3.
Thus CS-based EDs are a viable option. For the sake of comparison, we also in-
clude in this figure the performance of matched filter (MF) based compressed de-
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tectors (where it is assumed that the channel is known); whendetection is carried
out on the reconstructed signal (R-MF) and when it is carriedout on the com-
pressed signal directly (C-MF), along with the MF for the Nyquist-rate sampled
signal (N-MF) and its theoretical plot (MF-BEP).

Figure 3.5 shows the instantaneous BER performance for different detectors
when the measurement matrix has orthogonal rows (Assumption 2). Hereµ = 0.5

andNf = 1, 10, 20. We see that the performance of C-ED has improved and it
falls exactly on the C-BEP curve. R-ED does not coincide withR-BEP because
the expression for the R-BEP is based on a random measurementmatrix under
Assumption 1, but its performance has also improved in comparison to the previous
figure. The SN-BEP keeps again worsening with an increasing value ofNf .

Figure 3.6 shows a BER comparison of different detectors with varying com-
pression ratios when the measurement matrix is Gaussian distributed (Assumption
1). We fix the SNR at17 dB. Here we see that the performance of the R-ED and
C-ED saturates after a certain compression ratio. The reason is that if N is not
very large then as the number of measurements increases, theprobability of having
correlations within the measured values increases as well (see (3.6)). In Figure 3.7,
we increase the frame time toTf = 300 nsec. We can see that although the overall
performance of all the detectors has been scaled, nonetheless R-ED and the C-ED
show a tendancy of improvement for the larger value ofN .

Figure 3.8 shows a BER comparison of different detectors with varying values
of µ when the orthogonal measurement matrix is used (Assumption2). We consider
here an SNR of17 dB. We can see that the performance of both the R-ED and C-
ED has improved and does not saturate with increasingµ. C-ED follows C-BEP
exactly but R-ED remains away from R-BEP because of the absence of a random
measurement matrix.

From Figures 3.9 to 3.12, we consider a Gaussain distributedmultipath channel,
i.e., the channel samples are zero-mean, unit-variance Gaussian. Considering the
limitations of the simulation software, i.e., Matlab, viz aviz (3.60), (3.63) and
(3.64), we take a frame length ofTf = 100 nsec and a receive filter bandwidth of
B = 1 GHz. Now every frame hasN = 200 Nyquist-rate samples.

Figure 3.9 shows the average BER results for C-ED, R-ED and N-ED along
with the theoretical BEPs i.e., SN-ABEP, C-ABEP, R-ABEP andN-ABEP, with
a Gaussian distributed channel. SN-ABEP has been obtained by averaging the
SN-BEP results over all channel realizations. We consider arandom measurement
matrix (Assumption 1) with the compression ratioµ = 0.5 andNf = 1, 10, 20.
The simulation results for the detectors follow the BEP expressions quite closely.
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We can see that the suboptimal detector SN-ABEP, once again falls a prey to the
increasing spreading factor and its performance keeps decreasing. The proposed
detectors remain unaffected by this factor. The R-ED follows the R-ABEP exactly
but C-ED is a bit away from C-ABEP due to the randomness of the measurement
matrix.

Figure 3.10 shows the average BER comparison of different detectors when
an orthogonal measurement matrix is used (Assumption 2). Here againµ = 0.5

andNf = 1, 10, 20. We see that R-ED is away from R-ABEP but C-ED follows
C-ABEP exactly due to the choice of the measurement matrix. In general the per-
formance of the proposed CS-based energy detectors, C-ED and R-ED, remains
reasonable in comparison to the Nyquist-rate based energy detector, N-ED.

Figures 3.11 and 3.12 show the average BER results for the presented detectors
against a varying compression ratio at an SNR of15 dB, for a random and an
orthogonal measurement matrix, respectively. The number of frames per symbol is
Nf = 1. We can see that with an increasing compression ratio the performance of
the proposed detectors increases.

Discussion

From the above simulation results, we can see that C-ED performs better than R-
ED in terms of BER. Therefore, a question arises as to what is the need of R-ED
at all. First, it should be noted that despite a better performance, C-ED works un-
der stringent constraints of exact synchronization. If full timing information is not
available, the performance of C-ED will deteriorate. On theother hand, such con-
straints can be relaxed with respect to R-ED. Since R-ED has to reconstruct the
received signal from its compressed samples as an initial step, the timing informa-
tion can be extracted from the reconstructed signal by resorting to existing methods
proposed for Nyquist-rate sampled signals. Secondly, notethat the measurement
process used in the paper is assumed to be identical (which usually will be the case)
for each pulse position (i.e., overTM). If this process is changed either due to per-
turbations or on purpose, the performance of C-ED will be severely affected. On
the other hand, the performance of R-ED is robust to changingmeasurement pro-
cess. Thus, we can say that both proposed detectors are important and have their
own merits. Table 3.1 provides a summary of the salient features of our proposed
detectors.

Further, we would like to comment on the issue of narrow band interference
(NBI) in UWB signals w.r.t. our proposed detectors. NBI has been one of the major



58

challenges as it reduces the dynamic range and necessitatesmore resolution bits for
the effective detection of UWB signals [9, 77], causing an increase in ADC power
consumption [2]. In this regard, the method presented in [59] to handle NBI can be
easily incorporated in our proposed detection schemes. If the measurement matrix
is designed as a Fourier ensemble with frequencies uniformly spaced over the signal
bandwidth, then NBI can be identified by taking the square of the measurements.
The measurements affected by NBI will have the highest magnitudes. The block of
such contaminated measurements can be discarded and detection can be carried out
on the rest of the measurements. Thus by adopting this idea, our proposed detectors
can be robust against NBI as well.

3.7 Conclusions

In this paper we have developed compressive sampling based energy detectors to
reduce the sampling rate much below the Nyquist rate. We haveshown that com-
pressive sampling helps in the realization of spreading-factor independent energy
detectors. Our energy detectors work both on the reconstructed signal as well as on
the compressed signal directly without reconstruction. Wehave derived theoretical
BEP expressions to guage the performance of compressive sampling based energy
detectors which can also be extended to Nyquist-rate sampling based energy de-
tectors. Simulation results prove the validity of these expressions if the choice of
measurement matrix follows the assumptions adopted in the theoretical derivations.

Table 3.1: Summary of the proposed detectors

Features R-ED C-ED

Sample Form Reconstructed samples Compressed samples
Theoretical BEP Requires randomΦ Requires orthogonalΦ

Timing Information Can be relaxed Required
Φ̃ (overTM) Independent Must be identical
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measurement matrix and a deterministic channel

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

µ

B
E

R

 

 

SN−BEP
C−BEP
C−ED
R−BEP
R−ED
N−BEP
N−ED

Figure 3.7: Comparison of detectors for varying compression ratio with random
measurement matrix and a deterministic channel



3.7. Conclusions 61

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

µ

B
E

R

 

 

SN−BEP
C−BEP
C−ED
R−BEP
R−ED
N−BEP
N−ED

Figure 3.8: Comparison of detectors for varying compression ratio with orthogonal
measurement matrix and a deterministic channel
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Figure 3.10: Comparison of different detectors with orthogonal measurement ma-
trix and Gaussian channel
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Abstract

Noncoherent detectors significantly contribute to the practical realization of the
ultra-wideband (UWB) impulse-radio (IR) concept, in that they allow avoiding
channel estimation and provide highly efficient reception capabilities. Complex-
ity can be reduced even further by resorting to an all-digital implementation, but
Nyquist-rate sampling of the received signal is still demanding. The current pa-
per addresses this issue by proposing a novel differential detection (DD) scheme,
which exploits the compressive sampling (CS) framework to reduce the sampling
rate much below the Nyquist-rate. The optimization problemis formulated to
jointly recover the sparse received signal as well as the differentially encoded data
symbols, and compared with both the separate approach and the scheme using the
compressed received signal without reconstruction. Finally, a maximuma poste-
riori based detector using the compressed symbols is developed for a Laplacian
distributed channel, as a reference to compare the performance of the proposed ap-
proaches. Simulation results show that the proposed joint CS-based DD brings the
considerable advantage of reducing sampling rate without degrading performance
compared with the optimal MAP detector.

4.1 Introduction

Ultra-wideband (UWB) impulse-radio (IR) is a promising signaling scheme, par-
ticularly suitable for low-power-density short-range communications, in virtue of
many appealing features, such as high user capacity, fine timing resolution, fre-
quency overlay based coexistence with existing services, low probability of inter-
ception and detection [8],[45]. Rich multipath propagation, however, makes each
transmitted pulse appear at the receiver as hundred of echoes [48]. Although Rake
receivers allow to collect most of the energy conveyed by themultipath components
[72], they require a large number of fingers together with intensive computational
load and high sampling rate to perform channel estimation [78], thus contradicting
the main requirement of simple transceiver devices. As suboptimal yet effective
alternative, noncoherent receivers have been proposed in order to skip the difficult
channel estimation task, in the form of autocorrelation based receivers (AcRs) [79].
We can refer to transmitted reference (TR), where a reference pulse is transmitted
together with the data pulse [80]-[81], and differential detection (DD), which em-
ploys differential encoding [82]. Detection performance of DD schemes can be
further improved with the multi-symbol DD approach (MSDD) [83]-[84], and its
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variant based on symbol-level synchronization only [85], even though for an all-
digital implementation they all are still affected by the basic issue of still requiring
high rate analog-to-digital converters (ADCs).

Relations with prior work. The compressive sampling (CS) concept has been re-
cently pursued as a powerful way to reduce the sampling rate of sparse signal much
below the Nyquist rate without incurring in large performance degradations [5]-[6].
The key idea relies on representing a sparse signal with a fewmeasurements only
obtained via random projection in the analog domain [46]-[65], and then, recon-
structing it through a sparse recovery method. Now, exploiting the fact that the
received UWB signal can be considered to be sparse in the timedomain [3], we
can argue that the CS-based approach can be useful for data detection. Toward this
direction, a few works have been recently appeared, as [86] for coherent receivers,
[57] for joint time of arrival (ToA) estimation and data decoding, and [55] for a
generalized likelihood ratio test (GLRT) detector based onthe transmission of pilot
symbols.

Purpose and contributions. In this paper, we focus on CS-based noncoherent re-
ceivers for differentially encoded UWB signals, as preliminarily discussed in [87].
A few important features are gained which differentiate ourcontributions from pre-
vious works.

1. The key to our method is the formulation of a cost function,as the compo-
sition of the sparse regularized least square error for two compressed-rate
consecutive received signal waveforms combined with the squared DD er-
ror, which is minimized using an iterative efficient method derived form the
elastic net optimization framework. Thus, reconstructionof the compressed
signal samples and detection of encoded information is performed in a joint
approach.

2. The proposed CS-based DD does not require any channel estimation as in
[57] nor pilot symbols transmission as in [55].

3. A simpler two-step approach is formulated wherein first the sparse regular-
ized least square error is minimized, and then, the recovered symbol wave-
forms are used to perform conventional DD.

4. A direct detection method working directly on the compressed samples is
considered as well, which avoids signal reconstruction, and its limitations
are clarified.
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5. A compressed-rate MAP DD is derived as performance benchmark for the
proposed detectors, assuming a Laplacian distributed channel response (i.e.,
the channel taps are Laplacian distributed).

Organization. The rest of the paper is organized as follows. Section 5.2 describes
the signal model, Section 4.3 introduces the CS-based separate and joint recon-
struction and detection methods, while Section 4.4 derivesthe MAP-based DDs
at both Nyquist- and compressed-rate. Simulation results are discussed in Section
4.5, and finally concluding remarks are drawn in Section 5.7.

4.2 Signal Model

In the adopted IR-UWB signal model, each symbol is conveyed by a pulseq(t) of
durationTq much less than the symbol intervalTs, i.e.,Tq ≪ Ts

1. The transmitted
signal composed of a block ofQ symbols takes the form

s(t) =

Q−1
∑

k=0

bkq(t− kTs) (4.1)

wherebk ∈ {±1} are the differentially encoded transmitted symbols, i.e.,bk =

bk−1ak, ak ∈ {±1} being the information symbols. As a reference transmitted
symbol, without loss of generality we takeb−1 = 1.

The signal travels through a slow-fading multipath channel, assumed to be
time-invariant within the interval ofQ consecutive symbols, and with delay spread
smaller thanTs, so that inter symbol interference (ISI) is avoided. Letg(t)

∆
=

∑L−1
l=0 αlδ(t− τl) represent the channel impulse response (CIR) withL paths,

whereαl andτl are the gain and path delay of thelth path, respectively.
The received signalr(t) can then be written as

r(t) =

Q−1
∑

k=0

bkh(t− kTs)

︸ ︷︷ ︸

∆
= x(t)

+v(t) (4.2)

whereh(t)
∆
=
∑L−1

l=0 αlq(t− τl) is the received pulse, andv(t) is the zero mean
additive white Gaussian noise component with varianceσ2

v . Denoting the Nyquist

1Generalizations of the proposed framework to signaling based on multiple frames to comply
with the FCC power spectral density requirements [7] can be easily performed, and so for the sake of
simplicity, it will not be addressed.
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sampling rate with1/T = N/Ts, the received signal in its sampled version can be
written asr

∆
= [rT

0 , rT
1 , · · · , rT

Q−1]
T whererk

∆
= [r(kTs), r(kTs +T ), · · · , r(kTs +

NT − T )]T collects theN Nyquist-rate samples corresponding to thekth symbol.
In view of (5.6), it can be written

rk = xk + vk = bkh + vk (4.3)

whereh
∆
= [h(0), h(T ), · · · , h(NT − T )]T is the sampled CIR whose entries are

modeled as independent and identically distributed (i.i.d.) Laplacian random vari-
ables (owing to the sparse nature of the UWB channel), andvk

∆
= [v(kTs), v(kTs +

T ), · · · , v(kTs + NT − T )]T is a zero mean Gaussian random vector with covari-
ance matrix E{vkv

T
k } = σ2

vIN .

We can observe that the signal vectorxk is generally sparse due to the fact that
the channelh is sparse, i.e., most of its components are zero or negligible [48].
Thus, according to the CS framework theory [5, 6], it can be represented byM
linear measurements, withM ≪ N . This is generally obtained through analog
processing ofr(t), as illustrated in [46, 65]. For the sake of convenience, however,
the model we will adopt here is based on an operation that is performed on the
Nyquist rate samples ofr(t). Hence, the compressed received signal within one
symbol can be expressed as

yk = Φkrk = Φkxk + ξk (4.4)

where theM ×N matrixΦk is the measurement matrix at time instantk andξk
∆
=

Φkvk is the noise component. It is worth recalling thatΦk satisfies the restricted
isometry property (RIP) [6], thus allowing the recovery of the received signal from
its CS version in the asymptotic sense as a function of the number of measurements
M , with M ≪ N [75]. A wide range of both random (Gaussian or Bernoulli) and
structured (Fourier or identity) measurement matrices satisfy the RIP. Particularly,
although the latter have been proved to be the better choice for smallerN . An
important parameter that has a direct influence on the performance of CS-based
systems is the compression ratio defined asµ

∆
= M/N , with µ ∈ (0, 1]. A higher

value ofµ implies a higher value ofM and hence a better performance, whereas on
the other side, a lowerM is desirable to keep the sampling rate at affordable levels,
although this is usually achieved at the price of a given performance degradation.
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4.3 Compressed-Sensing Based Detection

Several methods are available to recover differentially encoded information from
the samples of the received signal. Considering that each received symbol wave-
form is obtained in compressed form, data decoding may optionally require prior
signal reconstruction followed by differential detection, or alternatively, a joint re-
construction and detection process, as illustrated in the sequel.

4.3.1 Conventional Differential Detection

Differential detection involves the correlation between consecutive symbols within
a received block. In the case of Nyquist-rate differential detection (NDD), the
estimate of the information symbol can be expressed as

â
(NDD)
k+1 = sign

(

arg min
a

{

‖rk − ark+1‖22
})

. (4.5)

Hence from (4.5), it can be seen that one possible yet coarse way of decoding
information from the compressed received signal consists of performing correlation
directly on the compressed samples. We will designate this approach as direct
compressed differential detection (DC-DD), which can be described as

â
(DC−DD)
k+1 = sign

(

arg min
a

{

‖yk − ayk+1‖22
})

. (4.6)

This method does not involve sparse reconstruction of the actual received signal,
but exploits only the compressed waveformyk given by (4.4). We note however
that the DC-DD works under the condition that every compressed symbol wave-
form is the result of the same linear transformation of the received signal, otherwise
it may exhibit strong limitations. We will come back to this aspect in the following
subsections. Nevertheless, direct compressed detection can be favorably applied
when synchronization requirements may be relaxed (and accordingly, signal recon-
struction can be avoided), such as for instance in [85].

4.3.2 Overview of Reconstruction Techniques

Focusing on the reconstruction ofxk, a naive way is to adopt the ordinary least
squares (OLS) optimization method, thus obtaining from (4.4)

x̂
(OLS)
k = arg min

xk

{

‖yk −Φkxk‖22
}

. (4.7)
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Due to the fact that theM × N measurement matrixΦk is fat (M ≪ N ), and so
not full column rank, the solution to the OLS problem in (4.7)is not unique. One
way to circumvent this drawback is to use Tikhonov regularization based on theℓ2

norm, which penalizes the OLS cost function with a quadraticpenalty, also known
as ridge regression (RR), leading to

x̂
(RR)
k = arg min

xk

{

‖yk −Φkxk‖22 + λ ‖xk‖22
}

(4.8)

whereλ is the Lagrangian constant. Although the RR solution is unique, it does not
care about the sparsity ofxk. A specific solution to this problem is the least absolute
shrinkage and selection operator (LASSO) [37], which adopts a regularization term
based on theℓ1 norm, as

x̂
(LASSO)
k = arg min

xk

{

‖yk −Φkxk‖22 + λ ‖xk‖1
}

(4.9)

whereλ is again the Lagrangian constant. Due to theℓ1 regularization that induces
sparsity, part of the entries of̂x(LASSO)

k will be switched off (hopefully the noisy
or the non-significant ones), under the condition that the value of λ is properly
chosen. This appealing feature explains why the interest inthe LASSO technique
is growing more and more whenever a sparse signal has to be reconstructed. The
above fully motivates the adoption of LASSO, or its modified versions, to address
the CS-based detection problem we are dealing with, as will be illustrated in the
rest of this section.

4.3.3 Separate Reconstruction and Detection

According to the separate compressed differential detection approach (SC-DD), the
sparse received signal is first reconstructed from the compressed samples applying
the LASSO algorithm, and subsequently used to decode the information symbols
through correlation of consecutive symbol waveforms. Among the various algo-
rithms to solve the LASSO problem, we mention the LARS scheme[38], which
has a low complexity but requiresM > N , and the one proposed in [88], which
is applicable forM < N but is computationally intensive. On the other side, the
pathwise coordinate descent (PCD) optimization idea is proposed in [39] as a way
to solve the LASSO problem, and turns out to be particularly competitive as far as
the computational complexity aspects are concerned. The PCD is based on opti-
mizing one coordinate ofxk at-a-time, while all the others are kept at the values
evaluated at the previous iteration, so that each update works as a warm start for
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the next step. Hence, the PCD solution to (4.9) for the(n + 1)th iteration,n ≥ 0,
and thejth coordinate,1 ≤ j ≤ N , of x̂k+l, l = 0, 1 can be proved to be [39]

[x̂k+l]j(n + 1) = shrink

(
M∑

i=1

[Φk+l]i,j{[yk+l]i − [ŷ
(j)
k+l]i(n + 1)}, λ

)

(4.10)

where the “shrink” operator is defined asshrink (z, λ)
∆
= sign(z)(|z| − λ)+, with

the parameterλ optimized through a cross-validation (CV) approach (Sect.4.5.1),
and[ŷ

(j)
k+l]i(n + 1) is evaluated as

[ŷ
(j)
k+l]i(n+1) =

∑

m<j

[Φk+l]i,m[x̂k+l]m(n+1)+
∑

m>j

[Φk+l]i,m[x̂k+l]m(n), (4.11)

i.e., excluding the effect of thejth coordinate[x̂k+l]j(n), and using for the ear-
lier (j − 1) entries the values updated at the current(n + 1)th iteration, namely
[x̂k+l]1(n + 1), [x̂k+l]2(n + 1), · · · , [x̂k+l]j−1(n + 1), and for the remaining ones,
namely [x̂k+l]j+1(n), [x̂k+l]j+2(n), · · · , [x̂k+l]N (n), those values updated at the
previous iteration. The PCD iterations (4.10) and (4.11) continue till convergence,
i.e., when a predefined tolerance level has been reached for each coordinate. Next,
from the symbol waveform estimateŝxk(P ) and x̂k+1(P ) reconstructed afterP
iterations, we can obtain the detected symbol as

â
(SC−DD)
k+1 = sign

(
x̂k+1(P )T x̂k(P )

)
. (4.12)

The computational complexity required by the PCD algorithmfor each reconstruc-
tion iteration can be shown to beO(NM) [89], while that for the detection step
is simply equal toO(N). Therefore, the overall complexity of the SC-DD forP

iterations amounts toO(PNM).

4.3.4 Joint Reconstruction and Detection

An alternative to the SC-DD approach is to perform joint reconstruction and de-
tection, which will be referred to as the joint compressed differential detection
(JC-DD) approach. Formally, the corresponding cost function of the JC-DD op-
timization problem to be minimized overxk, xk+1 andak+1 can be formulated
as

C(JC−DD)
k+1 (xk,xk+1, ak+1)

∆
=

1∑

l=0

[

‖yk+l −Φk+lxk+l‖22 + λ ‖xk+l‖1
]

+α ‖xk − ak+1xk+1‖22 (4.13)
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whereλ is the Lagrangian constant andα is a weight constant. The following
remarks about the JC-DD are now of interest.

1. The parameterα has to be chosen by trading off the performance of the
reconstruction against the detection steps. A higher valuemay result in a
wrong correlation estimate due to excess noise onx̂k andx̂k+1. Conversely,
a lower value may be detrimental as well due to an accuracy loss in the es-
timate âk+1. Indeed, in that case the JC-DD collapses into the SC-DD ap-
proach, where we first reconstruct independent of detection, and then detect
optimizing only with respect toak+1.

2. In view of the joint optimization, the reconstruction anddetection steps re-
inforce each other during iterations. Therefore, improvedperformance over
both the DC-DD and SC-DD is expected.

3. Several regression methods are available to minimize thecost function (4.13),
even though we will show in a while that none of them exhibits the regular-
ization features that properly match the JC-DD problem. Generally speaking,
denoting withu and z the vectors with sizeM and N , collecting the re-
ceived compressed samples and to be optimally reconstructed, respectively,
and withΛ anM ×N measurement matrix, we can basically enumerate the
following three methods.

• Standard LASSO.Taking into account (4.9), the standard LASSO can
be put into the form







ẑ(LASSO) = arg min
z

{

‖u−Λz‖22
}

s.t. ‖z‖1 ≤ γ
(4.14)

whereγ is a given threshold. We note that the main effect of the con-
straint based on theℓ1 norm is to induce parsimony in the solution,
in the sense that among all the feasible solutions (4.14) takes specific
care of those solutions with higher sparsity. However, no quadratic
constraint on the optimization variables is involved as required by the
JC-DD cost function (4.13). Therefore, it can be concluded that the
standard LASSO is of scarce utility for our purpose and some alterna-
tives have to be searched for.

• Elastic Net.Elastic Net (EN) is a modified version of LASSO where a
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quadratic constraint is considered as well [43], accordingto the form







ẑ(EN) = arg min
z

{

‖u−Λz‖22
}

s.t. ‖z‖1 ≤ γ1

‖z‖22 ≤ γ2

, (4.15)

with γ1 andγ2 being predefined thresholds. The added constraint has
the effect of grouping the elements of the optimization vector z, which
adds to the action of favoring sparse solutions played by theℓ1-based
constraint. The actual result is that parts ofz will be different from zero
and others will be negligible, thus matching the cluster-based propaga-
tion encountered in typical UWB environments [48], but again what is
now lacking is the differential aspect related to the JC-DD cost function
(4.13).

• Fused LASSO.An additional variant of LASSO is represented by the
Fused LASSO (F-LASSO), which is proposed in [44] as







ẑ(F−LASSO) = arg min
z

{

‖u−Λz‖22
}

s.t. ‖z‖1 ≤ γ1
∑N

j=2 |[z]j − [z]j−1| ≤ γ2

. (4.16)

The F-LASSO method penalizes the cost function with not onlythe
sum of the absolute values of the coefficients of the optimization vari-
able, i.e.,‖z‖1, but also their differences. That way, sparsity is induced
while “fusing” successive coefficients to each other, but again, these
features are not exactly what is required.

4. From the regularization methods (4.14)-(4.16), it is apparent that none of
them satisfies the requirements for the optimization of the JC-DD cost func-
tion, including both anℓ1-based as well as a squared differential penalty on
two sets of optimization variables and not just one. Hence, this need fully
motivates the development of a different method that we willfocus on in the
next subsection.
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4.3.5 Differential Elastic Net

We propose here a novel regularization method, which we willdesignate as differ-
ential elastic net (DEN), and which can be formulated as







(ẑ1, ẑ2, â)(DEN) = arg min
z1,z2,a

{
∑2

l=1

[

‖ul −Λlzl‖22
]}

s.t. ‖z1‖1 ≤ γ1

‖z2‖1 ≤ γ1

‖z1 − az2‖22 ≤ γ2

(4.17)

wherez1 andz2 are the two sets of variables to be optimally reconstructed,each
with sizeN , u1 andu2 are the two sets of compressed samples, each with size
M , andΛ1 andΛ2 are the correspondingM × N measurement matrices. The
rationale of the DEN method relies on searching the sparse solutions ẑ1 and ẑ2

while imposing at the same time fusion between their respective elements, together
with deriving the optimal estimatêa of the transmitted information symbol.

As an effective way to solve (4.17), we resort to the PCD algorithm illustrated
in Sect. 4.3.3. Due to its iterative nature, convergence to aunique solution may
be an issue. Indeed, convergence of the PCD is typically not ensured for non-
differentiable cost functions. It has been proved, however, that an exception occurs
whenever the non-differentiable part is separable in its variables [90]. Interesting
to say, theℓ1 part in the cost function (4.13) just satisfies that condition, and ac-
cordingly, this proves the uniqueness of the PCD solution to(4.17). Now, the DEN
solutions to (4.17) can be derived, as stated in the following proposition.

Proposition 4.3.1. Thejth entries of the solutionŝz1 and ẑ2 to (4.17) at the(n +

1)th iteration,n ≥ 0, can be written as

[ẑ1]j(n+1) =
shrink

(
∑M

i=1[Λ1]i,j{[u1]i − [û
(j)
1 (n + 1)]i}+ αâ(n)[ẑ2]j(n), λ

)

1 + α
(4.18)

[ẑ2]j(n+1) =
shrink

(
∑M

i=1[Λ2]i,j{[u2]i − [û
(j)
2 (n + 1)]i}+ αâ(n)[ẑ1]j(n), λ

)

1 + αâ2(n)
(4.19)

â(n + 1) = ẑT
2 (n + 1)ẑ1(n + 1) (4.20)

where

[û
(j)
l (n+1)]i =

∑

m<j

[Λl]i,m[ẑl]m(n+1)+
∑

m>j

[Λl]i,m[ẑl]m(n), l = 1, 2. (4.21)
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Proof. The Lagrangian of the cost function in (4.17) is

L(z1, z2, a) =
2∑

l=1

[

‖ul −Λlzl‖22 + λ ‖zl‖1
]

+ α ‖z1 − az2‖22 (4.22)

whereλ andα are the Lagrangian constants, depending on the thresholdsγ1 and
γ2. Upon differentiating (4.22) with respect to thejth element ofz1 andz2 and
equating them to zero, it is easy to obtain (4.18) and (4.19),respectively. Then,
(4.20) follows.

Hence, in view of Proposition 4.3.1 and the structure of the cost function (4.13), the
optimal solutions to the JC-DD problem can be readily derived by directly replac-
ing, respectively:̂z1(n) andẑ2(n) with x̂k(n) andx̂k+1(n), u1 andu2 with yk and
yk+1, û(j)

1 (n) andû
(j)
2 (n) with ŷ

(j)
k (n) andŷ

(j)
k+1(n), and finallyΛ1 andΛ2 with

Φk andΦk+1. To conclude, it is worth noting that the computational complexity of
the JC-DD approach based on the PCD iterative algorithm for atotal ofP iterations
results inO(PNM), and therefore, it is comparable with that of the SC-DD.

4.4 MAP detectors

In this section, MAP detectors will be derived as performance benchmarks assum-
ing that the received signal is sampled at the Nyquist rate orat the compressed rate.
Differently from [91], the channel response is Laplacian distributed so as to take
into account its inherent sparsity.

4.4.1 Nyquist-rate MAP detector

The Nyquist-rate sampled waveform corresponding to two consecutive symbols
can be written as

r = (b⊗ IN )h + v (4.23)

wherer
∆
= [rT

k , rT
k+1]

T , with rk being expressed by (4.3),b
∆
= [bk, bk+1]

T includes

two consecutive differentially-encoded symbols, andv
∆
= [vT

k ,vT
k+1]

T is the noise
component. Hence, the Nyquist-rate MAP differential detector (N-MAP-DD) can
be expressed as

b̂ = arg max
b

{p(r|b)P (b)} (4.24)
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whereP (b) is thea priori distribution of the transmitted symbolsb. Under some
assumptions, it can be proved that the N-MAP-DD (4.24) takesa simple form, as
illustrated in the following proposition.

Proposition 4.4.1. Assuming a uniform distribution of the transmitted symbolsb

and Laplacian distribution of the channel responseh, the N-MAP-DD coincides
with the conventional Nyquist-rate DD (4.5)

â
(N−MAP−DD)
k+1 = sign

(
rT
k+1rk

)
. (4.25)

Proof. Upon representing the channel response as the producth = ρn between a
Rayleigh random variableρ and a joint normal random vectorn, the expression of
p(r|b), as derived in Appendix 4.A, is

p(r|b) =

∫ ∞

0
p(r|b, ρ)p(ρ)dρ (4.26)

wherep(r|b, ρ) is the zero-mean joint normal distribution

p(r|b, ρ) =
1

π2Nσ2
v(σ

2
v + 2ρ2)

exp

{

− 1

σ2
v

rT

[

I2N −
ρ2

σ2
v + 2ρ2

(bbT ⊗ IN)

]

r

}

.

(4.27)
Sinceb is assumed to be uniformly distributed, from (4.24) it can beargued that
maximizing the productp(r|b)P (b) is equivalent to maximizingp(r|b) over b.
From (4.26), we can say that if the maximum ofp(r|b, ρ) overb is independent
of each value ofρ, then that is also the maximum ofp(r|b). Now from (4.27),
maximizingp(r|b, ρ) means that for a givenr andρ, finding the value ofb that
maximizes

ΓN(r|b, ρ)
∆
= − 1

σ2
v

rT

[

I2N −
ρ2

σ2
v + 2ρ2

(bbT ⊗ IN )

]

r. (4.28)

Dropping immaterial addends independent ofb, from (4.28) it can be obtained that
the MAP estimate is the value ofb maximizing the function (independent ofρ)
defined as

ΨN(r|b)
∆
= rT (bbT ⊗ IN )r = bk+1bkr

T
k+1rk. (4.29)

Thus, in view of the differential encoding ruleak+1 = bk+1bk, (4.29) turns equiv-
alently into

ΨN(r|b) = ak+1r
T
k+1rk (4.30)

which provides the desired result (4.25).
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4.4.2 Compressed-rate MAP detector

The signal model for two consecutive received symbol waveforms sampled at com-
pressed rate can be formulated as

y = Φ(b⊗ IN)h + Φv (4.31)

wherey
∆
= [yT

k ,yT
k+1]

T , with yk being expressed by (4.4),b andv are defined

as in (4.23), andΦ
∆
= diag{Φk,Φk+1}, with Φk+l, l = 0, 1 being theM × N

measurement matrices for which we assumeΦk+lΦ
T
k+l = IM , l = 0, 1. The

compressed-rate MAP differential detector (C-MAP-DD) is given by

b̂ = arg max
b

{p(y|b)P (b)} (4.32)

whereP (b) is thea priori distribution of the transmitted symbolsb. The structure
of the C-MAP-DD scheme can be derived as illustrated in the sequel.

Proposition 4.4.2. Assuming a uniform distribution of the transmitted symbolsb

and Laplacian distribution of the channel responseh, the C-MAP-DD rule results
approximately in

â
(C−MAP−DD)
k+1 = sign

(
yT

k+1Φk+1Φ
T
k yk

)
. (4.33)

Proof. Following the approach pursued in Proposition 4.4.1, in Appendix 4.B it is
shown that

p(y|b) =

∫ ∞

0
p(y|b, ρ)p(ρ)dρ (4.34)

whereρ is a Rayleigh distributed random variable andp(y|b, ρ) is the zero-mean
joint normal distribution

p(y|b, ρ) =
1

π2Mσ4M
v |Σ|

× exp

{

− 1

σ2
v

yT

[

I2M −
ρ2

σ2
v

Φ(b⊗ IN )Σ−1(b⊗ IN )T ΦT

]

y

}

(4.35)

with theN ×N positive definite matrixΣ being defined as

Σ
∆
= IN +

ρ2

σ2
v

(
ΦT

k Φk + ΦT
k+1Φk+1

)
. (4.36)
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Exploiting the assumption thatP (b) is independent ofb, from (4.32) it comes out
that maximizing the productp(y|b)P (b) over b equals to doing the same with
p(y|b) over b. Now from (4.34), if the maximum ofp(y|b, ρ) over b for each
value ofρ is independent ofρ then that is also the maximum ofp(y|b). From
(4.35), finding the maximum ofp(y|b, ρ) overb means maximizing

ΓC(y|b, ρ)
∆
= − 1

σ2
v

yT

[

I2M −
ρ2

σ2
v

Φ(b⊗ IN )Σ−1(b⊗ IN )TΦT

]

y, (4.37)

or equivalently, the function obtained after dropping immaterial addends indepen-
dent ofb as

ΨC(y|b, ρ)
∆
= yT Φ(b⊗ IN )Σ−1(b⊗ IN )TΦTy (4.38)

which, however, is still dependent onρ due to the presence ofΣ−1. Such a matrix
inverse can be computed by exploiting the eigenvalue decomposition (EVD) of the
N ×N positive semi-definite matrixΦT

k Φk + ΦT
k+1Φk+1 given byQΩQT , with

Ω having non-negative elements along its main diagonal andQQT = IN . Thus,
plugging the EVD into (4.38) yields

ΨC(y|b, ρ)
∆
= yTΦ(b⊗ IN )Q

(

IN +
ρ2

σ2
v

Ω

)−1

QT (b⊗ IN )TΦTy. (4.39)

Now, considering the fact that the diagonal matrix
(

IN + ρ2

σ2
v
Ω
)−1

has entries
which are strictly positive and less than unity, (4.39) can be approximated by its
upper bound (independent ofρ)

ΥC(y|b)
∆
= yT Φ(b⊗ IN )(b⊗ IN)T ΦTy, (4.40)

that can be properly rearranged as

ΥC(y|b) = bk+1bky
T
k+1Φk+1Φ

T
k yk. (4.41)

Thus, in view of the differential encoding ruleak+1 = bk+1bk, we end up with the
desired result (4.33).

Some remarks about the C-MAP-DD scheme can be of interest.

1. The OLS-DD estimate of the information symbolak+1 is obtained from (4.7)
as

âOLS−DD
k+1 = sign

(
(Φ+

k+1yk+1)
T (Φ+

k yk)
)

(4.42)
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whereΦ+
k+l is the pseudo-inverse ofΦk+l, l = 0, 1. Since the measurement

matrices have orthonormal rows, it can be shown thatΦ+
k+l = ΦT

k+l, l = 0, 1.
Therefore, we get

(Φ+
k+1yk+1)

T (Φ+
k yk) = yT

k+1Φk+1Φ
T
k yk, (4.43)

from which we argue that the OLS-DD coincides with the C-MAP-DD.

2. AssumingΦk+1 = Φk and exploitingΦkΦ
T
k = IM , we obtain from (4.33)

yT
k+1Φk+1Φ

T
k yk = yT

k+1yk (4.44)

which means that, whenever the measurement matrices are invariant, the C-
MAP-DD coincides with the DC-DD.

4.5 Simulation Results

The detectors we discussed in the previous sections are verified here by means
of numerical simulations taking as performance quality thebit error rate (BER)
metric as a function of both the ratio of the mean-received bit-energy and the noise
spectral density ratio defined asEb/N0

∆
= ‖h‖22/σ2

v , and the compression ratioµ.
The conventional DD at Nyquist-rate (NDD) is compared with the compressed DD
schemes based on the approaches of the direct type DC-DD in (4.6), the separate
type SD-DD in (4.10)-(4.12) and the joint type JD-DD solved through the iterative
method outlined in Proposition 4.3.1. The performance results of the compressed
MAP DD derived in Proposition 4.4.2 and the least squares DD defined by (4.42),
labelled as C-MAP-DD and OLS-DD, respectively, are also plotted as performance
benchmarks.

4.5.1 Simulation Setup

The transmitted signal consists of differentially encodedsymbols, each conveyed
by an ultra short pulse traveling through a Laplacian distributed propagation chan-
nel. For the sake of simplicity, we assume that the channel response, identified
ash in (4.3), includes the effects of the shaping filters at both the transmitter and
receiver sides. The received symbol waveform sampled at Nyquist rate contains
N = 32 samples, or alternatively, is compressed with a compression ratioµ, thus
resulting inM < N samples. The measurement matrixΦk has zero-mean unit-
variance i.i.d. normal entries with orthonormalized rows,and can be chosen within
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consecutive symbols to be the same (Φk = Φk+1) or different from each other
(Φk 6= Φk+1). The methods PCD in (4.10)-(4.11) and DEN in (4.18)-(4.20)are
iterated for a maximum of 200 iterations or if a tolerance level of 10−5 is reached.

The optimal value of the parameterλ is selected for the SC-DD case by ap-
plying aK-fold cross validation (CV) approach [92, Chapter 17]. For agiven λ,
the received samplesy are subdivided into the sequenceym, 1 ≤ m ≤ K, each
includingM/K samples. Then,ym is predicted aŝym using the samples obtained
by removingym itself from y . The optimalλ is thus evaluated as the value mini-
mizing the prediction error

λ(opt) = arg min
λ

{

1

M

K∑

m=1

‖ym − ŷm(λ)‖22

}

(4.45)

whereK = 8 and the trial values ofλ are1, 0.1, 0.01, 0.001. Conversely, for the
JC-DD the optimalλ is chosen as

λ(opt) = arg max
λ
{|âk+1(λ)|} (4.46)

where âk+1 is the DEN symbol soft estimate given by the correlation (4.20) of
Proposition 4.4.2.

4.5.2 Performance Comparisons

Figs. 4.1 and 4.2 quantify the BER detection performance as afunction of the
Eb/N0 ratio, assuming that the measurement matrices are chosen tobe the same or
different from each other, respectively. While the reference NDD works at Nyquist-
rate, all the other schemes adopt a compression ratio ofµ = 0.5 or µ = 0.75.
Focusing in Fig. 4.1 on the caseµ = 0.5, it can be noted that the JC-DD closely
follows the C-MAP-DD, but if compared to the NDD, it degradesapproximately by
1.5 dB at a BER level of10−2. Further, the DC-DD overlaps with the C-MAP-DD,
according to what we observed in remark 2) of Sect. 4.4.2, whereas the SC-DD lags
behind by 1 dB. Increasing the compression ratio toµ = 0.75, the JC-DD, DC-DD
and SC-DD BER degradation from the reference NDD reduces to around 1dB, 1dB
and 1.3 dB, respectively. Thus, we show that the above compressed detectors can
trade off performance against complexity in terms of compression ratio.

The results of Fig. 4.2 confirm that:i) the scenario with different measurement
matrices is more demanding than the one when they are the sameas illustrated in
Fig. 4.1, andii ) an increase of the compression ratio toµ = 0.75 alleviates the per-
formance gap from the conventional NDD at the price of increasing the complexity.
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Forµ = 0.5 and a BER level of10−2, the JC-DD has a gap of approximately 1 dB
from C-MAP-DD and 7.5 dB from the NDD, but shows a considerable edge over
the separate approach SC-DD. Differently from Fig. 4.1, thedirect scheme DC-DD
completely misses detection and so turns out to be useless. This result proves that
a reconstruction step, separate or better joint with detection, is clearly mandatory.

Further, from both Fig. 4.1 and Fig. 4.2 it is apparent that the performance of
the OLS-DD equals that offered by the C-MAP-DD, as expected from remark 1)
of Sect. 4.4.2. Nevertheless, we remark that the OLS-DD is considerably outper-
formed by the JC-DD and SC-DD in terms of sparse signal reconstruction, due to
the intrinsic lack of inducing sparsity on the solutions exhibited by the least squares
method.

Figs. 4.3 and 4.4 give a quantitative picture about the reconstruction perfor-
mance of the JC-DD and SC-DD, respectively. We assume that the received wave-
forms without noise arexk = h andxk+1 = −h, Eb/N0 = 20 dB, andλ is set to
0.1. In each figure, the upper part showsh and the reconstructed signal component
x̂k, whereas the lower part does the same for the adjacent symbol, namelyh and
x̂k+1. For a given realization ofh, we obtain that out of2N = 64 signal sam-
ples for both symbols, the JC-DD forces24/64 ≈ 37% components to zero and
correctly reconstructs31/64 ≈ 48% non-zero components, whereas the above per-
centages for the SC-DD turn into36/64 ≈ 56% and19/64 ≈ 30%, respectively.
These results make us argue that the SC-DD has a higher tendency of setting signal
components to zero, whereas the JC-DD exploits its inherentfusion capabilities
between the two sets of variables, leading not only to joint sparsity but also to a fair
amount of reconstructed non-zero components. The different behavior plays a role
in taking a correct decision based on correlation, and justifies the detection perfor-
mance superiority of the joint approach on considering detection as a separate step
from reconstruction.

Fig. 4.5 shows the sensitivity of the JC-DD scheme to the choice of the coef-
ficient α which weighs the differential squared error in (4.13). It isapparent that
better results overEb/N0 are obtained for values in the range aroundα = 100. Fi-
nally, the effect of the compression ratioµ over the BER of the JC-DD is evaluated
in Fig. 4.6 for anEb/N0 of 12 and 14 dB. As expected, it can be shown that smaller
theµ the worse the BER level, and whenµ approaches 1, the performance of the
JC-DD tends to that of the NDD.
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Figure 4.1: BER comparison for different detection methodswith Φk = Φk+1 and
compression ratioµ = 0.5, 0.75.

4.6 Conclusions

In this paper, the compressive sampling framework has been applied to differen-
tially encoded UWB signals. A joint reconstruction and detection method for the
compressed symbol waveforms has been presented, which has been shown to out-
perform the simpler method based on a separate approach. Direct detection without
reconstruction has been evaluated as well, whereas a compressed MAP differential
detector has been derived to have a performance benchmark for the proposed de-
tectors. Simulation results confirm that the major advantages we gain arei) the
reduced sampling rate,ii ) the ability to carry out the differential detection process
in the digital domain, andiii ) the option of a competitive performance in different
scenarios where the measurement matrices are the same as well as different.
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Figure 4.2: BER comparison for different detection methodswith Φk 6= Φk+1 and
compression ratioµ = 0.5, 0.75.
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Figure 4.3: Reconstruction results of JC-DD at10 log10(Eb/N0) = 20 dB.
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Figure 4.4: Reconstruction results of SC-DD at10 log10(Eb/N0) = 20 dB.
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Appendix

4.A PDF of the Nyquist-rate sampled received signal

In order to evaluate the pdf of the received signal sampled atNyquist rate, let us
start from the result that a Laplacian distributed random variable can be represented
as the product between a Rayleigh and a normal one [93]. The extension to the
multivariate case allows us to write the channel response ash = ρn, where the pdf
of ρ is Rayleigh, i.e.,p(ρ) = ρe−ρ2/2, andn is a zero-mean joint normal random
vector with covariance matrixCn = IN . Thus, the signal model for the Nyquist-
rate sampled waveform corresponding to two consecutive received symbols can be
formulated as

r = (b⊗ IN )ρn + v (4.47)

wherev is the joint normal noise component with zero mean and covariance matrix
Cv = σ2

vI2N , statistically independent of bothρ andn. From (4.47), it is apparent
that the pdf ofr givenb is expressed by

p(r|b) =

∫ ∞

0
p(r|b, ρ)p(ρ)dρ (4.48)

wherep(r|b, ρ) is the zero-mean joint normal distribution

p(r|b, ρ) =
1

π2N
∣
∣Cr|b,ρ

∣
∣
e
−rT C

−1

r|b,ρ
r
, (4.49)

with covariance matrix

Cr|b,ρ = E{[(b⊗ IN )ρn + v] [(b⊗ IN )ρn + v]T }
= σ2

vI2N + ρ2(bbT ⊗ IN ). (4.50)

From the binomial inverse theorem, it can be obtained

C−1
r|b,ρ =

[
σ2

vI2N + ρ2(bbT ⊗ IN )
]−1

=
[
σ2

vI2N + ρ2(b⊗ IN )(b⊗ IN )T
]−1

=
1

σ2
v

{

I2N −
ρ2

σ2
v

(b⊗ IN )

[

IN +
ρ2

σ2
v

(b⊗ IN )T (b⊗ IN )

]−1

(b⊗ IN )T

}

.

(4.51)
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By exploiting the result

(b⊗ IN )T (b⊗ IN ) = 2IN , (4.52)

(4.51) can be simplified into

C−1
r|b,ρ =

1

σ2
v

[

I2N −
ρ2

σ2
v + 2ρ2

(bbT ⊗ IN )

]

. (4.53)

Concerning the determinant ofCr|b,ρ, applying the Sylvester theorem yields

∣
∣Cr|b,ρ

∣
∣ =

∣
∣σ2

vI2N + ρ2(bbT ⊗ IN )
∣
∣

= σ4N
v

∣
∣
∣
∣
IN +

ρ2

σ2
v

(b⊗ IN )T (b⊗ IN )

∣
∣
∣
∣

= σ4N
v

∣
∣
∣
∣
IN +

2ρ2

σ2
v

IN

∣
∣
∣
∣

=
(
σ4

v + 2σ2
vρ

2
)N

(4.54)

which turns out to be independent ofb.

4.B PDF of the compressed-rate sampled received signal

Following the approach of Appendix 4.A, let us consider the signal model corre-
sponding to two consecutive received symbols sampled at compressed rate

y = Φ(b⊗ IN )ρn + Φv (4.55)

whereρ, n andv are defined as in (4.47), andΦ as in (4.31). According to (4.55),
the pdf ofy givenb can be written as

p(y|b) =

∫ ∞

0
p(y|b, ρ)p(ρ)dρ (4.56)

wherep(y|b, ρ) is the zero-mean joint normal distribution

p(y|b, ρ) =
1

π2M
∣
∣Cy|b,ρ

∣
∣
e
−yT C−1

y|b,ρ
y
. (4.57)

Taking into account thatΦΦT = I2M , the covariance matrixCy|b,ρ results in

Cy|b,ρ = E{[Φ(b⊗ IN )ρn + Φv] [Φ(b⊗ IN )ρn + Φv]T }
= σ2

vI2M + ρ2Φ(bbT ⊗ IN )ΦT (4.58)
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whereas its inverse can be computed from the binomial inverse theorem as

C−1
y|b,ρ =

[
σ2

vI2M + ρ2Φ(bbT ⊗ IN )ΦT
]−1

=
1

σ2
v

[

I2M −
ρ2

σ2
v

Φ(b⊗ IN )Σ−1(b⊗ IN )TΦT

]

(4.59)

where

Σ
∆
= IN +

ρ2

σ2
v

(b⊗ IN )TΦTΦ(b⊗ IN )

= IN +
ρ2

σ2
v

(
ΦT

k Φk + ΦT
k+1Φk+1

)
. (4.60)

Finally, using the Sylvester theorem, the determinant ofCy|b,ρ is given by

∣
∣Cy|b,ρ

∣
∣ =

∣
∣σ2

vI2M + ρ2Φ(bbT ⊗ IN )ΦT
∣
∣

= σ4M
v

∣
∣
∣
∣
I2M +

ρ2

σ2
v

Φ(b⊗ IN )(b⊗ IN )TΦT

∣
∣
∣
∣

= σ4M
v

∣
∣
∣
∣
IN +

ρ2

σ2
v

(b⊗ IN)T ΦTΦ(b⊗ IN )

∣
∣
∣
∣

(4.61)

or equivalently from (4.60),

∣
∣Cy|b,ρ

∣
∣ = σ4M

v

∣
∣
∣
∣
IN +

ρ2

σ2
v

(
ΦT

k Φk + ΦT
k+1Φk+1

)
∣
∣
∣
∣

(4.62)

which is independent ofb.
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Abstract

Compressive sampling (CS) based multiple symbol differential detectors are pro-
posed for impulse-radio ultra-wideband signaling, using the principles of general-
ized likelihood ratio tests. The CS-based detectors correspond to two communica-
tion scenarios. One, where the signaling is fully synchronized at the receiver and
the other, where there exists a symbol level synchronization only. With the help
of CS, the sampling rates are reduced much below the Nyquist rate to save on the
high power consumed by the analog-to-digital converters. In stark contrast to the
usual compressive sampling practices, the proposed detectors work on the com-
pressed samples directly, thereby avoiding a complicated reconstruction step and
resulting in a reduction of the implementation complexity.To resolve the detection
of multiple symbols, compressed sphere decoders are proposed as well, for both
communication scenarios, which can further help to reduce the system complexity.
Differential detection directly on the compressed symbolsis generally marred by
the requirement of an identical measurement process for every received symbol.
Our proposed detectors are valid for scenarios where the measurement process is
the same as well as where it is different for each received symbol.

5.1 Introduction

Promising the prospects of high data rates, fine time resolution, multipath immu-
nity and coexistence with legacy services via frequency overlay, ultra-wideband
(UWB) impulse-radios (IRs) are deemed as strong candidatesfor short-range con-
nectivity, location-aware wireless sensor networks and low-rate communications
with ranging capability [8], [94]. Owing to the ultra-largebandwidth, each trans-
mitted pulse arrives at the receiver scattered over hundreds of separable paths with
possible severe pulse distortion [48], [95]. Under these harsh propagation condi-
tions, the rich diversity of UWB channels can be exploited byemploying detec-
tion strategies based on Rake receivers, which however, require a large number of
correlator-based fingers combined with accurate channel estimation, thus resulting
in an intensive computational load and a high power consumption [72], [78]. Such
requirements are contrary to the UWB objectives that call for simple receiver pro-
cessing units with moderate energy consumption. Therefore, efficient techniques
are needed in order to overcome these impediments and facilitate a pervasive de-
ployment of UWB-based networks.
Background and Prior Works. A number of viable yet sub-optimal receivers
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based on noncoherent detection have been proposed in the literature for efficient
energy capture while avoiding channel estimation [79]. In the transmitted refer-
ence (TR) scheme [80], [81], an extra information-free reference pulse is used as
a channel template by the correlator to detect the information data, thereby caus-
ing wastage of transmitted power and a decrease in data rate.These drawbacks
can be avoided by adopting differential detection (DD) [82], [81]. Differentially
encoding the information symbols allows employing the signal received within
the previous symbol interval as a channel template for detection, thus enabling
potentially low-complexity and energy-efficient receivers. However, the template
waveform in both TR and DD schemes is neither noise-free nor interference-free,
which contributes to a substantial performance degradation. This prompted the
use of enhanced DD methods in the form of multiple symbol differential detec-
tion (MSDD) [83], [84]. Instead of correlating only the consecutive symbol-long
received waveforms, a block of differentially encoded symbols is detected jointly,
offering improved performance over both severe multipath fading and interference-
limited scenarios. Still, accurate pulse level timing information has to be acquired,
which in view of the low-power and ultra-short transmitted pulses, again requires
a considerable computational effort; see e.g. [96]-[97]. Hence, a variant of the
MSDD scheme has recently been proposed in [85] to reduce the timing restric-
tions, by limiting the timing accuracy from pulse or frame level to symbol level
only, while maintaining a competitive performance.

Despite the considerable advantages offered by the symbol level synchroniza-
tion (SLS) MSDD, the delay components required by the correlation units (on the
order of tens or even hundreds of nanoseconds) lead to hardware implementation
issues. Indeed, the long and accurate delay lines are hard torealize in the ana-
log domain, and a digital implementation based on Nyquist rate (NR) sampling
can heavily stress the receiver analog-to-digital converter (ADC), thereby causing
a high power consumption [98]. In order to facilitate the ADCimplementation,
some attractive novel theories can be of effective help on reducing the sampling
frequency below the cornerstone NR threshold, e.g., those based on sampling at
the rate of innovation (SRI) [3], [99] or compressive sampling (CS) [5], [6]. Cap-
italizing on suitable properties of the signal, like the sparsity exhibited in the time
domain by the UWB signals [48], [95], the key idea is to extract a reduced set of
compressed samples from the analog received signal, or in other words, converting
it into the compressed domain through a few measurements taken in the analog do-
main; see e.g., [46], [65]. Then, a reconstruction step fromthe compressed samples
may follow by applying one of the algorithms proposed in [6, 99], [15, 30]. Alter-
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natively, the reconstruction step is skipped and the receiver processing is based on
the compressed samples directly.

The SRI technique is applied in [54], [52] to UWB receivers that work at sub-
NR sampling but also require channel estimation (CE). On theother side, the CS
framework supports a large variety of sampling kernels, e.g., random sampling,
and hence allows for a higher flexibility [5], [6]. Practicalapplications of CS to
the UWB scenario can be found in [60]-[57], mostly again for coherent receivers,
thereby requiring CE. Apart from the overhead involved in the transmission of extra
information such as pilot or training symbols in these works, one inevitably has
to suffer from the complexity load required by the reconstruction of the channel
template.

A simpler yet performance competitive implementation, consists of combin-
ing the CS framework with noncoherent detection, as illustrated in [100]-[101]. In
[100], noncoherent receivers for differentially encoded UWB signals are designed
exploiting the CS techniques. Besides introducing a joint reconstruction and de-
tection scheme, a direct compressed DD (DC-DD) is also presented, which skips
the reconstruction step, hence reducing the complexity. Building upon the DC-DD,
the work in [102] merges the concepts of CS and decision feedback DD (DF-DD)
[103]. A power-efficient and low-complexity receiver is enabled, named as CS-
based (sorted) DF-DD or csDF-DD in short, however it has to beemphasized that:
i) its robustness to timing offsets is restricted to only a fraction of the symbol inter-
val and,ii ) the measurement matrix is required to be the same for all thesymbols
within each block.
Rationale of the Proposed Approach. The above facts indicate that CS-based non-
coherent detection can lead to promising receiver schemes.Hence, the search for
an effective way to reduce complexity while preserving performance, fully moti-
vates the current paper to make a further contribution. The basic idea we pursue,
in part traced back to [104], is threefold:i) instead of considering the DC-DD of a
single information symbol as in [100], we cast the concept ofMSDD into the CS
framework, thus formalizing the CS-based MSDD (CMSDD) scheme at sub-NR
sampling;ii ) in order to relax the demanding prerequisite of sub-pulse level accu-
racy on the timing synchronization, we develop a modified version of the CMSDD
which requires SLS only, in the sequel referred to as SLS-CMSDD; iii ) aimed at
skipping CE, we resort to the generalized likelihood ratio test (GLRT) principle
[105] in line with [84] and [85], according to which the generalized log-likelihood
metric (GLLM) is maximized not only over the information symbols but also over
the unknown channel template. GLRT also helps alleviate therestrictions of the
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measurement matrices to be the same for all symbols.
Contributions. The main features of our approach are detailed as follows.

1. The proposed MSDD-like schemes are derived by avoiding the reconstruc-
tion step, i.e., they work directly on the compressed signalsamples. The
result is that the sampling rate as well as the implementation complexity re-
lated to the evaluation of the correlation coefficients needed by the objective
function, are both kept at affordable levels, in accordancewith the UWB
requirements.

2. Unlike the CS-based noncoherent receivers illustrated so far, the measure-
ment process can be either the same or different from symbol to symbol,
thus offering an additional degree of freedom that can help the receiver bet-
ter adapt to various scenarios.

3. As briefly touched above, resorting to the SLS concept, therobustness to
timing errors of the proposed CS-based schemes is brought from pulse or
frame level to symbol level. This feature relaxes the performance of the
timing synchronizer, so further lowering the overall receiver complexity.

4. A particular effort is put on cutting back the complexity required to optimize
the objective function over each data block for both the ideally-synchronized
CMSDD and the SLS-CMSDD, which grows exponentially in the block
size1. To this end, a modified sphere decoding (SD) algorithm is derived
enabling the joint detection of blocks of tens of symbols at polynomial com-
plexity.

5. Comprehensive numerical simulation results obtained over realistic UWB
scenarios corroborate our analytical findings and demonstrate that the pro-
posed noncoherent detectors can deliver efficient performance versus com-
plexity trade-offs, and are capable of jointly relaxing thestringent require-
ments of both the high sampling rate and the accurate timing synchroniza-
tion.

Organization. The rest of the paper is organized as follows. Section 5.2 describes
the signal model. After reviewing the MSDD scheme with idealtiming synchro-
nization, Section 5.3 introduces the CS-based version. Section 5.4 extends the SLS

1We recall from [84] that the block size plays a role in determining the performance improvements
against the DD scheme, in the sense that the longer the block the better performance.
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variant of the MSDD to the CS framework, and Section 5.5 dealswith a modified
scheme of SD. The simulation results are illustrated in Section 5.6, and finally, in
Section 5.7 some concluding remarks are drawn.

5.2 Signal Model

For the UWB-IR signal model, each symbol is represented byNf frames with one
pulseq(t) per frame. The symbol, frame and pulse intervals are designated asTs,
Tf andTq, respectively, satisfyingTs = NfTf , Tq ≪ Tf . Denoting the symbol
level waveform2 as

s(t)
∆
=

Nf−1
∑

j=0

q(t− jTf ), (5.1)

the transmitted signal corresponding to a block ofQ + 1 consecutive symbols can
be written as

u(t) =

Q
∑

k=0

bks(t− kTs) (5.2)

wherebk ∈ {±1} are the transmitted symbols, which are differentially encoded
according to the rule

bk = bk−1ak (5.3)

with ak ∈ {±1} representing the information-bearing symbols. Without loss of
generality, we considerb0 = 1 as initial reference symbol.

The multipath channel is assumed to be time-invariant within an interval of
length(Q + 1)Ts, which is required to transmit (5.2). The delay spread is smaller
thanTf such that the overall channel fits within a single frame and hence inter-
symbol interference (ISI) is avoided. Under the assumptionthat the channel im-
pulse response (CIR) hasL paths, the received pulse is given by

h(t)
∆
=

L−1∑

ℓ=0

αℓq(t− τℓ,0) ⋆ hLP (t), (5.4)

wherehLP (t) is the low-pass filter at the receiver with bandwidthW , τℓ,0
∆
= τℓ−τ ,

0 ≤ ℓ ≤ L− 1, is the relative delay of theℓth path with respect to the timing offset

2Our focus is on a single-user point-to-point link, so for simplicity of presentation, the time hop-
ping (TH) code is not employed. Such an extension is easy to beincluded. However, frame averaging
may not be possible in this case. Our model can also be extended to the multi-user scenario but it
would necessitate a compressed user template to identify a specific user.
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τ
∆
= τ0 of the first path due to signal propagation,τℓ is the actual delay of theℓth

path at the receiver andαℓ is the respective path gain. The symbol level received
waveform can thus be expressed as

g(t)
∆
=

Nf−1
∑

j=0

h(t− jTf ), (5.5)

and correspondingly, after exploiting (5.2) and (5.4)-(5.5), the received signalr(t)
is given by

r(t) =

Q
∑

k=0

bkg(t− kTs − τ)

︸ ︷︷ ︸

∆
=x(t)

+v(t), (5.6)

wherex(t) is the block level received signal andv(t) is the zero-mean additive
white Gaussian noise component with varianceσ2

v .

5.3 MSDD With Exact Timing Synchronization

In this section, we consider the MSDD scheme when exact timing information is
available at the receiver, or equivalently, when the timingoffset isτ = 0, and ac-
cordinglyτℓ,0 = τℓ. As a first step, we revisit the MSDD scheme presented in [84]
for NR sampled UWB signals and derive it in an algebraic form (which is needed
to build mathematical foundations for the compressed version), and denote it for
simplicity as NMSDD. Then, we propose the MSDD-based on the CS framework,
referred to as CMSDD.

5.3.1 Nyquist-Rate MSDD

Denoting with1/T
∆
= N/Tf the Nyquist sampling rate, the NR received signal

(5.6) can be expressed as

r
∆
= [rT

0 , rT
1 , · · · , rT

Q]T (5.7)

whererk
∆
= [r

(0)T

k , r
(1)T

k , · · · , r(Nf−1)T

k ]T , with

r
(j)
k

∆
= [r(kTs + jTf ), r(kTs + jTf + T ), · · · , r(kTs + jTf + NT − T )]T (5.8)
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collecting theN NR samples of thejth frame for thekth symbol. Similarly, we
can definex, xk andx

(j)
k based onx(t), andv, vk andv

(j)
k based onv(t). From

(5.6), we can then obtain that

rk = xk + vk, 0 ≤ k ≤ Q, (5.9)

wherexk
∆
= bk(1Nf×1 ⊗ h) is the signal part ofrk, with

h
∆
= [h(0), h(T ), · · · , h(NT − T )]T (5.10)

made up of the NR samples of the received pulse waveform (5.4). Note thatvk

is a zero-mean Gaussian distributed noise vector with covariance matrixCv
∆
=

E{vkv
T
k } = σ2

vINNf
. Exploiting (5.7) and (5.9), the joint model for the block of

Q + 1 symbols can now be written as

r = (b⊗ INNf
)(1Nf×1 ⊗ h) + v, (5.11)

whereb
∆
= [b0, b1, · · · , bQ]T denotes the transmitted symbols. Hence, after defin-

ing the vector of the information symbols asa
∆
= [a1, a2, · · · , aQ]T , the NMSDD

scheme can be stated as follows.

Proposition 1: NMSDD. The GLRT NMSDD mixed-integer optimization prob-
lem (OP) is

â(NMSDD) = arg max
a

{

max
h

Λ(r|a,h)

}

, (5.12)

where the GLLM is

Λ(r|a,h)
∆
= 2Nf r̄

T (b⊗ IN )h− (Q + 1)Nfh
Th, (5.13)

with r̄
∆
= [r̄T

0 , r̄T
1 , · · · , r̄T

Q]T and

r̄k
∆
=

1

Nf

Nf−1
∑

j=0

r
(j)
k (5.14)

which represents theN × 1 vector collecting the samples of the average frame for
thekth symbol.
Proof. Under the joint NR sampled model (5.11), the GLLM can be written as

Λ(r|a,h)
∆
= 2rT (b⊗ INNf

)(1Nf×1 ⊗ h)

− [(b⊗ INNf
)(1Nf×1 ⊗ h)]T [(b⊗ INNf

)(1Nf×1 ⊗ h)]

= 2rT (b⊗ INNf
)(1Nf×1 ⊗ h)

− (Q + 1)(1Nf×1 ⊗ h)T (1Nf×1 ⊗ h), (5.15)
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which can be further simplified into (5.13). Sinceb is a function ofa as described
in (5.3), (5.12) can be solved into two steps according to theGLRT principle. First,
the GLLM (5.13) is maximized overh by setting the corresponding gradient to
zero, and then, it is optimized overa. �

5.3.2 Compressive Sampling MSDD

For the CMSDD, we assume that each received frame vectorr
(j)
k given by (5.8) is

compressed using theM × N frame level fat measurement matrixΦk (i.e., M <

N ), such thatΦkΦ
T
k = IM ,

y
(j)
k

∆
= Φkr

(j)
k , 0 ≤ j ≤ Nf − 1. (5.16)

Note that the compression ratioµ
∆
=

M

N
, with 0 < µ ≤ 1, identifies how much one

can economize the sampling rate, and accordingly, the computational load of the
data detector.

Upon definingyk
∆
= [y

(0)T

k ,y
(1)T

k , · · · ,y(Nf−1)T

k ]T , the compressed received
signal within thekth symbol can then be expressed by theMNf × 1 vector

yk = (INf
⊗Φk)rk = (INf

⊗Φk)xk + ξk, 0 ≤ k ≤ Q, (5.17)

whereξk
∆
= (INf

⊗ Φk)vk is the noise component with covariance matrixCξ
∆
=

E{ξkξ
T
k } = σ2

vIMNf
. It should be noted that the measurement process in (5.16) is

performed in the compressed analog domain; see [46]-[65] for details about possi-
ble analog implementations.

Now from (5.17), we can express the joint compressed model for the Q + 1

symbols as
y = Ψ(b⊗ INNf

)(1Nf×1 ⊗ h) + ξ (5.18)

wherey
∆
= [yT

0 ,yT
1 , · · · ,yT

Q]T andξ
∆
= [ξT

0 , ξT
1 , · · · , ξT

Q]T are the compressed
(M < N ) (Q + 1)MNf × 1 measurement and noise vectors, respectively, and

Ψ
∆
= diag

{
INf
⊗Φ0, INf

⊗Φ1, · · · , INf
⊗ΦQ

}
(5.19)

is the (Q + 1)MNf × (Q + 1)NNf block level measurement matrix, such that
ΨΨT = I(Q+1)MNf

. Hence, the CMSDD can be formulated as follows.

Proposition 2: CMSDD. The GLRT CMSDD integer OP is

â(CMSDD) = arg max
a

{∆(y|a)} , (5.20)
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where the objective function is

∆(y|a) =

Q
∑

k=0

Q
∑

ℓ=0

bkbℓȳ
T
k ΦkΦ

T
ℓ ȳℓ, (5.21)

with

ȳk
∆
=

1

Nf

Nf−1
∑

j=0

y
(j)
k (5.22)

being theM ×1 vector collecting the samples of the average compressed frame for
thekth symbol.
Proof. See Appendix 5.A. �

A number of remarks about the CMSDD can now be highlighted.

1. If the frame level measurement matricesΦk are all orthogonal to each other,
i.e., ΦkΦ

T
ℓ = 0M×M , ∀k, ℓ with 0 ≤ k, ℓ ≤ Q, then∆(y|a) does not

depend ona, and accordingly the detector does not exist.

2. If the frame level measurement matricesΦk are all the same for each symbol,
i.e., Φ0 = Φ1 = · · · = ΦQ, then taking into account (5.3),∆(y|a) turns
into

∆(y|a) =

Q
∑

k=1

k−1∑

ℓ=0

k−ℓ∏

i=1

[a]i+ℓȳ
T
k ȳℓ, (5.23)

whereas in the case they differ from symbol to symbol,∆(y|a) has the gen-
eral form

∆(y|a) =

Q
∑

k=1

k−1∑

ℓ=0

k−ℓ∏

i=1

[a]i+ℓȳ
T
k ΦkΦ

T
ℓ ȳℓ. (5.24)

3. By virtue of the CS framework, the CMSDD relies on the evaluation of the
average frame in (5.22), which is performed for each symbol in the com-
pressed domain. This is less demanding than the implementation of (5.14)
based on the NR sampling. As an additional strength, the detection process
of the CMSDD avoids a reconstruction step, which further helps in keeping
the complexity at an affordable level.

4. Concerning the performance limits of the CMSDD, if the frame level mea-
surement matrices are orthogonal to each other, then the CMSDD does not
work, whereas better performance is expected if they are thesame for each
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symbol. However, for applications where choosing identical measurement
matrices is not feasible, the CMSDD can still offer compressed detection.

5. The performance-versus-complexity trade-off enabled by the CMSDD is ex-
pected to be governed by the compression ratioµ as well. Indeed, the higher
theµ, the lower the performance loss, till the performance approaches that
of the NMSDD asµ → 1. This can be established mathematically by not-
ing that whenµ = 1 (i.e., M = N ) thenΦT

k Φk = IN (which is a general
property of orthogonal matrices). Thus,

ȳT
k ΦkΦ

T
ℓ ȳℓ = (Φkr̄k)

TΦkΦ
T
ℓ (Φlr̄l) = r̄T

k r̄ℓ

and the CMSDD in (5.24) reduces to the NMSDD.

5.4 MSDD with Symbol Level Synchronization

In Section 5.3, we assumed ideal timing synchronization. This assumption means
that the receiver can recover an accurate estimate of the timing offset at the pulse
level. In this section, we will relax this computationally demanding constraint: first,
we re-describe in algebraic form the MSDD scheme with synchronization at sym-
bol level as proposed in [85] using NR sampling, denoted as the SLS-NMSDD in
short. Then, we extend the above CMSDD approach to symbol level synchroniza-
tion, thus formulating the SLS-CMSDD scheme. A coarse symbol level synchro-
nization is thought to be available, so that the timing offset τ is less than a symbol
duration, i.e.,τ ∈ [0, Ts). Furthermore, the observation window is increased to
Q + 1 symbols in order to accommodate the residual (unknown) timing offset.

The key idea of the MSDD with SLS is to partition the received symbol wave-
form g(t) given by (5.5) into the two partsg0(t) andg1(t), such that

g0(t)
∆
=

{

0 t ∈ [0, τ)

g(t− τ) t ∈ [τ, Ts)
, (5.25)

g1(t)
∆
=

{

g(t + Ts − τ) t ∈ [0, τ)

0 t ∈ [τ, Ts)
, (5.26)

as depicted in Fig. 5.1, for a single frame per symbol, i.e.,Nf = 1. It is apparent
from (5.25) and (5.26) thatg0(t) andg1(t) depend uponτ and are orthogonal to
each other.
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g0(t)

tτ

t

g1(t)

Ts

g(t)

t

Figure 5.1: Partitioning ofg(t) into g0(t) andg1(t) for Nf = 1, in the presence of
a timing offsetτ .

5.4.1 Nyquist-rate MSDD with Symbol Level Synchronization

Denoting,Nτ
∆
= ⌊τ/T ⌋ andε

∆
= (τ − NτT ), with ε ∈ [0, T ), the NR sampled

symbol level versions ofg0(t) andg1(t) are given by

g0
∆
= [0T

Nτ×1, g(−ε), g(T − ε), · · · , g(NNf T −NτT − T − ε)]T , (5.27)

g1
∆
=[g(NNf T −NτT − ε), g(NNf T −NτT + T − ε),

· · · , g(NNf T − T − ε),0T
(NNf−Nτ )×1]

T . (5.28)
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r(t)

t

b0 = +1 b1 = −1 b2 = +1

τ

r0 = 0g1 + b0g0 r1 = b0g1 + b1g0 r2 = b1g1 + b2g0 r3 = b2g1 + 0g0

Figure 5.2: SLS model in the noiseless case withQ = 2, Nf = 1 and timing offset
τ .

Thus, the NR sampled version of thekth received symbol waveform can be repre-
sented by theNNf × 1 vector

rk = bkg0 + bk−1g1 + vk, 0 ≤ k ≤ Q + 1, (5.29)

where without loss of generality we assumeb−1 = bQ+1 = 0. In view of (5.29),
the joint SLS NR sampled model for the block ofQ + 2 symbols can be put into
the form

r̊ = (b0 ⊗ INNf
)g0 + (b1 ⊗ INNf

)g1 + v̊, (5.30)

whereb0
∆
= [b0, b1, · · · , bQ, bQ+1]

T andb1
∆
= [b−1, b0, b1, · · · , bQ]T are the(Q +

2) × 1 extended differential symbol vectors, while̊r
∆
= [rT

0 , rT
1 , · · · , rT

Q+1]
T and

v̊
∆
= [vT

0 ,vT
1 , · · · ,vT

Q+1]
T . Fig. 5.2 sketches out the SLS model for a simple

noiseless example with one frame per symbol (Nf = 1). Due to the presence of the
residual timing offsetτ ∈ [0, Ts), in order to detectQ = 2 transmitted symbols,
Q+2 = 4 symbol intervals have to be collected, or equivalently, thesample vectors
r0, r1, r2, r3. Hence, the SLS-NMSDD scheme can be formulated according tothe
following proposition.

Proposition 3: SLS-NMSDD. The GLRT SLS-NMSDD mixed-integer OP is

â(SLS−NMSDD) = arg max
a

{

max
g0,g1

ΛSLS(̊r|a,g0,g1)

}

, (5.31)
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where the GLLM is

ΛSLS(̊r|a,g0,g1)
∆
= 2̊rT

[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]

− 2gT
0 (bT

0 b1 ⊗ INNf
)g1

−
[
gT

0 (bT
0 b0 ⊗ INNf

)g0 + gT
1 (bT

1 b1 ⊗ INNf
)g1

]
. (5.32)

Proof. From the joint SLS NR sampled model (5.30), the GLLM can be expressed
as

ΛSLS(̊r|a,g0,g1) = 2̊rT
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]

−
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]T

×
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]
, (5.33)

which after some algebra gives (5.32). �

5.4.2 Compressive Sampling MSDD with Symbol Level Synchroniza-
tion

Bearing in mind the CMSDD and SLS-NMSDD schemes discussed inSection 5.3.2
and Section 5.4.1, respectively, let us now combine the CS and SLS frameworks.
Exploiting (5.17) and (5.29), the compressed waveform received within thekth
symbol interval reads

yk = (INf
⊗Φk)[bkg0 + bk−1g1] + ξk, 0 ≤ k ≤ Q + 1. (5.34)

Accordingly, the joint compressed model for theQ + 2 symbols takes the form

ẙ = Ψ̊
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]
+ ξ̊, (5.35)

whereẙ
∆
= [yT

0 ,yT
1 , · · · ,yT

Q+1]
T and ξ̊

∆
= [ξT

0 , ξT
1 , · · · , ξT

Q+1]
T are the extended

(Q + 2)MNf × 1 compressed measurement and noise vectors, respectively, and

Ψ̊
∆
= diag

{
INf
⊗Φ0, INf

⊗Φ1, · · · , INf
⊗ΦQ+1

}
(5.36)

is the (Q + 2)MNf × (Q + 2)NNf extended block level measurement matrix,
such that̊ΨΨ̊T = I(Q+2)MNf

. Thus, based on the joint model (5.35), the MSDD
version adopting both SLS and CS can be stated as follows.
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Proposition 4: SLS-CMSDD. The GLRT SLS-CMSDD integer OP is

â(SLS−CMSDD) = arg max
a

{∆SLS(̊y|a)} , (5.37)

where the cost function is expressed as

∆SLS(̊y|a)
∆
=

Q
∑

k=0

Q
∑

ℓ=0

bkbℓ[y
T
k (INf

⊗ΦkΦ
T
ℓ )yℓ

+ yT
k+1(INf

⊗Φk+1Φ
T
ℓ+1)yℓ+1]. (5.38)

Proof. See Appendix 5.B. �

Some remarks about the SLS-CMSDD scheme are now in order.

1. When the frame level measurement matricesΦk are all orthogonal to each
other, i.e.,ΦkΦ

T
ℓ = 0M×M , ∀k, ℓ with 0 ≤ k, ℓ ≤ Q, the detector again

does not exist.

2. When the frame level measurement matrices are the same forall the symbols,
i.e., Φ0 = Φ1 = · · · = ΦQ, the cost function (5.38) to be optimized takes
the following simpler form

∆SLS(̊y|a) =

Q
∑

k=1

k−1∑

ℓ=0

k−ℓ∏

i=1

[a]i+ℓ

(
yT

k yℓ + yT
k+1yℓ+1

)
, (5.39)

whereas in the case they differ from symbol to symbol its general form is

∆SLS(̊y|a) =

Q
∑

k=1

k−1∑

ℓ=0

k−ℓ∏

i=1

[a]i+ℓ[y
T
k (INf

⊗ΦkΦ
T
ℓ )yℓ

+ yT
k+1(INf

⊗Φk+1Φ
T
ℓ+1)yℓ+1]. (5.40)

3. Similar to the CMSDD, the SLS-CMSDD shows the advantage ofenabling
data detection while skipping the reconstruction step, andits performance is
basically dictated by the choice on both the measurement matrices and the
compression ratioµ.

4. In view of relaxing the demanding constraints not only on the sampling rate
but also on the timing synchronization accuracy, it is expected that SLS-
CMSDD offers more competitive performance-versus-complexity trade-offs
when compared to both the CMSDD and the SLS-NMSDD, which require
either a higher timing accuracy or a higher sampling rate, respectively.
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5.5 Compressed Sphere Decoder

Despite the major advantages of CMSDD and SLS-CMSDD as noncoherent differ-
ential detectors working directly on sub-NR sampled signals, it can be argued from
the Propositions 2 and 4 that maximizing the objective functions (5.24) and (5.40)
over all the possible realizations ofa involves an exhaustive search that exhibits
combinatorial complexity. Accordingly, such a route turnsto be quite unfeasible
even for short block sizesQ. In order to gain a manageable OP we resort to the SD.
Basics on SD. SD is an effective iterative decoding algorithm originally proposed
to efficiently solve the shortest vector problem (SVP) in a lattice [106]-[107], i.e.,

ŝ(SVP) = arg min
s∈ZN×1

{‖Us‖2} , (5.41)

whereU is theM ×N full-rank generator matrix, whereas the lattice is defined as
the set ofM × 1 vectorsL(U)

∆
=
{
Us | s ∈ Z

N×1
}

. In the SD, only those lattice
points are searched iteratively that lie within a sphere of radiusρ centered at0M×1,
i.e., only the subset of̂s ∈ Z

N×1 satisfying the condition‖Us‖2 ≤ ρ. Iteration
after iteration,ρ is progressively made smaller and smaller, so that the search space
is greatly reduced compared with a naive method based on exhaustive search. As
a result, the SVP, which is NP hard as shown in [108], can be iteratively solved at
low-degree polynomial complexity (cubic or higher) in the lengthN of the optimal
vector to be searched for.

The SD algorithm was proposed for MSDD in [109], for frequency-flat Rayleigh
fading channels to improve the performance over DF-DD [110], and successively,
was extended to UWB detection in the MSDD scheme proposed in [84]. In the
sequel, we will illustrate how to apply the SD framework to the CMSDD and SLS-
CMSDD proposed in Section 5.3.2 and Section 5.4.2, respectively, leading thus to
the concept of CS-based SD, or CSD for short.
CS based SD. To make our problem SD-compatible, let us reformulate the objec-
tive functions in (5.24) and (5.40) in an easy-to-evaluate form. In the case of the
CMSDD, the maximum value of the objective function amounts to

∆Max(y|a) =

Q
∑

k=1

k−1∑

ℓ=0

|ȳT
k ΦkΦ

T
ℓ ȳℓ|, (5.42)

and subtracting (5.24) from (5.42) yields an equivalent objective function (to be
minimized)

∆̆(y|a) =

Q
∑

k=1

k−1∑

ℓ=0

|ȳT
k ΦkΦ

T
ℓ ȳℓ|

[

1− sign{ȳT
k ΦkΦ

T
ℓ ȳℓ}

k−ℓ∏

i=1

[a]i+ℓ

]

, (5.43)
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where, depending upon the sign of
k−ℓ∏

i=1
[a]i+ℓ , each term inside the square brack-

ets takes a value in{0, 2}. Similarly, in the case of SLS-CMSDD, an equivalent
objective function can be defined as

∆̆SLS(y|a) =

Q
∑

k=1

k−1∑

ℓ=0

|yT
k (INf

⊗ΦkΦ
T
ℓ )yℓ + yT

k+1(INf
⊗Φk+1Φ

T
ℓ+1)yℓ+1|

×[1− sign{yT
k (INf

⊗ΦkΦ
T
ℓ )yℓ

+yT
k+1(INf

⊗Φk+1Φ
T
ℓ+1)yℓ+1}

k−ℓ∏

i=1

[a]i+ℓ]. (5.44)

For the ease of notation, let us now define

Zℓ,k
∆
=

{

ȳT
k ΦkΦ

T
ℓ ȳℓ, CMSDD

yT
k (INf

⊗ΦkΦ
T
ℓ )yℓ + yT

k+1(INf
⊗Φk+1Φ

T
ℓ+1)yℓ+1, SLS−CMSDD

(5.45)
Hence, the OP related to the CMSDD or SLS-CMSDD results in thegeneral form

âopt = arg min
a

{Ξ(y|a)} , (5.46)

where

Ξ(y|a)
∆
=

Q
∑

k=1

k−1∑

ℓ=0

ηℓ,k|Zℓ,k|, (5.47)

with

ηℓ,k
∆
=

[

1− sign{Zℓ,k}
k−ℓ∏

i=1

[a]i+ℓ

]

(5.48)

andZℓ,k given by (5.45). From (5.46)-(5.48), the following remarkscan be ob-
tained: i) the objective function (5.47) consists of the sum of the non-negative
coefficients|Zℓ,k|, weighted by the unknownsηℓ,k ∈ {0, 2}; ii ) the partial objective

Ξj(y|aj)
∆
=

j
∑

k=1

k−1∑

ℓ=0

ηℓ,k|Zℓ,k|, 1 ≤ j ≤ Q, (5.49)

depends only onaj
∆
= [[a]1, [a]2, · · · , [a]j ]

T and givenaj−1, aj depends only on
[a]j ; iii ) in light of featuresi) andii ), (5.47) defines a sphere in theQ-dimensional
lattice of the vectorsa ∈ {±1}Q [108]. Therefore, (5.46)-(5.48) combined with
remarksi)-iii ) fully comply with the SD framework, and as a consequence ourOP
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Table 5.1: Pseudo-Code for CS-based SD

Pseudo-Code for CSD

Input : Zℓ,k, for k = 1, · · · , Q, ℓ = 0, · · · , k − 1

Initialize : n = 0, â(0) = âDC−DD, ρ(0) = Ξ(y|âDC−DD)

Repeat
Candidate set for[â(n)]1:

A(n)
1 = {[â(n)]1 ∈ {±1}|Ξ1(y|â(n)

1 ) ≤ ρ(n)}
Choose a tentative estimate of[â(n)]1 fromA(n)

1

Candidate set for[â(n)]2 given [â(n)]1:

A(n)
2 = {[â(n)]2 ∈ {±1}|Ξ2(y|â(n)

2 ) ≤ ρ(n)}
Choose a tentative estimate of[â(n)]2 fromA(n)

2
...
Candidate set for[â(n)]Q given [â(n)]1, · · · , [â(n)]Q−1:

A(n)
Q = {[â(n)]Q ∈ {±1}|ΞQ(y|â(n)

Q ) ≤ ρ(n)}
Choose a tentative estimate of[â(n)]Q fromA(n)

Q

âopt ← â(n)

ρ(n+1) ← ΞQ(y|â(n)) = Ξ(y|âopt)

Setn = n + 1

Until A(n)
1 = ∅

Output : âopt

is amenable to be solved. It is worth mentioning that the above formulation of our
objective function is not the same as the conventional SD since it is a nonlinear
function ofa. Nonetheless, the possibility of estimating an element ofa based on
the previously estimated elements in a sequential manner, makes it solvable as an
SD problem.
Implementation of CSD. Concerning the implementation of the iterative algorithm,
at the genericnth SD iteration, anecessary conditionfor any tentative estimatêa(n)

to lie inside the sphere of radiusρ(n) > 0 is given by

Ξj(y|â(n)
j ) ≤ ρ(n), 1 ≤ j ≤ Q. (5.50)

Based on condition (5.50), the CSD can be computationally arranged according to
the pseudo-code outlined in Tab. 5.1. We note that the CSD algorithm is initialized
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by the solution̂aDC−DD obtained by applying the low-complexity DC-DD scheme
proposed in [100], which also gives the initial radiusρ(0) by evaluating (5.47).
The iterations go on with a smaller and smaller sphere as search space, with the
candidatêa(n)

Q found at the previous iterations lying on its surface. When at a given

iteration, for a certainj, condition (5.50) is satisfied for both values of[â(n)]j ,

i.e., {±1}, a random value is taken from the candidate setA(n)
j , and if none of

the values satisfies (5.50),j is decreased by1 and[â(n)]j−1 is tried with the other
value from the candidate set. Eventually, the algorithm stops when the candidate
setA(n)

1 results to be empty, i.e., all the conditions on the candidate sets have been
checked without reducing the sphere radius, thus meaning that the objective has
safely reached its minimum value. It is worth mentioning that the set of coefficients
Zℓ,k can be precomputed before the iterations, or even can be hard-quantized to two
levels, and the unknownsηℓ,k take non-negative integer-values so checking theQ

conditions at each iteration in Tab. 5.1 requires only real or integer format additions
combined with logical operations, thus contributing in keeping the complexity at
affordable levels in solving the OP (5.46)-(5.48).

5.6 Simulation Results

In this section, the proposed sub-NR MSDD schemes are testedthrough numerical
simulations over realistic multipath environments. In particular, the bit error rate
(BER) metric is quantified as a function of either the mean-bit-energy-to-noise-
spectral-density ratio defined asEb/N0

∆
= Nf ||h||22/σ2

v or the compression ratio
µ, for different values of the block sizeQ and frame numberNf , with ideal pulse
level or coarse symbol level timing synchronization.

5.6.1 Simulation Setup

The transmitted signal consists of a number of bursts including Q consecutive dif-
ferentially encoded binary symbols according to rule (5.3). In each symbol inter-
val, the frame length is chosen to beTf = 50 ns, whereas the transmitted pulse
per frameq(t) is selected as the second derivative of a Gaussian shape withwidth
Tq = 1ns. The slow-fading channel is assumed to be time-invariantwithin each
burst, but randomly varying from burst to burst according tothe IEEE 802.15.3a
CM1 model [95], whose maximum delay spread is25 ns. The bandwidth of the re-
ceive low-pass filter is taken asW = 2 GHz, and consequently, the NR is4 GHz.,
i.e, N = 200 samples per frame. Therefore, assuming a compression ratioof µ
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means that onlyM = µN samples are employed by the detection algorithm. Fur-
ther, we consider frame level measurement matricesΦk, 0 ≤ k ≤ Q. We initially
generate them as having zero-mean equi-distributed Gaussian entries and later or-
thonormalize the rows. Two different options are considered for compressing each
symbol within the burst:i) same measurement matrix (SMM), i.e.,Φk = Φk+1,
0 ≤ k ≤ Q − 1; ii ) different measurement matrix (DMM), i.e.,Φk 6= Φk+1,
0 ≤ k ≤ Q− 1.

5.6.2 BER with Ideal Timing Synchronization

Figs. 5.3 and 5.4 depict the BER metric versus theEb/N0 ratio for the SMM and
DMM options, respectively, for the compression ratioµ = 0.5, and block sizes
Q = 1, 10, 15. The number of frames per symbol is set toNf = 1 since for ideal
timing synchronization the frame averaging in (5.14) or (5.22) is such that higher
values are expected not to affect the performance, as confirmed by Tab. 6.1. For
both figures, increasingQ gives reasonably better performance when compared
with Q = 1, namely the conventional DD, regardless of choosing SMM or DMM.
Indeed, at the BER of10−3, when moving fromQ = 1 to Q = 15 both the
NMSDD and CMSDD gain around 4 dB, regardless whether we choose SMM or
DMM. Given that the channel stays invariant at least within the block interval, i.e.,
(Q + 1)NfTf , the above behavior is basically due to the multi-symbol structure of
both the algorithms, which advantageously exploit the signal correlation not only
between adjacent symbols as the DD does, but also between many other symbols
up to the block size apart. Further, in spite of the 2 dB loss suffered by the CMSDD
against the NMSDD in case of SMM, the former presents the advantage of halving
the sampling rate, thus reducing the computational load required to detect each data
burst. It is further to be remarked that changing the setup from SMM to DMM, i.e.,
passing from Fig. 5.3 to Fig. 5.4, causes the performance of CMSDD to deterio-
rate by 3 dB. It can be imagined that the limiting case of this scenario will be in
line with the first remark made both in Section 5.3.2 and Section 5.4.2, explaining
that frame level orthogonal measurement matrices can make the detector indepen-
dent of the differential symbols, and thus ineffective. Note that for the sake of
comparison, we also plot in Fig. 5.3 the results of using sorted block-wise DF-DD
(sbDF-DD) [103] and its compressed version CS-based DF-DD (csDF-DD) [102]
(both in dotted lines). The results point out that the proposed CSD-based detector
has a slight edge over the csDF-DD. Although, both require ideal timing recovery,
the latter is further limited to the SMM scenario. On the other side, as quantified in
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Section 5.6.3, the SLS-CMSDD is the only scheme that can considerably relax the
timing accuracy, thereby enabling good performance-versus-complexity trade-off
solutions. However, it is worth mentioning that our proposed schemes, CMSDD
and SLS-CMSDD are not restricted to be used only with CSD as analternative to
exhaustive search, but other strategies, e.g., DF can also be opted. Figs. 5.5 and
5.6 show the BER versus the compression ratioµ at Eb/N0 = 10 dB, for both the
NMSDD and CMSDD, withQ = 1, 10, 15, and adopting the SMM and DMM op-
tions, respectively. As expected, increasingµ, the CMSDD performance improves
till it approaches that of the NMSDD whenµ = 1.

5.6.3 BER with Coarse Symbol Level Timing Synchronization

Concerning the SLS-based detectors, we chooseNf = 10 frames per symbol since
in this configuration the timing offset is acquired with a coarse accuracy at sym-
bol level, and thus, the value ofNf is expected to affect performance (as will be
shown in a while). Figs. 5.7 and 5.8 quantify the BER in case the SMM and DMM
options are adopted, respectively, with each figure referring to both SLS-NMSDD
and SLS-CMSDD schemes, with block sizesQ = 1, 10, 15, and compression ratio
µ = 0.5. Given that the timing offset of each received burst is uniformly distributed
over the symbol interval to comply with the condition of asynchronous access to the
channel and in line with the assumption that timing synchronization is performed at
symbol level only, the BER curves are averaged over the uniformly distributed tim-
ing offsetτ ∈ [0.1Ts, 0.9Ts]. Similar to the NMSDD and CMSDD, it is apparent
that the performance of the SLS detectors at both NR and CS sampling improves
using a larger block sizeQ, whereas the DMM incurs again a loss of around 3 dB
with respect to the SMM option. It is worth emphasizing that the advantages of the
SLS-CMSDD are twofold, in the sense that it can relax the stringent requirements
on both the sampling rate and the timing accuracy at an affordable performance loss
against the more demanding NMSDD and CMSDD schemes. In addition, similar
to Figs. 5.5 and 5.6, it can be proved that asµ → 1 the SLS-CMSDD and SLS-
NMSDD meet at the same BER level. Fig. 5.9 shows the averaged BER for the
SLS-NMSDD and SLS-CMSDD, with SMM,Q = 10 and different values of the
frame number, namelyNf = 1, 5, 10. It can be argued that the performance im-
proves whenNf decreases given the corresponding decrease in noise accumulation
in the absence of frame averaging.

In Figs. 5.10 and 5.11, we give the complexity performance ofCSD against
NR SD, for varying SNR andµ, respectively. We define the Complexity metric as
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the total number of sum operations consumed during a search (since there are no
multiplications in our cost functions). As expected, the CSD has a comparatively
higher Complexity but decreases with increasing SNR and/orµ, thereby indicating
a trade-off between performance and complexity.

Finally, in Fig. 5.12, we show a BER performance of CMSDD whenusing dif-
ferent types of samplers (i.e., measurement matrices). Although, we use a Gaussian
sub-NR sampler in general but other samplers can also be used. Fig. 5.12 shows
the BER performance when the Gaussian, regular and random sub-NR samplers
are used, respectively. We see that the Gaussian sampler shows better performance
than the regular sub-NR sampler especially at lower values of µ, whereas the ran-
dom sub-NR sampler lags behind the other two.

5.7 Conclusions

In this paper, we have presented compressive sampling basedmultiple symbol dif-
ferential detectors using the GLRT approach, both in the presence of full timing in-
formation as well as with symbol-level synchronization only. The detectors avoid
an explicit reconstruction step and operate on the compressed samples directly.
The detectors perform better when the measurement matricesare the same for each
symbol within the block but have the ability to work even whenthey are different.
The detectors do not exist for the case of orthogonal measurement matrices. Com-
bined with sphere decoding, the proposed detectors offer very low complexity and
power efficient detection possibilities.
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Appendix

5.A Proof of Proposition 2

From the joint compressed model (5.18), the GLLM givena andh can be written
as

Ω(y|a,h)
∆
= 2yT Ψ(b⊗ INNf

)(1Nf×1 ⊗ h)

−[(b⊗ INNf
)(1Nf×1 ⊗ h)]T ΨT

×Ψ[(b⊗ INNf
)(1Nf×1 ⊗ h)], (5.51)

which, in view of the structure ofy, can be rearranged as

Ω(y|a,h) = 2yT Ψ(b⊗ INNf
)(1Nf×1 ⊗ h)

−(1Nf×1 ⊗ h)T (b⊗ INNf
)TΨTΨ(b⊗ INNf

)(1Nf×1 ⊗ h)

= 2Nf ȳ
T Φ(b⊗ IN )h−Nfh

T (b⊗ IN )T ΦTΦ(b⊗ IN )h(5.52)

whereΦ
∆
= diag{Φ0,Φ1, · · · ,ΦQ} is a (Q + 1)M × (Q + 1)N block-diagonal

matrix, ȳ
∆
= [ȳT

0 , ȳT
1 , · · · , ȳT

Q]T , with ȳk given by (5.22).
Following the GLRT principle, the first step is to maximize (5.52) overh. Thus,

setting the gradient with respect toh to zero yields

2Nf ȳ
T Φ(b⊗ IN )− 2Nfh

T [(b⊗ IN )TΦTΦ(b⊗ IN )] = 0T , (5.53)

which leads to the estimate
ĥ = Hȳ, (5.54)

where
H

∆
=
[
(b⊗ IN )TΦTΦ(b⊗ IN )

]−1
[Φ(b⊗ IN )]T . (5.55)

Then, after plugging (5.54) into (5.52), we obtain the cost function

Γ(y|a)
∆
= 2Nf ȳ

T Φ(b⊗ IN)Hȳ

−Nf [Hȳ]T (b⊗ IN )T ΦTΦ(b⊗ IN )Hȳ. (5.56)

Considering that

−Nf [Hȳ]T (b⊗ IN )TΦTΦ(b⊗ IN )Hȳ

= −Nf ȳ
T Φ(b⊗ IN)

[
(b⊗ IN )T ΦTΦ(b⊗ IN )

]−1

×
[
(b⊗ IN )TΦTΦ(b⊗ IN )

]
Hȳ

= −Nf ȳ
T Φ(b⊗ IN)Hȳ, (5.57)
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after some algebra and dropping the immaterial factorNf , (5.56) can be reformu-
lated as

Γ[y|a] = ȳTΦ(b⊗ IN )S−1(b⊗ IN )TΦT ȳ, (5.58)

where

S
∆
= (b⊗ IN )TΦTΦ(b⊗ IN ) =

Q
∑

k=0

ΦT
k Φk (5.59)

is a positive (semi-)definite matrix3 depending only on the measurement matrices
Φk, 0 ≤ k ≤ Q. Intensive numerical simulations have shown that the presence of
S in (5.58) affects the differential detection ofa only in a weak way, i.e., a specific
â maximizing (5.58) also (approximately) maximizes

∆[y|a] = ȳT Φ(b⊗ IN )(b⊗ IN )TΦT ȳ. (5.60)

Hence, after rearranging (5.60) according toȳ andΦ, the objective function of the
CMSDD OP takes the form of (5.21), which concludes the proof.

5.B Proof of Proposition 4

From the joint compressed model (5.35), the GLLM givena, g0 andg1 for the
SLS-CMSDD can be put into the form

ΩSLS(̊y|a,g0,g1)
∆
= 2ẙT Ψ̊

[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]

−
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]T
Ψ̊T

×Ψ̊
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]
. (5.61)

After some algebra, (5.61) can be rearranged as

ΩSLS(̊y|a,g0,g1) = 2ẙT Ψ̊
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]

−2gT
0 (b0 ⊗ INNf

)T Ψ̊T Ψ̊(b1 ⊗ INNf
)g1

−[gT
0 (b0 ⊗ INNf

)T Ψ̊T Ψ̊(b0 ⊗ INNf
)g0

+gT
1 (b1 ⊗ INNf

)T Ψ̊T Ψ̊(b1 ⊗ INNf
)g1], (5.62)

where̊y andΨ̊ are the extended measurement vector and block level measurement
matrix, respectively, defined in Section 5.4.2. It is worth observing in (5.62) that

gT
0 (b0 ⊗ INNf

)T Ψ̊T Ψ̊(b1 ⊗ INNf
)g1 =

Q
∑

ℓ=1

[a]ℓ̟l, (5.63)

3As detailed in [100], the positive (semi-)definite propertyof S can be easily shown through the
eigenvalue decomposition (EVD).
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where̟l
∆
= gT

0 (INf
⊗ ΦT

ℓ Φℓ)g1. Note that due to the orthogonality ofg0 and
g1, ̟l will have very few addends4. Now given that it is equally probable foral

to be+1 or −1, we can expect that the result can (on the average) be considered
as vanishing for a sufficiently large block sizeQ. Hence, the objective function in
(5.62) can be further simplified as

ΩSLS(̊y|a,g0,g1) ≃ 2ẙT Ψ̊
[
(b0 ⊗ INNf

)g0 + (b1 ⊗ INNf
)g1

]

−[gT
0 (b0 ⊗ INNf

)T Ψ̊T Ψ̊(b0 ⊗ INNf
)g0

+gT
1 (b1 ⊗ INNf

)T Ψ̊T Ψ̊(b1 ⊗ INNf
)g1]. (5.64)

In accordance with the GLRT principle, setting the gradientof (5.64) to zero
with respect tog0 andg1 gives

ĝi = Giẙ, i = 0, 1, (5.65)

where

Gi
∆
=
[

(bi ⊗ INNf
)T Ψ̊T Ψ̊(bi ⊗ INNf

)
]−1 [

Ψ̊(bi ⊗ INNf
)
]T

, i = 0, 1.

(5.66)
Thus, upon plugging (5.65) into (5.64), after some algebra we obtain

ΓSLS(̊y|a)
∆
= ẙT Ψ̊(b0 ⊗ INNf

)S−1
0 (b0 ⊗ INNf

)T Ψ̊T ẙ

+ẙT Ψ̊(b1 ⊗ INNf
)S−1

1 (b1 ⊗ INNf
)T Ψ̊T ẙ, (5.67)

whereS0 andS1 are defined, respectively, as

S0
∆
= (b0 ⊗ INNf

)T Ψ̊T Ψ̊(b0 ⊗ INNf
) = INf

⊗
Q
∑

k=0

ΦT
k Φk, (5.68)

S1
∆
= (b1 ⊗ INNf

)T Ψ̊T Ψ̊(b1 ⊗ INNf
) = INf

⊗
Q+1
∑

k=1

ΦT
k Φk. (5.69)

From (5.68)-(5.69), it can be remarked that:i) S0 andS1 are independent of bothb0

andb1; ii ) applying the EVD, it can be proved thatS0 andS1 are positive (semi-
)definite matrices;iii ) it can be shown that the inverses ofS0 andS1 affect the

4If Φl are the same, forl = 1, · · · , Q, then̟ls would also be the same, and (5.63) will result in
a summation over[a]ls scaled by a constant value. IfΦl are different, forl = 1, · · · , Q, then̟ls
would produce a scrambling effect over[a]ls.
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Table 5.2: BER performance of CMSDD with varyingNf andQ = 10

Eb/N0 [dB] Nf = 1 Nf = 5 Nf = 10

4 0.4009 0.4031 0.4038

6 0.3053 0.3074 0.3072

8 0.1558 0.1587 0.1582

10 0.0376 0.0384 0.0365

12 0.0034 0.0032 0.0032

maximization of (5.67) in a weak way (in terms ofa). Hence, collecting together
the above results, we are left with the approximate cost function

∆SLS(̊y|a)
∆
= ẙT Ψ̊[(b0 ⊗ INNf

)(b0 ⊗ INNf
)T

+(b1 ⊗ INNf
)(b1 ⊗ INNf

)T ]Ψ̊T ẙ. (5.70)

Finally, similar to the approach pursued for the CMSDD, (5.70) can be reformu-
lated in the equivalent form given by (5.38), thus concluding the proof.
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Figure 5.3: BER comparison of NMSDD and CMSDD with SMM, alongwith
sbDF-DD and csDF-DD (dotted lines), different block sizes,Nf = 1 andµ = 0.5.
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Figure 5.4: BER comparison of NMSDD and CMSDD with DMM, different block
sizes,Nf = 1 andµ = 0.5.
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Figure 5.6: BER comparison of NMSDD and CMSDD with DMM, different block
sizes,Nf = 1, different values ofµ andEb/N0 = 10 dB.
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Figure 5.7: BER comparison of SLS-NMSDD and SLS-CMSDD with SMM, dif-
ferent block sizes,Nf = 10, µ = 0.5 andτ ∈ [0.1Ts, 0.9Ts].
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Figure 5.8: BER comparison of SLS-NMSDD and SLS-CMSDD with DMM, dif-
ferent block sizes,Nf = 10, µ = 0.5 andτ ∈ [0.1Ts, 0.9Ts].
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Figure 5.10: Complexity comparison of SD against compressed and Nyquist rate
symbols, different block sizes, SMM,Nf = 1.
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Figure 5.11: Complexity comparison of SD against compressed and Nyquist rate
symbols, different block sizes, varyingµ, SMM, Eb/N0 = 10dB, Nf = 1.
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Abstract

We present reconstruction algorithms for smooth signals with block sparsity from
their compressed measurements. We tackle the issue of varying group size via
the group-sparse least absolute shrinkage selection operator (LASSO) as well as
via latent group LASSO regularizations. We achieve smoothness in the signal via
fusion. We develop low-complexity solvers for our proposedformulations through
the alternating direction method of multipliers.

6.1 Introduction

Compressed sensing (CS) [5, 6] is one of the most exciting topics of present-day
signal processing. Signal reconstruction from its low-dimensional representation
becomes a possibility, given the sparse nature of the signaland, incoherence and/or
restricted isometry property (RIP) [6] of the sensing/measurement process. In this
regard, a number of approaches can be used, e.g., basis pursuit (BP) [15], least ab-
solute shrinkage and selection operator (LASSO) [37] and greedy algorithms [30].
In order to exploit the structure of the signal being sensed,a number of variants of
LASSO have become popular, e.g., group LASSO (G-LASSO) [41], sparse group
LASSO (SG-LASSO) [42] and fused LASSO (F-LASSO) [44], etc. In this pa-
per we propose new LASSO formulations to handle block sparsesmooth signals.
Smooth signals are often encountered in a wide range of engineering and biolog-
ical fields. In engineering, signals observed in image processing, control systems
and environment monitoring are often smooth or piece-wise smooth. In biology, a
similar structure is observed, e.g., in protein mass spectroscopy [44]. The goal is to
recover such structured signals from noisy and/or under-sampled measurements. A
related topic is signal smoothing which deals with removingrandom outliers. Apart
from being smooth, such signals can often be represented as sparse in some basis.
This sparsity pattern normally varies in terms of the location and block size of the
sparse coefficients. The challenge for signal reconstruction is to exploit the block
sparsity with varying block sizes, while keeping smoothness intact and using fewer
measurements, but all at low complexity. In the CS domain, signal smoothness has
been handled by using a fusion constraint in [44]. The fusionis also known as total
variation (TV) in the image processing literature. Apart from fusion, [44] also pro-
poses anℓ1-norm penalty to cater for signal sparsity. However, since most of the
signals are block sparse, [44] cannot give efficient results. To cater for the block
sparsity, one can replace theℓ1-norm penalty with a group penalty. Although this
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approach can handle the block sparsity very well, it only offers fixed group sizes
and causes complete groups to be zero or nonzero. To avoid elimination of small
sets of nonzero elements, a very small group size is opted butthat can make the
algorithm inefficient in eliminating large blocks of zero elements. In this regard,
we propose to use a moderate group size along with anℓ1-norm penalty over the
signal, to create sparsity within the groups. Thus by using fusion in combination
with an ℓ1-norm penalty and a moderate group size, a smooth signal can be re-
constructed with high accuracy. The problem of varying group sizes can also be
handled by using the concept of latent groups, see [111] and references therein.
These are basically overlapping groups, with recurring signal elements in possibly
multiple groups. Thus, an element lost in one group may resurface through another
group after reconstruction. So we also propose to use such latents groups in combi-
nation with a fusion constraint to recover block sparse smooth signals with varying
block sizes. Note that a work on using overlapping groups over the fusion function
instead of the signal structure has appeared in [112], whichhowever requires com-
plete signal samples. Instead, we propose overlapping groups and fusion penalties
over the actual signal for under-determined systems. Thus,we exploit the actual
structure of the signal rather than the difference of elements. Further, in order to
solve the proposed formulations, we derive low-complexityalgorithms based on the
alternating direction method of multipliers (ADMM) [113].The reason for using
this version of the augmented Lagrangian methods is primarily the non-separability
of the fusion penalty in terms of the elements of the signal. Thus, the general con-
vergence properties of ADMM can be used to guarantee optimalresults for our
proposed algorithms.

6.2 Signal Reconstruction

Let x be theN × 1 recoverable signal. GivenM measurements, the sensed signal
can be written as

y = Φx + v (6.1)

wherey is anM × 1 measurement vector,Φ is anM × N measurement matrix
(M < N ) with compression ratioµ

∆
= M/N andv is anM × 1 zero-mean addi-

tive white Gaussian noise vector with varianceσ2
v . To recover the signal from the

compressed measurements while keeping the signal structure in tact, we propose
below, two LASSO formulations.
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6.2.1 Sparse Group LASSO with Fusion

Through sparse group fused LASSO (SGF-LASSO), we can resolve the issue of
signal smoothness, as well as, that of fixed group sizes. The optimization problem
can be formulated as

x̂ = arg min
x

1

2
‖y −Φx‖22 + λe‖x‖11

+λg

G−1∑

i=0

‖xi‖12 + λf

N−1∑

j=1

‖[x]j − [x]j−1‖11 (6.2)

wherexi is an N/G × 1 sub-vector ofx, representing one ofG groups over
the elements ofx, i.e., x = [xT

0 ,xT
1 , · · · ,xT

G−1, ]
T . We can see from (6.2) that

λg
∑G−1

i=0 ‖xi‖12 accounts for group sparsity,λe‖x‖11 for element-wise sparsity and
λf
∑N−1

j=1 ‖[x]j − [x]j−1‖11 accounts for fusion within the elements ofx, such that
the effect of each penalty becomes severer with increasing penalty parameters, i.e.,
λg, λe andλf , respectively. For a moderate value ofG, the proposed formulation
can tackle the varying group size problem by creating sparsity within the group
along with fusing consecutive elements. Note that, forλg = λf = 0, (6.2) reduces
to the standard LASSO problem, forλf = 0, (6.2) reduces to SG-LASSO, for
λe = λf = 0, (6.2) takes the shape of G-LASSO and forλg = 0, (6.2) becomes
F-LASSO.

Solver for SGF-LASSO

In order to solve the SGF-LASSO problem via ADMM, we introduce two auxiliary
variablesu andz of sizeN × 1. Thus, (6.2) can be written as

[x̂, û, ẑ] = arg min
x,u,z

1

2
‖y −Φx‖22 + λe‖u‖11

+ λg

G−1∑

i=0

‖ui‖12 + λf‖z‖11

s.t. ui = xi, 0 ≤ i ≤ G− 1, z = Dx (6.3)

whereui is anN/G × 1 sub-vector ofu, i.e.,u = [uT
0 ,uT

1 , · · · ,uT
G−1, ]

T , andD

is the difference matrix with[D]j,j = −1, [D]j,j+1 = 1, for 0 ≤ j ≤ N − 2 and
[D]N−1,N−1 = 1, such that‖Dx‖11 equals the element-wise fusion. From (6.3),
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the Lagrangian problem can be written as

L(x,u, z,ρu,ρz) =
1

2
‖y −Φx‖22 + λe‖u‖11

+ λg

G−1∑

i=0

‖ui‖12 + λf‖z‖11

+

G−1∑

i=0

ρT
ui

(ui − xi) +
cu

2

G−1∑

i=0

‖ui − xi‖22

+ ρT
z (z−Dx) +

cz

2
‖z−Dx‖22 (6.4)

whereρu (with sub-vectorsρui
, for 0 ≤ i ≤ G−1) andρz are Lagrange multipliers

and, cu and cz are positive constants. The solution of (6.3) is generated by the
following successive approximations

x[n] = arg min
x

L
(

x,u[n−1], z[n−1],ρ[n−1]
u ,ρ[n−1]

z

)

(6.5)

u[n] = arg min
u

L
(

x[n−1],u,ρ[n−1]
u

)

(6.6)

z[n] = arg min
z
L
(

x[n−1], z,ρ[n−1]
z

)

(6.7)

and the multipliers are updated as

ρ[n]
u = ρ[n−1]

u + cu(x[n] − u[n]) (6.8)

ρ[n]
z = ρ[n−1]

z + cz(Dx[n] − z[n]). (6.9)

The closed-form solution for (6.5) at thenth iteration can be derived to be

x[n] =
(
ΦTΦ + czD

TD + cuIN

)−1

×
(

ΦTy −DT ρ[n−1]
z + czD

Tz[n−1] − ρ[n−1]
u + cuu

[n−1]
)

. (6.10)

We can see from (6.10) that the matrix inversion part does notchange during the it-
erations so that it can be performed off-line, resulting in reduced complexity. Note
that the matrix inversion lemma can be used to further ease the computations in-
volved in the inversion operation. Foru, note that the optimization involves two
penalties, i.e., apart from penalizing each element ofu for sparsity, we need to opti-
mize on each of its sub-groups as well. Since both penalties are non-differentiable,
we utilize the fact that soft thresholding generates a minimizer for the cost function
involving λe‖ui‖11 [37], and for the cost function involvingλg‖ui‖12, the mini-
mizer issu = ui/‖ui‖22 in case‖ui‖22 6= 0 and the minimizer is a vectorsu such
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that‖su‖12 < 1 in case‖ui‖22 = 0 [42]. Thus the closed-form solution of (6.6) for
theith subgroup at thenth iteration can be written as

u
[n]
i =

(

‖S
(

x
[n−1]
i +

ρ
[n−1]
ui

cu
,
λe

cu

)

‖22 −
λg

cu

)

+

×
S
(

x
[n−1]
i +

ρ[n−1]
ui

cu
, λe

cu

)

‖S
(

x
[n−1]
i +

ρ[n−1]
ui

cu
, λe

cu

)

‖22
(6.11)

for 0 ≤ i ≤ G − 1, whereS(s, λ)
∆
= sign(x)(x − λ)+ is the soft thresholding

operator. Thus the estimate ofu can be obtained as

u[n] = [u
[n]T
0 ,u

[n]T
1 , · · · ,u[n]T

G−1]
T (6.12)

which along withx[n] is used to updateρ[n]
u in (6.8). Now from (6.7), the closed-

form expression for the estimate ofz at thenth iteration can be derived as

z[n] = S
(

Dx[n−1] +
ρ

[n−1]
z

cz
,
λf

cz

)

(6.13)

which subsequently updatesρ
[n]
z in (6.9).

6.2.2 Latent Group LASSO with Fusion

For the latent group fused LASSO (LGF-LASSO), the signal is segmented into
many overlapping groups of certain sizes1. In contrast to the disjoints groups,
overlapping groups can reselect the elements from other groups. We creatẽG
overlapping groups through anN/G × N sub-selection matrixWi which se-
lectsN/G rows from an identity matrixIN . An overlapping group can then be
obtained by the relation,Wix, for 0 ≤ i ≤ G̃ − 1, whereWi is such that
W

∆
= [WT

0 ,WT
1 , · · · ,WT

G̃
]T . Each sub-selection matrixWi repeatsK rows of

Wi−1, whereK is the overlapping factor and1 ≤ K ≤ N−1. Figure 6.1 schemat-
ically shows the difference between disjoint (K = 0) and overlapping groups (for
K = N/(2G)). We can see that the overlapping groups can solve the problem of
the fixed group size but the price to be paid is in terms of computational complex-
ity which increases excessively with the factorK due to the related increase iñG.
Now, the optimization problem for LGF-LASSO can be formulated as

1In this paper, we consider overlapping groups of fixed sizes,but the concept can easily be ex-
tended to varying sizes as well.
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Figure 6.1:Above: Disjoint groups.Below: Overlapping groups.

x̂ = arg min
x

1

2
‖y −Φx‖22 + λg

G̃−1∑

i=0

‖Wix‖12 + λf‖Dx‖11. (6.14)

Solver for LGF-LASSO

To solve the LGF-LASSO problem, we again turn to ADMM. By introducing a
new auxiliary variablẽu of sizeG̃N/G, (6.14) can be written as

[x̂, ˆ̃u, ẑ] = arg min
x,ũ,z

1

2
‖y −Φx‖22 + λg

G̃−1∑

i=0

‖ũi‖12 + λf‖z‖11

s.t. ũi = Wix, 0 ≤ i ≤ G̃− 1, z = Dx (6.15)

whereũi is anN/G × 1 sub-vector of̃u, i.e., ũ = [ũT
0 , ũT

1 , · · · , ũT
G̃−1

, ]T . Now
the Lagrangian for (6.15) can be written as

L(x, ũ, z,ρũ,ρz) =
1

2
‖y −Φx‖22 + λg

G̃−1∑

i=0

‖ũi‖12 + λf‖z‖11

+

G̃−1∑

i=0

ρT
ũi

(ũi −Wix) +
cu

2

G̃−1∑

i=0

‖ũi −Wix‖22

+ ρT
z (z−Dx) +

cz

2
‖z−Dx‖22 (6.16)

whereρũ collects the Lagrangian multipliers with sub-vectorsρũi
for 0 ≤ i ≤

G̃−1. Now the successive approximations for the solution of (6.16) w.r.t.x, ũ and
ρũ can easily be obtained by solving

x[n] = arg min
x

L
(

x, ũ[n−1], z[n−1],ρ
[n−1]
ũ ,ρ[n−1]

z

)

(6.17)

ũ[n] = arg min
u

L
(

x[n−1], ũ,ρ
[n−1]
ũ

)

(6.18)

ρ
[n]
ũ = ρ

[n−1]
ũ + cu(x[n] − ũ[n]) (6.19)
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Figure 6.2: Comparison of SGF-LASSO, LGF-LASSO and G-LASSO

whereas, the estimates ofz andρz are the same as in (6.7) and (6.9), respectively.

6.3 Simulations

In this section, we present some simulation results to compare the performance
of our proposed algorithms. We compare the performance of SGF-LASSO, LGF-
LASSO and G-LASSO. We consider a cloud reflectivity data fromthe Earth System
Research Laboratory (ESRL) [114]. This data basically shows variations in cloud
reflectivity over time (around 12 hours) for different cloudheights above ground
level (AGL). We consider it to be the ground truth and try to estimate it in the
presence of noise of varianceσ2 = 0.25. There areN = 425 reflectivity samples
corresponding to each height. We limit ourselves to the dataof NCH = 50 levels
of cloud heights. A signalx is sensed separately per height, through the same
measurement matrixΦ (where each row may correspond to a sensor), which has
been drawn from a zero-mean Gaussian distribution with variance1/M . We have
further orthogonalized the rows of the measurement matrixΦ.

The penalty parameters for the simulations have been considered asλe = 5,
λg = 35 andλf = 10. In general, these parameters can be selected from a given
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Figure 6.4: Reconstruction by SGF-LASSO
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range in a cross-validation manner, by varying one of the parameters and keeping
others fixed [42]. Further, since all of these parameters aresparsity promoting, and
can possibly affect each other, it is expected that the search of the optimal set of pa-
rameters would be restricted to a smaller range. The parameterscu andcz are pos-
itive numbers and may affect the convergence rate. We take them ascu = cz = 2.
As initial conditions, the vectorsx[0], u[0], z[0], ρ

[0]
u , ρ

[0]
z , ũ[0] andρ

[0]
ũ , have all

been considered as zero vectors, respectively. Note that, aleast-squares solution of
x, can also be considered as a warm-start to speed up the convergence rate. The
group size for SGF-LASSO, LGF-LASSO and G-LASSO has been taken as20.
Therefore, the number of groups in SGF-LASSO and G-LASSO arethe same, i.e.
21 . For LGF-LASSO, an overlapping factor ofK = 5 has been used, and therefore
the number of overlapping groups of size20 areG̃ = 28. We use a maximum of
250 iterations for each algorithm. We have observed that a tolerance level of10−3

between consecutive updates is reached much earlier than this limit, and therefore
we stop the algorithm at this stage. Figure 6.2 shows the reconstruction perfor-
mance of SGF-LASSO, LGF-LASSO and G-LASSO for a particular cloud height,
when the signal was sensed with a compression ratioµ = 0.5. We can see that the
performance of SGF-LASSO and LGF-LASSO is very close to eachother and both
are able to recover the smooth transitions of the original signal. On the other hand,
the performance of G-LASSO deteriorates both on the front ofsmoothness as well
as block size. Note that in contrast to SGF-LASSO and LGF-LASSO,λg is the
only sparsity creating parameter for G-LASSO. Therefore, we increase its value to
122.5, which is the minimum to recreate the actual zero blocks. Also in case of
SGF-LASSO, we takeλg = 17.5 in order to facilitate the parsimonious effect of
λe. Figures 6.3-6.6 show the reconstruction performance of SGF-LASSO, LGF-
LASSO and G-LASSO for the complete range of cloud heights. Again, we can see
that the performance of SGF-LASSO and LGF-LASSO is better than G-LASSO
and very close to the original. Table 6.1 shows the performance comparison of the
proposed algorithms through the mean squared error (MSE) metric against varying
compression ratios,

MSE
∆
= E{‖x̃ − ˆ̃x‖22/NNCH}

where x̃ is the concatenation ofNCH signalsx (i.e., of all cloud heights), and
average (E{.}) is over different noise realizations. We can see that the performance
improves in general with increasing value ofµ, for 0.1 ≤ µ ≤ 0.7. Nonetheless,
the difference in performance follows the previously observed pattern. Note that
the performance of LGF-LASSO can be improved by increasing the overlapping
factor but that would cause a subsequent increase in the computational complexity.
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Table 6.1: MSE comparisons w.r.t. compression ratio

µ SGF-LASSO LGF-LASSO G-LASSO

0.1 0.4607 0.4523 0.4953

0.3 0.2589 0.2607 0.4122

0.5 0.1661 0.1607 0.3079

0.7 0.1250 0.1197 0.2576

6.4 Conclusions

In this paper, we have proposed two new LASSO formulations, namely, sparse
group fused LASSO and latent group fused LASSO. The former uses element-wise
sparsity, group sparsity (over disjoint groups) and fusionpenalties, whereas the
latter combines the fusion penalty with a latent group penalty. Both formulations
can be used to reconstruct smooth signals from their compressed measurements.
We also provide low-complexity solvers for the proposed formulations, based on
the alternating direction method of multipliers. We compared the performance of
our proposed algorithms with standard group LASSO over a smooth test signal.
The simulation results confirm the better performance of theproposed algorithms
for signal reconstruction against group LASSO. Similar results were obtained for
the mean squared error metric, for varying compression ratios.
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Figure 6.5: Reconstruction by LGF-LASSO
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Chapter 7
Conclusions and Future Work

In this chapter, we provide the conclusive findings of the thesis and also enumerate
some suggestions for future work.

7.1 Conclusions

In this thesis, we have shown that compressive sampling (CS)can be applied to
ultra-wideband (UWB) signaling to reduce the sampling ratemuch below the clas-
sical Nyquist rate. We have presented practical scenarios in this regard and results
have been shown through numerical experiments.

We have proposed CS-based energy detectors for UWB impulse-radio (IR)
pulse position modulation (PPM) in different fading environments. We have shown
that the principles of generalized maximum likelihood can be used to propose de-
tectors which require the reconstruction of the original signal from the compressed
samples and also detectors which skip the reconstruction step and carry out de-
tection on the compressed samples directly. This can help further in reducing the
complexity. We have provided exact theoretical expressions for the bit error prob-
ability (BEP) to assess the performance of our proposed detectors.

We have also proposed CS-based differential detectors for IR-UWB signals.
These detectors work on consecutive symbols. We have developed detectors with
separate reconstruction and detection stages as well as detectors that do these steps
jointly. We have also proposed detectors which do not need reconstruction at all and
can work on the compressed samples directly. However, this can put some limita-
tions on the overall flexibility of the detector in terms of the measurement process.

135
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To assess the performance of these detectors, we have also provided maximum a
posteriori (MAP) based detectors.

We have extended the CS-based classical differential detectors to the case of
multiple symbol differential detectors. To keep the implementation complexity
very low, we work only with the compressed samples. We have used the principle
of the generalized likelihood ratio test to eliminate the limitations on such detectors,
in terms of the measurement process. Apart from proposing compressed detectors
which contain full timing information, we have also proposed detectors which need
such information at symbol level only. This effectively resulted in detectors which
are low-cost and low-complexity.

Finally, we presented our work on the theoretical aspects ofCS. We developed
algorithms which exploit the varying block-size sparse structure of the signal with
smooth coefficients. In this regard, we basically developedtwo approaches. In the
first approach, we combined group sparsity with element-wise sparsity, along with
sparsity in the difference of consecutive elements. This resulted in variable group
sizes with smooth reconstructed signal transitions. In thesecond approach, we
used the concept of overlapping groups along with element-wise fusion to recon-
struct block sparse smooth signals of varying block sizes. For both approaches, we
proposed efficient iterative solvers in the form of the alternating direction method
of multipliers.

7.2 Suggestions for Future Work

CS is a very general technique and can have numerous applications. Here, we enlist
some major areas for possible future research.

1. UWB signaling offers very fine timing resolution. This aspect makes UWB
a favorable choice for localization. Especially in sensor networks, UWB
signals can offer centimeter ranging accuracy by using timebased position-
ing techniques, e.g., time-of-arrival and time-difference-of-arrival. Further,
since power consumption and implementation complexity arecritical factors
for sensor nodes, CS-based UWB can be very useful in this regard. CS can
be used along with UWB for this application, not only to reduce the sampling
rates but also to exploit sparsity within the network. The sparsity within the
network is from the perspective that not all the nodes are active at a given
point in time, and therefore CS can help in optimizing the number of active
sensors as well.
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2. A number of publications have appeared recently which exploit higher or-
der statistics of the signal to reduce the sampling rate by a great margin.
Estimating the power spectral density of wideband signals is a case in point
where signal correlations can be exploited in the compressed domain to build
efficient estimators. This approach can be extended to multi-dimensional
estimations as well. Such aspects can be explored in the caseof UWB in
terms of, for example, estimating the delay-Doppler spectrum of time vary-
ing UWB channels.

3. CS can be used in climate monitoring, e.g., to estimate thecloud density or
the volume of rainfall etc. CS can be extremely helpful in this regard by
optimizing the number of sensors required for monitoring and also exploit
the unique structures of such signals, e.g., block sparsityand smoothness.
Chapter 6 gives a first attempt to tackle such problems.

4. CS can be used for efficient field estimation. A case in pointis estimating
the spectral field for cognitive radios (CRs). Usual methodsfor spectral esti-
mation concentrate on CRs individually. The resulting spectral estimates are
quite localized and depending upon the signal propagation environment, it is
possible that the CRs may not be able to detect a primary user (PU), resulting
in what is known as the ‘hidden-terminal’ problem. Therefore, collaborative
sensing mechanisms are necessary. One such technique is to develop a power
spectral map over the complete space known as spectrum cartography [115].
A global overview of the spectral state results in better reutilization of the
spectral holes and also helps CRs to regulate their transmitpower in order to
reduce interference with the PUs. However, the challenge isto estimate the
field where no sensing mechanism is available. In this case, CS can be used
to provide a solution by exploiting the inherent sparsity ofthe field.

5. CS can greatly assist in the successful implementation ofnew telecommu-
nication technologies, e.g., massive MIMO. CS can be used here both for
channel estimation as well as optimizing the number of active antennas.

6. Seismic exploration is a very expensive field. CS can facilitate efficient and
cost effective seismic exploration to utilize sparsity of the signal as well as
optimizing the number of scattered monitoring sensors. In this way, sparsity
can be exploited both in the temporal and spatial domains.

7. CS can be used in radio astronomy. Normally, the received data is of very
high resolution and sensing platforms, e.g., satellites, cannot offer very high
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processing power and/or storage capacity, therefore sensing the astronomical
information in a compressed manner can save a lot of resources.

8. CS has a great potential in the field of biomedical imaging.An interesting
example is that of magnetic resonance imaging (MRI). Normally, a patient
has to spend a substantial amount of time in an MRI machine in order to
provide an image. Since the images are sparse, CS can greatlyhelp in re-
ducing the acquisition time by reconstructing the completeimage with fewer
frequency samples.

9. In the field of photographic imaging, advanced cameras generally have a
large number of sensors and therefore become quite expensive. CS can help
in reducing the number of these sensors which can result in reducing the
price of such cameras.



Bibliography

[1] D. Porcino and W. Hirt, “Ultra-wideband radio technology: potential and
challenges ahead,”Communications Magazine, IEEE, vol. 41, no. 7, pp. 66–
74, 2003.

[2] B. Le, T. Rondeau, J. Reed, and C. Bostian, “Analog-to-digital converters,”
IEEE Signal Processing Magazine, vol. 22, no. 6, pp. 69–77, Nov. 2005.

[3] M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate
of innovation,” IEEE Transaction on Signal Processing, vol. 50, no. 6, pp.
1417–1428, June 2002.

[4] M. Unser, “Sampling-50 years after shannon,”Proceedings of the IEEE,
vol. 88, no. 4, pp. 569–587, Apr 2000.

[5] D. L. Donoho, “Compressed sensing,”IEEE Transactions on Information
Theory, vol. 52, no. 4, April 2006.

[6] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,” IEEE
Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[7] F. ET Docket 98-153, “Revision of part 15 of the commissions rules regard-
ing ultra-wideband transmission systems,” Tech. Rep., 2002.

[8] M. Win and R. Scholtz, “Impulse radio: how it works,”IEEE Communica-
tions Letters, vol. 2, no. 2, pp. 36–38, Feb 1998.

139



140 Bibliography

[9] R. Harjani, J. Harvey, and R. Sainati, “Analog/rf physical layer issues for
uwb systems,” inVLSI Design, 2004. Proceedings. 17th International Con-
ference on, 2004, pp. 941–948.

[10] R. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal
on Selected Areas in Communications, vol. 17, no. 4, pp. 539–550, Apr 1999.

[11] P. Kenington and L. Astier, “Power consumption of a/d converters for
software radio applications,”IEEE Transactions on Vehicular Technology,
vol. 49, no. 2, pp. 643–650, Mar 2000.

[12] E. Candes, “Compressive sampling,” inProceedings of the International
Congress of Mathematicians, Madrid, Spain, 2006.

[13] E. Candes and M. Wakin, “An introduction to compressivesampling,”Signal
Processing Magazine, IEEE, vol. 25, no. 2, pp. 21–30, 2008.

[14] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparsesolutions of
systems of equations to sparse modeling of signals and images,” SIAM Rev.,
vol. 51, no. 1, pp. 34–81, Feb. 2009. [Online]. Available: http://dx.doi.org/
10.1137/060657704

[15] S. S. Chen, D. L. Donoho, Michael, and A. Saunders, “Atomic decomposi-
tion by basis pursuit,”SIAM Journal on Scientific Computing, vol. 20, pp.
33–61, 1998.

[16] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(non-orthogonal) dictionaries viaℓ1 minimization,” inProc. Natl Acad. Sci.
USA, vol. 100, no. 5, 2003, pp. 2197–2202.

[17] J. Kruskal, “Three-way arrays: rank and uniqueness of trilinear decomposi-
tions, with application to arithmetic complexity and statistics,” Linear Alge-
bra and Its Applications, vol. 18, pp. 95–138, 1977.

[18] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic de-
composition,”IEEE Transactions on Information Theory, vol. 47, no. 7, pp.
2845–2862, 1999.

[19] E. Candes and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse Problems, vol. 23, no. 3, pp. 969–985, 2007. [Online].
Available: http://stacks.iop.org/0266-5611/23/969

http://dx.doi.org/10.1137/060657704
http://dx.doi.org/10.1137/060657704
http://stacks.iop.org/0266-5611/23/969


Bibliography 141

[20] E. Candes and T. Tao, “Decoding by linear programming,”Information The-
ory, IEEE Transactions on, vol. 51, no. 12, pp. 4203–4215, 2005.

[21] D. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse overcom-
plete representations in the presence of noise,”Information Theory, IEEE
Transactions on, vol. 52, no. 1, pp. 6–18, 2006.

[22] F. Santosa and W. W. Symes, “Linear inversion of band-limited reflection
seismograms,”SIAM J. Sci. Stat. Comput., vol. 7, no. 4, pp. 1307–1330,
Oct. 1986. [Online]. Available: http://dx.doi.org/10.1137/0907087

[23] E. Candes, J. Romberg, and T. Tao, “Stable signal recovery from incomplete
and inaccurate measurements,”Comm. Pure Appl. Math., vol. 59, no. 8, pp.
1207–1223, 2005.

[24] E. Candès and T. Tao, “Near-optimal signal recovery from random projec-
tions: Universal encoding strategies?”Information Theory, IEEE Transac-
tions on, vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

[25] M. Rudelson and R. Vershynin, “On sparse reconstruction from fourier and
gaussian measurements,”Communications on Pure and Applied Mathemat-
ics, vol. 61, pp. 1025–1045, August 2008.

[26] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionar-
ies,” Signal Processing, IEEE Transactions on, vol. 41, no. 12, pp. 3397–
3415, Dec 1993.

[27] G. Davis and M. Avellaneda, “Adaptive greedy approximations,” Journal of
Constructive Approximations, vol. 13, pp. 57–98, 1997.

[28] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods and
their applications to non-linear system identification,”International Journal
of Control, vol. 50, no. 5, pp. 1873–1896, 1989.

[29] Y. C. Pati, R. Rezaiifar, Y. C. P. R. Rezaiifar, and P. S. Krishnaprasad, “Or-
thogonal matching pursuit: Recursive function approximation with applica-
tions to wavelet decomposition,” inProceedings of the 27 th Annual Asilo-
mar Conference on Signals, Systems, and Computers, 1993, pp. 40–44.

[30] J. Tropp and A. Gilbert, “Signal recovery from random measurements via
orthogonal matching pursuit,”Information Theory, IEEE Transactions on,
vol. 53, no. 12, pp. 4655–4666, Dec. 2007.

http://dx.doi.org/10.1137/0907087


142 Bibliography

[31] G. Karabulut, L. Moura, D. Panario, and A. Yongacoglu, “Integrating flex-
ible tree searches to orthogonal matching pursuit algorithm,” Vision, Image
and Signal Processing, IEE Proceedings -, vol. 153, no. 5, pp. 538–548, Oct.
2006.

[32] D. Needell and J. A. Tropp, “Cosamp: iterative signal recovery from
incomplete and inaccurate samples,”Commun. ACM, vol. 53, no. 12,
pp. 93–100, Dec. 2010. [Online]. Available: http://doi.acm.org/10.1145/
1859204.1859229

[33] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,”
Communications on Pure and Applied Mathematics, vol. 57, no. 11, pp.
1413–1457, 2004. [Online]. Available: http://dx.doi.org/10.1002/cpa.20042

[34] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms
for compressed sensing,”Proceedings of the National Academy of Sciences,
vol. 106, no. 45, pp. 18 914–18 919, 2009. [Online]. Available: http://www.
pnas.org/content/106/45/18914.abstract

[35] D. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for
compressed sensing: I. motivation and construction,” inInformation Theory
Workshop (ITW), 2010 IEEE, 2010, pp. 1–5.

[36] ——, “Message passing algorithms for compressed sensing: Ii. analysis and
validation,” in Information Theory Workshop (ITW), 2010 IEEE, 2010, pp.
1–5.

[37] R. Tibshirani, “Regression shrinkage and selection via the lasso,”Journal of
the Royal Statistical Society, Series B, vol. 58, pp. 267–288, 1994.

[38] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,”
Annals of Statistics, vol. 32, pp. 407–499, 2004.

[39] J. Friedman, T. Hastie, H. Hfling, and R. Tibshirani, “Pathwise coordinate
optimization,”Annals of Applied Statistics, vol. 1, pp. 302–332, 2007.

[40] D. Baron, S. Sarvotham, and R. Baraniuk, “Bayesian compressive sensing
via belief propagation,”Signal Processing, IEEE Transactions on, vol. 58,
no. 1, pp. 269–280, 2010.

http://doi.acm.org/10.1145/1859204.1859229
http://doi.acm.org/10.1145/1859204.1859229
http://dx.doi.org/10.1002/cpa.20042
http://www.pnas.org/content/106/45/18914.abstract
http://www.pnas.org/content/106/45/18914.abstract


Bibliography 143

[41] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,”Journal of the Royal Statistical Society, Series B, vol. 68,
pp. 49–67, 2006.

[42] J. Friedman, T. Hastie, and R. Tibshirani, “A note on thegroup lasso and a
sparse group lasso,” Stanford University, Tech. Rep., 2010.

[43] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” Journal of the Royal Statistical Society, Series B, vol. 67, pp. 301–320,
2005.

[44] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and
smoothness via the fused lasso,”Journal of the Royal Statistical Society Se-
ries B, pp. 91–108, 2005.

[45] M. Ghavami, L. B. Michael, and R. Kohno,Ultra Wideband signals and
systems in communication engineering, 2nd ed. West Sussex, England:
John Wiley Sons, 2007.

[46] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Mas-
soud, and R. Baraniuk, “Analog-to-information conversionvia random de-
modulation,” inDesign, Applications, Integration and Software, IEEE Dal-
las/CAS Workshop, Oct. 2006, pp. 71–74.

[47] T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano, andL. Coulot, “Sparse
sampling of signal innovations,”Signal Processing Magazine, IEEE, vol. 25,
no. 2, pp. 31–40, March 2008.

[48] A. Molisch, J. Foerster, and M. Pendergrass, “Channel models for ultraw-
ideband personal area networks,”IEEE Wireless Communications, vol. 10,
no. 6, pp. 14–21, Dec. 2003.

[49] C. Carbonelli and U. Mengali, “M-ppm noncoherent receivers for uwb ap-
plications,”Wireless Communications, IEEE Transactions, vol. 5, no. 8, pp.
2285–2294, Aug. 2006.

[50] S. Dubouloz, B. Denis, S. De Rivaz, and L. Ouvry, “Performance analy-
sis of ldr uwb non-coherent receivers in multipath environments,” inUltra-
Wideband, 2005. ICU 2005. 2005 IEEE International Conference on, 2005,
pp. 6 pp.–.



144 Bibliography

[51] Y. Souilmi and R. Knopp, “On the achievable rates of ultra-wideband ppm
with non-coherent detection in multipath environments,” in Communica-
tions, 2003. ICC ’03. IEEE International Conference on, vol. 5, 2003, pp.
3530–3534 vol.5.

[52] Y. Vanderperren, G. Leus, and W. Dehaene, “Performanceanalysis of a flexi-
ble subsampling receiver for pulsed uwb signals,”Wireless Communications,
IEEE Transactions on, vol. 8, no. 8, pp. 4134–4142, 2009.

[53] J. Kusuma, A. Ridolfi, and M. Vetterli, “Sampling of communication sys-
tems with bandwidth expansion,” inCommunications, 2002. ICC 2002.
IEEE International Conference on, vol. 3, 2002, pp. 1601–1605 vol.3.

[54] J. Kusuma, I. Maravic, and M. Vetterli, “Sampling with finite rate of innova-
tion: channel and timing estimation for uwb and gps,” inCommunications,
2003. ICC ’03. IEEE International Conference on, vol. 5, 2003, pp. 3540–
3544 vol.5.

[55] Z. Wang, G. Arce, J. Paredes, and B. Sadler, “Compresseddetection for
ultra-wideband impulse radio,” inSignal Processing Advances in Wireless
Communications, 2007. SPAWC 2007. IEEE 8th Workshop on, 2007, pp. 1–
5.

[56] Z. Wang, G. Arce, B. Sadler, J. Paredes, and X. Ma, “Compressed detection
for pilot assisted ultra-wideband impulse radio,” inUltra-Wideband, 2007.
ICUWB 2007. IEEE International Conference on, 2007, pp. 393–398.

[57] A. Oka and L. Lampe, “A compressed sensing receiver for uwb impulse
radio in bursty applications like wireless sensor networks,” Physical Com-
munication, vol. 2, no. 4, pp. 248 – 264, 2009.

[58] Z. Wang, G. Arce, B. Sadler, J. Paredes, S. Hoyos, and Z. Yu, “Compressed
uwb signal detection with narrowband interference mitigation,” in Ultra-
Wideband, 2008. ICUWB 2008. IEEE International Conferenceon, vol. 2,
2008, pp. 157–160.

[59] A. Oka and L. Lampe, “Compressed sensing reception of bursty uwb im-
pulse radio is robust to narrow-band interference,” inGlobal Telecommuni-
cations Conference, 2009. GLOBECOM 2009. IEEE, 2009, pp. 1–7.



Bibliography 145

[60] J. Paredes, G. Arce, and Z. Wang, “Ultra-wideband compressed sensing:
Channel estimation,”Selected Topics in Signal Processing, IEEE Journal of,
vol. 1, no. 3, pp. 383–395, 2007.

[61] P. Zhang, Z. Hu, R. Qiu, and B. Sadler, “A compressed sensing based ultra-
wideband communication system,” inCommunications, 2009. ICC ’09.
IEEE International Conference on, 2009, pp. 1–5.

[62] K. Gedalyahu and Y. Eldar, “Time-delay estimation fromlow-rate samples:
A union of subspaces approach,”Signal Processing, IEEE Transactions on,
vol. 58, no. 6, pp. 3017–3031, 2010.

[63] S. Gishkori, G. Leus, and V. Lottici, “Compressive sampling based differ-
ential detection for uwb impulse radio signals,”Physical Communication,
vol. 5, no. 2, pp. 185 – 195, 2012.

[64] M. Davenport, P. Boufounos, M. Wakin, and R. Baraniuk, “Signal process-
ing with compressive measurements,”Selected Topics in Signal Processing,
IEEE Journal of, vol. 4, no. 2, pp. 445–460, 2010.

[65] T. Ragheb, J. Laska, H. Nejati, S. Kirolos, R. Baraniuk,and Y. Massoud,
“A prototype hardware for random demodulation based compressive analog-
to-digital conversion,” inCircuits and Systems, 2008. MWSCAS 2008. 51st
Midwest Symposium on, 2008, pp. 37–40.

[66] Z. Yu, S. Hoyos, and B. Sadler, “Mixed-signal parallel compressed sens-
ing and reception for cognitive radio,” inAcoustics, Speech and Signal Pro-
cessing, 2008. ICASSP 2008. IEEE International Conferenceon, 2008, pp.
3861–3864.

[67] A. Maleki and D. Donoho, “Optimally tuned iterative reconstruction algo-
rithms for compressed sensing,”Selected Topics in Signal Processing, IEEE
Journal of, vol. 4, no. 2, pp. 330–341, 2010.

[68] J. Pearl,Probabilistic reasoning in intelligent systems: networksof plausible
inference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1988.

[69] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,”Information Theory, IEEE Transactions on, vol. 47,
no. 2, pp. 498–519, 2001.



146 Bibliography

[70] M. Bayati and A. Montanari, “The dynamics of message passing on dense
graphs, with applications to compressed sensing,”Information Theory, IEEE
Transactions on, vol. 57, no. 2, pp. 764–785, 2011.

[71] S. Gishkori, G. Leus, and H. Delic, “Energy detection ofwideband and ultra-
wideband ppm,” inGlobal Telecommunications Conference (GLOBECOM
2010), 2010 IEEE, 2010, pp. 1–5.

[72] J. Choi and W. Stark, “Performance of ultra-wideband communications with
suboptimal receivers in multipath channels,”Selected Areas in Communica-
tions, IEEE Journal on, vol. 20, no. 9, pp. 1754–1766, 2002.

[73] J. G. Proakis,Digital Communications, 4th ed. Avenue of Americas, NY:
McGraw-Hill, 2001.

[74] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products,
6th ed. San Diago, CA: Academic Press, 1996.

[75] S. Gishkori, G. Leus, and H. Delic, “Energy detectors for sparse signals,”
in Signal Processing Advances in Wireless Communications (SPAWC), 2010
IEEE Eleventh International Workshop on, 2010, pp. 1–5.

[76] M. Davenport, J. Laska, J. Treichler, and R. Baraniuk, “The pros and cons of
compressive sensing for wideband signal acquisition: Noise folding versus
dynamic range,”Signal Processing, IEEE Transactions on, vol. 60, no. 9,
pp. 4628–4642, 2012.

[77] L. Lampe and K. Witrisal, “Challenges and recent advances in ir-uwb sys-
tem design,” inCircuits and Systems (ISCAS), Proceedings of 2010 IEEE
International Symposium on, 2010, pp. 3288–3291.

[78] V. Lottici, A. D’Andrea, and U. Mengali, “Channel estimation for ultra-
wideband communications,”Selected Areas in Communications, IEEE Jour-
nal on, vol. 20, no. 9, pp. 1638–1645, 2002.

[79] K. Witrisal, G. Leus, G. J. M. Janssen, M. Pausini, F. Troesch, T. Zasowski,
and J. Romme, “Noncoherent ultra-wideband systems,”Signal Processing
Magazine, IEEE, vol. 26, no. 4, pp. 48–66, 2009.

[80] R. Hoctor and H. Tomlinson, “Delay-hopped transmitted-reference rf com-
munications,” inUltra Wideband Systems and Technologies, 2002. Digest of
Papers. 2002 IEEE Conference on, 2002, pp. 265–269.



Bibliography 147

[81] Y.-L. Chao and R. Scholtz, “Optimal and suboptimal receivers for ultra-
wideband transmitted reference systems,” inGlobal Telecommunications
Conference, 2003. GLOBECOM ’03. IEEE, vol. 2, 2003, pp. 759–763 Vol.2.

[82] M. Ho, V. Somayazulu, J. Foerster, and S. Roy, “A differential detector for
an ultra-wideband communications system,” inVehicular Technology Con-
ference, 2002. VTC Spring 2002. IEEE 55th, vol. 4, 2002, pp. 1896–1900
vol.4.

[83] N. Guo and R. Qiu, “Improved autocorrelation demodulation receivers based
on multiple-symbol detection for uwb communications,”Wireless Commu-
nications, IEEE Transactions on, vol. 5, no. 8, pp. 2026–2031, 2006.

[84] V. Lottici and Z. Tian, “Multiple symbol differential detection for uwb
communications,”Wireless Communications, IEEE Transactions on, vol. 7,
no. 5, pp. 1656–1666, 2008.

[85] V. Lottici, Z. Tian, and G. Leus, “A novel approach to uwbdata detection
with symbol-level synchronization,”Physical Communication, vol. 2, no. 4,
pp. 296–305, 2009.

[86] Y. Vanderperren, W. Dehaene, and G. Leus, “Performanceanalysis of a flexi-
ble subsampling receiver for pulsed uwb signals,”Wireless Communications,
IEEE Transactions on, vol. 8, no. 8, pp. 4134–4142, 2009.

[87] S. Gishkori, G. Leus, and V. Lottici, “Compressive sampling based differ-
ential detection of ultra wideband signals,” inPersonal Indoor and Mobile
Radio Communications (PIMRC), 2010 IEEE 21st International Symposium
on, 2010, pp. 194–199.

[88] M. R. Osborne, B. Presnell, and B. A. Turlach, “On the lasso and its
dual,” Journal of Computational and Graphical Statistics, vol. 9, no. 2, pp.
319–337, 2000. [Online]. Available: http://dx.doi.org/10.2307/1390657

[89] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths for
generalized linear models via coordinate descent,” 2009. [Online].
Available: http://www-stat.stanford.edu/∼hastie/Papers/glmnet.pdf

[90] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,”J. Optim. Theory Appl., vol. 109, no. 3,

http://dx.doi.org/10.2307/1390657
http://www-stat.stanford.edu/~{}hastie/Papers/glmnet.pdf


148 Bibliography

pp. 475–494, Jun. 2001. [Online]. Available: http://dx.doi.org/10.1023/A:
1017501703105

[91] P. Stoica, J. Liu, J. Li, and M. A. Prasad, “The heuristic, glrt, and map de-
tectors for double differential modulation are identical,” Information Theory,
IEEE Transactions on, vol. 51, no. 5, pp. 1860–1865, 2005.

[92] B. Efron and R. J. Tibshirani,An Introduction to the Bootstrap. New York:
Chapman & Hall, 1993.

[93] S. Kotz, T. J. Kozubowski, and K. Podgrski,The Laplace Distribution and
Generalizations. Boston: Birkhauser, 2001.

[94] L. Yang and G. Giannakis, “Ultra-wideband communications: an idea whose
time has come,”Signal Processing Magazine, IEEE, vol. 21, no. 6, pp. 26–
54, 2004.

[95] A. Molisch, “Ultra-wide-band propagation channels,”Proceedings of the
IEEE, vol. 97, no. 2, pp. 353–371, 2009.

[96] Z. Tian and V. Lottici, “Low-complexity ml timing acquisition for uwb com-
munications in dense multipath channels,”Wireless Communications, IEEE
Transactions on, vol. 4, no. 6, pp. 3031–3038, 2005.

[97] L. Yang and G. Giannakis, “Timing ultra-wideband signals with dirty tem-
plates,”Communications, IEEE Transactions on, vol. 53, no. 11, pp. 1952–
1963, 2005.

[98] P. Schvan, D. Pollex, S.-C. Wang, C. Falt, and N. Ben-Hamida, “A 22gs/s
5b adc in 0.13/spl mu/m sige bicmos,” inSolid-State Circuits Conference,
2006. ISSCC 2006. Digest of Technical Papers. IEEE International, 2006,
pp. 2340–2349.

[99] P.-L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and reconstruct-
ing signals of finite rate of innovation: Shannon meets Strang-Fix,” Signal
Processing, IEEE Transactions on, vol. 55, no. 5, pp. 1741–1757, 2007.

[100] S. Gishkori, G. Leus, and V. Lottici, “Compressive sampling based differ-
ential detection for uwb impulse radio signals,”Physical Communication,
vol. 5, no. 2, pp. 185 – 195, 2012.

http://dx.doi.org/10.1023/A:1017501703105
http://dx.doi.org/10.1023/A:1017501703105


Bibliography 149

[101] S. Gishkori and G. Leus, “Compressive sampling based energy detection of
ultra-wideband pulse position modulation,”Signal Processing, IEEE Trans-
actions on, vol. 61, no. 15, pp. 3866–3879, 2013.

[102] A. Schenk and R. F. H. Fischer, “Compressed-sensing (decision-feedback)
differential detection in impulse-radio ultra-wideband systems,” inUltra-
Wideband (ICUWB), 2011 IEEE International Conference on, 2011, pp.
121–125.

[103] ——, “Decision-feedback differential detection in impulse-radio ultra-
wideband systems,”Communications, IEEE Transactions on, vol. 59, no. 6,
pp. 1604–1611, 2011.

[104] S. Gishkori, G. Leus, and V. Lottici, “Compressive sampling based mul-
tiple symbol differential detection for uwb ir signals,” inUltra-Wideband
(ICUWB), 2012 IEEE International Conference on, 2012, pp. 130–134.

[105] S. M. Kay,Fundamentals of statistical signal processing: detectiontheory.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1998.

[106] U. Finkce and M. Pohst, “Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis,”Mathematics of Com-
putation, vol. 44, pp. 463–463, 1985.

[107] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “Vlsi implementation of mimo detection using the sphere de-
coding algorithm,”Solid-State Circuits, IEEE Journal of, vol. 40, no. 7, pp.
1566–1577, 2005.

[108] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm i. expected
complexity,” Signal Processing, IEEE Transactions on, vol. 53, no. 8, pp.
2806–2818, 2005.

[109] L. Lampe, R. Schober, V. Pauli, and C. Windpassinger, “Multiple-symbol
differential sphere decoding,”Communications, IEEE Transactions on,
vol. 53, no. 12, pp. 1981–1985, 2005.

[110] R. Schober, W. Gerstacker, and J. Huber, “Decision-feedback differential de-
tection of mdpsk for flat rayleigh fading channels,”Communications, IEEE
Transactions on, vol. 47, no. 7, pp. 1025–1035, 1999.



150

[111] G. Obozinski, L. Jacob, and J.-P. Vert, “Group lasso with overlaps: the latent
group lasso appraoch,” Tech. Rep., 2011.

[112] I. Selesnick and P.-Y. Chen, “Total variation denoising with overlapping
group sparsity,” inAcoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, May 2013, pp. 5696–5700.

[113] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods, 1997.

[114] PSD, “Noaa/oar/esrl,” Tech. Rep. [Online]. Available: http://www.esrl.noaa.
gov/psd/

[115] G. Mateos, J.-A. Bazerque, and G. Giannakis, “Spline-based spectrum car-
tography for cognitive radios,” inSignals, Systems and Computers, 2009
Conference Record of the Forty-Third Asilomar Conference on, Nov 2009,
pp. 1025–1029.

http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/


Samenvatting

Draadloze communicatie ondergaat een enorme ontwikkelingop alle vlakken. Op
het vlak van communicatie over korte afstanden, beloven technologieën zoalsultra-
wideband(UWB) zeer hoge datasnelheden, een goede tijdsresolutie encoëxistentie
met andere standaarden voor de fysische laag. Samen met dezevoordelen, zorgt de
belofte van apparaten met een lage kost en een lage complexiteit er voor dat UWB
systemen een zeer gewilde optie zijn. De belangrijkste reden voor deze voorde-
len is het gebruik van een zeer grote bandbreedte. Deze voordelen komen echter
tegen een prijs, zoals de hoge bemonsteringssnelheid die nodig is om dergelijke
signalen te ontvangen. Volgens het Nyquist-theorema kan een signaal volledig
bepaald worden als het wordt bemonsterd met een snelheid diegelijk is aan twee
maal de maximale frequentie. Dit betekent dat de UWB signalen een bemonster-
ingssnelheid vereisen in de orde van grootte van Gigasamples per seconde. Aan de
ontvanger wordt de bemonstering uitgevoerd door eenanalog-to-digital converter
(ADC). Het stroomverbruik van een ADC is evenredig aan de bemonsteringssnel-
heid. Een zeer hoge bemonsteringssnelheid betekent dat de ADC tegen de limiet
van zijn energieverbruik moet werken. Dit kan het hele idee van UWB systemen
met een lage kost en een lage complexiteit in gevaar brengen.Daarom is de hulp
van onderbemonsteringstechnieken onontbeerlijk. In dit verband stellen wij het ge-
bruik vancompressive sampling(CS) voor UWB systemen voor. CS belooft een
redelijke reconstructie van het volledige signaal met behulp van slechts een beperkt
aantal gecomprimeerde monsters, op voorwaarde dat het signaal spaars is. In dit
proefschrift concentreren we ons op impuls-radio (IR) UWB systemen. IR-UWB
signalen staan bekend voor hun spaars karakter, wat wil zeggen dat een groot deel
van het ontvangen signaal nul of te verwaarlozen is. We benutten deze ijlheid
in het tijdsdomein en verlagen de bemonsteringssnelheid tot beneden de Nyquist-
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frequentie, maar ontwikkelen op basis hiervan toch effectieve detectoren.
Wij ontwikkelen CS-gebaseerde energiedetectoren voor IR-UWB pulspositie-

modulatie (PPM) systemen in reflectieve omgevingen. We gebruiken de principes
van degeneral maximum likelihoodtheorie om enerzijds detectoren te bestuderen
voor een signaal dat gereconstrueerd wordt op basis van de comprimeerde monsters
en anderzijds detectoren te ontwikkelen die deze reconstructiestap overslaan en de
detectie direct op de gecomprimeerde monsters uitvoeren, waardoor de complex-
iteit verder verlaagt. Wij geven exacte theoretische uitdrukkingen voor debit error
probability (BEP) om de prestaties van onze voorgestelde detectoren te evalueren.
Deze uitdrukkingen worden verder getoetst aan numerieke simulaties.

Wij poneren ook CS-gebaseerde differentiële detectoren voor IR-UWB sig-
nalen. Deze detectoren werken met opeenvolgende symbolen.Wij ontwikkelen
detectoren met een aparte reconstructie- en detectiefase evenals detectoren die deze
stappen gezamenlijk uitvoeren. We stellen verder detectoren voor die geen recon-
structiefase nodig hebben en enkel werken met de gecomprimeerde monsters. Dit
brengt echter een aantal beperkingen met zich mee met betrekking tot de flexibiliteit
van het meetproces. Om de prestaties van al deze detectoren af te wegen, bieden
wij ook maximum a posteriori(MAP) detectoren aan. Wij voeren numerieke sim-
ulaties uit om de detectieresultaten weer te geven.

We breiden de klassieke CS-gebaseerde differentiële detectoren uit naar differ-
entiële detectoren gebaseerd op meerdere opeenvolgende symbolen. Om de com-
plexiteit van de implementatie laag te houden, werken we alleen rechtstreeks met de
gecomprimeerde monsters. Dit brengt weer beperkingen met zich mee wat betreft
het meetproces, maar om die zo klein mogelijk te houden gebruiken we de principes
van degeneral likelihood ratio test(GLRT). Naast de detectoren die gebaseerd zijn
op de volledige tijdsinformatie, stellen we ook detectorenvoor die dergelijke infor-
matie slechts op symboolniveau nodig hebben. Dit resulteert effectief in detectoren
met een lage kost en een lage complexiteit.

Tot slot presenteren we een aantal theoretische aspecten van CS. Wij ontwikke-
len algoritmes die de blokspaarse structuur van het signaaluitbuiten. Deze blok-
spaarse eigenschap wordt gecombineerd met verschillende blokafmetingen en sig-
naalcoëfficiënten met vloeiende overgangen. Dergelijkesignalen worden vaak aan-
getroffen in een breed scala aan technische en biologische onderzoeksgebieden.



Propositions

1. Compressive sampling (CS) is a viable option to decrease the sampling rate
much below the Nyquist rate in impulse-radio (IR) ultra-wideband (UWB)
systems.

2. Noncoherent IR-UWB detectors can be realized from the reconstructed sam-
ples and their performance is independent of the spreading factor.

3. Signal detection is possible from the compressed samplesdirectly without
the need for a reconstruction stage but its performance depends upon the
choice of measurement matrices.

4. The reconstruction performance of IR-UWB modulated datacan be improved
by exploiting the sparsity structure of the received signal.

5. Faith, perseverance and patience are essential ingredients for a PhD.

6. Life of a PhD student is like that of a bull in a china shop: mistreating every
delicate theory, before settling down for a proper solution.

7. People are the same everywhere, irrespective of race or color. Therefore,
their Creator must be the same.

8. There should be no restriction on opinions as long as they are not abusive
and do not incite breaking the law.

9. Every human is born with an inherent right to life, justiceand dignity. A
policy of denying it in the name of collateral damage is despicable.

10. Governments should focus on fortifying their own borders instead of raven-
ing weaker countries on one pretext or the other.

These propositions are considered opposable and defendable, and as such have been

approved by the supervisor prof.dr.ir. G.J.T. Leus.
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Stellingen

1. Compressive sampling(CS) is een nuttige manier om de bemonsteringssnelheid ver
onder de Nyquist-frequentie te verlagen in impuls-radio (IR)ultra-wideband(UWB)
systemen.

2. Niet-coherente IR-UWB detectoren kunnen worden gerealiseerd met behulp van de
gereconstrueerde monsters en hun prestatie is onafhankelijk van de spreidingsfactor.

3. Signaaldetectie is mogelijk op basis van enkel de gecomprimeerde monsters, zonder
dat er een reconstructiestap nodig is, maar de prestatie hiervan hangt af van de keuze
van de meetmatrices.

4. De reconstructieprestatie van data gemoduleerd met IR-UWB kan worden verbeterd
door de spaarsheid van het ontvangen signaal uit te buiten.

5. Geloof, doorzettingsvermogen en geduld zijn essentiële ingrediënten voor een PhD.

6. Het leven van een promovendus is als die van een olifant in een porseleinkast: elke
delicate theorie misbruiken, om vervolgens tot een goede oplossing te komen.

7. Mensen zijn overal hetzelfde, ongeacht ras of kleur. Daarom moet hun Schepper
hetzelfde zijn.

8. Er mag geen beperking zijn op meningen, zolang ze geen misbruik opleveren en niet
aanzetten tot het breken van de wet.

9. Ieder mens wordt geboren met een inherent recht op leven, rechtvaardigheid en
waardigheid. Een beleid dat dit ontkent in de naam vancollateral damageis ve-
rachtelijk.

10. Overheden moeten zich richten op het versterken van hun eigen grenzen, in plaats
van het leegroven van zwakkere landen op basis van een of ander voorwendsel.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig

goedgekeurd door de promotor prof.dr.ir. G.J.T. Leus.
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IR Impulse Radio

ITH Iterative Thresholding

LASSO Least Absolute Shrinkage and Selection Operator

LOS Line of Sight

LP Linear Program

MAP Maximum A Posteriori

MSE Mean Squared Error

MSDD Multiple Symbol Differential Detection

NR Nyquist Rate

NLOS Non Line of Sight

OLS Ordinary Least Squares

OMP Orthogonal Matching Pursuit

PDF Probability Density Function
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RIP Restricted Isometry Property
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SE State Evolution

SLS Symbol Level Synchronization

SMM Same Measurement Matrix

SNR Signal to Noise Ratio
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Notations

x Scalarx

x Vectorx

x̂ Estimate of vectorx

xT Transpose of vectorx

[x]i ith entry of the vectorx

X Matrix X

X−1 Inverse of matrixX

[X]i,j (i, j)th element of the matrixX

IN Identity matrix of sizeN ×N

1M×N M ×N matrix with all components one

0M×N M ×N matrix with all components zero

⊗ Kronecker product

⋆ Convolution

diag{·} Block diagonal matrix

⌊x⌋ Largest integer smaller or equal tox

∆
= Defines an entity

||x||p ℓp-norm ofx, i.e.,(
∑N−1

i=0 |[x]i|p)1/p

p(x) Probability density function ofx

E{x} Statistical expectation ofx

p(x) Polarity ofx

(x)+ (x)+ = x iff x > 0 otherwise(x)+ = 0

Q(x) Gaussian tail probability, i.e.,1/
√

2π
∫∞
x e−u2/2du
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