Compressive Sampling

for Wireless Communications

Ph.D. Thesis

Shahzad Gishkori






Compressive Sampling
for Wireless Communications

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus Prof. ir. K.Ch.A.M. Luyben,
voorzitter van het College van Promoties,
in het openbaar te verdedigen op donderdag 19 juni 2014 dd@ 15w

door

Shahzad Sarwar GISHKORI
elektrotechnisch ingenieur (ir)

geboren te Dera Ghazi Khan, Pakistan.



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. G.J.T. Leus

Samenstelling promotiecommissie:

Rector Magnificus

Prof. dr. ir. G.J.T. Leus

Prof. dr. K.L.M. Bertels

Prof. dr. ing. F. Le Chevalier
Prof. dr. ing. V. Lottici

Prof. Dr.-Ing. R. Fischer

Dr. Y. Vanderperren

Dr. Y. Zhang

Prof. dr. ir. A.-J. van der Veen

ISBN # 978-94-6186-329-4

voorzitter

Technische Universiteit Delftprotor
Technische Universiteit Delft
Technische Universiteit Delf
Universita di Pisa, Italia

Universitat Ulm, Deutschland
European Patent Office, Rijswijk
IMEC-NL, Eindhoven

Technische UniversiteitfD@kserve lid)

Copyright © 2014 by Shahzad Sarwar Gishkori

All rights reserved. No part of the material protected by #topyright notice may
be reproduced or utilized in any form or by any means, elaatror mechanical,
including photocopying, recording or by any informatioarsige and retrieval sys-
tem, without written permission of the author.

Thesis Cover was designed by Gull Gishkori.



To the kind memories of my mother.

And He (your Lord) has subjected to you whatever is in the érgav
and whatever is in the earth. Verily, in it are signs for a peapho
ponder. [Al-Quran, 45:13]






Summary

Wireless communications is undergoing massive developimeall forms of its
manifestations. In the field of short-range communicatiteshnologies like ultra-
wideband (UWB) systems are promising very high data ratestifning resolution
and coexistence with other physical layer standards. Alitlythese benefits, the
promise of low-cost and low-complexity devices makes UWBtesms a highly
sought-after option. The main reason for these benefiteisititization of a very
large bandwidth. However, these benefits come at a priceisttize high sampling
rate required to receive such signals. According to the Mygampling theorem,
a signal can be fully determined if sampled at twice its maxmfrequency. This
means that the UWB signals may require a sampling rate in ttier of Giga
samples per second. At the receiver, the sampling is capuédy an analog-to-
digital converter (ADC). The power consumption of an ADC isgmrtional to its
sampling rate. A very high sampling rate means stressingAD€ in terms of
power consumption. This can put the whole idea of low-costlaw-complexity
UWB systems in jeopardy. Therefore, using subsampling austis indispensable.
In this regard, we propose the utilization of compressiveag (CS) for UWB
systems. CS promises a reasonable reconstruction perfoenat the complete
signal from very few compressed samples, given the spao$ithe signal. In
this thesis, we concentrate on impulse-radio (IR) UWB systelR-UWB signals
are known to be sparse, meaning, a large part of the receigedl $ras zero or
insignificant components. We exploit this time-domain spgrand reduce the
sampling rate much below the Nyquist rate but still develifigient detectors.

We propose CS-based energy detectors for IR-UWB pulseigositodulation
(PPM) systems in multipath fading environments. We use timeiples of general-
ized maximum likelihood to propose detectors which reqtheereconstruction of



the original signal from compressed samples and detectoishvgkip this recon-
struction step and carry out detection on the compresseglsamirectly, thereby
further reducing the complexity. We provide exact thecsdtexpressions for the
bit error probability (BEP) to assess the performance ofmoposed detectors.
These expressions are further verified by numerical sinomsit

We also propose CS-based differential detectors for IR-UsMfdals. These
detectors work on consecutive symbols. We develop deteuctitih separate recon-
struction and detection stages as well as detectors thiatrpethese steps jointly.
We further present detectors which do not need reconstrueti all and can work
directly on the compressed samples. However, this can pog $mnitations on the
overall flexibility of the detector in terms of the measurenngrocess. To assess the
performance of all these detectors, we also provide maxirayosteriori (MAP)
based detectors. We provide numerical simulations toalysible detection results.

We extend the CS-based classical differential detectotiset@ase of multiple
symbol differential detectors. To keep the implementatomplexity at its min-
imum, we work only with compressed samples directly. We tgeprinciples of
the generalized likelihood ratio test (GLRT) to elimindte timitations on such de-
tectors, in terms of the measurement process. Apart froosfog on compressed
detectors which contain full timing information, we alsmpose detectors which
need such information at symbol level only. This effectuedsults in low-cost and
low-complexity detectors.

Finally, we present some work on the theoretical aspectsSf\We develop
algorithms which exploit the block sparse structure of tigea. This block spar-
sity is combined with varying block sizes and signal coefints having smooth
transitions. Such signals are often encountered in a witlgeraf engineering and
biological fields.
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Chapter

Introduction

This thesis is concerned with the application of compressampling to wireless
communications, especially the ultra-wideband systemsduBing the sampling
rate is a fundamental challenge in receiving signals witty Varge bandwidth.
Compressive sampling can be of substantial help in thigdedsle start this chap-
ter by elaborating upon the overall motivation of the thedi¢e then provide an
outline of the presented work along with highlighting ourjanaontributions.

1.1 Motivation

Digital communications has become an integral part of oenalay life. Rapid
inclusion of new devices and applications is redefining humgeractions. This
evolution has rendered wired communications essentiaplete and given way to
wireless communications into taking a pivotal role. In ti@gard, short-range com-
munications is attracting accelerated interest due tolitguitous nature. Ultra-
wideband (UWB) communications is at the forefront of shrarige communi-
cations, primarily because of the benefits associated véth large bandwidth.
However, this very large bandwidth gives rise to furtherlleimges. One of the key
challenges is the excessive sampling rate required toseetiee UWB signals, since
according to the classical Shannon-Nyquist-Whittaketekokov sampling theo-
rem [3], [4], a band limited signat(¢), i.e., X (w) = 0, |w| > wmax (rad/sec) can
be fully determined from its samples:7") if 7' < 7/wmax- IN simple words, the
sampling rate should be twice the maximum frequency. Fomthiiple GHz band-
width of UWB signals, the classical sampling theorem impb&orbitant sampling

3



rates which can heavily stress the analog-to-digital cdave (ADCs) in terms of
power consumption. To make UWB systems practically viatie, power con-
sumption must be reduced which in turn means reducing thelsayrates. Given
the sparse nature of particular UWB signals [3], one cantimegompressive sam-
pling (CS) [5, 6] which offers reasonable performance aticed sampling rates.
This thesis basically explores the application of CS for Ugighals, addressing
the challenges and highlighting principal gains.

1.2 Ultra-Wideband Systems

The history of UWB communications dates back to the earlyntigéh century
marked by the famous spark-gap experiment of Marconi. Hewedhe present
thrust came after the federal communications commissi@QC{H7] ruling, allow-
ing the use of UWB for data communications within a band.6fGHz, thus paving
the way for extremely high rate data transmissions. Ndjuthk utilization of such
a large bandwidth is only possible with minimal power trarssion so as to reduce
interference with several other pre-allocated bands. ,TUUWB systems offer high
data rates but at a short range. In this perspective, UWB eamskd in numer-
ous scenarios. Figute 1.1 shows the scenarios with a paltéifi/B application
as envisaged by the European Union project PULSERS [1]. Majtegories are
wireless personal area networks (WPANS), sensor netwpees;to-peer networks
and wireless local area networks (WLANS).

According to the FCC, UWB signals are defined as signals lyeaifiactional
bandwidth greater tha20% or signals having an absolute bandwidth greater than
0.5 GHz. There are two general mechanisms to generate a UWBI.si@me is
termed as carrier based, which uses spreading techniggesdieect sequen@e
frequency hopping or orthogonal frequency division. Inerah the transceiver
architecture of carrier based techniques is complex dube@tesence of mixers
and related circuitry. The other is termed as carrierlessigsknown as impulse-
radio (IR), which basically uses the transmission of a gholte in the time-domain
and thus occupies the complete frequency afﬁde transceiver architecture of IR
is relatively simpler. Further, the transmit power in IR-BWan be decreased by
exploiting spreading as well, which basically means thatgame information is

1Such a spreading is possible in theory but requires extsehigh chip rate which may limit its
practical implementation.

2In order to satisfy spectral requirements, the pulse caneberated as different derivatives of
the Gaussian pulse or by modulating a Gaussian pulse.
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Figure 1.2: UWB architecture

transmitted over multiple frames, with each frame transngjtat a very low power.
In this thesis, we concentrate on IR-UWB due to its simpficitimplementation.

IR-UWB is a baseband technique. A bandlimited impulse iagmaitted di-
rectly without the need for upconversion to radio freque(iRiF). Consequently,
the receiver does not need an RF to intermediate frequeRtgt@p which means,
local oscillators and phase locked loop (PLL) units are equired. This partic-
ular aspect of the IR-UWB architecture saves a lot of powerraakes the UWB
systems low-cost and low-complexity systems. Figure lo2vsta general transmit
and receive architecture of UWB systern5[[8, 9]. However ashadl see in the
next section, the ADC block still remains a power hungry Juait aspect that is
addressed in this thesis.

One unique characteristic of IR-UWB signals is the exptmta of the rich
multipath environment. Each transmitted pulse is receingte form of hundreds
of separable echoes. In narrowband signals the differahse not separable
and thus can be problematic. However in UWB, multiple patrstme exploited to
collect most of the received energy. The separability ofpias is because of the
high bandwidth of the signal. Thus, the received signal aisep insignificant or
zero values between the paths. This can potentially giveassspcharacter to the
received UWB signal. IR-UWB signaling commonly employs glexmodulation
schemes, e.g., pulse position modulation (PPM) and pulg#itace modulation
(PAM). These modulation schemes combined with the very laty-gycle nature
of transmitted symbols, can further promote sparsity inrdeeived signal. The
sparsity in IR-UWB signals is an important aspect which wadistwell on, in most
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Figure 1.3: IR-UWB received signal

of the thesis. Here, we elaborate on it by giving a simple gtanfiguré 1.8 shows
a typical, UWB PAM received signal in its Nyquist rate sangplerm, highlighting
the sparse nature of the received signal.

1.3 ADC Power Consumption

The ADC is one of the most power hungry units in the receiveher&fore, it
is important to elaborate upon the factors which can affeetamount of power
consumed in ADCs. The two major factors having a direct Ingaon the amount
of power consumed in the ADCs are the sampling r#t®&nd the resolution, i.e.,
the effective number of bitdNOB). The widely used figures of merit relatirfg
andENOB are P and F', defined in[[2] as

2ENOB fs
F==-_"7° 1.2
Pdiss ( )

where Py;ss denotes power dissipation. From (1.0)-(1.2), we can seeRteval-
uates the collective performance ©NOB and f,, whereasF' brings power effi-
ciency into the comparison as well. Performance trendsffgfrdnt ADCs, w.r.t.P
andF, can be found in]Z, 10], where ADCs are basically groupeeims of their
architecture. Fron(1l2), we can see that the ADC performaminversely pro-
portional to the power dissipation and the relationshipveen the sampling rate
and the power dissipation is almost linear. A derivationtaf &xact relationship
between the two is given in [11] with a couple of assumptian$he power is con-
sumed only at the sample-and-hold block of the ADCThe input signal supplies
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the power to charge the sample-and-hold capacitance. @lisanship can then
be written as

Panin = kT f; 106NF176/10 (] (1.3)

where P,,;, is the minimal power/N denotes the stated number of resolution bits,
k describes Boltzmann’s constant dfds the temperature (in Kelvin). From(1.3),
we can see an exact linear relationship between the samaliegand the power
dissipation. This relationship was confirmed by practioglegiments in[[2] and
the result is shown in Figufe 1.4. For different architeesuof ADCs, a general
trend of linearity between the sampling rate and the poweswmption can be
seen. Flash ADCs provide the highest sampling rates, orrtleg of Giga samples
per second, but at the same time, they consume the maximurer gue to their
parallel structure. Thus, reducing the sampling rates eaa h drastic effect on the
ADC efficiency. The issue of reducing the sampling rate ig®esively addressed
in this thesis.

Apart from the sampling rates, we can see from](1.3) that éselution bits
have an enormous influence on the power consumption as weltedver, there
is an interesting relationship between ADC resolution dedsampling rate. Fig-
ure[1.5 shows this relationship for different ADC architees. We can see that
although Flash ADCs offer the highest sampling rates, {h&iformance over res-
olution is quite poor. In contrast, Sigma-Delta ADCs carep#i better resolution



1.4. Outline and Contributions 9

257

Slope = 1b/2.3dBsps . ® Flash
3 ¥ Folding
A Half-Flash
207 @ X Pipelined
X SAR

® Sigma-Delta

15 4 Unknown

ENOB (b)

101

10 20 30 40 50 60 70 80 90 100
10log(f;) (dBsps)
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performance but suffer from lower sampling rates. This gi@aother motivation
to reduce the ADC sampling rates. By reducing the samplitgsyave can use
those architectures of ADCs which offer low sampling ratesgrovide room for
improving the resolution, which can be critical in some agaglons.

1.4 Outline and Contributions

In this thesis, our primary focus is on the application of GEIR-UWB systems.
We develop novel strategies for UWB energy detectors and WiifBrential de-
tectors, operating at low sampling rates. We show that CSeztuce the sampling
rates much below the Nyquist rate and still offer reasonpbtéormance. We pro-
pose detectors which may need reconstruction of the retesigmal from its low
rate samples, as a first step and then carry out detectioreaed¢bnstructed sam-
ples, as a second step. We also propose detectors whichhekiigdonstruction
step altogether and carry out detection directly on the @ samples. The latter
can further reduce the implementation complexity of a UWe&eireer. To assess
the performance of our proposed CS-based detectors, welatse theoretical
expressions for the bit error probability (BEP), which casily be extended to
their Nyquist rate counterpart. We also provide simulatiesults to establish the
validity of these theoretical expressions.
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Chapter 2:

In this chapter, we provide a comprehensive overview of C&gie a description
regarding its evolution in its present form. This descaptprovides substantial
insight in the subject in order to pursue further research.

Chapter 3:

In this chapter, we develop CS-based energy detectors foB dlse position

modulation. We present detectors which require recortstruof the original sig-

nal as well as detectors which work directly on the comprssenples. We also
provide theoretical BEP expressions as performance beméism The contribu-
tions of this chapter are enlisted below.

» We first present a CS framework to reduce the receiver sampdite for IR-
UWB PPM signals much below the Nyquist rate. For the sake exfretical
performance evaluations of the detection algorithms, ensisig mechanism
works under two general assumptions. In the first assumpti@nmeasure-
ment matrix consists of random elements such that the meguibws are
approximately orthogonal to each other. In the second gsisom) the or-
thogonality of the rows of the measurement matrix is assumée exact.

 Using the principles of GML, we develop CS-based energgatets for the
signal reconstructed from its compressed samples. Inehigrd, signal re-
construction is carried out by using approximate messagsipgalgorithm
(AMP). We also propose energy detectors which operate ondhmpressed
signal directly and do not need reconstruction.

* We show that the performance of our proposed energy deseistindepen-
dent of the spreading factor. This is in contrast to the tiaul approach,
where performance worsens by increasing the number of Bgeetrans-
mitted symbol.

» We provide bit error probability (BEP) expressions for fir@posed com-
pressed detectors for a deterministic channel as well asissiza distributed
channel. We show that these expressions can be easily nubftifithe en-
ergy detectors based on Nyquist-rate sampling.

The chapter has been published as
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S. Gishkori and G. Leus, “Compressive Sampling Based Brigegection of
Ultra-Wideband Pulse Position ModulationEEE Transactions on Signal
Processingvol. 61, no. 15, pp. 3866—3879, Aug. 2013

Chapter 4:

In this chapter, we apply CS to classical differential detexfor UWB systems.
We develop detectors which carry out detection by first ddivegreconstruction
step separately and detectors which do both steps of reaotish and detection
jointly. A theoretical performance comparison is giveniagamaximum a poste-
riori (MAP) based detectors. The contributions of this deapre enlisted below.

The proposed CS-based differential detectors are noneshand therefore,
do not require any channel estimation.

A direct detection method working directly on the compesssamples is
proposed, which avoids signal reconstruction. Howevsrpdérformance is
limited by the fact that the measurement process must beathe $or con-
secutive symbols.

We propose a differential detector based on a two-stepoappr In the first
step, the sparse regularized least squares error is mgtrtozeconstruct the
transmitted symbol waveforms from the compressed samatesthen, the
recovered symbol waveforms are used to perform converntiiffarential
detection.

We also propose a differential detector with a joint foratidn of the cost
function, as the composition of the sparse regularized Epsares error for
two compressed-rate consecutive received signal wavefanu the squared
DD error, which is minimized using an iterative efficient imed derived
form the elastic net optimization framework. Thus, recargion of the
compressed signal samples and detection of encoded irtformia per-
formed in a joint approach.

Finally, a compressed-rate maximum a posteriori (MAP)edadetector is
derived as performance benchmark for the proposed dete@ssuming a
Laplacian distributed channel response (i.e., the chatapsl are Laplacian
distributed).

The chapter has been published as
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S. Gishkori, G. Leus and V. Lottici, “Compressive SamplBased Differen-
tial Detection of UWB Impulse Radio SignalsElsevier Physical Commu-
nication, vol. 5, no. 2, pp. 185-195, Jun. 2012

Chapter 5:

In this chapter, we present CS-based differential detedtmr multiple symbols.
The detectors work directly on the compressed samples andtd@quire recon-
struction. We present detectors which are fully synchreshiin terms of timing
information and detectors which require the timing infotima at symbol level
only. The contributions of this chapter are enlisted below.

The proposed CS-based schemes consider multiple syndratisfferential
detection and are derived by avoiding the reconstructiep, $te., they work
directly on the compressed signal samples. This resuleduaaing the sam-
pling rate as well as the implementation complexity relatethe evaluation
of the correlation coefficients needed by the objective tionc

To alleviate the limitations as experienced by the CS-tbammcoherent re-
ceivers working directly on the compressed symbols, thesoreanent pro-
cess can be either the same or different from symbol to syt offering

an additional degree of freedom that can help the receiviéerbadapt to
various scenarios.

We also propose detectors which require symbol level symiration (SLS)
only, thus the robustness to timing errors of the proposed&®d schemes
is brought from pulse or frame level to symbol level. Thistiea relaxes
the performance of the timing synchronizer, so further lomgethe overall
receiver complexity.

A particular effort is put on cutting back the complexityjugred to optimize
the objective function over each data block for both thellgesynchronized
CMSDD and the SLS-CMSDD, which grows exponentially in thechisize.
To this end, a modified sphere decoding (SD) algorithm isvddrenabling
the joint detection of blocks of tens of symbols at polyndra@mplexity.

The chapter is accepted for publication as

S. Gishkori, V. Lottici and G. Leus, “Compressive SamplBgsed Multiple
Symbol Differential Detection for UWB CommunicationdEEE Transac-
tions on Wireless Communications - To appear
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Chapter 6:

In this chapter, we present some work on the theoreticalkcésp&CS. We develop
algorithms which exploit the block sparse structure of tigaa. This block spar-
sity is combined with varying block sizes and signal coedits having smooth
transitions. The contributions of this chapter are entdistelow.

* We propose new LASSO formulations to handle block sparsm#msignals.

* We propose to combine group sparsity with element-wises#ipaalong with
sparsity in the difference of consecutive elements. Thsslte in variable
group sizes with smooth reconstructed signal transitions.

« We also propose to use the concept of overlapping groupg aih element-
wise fusion to reconstruct block sparse smooth signalsrgfrgblock sizes.

« Finally, we propose iterative solvers in the form of aleging direction. ..
method of multipliers for our proposed problem formulaton

This chapter is accepted for publication as

¢ S. Gishkori and G. Leus, “Compressed Sensing for Blocks®p&mooth
Signals”,IEEE ICASSPFlorence, Italy, May 2014

Chapter 7:

In this chapter, we provide the conclusions, highlightingjon results and obser-
vations from the thesis. We also provide future directiomsrésearch into this
exciting field.
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Chapter

Compressive Sampling

Compressive sampling or compressed sensing (CS) is plymalated to solving
a certain system of linear equations. Although the field rddir algebra provides
well established methods to solve a general system of liegaations, it has a
subclass, namely the category of solving underdetermipgigmms, which has only
recently been getting substantial attention. CS relatébisosubclass, especially
when the objective function exhibits sparsity. In this deapwe describe the fun-
damental concepts relating to CS. More details can be faufitli[13] 14].

2.1 Underdetermined Systems of Linear Equations
Let us consider a general system of equations
y = &x (2.1)

wherex is anN x 1 vector of optimization variable® is anM x N matrix of mea-
surement functionals angdis anM x 1 vector of measurements. We can see that
(2.3) depicts a measurement system. Each elementrepresents a measurement
of x, obtained through the respective row®f Here,x represents the unknowns
and the problem is to find fromy given®. If ® is full column-rank, i.e. M > N
(that is to say, the number of measurements is equal or marettle number of
unknowns), the solution t@ (2.1) is quite elementary.

Now, consider the case ih (2.1) whe®eis full rank butM < N. This is an
instance of the set of underdetermined systems of lineaatieons (USLES), i.e.,
the number of unknowns is larger than the number of measuntsme&his system

15
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does not have a unique solution. Depending upon the differembinations of
columns of®, x can have an infinite number of representations [15] fsan©One
way to circumvent the problem of uniqueness is to introdhesobjective function
as an argument of a convex function and to formulate the apditon problem
as the minimization of this convex function subject to theadiy constraints of
(2.3). A popular choice for such a convex function is the sed#,-norm. The
optimization problem can now be written as

Py: argmin ||x/|3
X

s.t. y = ®x. (2.2)

The unique solution to the optimization probléty can be easily obtained as what
is known as the minimum norm solution.

Although the squared,-norm helps to achieve a unique solution to the under-
determined systeM», it basically measures the total energy of the objective{fun
tion x rather than targeting the individual elements. Therefibre s sparse, i.e., it
has a few nonzero elements and many exactly zero elenigntsils to reproduce
them inx. In order to measure sparsity, i.e., the number of nonzenmehts ofk,
one may replace the squarédnorm with anéo—nornﬂ, which basically optimizes
the count of nonzero elements. Then[2.2) can be replaced by

Py : argmin ||x||o
X

s.t. y = ®&x. (2.3)

A sparse solution is made available by usihg instead ofP,, but answers to
whether it is unique and globally optimal, are not as strithigtvard as in the case
of P5, due to the nonconvex nature of thenorm. Apart from the issues of unique-
ness and optimality of the solution, even solvig is very challenging. It is in
essence an exhaustive search problem, where every combio&ix” columns of
® (assuming hask nonzero elements, i.€s is the order of sparsitylix||p = K)
is tried for a possible solution. The complexity of the peshlincreases exponen-
tially in IV and it has been established tiiatis NP-hard in general.

Naturally, the aforementioned challenges motivate findiffigient solvers for
Py and/or approximations dPy. One suitable option in terms of approximating

'Note that thelo-norm is the limit asp — 0 of £,-norm, i.e.,|x|o = limy—o |||} =

limp—o Ziﬁgl [x]i|P.
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Figure 2.1: Comparison of possible estimates by using,amorm for different
values ofp

Py, is to replace théy-norm by an/;-norm, which also provides sparse solutions.
The new optimization problem can then be written as

Py : argmin ||x|/1
s.t. y = ®&x. (2.4)

In contrast taPy, P, is a convex optimization problem and can be easily solved by
being cast as a linear program (LP). is also known as basis pursuit (BP) [15]. In
a way,P; offers a compromise between the two extremeBpandPs. It is closer
to Py in terms of offering sparsity and it is closer R in terms of being convex.
Nonetheless, it needs to be established under what camgliRipproduces its best
solution and when it is equivalent &y.

In general, the comparison between the above mentionechiaption problems
is in fact a comparison between differeitnorms. A generic formulation of the
optimization problem based on &gnorm can be written as

P,: argmin |[x|[}
X
s.t. y = ®x. (2.5)

For the sake of developing a general intuition into solMigwith different values

of p, we present here a simple example. ket R? with an order of sparsity

K = 1,s0N = 2 andx has one zero and one nonzero element. Let only one
measurement be available, 86 = 1. Now a possible solution can be obtained
by blowing an/,,-ball centered at the origin of, till it intersects with the feasible
set defined by the equality constraint(in (2.5). Fiduré 2dvigies a comparison of
such estimates for different values jaf We can see that fgy = 2, a nonsparse
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Figure 2.2: Plot ofz|? for different values op

solution is obtained, whereas fpr< 1, there is a high probability of obtaining a
sparse estimate. Note that in the extreme caséy-&orm is obtained ag — 0.
Although,p < 1 generates parsimonious estimates, bot p < 1 the problem
becomes nonconvex. This can be seen by simply plotting,Hn@rms for different
values of the argument. In Figure P.2, we plot thenorms with a scalar argument
z, i.e.,|z[P for different values op. We can see that fdr < p < 1, the/,-norm
becomes nonconvex. Only in the case wpea 1, both sparsity and convexity can
be combined.

2.2 Requisites for the Sparse Solution of a USLE

A USLE is basically an ill-posed problem. We saw in the pragisection, different
formulations which can offer a sparse solution for suchesyst However, there
are certain questions which should be answered in ordertéiod sparse solution
of a USLE.

 Starting withPg, what conditions must be satisfied to guarantee the unique-

ness and optimality of the sparse solution?

» Can a unique solution be guaranteed for the approximatelgroformula-
tion, i.e.,P1?

* |f the measurements are contaminated with noise, can thmat®n errors
be bounded?
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Before we move on to answer the above mentioned questionsirsveescribe
some key concepts which play an important role in specifgmggditions for sparse
solutions of a USLE.

Spark

Spark is one of the central properties of a matrix which sthdnd investigated in
order to guarantee a successful sparse recovery. This tasinst introduced in
[16] and defined as

Definition 2.2.1 (Spark) Given a matrix®, spark(®) is the cardinality of the
smallest subset of linearly dependent columné of

Note the difference between spark of a matrix as defined aaogdhe com-
monly known rank of a matrix. Theank(®) indicates the largest number of
columns of® that are linearly independent, whereaark(®) indicates the small-
est subset of columns @ with linearly dependent columns. The rank of a ma-
trix can be easily determined by various algebraic methdusrgas, despite some
superficial resemblance, the spark of a matrix can only berg@ted through a
combinatorial search over all subsets of its columns, sinideds a bound on the
null space of a matrix. In some literaturgyark(®) — 1 has also been termed as
‘Kruskal rank’ [17].

Mutual Coherence

The mutual coherence is an easily verifiable property of aimit order to es-
tablish its performance in sparse recovery. It was propaos¢tg,[18] and can be
defined as

Definition 2.2.2 (Mutual Coherence)The mutual coherence of a matdx, u(®),
is the maximum absolute inner product of different colunfr®.dt is denoted as

(@] [®].,]

i

p(®) = max : (2.6)
1<ij<N,i#j ||[®].ill2 [|[®]:,5]2

Mutual coherence basically provides the interdependehdéferent columns
of the matrix. If the matrix comprises of orthogonal columtisen the mutual
coherence would be very low.
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In case of random orthogonal matriei$was empirically observed in [18] that
the upper bound on the mutual coherence can be related toatkienomm absolute
value of the matrix which is proportional tQ/log(NM)/M with M — oo. This
‘generic’ [18] aspect of mutual coherence leads to anothénition of the mutual
coherence which was given in [19] as

Definition 2.2.3 (Mutual Coherence - Generic'he mutual coherence of an or-
thonormalizedM x N matriE 0, 114(©), is the largest absolute entry @. It is
given as

19(©) = VN max|[©]; | (2.7)

It basically indicates how concentrated the rows of a maiméx Its value ranges
asl < puy(®) < Vv/N. This modified definition of mutual coherence generates
further insights in providing guarantees for the sparsatsmi. In case the signal
is sparse only when represented in some basis, i.e.,

x = Us (2.8)

whereW is the N x N orthonormal basis matrix (e.g., a Wavelet or Fourier matrix
ands is anN x 1 vector of coefficients with an order of sparsity||o = K, the
measurement process can be written as

y = Px =0Os (2.9)

where® = ®W¥. In such scenarios, mutual coherence basically highligigs
correlation between the measurement madriand the signal representation basis
. As we shall see in the subsequent sections, the mutualerateebetween these
two matrices can have drastic impact on sparse solutionse that if ¥ = I,
thenx = s, ® = ® and [2.9) reverts t¢ (2.1).

Restricted | sometry Property

The restricted isometry property (RIP)[20] is a strong jerbp of the measurement
matrices which can provide guarantees even when the measuote are contami-
nated with noise. It can be defined as

2Here it is implied that the resulting/ x N matrix ® is a concatenation af/ x M random
orthogonal matrices, anly is a multiple of M.
3Note that the orthonormalization is in terms of rows of therire®.
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Definition 2.2.4 (RIP). A matrix & with unit /5-norm columns satisfies RIP of
order K givendg € (0,1) if

(1= 0r)Ix[3 < | ®x13 < (1 + ) %[5 (2.10)
holds for allx with maximum order of sparsiti .

The definition of the RIP implies that if a matr# obeys an RIP of ordek’ (if
dx is not too close to unity), then it approximately preservesEuclidean length
of K-sparse vectors, which basically means that-aparse vector cannot be in the
null space of® and every submatrix o® with less thank” columns behaves like
an orthonormal matrix.

2.2.1 Conditions for a Unique Solution ofP,

A key condition for a unique solution dPy can be given using the spark of a
matrix. Since the spark of a matrix puts a bound on its nultepé can be said
that if &z = 0 (i.e., z lies in the null space oP), then it must be true thatz||, >
spark(®). From Definitior{ 2.2.11, the following theorem, as givenig],Ican then
be obtained.

Theorem 2.2.1.A USLE,y = ®x, has a necessarily sparsest possible solukon
if it obeys, ||x||o < spark(®)/2.

Proof. Assume, apart frong, there is an alternative solutiensatisfying the same
USLE, i.e.,y = ®z. This means®x — &z = 0, implying thatx — z lies in the
null space of®. From the definition of spark, we can sdlx — z||o > spark(®).
But we know that the order of sparsity of the difference carive greater than
the sum of the order of sparsity, i.éx — z|lo < ||x/lo + ||z/lo- Now, since our
solution obeys||x||o < spark(®)/2, any alternative solution must have the order
of sparsity||z||o > spark(®)/2. O

Since the relatiofx||o < spark(®)/2 means that every submatrix & with
2K columns is full column-rank, Theorem 2.P.1 leads to follogvcorollary.

Corollary 2.2.1.1. Given thatspark(®) > 2K, a unique sparse solution can be
guaranteed fotM > 2K.

So, it can be said that better results can be obtained foehigilues of the
spark. Generally, the spark rangeslas< spark(®) < M + 1. Thus if the
elements ofp are drawn from a Gaussian distributiepark(®) = M + 1, then a



22

unique solution can be guaranteed for< M /2 since every submatrix ¢ with
M columns is full-rank.

The spark of a matrix provides elegant guarantees for aesgatation. How-
ever, determining its exact value for general matrices ieduard. Nonetheless, a
lower bound on the value of the spark can be obtained easilthi$ regard,[[16]
gave the following relationship

spark(®) > 1+ L (2.11)
n(®)
whereu(®) is the mutual coherence (see Definition 2.2.2). From (2 thE) fol-
lowing theorem for a unique solution can then be given as6h [1

Theorem 2.2.2.A USLE,y = ®x, has a necessarily sparsest possible soluton
if it obeys,||x/lo < 0.5(1 4 1/u(®)).

Note from [2.6) that the minimum value pf®) is u(®) = 1/ M. Therefore,
Theoreni 2.2]2 guarantees a sparse solutiokfaer v/ M /2 which is less than the
order of sparsity guaranteed by Theolem 2.2.1, Ke<. M /2.

2.2.2 Conditions for a Unique Solution ofP,

Since solvingPg is NP-hard, the other suitable choice as mentioned easli&w i
solve P, (also known as BP) instead. However, it needs to be estellighat

conditions are required for the unique solutionRaf and/or its equivalence with
Py. In this regard, [16] claimed the following

Theorem 2.2.3.A USLE,y = ®x, has a necessarily sparsest possible soluson
of P; and equivalent oP,, if it obeys,||x|lo < 0.5(1 4+ 1/u(®)).

Thus, the conditions for solving; are same as that of solvi®y. Therefore,
the bound on the maximum order of sparsity is also quiteiotisiy, i.e., K <
VM /2. In this regard,([5] proved that the bound on the order ofsipacan be
relaxed and an equivalence betwdenandPy holds for K ~ O(M/log(N)).
To make the results more concrete,|[19] utilized the gerdgimition of mutual
coherence (Definition 2.2.3) and gave the following theorem

Theorem 2.2.4. For x, sparse in basigl, form a USLEy = ®Ws by selecting
uniformly randomM/ measurement vectors #. Then if

M > CpZ(®®)K log N (2.12)
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for C' > 0, P gives a sparse solution with overwhelming probability. Phaba-
bility of success can be higher than- §, provided that

M > Cp(®®)Klog N/6. (2.13)

It was because of these important results that CS startezhteve widespread
recognition. To put the results of Theorém 212.4 in propespective, some re-
marks are in order.

» The mutual coherence plays a critical role. In order to ease the number
of measurements, coherence between the measurement faidrid basis
matrix ¥ should be as small as possible. An example of such an inaahere
pair can be whe®® consists of spikes, i.e., comprises of the rows of an iden-
tity matrix, while ¥ is the Fourier matrix. This model corresponds to the
classic sampling-in-time scenario. For such a time-fraqueair, the inco-
herence is maximum as the spikes and complex exponentiasniiaimum
coherence [13]. Further, instead of a Fourier basis, dgaran occur in other
bases as well, e.g., wavelet bases. Since spikes are iecolveth wavelet
basesl[13], such a pair of measurement and representases ban be very
useful especially for sensing images. In terms of the measent matrices,
random matrices are incoherent with most of the fixed basisicea [13].
Examples of such matrices are, Gaussian matrices or Bérmaitices, etc.

* One unique characteristic of Theorém 2.2.4 is that any fsetrmlom mea-
surements can guarantee a unique solution. So withoutfgipecany spe-
cific set of measurements, information loss can still be daaieven with
fewer measurements. Also, given the incoherenc@ @&nd ¥, M of the
order of K log N can be sufficient.

 Finally, s (and eventuallyk) can be exactly reconstructed from compressed
measurements by simply minimizing a convex function. F,tbne does
not need to know the exact number of nonzero entries of their location
or even their magnitude, for that matter.

From the above, one can visualize a general sensing meohaSisnsing is done
through a random (nonadaptive), i.e., incoherent measameprocedure and then
reconstruction follows through a possible linear prograngrstage. Lastly, we
would also like to mention a general rule of thumb for spaesmvery, as noticed
by [6]. One can expect exact recovery, if for every nonzeeoneint ofx, at least
four incoherent measurements are available. This is alsavkras the de facto
four-to-one rule.
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2.2.3 Conditions for the Sparse Solution with Noisy Measuments

Till now, we considered an ideal scenario regarding the oreasentsy, without
noise or perturbations. However, in most practical sitretj the measurement
process is contaminated with noise. In this section, we lidke robustness of a
sparse solution in the presence of nonidealities. In suaktgins, it is hard to give
conditions of uniqueness or equivalence. Instead, themai a stable solution is
used to give conditions or bounds on sparse recovery.

Let v represent anV/ x 1 vector of bounded noise, i.€|y||2 < ¢, then the
USLE with contaminated measurements can be written as

y=®x+v (2.14)
andP, takes the shape
Py:  argmin [fxo
st. [ly — x|z <e. (2.15)

For a stable sparse solutionlg§, [21] proposed the following theorem

Theorem 2.2.5.Consider a USLEy = ®x + v. If x satisfies||x|o < 0.5(1 +
1/u(®)) and can represenyg within a tolerance, i.e., ||y — ®x||2 < ¢, thenP§
has a solutiork, such that
4¢?
(®)(2K — 1)
Now by relaxing the/g-norm by an/;-norm in the context of (2.14], can be
rewritten as

Hﬁ—ﬂﬁél_u (2.16)

P{: argmin ||x||;
X
st [ly — ®xl2 <€ (2.17)

which is also known as basis pursuit denoising (BPDN) [1Bhoaigh originally
proposed in[[22]. For the stable sparse solutiof?pfsome very nice results have
been proposed using the RIP (Definition 2.2.4). In this rg3] proposed the
following

Theorem 2.2.6.Consider a USLEy = ®&x + v. If RIP holds forK such that,
O3k + 304k < 2 (OF Soic < V2 —1), thenP{ has a solutionk that satisfies

[% —x[l2 < Cye (2.18)

whereC, is a positive constant.
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It is also possible that it is not only the measurementhat are corrupted
by noise, but the optimization vectaris also not exactly sparse, i.e., it has a few
nonzero elements and many more with negligibly small valuesx ;- be anN x 1
vector that contains th& largest nonzero elements xfand the rest set to exactly
zero. In such a scenari, [23] proposed the following modlififeeorem

Theorem 2.2.7.Consider a USLEy = ®&x + v. If RIP holds forK such that,
O03r + 304 < 2 (0Or o < V2 — 1), thenP{ has a solutionk that satisfies

1% — x[l2 < (Ck/VE)|x = xx |1 + Cue (2.19)
whereC), and C,, are positive constants.

The results of Theorefn 2.2.7 are quite strong. In caseexactly K-sparse,
then it guarantees stable recovery. Ever i not exactlyK-sparse, the solution
is as good as the one obtained by pre-selectingifhmost significant nonzero
elements ok.

2.3 Measurement Matrices

We have seen in the previous section that most of the condifiar sparse recov-
ery relate to the properties of measurement matrices. Téstign is how to design
such matrices. Since RIP is a very generalized property whimrantees sparse
recovery in different scenarios, one is tempted to find roesriwhich satisfy this
property, i.e., their different subsets of columns are Iyeathogonal. This is the
point where randomness comes into play and assumes alawliealn the follow-
ing we present some of the most widely used measurementcemtrihich satisfy
RIP for substantially large values &f, i.e., the order of sparsity.

» Gaussian Matrices An M x N Gaussian measurement matdxcan be
designed by taking independent identically distributemivednts from a zero-
mean normal distribution with variandg/, i.e.,[®]; ; ~ N (0,1/M). If

M > C K log(N/K) (2.20)
whereC' is a positive constant, theh satisfies RIP with high probability.

* Bernoulli Matrices: An M x N Bernoulli measurement matrig¢ com-
prises of independent, equiprobable elements with valtigs/ M. Similar
to Gaussian matrices, # obeys[(2.2D), then RIP is satisfied with high prob-
ability.
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» Fourier Matrices: An M x N Fourier measurement matri& can be de-
signed by selecting/ rows, uniformly at random, from afy x N Fourier
matrix. The columns of the resulting matrix are further naliged to unit/,-
norm. It was proved in [24] that RIP is held with overwhelmimgbability
if

M > C K(log N)® (2.21)

which was further improved by [25] to
M > C K(log N)*. (2.22)

However, satisfying (2.20) can also guarantee promisiaglie

2.4 Sparse Recovery Algorithms

Over the past few years, a plethora of algorithms has emengedier to recover

sparse signals from compressed measurements. Here, Vilg dascribe some

of the major categories because elaborating upon a pattialgorithm can be too
specific. However, in subsequent chapters we provide delgidiscussion on some
of the algorithms.

2.4.1 Greedy Algorithms

Greedy algorithms attempt to provide an approximate swiutif P,. We know
that P calls for an exhaustive search, in general. Greedy algositabandon this
approach in favor of the one-at-a-time strategy. The algm$ proceed in a se-
guential manner. In each step, a suitable column is seleateidh basically re-
duces a residual error, and made part of a candidate settsléan be put either on
the magnitude of the residual error or the number of columribe candidate set.
Clearly, this strategy is more feasible than an exhausteech. However, the per-
formance can vary with different situations. Since thegerhms are myopic in
nature, finding a global optimum can be challenging. A langmber of variants are
available which basically improve the complexity and/orfpemance, e.g., match-
ing pursuit (MP)[[26], 27], orthogonal matching pursuit (OM28,29/30], flexible
tree search based OMP (FT-OMP)|[31], compressive sampling@bSaMP)[32],
etc.
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2.4.2 Algorithms Based on Convex Relaxations

Algorithms based on convex relaxations basically sdtyeor P, also known as

BP and BPDN, respectively. These algorithms have a maj@erdiice from the

greedy approaches, in that their optimization approachastijnglobal in nature.

There is a vast variety of such algorithms. After casting phgblem as an LP,

solutions can be provided by interior-point methdds [1Spexially for large scale
systems. Further, a number of iterative thresholding &lyos (ITH) can also be

used [33| 34, 35, 36], again especially for large scale systevarious solvers of

the least absolute shrinkage and selection operator (LA$SPproblem can also

be used, e.g., least angle regression (LARS)) [38] and auatelidescent methods
[39]. Similarly, some Bayesian approaches, e.g., Bayesianmpressive sampling
[40] can also be utilized.

2.4.3 Algorithms Based on Different Priors

Most of the CS literature has focused on solvinrgor P, where the basic aim is
purely to recover a sparse signal. Therefore, only one,pr@t anf;-norm over

the optimization vector, has been under investigation ftarge part. However,
most of the signals are not just sparse, they also offer sqeeiad structure in
the sparsity as well. Thus, sparsity problems with priorsliierent types have
recently been proposed in the literature. For example,se oéblock sparsity there
are algorithms like group LASSQ [41], sparse group LASS(,[é&. In order to

tackle correlations in sparse elements, algorithms likstel net[[43] have been
proposed. Similarly, smoothness in sparsity has been ssiten fused LASSO
[44].
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Abstract

Compressive sampling (CS) based energy detectors areogedefor ultra-wide-

band (UWB) pulse position modulation (PPM), in multipatklifag environments

S0 as to reduce the sampling complexity at the receiver $ide. to sub-Nyquist

rate sampling, the CS process outputs a compressed vefdiom r@ceived signal

such that the original signal can be recovered from this limaedsional representa-
tion. Using the principles of generalized maximum liketildo(GML), we propose

two types of energy detectors for such signals. The first bffgketectors involves

the reconstruction of the received signal followed by a cl&ia stage. Statistical
properties of the reconstruction error have been used ®rehlization of such

kind of detectors. The second type of detectors does nobrefgconstruction and
carries out the detection operation directly on the conga@signal, thereby offer-
ing a further reduction in the implementation complexithelperformance of the
proposed detectors is independent of the spreading fab®analyze the bit error
performance of the proposed energy detectors for two swsnafrthe propagation

channel: when the channel is deterministic, and when it igsGan distributed.

We provide exact bit error probability (BEP) expressionghaf CS-based energy
detectors for each scenario of the channel. The BEP expressbtained for the

detectors working on the compressed signal directly, cauralyy be extended to

BEP expressions for the related energy detectors workirtehlyquist-rate sam-
pled signal. Simulation results validate the accuracy eS¢hBEP expressions.

3.1 Introduction

Digital communications is witnessing a phenomenal growtapplications which
involve signals of very high bandwidth. Impulse-radio (IRya-wideband (UWB)
signals are attractive because they offer high user cgpéici¢é time resolution as
well as low probability of interception and detection|[4h, 8 big hurdle in the im-
plementation of IR-UWB systems is the efficiency of the agatm-digital convert-
ers (ADCs). According to the classical Shannon-Nyquistittalker-Kotelnikov
sampling theorem [3,/4], a band-limited signdl) (i.e., X (w) = 0, |w| > wp)
can be determined completely from its samptésT) if Ts < 7/w,,. So the sam-
pling rate should be at least twice the highest frequencgrdtbre, if the bandwidth
of the signal is too high, ADCs can be heavily stressed cgusinincrease in the
power consumption [2, 10]. It could take decades before tB€ Aechnology is
fast, precise and low-cost enough for the present-day bhégtuwidth applications
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[46]. On the other hand, it has been described in [3] that mbste signals with
large bandwidths have a small rate of information. This prigpof wideband sig-
nals makes them sparse in information which has led to sampiethods based on
the amount of information (or the rate of innovation). Thendination of sparsity
with finite rate of innovation has been described(in| [47]maiily for the non-
discrete domain. Compressive sampling (CS) [5, 6] offersenflexible options to
deal with sparse signals in terms of the location of the mfation and the non-
uniformity of the measurements as we shall elaborate upsabsequent sections.
In this paper, we use CS to capitalize on the time-domainsggasf the IR-UWB
signals to reduce the sampling rate as well as the impler@mtaomplexity of
energy detectors.

Relation to prior work. We consider UWB pulse position modulation (PPM) sig-
nals. PPM is advantageous because of its simplicity and ake ef controlling
delays [45] but the disadvantage, in the context of UWB digyria the relatively
large bandwidth associated with it, which causes a largeoenof visible propaga-
tion paths[[48]. In this paper, we concentrate on noncolidteM receiver design
through energy detection [49,]50,/51] and adopt CS for redlsgetem complexity
as well as power consumption. The resulting detection phaeeresembles a gen-
eralized maximum likelihood (GML) detector. The symbol idean is determined
by the pulse position that contains most of the energy. N@edifferent works on
CS in combination with UWB signals have appeared recenily, & [52] for co-
herent receivers, in [53] for symbol-rate sampling but reqg pre-identification of
the channel which was then extended td [54] for channel anith¢f estimation, in
[55] for a GLRT-based detector which was then extended tb\éih an effective
measurement matrix design but both requiring the transomss pilot symbols, in
[57] for joint time of arrival estimation and data decodingieh requires channel
estimation, in{[58] and [59] to account for narrow-band ifegeence, in[[60] and
[61] for UWB channel estimation, in_[62] for time-delay estition and in[[63]
for differential detection of UWB signals. In contrast tcepious methods, we
present noncoherent UWB detectors. We neither requirederaification of the
channel, nor the transmission of pilot symbols. Most of theyjpus methods also
require signal reconstruction whereas, we present a metthach skips this step
altogether. Note that previous examples of detection withgressed symbols can
be found in|[63] and [64].

Our Contributions.

» We utilize the CS framework to reduce the receiver samplatg for IR-
UWB PPM signals much below the Nyquist rate.
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* Using the principles of GML, we develop CS-based energgatets for the
signal reconstructed from its compressed samples. We algoge energy
detectors which operate on the compressed signal directlyda not need
reconstruction.

* We show that the performance of our proposed energy deseistindepen-
dent of the spreading factor.

» We provide bit error probability (BEP) expressions for fireposed com-
pressed detectors for a deterministic channel as well asisdize distributed
channel. We show that these expressions can be easily nabftifithe en-
ergy detectors based on Nyquist-rate sampling.

Organization. The paper is organized as follows. Secfiod 3.2 presentsystem
model. Sectiof 313 provides the CS-based energy detectiong the GML criteria
for the reconstructed signal as well as for the compresgea@lsivithout reconstruc-
tion. Sectiorl 3.4 provides the theoretical BEP expresdianithe CS-based energy
detectors when the channel is considered deterministictid®é3.5 provides the
theoretical BEP expressions when the channel is considered Gaussian dis-
tributed. Finally, Sectioh 516 presents the simulatiors e concluding remarks
are given in Section 3.7.

3.2 System Model

To transmit thekth information symbol, consider at-ary PPM signalsy(t) of
length 7. Every symbol consists oN, frames, each with frame duratidfi,
so that the symbol time is given By = N;T;. The motivation for a multiple-
frame transmission has been attributed to the federal conwations commis-
sion (FCC) limits on the signal power spectral density [7]epBating a pulse
Ny times, reduces the energy of an individual pulse for a constgmbol en-
ergy. In PPM, the signal is modulated by delaying the tratischipulse within
a frame. The ease of implementing these delays also refleetsimplicity of
PPM. Let the base pulse delay be definedZs, = Ty /M, then the transmit-
ted signal for the:th information symbok,, € {0,1,..., M — 1} can be written
assi(t) = Z;V:fo_l q(t — (j + kNf)Ty — apTm), whereg(t) is the unit-energy
pulse waveform of duratioft, such thatl;, < Tx¢. If g(t) represents the impulse
response of the physical communication channel, then theived signal corre-
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< A\T M ‘

<~ L—=]

T = NsTy

Figure 3.1: The squared received signal without noiseAbr= 2. Labels below
the time axis show the usual time-based parameters, wiilaliels above the time
axis show values for the squared Nyquist-rate sampledoredsir(¢), i.e.,r,%,i

sponding to théth information symbol is given by

Ti(t) = sk(t) * g(t) + vk(t)

Ny—1

> h(t— T — kT — ayTaq) + ve(t).
j=0

whereuv(t) is the additive noise corresponding to ttté information symbol and
h(t) £ q(t) x g(t) is the received pulse waveform of duratidp. We can represent
ri(t) by its Nyquist-rate sampled version. We takesamples per frame period
Ty such thatV/T} is equivalent to the Nyquist rate. Leéfy, = N/M be the
integer number of Nyquist-rate samples in each slot, thenstimpled received
signal corresponding to thigh information symbol in thgth frame is given by

r/E;Jz) = k(i Ty +1T¢/N) = hijN-kNN;—arNp + v/Erjz)’ (3-1)

fori =0,1,...,N — 1, whereh; = h(iTt/N) andv,gjz = v (3T +iTy/N). We
assume that the elememgz are independent identically distributed (i.i.d.) zero-
mean Gaussian with variane€. The support of; is given by|[0, L — 1], where

L = [NT,/T;] (see Figuré3]1). Since we want to make the detection process
separable in the different frames/symbols, we do not wamtdlceived pulses to
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overlap and thus we requifB, < T or L < N . We can also writg (3]1) in the
following vector form

rf) = u (g, b) + v (32)
Wherer,(j) = [r,(f%,r,gi,.. 7’1(@]3\/ JF ,V](Cj) = [vff%,v,&%,...,v,@v_l]T andh =
[ho, h1,...,hp_1]T. Since we assume that the channel does not vary within a sym-

bol period,u’) (ay, h) is the same for every frame, i.&(") (ax, h) = u¥ (a), h) =

= u™ =Y (a;, h) = u(ay, h). TheN x 1 vectoru(ay, h) consists of\ — 1
bIocks of zero values and only one block witmonzero values provided ly. Let
h £ [h?, O(TN L) ..)7, then the structure af(a, h) can be represented as

T
A .17 T
u(ag,h) = |07 v 1, h s O M —ap—1)N pq xl]

which reflects the enormous amount of sparsity present in URKRBI! signals (e.g.,
the subsequent sparsity patternigft) can be seen as in Figure B.1). The co-
variance matrix o'/’ can be written as Ev\/)vT\ — 521, We can finally

convert [(3.2) in the following symbol level compact form

ry = [1fo1 ® u(ag, h)] + vi (3.3)
wherer;, 2 [r]go)T,r]gl)T,...,r,(fvf_l)T]T, v, = [VISQ)T,V,gl)T,...,V,E,Nf_l)T]T

and 1N, x1 is a vector of ones of length,.

The CS theory implies that the sparse received signal (aemgtK basis func-
tions) is operated upon by a certain transform operator vgenerates\/ linear
measurements of the received signal such fatc N, where N represents the
number of Nyquist-rate samples of the received signal. Pphixess is carried
out in the analog domain [45, 65,166]. Here, we representttaisform operator
as anM x N measurement matri®: RY — RM with M linear function-
als as its rows. Each measurement provides a compressedksaintipe received
signal which eventually leads to a low&f-dimensional representation of thé-
dimensional signal. The ratio betweéh and N is called the undersampling ratio
7 = M/N. The measurement matrix plays an important role in recogetfie
signal from its compressed samples. For this, it has tofgdlis restricted isom-
etry property (RIP)[[6]. A large number of random matrices.,eGaussian and
Bernoulli matrices, as well as structured matrices (withdiamly selected rows),
e.g., Fourier (for signals with time-domain spasity), Sigtthis property.

At this point, we would like to elucidate the structure of theasurement ma-
trix used in the context of our work. To this end, we preseatfdilowing assump-
tions.
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Assumption 1 The entries of the measurement matbxare zero-mean i.i.d. with
variancel/M. As a result, its covariance matrix can be written @7} =

—I,,. Now, asN — oo, it can be stated that the rows of the measurement matrix
7!
& are approximately orthogonal to each other, i.e.,

33T ~ Z1,,. (3.4)
n

Assumption 2 Considering aP matrix for which the approximatior_(3.4) in As-

sumption 1 is exact, i.e.,
1

o’ = ;IM. (3.5)
In other words, the rows of the measurement matrix are oathalgand its columns
have unit/o-norm.
Assumption 3 Given aM x N, matrix & where M = M/ M, in order to
treat each of theV slots separately, the measurement matrix can be designed as
=1,

Note that Assumption 3 can be used along with either Assamdior 2. In
the former case, the entries of the maswill be zero-mean i.i.d. with variance
1/My, and in the latter case, the rows of the mafbixvill be orthogonal with unit
£5-norm columns. Assumptions 1 and 2 play an important rol&énperformance
analysis of the proposed detectors. We will explain thisgrelated sections.

Now, applying CS to[(3]2) we can write its compressed veraon

y,(fj) = i’r,(ej) = ®u(ag, h) + 5,(3) (3.6)

Wherey,(j) is the M x 1 measurement vector for thén frame andg’,(j) = <I>v,(€j) is

the M x 1 noise vector. The noi@fj ) is also zero-mean Gaussian with covariance
matrix

E{eel)} = eE{v/V} o7 = %21]\4 (3.7)

depending upon Assumption 1 or 2. Note that unlike the conynosed sig-
nal models for CS, the noise in our case is also compresseds fhie choice of
the measurement matrix becomes relevant to determine e resulting com-
pressed noise is i.i.d. or not. The symbol level joint moa@el be written as

Vi = [INf ® ®|r), = [1fo1 ® ®u(ay, h)] + &, (3.8)
whereyy, 2 [y @7y yNITTT angg, 2 [gOF (T 0T

are theV ;M x 1 joint compressed measurement and noise vectors fdittheym-
bol, respectively.



38

r.(t Y _
AUN R L)
i y

"L AMP i

U7...,U.7 a
Il e > R

Figure 3.2: Block diagram for the CS-based ED with recomséd signals.

3.3 CS Based Detection

For low system complexity and power consumption, we focushennoncoher-
ent reception of UWB PPM signals [49], which is akin to GML @g&ion. The
received signal is sampled at a compressed rate accordi@6lo A straightfor-
ward receiver then would require the reconstruction of dtaal received signal to
carry out the detection process. The other approach mayebgetiection from the
compressed samples directly without reconstructing theived signal. We shall
explore both approaches, i.e., the detection after reaarigin and the detection
without reconstruction of the compressed received sigges Figures 312 and 3.3
for the block diagrams of the two respective proposed aghes). Either way,
we have to handle each frame individually, and we want to fmdgimal way to
handle multiple frames.

3.3.1 Reconstruction Based Detectors
Signal reconstruction and error statistics

The reconstruction of a sparse signal calls for the solugifaam ¢y-norm optimiza-
tion problem. Since the related problem is NP-hard/jtmorm equivalent opti-
mization problem, i.e., the convex relaxation of thenorm, has been suggested in
the literature[[15]. One way to reconstruct the receivedaifyom its compressed
samples consists of solving the following optimization kgem, (from [3.8) for
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Figure 3.3: Block diagram for the CS-based ED with compmrségnals.

G = argmin [[ug |} st |lyr — Pugls <€ (3.9)
ug

whereuy, corresponds ta(ax, h) ande is a constant. Thé;-norm minimization
problem [[3.9), also known as basis pursuit (BP), can redineesparse signal from
its compressed samples but the bottleneck is the size ofighalsnodel. With
N — oo, this method becomes computationally expensive (as thstwase
complexity can be ofd(M2N'5) for interior point algorithms). Alternatively,
matching pursuit algorithms can also be used, e.g., ortregmatching pursuit

(OMP) [29,[30] (with a complexity of2(K M N)). These methods are based on

iteratively selecting the columns of the measurement matne by one, that are
most correlated with the observation vector and its sulessqresidual vectors.
Variants of matching pursuit algorithms include other gsealgorithms that, in
contrast, select more than one column of the measuremenkraibugh correla-
tions. A case in point is the compressive sampling matchimguyt (CoSaMP) [32]
(with a complexity ofO(M N)), which also has elaborate performance bounds.
CoSaMP, the signal is estimated by solving a least-squarddegm on the can-
didate components in every step, which involves matrixrsio®. This inversion
step remains a bottleneck in reducing the computationalptexity. The itera-
tive thresholding (ITH) algorithms [67] (with a complexitf O(N log N)), on the
other hand, do not have to invert a matrix, and reconstrupagse signal from its
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compressed samples through the following simple iteration

a Y = s (af + @72, Al) (3.10)
2 =y, — ®al (3.11)
wheren is the iteration index and(z, \) is the thresholding operator. Variants
of ITH are generated depending upon the thresholding to k& ha.,S(z, \) =
xlf 15>y (Wherel is the indicator function) or so (x, \) 2 sign(z)(|z|—A). In
general, we will us&(x, \) to denote a soft thresholding operator. To compare the
performance of different ITH algorithms with other approes e.g., BP or OMP, a
performance measure depicting the transitions betweesess@nd failure phases
of an algorithm, named the sparsity-undersampling (SU)suea was proposed
in [67]. The sparsityp = % is the ratio between the number of non-zero com-
ponents in the sparse signal vector and the number of cosgateseasurements,
whereas the undersampling ratias the ratio between the number of compressed
measurements and the total number of elements in the sigo&ry Through ex-
haustive simulations, it was observed[in/[67] that altholdgthis fast and has a low
complexity, it unfortunately performs poorly on the SU maas To retain the fast
speed of an iterative algorithm but surpass the performbaméer on the SU mea-
sure, the following iterative algorithm, named the appnmaie message passing
(AMP) algorithm, was proposed in [34,135,/36]. It can be sumnea as

el — s <ﬁ[n} + @75, /\[”]) (3.12)
z,) =y, — )
+1 n—1] <5’( n1l @ Tyln1l - 11>> (3.13)
7

whereS’(x, \) is the derivative of the soft thresholding operafjx, \) (it gen-
erates al for every nonzero element &f) and (x) gives the average value of the
elements ok, thus(S'(x, A)) = +[|S(x, A)||, whereN is the number of elements
in x. The key difference between ITH and AMP is the additionaitén (3.13),
ie. lz][f 1 <S’ ( U Tyl \In- 1]>>, altering the residual. In statistical
physlfcs, such a term is known as the “Onsager reaction tefor’our context and
reference we name it as the correction term (CT).

AMP has been derived from the message passing (MP) algovithich is used
in graphical inference models [68]. It was used!inl[40] fomgwessed sensing
through belief propagation over factor graphs| [69]. Thebjm with the message
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passing algorithm is that instead of updating olynodes at each iteration, it
updatesM N nodes, causing an increase in the computational complelfithe
number of nodes to be updated is restricted toXheariable nodes then message
passing reduces to ITH. AMP provides the middle way. By netglg the weakly
dependent updates in the MP algorithm, it updates dhlgodes, but what is lost

by not updating thé/ measurement nodes is gained by the addition of the CT. See
[35] for a complete derivation of this approximation leagliio AMP.

AMP assumes the measurement madixo be a random measurement matrix
whose elements are zero-mean i.i.d. with variahc®. In our context, Assump-
tion 1 then becomes relevant. Note, AMP is valid undéer— oo. Our As-
sumption 1 also requires this tendencyfso that[(3.4) can hold. Now, the most
important feature of AMP is the statistical charactermatof the reconstruction
error at every iteration. This can be understood by devetppertain heuristics for
the iterative approaches. From (3.11), the correlatiorhefrheasurement matrix
with the residual vector at theth iteration can be expanded as

o7z = (u, — o)) + H(uy, — o)) + 7¢, (3.14)

whereH £ (#7® — Iy). Now, as described if [34], if it is assumed ti¥&tdoes
not correlate with the vectcﬁtg‘] thenH(u;, — ﬁL,"}) can be viewed as a vector of
i.i.d. Gaussian random variables and the variance of eatdibla can be given as

7 g — ﬁgf] ||3. Let the noisy estimate of the received signal be defined as
al” 2 a4 @7, (3.15)

and the error in estimating the true signal from this estntet defined as

b2 gl oy, (3.16)

n
Wi

with o112 denoting the variance of each of its elements. If the abowetioreed
heuristics are true, then the variance of the elements ddritoe vectorw,, can be
tracked by the following state evolution (SE) method forrguvteration

gl 112 — g (agzlz) (3.17)

where the functiorﬁl(aﬂﬁ”?) is defined as

v (4;42) 2 % <a2 + E{HS <uk + o2, AW) - “"Hi}) (3.18)
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wheren is a vector of zero-mean standard i.i.d. Gaussian randorables, i.e.,
n ~ N (0,I) and we have considered{E®7¢,)(®7¢,)"} = %IN under As-
sumption 1. From[(3.18), we can see that the SE also predlietmean squared
error (MSE) of the reconstructed signal in that the SE cageto the true MSE at
every iteration asv — oo [70], i.e.,

e { s (e otmn) = -

provided that¥ o) < 5" which should remain true for the SU measure
of AMP to coincide with that of other methods, such as BP. & haen observed
through extensive numerical simulations (see elg., [3&)} SE fails to predict
the performance of ITH algorithms. The reason is the carmlebetweenH and
ﬁL,"}, which appears right after the first iteration and thus thevalheuristics are
not true for ITH algorithms. On the other hand, the SE pradit¢ performance of
AMP exactly. The reason is that the CT removes or compeng&atédse correlation
betweenH and u[ " at every iteration and thus the above heuristics regardiag t
reconstruction noise being Gaussian and the MSE convezgencain true. Thus

the variance of each element of the veotdf] can be written as

(3.19)

olnl2 = = <a Tk H uy, — al”! > (3.20)

Note that the performance comparisons described abovg twéthresholding pol-
icy to the foreground as well. It would suffice to say that tiptiraal thresholding
value should be a function of the standard deviatigh, i.e., A" = 7o), where

7 is a constant. We will describe the thresholding policy usedur purpose in
Sectior{ 5.5.

GML based detection for multiple-frame reconstructed sigrals

Let us assume that the received signal was compressed at@ession ratg:
and then reconstructed using AMP. Here we assume that the &liytitithm has
reached convergence and therefore drop the iterationegsdiom the variables.
Let g, be aNyN x 1 vector containing all reconstructed frame vectﬁf;@ i.e.,
ax _[ T ,ﬁ,(fl) S ’,E;Nf nT |7, From Section 3.311, we may assume that the
reconstruction error for each signal sample is i.i.d. Ganssith variances2. The

pdf for the reconstructed signal froin (3116) can then betemias

L .
p(aglag, h) = Cexp {—m lax — [1fo1 ® u(ak,h)] H%} (3.22)
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where(C' is some positive constant. Using the GML criterion, it isacl¢hat in
order to maximize[(3.21), we need to minimize the squdpedorm, which can be
expressed as

Ny=1p-1
Alag,h) = > Y (b —2lfaklp;,)
§j=0 1=0
L—1 L-1 Ny—1
=N hi = > 2 > [alp,, (3.22)
=0 =0 7=0

whereP;; = jN + a;Na + 1 is used for notational simplicity. Taking the partial
derivative with respect th; while keepinga,, fixed, we obtain

Nf—l
OA(ax, h) )
————= = 2Nth;—2 E -

Minimizing the cost function with respect to would mean setting every gradient
with respect taq; to zero, which yields the following optimal estimate fqr

o= <= > lalp, (3.23)

Now substituting[(3.23) il (3.22), we finally obtain
A~ L_l ~
Aax, h) = =N; y B,
1=0
As a result, the symbal;, can be found by solving the following problem

A~ L_l ~

H;in A(ag,h) = max ZZ:% h?. (3.24)

Given E}, to be the signal energy per frame, the instantaneous SNR dtipie
frames can be defined as= N(JI‘QEh . From [3.24) and (3.23), it can then be observed
that for the same instantaneous SKIRhe decision result will be independent of
the number of frame#/;. This can be explained as follows. The estimaté,dh
(3.23) is obtained by averaging samples over different @&smwhich on one hand
decreases the noise energy by a factoNefbut on the other hand also decreases

the signal energy by a factor of; due to the fact that the instantaneous SNIR
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kept constant [71]. Hence, the performance of the estimfatg does not change
with Ny and thus also the solution tb (3124) does not change With(i.e., the
spreading factor) since it only involves the estimateof Replacingh; in (3:22)
by the value obtained frorh (3.23), the optimal energy detédor the reconstructed
samples (R-ED) can be written as

L-1 Ny—1
.(R—ED 1 5
a;(f ) — arg H}L‘%Xlz_; N, ]Z_:O (k)i N+tar Nt | - (3.25)

Replacing the reconstructed samples with Nyquist-rateplesnin [3.25) gives the
optimal Nyquist-rate energy detector (N-ED) [71]. So we sag that the optimal
procedure consists of first averaging the signal compormrés different frames
and then squaring, and the related performance is indeptenfi¢he number of
framesN; if the instantaneous SNRis kept constant. This is in contrast to the
GML detector proposed in [49] for the Nyquist-rate sampliphal, which con-
sists of first squaring and then averaging. For the recaetstiusamples, it can be
formulated as

Ny—1p-1

~(SR—ED 1 .
a](C ) = arg IHa%X Ff Z Z[qk]?]\f‘f‘akNM‘f‘l (326)
7j=0 1=0

We refer to[(3.26) as the spreading-factor dependent emtggtor for the recon-
structed samples (SR-ED). Replacing the reconstructeglsamith the Nyquist-

rate samples leads to the spreading-factor dependent $tyqi energy detector
(SN-ED) [49].

Averaging process in the compressed domain

We can see that the proposed detection procedure is pthcfeasible. We avoid
Nyquist-rate sampling and the detection is carried out enrétonstructed sam-
ples. Still, it may require the reconstruction of all thenfires which could be com-
putationally expensive. Here we can benefit from the streabd our compressed
detector and save a number of reconstruction steps by Itegoinsg only one (av-
erage) frame instead of all the frames. Since the transf@enator® is the same
for all the frames, averaging the reconstructed framesldhmisimilar to averag-
ing the compressed frames and then reconstructing onlyerage frame. Now,
by averaging the compressed frany{@, forj =0,---,N; — 1, we can define
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the compressed average frame by Miex 1 vectory, as

Ny—1

ooa 1l ()
et 5 ; (®u(ar.h) +¢f)
= ®u(ax, h) + &, (3.27)
where§, = NLf Zj.vzfo_l 5,(5), and from [(3.4) or[(3]5) the covariance matrix can
be written as Ekéf} = ““TQIM. AMP can help us compare the performance

of the two approaches. Fro@l@, we can see that it is muffito look at the
reconstruction error/noise statistics resulting fromtthe approaches to assess the
performance of the respective detectors. The error vagiaficin reconstruction
via (3.27) can be written as

0% = ——+ — |[Jug — l5. (3.28)

On the other hand, if each frame is first reconstructed fyté’f%with j=0,1,---,

Ny — 1, via AMP and then averaged, the variance of each elemeneaivarage

. _ Ny—1_ (i .
noise vectow, = - 3=/, w') can be written as

5 ) Ny—1
2 g - (7)12
0f=——+ > fuy -
uNy = uNNy = | el
Ny—1
o’ 1 1< (4)2
N — 4+ — S — E 0 . 3.29
Iy * /LNHuk Ny =~ T ( )

Now assumingi;, ~ NLf Z;.V:fo_l ﬁ,(cj), (3:29) is the same as (3128). Thus the detec-
tors based on both approaches will perform in a similar manne

3.3.2 Direct Compressed Detectors

In the previous section we looked at detectors based on tomstucted signals.
Here we use GML to develop a detector based on the compregsedssdirectly,

i.e., without reconstruction. Since we have assumed sytabel synchronization,
the individual M pulse positions can also become accessible under Assumptio
3. Further, as there is a linear transformation between ¢heabreceived signal
and its compressed samples, we should be able to segregatartiples of each
compressed received frargéj) forj =0,1,--- ,Ny — 1, into M blocks. Thus,



46

each block would then represent the compressed samplesponding to a pulse
position of the actual received signal. Now considering asaeement matrixp
such that Assumption 2 and 3 hold true, we can write the pdhefcompressed
received signal fron{(318) as

1
p(yk|ax,x) = Dexp {—Fﬂyk — [1fo1 ® @u(ak,h)] H%} (3.30)

whereD is a constant ang = ®h is anM x 1 vector of the compressed samples
corresponding to the block in(ax, h) carrying the transmitted pulse. Note that
Assumption 2 is important here so that the compressed reisali and[(3.30) can
be formulated. Now in order to maximize (3130), we need toimize

Ny—=1Mp—1
Alag, x Z Z [yelp,,)
j=
Mp—1 Muy—1 Ny—1
=Ny Y- Y 2 D vkle,, (33D)
1=0 1=0 §=0

whereP;; = jM + a,Mu + 1. Taking the partial derivative with respect [td;
and setting the gradient equal to zero, yields the follovaatimate forx];

1 NS
- 5 Z (3.32)
7=0

Substituting [(3.32) in[(3.31), we get the following commes samples based en-
ergy detector (C-ED)

MM 1 1 Nf_l 2
A(C ED) _ = argn}gx Z Z [yk]jM—i—aka-H (333)

=0 7=0

which is clearly independent of the spreading factor. Thesnhergy detector based
on the compressed signal directly can be realized by firsagimg the compressed
samples over the number of frames and then carrying outtitatean the average
compressed frame directly.

3.4 CS based Detection for a Deterministic Channel

In this section, we consider UWB communications over a detgstic channel.
We derive BEP expressions for the CS-based detectors wheatide is carried
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out on the reconstructed signal as well as when it is carrigddoectly on the
compressed signal. For simplicity we consider= 2, i.e., binary PPM.

3.4.1 Reconstruction Based Detection

In this section, we derive BEP expressions for the recoasstmu based detector. We
consider an average compressed frame for reconstructlars thie need to recon-
struct all the frames has been alleviated except for one@gedrame. As explained
in Sectiori 3.311, the expressions obtained in this sectionld also be valid for the
detector[(3.25). Again we assume that the convergence ktageeen reached for
AMP so we will drop the iteration index. We can write the restoucted symbol as

flk = u(ak., h) + Wy (334)
1 . .
wherewy ~ N <0, (% + —N |lug — ﬁk||§)IN> under Assumption 1. Since
I

M = 2, every frame symbol has two pulse positions. Let us assuatahbkth
symbol is &), i.e.,a; = 0. This means we transmit the pulse in the first half of the
signal frame, and we can partition the reconstructed symbol

0 = [1(0,h)]1.n/2 = h + VWi (3.35)

wherewy, o = [wi1.n/2, and

.1 = [@(0,h)](n/or1)n = Wri (3.36)

wherewy, | = [Wk](v/241):n- Now the GML-based detector can be written as

0
Uk,0 % Uk 1 (3.37)
where
Upo = [Uolls = En + 20T Wy, o + [|[Wi |2 (3.38)
with E), = ||h||2 and
Ui = [[gall3 = [[Wiall5 - (3.39)

Due to the statistical characterization of the reconsacerror by AMP,w;,
andwy, ; are i.i.d. Gaussian. Now considerihgas a deterministic channdlj, o

is a non-central chi-square distributed random variabti @), is a central chi-
square distributed random variable, both witii2 degrees of freedom. We can
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see that finding a closed-form expression of the probalofigrror involving these
two distributions is complicated. On the other hand, as veedmaling with the
reconstructed signal consisting 8f Nyquist-rate samples, where given the nature
of UWB signals, it is known thafV — oo, we can rightly consider both, o
andUy}, ; as Gaussian distributed by using the central limit theorsow to find a
closed-form expression of the BEP, let us proceed by defithiagariable

AT 2 1 o — Upy. (3.40)

Sincea;, = 0 has been transmitted, the probability of error for the detelsased
on the reconstructed signdPXR_BEP)) can be defined as
PR=BEP) 2 p(Arecon ), (3.41)

SinceUy o andU} ; are assumed to be Gaussian distributed, the decision keariab
Areeen can also be considered Gaussian distributed. We now prdoefead its
mean and variance.

Since E{hT\?vk,o} = 0, the mean otJ;, , can be written as EU o} = Ej, +
E{||V~vk70||§} and the mean o, ; is given by, E{U},,} = E{\Iﬁk,l\lg}. Now
sinceHvak,iH; fori = 0,1, is a chi-square distributed random variable, its variance
. . - 2 o2 ]. N 2
is given by, Var{\|wk7l-||2} = 2804 whereo? = TR |ug — G l5. We can
further derive that, Va{ﬁTv”vk,o} = o2 E), where we use the fact{E\er,ovvfo} =
o2Iy/o. Therefore, we obtain, VU, o} = Noy, + 402 Ej, and Va{Uy 1} =
Noi. Thus the mean of the variablerc" is

E{A™"} = E{Uio} — E{Uk1} = E} (3.42)
and its variance is
Var {A™°"} = Var{Uy o} + Var{Us 1}
=2No} + 402 Ey,. (3.43)

The probability of error for the reconstructed signal caerdifiore be approximated

by
p(R-BEP) _ [w] -1
e Q ( (E{Arecon})2

0'2 0'2 2
49w 4oy <_w>
Ej, Ej,

Y
2

=Q (3.44)
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which is the instantaneous BEP of a deterministic channiglditg an analytical
expression for the average BEP [of (3.44) is quite complitatéerefore, the aver-

age BEP PG(R_ABEP)) can be approximated by numerically averagif*ﬁ_BEP )
over different channel realizatioris [72], i.e.,
1 Nrealiz_l
R—ABEP) _ R—BEP)
Pe( )= Nrealiz Z Pe( )(Z) (345)
i=0

where P&~ BEP) () is the instantaneous BEP for thih channel realization and
Nrealiz s the total number of channel realizations.

The analysis provided above is for the case widn= 2. Exact BEP expres-
sions for the case wheM > 2 are again difficult to derive. Nonetheless, an upper
bound (that is a union bound) on the BEP/af— 1 events can still be utilized [73],

i.e.,
2 2\ 2
g g
4-Y L IN [ =2
Eq * <ES>

1
-2
p-eer) < Mo (3.46)

2

whereE, £ E), log, M. The bound becomes tighter with increasing SNR and is
exact for the casé1 = 2.

3.4.2 Direct Compressed Detection

To derive the BEP expressions for the direct compressedtdeteve consider an
average compressed frame. Now given that= 0 and M = 2, the average
compressed framg;, can be partitioned into two equal parts under Assumption 3:
the signal parg . o and the non-signal pagt, i, i.e.,

Yo = [Yeliare = Ph+ &5 (3.47)
Wheregm = [Ek]l:M/2 and
Vi1 = [Yel 21y = €k (3.48)

Wherea@1 2 [Ek](M/QH):M. We know that%,m- for i = 0,1, is zero-mean with

covariance matrix, EME{Z = %IM/Q under Assumption 2. The energies
corresponding t 7) an 48) can be defined as

Yio = ||5’k,o||§ =E; + 2BT&’TE]€,O + 1€xol13 (3.49)
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with E; = || ®h|3 and

Vi = Iyl = Hﬁk 13- (3.50)

Now the GML-based energy detector for the compressed sagmabe written as

0
Yio % Yi1 (3.51)

and the bit error probability for the compressed deteEﬁ)C?_BEP) can be defined
as

P(C-BEP) & p(Acomp () (3.52)

where
AN 2 Y o — Yo 1. (3.53)

Now, due to Assumption 2,“ is still zero-mean i.i.d. Gaussian. Therefore, by
using the central limit theorem, botfy , andYy ; can be assumed to be Gaussian
distributed as\/ — oo, which implies thatA“™P is also a Gaussian distributed
random variable. We can find an approximate closed-formesgion for the prob-

ability of error by finding the mean and the variance of thealae A“™P.
. ~ ~ = 2
Since E{hT<I>T£k0} = 0 and E{H&‘MH%} = 1‘24;}, , the mean ofY}
can be calculated as {0} = Ej + 5 u(f,f Now, it can be proven that the
Var{hT<I>T£k70} = mEﬁ and smceHE'OH2 is a chi-square distributed random

variable with M//2 degrees of freedom, Va{méko\\%} =24 o Thus, the

2N2

i
variance of the decision variablg, , can be written as V&Y, o} = 4 E +
M §N2 Similarly, it can be shown that the mean¥f;, E{Y} 1} = 2 uNf and

its variance Va{Yy 1} = M —¥— s N2 Thus the mean of the variabfe®™P is
E{A“™P} = E{Y} o} —E{Yi1} = Ej, (3.54)
and its variance is

Var {A“"P} = Var{Y} o} + Var{Y}, 1}

0.2 4

=4——FE; +2M ———

o B T (3.55)
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Since A®™P is a Gaussian distributed random variable, the approxirdatsed-
form expression for the probability of error can be derived a

Pe(C_BEP) _ Q ( 0'2/# >2 2) ] (356)

NyE,
Note that [[3.56) leads to the probability of error of the Nigtinate sampled re-
ceived signal ifM is replaced byV andyu = 1. Itis given by
-
. (3.57)

(N—BEP) o’ o\’
P = 4 2N
‘ N NyEn (NfEh>

We can see thal (3.66) arid (3.57) are expressions for trentasteous BEP. Aver-
age BEP results can again be found by numerical averagingdifferent channel
realizations as ir (3.45).

Pl
NyEy,

+2M<

3.5 CS based Detection for a Gaussian Distributed Chan-
nel

In this section, we derive the BEP expressions for the pregph@S-based detectors
when the channel is Gaussian distributed. We assume thahtreel elements
are zero-mean i.i.d. Gaussian, ik;,~ N(0,1). For the ease of the derivations,
we further assume that the channel sprégd= T, and thus,. = N,,. The
Gaussian assumption on the channel may not be realistid betgs to provide
some intuition regarding the influence of the channel on trexame BEP. Here
again, we consideM = 2 anda; = 0.

3.5.1 Reconstruction Based Detection

In this section, we look at the reconstruction based detegten the channel is
Gaussian distributed and derive a closed-form expresdiats theoretical BEP.
Thus, in the context of (3.34), under Assumption 1 we can say f(3.3%) and
(8:38) thati; o ~ N'(0, (1402)Iy/2) andi, 1 ~ N(0,02Iy/2). From [3.38) and
(3.39), this means thdf;, , andUj, ;, both being the sum of Gaussian distributed
random variables are chi-square distributed WNtf2 degrees of freedom. The pdf
of Uy, o is given by [73]

N -

_ o wmotTl SR

PUo (Uko) = —x————€ 7
o 24T (§)
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wheres? = 1 + 02, and the pdf ol ; is given by [73]

N
ud ! -
k1 :

e 2% .

DU (k1) =~
0d 25T (¥)

Now from (3.37) the average BEP for the reconstruction bds¢ector (R-ABEP),
given a zero symbol is transmitted is

PR-ABEP) _ P (Up0<Uplar = 0). (3.58)

The probability of a correct decision given that a zero isdraitted can then be
written as

P, = P (Uy1<Uyplar, = 0)
Uk,0
=/ DUy (k1) dug 1
0

which can be simplified to
. (5
CT T R (N\
I (7)
wherey(., .) is the lower-incomplete-gamma function aind) is the gamma func-
tion such thaty(n,u) = [,'t" 'e'dt andl'(n) = [;~t" e 'dt, [74]. The aver-
age BEP is therefore given by

PE(R_ABEP) =1- / P. PU, o (Uk,0)du, o
0 :

007(%7 %HQ_(})) ’Ll,k’o%_l _;k,()
=1- N e e 207 duy, o. (3.59)
o (T gpofr ()

By using [74, Eq. (6.455.2)], we can redu€e (3.59) to theofwihg closed-form
expression

N
pR-ABEP) _ | _ 2F(%) OrOy |2
‘ B TNC R
2 4 T w
N N o2
(1, ==+ 17 :
X 9 1(7274_‘_)0_%_'_0_121})7 (360)
wheresFi (., .;.;.) is the Gaussian hypergeometric function defined(by [74, Eqg.

(9.14.2)]. Hence, we have obtained a closed-form expnedsiothe average BEP
of the reconstruction based energy detector for a chanrtal iviid. zero-mean
Gaussian elements.
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3.5.2 Direct Compressed Detection

In this section, we present the BEP expressions for the etkased on the com-
pressed signals when the channel is Gaussian distributeain B.47), we can
see that sincd is Gaussian®h will also be Gaussian with covariance matrix
E{(®h)(®h)"} = 11,//, under Assumptions 2 and 3. Consequengly, wil

be zero-mean Gaussian distributed with covariance mal{rj‘a%ﬁyf,o} =11+

m
]‘\’,—j)IM/Q. Thus we can writg;, o ~ N(0,021,/5), wheres? = it ]‘{,—Qf) and

from (3.48) we can writg;, ; ~ N (0, JJ%IM/2), Wherea]% = % Therefore, from
(3.49) andI(3.50), we can say thgt, andY;, ; are chi-square distributed random
variables, both with\//2 degrees of freedom.

Now from (3.51), we can observe that the average BEP for tinepoessed
detector (C-ABEP), given a zero transmitted-symbol

PC=ABER) — p (v} o<V 1lax = 0). (3.61)

The probability of a correct decision given that a zero isgraitted can then be
written as
P, =P (Y1 <Yjolar = 0)

P
= / PYi1 (k1) dyr
0

The average BEP is then given by

(o)
PE(C—ABEP) -1 / Pcpym (yk:,O)dyk,O
0

M Yk,0 M _
—1 =1 2"?) Yot ! g 3.62
= 4= (M M € “%¢ ayYi,0- ( : )
o T et ()
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By using [74, Eq. (6.455.2)], we can redute (3.62) to

M

p(C—ABEP) _ { 20 (%) oo | ?
6 Y0P |oF + o3
M M o?
nl1,— 41, 5= 3.63
X 2 1<72a4+70_g+0_]2r> ( )

which is the closed-form expression for the average BEPebthimal compressed
energy detector for a channel with i.i.d. zero-mean Ganssiements. Now from
(3.63), the average BEP of the ED for the Nyquist-rate sathpbeeived signal
(N-ABEP) can be written as [75]

N
N N
p(N-ABEP) _ | 2I'(3) ocofo |’
e
FICED? [0+ oFo
N N 2
xoFy |1, —;— +1; 5 5 e 5 (3.64)
2 4 T T T

2
whereo?, = (1 + &) ando}, = £

3.6 Simulations

In this section, we present some simulation results for ifferdnt detectors de-
veloped in the previous sections for the binary PPM comnaiitios scenario. We
provide two groups of simulations. One where we considett@raenistic channel
and the other where we assume the channel to be Gaussiahutiéstr For the
measurement matrices, Assumption 3 holds true in genetathét, we consider
a measurement matrix whose elements are random GaussianAgsglmption 1
as well as a measurement matrix whose rows have been orédogmhunder As-
sumption 2.

For the reconstruction of the signal, AMP suggests an optthmrasholding
policy in the form of the relationshipl” = 701[,’;”] at thenth iteration, but it requires
the knowledge of the original signal and therefore, it ispraictically feasible. For
our purpose, we use the following alternative relationgtssuggested in [36]

Al =\ 4 %w-ﬂ (s (o~ + @7z A1) ) (3.65)
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where\ is a constant. Thus the threshold value keeps developingverly AMP
iteration. Further, for the BEP expression of the spreatiotpr dependent energy
detector[(3.26), we use the following expression from [49]

Y
2

PBENTBER) — @ (3.66)

0'2 0'2 2
4 ALN
Ny¢Ep " d (NfEh>

and the corresponding average BEFéSN_ABEP)) is obtained by averaging (3166)
over the channel realizations as[in (3.45).

For Figured 314 td 318, we consider the IEEE 802.15.3a CMk{dif-sight)
channel model [48]. The channel parameters are chosen lag/gol the clus-
ter arrival rateA, = 0.0233nsec™!, the ray arrival rate within a cluster,, =
2.5nsec™!, the cluster decay factdry, = 2.5 and the ray decay factor within a
clusteryq, = 4.3. The transmitted pulse wavefora(t) is the second derivative of
a Gaussian pulse of unit energy with pulse durafign= 1 nsec. In general, the
frame length is taken @6; = 150 nsec and a receive filter bandwidthGHz is
considered. Thus each frame h¥s= 900 Nyquist-rate samples.

Figure[3.4 shows the instantaneous BER results for diffedetectors, i.e.,
C-ED, R-ED and N-ED, along with some theoretical BEP plats, iISN-BEP, C-
BEP, R-BEP and N-BEP, with a Gaussian distributed randonsoreanent matrix
(Assumption 1). Here, we consider signal transmission witkarying number of
frames per symbol, i.ely; = 1,10, 20. We can see that with increasing spreading
factor, the SN-BEP keeps decreasing. Whereas the BEPsdsulthe detectors
with optimal frame combining remain consistent and do noy weith a varying
number of frames. The performance of the R-ED follows theréiecal expres-
sion R-BEP exactly. The C-ED remains a bit away from the C-BEPause the
Gaussian measurement matrix does not guarahiee (3.5). Nbwegard to the
performance of the compressed detectors against the Nygtesdetectors, we see
that at a compression ratio pf = 0.5, i.e., the sampling rate is on§0% of the
Nyquist-rate, the compressed rate detectors offer a raagogood performance
(seel[76] for details on the loss incurred due to CS). The (e&iflorms better than
the reconstructed version, i.e., the R-ED. The reason ighbaeconstruction pro-
cess loses some information whereas the compressed dogtattion preserves
the signal information albeit in a compressed form and gavbstter performance.
The difference between N-BEP and C-BEP is arord 3 dB at a BER ofl0~3.
Thus CS-based EDs are a viable option. For the sake of cosopanve also in-
clude in this figure the performance of matched filter (MF)dahsompressed de-
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tectors (where it is assumed that the channel is known); vdeégction is carried
out on the reconstructed signal (R-MF) and when it is cargatlon the com-
pressed signal directly (C-MF), along with the MF for the Nigi-rate sampled
signal (N-MF) and its theoretical plot (MF-BEP).

Figure[3.b shows the instantaneous BER performance faerdiff detectors
when the measurement matrix has orthogonal rows (AssumpjioHerey = 0.5
and Ny = 1,10,20. We see that the performance of C-ED has improved and it
falls exactly on the C-BEP curve. R-ED does not coincide VRtBEP because
the expression for the R-BEP is based on a random measurenagnk under
Assumption 1, but its performance has also improved in coisqato the previous
figure. The SN-BEP keeps again worsening with an increasahgevof V.

Figure[3.6 shows a BER comparison of different detectork wétrying com-
pression ratios when the measurement matrix is Gaussittibdied (Assumption
1). We fix the SNR at 7 dB. Here we see that the performance of the R-ED and
C-ED saturates after a certain compression ratio. The ne@sthat if V is not
very large then as the number of measurements increasgsptheility of having
correlations within the measured values increases as sedl(@.F)). In Figure 3.7,
we increase the frame time T = 300 nsec. We can see that although the overall
performance of all the detectors has been scaled, nonsshelED and the C-ED
show a tendancy of improvement for the larger valuévof

Figure[3.8 shows a BER comparison of different detectork warying values
of ;, when the orthogonal measurement matrix is used (Assump}ioiVe consider
here an SNR o017 dB. We can see that the performance of both the R-ED and C-
ED has improved and does not saturate with increagin@-ED follows C-BEP
exactly but R-ED remains away from R-BEP because of the @leseha random
measurement matrix.

From Figure§ 319 to 3.12, we consider a Gaussain distribatdtipath channel,
i.e., the channel samples are zero-mean, unit-variancesizau Considering the
limitations of the simulation software, i.e., Matlab, vizviz (3.60), [3.68) and
(3.64), we take a frame length 8 = 100 nsec and a receive filter bandwidth of
B =1 GHz. Now every frame had = 200 Nyquist-rate samples.

Figure[3.9 shows the average BER results for C-ED, R-ED ari€DN\along
with the theoretical BEPs i.e., SN-ABEP, C-ABEP, R-ABEP ahd\BEP, with
a Gaussian distributed channel. SN-ABEP has been obtaipevdraging the
SN-BEP results over all channel realizations. We considandom measurement
matrix (Assumption 1) with the compression ratio= 0.5 and N, = 1,10, 20.
The simulation results for the detectors follow the BEP espions quite closely.
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We can see that the suboptimal detector SN-ABEP, once aglsnaf prey to the
increasing spreading factor and its performance keep®dsiag. The proposed
detectors remain unaffected by this factor. The R-ED faldiae R-ABEP exactly
but C-ED is a bit away from C-ABEP due to the randomness of thasurement
matrix.

Figure[3.10 shows the average BER comparison of differetgctirs when
an orthogonal measurement matrix is used (Assumption 2je Egainy = 0.5
andN; = 1,10,20. We see that R-ED is away from R-ABEP but C-ED follows
C-ABEP exactly due to the choice of the measurement matnigeheral the per-
formance of the proposed CS-based energy detectors, C-BR&D, remains
reasonable in comparison to the Nyquist-rate based enetggtdr, N-ED.

Figured 3.111 and 3.12 show the average BER results for tisemed detectors
against a varying compression ratio at an SNRI%®fdB, for a random and an
orthogonal measurement matrix, respectively. The numbleames per symbol is
Ny = 1. We can see that with an increasing compression ratio tHerpence of
the proposed detectors increases.

Discussion

From the above simulation results, we can see that C-ED mpesfbetter than R-
ED in terms of BER. Therefore, a question arises as to whaieiaieed of R-ED
at all. First, it should be noted that despite a better perémrce, C-ED works un-
der stringent constraints of exact synchronization. Iftiahing information is not
available, the performance of C-ED will deteriorate. Ondkiger hand, such con-
straints can be relaxed with respect to R-ED. Since R-ED tasdonstruct the
received signal from its compressed samples as an iniéig| #te timing informa-
tion can be extracted from the reconstructed signal by tiegdio existing methods
proposed for Nyquist-rate sampled signals. Secondly, thatethe measurement
process used in the paper is assumed to be identical (whiellysvill be the case)
for each pulse position (i.e., ovéh,). If this process is changed either due to per-
turbations or on purpose, the performance of C-ED will beessly affected. On
the other hand, the performance of R-ED is robust to changiegsurement pro-
cess. Thus, we can say that both proposed detectors aretampand have their
own merits. Tablé 3]1 provides a summary of the salient feataf our proposed
detectors.

Further, we would like to comment on the issue of narrow bamerierence
(NBI) in UWB signals w.r.t. our proposed detectors. NBI hastvone of the major
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challenges as it reduces the dynamic range and necessitatesesolution bits for

the effective detection of UWB signals|[9.]77], causing ar@ase in ADC power

consumption([2]. In this regard, the method presented ihtfbBandle NBI can be

easily incorporated in our proposed detection schemehke Ilfrteasurement matrix
is designed as a Fourier ensemble with frequencies unijspeced over the signal
bandwidth, then NBI can be identified by taking the squaréhefrheasurements.
The measurements affected by NBI will have the highest ntades. The block of

such contaminated measurements can be discarded andatetact be carried out
on the rest of the measurements. Thus by adopting this ide@roposed detectors
can be robust against NBI as well.

3.7 Conclusions

In this paper we have developed compressive sampling bamgdyedetectors to
reduce the sampling rate much below the Nyquist rate. We slage/n that com-

pressive sampling helps in the realization of spreadictpfaindependent energy
detectors. Our energy detectors work both on the reconsttsignal as well as on
the compressed signal directly without reconstruction.Haie derived theoretical
BEP expressions to guage the performance of compressiyaiegrbased energy
detectors which can also be extended to Nyquist-rate sagplased energy de-
tectors. Simulation results prove the validity of theseregpions if the choice of
measurement matrix follows the assumptions adopted irhdaetical derivations.

Table 3.1: Summary of the proposed detectors

Features R-ED C-ED
Sample Form Reconstructed samples Compressed samples
Theoretical BEP Requires randon® Requires orthogonab
Timing Information Can be relaxed Required
& (overT) Independent Must be identical
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Figure 3.4: Comparison of different detectors with randoeasurement matrix
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Figure 3.6: Comparison of detectors for varying compressaiio with random
measurement matrix and a deterministic channel
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Figure 3.7: Comparison of detectors for varying compressaiio with random
measurement matrix and a deterministic channel
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Figure 3.8: Comparison of detectors for varying compressitio with orthogonal
measurement matrix and a deterministic channel
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Figure 3.10: Comparison of different detectors with oribregy measurement ma-
trix and Gaussian channel
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Figure 3.11: Comparison of detectors for varying compoessatio with random
measurement matrix and Gaussian channel
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Abstract

Noncoherent detectors significantly contribute to the fratcrealization of the
ultra-wideband (UWB) impulse-radio (IR) concept, in thhey allow avoiding
channel estimation and provide highly efficient receptiapabilities. Complex-
ity can be reduced even further by resorting to an all-digitgplementation, but
Nyquist-rate sampling of the received signal is still deding. The current pa-
per addresses this issue by proposing a novel differergigction (DD) scheme,
which exploits the compressive sampling (CS) frameworketiuce the sampling
rate much below the Nyquist-rate. The optimization problsniormulated to
jointly recover the sparse received signal as well as tHerdifitially encoded data
symbols, and compared with both the separate approach arsghleme using the
compressed received signal without reconstruction. Finalmaximuma poste-
riori based detector using the compressed symbols is developedLUaplacian
distributed channel, as a reference to compare the perfaenaf the proposed ap-
proaches. Simulation results show that the proposed j@b&sed DD brings the
considerable advantage of reducing sampling rate withegtatling performance
compared with the optimal MAP detector.

4.1 Introduction

Ultra-wideband (UWB) impulse-radio (IR) is a promising rsiding scheme, par-
ticularly suitable for low-power-density short-range gaomications, in virtue of
many appealing features, such as high user capacity, finegtiresolution, fre-
quency overlay based coexistence with existing services probability of inter-
ception and detection [8],[45]. Rich multipath propagatibowever, makes each
transmitted pulse appear at the receiver as hundred of e(@#&k Although Rake
receivers allow to collect most of the energy conveyed byrb#ipath components
[72], they require a large number of fingers together witknsive computational
load and high sampling rate to perform channel estimati8h [ius contradicting
the main requirement of simple transceiver devices. As stinal yet effective
alternative, noncoherent receivers have been proposedén o skip the difficult
channel estimation task, in the form of autocorrelatioredagceivers (AcRs) [79].
We can refer to transmitted reference (TR), where a referentse is transmitted
together with the data pulse [80]-[81], and differentiates#ion (DD), which em-
ploys differential encoding [82]. Detection performandeD® schemes can be
further improved with the multi-symbol DD approach (MSDIBB|-[84], and its
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variant based on symbol-level synchronization only [8%krethough for an all-
digital implementation they all are still affected by thestzaissue of still requiring
high rate analog-to-digital converters (ADCS).

Relations with prior work. The compressive sampling (CS) concept has been re-
cently pursued as a powerful way to reduce the sampling fagawse signal much
below the Nyquist rate without incurring in large performardegradations [5]-]6].
The key idea relies on representing a sparse signal with arfeasurements only
obtained via random projection in the analog domain [4&][@&nd then, recon-
structing it through a sparse recovery method. Now, explpithe fact that the
received UWB signal can be considered to be sparse in thedom&in [3], we
can argue that the CS-based approach can be useful for datdiale Toward this
direction, a few works have been recently appeared, as 8@jdherent receivers,
[57] for joint time of arrival (ToA) estimation and data detiog, and [55] for a
generalized likelihood ratio test (GLRT) detector basethetransmission of pilot
symbols.

Purpose and contributions. In this paper, we focus on CS-based noncoherent re-
ceivers for differentially encoded UWB signals, as prefiarily discussed in [87].

A few important features are gained which differentiate @amtributions from pre-
vious works.

1. The key to our method is the formulation of a cost functias the compo-
sition of the sparse regularized least square error for twopressed-rate
consecutive received signal waveforms combined with theusgl DD er-
ror, which is minimized using an iterative efficient methaatided form the
elastic net optimization framework. Thus, reconstructibthe compressed
signal samples and detection of encoded information isopaed in a joint
approach.

2. The proposed CS-based DD does not require any channelagistn as in
[57] nor pilot symbols transmission as in [55].

3. A simpler two-step approach is formulated wherein firstdparse regular-
ized least square error is minimized, and then, the recdv&rmbol wave-
forms are used to perform conventional DD.

4. A direct detection method working directly on the compess samples is
considered as well, which avoids signal reconstructior ig limitations
are clarified.
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5. A compressed-rate MAP DD is derived as performance beadhfor the
proposed detectors, assuming a Laplacian distributednehagsponse (i.e.,
the channel taps are Laplacian distributed).

Organization. The rest of the paper is organized as follows. Se¢tioh Ss2ridees
the signal model, Sectidn 4.3 introduces the CS-based atepand joint recon-
struction and detection methods, while Secfiod 4.4 derikesMAP-based DDs
at both Nyquist- and compressed-rate. Simulation resudtgliscussed in Section
[4.3, and finally concluding remarks are drawn in Sedfioh 5.7.

4.2 Signal Model

In the adopted IR-UWB signal model, each symbol is conveyed pulseg(t) of
durationZ; much less than the symbol interval, i.e., T, < Ti[J. The transmitted
signal composed of a block ¢f symbols takes the form

Q-1
s(t) =Y brg(t — kTy) (4.1)
k=0

whereb, € {+1} are the differentially encoded transmitted symbols, hg.=
br_1ak, ap € {£1} being the information symbols. As a reference transmitted
symbol, without loss of generality we take; = 1.

The signal travels through a slow-fading multipath chanaskumed to be
time-invariant within the interval of) consecutive symbols, and with delay spread
smaller thanTy, so that inter symbol interference (ISl) is avoided. két) =
ZZL:‘Ol a;6(t — ;) represent the channel impulse response (CIR) Mitpaths,
whereq; and7; are the gain and path delay of thik path, respectively.

The received signal(¢) can then be written as

Q-1
r(t) =Y bph(t — kT,) +o(t) (4.2)
k=0

x(t)

whereh(t) = S auq(t — 1) is the received pulse, and) is the zero mean
additive white Gaussian noise component with variamgeDenoting the Nyquist

!Generalizations of the proposed framework to signalingetyasn multiple frames to comply
with the FCC power spectral density requirements [7] cardséyeperformed, and so for the sake of
simplicity, it will not be addressed.
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sampling rate with /7" = N /Ty, the received signal in its sampled version can be
written asr = [rf,xT, -+ xL_ |7 wherery = [r(KTy), r(KTs+T), -, r(kTs+
NT —T)]7 collects theN Nyquist-rate samples corresponding to itle symbol.

In view of (5.8), it can be written

rp = X + v = bph + vy, (4.3)

whereh = [h(0),h(T),--- ,h(NT — T)]” is the sampled CIR whose entries are
modeled as independent and identically distributed (j.L@placian random vari-
ables (owing to the sparse nature of the UWB channel)yang [v(kT}), v(kT,+

T), -+ ,v(kTs + NT —T)]T is a zero mean Gaussian random vector with covari-
ance matrix Ev,vi} = o21y.

We can observe that the signal veckaris generally sparse due to the fact that
the channeh is sparse, i.e., most of its components are zero or neghid#d).
Thus, according to the CS framework theadry[[5, 6], it can hgasented byl/
linear measurements, with/ < N. This is generally obtained through analog
processing of-(t), as illustrated in [4€, 65]. For the sake of convenience, dwas
the model we will adopt here is based on an operation thatrienoeed on the
Nyquist rate samples of(¢). Hence, the compressed received signal within one
symbol can be expressed as

yi = ®rrr = Prxp + &, (4.4)

where theM x N matrix ®; is the measurement matrix at time instargndg, 2

P, v, is the noise component. It is worth recalling tli satisfies the restricted
isometry property (RIP) 6], thus allowing the recovery lof received signal from

its CS version in the asymptotic sense as a function of thebeuwf measurements
M, with M <« N [75]. A wide range of both random (Gaussian or Bernoulli) and
structured (Fourier or identity) measurement matriceisfgahe RIP. Particularly,
although the latter have been proved to be the better chorcenfialler N. An
important parameter that has a direct influence on the pedoce of CS-based
systems is the compression ratio definegias M /N, with . € (0,1]. A higher
value ofu implies a higher value a¥/ and hence a better performance, whereas on
the other side, a loweV/ is desirable to keep the sampling rate at affordable levels,
although this is usually achieved at the price of a givengrerince degradation.
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4.3 Compressed-Sensing Based Detection

Several methods are available to recover differentiallyodied information from
the samples of the received signal. Considering that eashivierd symbol wave-
form is obtained in compressed form, data decoding may gl require prior
signal reconstruction followed by differential detectiam alternatively, a joint re-
construction and detection process, as illustrated in¢hae.

4.3.1 Conventional Differential Detection

Differential detection involves the correlation betweengecutive symbols within
a received block. In the case of Nyquist-rate differentiatedtion (NDD), the
estimate of the information symbol can be expressed as

&,(ji?D) = sign (arg main {Hrk - ark+1|]§}) . (4.5)

Hence from [(4.b), it can be seen that one possible yet coaageoivdecoding
information from the compressed received signal consfgierdorming correlation
directly on the compressed samples. We will designate i{ysoach as direct
compressed differential detection (DC-DD), which can becdbed as

&gg_DD) = sign (arg main { llye — ayk“Hg}) . (4.6)

This method does not involve sparse reconstruction of theaheeceived signal,
but exploits only the compressed wavefoym given by [4.4). We note however
that the DC-DD works under the condition that every comméss/mbol wave-
form is the result of the same linear transformation of tleereed signal, otherwise
it may exhibit strong limitations. We will come back to thispect in the following
subsections. Nevertheless, direct compressed detediome favorably applied
when synchronization requirements may be relaxed (and@ioggy, signal recon-
struction can be avoided), such as for instancé_in [85].

4.3.2 Overview of Reconstruction Techniques

Focusing on the reconstruction &f,, a naive way is to adopt the ordinary least
squares (OLS) optimization method, thus obtaining frord)(4.

2O _ arg min {HYk _ @kxk\\g} . 4.7)
Xk
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Due to the fact that thd/ x N measurement matri, is fat (M <« N), and so
not full column rank, the solution to the OLS problem [in_{4i§hot unique. One
way to circumvent this drawback is to use Tikhonov regukgion based on thé,
norm, which penalizes the OLS cost function with a quadnagicalty, also known
as ridge regression (RR), leading to

~(RR .
& = arg min { |lyx — @iell3 + Allxil3 | (4.8)
Xk

where) is the Lagrangian constant. Although the RR solution is uajdt does not
care about the sparsity &f,. A specific solution to this problem is the least absolute
shrinkage and selection operator (LASSO) [37], which aslagegularization term
based on thé; norm, as

£(LASSO) _ argmin{HYk — ®xi 5 + A szeHl} (4.9)
Xk

where is again the Lagrangian constant. Due totheegularization that induces
sparsity, part of the entries &IfCLASSO) will be switched off (hopefully the noisy
or the non-significant ones), under the condition that tHeevaf X\ is properly
chosen. This appealing feature explains why the interetsta ASSO technique
is growing more and more whenever a sparse signal has to besteacted. The
above fully motivates the adoption of LASSO, or its modifiestsions, to address
the CS-based detection problem we are dealing with, as willlbstrated in the
rest of this section.

4.3.3 Separate Reconstruction and Detection

According to the separate compressed differential deteegpproach (SC-DD), the
sparse received signal is first reconstructed from the cesspd samples applying
the LASSO algorithm, and subsequently used to decode tbemation symbols
through correlation of consecutive symbol waveforms. Amime various algo-
rithms to solve the LASSO problem, we mention the LARS sch§8g which
has a low complexity but require® > N, and the one proposed in [88], which
is applicable forM < N but is computationally intensive. On the other side, the
pathwise coordinate descent (PCD) optimization idea ipgsed in[[39] as a way
to solve the LASSO problem, and turns out to be particulabiynpetitive as far as
the computational complexity aspects are concerned. Th2iB®ased on opti-
mizing one coordinate af; at-a-time, while all the others are kept at the values
evaluated at the previous iteration, so that each updatkswas a warm start for
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the next step. Hence, the PCD solution[to(4.9) for(the- 1)th iteration,n > 0,
and thejth coordinatel < j < N, of x;4;, I = 0,1 can be proved to be [39]

M
[X+1]j(n + 1) = shrink (Z[‘I)k—i-l]i,j{b%—i-l]i — [yl + 1)), >\> (4.10)
=1

where the “shrink” operator is defined dsrink (z, A) = sign(z)(|z| — A), with
the parameteh optimized through a cross-validation (CV) approach ($&&.1),

and[y,g?ll]i(n + 1) is evaluated as

B n+1) = 3 @kl Kt (4 1)+ Y [Rrtliam Kit)m (), (4.11)
m<j m>j

i.e., excluding the effect of thgth coordinate[x;];(n), and using for the ear-
lier (j — 1) entries the values updated at the current- 1)th iteration, namely
KirJ1(n+1), Xep)o(n+1), -+, [XKg4)j—1(n + 1), and for the remaining ones,
namely [Xi)j+1(n), [Xi4i)j+2(n), -, [Xe1]n(n), those values updated at the
previous iteration. The PCD iteratioris (4.10) and (4.1hticwie till convergence,
i.e., when a predefined tolerance level has been reacheddbromordinate. Next,
from the symbol waveform estimates, (P) andx;.1(P) reconstructed afteP
iterations, we can obtain the detected symbol as

a7 = sign (g1 (P) % (P)) - (4.12)
The computational complexity required by the PCD algorifomeach reconstruc-
tion iteration can be shown to W8(N M) [89], while that for the detection step
is simply equal taO(N). Therefore, the overall complexity of the SC-DD fBr
iterations amounts t® (PN M).

4.3.4 Joint Reconstruction and Detection

An alternative to the SC-DD approach is to perform joint restauction and de-
tection, which will be referred to as the joint compresseifeténtial detection
(JC-DD) approach. Formally, the corresponding cost faamctf the JC-DD op-
timization problem to be minimized ovet, x;1 andax; can be formulated
as
1
c(JC-DD)

A
et (Xko» Xk 1, A1) = Z [HYk—l—l — @ity + A%l
=0

+allxe — appaxpr ]l (4.13)
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where )\ is the Lagrangian constant amdis a weight constant. The following
remarks about the JC-DD are now of interest.

1. The parametetr has to be chosen by trading off the performance of the
reconstruction against the detection steps. A higher valag result in a
wrong correlation estimate due to excess nois&pandxy . 1. Conversely,

a lower value may be detrimental as well due to an accurasyitothe es-
timatedag 1. Indeed, in that case the JC-DD collapses into the SC-DD ap-
proach, where we first reconstruct independent of detectind then detect
optimizing only with respect ta 1.

2. In view of the joint optimization, the reconstruction agetection steps re-
inforce each other during iterations. Therefore, impropedormance over
both the DC-DD and SC-DD is expected.

3. Several regression methods are available to minimizeda$iefunction[(4.113),
even though we will show in a while that none of them exhildis tegular-
ization features that properly match the JC-DD problem. egadly speaking,
denoting withu and z the vectors with sizel\/ and IV, collecting the re-
ceived compressed samples and to be optimally recongiugspectively,
and withA anM x N measurement matrix, we can basically enumerate the
following three methods.

« Standard LASSOTaking into account (419), the standard LASSO can
be put into the form

7(LASSO) _ arg min { |lu— AZH%}
z

s, lall, <~

(4.14)

where~ is a given threshold. We note that the main effect of the con-
straint based on thé, norm is to induce parsimony in the solution,
in the sense that among all the feasible solutibns [4.14)stakecific
care of those solutions with higher sparsity. However, nadgatic
constraint on the optimization variables is involved asuiegyl by the
JC-DD cost function[{4.13). Therefore, it can be concludeat the
standard LASSO is of scarce utility for our purpose and soltieenes-
tives have to be searched for.

+ Elastic Net.Elastic Net (EN) is a modified version of LASSO where a
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quadratic constraint is considered as well [43], accordiridpe form

#(EN) — argmin{”u - AzHg}
z

s.t. Iz)l, <m : (4.15)

2
2[5 < 72

with ~; and~, being predefined thresholds. The added constraint has
the effect of grouping the elements of the optimization @egf which
adds to the action of favoring sparse solutions played by tHesed
constraint. The actual result is that partzafill be different from zero

and others will be negligible, thus matching the clustesdabpropaga-
tion encountered in typical UWB environments [48], but agahat is

now lacking is the differential aspect related to the JC-DBtdunction

@4.13).

* Fused LASSQAN additional variant of LASSO is represented by the
Fused LASSO (F-LASSO), which is proposedlini[44] as

5(F—LASSO) _ arg min{HU- - AZH%}
z

5.t lzll, <™ (4.16)

Zj’vzz |zl — [z]j-1] < 2

The F-LASSO method penalizes the cost function with not dhéy
sum of the absolute values of the coefficients of the optitiunavari-
able, i.e.|z||,, but also their differences. That way, sparsity is induced
while “fusing” successive coefficients to each other, buiagthese
features are not exactly what is required.

4. From the regularization methods (4.14)-(4.16), it isappt that none of
them satisfies the requirements for the optimization of @D cost func-
tion, including both arf;-based as well as a squared differential penalty on
two sets of optimization variables and not just one. Henus, rieed fully
motivates the development of a different method that wefadus on in the
next subsection.
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4.3.5 Differential Elastic Net

We propose here a novel regularization method, which wedegignate as differ-
ential elastic net (DEN), and which can be formulated as
(21,22, a )( EN) — = arg min {lezl [Hul - Alleg]}

z1,Z2,a
s.t. lz1lly <m (4.17)
z2(l; <m
1 — azs 3 < 72

wherez; andzs are the two sets of variables to be optimally reconstruatedh
with size N, u; andu, are the two sets of compressed samples, each with size
M, andA; and As are the corresponding/ x N measurement matrices. The
rationale of the DEN method relies on searching the sparsgics z; and z,
while imposing at the same time fusion between their regmeetements, together
with deriving the optimal estimai of the transmitted information symbol.

As an effective way to solvé (4.117), we resort to the PCD atllgar illustrated
in Sect[4.3.8. Due to its iterative nature, convergence timigue solution may
be an issue. Indeed, convergence of the PCD is typically nstred for non-
differentiable cost functions. It has been proved, howdhat an exception occurs
whenever the non-differentiable part is separable in itgalbes [90]. Interesting
to say, the/; part in the cost functior (4.13) just satisfies that conditiand ac-
cordingly, this proves the uniqueness of the PCD solutiqdibd). Now, the DEN
solutions to[(4.1]7) can be derived, as stated in the follgvpiroposition.

Proposition 4.3.1. Thejth entries of the solution; andz, to (4.17) at the(n +
1)th iteration,n > 0, can be written as

shrink (S22, (Ao {fw]i = [0 (0 + 1))} + aa(n)[za];(n), A)

[21];(n+1) = o
_ (4.18)
A shrink <Z£1[A2]i,j{[u2]i - [ﬁgj)(n + 1)} + ad(n)[z1];(n), >\>
[2o;(n+1) = 1+ aa?(n)
(4.19)
an+1) =2l (n+ 1z (n+1) (4.20)
where
[a (])(n+1)]z—Z[A]zmzl (n+1)+ > [Adimlzilm(n), I=1,2. (4.21)

m<j m>j
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Proof. The Lagrangian of the cost function [n.(4117) is

N

L(z1,22,0) = Y [Hm — Niz|ly+ Azl |+ allz — azlf3 (4.22)
=1

where X and« are the Lagrangian constants, depending on the thresholdsd
v2. Upon differentiating[(4.22) with respect to thth element ofz; andz, and
equating them to zero, it is easy to obtdin (4.18) dnd {4.d3pectively. Then,

(4.20) follows. O

Hence, in view of Propositidn 4.3.1 and the structure of thet function[(4.1B), the
optimal solutions to the JC-DD problem can be readily dekig directly replac-
ing, respectivelyz; (n) andzz(n) with X, (n) andxx1(n), u; andug with y; and
Vi1, 07 (n) andal’ (n) with A(J)( ) andy,g?ll(n), and finallyA; and A with
®; and®; ;. To conclude, it is worth noting that the computational cterjy of
the JC-DD approach based on the PCD iterative algorithm toiahof P iterations
results inO(PN M), and therefore, it is comparable with that of the SC-DD.

4.4 MAP detectors

In this section, MAP detectors will be derived as perforneabhenchmarks assum-
ing that the received signal is sampled at the Nyquist ras thre compressed rate.
Differently from [91], the channel response is Laplaciastritiuted so as to take
into account its inherent sparsity.

4.4.1 Nyquist-rate MAP detector

The Nyquist-rate sampled waveform corresponding to twoseouative symbols
can be written as

r=(bIyh+v (4.23)

wherer £ [}, r} 4]7, withr;, being expressed by (3. 3),2 [bg, bys1]” includes
two consecutive differentially-encoded symbols, ang [vi ,vi4)" is the noise
component. Hence, the Nyquist-rate MAP differential dete(@N-MAP-DD) can
be expressed as

b= arggnax {p(x|b)P(b)} (4.24)
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whereP(b) is thea priori distribution of the transmitted symbdts Under some
assumptions, it can be proved that the N-MAP-DD (4.24) takesnple form, as
illustrated in the following proposition.

Proposition 4.4.1. Assuming a uniform distribution of the transmitted symbols
and Laplacian distribution of the channel resporisethe N-MAP-DD coincides
with the conventional Nyquist-rate DD (4.5)

. (N—-MAP—DD :

;) ) —sign(r],irx) . (4.25)
Proof. Upon representing the channel response as the prédecipn between a
Rayleigh random variable and a joint normal random vectar, the expression of
p(r|b), as derived in Appendix4lA, is

p(x[b) = /0 p(x[b, p)p(p)dp (4.26)
wherep(r|b, p) is the zero-mean joint normal distribution
(r|b,p) = ! e —irT Iy — L(bbT @In)|r
P P = m2No2(o2 + 2p2) P o2 N G2 )2 N ’

(4.27)
Sinceb is assumed to be uniformly distributed, from (4.24) it carebgued that
maximizing the producp(r|b)P(b) is equivalent to maximizing(r|b) over b.
From (4.26), we can say that if the maximumgt|b, p) overb is independent
of each value op, then that is also the maximum gfr|b). Now from (4.27),
maximizing p(r|b, p) means that for a given and p, finding the value ob that

maximizes

0

oy +2p°
Dropping immaterial addends independenbofrom (4.28) it can be obtained that
the MAP estimate is the value & maximizing the function (independent pj
defined as

1
Ix(r|b, p) £ —ﬁrT Iy — (bb” @ Iy)| r. (4.28)

v

Ux(rb) = rT(bbT @ In)r = by 1bprt 1y (4.29)

Thus, in view of the differential encoding rutg..; = by 1bx, (£.29) turns equiv-
alently into

Un(r[b) = agir T (4.30)
which provides the desired result (4.25). O
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4.4.2 Compressed-rate MAP detector

The signal model for two consecutive received symbol wavesosampled at com-
pressed rate can be formulated as

y=®b®Iy)h+ ev (4.31)

wherey = lvi,yi 0", with y, being expressed by (3.4, andv are defined
as in [4.2B), andp = diag{®, &)}, with ®;;, | = 0,1 being theM x N

measurement matrices for which we assuiine, ®7 ., = In, | = 0,1. The
compressed-rate MAP differential detector (C-MAP-DD)iseg by

b= arg max {p(y|b) P(b)} (4.32)

whereP(b) is thea priori distribution of the transmitted symbadts The structure
of the C-MAP-DD scheme can be derived as illustrated in tiogiske

Proposition 4.4.2. Assuming a uniform distribution of the transmitted symiiols
and Laplacian distribution of the channel resporisghe C-MAP-DD rule results
approximately in

- (C—~MAP-DD ,

al(<:+1 ) = S'Qn(ygﬂq’kﬂ‘b{}%) . (4.33)
Proof. Following the approach pursued in Proposifion 4.4.1, inéxupx[4.B it is
shown that

p(ylb) = /0 oop(ylb, p)p(p)dp (4.34)

wherep is a Rayleigh distributed random variable an@|b, p) is the zero-mean
joint normal distribution

1
bp) = ———
p(y[b, p) I T3
1 2
X exp {__2yT [I2M - p_2
O-'U

v

PbeIy)Z (b IN)T<1>T} y}
(4.35)

with the N x N positive definite matriX: being defined as

2
S2Iy+ 2 g (®L Bk + B Prtr) - (4.36)
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Exploiting the assumption thd(b) is independent db, from (4.32) it comes out
that maximizing the product(y|b)P(b) over b equals to doing the same with
p(y|b) overb. Now from (4.34), if the maximum op(y|b, p) overb for each
value of p is independent op then that is also the maximum ¢fy|b). From
(4.35), finding the maximum qf(y|b, p) overb means maximizing

1 2
—;yT Ton — %@(b RIS bely) e |y, (4.37)

A

FC(y‘bHO)

or equivalently, the function obtained after dropping inteni@l addends indepen-
dent ofb as

Ua(ylb,p) 2y"@baIy)= ' (baly) o'y (4.38)

which, however, is still dependent grdue to the presence 81 ~!. Such a matrix
inverse can be computed by exploiting the eigenvalue deositipn (EVD) of the
N x N positive semi-definite matri®@] ®;, + ®1.  ®,1 given byQQQ”, with

Q having non-negative elements along its main diagonal@@Y = I. Thus,
plugging the EVD into[(4.38) yields

2 —1
EebIbp) 2y B 10Q (v + 50) Qlbe L) ety @39

Now, considering the fact that the diagonal matfiky + g—zﬂ has entries
which are strictly positive and less than unify, (4.39) cenapproximated by its
upper bound (independent pf

To(yb) 2y @b e Iy)(beIy) @'y, (4.40)
that can be properly rearranged as

Ye(ylb) = brr1beyis 1 @ri1®Lyi. (4.41)

Thus, in view of the differential encoding rug. ., = bx1bx, we end up with the
desired resul{{4.33). O

Some remarks about the C-MAP-DD scheme can be of interest.

1. The OLS-DD estimate of the information symhgl.  is obtained from[(417)

as

apyy PP = sign((®), 1 yir1)" (B yr)) (4.42)
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where®;” , is the pseudo-inverse @,.;, | = 0, 1. Since the measurement

i i — T —
matrices have orthonormal rows, it can be showndhat, = ®; 1 = 0, 1.
Therefore, we get

(@ Yre1) (RYR) = Yig1 Pr1 LY, (4.43)
from which we argue that the OLS-DD coincides with the C-MBB-

2. Assuming®;. 1 = ®; and exploiting®, 7 = I,,, we obtain from[(4.33)

Vi@ ®lyr = yi vk (4.44)

which means that, whenever the measurement matrices amaimy the C-
MAP-DD coincides with the DC-DD.

4.5 Simulation Results

The detectors we discussed in the previous sections ariedehiere by means
of numerical simulations taking as performance quality ltiteerror rate (BER)
metric as a function of both the ratio of the mean-receivéegbergy and the noise
spectral density ratio defined & /Ny = ||h||2/02, and the compression ratja
The conventional DD at Nyquist-rate (NDD) is compared wite tompressed DD
schemes based on the approaches of the direct type DC-DDG), tHe separate
type SD-DD in [4.1D){(4.12) and the joint type JD-DD solvadbugh the iterative
method outlined in Propositidn 4.83.1. The performanceltesi the compressed
MAP DD derived in Propositioh 4.4.2 and the least squares Biihdd by [(4.4R),
labelled as C-MAP-DD and OLS-DD, respectively, are alsdtptbas performance
benchmarks.

4.5.1 Simulation Setup

The transmitted signal consists of differentially encodgmbols, each conveyed
by an ultra short pulse traveling through a Laplacian digted propagation chan-
nel. For the sake of simplicity, we assume that the chanrsgomse, identified
ash in (4.3), includes the effects of the shaping filters at bo#htransmitter and
receiver sides. The received symbol waveform sampled atiSygate contains
N = 32 samples, or alternatively, is compressed with a compnessito 1, thus

resulting inM < N samples. The measurement maidy has zero-mean unit-
variance i.i.d. normal entries with orthonormalized roasg can be chosen within
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consecutive symbols to be the sande,(= ®;.) or different from each other
(P # Ppi1). The methods PCD in(4.110)-(4]11) and DEN[in (4.18)-(4.2®
iterated for a maximum of 200 iterations or if a toleranceelef 10~° is reached.

The optimal value of the parametaris selected for the SC-DD case by ap-
plying a XC-fold cross validation (CV) approach [92, Chapter 17]. Faivaen A,
the received sampleg are subdivided into the sequengg,, 1 < m < K, each
including M /K samples. Thery,, is predicted ag,, using the samples obtained
by removingy.,,, itself fromy . The optimal\ is thus evaluated as the value mini-
mizing the prediction error

K
1 .
ACPY — are min {M > llym - ym(A)Hg} (4.45)
m=1

where/XC = 8 and the trial values ok are1,0.1,0.01,0.001. Conversely, for the
JC-DD the optimal\ is chosen as

ACPY = arg max {]ag41 (V)| } (4.46)

wherea,, | is the DEN symbol soft estimate given by the correlation @#.Gf
Propositior 4.4.]2.

4.5.2 Performance Comparisons

Figs.[4.1 and_4]2 quantify the BER detection performance asetion of the
E, /Ny ratio, assuming that the measurement matrices are chobertie same or
different from each other, respectively. While the refee=NDD works at Nyquist-
rate, all the other schemes adopt a compression ratjo of 0.5 or u = 0.75.
Focusing in Figl 4l1 on the cage= 0.5, it can be noted that the JC-DD closely
follows the C-MAP-DD, but if compared to the NDD, it degradggproximately by
1.5 dB at a BER level of0—2. Further, the DC-DD overlaps with the C-MAP-DD,
according to what we observed in remark 2) of Sect. 4.4.2redwthe SC-DD lags
behind by 1 dB. Increasing the compression ratip te 0.75, the JC-DD, DC-DD
and SC-DD BER degradation from the reference NDD reducesotond 1dB, 1dB
and 1.3 dB, respectively. Thus, we show that the above caapdedetectors can
trade off performance against complexity in terms of corsgian ratio.

The results of Fid. 412 confirm thaif the scenario with different measurement
matrices is more demanding than the one when they are the asithestrated in
Fig.[4.3, andi) an increase of the compression ratiqite- 0.75 alleviates the per-
formance gap from the conventional NDD at the price of insirggthe complexity.
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Foru = 0.5 and a BER level o102, the JC-DD has a gap of approximately 1 dB
from C-MAP-DD and 7.5 dB from the NDD, but shows a considezadige over
the separate approach SC-DD. Differently from Eigl 4.1 dibect scheme DC-DD
completely misses detection and so turns out to be useldéss rdsult proves that
a reconstruction step, separate or better joint with detgcis clearly mandatory.

Further, from both Fid._4l1 and Fig. 4.2 it is apparent thatfkrformance of
the OLS-DD equals that offered by the C-MAP-DD, as expectethfremark 1)
of Sect[4.4.P. Nevertheless, we remark that the OLS-DD risiderably outper-
formed by the JC-DD and SC-DD in terms of sparse signal rengeion, due to
the intrinsic lack of inducing sparsity on the solutionsiéxied by the least squares
method.

Figs.[4.3 and_4]4 give a quantitative picture about the retcoction perfor-
mance of the JC-DD and SC-DD, respectively. We assume teaetieived wave-
forms without noise are;, = h andxy; = —h, E,/Ny = 20 dB, and)\ is set to
0.1. In each figure, the upper part shdwand the reconstructed signal component
X1, Whereas the lower part does the same for the adjacent symdmokelyh and
Xr+1. For a given realization oh, we obtain that out o2N = 64 signal sam-
ples for both symbols, the JC-DD force4/64 ~ 37% components to zero and
correctly reconstruct3l /64 ~ 48% non-zero components, whereas the above per-
centages for the SC-DD turn in8$/64 ~ 56% and19/64 ~ 30%, respectively.
These results make us argue that the SC-DD has a higher tgnofesetting signal
components to zero, whereas the JC-DD exploits its inhdtembn capabilities
between the two sets of variables, leading not only to jgaatsity but also to a fair
amount of reconstructed non-zero components. The différemavior plays a role
in taking a correct decision based on correlation, andfiestihe detection perfor-
mance superiority of the joint approach on consideringdiete as a separate step
from reconstruction.

Fig.[4.3 shows the sensitivity of the JC-DD scheme to theaghof the coef-
ficient o which weighs the differential squared error in_(4.13). lamparent that
better results oveE;, /N, are obtained for values in the range aroung 100. Fi-
nally, the effect of the compression rajimver the BER of the JC-DD is evaluated
in Fig.[4.6 for anE} /Ny of 12 and 14 dB. As expected, it can be shown that smaller
the 1 the worse the BER level, and whenapproaches 1, the performance of the
JC-DD tends to that of the NDD.
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Figure 4.1: BER comparison for different detection methadh ®;, = ®;,; and
compression ratig = 0.5,0.75.

4.6 Conclusions

In this paper, the compressive sampling framework has bppled to differen-
tially encoded UWB signals. A joint reconstruction and d&ts method for the
compressed symbol waveforms has been presented, whiclebasbown to out-
perform the simpler method based on a separate approaatt Detection without
reconstruction has been evaluated as well, whereas a cesepr® AP differential
detector has been derived to have a performance benchnratkefproposed de-
tectors. Simulation results confirm that the major advasgage gain aré) the
reduced sampling raté) the ability to carry out the differential detection proses
in the digital domain, andi) the option of a competitive performance in different
scenarios where the measurement matrices are the samd as different.
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Figure 4.2: BER comparison for different detection methaidk &, # ®;,, and
compression ratig = 0.5,0.75.
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Figure 4.3: Reconstruction results of JC-DDLalog,(Ey/No) = 20 dB.
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Appendix

4.A PDF of the Nyquist-rate sampled received signal

In order to evaluate the pdf of the received signal sampledyguist rate, let us
start from the result that a Laplacian distributed randonaiée can be represented
as the product between a Rayleigh and a normal lone [93]. Ttemsign to the
multivariate case allows us to write the channel response-asn, where the pdf
of p is Rayleigh, i.e.p(p) = pe—PQ/Q, andn is a zero-mean joint normal random
vector with covariance matri&,, = Iy. Thus, the signal model for the Nyquist-
rate sampled waveform corresponding to two consecutivawed symbols can be
formulated as
r=(baIy)m+v (4.47)

wherev is the joint normal noise component with zero mean and camad matrix
C, = oIy, statistically independent of boghandn. From [4.47), it is apparent
that the pdf ofr givenb is expressed by

p(e[b) = /0 " p(elb, p)p(o)dp (4.48)

wherep(r|b, p) is the zero-mean joint normal distribution

1 —rTc!

p(r|b,p) = ——¢ rib,p" (4.49)
= e,

with covariance matrix

Cib,p = E{[(b® Ix)pm + v][(b @ In)pn +v]'}
= 02Ty + p*(bb” @ Iy). (4.50)

From the binomial inverse theorem, it can be obtained

-1
Cr\bm -
= [02Ton + p?

1 2 P2 —1
=2 {I2N - =(bely) |Iv+ (b®IN)T(b ®IN)] (b®IN)T} .

bb” ©1y)]
boIy)(boly)] ™

[U%IQN + p2

—_—~ o~

|b
<o

52
v a JU

(4.51)
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By exploiting the result
(b In)"(b®Iy) = 2y, (4.52)

(4.51) can be simplified into

L1 0
- _ T
Crpyp = o2 [I2N o2+ 27 (bb ®IN)] - (4.53)

Concerning the determinant €f,;, ,, applying the Sylvester theorem yields

|Crppp| = |oiTan + p*(bb” @ 1))
s
oy
2 2
=, 'IN + £ IN‘
UU

= giN ‘IN +Sbely)(be IN)‘

— (ot +202p%)" (4.54)

which turns out to be independentlof

4.B PDF of the compressed-rate sampled received signal

Following the approach of Appendix 4.A, let us consider tigmal model corre-
sponding to two consecutive received symbols sampled apssed rate

y=®(beIy)m+ &v (4.55)

wherep, n andv are defined as in (4.47), adelas in [4.31). According td (4.55),
the pdf ofy givenb can be written as

p(ylb) = /0 " p(ylb, p)p(p)dp (4.56)

wherep(y|b, p) is the zero-mean joint normal distribution

1 —yTC_1 y

- 4.57
m2M ‘Cylb,p‘ ‘ ( )

p(yl|b, p) =

Taking into account thab®” = I,,,, the covariance matri€ results in

ylb,p

Cyip, = E{[®(b®Iy)pn + &v] [®(b® Iy)pn + ®v]"}
= alon + p°®(bb" @ Iy)®" (4.58)
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whereas its inverse can be computed from the binomial ievisorem as

_ -1
Cyp, = [ovIon + p*@(bb” @ Iy)@7]
1 2
— = Ly - Zeb o= (bely) ®"| (4.59
o o

v

where

2
»E2Iy+ %(b @ In) @T® (b Iy)

2
Iy + % (D] ®), + B Dp 1) (4.60)
v

Finally, using the Sylvester theorem, the determinar@g#, , is given by

|Cyibp| = [02T20s + p*®(bbT @ Iy) 7|
2
Lons + %@(b ®@In)(b® IN)Tq,T

(2

2
— oM ‘IN +Zbaiy) e ebe IN)‘ (4.61)
O-'U

or equivalently from[(4.60),

2
[Cyin ol = o™ 'IN + 5 (@] @+ o] @10) (4.62)
v

which is independent db.
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Abstract

Compressive sampling (CS) based multiple symbol diffeaéetectors are pro-
posed for impulse-radio ultra-wideband signaling, usimgprinciples of general-
ized likelihood ratio tests. The CS-based detectors qooras to two communica-
tion scenarios. One, where the signaling is fully synclrediat the receiver and
the other, where there exists a symbol level synchronizatiay. With the help

of CS, the sampling rates are reduced much below the Nyaiisto save on the
high power consumed by the analog-to-digital convertemsstérk contrast to the
usual compressive sampling practices, the proposed deteebrk on the com-

pressed samples directly, thereby avoiding a complicagednstruction step and
resulting in a reduction of the implementation complexity.resolve the detection
of multiple symbols, compressed sphere decoders are momswell, for both

communication scenarios, which can further help to redneesystem complexity.
Differential detection directly on the compressed symiwlgenerally marred by
the requirement of an identical measurement process fay egeeived symbol.

Our proposed detectors are valid for scenarios where thaeurgaent process is
the same as well as where it is different for each receivedsym

5.1 Introduction

Promising the prospects of high data rates, fine time rasaluinultipath immu-
nity and coexistence with legacy services via frequencylaygeultra-wideband
(UWB) impulse-radios (IRs) are deemed as strong candidateshort-range con-
nectivity, location-aware wireless sensor networks amdate communications
with ranging capability[[B],[[94]. Owing to the ultra-largendwidth, each trans-
mitted pulse arrives at the receiver scattered over husdredgeparable paths with
possible severe pulse distortian [48], [95]. Under thesstharopagation condi-
tions, the rich diversity of UWB channels can be exploitedelyploying detec-
tion strategies based on Rake receivers, which howevarireeg large number of
correlator-based fingers combined with accurate chantiedason, thus resulting
in an intensive computational load and a high power consiomgi2], [78]. Such
requirements are contrary to the UWB objectives that calsimple receiver pro-
cessing units with moderate energy consumption. Thereédfieient techniques
are needed in order to overcome these impediments anddgeili pervasive de-
ployment of UWB-based networks.

Background and Prior Works. A number of viable yet sub-optimal receivers
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based on noncoherent detection have been proposed indtauiie for efficient
energy capture while avoiding channel estimation [79]. Ha transmitted refer-
ence (TR) scheme [80], [81], an extra information-free nexfiee pulse is used as
a channel template by the correlator to detect the infoonadiata, thereby caus-
ing wastage of transmitted power and a decrease in data Téiese drawbacks
can be avoided by adopting differential detection (DD) [g8]L]. Differentially
encoding the information symbols allows employing the aigreceived within
the previous symbol interval as a channel template for tletecthus enabling
potentially low-complexity and energy-efficient receseHowever, the template
waveform in both TR and DD schemes is neither noise-free merference-free,
which contributes to a substantial performance degradlatibhis prompted the
use of enhanced DD methods in the form of multiple symboled#itial detec-
tion (MSDD) [83], [84]. Instead of correlating only the causitive symbol-long
received waveforms, a block of differentially encoded sgialis detected jointly,
offering improved performance over both severe multipathirfg and interference-
limited scenarios. Still, accurate pulse level timing mmfi@ation has to be acquired,
which in view of the low-power and ultra-short transmittagdges, again requires
a considerable computational effort; see elg.! [96]-[97kntk, a variant of the
MSDD scheme has recently been proposed_in [85] to reducerthiegt restric-
tions, by limiting the timing accuracy from pulse or framedéto symbol level
only, while maintaining a competitive performance.

Despite the considerable advantages offered by the syrabell $ynchroniza-
tion (SLS) MSDD, the delay components required by the cati@i units (on the
order of tens or even hundreds of nanoseconds) lead to herdmplementation
issues. Indeed, the long and accurate delay lines are hamiliae in the ana-
log domain, and a digital implementation based on Nyquitt (AIR) sampling
can heavily stress the receiver analog-to-digital coevgADC), thereby causing
a high power consumption [98]. In order to facilitate the Adiplementation,
some attractive novel theories can be of effective help duaieg the sampling
frequency below the cornerstone NR threshold, e.g., thasedon sampling at
the rate of innovation (SRI) [3].[99] or compressive sam@l{CS) [5], [6]. Cap-
italizing on suitable properties of the signal, like thersjig exhibited in the time
domain by the UWB signals [48], [95], the key idea is to extraceduced set of
compressed samples from the analog received signal, oném afords, converting
it into the compressed domain through a few measuremergn takhe analog do-
main; see e.g., [46], [65]. Then, a reconstruction step filkecompressed samples
may follow by applying one of the algorithms proposed.in [g],915,/30]. Alter-
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natively, the reconstruction step is skipped and the recgixocessing is based on
the compressed samples directly.

The SRI technique is applied in [54], [52] to UWB receiveratttvork at sub-
NR sampling but also require channel estimation (CE). Orother side, the CS
framework supports a large variety of sampling kernels,, @andom sampling,
and hence allows for a higher flexibility![5],1[6]. Practicgbplications of CS to
the UWB scenario can be found in [60]-]57], mostly again foherent receivers,
thereby requiring CE. Apart from the overhead involved mtitansmission of extra
information such as pilot or training symbols in these workse inevitably has
to suffer from the complexity load required by the recondinn of the channel
template.

A simpler yet performance competitive implementation, sssts of combin-
ing the CS framework with noncoherent detection, as ilatett in [L00]{101]. In
[100], noncoherent receivers for differentially encoded/B signals are designed
exploiting the CS techniques. Besides introducing a jo#gbnstruction and de-
tection scheme, a direct compressed DD (DC-DD) is also ptedewhich skips
the reconstruction step, hence reducing the complexitididg upon the DC-DD,
the work in [102] merges the concepts of CS and decision fddBD (DF-DD)
[103]. A power-efficient and low-complexity receiver is éted, named as CS-
based (sorted) DF-DD or csDF-DD in short, however it has terbphasized that:
i) its robustness to timing offsets is restricted to only atican of the symbol inter-
val and,ii) the measurement matrix is required to be the same for allythrols
within each block.

Rationale of the Proposed Approach. The above facts indicate that CS-based non-
coherent detection can lead to promising receiver schefiesce, the search for
an effective way to reduce complexity while preserving perfance, fully moti-
vates the current paper to make a further contribution. Tdséclidea we pursue,
in part traced back to [104], is threefolg:instead of considering the DC-DD of a
single information symbol as in [100], we cast the concegi®DD into the CS
framework, thus formalizing the CS-based MSDD (CMSDD) scheat sub-NR
sampling;ii) in order to relax the demanding prerequisite of sub-pudsellaccu-
racy on the timing synchronization, we develop a modifiegieer of the CMSDD
which requires SLS only, in the sequel referred to as SLS-DMISii) aimed at
skipping CE, we resort to the generalized likelihood raést {(GLRT) principle
[105] in line with [84] and [85], according to which the geakzed log-likelihood
metric (GLLM) is maximized not only over the information spois but also over
the unknown channel template. GLRT also helps alleviaterélsgictions of the
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measurement matrices to be the same for all symbols.
Contributions. The main features of our approach are detailed as follows.

1.

The proposed MSDD-like schemes are derived by avoidiegebonstruc-
tion step, i.e., they work directly on the compressed sigaahples. The
result is that the sampling rate as well as the implememtatnplexity re-
lated to the evaluation of the correlation coefficients el the objective
function, are both kept at affordable levels, in accordawdd the UWB

requirements.

Unlike the CS-based noncoherent receivers illustratethis the measure-
ment process can be either the same or different from synabsyrnbol,
thus offering an additional degree of freedom that can Hedpréceiver bet-
ter adapt to various scenarios.

As briefly touched above, resorting to the SLS concept,rdbestness to
timing errors of the proposed CS-based schemes is brougmt fiulse or
frame level to symbol level. This feature relaxes the pentonce of the
timing synchronizer, so further lowering the overall reegicomplexity.

A particular effort is put on cutting back the complexigguired to optimize
the objective function over each data block for both thellgesynchronized
CMSDD and the SLS-CMSDD, which grows exponentially in thedkl

siz@. To this end, a modified sphere decoding (SD) algorithm isvelér
enabling the joint detection of blocks of tens of symbols@ypomial com-

plexity.

Comprehensive numerical simulation results obtainest ogalistic UWB
scenarios corroborate our analytical findings and dematesthat the pro-
posed noncoherent detectors can deliver efficient perfocenaersus com-
plexity trade-offs, and are capable of jointly relaxing 8tengent require-
ments of both the high sampling rate and the accurate timinghsoniza-
tion.

Organization. The rest of the paper is organized as follows. Se¢fioh 5s2rdees
the signal model. After reviewing the MSDD scheme with idémling synchro-
nization, Section 5|3 introduces the CS-based versiortidbde 4 extends the SLS

1We recall from[[84] that the block size plays a role in detetimj the performance improvements
against the DD scheme, in the sense that the longer the tiedbetter performance.
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variant of the MSDD to the CS framework, and Secfiof 5.5 deitls a modified
scheme of SD. The simulation results are illustrated inie&.6, and finally, in
Sectior 5.7 some concluding remarks are drawn.

5.2 Signal Model

For the UWB-IR signal model, each symbol is representedpyrames with one
pulseq(t) per frame. The symbol, frame and pulse intervals are detsidras],
Ty andTy, reigectively, satisfyinds = N1y, T, < T;. Denoting the symbol

level waveform as
Ny—1

A .
s(t) =) qlt—4Ty), (5.1)
§=0
the transmitted signal corresponding to a block)of 1 consecutive symbols can
be written as

Q
u(t) =Y bes(t — kT) (5.2)
k=0

whereb, € {£1} are the transmitted symbols, which are differentially etezb
according to the rule
b, = bp—1ay, (5.3)

with a; € {£1} representing the information-bearing symbols. Withosslof
generality, we considéry = 1 as initial reference symbol.

The multipath channel is assumed to be time-invariant witm interval of
length (Q + 1)T, which is required to transmit (8.2). The delay spread isllema
thanTy such that the overall channel fits within a single frame anucaenter-
symbol interference (I1Sl) is avoided. Under the assumpitia the channel im-
pulse response (CIR) hdspaths, the received pulse is given by

L-1

h(t) 2> gt — 700) * hip(t), (5.4)
=0

whereh, p(t) is the low-pass filter at the receiver with bandwidith 7, 2 T —T,
0 < ¢ < L —1,isthe relative delay of th&h path with respect to the timing offset

20ur focus is on a single-user point-to-point link, so for glitity of presentation, the time hop-
ping (TH) code is not employed. Such an extension is easy ilodheded. However, frame averaging
may not be possible in this case. Our model can also be extande multi-user scenario but it
would necessitate a compressed user template to identifgafte user.
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T £ 1, of the first path due to signal propagation,is the actual delay of théth
path at the receiver ang, is the respective path gain. The symbol level received
waveform can thus be expressed as

Ng—1
g(t) = > h(t - jTy), (5.5)

=0

and correspondingly, after exploiting (5.2) ahd [5[4B)5the received signai(t)
is given by

Q
r(t) =) brg(t — KTy — 1) +o(t), (5.6)
k=0

2:0t)
wherex(t) is the block level received signal andt) is the zero-mean additive
white Gaussian noise component with variange

5.3 MSDD With Exact Timing Synchronization

In this section, we consider the MSDD scheme when exact gjrimiformation is
available at the receiver, or equivalently, when the timiffget isT = 0, and ac-
cordingly 7, o = 7,. As afirst step, we revisit the MSDD scheme presented in [84]
for NR sampled UWB signals and derive it in an algebraic fowhi¢h is needed

to build mathematical foundations for the compressed @rjsiand denote it for
simplicity as NMSDD. Then, we propose the MSDD-based on tBdr@mework,
referred to as CMSDD.

5.3.1 Nyquist-Rate MSDD

Denoting with1/7T" £ N/Ty the Nyquist sampling rate, the NR received signal
(5.8) can be expressed as
r = [rgvrfv"' 7r5]T (57)

wherery, 2 [0 x0" o yNDIT it

v 2 [r(KTy + jTy), r(KTs + jT5 +T),--- ,r(kTs + jT; + NT - T)]" (5.8)
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collecting theN NR samples of thgth frame for thekth symbol. Similarly, we
can definex, x;, andx,(j) based on:(t), andv, vy andv,(j) based onv(t). From
(5.8), we can then obtain that

ry =X, +vg, 0<k<Q, (59)

wherex;, = bk(lexl ® h) is the signal part of, with

h = [1(0), h(T), - ,hW(NT = T)]" (5.10)
made up of the NR samples of the received pulse waveform. (Ndje thatvy
is a zero-mean Gaussian distributed noise vector with @wves matrixC,, 2
E{viv]} = o2Iyn,. Exploiting (5.7) and[(519), the joint model for the block of
Q@ + 1 symbols can now be written as

I‘Z(b@INNf)(lexl(X)h)—i-V, (5.11)
whereb £ [bg, by, - ,bo]T denotes the transmitted symbols. Hence, after defin-
ing the vector of the information symbols as= la1,az, - ,aq]T, the NMSDD

scheme can be stated as follows.

Proposition 1: NMSDD. The GLRT NMSDD mixed-integer optimization prob-
lem (OP) is

alNMSDPD) — 4re max {mﬁx A(r|a, h)} , (5.12)
where the GLLM is
A(rla,h) = 2N/ (b @ In)h — (Q + 1)N;hTh, (5.13)
with v = [¢1, 27, v5]7 and
,
= A ()
Ty =~ r (5.14)
N &

which represents th& x 1 vector collecting the samples of the average frame for
the kth symbol.
Proof. Under the joint NR sampled modél(5111), the GLLM can be entas

A(rla,h) = 2r" (b ® Iyn, ) (1n,x1 ® h)
— (b ®Ixn,)(In,x1 @ W) [(b @ Inn,)(1n,x1 @ h)]
=2r" (b ® Inn,)(1n,x1 ®h)
—(Q+1)(An;x1 ®h) (1, x1 @ h), (5.15)
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which can be further simplified intg_(5.113). Sinbds a function ofa as described
in (5.3), [(5.12) can be solved into two steps according ta@hRT principle. First,
the GLLM (5.13) is maximized oveh by setting the corresponding gradient to
zero, and then, it is optimized ovar |

5.3.2 Compressive Sampling MSDD

For the CMSDD, we assume that each received frame vegt)ogiven by (5.8) is
compressed using the x N frame level fat measurement matdx, (i.e., M <
N), such tha®, &1 =1/,

yW 28 0<j< N1 (5.16)

Note that the compression ra;zioé % with 0 < p < 1, identifies how much one
can economize the sampling rate, and accordingly, the ctatipoal load of the
data detector.

Upon definingyy 2 [y,go)T,y,gl)T, e ,y]iNf_l)T]T, the compressed received
signal within thekth symbol can then be expressed by eV, x 1 vector

yi = (In; @ @p)ry = (In, @ ®p)xp + &, 0<k<Q, (5.17)

where¢, = (In, ® ®g)vy is the noise component with covariance mattlx =
E{¢&.61) = a?)IMNf. It should be noted that the measurement process inl(5.16) is
performed in the compressed analog domain;[see [46]-[65]dtails about possi-
ble analog implementations.
Now from (5.17), we can express the joint compressed modehsQ + 1
symbols as
y=¥(beIyn,)(An;x1®@h)+§ (5.18)

wherey = [y{,yT,--- yb]" and¢ = [¢].£7.- - £4)7 are the compressed
(M < N) (Q+1)MN; x 1 measurement and noise vectors, respectively, and

¥ = diag{Iy, ® ®o, Iy, ® @1, , Iy, ® Bq} (5.19)

is the (Q + 1)M Ny x (Q + 1)NN; block level measurement matrix, such that
YT =1, 1)my, Hence, the CMSDD can be formulated as follows.

Proposition 2: CMSDD. The GLRT CMSDD integer OP is

alCMSDD) — 1o max {A(yla)}, (5.20)
a
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where the objective function is

Q Q
Alyla) =) bpbiy ) 18] 3o, (5.21)
k=0 (=0
with
g, 2 L i (5.22)
Y = N; & .

being theM x 1 vector collecting the samples of the average compresset:fiar
the kth symbol.
Proof. See Appendik5.A. |

A number of remarks about the CMSDD can now be highlighted.

1. If the frame level measurement matrigeg are all orthogonal to each other,
i.e., ®,®] = Onrxnr, Yk, £ With 0 < k,¢ < @, thenA(y|a) does not
depend o, and accordingly the detector does not exist.

2. Ifthe frame level measurement matri@gare all the same for each symbol,

e, ®y) = &, = --- = P, then taking into account (8.3)\(y|a) turns
into
Q k—1k—t
Alyla) =Y Y T lalieyt ve, (5.23)
k=1 £=0 =1
whereas in the case they differ from symbol to symialy|a) has the gen-
eral form
Q k—1k—¢
Alyla) =) > [ Bliveyi ®x®i 50 (5.24)
k=1 ¢=0 1=1

3. By virtue of the CS framework, the CMSDD relies on the eatitin of the
average frame i (5.22), which is performed for each symbdhe com-
pressed domain. This is less demanding than the implenmmntatt (5.14)
based on the NR sampling. As an additional strength, thecti@teprocess
of the CMSDD avoids a reconstruction step, which furthep&iéh keeping
the complexity at an affordable level.

4. Concerning the performance limits of the CMSDD, if thenimalevel mea-
surement matrices are orthogonal to each other, then theDEM#es not
work, whereas better performance is expected if they arsdhee for each
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symbol. However, for applications where choosing idehtineasurement
matrices is not feasible, the CMSDD can still offer compegisdetection.

5. The performance-versus-complexity trade-off enablethe CMSDD is ex-
pected to be governed by the compression ratis well. Indeed, the higher
the i, the lower the performance loss, till the performance apgies that
of the NMSDD asu — 1. This can be established mathematically by not-
ing that whenu = 1 (i.e., M = N) then <I>£<I>k. = Iy (which is a general
property of orthogonal matrices). Thus,

Vi 8, 8]y = (®)r;,) @, 8] (B1) = FL Ty

and the CMSDD in[{5.24) reduces to the NMSDD.

5.4 MSDD with Symbol Level Synchronization

In Section 5.8, we assumed ideal timing synchronizationis #ksumption means
that the receiver can recover an accurate estimate of thiegtioffset at the pulse
level. In this section, we will relax this computationallgrdanding constraint: first,
we re-describe in algebraic form the MSDD scheme with syoiaation at sym-
bol level as proposed in_[85] using NR sampling, denoted @sSttS-NMSDD in
short. Then, we extend the above CMSDD approach to symbel $gwchroniza-
tion, thus formulating the SLS-CMSDD scheme. A coarse syrdwel synchro-
nization is thought to be available, so that the timing dffsés less than a symbol
duration, i.e.,m € [0,7). Furthermore, the observation window is increased to
Q@ + 1 symbols in order to accommodate the residual (unknownntiroifset.

The key idea of the MSDD with SLS is to partition the receivgthbol wave-
form g(t) given by [5.5) into the two parig (¢) andg; (¢), such that

2 )0 tef0,7)
gO(t) - {g(t B T) ‘e [7_’ Ts) ) (525)
a(0) s {g(t +Ts—7) tel0,7) 7 (5.26)
0 ter,Ty)

as depicted in Fig. 5l1, for a single frame per symbol, N\g.,= 1. It is apparent
from (5.25) and[(5.26) thajy(¢) and ¢; (t) depend uporr and are orthogonal to
each other.
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Figure 5.1: Partitioning o§(t) into go(t) andg, (t) for Ny = 1, in the presence of
a timing offsetr.
5.4.1 Nyquist-rate MSDD with Symbol Level Synchronization

Denoting, N, = |7/T] ande = (v — N,T), with ¢ € [0,T), the NR sampled
symbol level versions afy(t) andg; (t) are given by

0o é [0]7\}TX179(_E)79(T - E)a o ,Q(NNfT - NTT_ T— E)]Tﬂ (527)

g1 [g(NNfT — N, T —¢),g(NNsT — N, T +T —¢),
2 g(NNGT =T =), 0y, _n, ] - (5.28)
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| | | | |
ro = 0g1 + bogo | r1 = bog1 + b18o | T2 = b1g1 + bago | r5 = bog + 0gp

Figure 5.2: SLS model in the noiseless case With- 2, Ny = 1 and timing offset
T.

Thus, the NR sampled version of thth received symbol waveform can be repre-
sented by theV Ny x 1 vector

rp = brgo +bp—181 +vi, 0<k<Q+1, (5.29)

where without loss of generality we assuig = bg1 = 0. In view of (5.29),
the joint SLS NR sampled model for the block @f+ 2 symbols can be put into
the form

r = (bg ® Inn,)go + (b1 @ Inn,)g1 + V, (5.30)

wherebg = [bg, b1, -+ ,bg,bo11]T andby = [b_y,bg, by, - ,bg|T are the(Q +

2) x 1 extended differential symbol vectors, white= [l r7 .- ,rH)" and

v = vV ,VH41)". Fig.[5:2 sketches out the SLS model for a simple
noiseless example with one frame per symio} & 1). Due to the presence of the
residual timing offset- € [0,75), in order to detect) = 2 transmitted symbols,
@+2 = 4 symbol intervals have to be collected, or equivalently,simple vectors
ro,r1,re, r3. Hence, the SLS-NMSDD scheme can be formulated accorditigeto
following proposition.

Proposition 3: SLS-NMSDD. The GLRT SLS-NMSDD mixed-integer OP is

é(SLS—NMSDD) = arg max {max ASLS (f"a’ £0, gl)} s (531)
a 80,81
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where the GLLM is

Asis(tla, go,g1) = 287 [(bo @ Inw,)go + (b1 ® Inn,)g1]
— 2gj (by by ® Inn, )81
— [0 (bdbo ® Inn,)go + &1 (b] b1 ® Iyn,)g1]. (5.32)

Proof. From the joint SLS NR sampled modEl (5.30), the GLLM can beesged
as

Asis(tla, g, 81) = 287 [(bo ® Iyn,)g0 + (b1 ® Inn,)g1]
— [(bo @ Inn,)go + (b1 ® Inn, g1
x [(bo ® Inn,)go + (b1 ® INNf)gl] ,(5.33)

}T

which after some algebra givds (5.32). [ |

5.4.2 Compressive Sampling MSDD with Symbol Level Synchrona-
tion

Bearing in mind the CMSDD and SLS-NMSDD schemes discuss8éatior 5.3.2
and Section 5.411, respectively, let us now combine the @SS frameworks.
Exploiting (5.1T) and[(5.29), the compressed waveformivedewithin the kth
symbol interval reads

yi = (In, @ ®p)[brgo + bp—181] + & 0<E<Q+ 1. (5.34)
Accordingly, the joint compressed model for e+ 2 symbols takes the form
y=%[(by® Inn,)go + (b1 @ Inn,)g1] + '3 (5.35)

wherey = [y, yT, -+ y5,]" andé = (&7, €], . €5,,]T are the extended
(Q +2)M Ny x 1 compressed measurement and noise vectors, respectively, a

¥ = diag{Iy, ® ®o, Iy, ® &1, , Iy, ® P41} (5.36)

is the (Q + 2)M Ny x (Q + 2)NN; extended block level measurement matrix,
such thatb 7 = I, 0)arn,. Thus, based on the joint modEl(5.35), the MSDD
version adopting both SLS and CS can be stated as follows.
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Proposition 4;: SLS-CMSDD. The GLRT SLS-CMSDD integer OP is

aBLS=OMED) = arg max {Asrs(y]a)} (5.37)
a
where the cost function is expressed as
Q Q
Asis(¥la) = > bibelyh (In, ® 24 @7y,
k=0 £=0
+ Y%H(INf ® Ppr 1P 1)yes)- (5.38)
Proof. See Appendik5.B. [ |

Some remarks about the SLS-CMSDD scheme are now in order.

1. When the frame level measurement matri®gsare all orthogonal to each
other, i.e.,®,®] = O0prxns, Yk, £ With 0 < k,¢ < Q, the detector again
does not exist.

2. When the frame level measurement matrices are the saraktfog symbols,
e, ®g =P = = P, the cost function[(5.38) to be optimized takes
the following simpler form

k—1k—t

Agrs(yla) = Z S 1Tlalive Ghye + yiayes) . (5.39)
k=1 ¢=0 =1
whereas in the case they differ from symbol to symbol its garferm is
Q k—1k—t
Asts(yla) =Y Y [lalielyi (In, © @197y
k=1 ¢=0 =1

+yi 1 (In, © Pp1 @] )yes). (5.40)

3. Similar to the CMSDD, the SLS-CMSDD shows the advantagenabling
data detection while skipping the reconstruction step,ienglerformance is
basically dictated by the choice on both the measuremeniacasatand the
compression ratig.

4. In view of relaxing the demanding constraints not only lve $ampling rate
but also on the timing synchronization accuracy, it is eigeédhat SLS-
CMSDD offers more competitive performance-versus-cowipjerade-offs
when compared to both the CMSDD and the SLS-NMSDD, whichirequ
either a higher timing accuracy or a higher sampling ratspeetively.
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5.5 Compressed Sphere Decoder

Despite the major advantages of CMSDD and SLS-CMSDD as tinaneat differ-
ential detectors working directly on sub-NR sampled sigriatan be argued from
the Propositions 2 and 4 that maximizing the objective fiamst (5.24) and(5.40)
over all the possible realizations afinvolves an exhaustive search that exhibits
combinatorial complexity. Accordingly, such a route tutashe quite unfeasible
even for short block size3. In order to gain a manageable OP we resort to the SD.
Basicson SD. SD is an effective iterative decoding algorithm origiggdroposed

to efficiently solve the shortest vector problem (SVP) intada [106]-[107], i.e.,

§8VP) — arg min {||Us||y}, (5.41)
seZNx1
whereU is theM x N full- rank generator matrix, whereas the lattice is defined a
the set ofM x 1 vectors£(U) = {Us|s € Z¥*!}. In the SD, only those lattice

points are searched |terat|vely that lie within a spherexdiusp centered a0/,
i.e., only the subset of € ZV*! satisfying the condition|Us||; < p. Iteration
after iterationp is progressively made smaller and smaller, so that the lsspace
is greatly reduced compared with a naive method based orustite search. As
a result, the SVP, which is NP hard as showrl in [108], can batitely solved at
low-degree polynomial complexity (cubic or higher) in teadith/V of the optimal
vector to be searched for.

The SD algorithm was proposed for MSDDIin [109], for frequefiat Rayleigh
fading channels to improve the performance over DF-DD[1&0} successively,
was extended to UWB detection in the MSDD scheme propose@4h [In the
sequel, we will illustrate how to apply the SD framework te tbtMSDD and SLS-
CMSDD proposed in Sectidn 5.8.2 and Secfion 5.4.2, resdygtieading thus to
the concept of CS-based SD, or CSD for short.

CS based SD. To make our problem SD-compatible, let us reformulate thie®
tive functions in [5.24) and(5.40) in an easy-to-evaluatenf In the case of the
CMSDD, the maximum value of the objective function amounots t

Anax(y]a) = ZZ |57 @, ®] 4, (5.42)
k=1 ¢=0
and subtracting[(5.24) froni_(5.42) yields an equivaleneotiye function (to be
minimized)
Q k-1 k—¢

Alyla) = > 171 ®1®] vl |1 - sign{y} @x®{ v} [ [ lalive|, (5.43)
k=1 (=0 =1
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k—t

where, depending upon the sign pf [a];+, , each term inside the square brack-
=1

ets takes a value ifi0,2}. Similarly, in the case of SLS-CMSDD, an equivalent

objective function can be defined as

Q k-1

Agis(yla) => > |yi (In, @ 2x®] )ye + yiy ) (In, ® 1 @7, 1)yer]
k=10=0

x[1 —sigi{y; (In, ® @, P/ )y¢
k—t
Vi1 (I, © @1 @7, )y} H [a]i1¢]. (5.44)
=1

For the ease of notation, let us now define

7, A {y£¢ki>$ye, CMSDD
Lk =
yE(An, © 21®] )y, + yL, (In, ® B ®L )yer1, SLS—CMSDD
(5.45)
Hence, the OP related to the CMSDD or SLS-CMSDD results irgtreeral form
aopt = argmin {=(yla)}, (5.46)
where
Q k-1
E(yla) =D nerlZex, (5.47)
k=1 £=0
with
k—¢
ek = |1 —sign{Zex} [ ] (alizve (5.48)
=1

and Z; ;, given by [5.45). From[(5.46)-(5.48), the following remadean be ob-
tained: i) the objective function[(5.47) consists of the sum of the-negative

i k-1
Eilylay) =30 nerlZexl, 1<5<Q, (5.49)
k=1 £=0
depends only om; 2 [[al, [ala, - - - , [a];]7 and givena;_1, a; depends only on

[a];; iii) in light of features) andii), (5.41) defines a sphere in thdimensional
lattice of the vectora € {£1}¥ [108]. Therefore,[(5.46)-(5.48) combined with
remarksi)-iii ) fully comply with the SD framework, and as a consequenceQfr
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Table 5.1: Pseudo-Code for CS-based SD

Pseudo-Code for CSD
Input: Zy, fork=1,---,Q, £=0,--- k-1
Initialize : n = 0, a(0) = aPC-PD_ 5(0) — =(y|aPC-DD)
Repeat
Candidate set fg@a(™)];:
AP = {[a™); € {£1}[E1(y]a)"”) < o))
Choose a tentative estimate[af”)]; from A{™
Candidate set foja(™], given[a(™];:
A3 = {[a™); € {£1}[E2(y]ay") < p)}
Choose a tentative estimate[af”)], from A"

Candidate set foa(™]q given[a™)]y,---  [a(™]g_;:
AG) = {[a"]g € (x1}[Eq(vlag’) < o™}
Choose a tentative estimate[af™)] from AgL)

ZAiop‘c —am

p ) — Eq(yla™) = E(ylaopt)

Setn=n+1

Until A" =0
Output: agpt

is amenable to be solved. It is worth mentioning that the alfoumulation of our
objective function is not the same as the conventional SbPesihis a nonlinear
function ofa. Nonetheless, the possibility of estimating an elemert based on
the previously estimated elements in a sequential manraesnt solvable as an
SD problem.

I mplementation of CSD. Concerning the implementation of the iterative algorithm
at the generia:th SD iteration, anecessary conditiofor any tentative estimat&™

to lie inside the sphere of radiy§® > 0 is given by

Ej(yléﬁn)) <pM, 1< <Q. (5.50)

Based on conditior_(5.50), the CSD can be computationatBnged according to
the pseudo-code outlined in Tab.]5.1. We note that the CS@itign is initialized
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by the solutiora®“—PP obtained by applying the low-complexity DC-DD scheme
proposed in[[100], which also gives the initial radip®) by evaluating [(5.47).
The iterations go on with a smaller and smaller sphere astsemace, with the
candidateigl) found at the previous iterations lying on its surface. Whemgiven
iteration, for a certairy, condition [5.50) is satisfied for both values [&f™)];,
i.e., {1}, a random value is taken from the candidateA{;‘T), and if none of
the values satisfie§ (5150),is decreased by and[a(™];_, is tried with the other
value from the candidate set. Eventually, the algorithnpstehen the candidate
setA&”) results to be empty, i.e., all the conditions on the candidats have been
checked without reducing the sphere radius, thus meanaigthle objective has
safely reached its minimum value. It is worth mentioning the set of coefficients
Zy. can be precomputed before the iterations, or even can begoarttized to two
levels, and the unknowng ;. take non-negative integer-values so checking(he
conditions at each iteration in Tab. b.1 requires only realteger format additions
combined with logical operations, thus contributing in &g the complexity at
affordable levels in solving the OP_(5]46)-(5.48).

5.6 Simulation Results

In this section, the proposed sub-NR MSDD schemes are tastaagh numerical

simulations over realistic multipath environments. Intgaitar, the bit error rate
(BER) metric is quantified as a function of either the mearehiergy-to-noise-

spectral-density ratio defined #&/Ny, = Ny||h||3/02 or the compression ratio
u, for different values of the block siz@ and frame numbeN, with ideal pulse

level or coarse symbol level timing synchronization.

5.6.1 Simulation Setup

The transmitted signal consists of a number of bursts imatu@ consecutive dif-
ferentially encoded binary symbols according to rile](518)each symbol inter-
val, the frame length is chosen to B¢ = 50 ns, whereas the transmitted pulse
per frameq(t) is selected as the second derivative of a Gaussian shapevialit

T, = 1ns. The slow-fading channel is assumed to be time-invaviathin each
burst, but randomly varying from burst to burst accordingh®e IEEE 802.15.3a
CM1 model [95], whose maximum delay sprea@isis. The bandwidth of the re-
ceive low-pass filter is taken & = 2 GHz, and consequently, the NR4$5Hz.,
i.e, N = 200 samples per frame. Therefore, assuming a compressionafatio
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means that only/ = u/N samples are employed by the detection algorithm. Fur-
ther, we consider frame level measurement matrizgs) < k£ < Q. We initially
generate them as having zero-mean equi-distributed Gaweniries and later or-
thonormalize the rows. Two different options are considdog compressing each
symbol within the bursti) same measurement matrix (SMM), i.@;, = ® 1,

0 < k < @ — 1; ii) different measurement matrix (DMM), i.e®; # Py 1,
0<k<Q-1.

5.6.2 BER with Ideal Timing Synchronization

Figs.[5.8 and 514 depict the BER metric versus Hj¢N, ratio for the SMM and
DMM options, respectively, for the compression ratio= 0.5, and block sizes
@ = 1,10, 15. The number of frames per symbol is setNg = 1 since for ideal
timing synchronization the frame averaging[in_ (5.14)[cE®.is such that higher
values are expected not to affect the performance, as cadiby Tab[6.11. For
both figures, increasing) gives reasonably better performance when compared
with @ = 1, namely the conventional DD, regardless of choosing SMM &iD
Indeed, at the BER of0—3, when moving from@Q = 1 to = 15 both the
NMSDD and CMSDD gain around 4 dB, regardless whether we e¢h&4M or
DMM. Given that the channel stays invariant at least withia block interval, i.e.,
(Q +1)NyTy, the above behavior is basically due to the multi-symbaicttre of
both the algorithms, which advantageously exploit theaigorrelation not only
between adjacent symbols as the DD does, but also betwegnatiaar symbols
up to the block size apart. Further, in spite of the 2 dB lo$iesed by the CMSDD
against the NMSDD in case of SMM, the former presents thergdge of halving
the sampling rate, thus reducing the computational loadired, to detect each data
burst. It is further to be remarked that changing the setomf®MM to DMM, i.e.,
passing from Fig. 513 to Fig. 5.4, causes the performanceM$D to deterio-
rate by 3 dB. It can be imagined that the limiting case of teisnario will be in
line with the first remark made both in Section 513.2 and 8affi4.2, explaining
that frame level orthogonal measurement matrices can nigkedtector indepen-
dent of the differential symbols, and thus ineffective. &lthat for the sake of
comparison, we also plot in Fig. 5.3 the results of usingesbkiock-wise DF-DD
(sbDF-DD) [103] and its compressed version CS-based DF-@DF-DD) [102]
(both in dotted lines). The results point out that the prepo§ SD-based detector
has a slight edge over the csDF-DD. Although, both requiealitiming recovery,
the latter is further limited to the SMM scenario. On the otside, as quantified in



5.6. Simulation Results 111

Sectior 5.6.8, the SLS-CMSDD is the only scheme that canderably relax the
timing accuracy, thereby enabling good performance-wecaumplexity trade-off
solutions. However, it is worth mentioning that our propbsehemes, CMSDD
and SLS-CMSDD are not restricted to be used only with CSD astemative to
exhaustive search, but other strategies, e.g., DF can alepted. Figd. 515 and
show the BER versus the compression ratat £, /Ny = 10 dB, for both the
NMSDD and CMSDD, with@) = 1,10, 15, and adopting the SMM and DMM op-
tions, respectively. As expected, increasinghe CMSDD performance improves
till it approaches that of the NMSDD when= 1.

5.6.3 BER with Coarse Symbol Level Timing Synchronization

Concerning the SLS-based detectors, we chddse- 10 frames per symbol since
in this configuration the timing offset is acquired with a rsmaaccuracy at sym-
bol level, and thus, the value d¥; is expected to affect performance (as will be
shown in a while). Fig$. 517 and 5.8 quantify the BER in cageINIM and DMM
options are adopted, respectively, with each figure refgrd both SLS-NMSDD
and SLS-CMSDD schemes, with block sizgs= 1, 10, 15, and compression ratio
1 = 0.5. Given that the timing offset of each received burst is unifly distributed
over the symbol interval to comply with the condition of aslgronous access to the
channel and in line with the assumption that timing synctzetion is performed at
symbol level only, the BER curves are averaged over the umlfodistributed tim-
ing offsetr € [0.17%,0.97]. Similar to the NMSDD and CMSDD, it is apparent
that the performance of the SLS detectors at both NR and C$lsgmmproves
using a larger block siz€), whereas the DMM incurs again a loss of around 3 dB
with respect to the SMM option. It is worth emphasizing thegt advantages of the
SLS-CMSDD are twofold, in the sense that it can relax thexgént requirements
on both the sampling rate and the timing accuracy at an affdedperformance loss
against the more demanding NMSDD and CMSDD schemes. Iniadld#imilar
to Figs.[5.5 and 516, it can be proved thatias» 1 the SLS-CMSDD and SLS-
NMSDD meet at the same BER level. Fig.]5.9 shows the averagel fBr the
SLS-NMSDD and SLS-CMSDD, with SMMy = 10 and different values of the
frame number, namelyv,; = 1,5,10. It can be argued that the performance im-
proves whenV, decreases given the corresponding decrease in noise datiomu
in the absence of frame averaging.

In Figs.[5.10 and5.11, we give the complexity performanc€8D against
NR SD, for varying SNR ang, respectively. We define the Complexity metric as
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the total number of sum operations consumed during a sesite(there are no
multiplications in our cost functions). As expected, theDCi&as a comparatively
higher Complexity but decreases with increasing SNR and/trereby indicating
a trade-off between performance and complexity.

Finally, in Fig.[5.12, we show a BER performance of CMSDD whsimng dif-
ferent types of samplers (i.e., measurement matrices)oAgh, we use a Gaussian
sub-NR sampler in general but other samplers can also be &#gd5.12 shows
the BER performance when the Gaussian, regular and randbflRusamplers
are used, respectively. We see that the Gaussian sampies better performance
than the regular sub-NR sampler especially at lower valfigs whereas the ran-
dom sub-NR sampler lags behind the other two.

5.7 Conclusions

In this paper, we have presented compressive sampling basiégle symbol dif-
ferential detectors using the GLRT approach, both in thegaree of full timing in-
formation as well as with symbol-level synchronizationyorifhe detectors avoid
an explicit reconstruction step and operate on the comgudesamples directly.
The detectors perform better when the measurement matniegbe same for each
symbol within the block but have the ability to work even wiikay are different.
The detectors do not exist for the case of orthogonal meamnematrices. Com-
bined with sphere decoding, the proposed detectors offgrleer complexity and
power efficient detection possibilities.
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Appendix

5.A Proof of Proposition 2

From the joint compressed modEgl (5.18), the GLLM giveandh can be written
as
Qyla,h) = 2y"¥(b @ Ivn,)(1n,x1 © h)
—[(b®Inn,)(1n,x1 ® h)]T W
x¥[(b @ Inn,)(1n,x1 ®h)], (5.51)
which, in view of the structure of, can be rearranged as
Q(yla,h) = 2y" ¥ (b @ Iyn, ) (1n,x1 © h)

_(1Nf><1 X h)T(b ® INNf)T‘I’T‘I’(b ® INNf)(lexl X h)

=2N;y'®(b@Iy)h - Nhi(b@Iy) 7 ® (b ® Iyv)h(5.52)
where® = diag{®,, ®,--- ,®o}isa(Q + 1)M x (Q + 1)N block-diagonal

matrix,y = [y, y7 .-, ¥5]", with y,. given by (5.22).
Following the GLRT principle, the first step is to maximize5g3) overh. Thus,
setting the gradient with respectidto zero yields

N7 ®(b @ Iy) — 2N (b Ix) @T®(b® Iy)] = 07, (5.53)
which leads to the estimate
h = Hy, (5.54)

where
H2 [(boly) @ ®bely)]  [@bely)’. (5.55)

Then, after pluggind (5.54) inté (552), we obtain the casiction
I(yla) 2 2N;y"®(b @ Iy)Hy
~N;[Hy]" baIy)'e’®(b o Iy)Hy. (5.56)
Considering that
— Ny [Hy]" (b Iy)"®"®(b o Iv)Hy
— Ny b eIy [(boly) @ ®boly)]
x [(boIy)"®T®(b e Iy)| Hy
= -N;y'®(bIy)Hy, (5.57)
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after some algebra and dropping the immaterial fadter (5.56) can be reformu-
lated as

Ilyla] =y " ®(beIy)S ' (baly) d"y, (5.58)
where
Q
S2(bely) @’ebely) =) &%, (5.59)

k=0
is a positive (semi-)definite matﬁ>depending only on the measurement matrices
P, 0 < k < Q. Intensive numerical simulations have shown that the pasef
S in (5.58) affects the differential detection @Pnly in a weak way, i.e., a specific
a maximizing [5.58) also (approximately) maximizes

Alyla] =y ®(baIy)(baIy) @'y, (5.60)

Hence, after rearranging (5160) according/tand®, the objective function of the
CMSDD OP takes the form of (5.21), which concludes the proof.

5.B Proof of Proposition 4

From the joint compressed modgl (5.35), the GLLM giveng, andg; for the
SLS-CMSDD can be put into the form

Qsis(v]a, g0, 81) = 25" ¥ [(bo @ Ly, )go + (b1 ® Iyvw,)g1]
— [(bo ® Inn,)go + (b1 @ Ly, )g1] 7
x W [(bo ® Inn,)go + (b1 @ Iyn,)g1] - (5.61)

After some algebra[ (5.61) can be rearranged as

Qsis(¥]a, go, g1) = 25" ¥ [(bo ® Inn,)go + (b1 ® Inn,)g1]
—2g3 (bg @ Iyn,) ¥ ¥(by @ Iy, )81
—~[gf (bo ® Iyn,)" ¥ ¥ (by ® Iy, )go
+gl (b1 ® Iyn, )" ¥ ¥(b; ® Iy, )g1], (5.62)
wherey and¥ are the extended measurement vector and block level measnre
matrix, respectively, defined in Section 514.2. It is workiserving in [5.6R) that

Q
g0 (bo @ Inn, )" ¥ W(by @ Inn,)g1 = »  [alim, (5.63)
=1

3As detailed in[[10D], the positive (semi-)definite propesfyS can be easily shown through the
eigenvalue decomposition (EVD).
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wherew; = g) (In, ® ®] ®;)g1. Note that due to the orthogonality gf and
g1, wo; will have very few addenals Now given that it is equally probable fay

to be+1 or —1, we can expect that the result can (on the average) be coedide
as vanishing for a sufficiently large block sige Hence, the objective function in
(5.62) can be further simplified as

Qsis(¥la, o, g1) ~ 257 [(by ® Iy, )go + (b1 @ Inn,)g1]
—[gd (bo @ Inn,) " T (b ® Inn,)go
+gi (b1 @ Iy, ) U ¥ (by @ Inn,)g1]. (5.64)

In accordance with the GLRT principle, setting the gradiein(5.64) to zero
with respect t@, andg; gives

where

- - - T
G 2 [(b; @ Iyn,) "W ¥ (b; @ INNf)} [\Il(bi ® INNf)] , i=0,1.
(5.66)
Thus, upon pluggind (5.65) intd (5164), after some algebeaitain

Tsis(yla) £ y"¥(bo @ Ivw,)Sy " (bo ® Inn, ) ¥y
+y ¥ (b; ® Iyn,)S7 (b1 ® Inn, )T ¥y,  (5.67)

whereS, andS; are defined, respectively, as

Q
So = (bo @ Iyn, ) @ ¥ (by @ Iyn,) = Iy, ® Z o[ Py, (5.68)
k=0
o Q+1
S1 = (b1 @ Iyn, ) ¥ ¥ (b @ Iyn,) = Iy, ® Z D/ P (5.69)
P

From [5.68){(5.69), it can be remarked thiS, andS; are independent of botty
andby; ii) applying the EVD, it can be proved th8p andS; are positive (semi-
)definite matricesjii) it can be shown that the inverses ® and S, affect the

4If ®, are the same, fdr=1, - -- , Q, thenw;s would also be the same, and (3.63) will result in
a summation ovefal;s scaled by a constant value. & are different, for = 1,--- ,Q, thenw;s
would produce a scrambling effect ovef;s.
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Table 5.2: BER performance of CMSDD with varyifgy and@ = 10

Ey/No[dB] [ Ny =1 [ Ny =5[] N; =10
4 0.4009 | 0.4031 | 0.4038
6 0.3053 | 0.3074 | 0.3072
8 0.1558 | 0.1587 | 0.1582
10 0.0376 | 0.0384 | 0.0365
12 0.0034 | 0.0032 | 0.0032

maximization of [(5.6]7) in a weak way (in terms &f. Hence, collecting together
the above results, we are left with the approximate costtioimc

Asis(¥1a) = 37 ¥ [(by @ Iyn,)(bo @ Iyn,)"
+(b1 ® Iyn, ) (b1 @ Iyn,) 1 ¥7y.  (5.70)

Finally, similar to the approach pursued for the CMSDOD, 05.Zan be reformu-
lated in the equivalent form given bl (5138), thus conclgdihe proof.
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Figure 5.3: BER comparison of NMSDD and CMSDD with SMM, alowngh
sbDF-DD and csDF-DD (dotted lines), different block siz&%,= 1 andp = 0.5.
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Figure 5.4: BER comparison of NMSDD and CMSDD with DMM, diféat block
sizes,N;y = 1 andy = 0.5.
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Figure 5.5: BER comparison of NMSDD and CMSDD with SMM, ditfat block
sizes,N; = 1, different values of, and £, /Ny = 10dB.
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Figure 5.6: BER comparison of NMSDD and CMSDD with DMM, diiéat block
sizes,N; = 1, different values of: and £, /Ny = 10 dB.
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Figure 5.7: BER comparison of SLS-NMSDD and SLS-CMSDD witviNg, dif-
ferent block sizesN; = 10, 1 = 0.5 andr € [0.17,0.9T].
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Figure 5.8: BER comparison of SLS-NMSDD and SLS-CMSDD witkl®, dif-
ferent block sizesN; = 10, 4 = 0.5 andr € [0.1T, 0.9T5].

—%—SLS-CMSDD, N, =1
——SLS-NMSDD, N, =1
—e—SLS-CMSDD, N, =5
10°F | ——SLS-NMSDD, N, =5
—=—SLS-CMSDD, N, = 10
f

—%— SLS-NMSDD, N, = 10

8 10 12 14 16 18 20
E, /N, [dB]

Figure 5.9: BER comparison of SLS-NMSDD and SLS-CMSDD witiNg, Q =
10, p = 0.5, different values ofVy andr € [0.17%,0.97%].



120

10 ‘
—»—CMSDD, Q=5
——NMSDD, Q=5

1055 —6—CMSDD, Q = 104

——NMSDD, Q =10
—8—CMSDD, Q=15
—6—NMSDD, Q = 15}

Complexity

10
E,/N, [dB]

Figure 5.10: Complexity comparison of SD against compissel Nyquist rate
symbols, different block sizes, SMMN; = 1.
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Figure 5.11: Complexity comparison of SD against compikss®l Nyquist rate
symbols, different block sizes, varying SMM, £, /Ny = 10dB, Ny = 1.
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Figure 5.12: BER comparison of CMSDD with Gaussian, regalad random
sub-NR sampler, different block sizes, SMM; = 1, different values of: and
Ey/Ny = 14dB.
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Abstract

We present reconstruction algorithms for smooth signall bliock sparsity from
their compressed measurements. We tackle the issue ohgagyoup size via
the group-sparse least absolute shrinkage selectiontop€taASSO) as well as
via latent group LASSO regularizations. We achieve smaaghnn the signal via
fusion. We develop low-complexity solvers for our propo$eanulations through
the alternating direction method of multipliers.

6.1 Introduction

Compressed sensing (CS) [5, 6] is one of the most excitinggay present-day
signal processing. Signal reconstruction from its low-glisional representation
becomes a possibility, given the sparse nature of the sagmhlincoherence and/or
restricted isometry property (RIR)/[6] of the sensing/nueasent process. In this
regard, a number of approaches can be used, e.g., basi¢ pBRL15], least ab-
solute shrinkage and selection operator (LASSQO) [37] aeedy algorithms [30].
In order to exploit the structure of the signal being senaadjmber of variants of
LASSO have become popular, e.g., group LASSO (G-LASSQ), [gdarse group
LASSO (SG-LASSO)[[42] and fused LASSO (F-LASSOQ) [44], eta this pa-
per we propose new LASSO formulations to handle block spsmssoth signals.
Smooth signals are often encountered in a wide range of eaging and biolog-
ical fields. In engineering, signals observed in image @siog, control systems
and environment monitoring are often smooth or piece-wiseath. In biology, a
similar structure is observed, e.g., in protein mass spsabdpy [44]. The goal is to
recover such structured signals from noisy and/or undapisd measurements. A
related topic is signal smoothing which deals with removargdom outliers. Apart
from being smooth, such signals can often be representgubesesin some basis.
This sparsity pattern normally varies in terms of the lamatnd block size of the
sparse coefficients. The challenge for signal reconstmas to exploit the block
sparsity with varying block sizes, while keeping smootlsnesact and using fewer
measurements, but all at low complexity. In the CS domagnaismoothness has
been handled by using a fusion constraint.in [44]. The fugaiso known as total
variation (TV) in the image processing literature. Apaonirfusion, [44] also pro-
poses arf;-norm penalty to cater for signal sparsity. However, sin@stnof the
signals are block sparse, [44] cannot give efficient resultscater for the block
sparsity, one can replace thenorm penalty with a group penalty. Although this
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approach can handle the block sparsity very well, it onlesfffixed group sizes
and causes complete groups to be zero or nonzero. To avoithation of small
sets of nonzero elements, a very small group size is optethButan make the
algorithm inefficient in eliminating large blocks of zereeeients. In this regard,
we propose to use a moderate group size along withy arorm penalty over the
signal, to create sparsity within the groups. Thus by usurgioh in combination
with an ¢;-norm penalty and a moderate group size, a smooth signal €an-b
constructed with high accuracy. The problem of varying greizes can also be
handled by using the concept of latent groups, seel[111] efedences therein.
These are basically overlapping groups, with recurringaiglements in possibly
multiple groups. Thus, an element lost in one group may faseithrough another
group after reconstruction. So we also propose to use statitdegroups in combi-
nation with a fusion constraint to recover block sparse smeignals with varying
block sizes. Note that a work on using overlapping groups thesfusion function
instead of the signal structure has appeared in/[112], widetever requires com-
plete signal samples. Instead, we propose overlappinggrand fusion penalties
over the actual signal for under-determined systems. Tlwasexploit the actual
structure of the signal rather than the difference of eldmeRurther, in order to
solve the proposed formulations, we derive low-compleaigorithms based on the
alternating direction method of multipliers (ADMM) [113T he reason for using
this version of the augmented Lagrangian methods is priyriaieé non-separability
of the fusion penalty in terms of the elements of the signalisl the general con-
vergence properties of ADMM can be used to guarantee optiesallts for our
proposed algorithms.

6.2 Signal Reconstruction

Letx be theN x 1 recoverable signal. Givel/ measurements, the sensed signal
can be written as

y=®x+v (6.1)

wherey is anM x 1 measurement vecto® is anM x N measurement matrix
(M < N) with compression ratip. £ M /N andv is anM x 1 zero-mean addi-
tive white Gaussian noise vector with variange To recover the signal from the
compressed measurements while keeping the signal seuictuact, we propose
below, two LASSO formulations.
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6.2.1 Sparse Group LASSO with Fusion

Through sparse group fused LASSO (SGF-LASSO), we can resbk issue of
signal smoothness, as well as, that of fixed group sizes. ptimiaation problem
can be formulated as

. .1
X = argming |y — ®x|[5 + Aellx|I1
X
G-1 N-1
g > lIxills + Mg D NIy — Byl (6.2)
i=0 j=1

wherex; is an N/G x 1 sub-vector ofx, representing one ofi groups over
the elements ok, i.e.,x = [x{,xT,--- xL_,,]7. We can see froni(6.2) that
Ag Efi‘ol l|lx; |3 accounts for group sparsity,||x||1 for element-wise sparsity and
Af Z;V:_ll [x]; — [x];—1|} accounts for fusion within the elementsxafsuch that
the effect of each penalty becomes severer with increagnglty parameters, i.e.,
Ag» Ae @nd Ay, respectively. For a moderate value®fthe proposed formulation
can tackle the varying group size problem by creating styavgithin the group
along with fusing consecutive elements. Note thatXpe= s = 0, (6.2) reduces
to the standard LASSO problem, for; = 0, (6.2) reduces to SG-LASSO, for
Xe = Af = 0, (6.2) takes the shape of G-LASSO and fgr= 0, (6.2) becomes
F-LASSO.

Solver for SGF-LASSO

In order to solve the SGF-LASSO problem via ADMM, we introduw/o auxiliary
variablesu andz of size N x 1. Thus, [6.2) can be written as

NP 1
(%.1.2] = argming ly — ®x|3 + A.ul}

X,W,Z

G-1

+ g Y will + Asllzll}
i=0
st. ;,=%x;,0<i<G-1, z=Dx (6.3)
whereu; is anN/G x 1 sub-vector ofu, i.e.,u = [u},uf, - ,ul_,,]7, andD
is the difference matrix withD}; ; = —1, [D]; j41 = 1,for0 < j < N — 2 and

[D]n_1.n-1 = 1, such that|Dx||} equals the element-wise fusion. From{6.3),
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the Lagrangian problem can be written as

1
L(x,0,2,p,,p.) =5y = XI5+ Aclull;

G-1
+ A0 Y w3 + Azl
1=0
G—-1 c G-1
+ Z P, (Wi — %) + ) Z i — i3
=0 1=0
C
+ pf(z —Dx) + EZHZ — Dx||§ (6.4)

wherep,, (with sub-vectorg,, , for0 < i < G—1)andp, are Lagrange multipliers
and, ¢, andc, are positive constants. The solution bf (6.3) is generaiethe
following successive approximations

x" = argininﬁ (x, ulr=1 g1 pL"_”, p[Z"_”) (6.5)
ul’ = argininﬁ (x["_”, u, pL”_l]) (6.6)
z" = argzminﬁ (x["_l},z, pL”‘”) (6.7)
and the multipliers are updated as
=Pl (e —ul) (6.8)
Pl = plr=1 4 (Dl — g7, (6.9)

The closed-form solution fof (6.5) at theh iteration can be derived to be
X[”} — (‘I’T‘I’ +CZDTD +CuIN)_1
X <<I>Ty — DTp[Z”_l] + e, DTz =1 pL”_l] + cuu["_”) . (6.10)

We can see froni_(6.10) that the matrix inversion part doesimange during the it-
erations so that it can be performed off-line, resultingaduced complexity. Note
that the matrix inversion lemma can be used to further easedmputations in-
volved in the inversion operation. Far, note that the optimization involves two
penalties, i.e., apart from penalizing each elemenifoir sparsity, we need to opti-
mize on each of its sub-groups as well. Since both penaltees@n-differentiable,
we utilize the fact that soft thresholding generates a mirenfor the cost function
involving A||u;||i [37], and for the cost function involving,||u;||3, the mini-
mizer iss, = u;/||u;||3 in case|lu;||3 # 0 and the minimizer is a vecte, such
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that||s,||3 < 1in case||u;||3 = 0 [42]. Thus the closed-form solution & (6.6) for
theidth subgroup at theth iteration can be written as

[n—1]
n n— Pu; Ae A
u)” <HS<[ e 2 )H%——j)
U i w) .

S <x[”‘” + pi A_>
X S (6.11)

HS( w1 o) ) 12

for 0 < i < G — 1, whereS(s,\) = sign(x)(x — ). is the soft thresholding
operator. Thus the estimate wican be obtained as

uln — [ug”T, ul? ungl ] (6.12)

which along withx[" is used to updatp in (6.8). Now from [6.Y), the closed-
form expression for the estimate ot thenth iteration can be derived as

[n—1] A
2" =S | Dx* 1 4 pz ) 2t (6.13)
Cz Cz

which subsequently updatgaéﬂ in 6.9).

6.2.2 Latent Group LASSO with Fusion

For the latent group fused LASSO (LGF-LASSO), the signalegnsented into
many overlapping groups of certain s@esln contrast to the disjoints groups,
overlapping groups can reselect the elements from otherpgro We create
overlapping groups through aN/G x N sub-selection matriXW,; which se-
lects N/G rows from an identity matriXy. An overlapping group can then be
obtained by the relationW;x, for 0 < ¢ < G — 1, where W, is such that
W 2 [WI, W7, 'WL]”. Each sub-selection matrd; repeatsk” rows of
W,_1, whereK is the overlapping factor and< K < N —1. Figure6.1 schemat-
ically shows the difference between disjoitif (= 0) and overlapping groups (for
K = N/(2G)). We can see that the overlapping groups can solve the pnobie
the fixed group size but the price to be paid is in terms of cdatmnal complex-
ity which increases excessively with the facférdue to the related increase (i
Now, the optimization problem for LGF-LASSO can be formathas

YIn this paper, we consider overlapping groups of fixed sibasthe concept can easily be ex-
tended to varying sizes as well.
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Figure 6.1:Above Disjoint groups.Below Overlapping groups.

G-1
. 1
X = arg min 5”3’ — ®x||3+ )\, Z [W;x||3 + Ar||Dx]|. (6.14)
x i=0

Solver for LGF-LASSO

To solve the LGF-LASSO problem, we again turn to ADMM. By oducing a
new auxiliary variablai of sizeGN/G, (6.12) can be written as

G

-1
L2 . 1 -
[%,1,2] = argminly — x5+ A > [[wllz + Arllzli
x,0,Z i=0
st. i, =W,;x, 0<i<G—-1, z=Dx (6.15)
wherew; is anN/G x 1 sub-vector ofa, i.e.,ua = [af,af, - ,ﬁg_l,]T. Now
the Lagrangian fol (6.15) can be written as
1 G-1
(%02, pg, p.) =51y = B3+ Ay Y [[l3 + sz}
=0
G-1 . G-1
+ Y ph (1 — Wix) + 5 > Il - Wix|l3
=0 =0
C
+ pl(z — Dx) + EZHZ — Dx||? (6.16)

where p;; collects the Lagrangian multipliers with sub-vectarg for 0 < i <
G — 1. Now the successive approximations for the solutiof ofgpviLr.t. x, @ and

p; can easily be obtained by solving

xl' = arg min £ (, @1, 271, o, ple 1)) (6.17)
" = arg min £ (x[n—u, a, pgb—ll) (6.18)
= ol e (xl) — gl (6.19)
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Figure 6.2: Comparison of SGF-LASSO, LGF-LASSO and G-LASSO

whereas, the estimatesofndp, are the same as in_(6.7) and (6.9), respectively.

6.3 Simulations

In this section, we present some simulation results to coenfifee performance
of our proposed algorithms. We compare the performance ¢-5&5S0O, LGF-
LASSO and G-LASSO. We consider a cloud reflectivity data ftbenEarth System
Research Laboratory (ESRL) [114]. This data basically sheariations in cloud
reflectivity over time (around 12 hours) for different clobdights above ground
level (AGL). We consider it to be the ground truth and try tdireate it in the
presence of noise of variane@ = 0.25. There areV = 425 reflectivity samples
corresponding to each height. We limit ourselves to the dafs~y; = 50 levels
of cloud heights. A signak is sensed separately per height, through the same
measurement matrig (where each row may correspond to a sensor), which has
been drawn from a zero-mean Gaussian distribution wittawagl /M. We have
further orthogonalized the rows of the measurement mdirix

The penalty parameters for the simulations have been caesicas\. = 5,
Ag = 35 andXs = 10. In general, these parameters can be selected from a given



6.3. Simulations

131

Height [x 600 meters (approx.)]

Height [x 600 meters (approx.)]

150

1100

150

N
(6]

N
o

[y
a1

100 200 300 400
time [x 1.5 min (approx.)]

Figure 6.3: Original Signal

160
| i
l I 140
Pl 120
! i
. L {100
|
|
L {80

160

100 200 300
time [x 1.5 min (approx.)]

Figure 6.4: Reconstruction by SGF-LASSO



132

range in a cross-validation manner, by varying one of thampaters and keeping
others fixed[[4R]. Further, since all of these parameterspaesity promoting, and
can possibly affect each other, it is expected that the bedrhe optimal set of pa-
rameters would be restricted to a smaller range. The paessagtandc, are pos-
itive numbers and may affect the convergence rate. We tama #sc, = ¢, = 2.
As initial conditions, the vectors!®, ul®, 2%, pl% Hl §OI ang pg)], have all
been considered as zero vectors, respectively. Note theisasquares solution of
x, can also be considered as a warm-start to speed up the geneerrate. The
group size for SGF-LASSO, LGF-LASSO and G-LASSO has beeantas20.
Therefore, the number of groups in SGF-LASSO and G-LASSQtesame, i.e.
21 . For LGF-LASSO, an overlapping factor &f = 5 has been used, and therefore
the number of overlapping groups of sizéareG = 28. We use a maximum of
250 iterations for each algorithm. We have observed that agnte level ofl0—3
between consecutive updates is reached much earlier tisamih, and therefore
we stop the algorithm at this stage. Figlrel 6.2 shows thensteaction perfor-
mance of SGF-LASSO, LGF-LASSO and G-LASSO for a particulaud height,
when the signal was sensed with a compression ratio0.5. We can see that the
performance of SGF-LASSO and LGF-LASSO s very close to ediobr and both
are able to recover the smooth transitions of the origirgaladi On the other hand,
the performance of G-LASSO deteriorates both on the froshwdothness as well
as block size. Note that in contrast to SGF-LASSO and LGF-88%)\, is the
only sparsity creating parameter for G-LASSO. Thereforejnerease its value to
122.5, which is the minimum to recreate the actual zero blocks.o Abscase of
SGF-LASSO, we take\, = 17.5 in order to facilitate the parsimonious effect of
Ae. Figured6.8-616 show the reconstruction performance df-88SSO, LGF-
LASSO and G-LASSO for the complete range of cloud heightaidgve can see
that the performance of SGF-LASSO and LGF-LASSO is bettan t6-LASSO
and very close to the original. Tallle 6.1 shows the perfooeammparison of the
proposed algorithms through the mean squared error (MSEj)against varying
compression ratios,

MSE = E{||x — x[3/NNon}

wherex is the concatenation aVop signalsx (i.e., of all cloud heights), and
average (E.}) is over different noise realizations. We can see that tiflopeance
improves in general with increasing valuegffor 0.1 < x < 0.7. Nonetheless,
the difference in performance follows the previously olksdrpattern. Note that
the performance of LGF-LASSO can be improved by increadimgaoverlapping
factor but that would cause a subsequent increase in theutatigmal complexity.



6.4. Conclusions 133

Table 6.1: MSE comparisons w.r.t. compression ratio

i | SGF-LASSO| LGF-LASSO | G-LASSO
0.1 0.4607 0.4523 0.4953
0.3 0.2589 0.2607 0.4122
0.5 0.1661 0.1607 0.3079
0.7 0.1250 0.1197 0.2576

6.4 Conclusions

In this paper, we have proposed two new LASSO formulatiomsnely, sparse
group fused LASSO and latent group fused LASSO. The formes alement-wise
sparsity, group sparsity (over disjoint groups) and fugp@malties, whereas the
latter combines the fusion penalty with a latent group pgndoth formulations
can be used to reconstruct smooth signals from their corsguesieasurements.
We also provide low-complexity solvers for the proposedrfolations, based on
the alternating direction method of multipliers. We congehthe performance of
our proposed algorithms with standard group LASSO over ao#imtest signal.
The simulation results confirm the better performance ofptteposed algorithms
for signal reconstruction against group LASSO. Similautsswere obtained for
the mean squared error metric, for varying compressiongati
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Chapter

Conclusions and Future Work

In this chapter, we provide the conclusive findings of theithand also enumerate
some suggestions for future work.

7.1 Conclusions

In this thesis, we have shown that compressive sampling ¢as)e applied to
ultra-wideband (UWB) signaling to reduce the sampling ratech below the clas-
sical Nyquist rate. We have presented practical scenaritigs regard and results
have been shown through numerical experiments.

We have proposed CS-based energy detectors for UWB impatte-(IR)
pulse position modulation (PPM) in different fading envinoents. We have shown
that the principles of generalized maximum likelihood canuged to propose de-
tectors which require the reconstruction of the originghal from the compressed
samples and also detectors which skip the reconstructem astd carry out de-
tection on the compressed samples directly. This can helpefuin reducing the
complexity. We have provided exact theoretical expressfonthe bit error prob-
ability (BEP) to assess the performance of our proposecuiete

We have also proposed CS-based differential detectorsRidyWB signals.
These detectors work on consecutive symbols. We have gmekldetectors with
separate reconstruction and detection stages as wellegalstthat do these steps
jointly. We have also proposed detectors which do not neszhstruction at all and
can work on the compressed samples directly. However, #rigpat some limita-
tions on the overall flexibility of the detector in terms oétmeasurement process.
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To assess the performance of these detectors, we have alsdgar maximum a
posteriori (MAP) based detectors.

We have extended the CS-based classical differential eteto the case of
multiple symbol differential detectors. To keep the impésmation complexity
very low, we work only with the compressed samples. We haed tise principle
of the generalized likelihood ratio test to eliminate tmeitations on such detectors,
in terms of the measurement process. Apart from proposimpoessed detectors
which contain full timing information, we have also propdsketectors which need
such information at symbol level only. This effectively uésd in detectors which
are low-cost and low-complexity.

Finally, we presented our work on the theoretical aspec@3fWe developed
algorithms which exploit the varying block-size sparseduire of the signal with
smooth coefficients. In this regard, we basically develdpedapproaches. In the
first approach, we combined group sparsity with elemenewggarsity, along with
sparsity in the difference of consecutive elements. Thsslted in variable group
sizes with smooth reconstructed signal transitions. Insineond approach, we
used the concept of overlapping groups along with elemése-fusion to recon-
struct block sparse smooth signals of varying block sizes bbth approaches, we
proposed efficient iterative solvers in the form of the aléting direction method
of multipliers.

7.2 Suggestions for Future Work

CSis avery general technique and can have numerous appigatere, we enlist
some major areas for possible future research.

1. UWB signaling offers very fine timing resolution. This aspmakes UWB
a favorable choice for localization. Especially in sensetworks, UWB
signals can offer centimeter ranging accuracy by using based position-
ing techniques, e.g., time-of-arrival and time-differeraf-arrival. Further,
since power consumption and implementation complexitycatieal factors
for sensor nodes, CS-based UWB can be very useful in thisde@t can
be used along with UWB for this application, not only to regltive sampling
rates but also to exploit sparsity within the network. Tharsjy within the
network is from the perspective that not all the nodes areeet a given
point in time, and therefore CS can help in optimizing the bamof active
sensors as well.
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2. A number of publications have appeared recently whicHoéxhigher or-
der statistics of the signal to reduce the sampling rate byeatgmargin.
Estimating the power spectral density of wideband sigresdase in point
where signal correlations can be exploited in the compdedsmain to build
efficient estimators. This approach can be extended to 4inttensional
estimations as well. Such aspects can be explored in theofd$@/B in
terms of, for example, estimating the delay-Doppler spectof time vary-
ing UWB channels.

3. CS can be used in climate monitoring, e.g., to estimatelthed density or
the volume of rainfall etc. CS can be extremely helpful irstregard by
optimizing the number of sensors required for monitoring afso exploit
the unique structures of such signals, e.g., block spaasity smoothness.
Chaptef b gives a first attempt to tackle such problems.

4. CS can be used for efficient field estimation. A case in psimistimating
the spectral field for cognitive radios (CRs). Usual methHodspectral esti-
mation concentrate on CRs individually. The resulting spg¢estimates are
quite localized and depending upon the signal propagatwmament, it is
possible that the CRs may not be able to detect a primary B&Br (esulting
in what is known as the ‘*hidden-terminal’ problem. Therefarollaborative
sensing mechanisms are necessary. One such techniqueietopa power
spectral map over the complete space known as spectrunyegpty [115].
A global overview of the spectral state results in bettetilization of the
spectral holes and also helps CRs to regulate their tramswier in order to
reduce interference with the PUs. However, the challenge éstimate the
field where no sensing mechanism is available. In this caSe;ad be used
to provide a solution by exploiting the inherent sparsityhaf field.

5. CS can greatly assist in the successful implementatiarewf telecommu-
nication technologies, e.g., massive MIMO. CS can be usee heth for
channel estimation as well as optimizing the number of adivtennas.

6. Seismic exploration is a very expensive field. CS canifatal efficient and
cost effective seismic exploration to utilize sparsity lné signal as well as
optimizing the number of scattered monitoring sensorshikway, sparsity
can be exploited both in the temporal and spatial domains.

7. CS can be used in radio astronomy. Normally, the receiata id of very
high resolution and sensing platforms, e.g., satellitasnot offer very high
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processing power and/or storage capacity, thereforerggtis astronomical
information in a compressed manner can save a lot of resaurce

8. CS has a great potential in the field of biomedical imagifg.interesting
example is that of magnetic resonance imaging (MRI). Nolymal patient
has to spend a substantial amount of time in an MRI machinedarao
provide an image. Since the images are sparse, CS can gheflyn re-
ducing the acquisition time by reconstructing the compiletege with fewer
frequency samples.

9. In the field of photographic imaging, advanced cameraemgdly have a
large number of sensors and therefore become quite expera® can help
in reducing the number of these sensors which can resultdacieg the
price of such cameras.
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Samenvatting

Draadloze communicatie ondergaat een enorme ontwikkejnglle viakken. Op
het vlak van communicatie over korte afstanden, belovemigogieén zoalsltra-
widebandUWB) zeer hoge datasnelheden, een goede tijdsresolutieeistentie
met andere standaarden voor de fysische laag. Samen meiobedelen, zorgt de
belofte van apparaten met een lage kost en een lage conejtlexivoor dat UWB
systemen een zeer gewilde optie zijn. De belangrijksterreger deze voorde-
len is het gebruik van een zeer grote bandbreedte. Dezeeleardomen echter
tegen een prijs, zoals de hoge bemonsteringssnelheid dig imom dergelijke
signalen te ontvangen. \olgens het Nyquist-theorema kansgmaal volledig
bepaald worden als het wordt bemonsterd met een snelhegklie is aan twee
maal de maximale frequentie. Dit betekent dat de UWB signakn bemonster-
ingssnelheid vereisen in de orde van grootte van Gigasarppleseconde. Aan de
ontvanger wordt de bemonstering uitgevoerd doora®iog-to-digital converter
(ADC). Het stroomverbruik van een ADC is evenredig aan dedresteringssnel-
heid. Een zeer hoge bemonsteringssnelheid betekent dab@etdgen de limiet
van zijn energieverbruik moet werken. Dit kan het hele idae WWB systemen
met een lage kost en een lage complexiteit in gevaar brerdgearom is de hulp
van onderbemonsteringstechnieken onontbeerlijk. Inatiband stellen wij het ge-
bruik vancompressive samplingCS) voor UWB systemen voor. CS belooft een
redelijke reconstructie van het volledige signaal met hghan slechts een beperkt
aantal gecomprimeerde monsters, op voorwaarde dat hetasigpaars is. In dit
proefschrift concentreren we ons op impuls-radio (IR) UWBtemen. IR-UWB
signalen staan bekend voor hun spaars karakter, wat wieredat een groot deel
van het ontvangen signaal nul of te verwaarlozen is. We bemueze ijlheid
in het tijdsdomein en verlagen de bemonsteringssnelh¢idetteden de Nyquist-
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frequentie, maar ontwikkelen op basis hiervan toch effgetdetectoren.

Wij ontwikkelen CS-gebaseerde energiedetectoren vodg\RB pulspositie-
modulatie (PPM) systemen in reflectieve omgevingen. Weuiietm de principes
van degeneral maximum likelihootheorie om enerzijds detectoren te bestuderen
voor een signaal dat gereconstrueerd wordt op basis vamagrcoeerde monsters
en anderzijds detectoren te ontwikkelen die deze recarigtstap overslaan en de
detectie direct op de gecomprimeerde monsters uitvoeraardeor de complex-
iteit verder verlaagt. Wij geven exacte theoretische ukkingen voor déit error
probability (BEP) om de prestaties van onze voorgestelde detectoremlieeeen.
Deze uitdrukkingen worden verder getoetst aan numeriekalsties.

Wij poneren ook CS-gebaseerde differentiéle detectomar \{R-UWB sig-
nalen. Deze detectoren werken met opeenvolgende symbwgnontwikkelen
detectoren met een aparte reconstructie- en detectiefanale detectoren die deze
stappen gezamenlijk uitvoeren. We stellen verder detesteoor die geen recon-
structiefase nodig hebben en enkel werken met de gecomgndmenonsters. Dit
brengt echter een aantal beperkingen met zich mee met biegekt de flexibiliteit
van het meetproces. Om de prestaties van al deze detectarewegen, bieden
wij ook maximum a posterioffMAP) detectoren aan. Wij voeren numerieke sim-
ulaties uit om de detectieresultaten weer te geven.

We breiden de klassieke CS-gebaseerde differentiéletdeda uit naar differ-
entiéle detectoren gebaseerd op meerdere opeenvolggmib@len. Om de com-
plexiteit van de implementatie laag te houden, werken veealtechtstreeks met de
gecomprimeerde monsters. Dit brengt weer beperkingen ictethzee wat betreft
het meetproces, maar om die zo klein mogelijk te houden gebiruve de principes
van degeneral likelihood ratio tesfGLRT). Naast de detectoren die gebaseerd zijn
op de volledige tijdsinformatie, stellen we ook detectorear die dergelijke infor-
matie slechts op symboolniveau nodig hebben. Dit restlédiectief in detectoren
met een lage kost en een lage complexiteit.

Tot slot presenteren we een aantal theoretische aspecté2iSiaNij ontwikke-
len algoritmes die de blokspaarse structuur van het signtialiten. Deze blok-
spaarse eigenschap wordt gecombineerd met verschilldokigfimetingen en sig-
naalcoéfficienten met vioeiende overgangen. Dergetiijgaalen worden vaak aan-
getroffen in een breed scala aan technische en biologisuterzoeksgebieden.



Propositions

1. Compressive sampling (CS) is a viable option to decrdassampling rate
much below the Nyquist rate in impulse-radio (IR) ultra-elénd (UWB)
systems.

2. Noncoherent IR-UWB detectors can be realized from thenstcucted sam-
ples and their performance is independent of the spreaduigrf

3. Signal detection is possible from the compressed sandplestly without
the need for a reconstruction stage but its performancendspepon the
choice of measurement matrices.

4. The reconstruction performance of IR-UWB modulated databe improved
by exploiting the sparsity structure of the received signal

5. Faith, perseverance and patience are essential ingtedoe a PhD.

6. Life of a PhD student is like that of a bull in a china shopstmaating every
delicate theory, before settling down for a proper solution

7. People are the same everywhere, irrespective of racelar cbherefore,
their Creator must be the same.

8. There should be no restriction on opinions as long as theyat abusive
and do not incite breaking the law.

9. Every human is born with an inherent right to life, justaed dignity. A
policy of denying it in the name of collateral damage is desbpie.

10. Governments should focus on fortifying their own bosdestead of raven-
ing weaker countries on one pretext or the other.

These propositions are considered opposable and defeadaid as such have been
approved by the supervisor prof.dr.ir. G.J.T. Leus.
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Stellingen

1. Compressive samplif@S) is een nuttige manier om de bemonsteringssnelheid ver
onder de Nyquist-frequentie te verlagen in impuls-rad®) (lltra-wideband UWB)
systemen.

2. Niet-coherente IR-UWB detectoren kunnen worden geseaid met behulp van de
gereconstrueerde monsters en hun prestatie is onafhnieglide spreidingsfactor.

3. Signaaldetectie is mogelijk op basis van enkel de geconggrde monsters, zonder
dat er een reconstructiestap nodig is, maar de prestati@hibangt af van de keuze
van de meetmatrices.

4. De reconstructieprestatie van data gemoduleerd meMiB-Wan worden verbeterd
door de spaarsheid van het ontvangen signaal uit te buiten.

5. Geloof, doorzettingsvermogen en geduld zijn essenitigrediénten voor een PhD.

6. Hetleven van een promovendus is als die van een olifargnirperseleinkast: elke
delicate theorie misbruiken, om vervolgens tot een goetlessimg te komen.

7. Mensen zijn overal hetzelfde, ongeacht ras of kleur. &aamoet hun Schepper
hetzelfde zijn.

8. Er mag geen beperking zijn op meningen, zolang ze geenmunksipleveren en niet
aanzetten tot het breken van de wet.

9. leder mens wordt geboren met een inherent recht op leeehfvaardigheid en
waardigheid. Een beleid dat dit ontkent in de naam e@lfateral damages ve-
rachtelijk.

10. Overheden moeten zich richten op het versterken van igen grenzen, in plaats
van het leegroven van zwakkere landen op basis van een of eomisvendsel.

Deze stellingen worden opponeerbaar en verdedigbaar deachzijn als zodanig
goedgekeurd door de promotor prof.dr.ir. G.J.T. Leus.

155



156



Acknowledgments

All praise is due to Almighty God, The Most Gracious and Thesublerciful.
Despite my many shortcomings, He has always bestowed Hisiblgs upon me. |
hope and pray that His mercy continues upon me unabatedlthahtiremain only
His servant till the end of my life. Verily, He is the sourceatff strength.

I would like to thank my supervisor, Prof. Geert Leus, fordjng me through-
out my PhD. He gave me the freedom to explore different rebedirections as
well as prevented me from getting detracted from the degjads. His prompt
help has always saved a lot of my time and perhaps is a keyr fexctoy complet-
ing the major share of my research within four years. Aparfacademics, | also
admire him as a person. He has the knack of quickly percesatinl sensitivities
and is always willing to respond to personal problems in atpesway. | think |
was fortunate to work with a person of his capabilities ardliact. 1 would also
like to thank him for doing Dutch translation of the summanygléhe propositions.

I would like to thank Prof. Alle-Jan van der Veen. His preseitthe group
has always been very inspiring. Joining him at lunch almestyslay has been a
pleasant experience.

I would like to thank Prof. Vincenzo Lottici. We worked togjer on a number
of papers. | have learnt many things from him. His detailethicents and precise
suggestions have always been very helpful. 1 would like é&mkhhim for being part
of my defence committee as well. | would like to thank all atheembers of my
defence committee, Prof. R. Fischer, Prof. F. Le Chevdfimf. K. Bertels, Dr. Y.
Vanderperren and Dr. Y. Zhang. | would like to thank them fading my thesis
and giving me extremely useful suggestions.

From the secretariat office, | would like to thank Laura Bruvitnaksie Ram-
soekh and the project support Rosario Salazar for their préwep in many of the

157



158

official matters.

I would like to thank my past colleagues and friends, Naumgank Umar
Rizvi, Vijay Venkateswaran, Yiyin Wang, Yu Bi and Sina Mailek had a quality
time when they were around and got help from them in many ways.

I would like to thank my present colleagues and friends, As#inijari, Andrea
Simonetto, Chockalingam Veerappan, Dony Ariananda, GKailj Hadi Jamali-
Rad, Hamid Ramezani, Jorge Martinez, Millad SardarabaitiatNCicek, Raj Ra-
jan, Raocio Arroyo, Seyran Khademi, Sharil Abdullah, Sumiéeimmar, Sundeep
Chepuri, Venkat Roy, Yan Xie, and Yonchang Hu. | had a pedsmranection with
almost each one of them. | am sure | will miss them. | wish thdirtha best. |
would especially like to thank my old friend Dony, who has af& been ready to
discuss any thing with me.

| would also like to thank my Pakistani friends, Zubair Nawdhammad
Nadeem, Laiq Hassan, Hisham bin Zubair, Sajid Ageel, Ml (your are al-
most a Pakistani), Wagas Syed, Abrar Hakeem, Imran Ashrsififay Ahmed,
Faisal Nadeem, Fakhar Anjum, Seyab, lbrahim Daud, HamayhenKiIftikhar
Faraz, Tariq Abdullah, Ageel Wahla, Samee ur Rehman, Akréwau@hary, Atiqg
ur Rehman, Bilal Ahmed, Hamid Mushtaq, Atif Bulelzai, Abddannan, Fahim
Raees, Shah Muhammad, Umar Altaf, Muhammd Zubair, Rajgbyalinis, Osama,
Adeel Javed, AN Tabish, Nauman Ahmed and all those whoses\Hnage missed.
I had a memorable time with most of them. | would also like tarth my friends
Maxim Volkov and Andre Abi Khaled for giving me company at Weads, and
Ismail Yatim at sports.

There are many more of my friends back in Pakistan and inréiffeparts of
the world, who have always wished good of me and | know, praynfpsuccess. |
thank them all for being a part of my life.

I would like to thank my father and my elder sister for theippart and en-
couragement throughout my masters and PhD. | would espekia to thank my
younger siblings, Javad, Gull, Shahab, Dilshad and Juméid, perhaps suffered
the most because of my absence. Special thanks to Gull fignileg the thesis
cover as well. 1 would also like to thank my nephews, Abduléaid Absar, for
their giggles and demands for chocolates, cookies, caadig$oys.

Last but not the least, | would like to thank my mother. She mggirst teacher
both in religious as well as mundane education. Her passimay avas the biggest
loss of my life. | dedicate this small work to her kind memeri®ay her soul rest
in peace, Ameen.



Curriculum Vitae

Shahzad Gishkori was born in 1979 in D.G. Khan, Pakistan.edeived the B.Sc.
degree in electrical engineering, with specialization @amputer engineering, in
2002 from the University of Engineering and Technology Lrighdakistan. Later
on, he worked in the industry for almost five years, of whicl tyears were spent
in the energy sector and three years in the telecommunmsasector. In August
2009, he received the M.Sc. degree (cum Laude) in eleceigiheering from the
Delft University of Technology, The Netherlands. In NoveenB009, he joined the
circuits and systems group at the Faculty of Electrical Begiing, Mathematics
and Computer Science of the Delft University of Technoloye Netherlands, in
pursuance of the Ph.D. degree. His research interestsdandompressive sam-
pling (compressed sensing), signal processing for comeations and wireless
communications.

159



160



Publications

Journals

* S. Gishkori, V. Lottici and G. Leus, “Compressive SamplBased Multiple
Symbol Differential Detection for UWB CommunicationdEEE Transac-
tions on Wireless Communications - To appear

¢ S. Gishkori and G. Leus, “Compressive Sampling Based Frizegection of
Ultra-Wideband Pulse Position ModulationEEE Transactions on Signal
Processingvol. 61, no. 15, pp. 3866-3879, Aug. 2013

« S. Gishkori, G. Leus and V. Lottici, “Compressive SamplBesed Differen-
tial Detection of UWB Impulse Radio SignalsElsevier Physical Commu-
nication, vol. 5, no. 2, pp. 185-195, Jun. 2012

Conferences

¢ S. Gishkori and G. Leus, “Compressed Sensing for Blocksgp&mooth
Signals”,IEEE ICASSPFlorence, Italy, May 2014

e S. Gishkori, G. Leus and V. Lottici, “Compressive sampliogsed multi-
ple symbol differential detection for UWB IR signaldEEE ICUWB 2012
Syracuse, USA, Sep. 2012

» S. Gishkori, G. Leus and V. Lottici, “MAP based differentietectors for
compressed UWB impulse radio signalE2EE ICASSPKyoto, Japan, Mar.
2012

161



162

S. Gishkori, G. Leus and and V. Lottici, “Energy Detectidnideband and
Ultra-Wideband PPM”|EEE Globecom 201(Miami, USA, Dec. 2010

S. Gishkori, G. Leus and and H. Delic, “Compressive SangpBased Dif-
ferential Detection of Ultra Wideband Signal$£EE PIMRC 2010Istanbul,
Turkey, Sep. 2010

S. Gishkori, G. Leus and and H. Delic, “Energy DetectorsSparse Sig-
nals”,IEEE SPAWC 201Marakesh, Morocco, Jun. 2010

S. Gishkori, G. Leus and and H. Delic, “Energy Detectionifia-)Wideband
PPM”, WIC SITB 2010Rotterdam, The Netherlands, May 2010



Glossary

Acronyms

ADC
AIC
AMP
BEP
BP
Cs
CoSaMP
DD
DEN
DMM
ED
EVD
FCC
GML
GLRT

Analog to Digital Converter

Analog to Information Converter
Approximate Message Passing

Bit Error Probability

Basis Pursuit

Compressive Sampling

Compressive Sampling Matching Pursuit
Differential Detection

Differential Elastic Net

Different Measurement Matrix

Energy Detector

Eigenvalue Decomposition

Federal Communications Commission
Generalized Maximum Likelihood

Generalized Likelihood Ratio Test

163



164

IR Impulse Radio

ITH Iterative Thresholding

LASSO Least Absolute Shrinkage and Selection Operator
LOS Line of Sight

LP Linear Program

MAP Maximum A Posteriori

MSE Mean Squared Error

MSDD Multiple Symbol Differential Detection
NR Nyquist Rate

NLOS Non Line of Sight

OLS Ordinary Least Squares

OMP Orthogonal Matching Pursuit

PDF Probability Density Function

PPM Pulse Position Modulation

RIP Restricted Isometry Property

SD Sphere Decoder

SE State Evolution

SLS Symbol Level Synchronization

SMM Same Measurement Matrix

SNR Signal to Noise Ratio

USLE Underdetermined System of Linear Equations

UwB Ultra-Wideband



165

Notations

Scalarz

Vectorx

Estimate of vectok

Transpose of vectat

ith entry of the vectox

Matrix X

Inverse of matrixX

(i, 7)th element of the matriX
Identity matrix of sizeN x N

M x N matrix with all components one
M x N matrix with all components zero
Kronecker product

Convolution

Block diagonal matrix

Largest integer smaller or equalto
Defines an entity

{y-norm ofx, i.e., (N o |[x]:P)1/P
Probability density function of
Statistical expectation of

Polarity ofz

(x)4 = xiff x > 0 otherwise(z); =0

Gaussian tail probability, i.el/v/2m [>° e~ 2dy
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