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Abstract—Compressive sampling (CS) based energy detectors
are developed for ultra-wideband (UWB) pulse position modula-
tion (PPM), in multipath fading environments so as to reduce the
sampling complexity at the receiver side. Due to sub-Nyquist rate
sampling, the CS process outputs a compressed version of the re-
ceived signal such that the original signal can be recovered from
this low dimensional representation. Using the principles of gener-
alizedmaximum likelihood (GML), we propose two types of energy
detectors for such signals. The first type of detectors involves the
reconstruction of the received signal followed by a detection stage.
Statistical properties of the reconstruction error have been used
for the realization of such kind of detectors. The second type of
detectors does not rely on reconstruction and carries out the detec-
tion operation directly on the compressed signal, thereby offering
a further reduction in the implementation complexity. The perfor-
mance of the proposed detectors is independent of the spreading
factor. We analyze the bit error performance of the proposed en-
ergy detectors for two scenarios of the propagation channel: when
the channel is deterministic, and when it is Gaussian distributed.
We provide exact bit error probability (BEP) expressions of the
CS based energy detectors for each scenario of the channel. The
BEP expressions obtained for the detectors working on the com-
pressed signal directly can naturally be extended to BEP expres-
sions for the related energy detectors working on the Nyquist-rate
sampled signal. Simulation results validate the accuracy of these
BEP expressions.

Index Terms—Compressive sampling, energy detection, pulse
position modulation, ultra-wideband impulse radio.

I. INTRODUCTION

D IGITAL communications is witnessing a phenomenal
growth in applications which involve signals of very high

bandwidth. Impulse-radio (IR) ultra-wideband (UWB) signals
are attractive because they offer high user capacity, fine time
resolution as well as low probability of interception and detec-
tion [1], [2]. A big hurdle in the implementation of IR-UWB
systems is the efficiency of the analog-to-digital converters
(ADCs). According to the classical Shannon-Nyquist-Whit-
taker-Kotelnikov sampling theorem [3], [4], a band-limited
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signal (i.e., ) can be determined com-
pletely from its samples if . So the sampling
rate should be at least twice the highest frequency. Therefore,
if the bandwidth of the signal is too high, ADCs can be heavily
stressed causing an increase in the power consumption [5], [6].
It could take decades before the ADC technology is fast, pre-
cise and low-cost enough for the present-day high-bandwidth
applications [7]. On the other hand, it has been described in
[3] that most of the signals with large bandwidths have a small
rate of information. This property of wideband signals makes
them sparse in information which has led to sampling methods
based on the amount of information (or the rate of innovation).
The combination of sparsity with finite rate of innovation has
been described in [8], primarily for the non-discrete domain.
Compressive sampling (CS) [9], [10] offers more flexible
options to deal with sparse signals in terms of the location of
the information and the non-uniformity of the measurements as
we shall elaborate upon in subsequent sections. In this paper,
we use CS to capitalize on the time domain sparsity of the
IR-UWB signals to reduce the sampling rate as well as the
implementation complexity of energy detectors.
We consider UWB pulse position modulation (PPM) signals.

PPM is advantageous because of its simplicity and the ease of
controlling delays [1] but the disadvantage, in the context of
UWB signals, is the relatively large bandwidth associated with
it, which causes a large number of visible propagation paths
[11]. In this paper, we concentrate on noncoherent PPM receiver
design through energy detection [12]–[14] and adopt CS for re-
duced system complexity as well as power consumption. The re-
sulting detection procedure resembles a generalized maximum
likelihood (GML) detector. The symbol decision is determined
by the pulse position that contains most of the energy. Note
that different works on CS in combination with UWB signals
have appeared recently, e.g., in [15] for coherent receivers, in
[16] for symbol-rate sampling but requiring pre-identification
of the channel which was then extended to [17] for channel
and timing estimation, in [18] for a GLRT based detector which
was then extended to [19] with an effective measurement ma-
trix design but both requiring the transmission of pilot symbols,
in [20] for joint time of arrival estimation and data decoding
which requires channel estimation, in [21] and [22] to account
for narrow-band interference, in [23] and [24] for UWB channel
estimation, in [25] for time-delay estimation and in [26] for
differential detection of UWB signals. In contrast to previous
methods, we present noncoherent UWB detectors. We neither
require pre-identification of the channel, nor the transmission of
pilot symbols. Most of the previous methods also require signal
reconstruction whereas, we present a method which skips this
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step altogether. Note that previous examples of detection with
compressed symbols can be found in [26] and [27].
Our Contributions:
• We utilize the CS framework to reduce the receiver sam-
pling rate for IR-UWB PPM signals much below the
Nyquist rate.

• Using the principles of GML, we develop CS based en-
ergy detectors for the signal reconstructed from its com-
pressed samples. We also propose energy detectors which
operate on the compressed signal directly and do not need
reconstruction.

• We show that the performance of our proposed energy de-
tectors is independent of the spreading factor.

• We provide bit error probability (BEP) expressions for the
proposed compressed detectors for a deterministic channel
as well as a Gaussian distributed channel. We show that
these expressions can be easily modified for the energy
detectors based on Nyquist-rate sampling.

Organization: The paper is organized as follows. Section II
presents the system model. Section III provides the CS based
energy detectors using the GML criteria for the reconstructed
signal as well as for the compressed signal without reconstruc-
tion. Section IV provides the theoretical BEP expressions for the
CS based energy detectors when the channel is considered de-
terministic. Section V provides the theoretical BEP expressions
when the channel is considered to be Gaussian distributed. Fi-
nally, Section VI presents the simulations and the concluding
remarks are given in Section VII.
Notations: Matrices are in upper case bold while column

vectors are in lower case bold; and depict the th
and th element of the vector and matrix , respectively,
whereas the range of the elements is specified by the Matlab-
style colon operator in the subscript; is the identity ma-
trix of size is transpose, represents convolution,
stands for the Kronecker product, is the estimate of

and denote expectation and variance, respectively,
represents a probability density function (pdf), defines an en-
tity, and is the norm of ; finally,

is the sign function which takes values and 1 de-
pending on the polarity of the element , whereas the function

if and only if otherwise .

II. SYSTEM MODEL

To transmit the th information symbol, consider an -ary
PPM signal of length . Every symbol consists of
frames, each with frame duration , so that the symbol time
is given by . The motivation for a multiple-frame
transmission has been attributed to the federal communications
commission (FCC) limits on the signal power spectral density
[28]. Repeating a pulse times, reduces the energy of an indi-
vidual pulse for a constant symbol energy. In PPM, the signal is
modulated by delaying the transmitted pulse within a frame. The
ease of implementing these delays also reflects the simplicity
of PPM. Let the base pulse delay be defined as, ,
then the transmitted signal for the th information symbol

can be written as
, where is the unit-energy pulse wave-

form of duration such that . If represents the

impulse response of the physical communication channel, then
the received signal corresponding to the th information symbol
is given by

where is the additive noise corresponding to the th infor-
mation symbol and is the received pulse wave-
form of duration . We can represent by its Nyquist-rate
sampled version. We take samples per frame period such
that is equivalent to the Nyquist rate. Let be
the integer number of Nyquist-rate samples in each slot, then
the sampled received signal corresponding to the th informa-
tion symbol in the th frame is given by

(1)

for , where and
. We assume that the elements are

independent identically distributed (i.i.d.) zero-mean Gaussian
with variance . The support of is given by ,
where (see Fig. 1). Since we want to make the
detection process separable in the different frames/symbols, we
do not want the received pulses to overlap and thus we require

or . We can also write (1) in the following
vector form

(2)

where ,

and . Since we assume that the channel
does not vary within a symbol period, is the same
for every frame, i.e.,

. The vector con-
sists of blocks of zero values and only one block with
nonzero values provided by . Let ,

then the structure of can be represented as

which reflects the enormous amount of sparsity present in UWB
PPM signals (e.g., the subsequent sparsity pattern of can
be seen as in Fig. 1). The covariance matrix of can be
written as . We can finally convert (2)
in the following symbol level compact form

(3)

where
and is a vector of ones of length .
The CS theory implies that the sparse received signal (com-

prising basis functions) is operated upon by a certain trans-
form operator which generates linear measurements of the
received signal such that , where represents the
number of Nyquist-rate samples of the received signal. This
process is carried out in the analog domain [7], [29], [30]. Here,
we represent this transform operator as an measurement



3868 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 15, AUGUST 1, 2013

Fig. 1. The squared received signal without noise for . Labels below
the time axis show the usual time-based parameters, while the labels above the
time axis show values for the squared Nyquist-rate sampled version of , i.e.,

.

matrix , with linear functionals as its rows.
Each measurement provides a compressed sample of the re-
ceived signal which eventually leads to a lower -dimensional
representation of the -dimensional signal. The ratio between
and is called the undersampling ratio . The mea-

surement matrix plays an important role in recovering the signal
from its compressed samples. For this, it has to satisfy the re-
stricted isometry property (RIP) [10]. A large number of random
matrices, e.g., Gaussian and Bernoulli matrices, as well as struc-
tured matrices (with randomly selected rows), e.g., Fourier (for
signals with time-domain spasity), satisfy this property.
At this point, we would like to elucidate the structure of the

measurement matrix used in the context of our work. To this
end, we present the following assumptions.
Assumption 1: The entries of the measurement matrix are

zero-mean i.i.d. with variance . As a result, its covariance
matrix can be written as . Now, as ,
it can be stated that the rows of the measurement matrix are
approximately orthogonal to each other, i.e.,

(4)

Assumption 2: Considering a matrix for which the approx-
imation (4) in Assumption 1 is exact, i.e.,

(5)

In other words, the rows of the measurement matrix are orthog-
onal and its columns have unit -norm.
Assumption 3: Given a matrix where

, in order to treat each of the slots separately,
the measurement matrix can be designed as .
Note that Assumption 3 can be used along with either As-

sumption 1 or 2. In the former case, the entries of the matrix
will be zero-mean i.i.d. with variance , and in the

latter case, the rows of the matrix will be orthogonal with
unit -norm columns. Assumptions 1 and 2 play an important
role in the performance analysis of the proposed detectors. We
will explain this in the related sections.

Fig. 2. Block diagram for the CS based ED with reconstructed signals.

Now, applying CS to (2) we can write its compressed version
as

(6)

where is the measurement vector for the th frame
and is the noise vector. The noise is also
zero-mean Gaussian with covariance matrix

(7)

depending upon Assumption 1 or 2. Note that unlike the com-
monly used signal models for CS, the noise in our case is also
compressed. Thus the choice of the measurement matrix be-
comes relevant to determine whether the resulting compressed
noise is i.i.d. or not. The symbol level joint model can be written
as

(8)

where and

are the joint compressed measurement
and noise vectors for the th symbol, respectively.

III. CS BASED DETECTION

For low system complexity and power consumption, we
focus on the noncoherent reception of UWB PPM signals [12],
which is akin to GML detection. The received signal is sam-
pled at a compressed rate according to (6). A straightforward
receiver then would require the reconstruction of the actual
received signal to carry out the detection process. The other
approach may be the detection from the compressed samples
directly without reconstructing the received signal. We shall
explore both approaches, i.e., the detection after reconstruction
and the detection without reconstruction of the compressed
received signal (see Figs. 2 and 3 for the block diagrams of the
two respective proposed approaches). Either way, we have to
handle each frame individually, and we want to find an optimal
way to handle multiple frames.

A. Reconstruction Based Detectors

1) Signal Reconstruction and Error Statistics: The recon-
struction of a sparse signal calls for the solution of an -norm
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Fig. 3. Block diagram for the CS based ED with compressed signals.

optimization problem. Since the related problem is NP-hard,
its -norm equivalent optimization problem, i.e., the convex
relaxation of the -norm, has been suggested in the literature
[31]. One way to reconstruct the received signal from its com-
pressed samples consists of solving the following optimization
problem, (from (8) for )

(9)

where corresponds to and is a constant. The
-norm minimization problem (9), also known as basis pur-

suit (BP), can recover the sparse signal from its compressed
samples but the bottleneck is the size of the signal model.
With , this method becomes computationally ex-
pensive (as the worst-case complexity can be of
for interior point algorithms). Alternatively, matching pursuit
algorithms can also be used, e.g., orthogonal matching pursuit
(OMP) [32], [33] (with a complexity of ). These
methods are based on iteratively selecting the columns of the
measurement matrix, one by one, that are most correlated with
the observation vector and its subsequent residual vectors.
Variants of matching pursuit algorithms include other greedy
algorithms that, in contrast, select more than one column of
the measurement matrix through correlations. A case in point
is the compressive sampling matching pursuit (CoSaMP) [34]
(with a complexity of ), which also has elaborate
performance bounds. In CoSaMP, the signal is estimated by
solving a least-squares problem on the candidate components
in every step, which involves matrix inversion. This inver-
sion step remains a bottleneck in reducing the computational
complexity. The iterative thresholding (ITH) algorithms [35]
(with a complexity of ), on the other hand, do not
have to invert a matrix, and reconstruct a sparse signal from its
compressed samples through the following simple iterations

(10)

(11)

where is the iteration index and is the thresholding op-
erator. Variants of ITH are generated depending upon the thresh-
olding to be hard, i.e., (where is the indi-
cator function) or soft . In general,
we will use to denote a soft thresholding operator. To
compare the performance of different ITH algorithms with other
approaches e.g., BP or OMP, a performance measure depicting

the transitions between success and failure phases of an algo-
rithm, named the sparsity-undersampling (SU) measure, was
proposed in [35]. The sparsity is the ratio between the
number of non-zero components in the sparse signal vector and
the number of compressed measurements, whereas the under-
sampling ratio is the ratio between the number of compressed
measurements and the total number of elements in the signal
vector. Through exhaustive simulations, it was observed in [35]
that although ITH is fast and has a low complexity, it unfortu-
nately performs poorly on the SU measure. To retain the fast
speed of an iterative algorithm but surpass the performance bar-
rier on the SUmeasure, the following iterative algorithm, named
the approximate message passing (AMP) algorithm, was pro-
posed in [36]–[38]. It can be summarized as

(12)

(13)

where is the derivative of the soft thresholding operator
(it generates a 1 for every nonzero element of ) and

gives the average value of the elements of , thus
where is the number of elements in . The

key difference between ITH and AMP is the additional term
in (13), i.e., , altering
the residual. In statistical physics, such a term is known as the
“Onsager reaction term”. For our context and referencewe name
it as the correction term (CT).
AMP has been derived from the message passing (MP) al-

gorithm which is used in graphical inference models [39]. It
was used in [40] for compressed sensing through belief prop-
agation over factor graphs [41]. The problem with the message
passing algorithm is that instead of updating only nodes at
each iteration, it updates nodes, causing an increase in the
computational complexity. If the number of nodes to be updated
is restricted to the variable nodes then message passing re-
duces to ITH. AMP provides the middle way. By neglecting the
weakly dependent updates in the MP algorithm, it updates only
nodes, but what is lost by not updating the measurement

nodes is gained by the addition of the CT. See [37] for a com-
plete derivation of this approximation leading to AMP.
AMP assumes the measurement matrix to be a random

measurement matrix whose elements are zero-mean i.i.d. with
variance . In our context, Assumption 1 then becomes rel-
evant. Note, AMP is valid under . Our Assumption
1 also requires this tendency of so that (4) can hold. Now,
the most important feature of AMP is the statistical characteri-
zation of the reconstruction error at every iteration. This can be
understood by developing certain heuristics for the iterative ap-
proaches. From (11), the correlation of the measurement matrix
with the residual vector at the th iteration can be expanded as

(14)

where . Now, as described in [36], if it is
assumed that does not correlate with the vector then
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can be viewed as a vector of i.i.d. Gaussian
random variables and the variance of each variable can be
given as . Let the noisy estimate of the received
signal be defined as

(15)

and the error in estimating the true signal from this estimate be
defined as

(16)

with denoting the variance of each of its elements. If the
above mentioned heuristics are true, then the variance of the
elements of the error vector can be tracked by the following
state evolution (SE) method for every iteration

(17)

where the function is defined as

(18)

where is a vector of zero-mean standard i.i.d. Gaussian
random variables, i.e., and we have considered

under Assumption 1. From
(18), we can see that the SE also predicts the mean squared
error (MSE) of the reconstructed signal in that the SE converges
to the true MSE at every iteration as [42], i.e.,

(19)

provided that which should remain true for
the SU measure of AMP to coincide with that of other methods,
such as BP. It has been observed through extensive numerical
simulations (see e.g., [38]) that SE fails to predict the perfor-
mance of ITH algorithms. The reason is the correlation between
and , which appears right after the first iteration and thus

the above heuristics are not true for ITH algorithms. On the other
hand, the SE predicts the performance of AMP exactly. The
reason is that the CT removes or compensates for the correlation
between and at every iteration and thus the above heuris-
tics regarding the reconstruction noise being Gaussian and the
MSE convergence remain true. Thus the variance of each ele-
ment of the vector can be written as

(20)

Note that the performance comparisons described above bring
the thresholding policy to the foreground as well. It would suf-
fice to say that the optimal thresholding value should be a func-
tion of the standard deviation , i.e., , where
is a constant. We will describe the thresholding policy used for
our purpose in Section VI.
2) GML Based Detection for Multiple-Frame Reconstructed

Signals: Let us assume that the received signal was compressed

at a compression rate and then reconstructed using AMP. Here
we assume that the AMP algorithm has reached convergence
and therefore drop the iteration indices from the variables. Let
be a vector containing all reconstructed frame

vectors , i.e., . From
Section III.A.1, we may assume that the reconstruction error
for each signal sample is i.i.d. Gaussian with variance . The
pdf for the reconstructed signal from (16) can then be written as

(21)

where is some positive constant. Using the GML criterion, it
is clear that in order to maximize (21), we need to minimize the
squared -norm, which can be expressed as

(22)

where is used for notational simplicity.
Taking the partial derivative with respect to while keeping
fixed, we obtain

Minimizing the cost function with respect to would mean set-
ting every gradient with respect to to zero, which yields the
following optimal estimate for :

(23)

Now substituting (23) in (22), we finally obtain

As a result, the symbol can be found by solving the following
problem

(24)

Given to be the signal energy per frame, the instantaneous
SNR for multiple frames can be defined as . From (24)
and (23), it can then be observed that for the same instantaneous
SNR , the decision result will be independent of the number of
frames . This can be explained as follows. The estimate of
in (23) is obtained by averaging samples over different frames,
which on one hand decreases the noise energy by a factor of

but on the other hand also decreases the signal energy by
a factor of due to the fact that the instantaneous SNR
is kept constant [43]. Hence, the performance of the estimate
of does not change with and thus also the solution to
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(24) does not change with (i.e., the spreading factor) since
it only involves the estimate of . Replacing in (24) by the
value obtained from (23), the optimal energy detector for the
reconstructed samples (R-ED) can be written as

(25)

Replacing the reconstructed samples with Nyquist-rate samples
in (25) gives the optimal Nyquist-rate energy detector (N-ED)
[43]. So we can see that the optimal procedure consists of first
averaging the signal components over different frames and
then squaring, and the related performance is independent of
the number of frames if the instantaneous SNR is kept
constant. This is in contrast to the GML detector proposed in
[12] for the Nyquist-rate sampled signal, which consists of first
squaring and then averaging. For the reconstructed samples, it
can be formulated as

(26)

We refer to (26) as the spreading-factor dependent energy
detector for the reconstructed samples (SR-ED). Replacing the
reconstructed samples with the Nyquist-rate samples leads to
the spreading-factor dependent Nyquist-rate energy detector
(SN-ED) [12].
3) Averaging Process in the Compressed Domain: We can

see that the proposed detection procedure is practically fea-
sible. We avoid Nyquist-rate sampling and the detection is car-
ried out on the reconstructed samples. Still, it may require the
reconstruction of all the frames which could be computation-
ally expensive. Here we can benefit from the structure of our
compressed detector and save a number of reconstruction steps
by reconstructing only one (average) frame instead of all the
frames. Since the transform operator is the same for all the
frames, averaging the reconstructed frames should be similar to
averaging the compressed frames and then reconstructing only
one average frame. Now, by averaging the compressed frames

, for , we can define the compressed av-
erage frame by the vector as

(27)

where , and from (4) or (5) the covariance

matrix can be written as . AMP can help
us compare the performance of the two approaches. From (16),
we can see that it is sufficient to look at the reconstruction error/
noise statistics resulting from the two approaches to assess the
performance of the respective detectors. The error variance
in reconstruction via (27) can be written as

(28)

On the other hand, if each frame is first reconstructed from
with , via AMP and then averaged,

the variance of each element of the average noise vector
can be written as

(29)

Now assuming , (29) is the same as (28).
Thus the detectors based on both approaches will perform in a
similar manner.

B. Direct Compressed Detectors

In the previous section we looked at detectors based on the
reconstructed signals. Here we use GML to develop a detector
based on the compressed signals directly, i.e., without recon-
struction. Since we have assumed symbol level synchronization,
the individual pulse positions can also become accessible
under Assumption 3. Further, as there is a linear transformation
between the actual received signal and its compressed samples,
we should be able to segregate the samples of each compressed
received frame for , into blocks.
Thus, each block would then represent the compressed samples
corresponding to a pulse position of the actual received signal.
Now considering a measurement matrix such that Assump-
tion 2 and 3 hold true, we can write the pdf of the compressed
received signal from (8) as

(30)

where is a constant and is an vector of the
compressed samples corresponding to the block in car-
rying the transmitted pulse. Note that Assumption 2 is important
here so that the compressed noise is i.i.d. and (30) can be for-
mulated. Now in order to maximize (30), we need to minimize

(31)

where . Taking the partial derivative
with respect to and setting the gradient equal to zero, yields
the following estimate for

(32)
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Substituting (32) in (31), we get the following compressed sam-
ples based energy detector (C-ED)

(33)

which is clearly independent of the spreading factor. Thus the
energy detector based on the compressed signal directly can
be realized by first averaging the compressed samples over the
number of frames and then carrying out detection on the average
compressed frame directly.

IV. CS BASED DETECTION FOR A DETERMINISTIC CHANNEL

In this section, we consider UWB communications over a
deterministic channel. We derive BEP expressions for the CS
based detectors when detection is carried out on the recon-
structed signal as well as when it is carried out directly on the
compressed signal. For simplicity we consider , i.e.,
binary PPM.

A. Reconstruction Based Detection

In this section, we derive BEP expressions for the recon-
struction based detector. We consider an average compressed
frame for reconstruction. Thus the need to reconstruct all the
frames has been alleviated except for one average frame. As ex-
plained in Section III.A.3, the expressions obtained in this sec-
tion should also be valid for the detector (25). Again we assume
that the convergence stage has been reached for AMP so we will
drop the iteration index. We can write the reconstructed symbol
as

(34)

where under Assump-
tion 1. Since , every frame symbol has two pulse posi-
tions. Let us assume that the th symbol is a 0, i.e., . This
means we transmit the pulse in the first half of the signal frame,
and we can partition the reconstructed symbol as

(35)

where , and

(36)

where . Now the GML based detector can
be written as

(37)

where

(38)

with and

(39)

Due to the statistical characterization of the reconstruction error
by AMP, and are i.i.d. Gaussian. Now considering
as a deterministic channel, is a non-central chi-square

distributed random variable and is a central chi-square dis-
tributed random variable, both with degrees of freedom.
We can see that finding a closed-form expression of the proba-
bility of error involving these two distributions is complicated.
On the other hand, as we are dealing with the reconstructed
signal consisting of Nyquist-rate samples, where given the
nature of UWB signals, it is known that , we can
rightly consider both and as Gaussian distributed by
using the central limit theorem. Now to find a closed-form ex-
pression of the BEP, let us proceed by defining the variable

(40)

Since has been transmitted, the probability of error for
the detector based on the reconstructed signal can
be defined as

(41)

Since and are assumed to be Gaussian distributed,
the decision variable can also be considered Gaussian
distributed. We now proceed to find its mean and variance.
Since , the mean of can be written as,

and the mean of is given by,
. Now since for , is a

chi-square distributed random variable, its variance is given by,
where .

We can further derive that, where we
use the fact . Therefore, we obtain,

and . Thus
the mean of the variable is

(42)

and its variance is

(43)

The probability of error for the reconstructed signal can there-
fore be approximated by

(44)

which is the instantaneous BEP of a deterministic channel.
Finding an analytical expression for the average BEP of (44) is
quite complicated. Therefore, the average BEP
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can be approximated by numerically averaging over
different channel realizations [44], i.e.,

(45)

where is the instantaneous BEP for the th
channel realization and is the total number of channel
realizations.
The analysis provided above is for the case when .

Exact BEP expressions for the case when are again
difficult to derive. Nonetheless, an upper bound (that is a union
bound) on the BEP of events can still be utilized [45],
i.e.,

(46)

where . The bound becomes tighter with in-
creasing SNR and is exact for the case .

B. Direct Compressed Detection

To derive the BEP expressions for the direct compressed de-
tector, we consider an average compressed frame. Now given
that and , the average compressed frame
can be partitioned into two equal parts under Assumption 3: the
signal part and the non-signal part , i.e.,

(47)

where and

(48)

where . We know that for ,

is zero-mean with covariance matrix,
under Assumption 2. The energies corresponding to (47) and
(48) can be defined as

(49)

with and

(50)

Now the GML based energy detector for the compressed signal
can be written as

(51)

and the bit error probability for the compressed detector
can be defined as

(52)

where

(53)

Now, due to Assumption 2, is still zero-mean i.i.d.
Gaussian. Therefore, by using the central limit theorem, both

and can be assumed to be Gaussian distributed as
, which implies that is also a Gaussian

distributed random variable. We can find an approximate
closed-form expression for the probability of error by finding
the mean and the variance of the variable .
Since and , the

mean of can be calculated as, .

Now, it can be proven that and

since is a chi-square distributed random variable with
degrees of freedom, . Thus

the variance of the decision variable can be written as,
. Similarly, it can be shown

that the mean of and its variance,

. Thus the mean of the variable

is

(54)

and its variance is

(55)

Since is a Gaussian distributed random variable, the ap-
proximate closed-form expression for the probability of error
can be derived as

(56)

Note that (56) leads to the probability of error of the Nyquist-
rate sampled received signal if is replaced by and .
It is given by

(57)

We can see that (56) and (57) are expressions for the instanta-
neous BEP. Average BEP results can again be found by numer-
ical averaging over different channel realizations as in (45).

V. CS BASED DETECTION FOR A GAUSSIAN
DISTRIBUTED CHANNEL

In this section, we derive the BEP expressions for the pro-
posed CS based detectors when the channel is Gaussian dis-
tributed. We assume that the channel elements are zero-mean
i.i.d. Gaussian, i.e., . For the ease of the deriva-
tions, we further assume that the channel spread and
thus, . The Gaussian assumption on the channel may
not be realistic but it helps to provide some intuition regarding
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the influence of the channel on the average BEP. Here again, we
consider and .

A. Reconstruction Based Detection

In this section, we look at the reconstruction based detector
when the channel is Gaussian distributed and derive a closed-
form expression of its theoretical BEP. Thus, in the context of
(34), under Assumption 1 we can say from (38) and (39) that

and . From
(35) and (36), this means that and , both being the
sum of Gaussian distributed random variables are chi-square
distributed with degrees of freedom. The pdf of is
given by [45]

where , and the pdf of is given by [45]

Now from (37) the average BEP for the reconstruction based
detector (R-ABEP), given a zero symbol is transmitted is

(58)

The probability of a correct decision given that a zero is trans-
mitted can then be written as

which can be simplified to

where is the lower-incomplete-gamma function and
is the gamma function such that and

, [46]. The average BEP is therefore
given by

(59)

By using ([46], (6.455.2)), we can reduce (59) to the following
closed-form expression

(60)

where is the Gaussian hypergeometric function de-
fined by ([46], (9.14.2)). Hence, we have obtained a closed-
form expression for the average BEP of the reconstruction based
energy detector for a channel with i.i.d. zero-mean Gaussian
elements.

B. Direct Compressed Detection

In this section, we present the BEP expressions for the de-
tector based on the compressed signals when the channel is
Gaussian distributed. From (47), we can see that since is
Gaussian, will also be Gaussian with covariance matrix

under Assumptions 2 and 3. Con-
sequently, will be zero-mean Gaussian distributed with co-
variance matrix . Thus we can

write , where and from

(48) we can write , where .
Therefore, from (49) and (50), we can say that and
are chi-square distributed random variables, both with de-
grees of freedom.
Now from (51), we can observe that the average BEP for

the compressed detector (C-ABEP), given a zero transmitted-
symbol

(61)

The probability of a correct decision given that a zero is trans-
mitted can then be written as

which can be simplified to

The average BEP is then given by

(62)

By using ([46], (6.455.2)), we can reduce (62) to

(63)
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which is the closed-form expression for the average BEP of the
optimal compressed energy detector for a channel with i.i.d.
zero-mean Gaussian elements. Now from (63), the average
BEP of the ED for the Nyquist-rate sampled received signal
(N-ABEP) can be written as [47]

(64)

where and .

VI. SIMULATIONS

In this section, we present some simulation results for the
different detectors developed in the previous sections for the
binary PPM communications scenario. We provide two groups
of simulations. One where we consider a deterministic channel
and the other where we assume the channel to be Gaussian
distributed. For the measurement matrices, Assumption 3 holds
true in general. Further, we consider a measurement matrix
whose elements are random Gaussian under Assumption 1 as
well as a measurement matrix whose rows have been orthog-
onalized under Assumption 2.
For the reconstruction of the signal, AMP suggests an optimal

thresholding policy in the form of the relationship
at the th iteration, but it requires the knowledge of the original
signal and therefore, it is not practically feasible. For our pur-
pose, we use the following alternative relationship as suggested
in [38]

(65)

where is a constant. Thus the threshold value keeps devel-
oping for every AMP iteration. Further, for the BEP expression
of the spreading-factor dependent energy detector (26), we use
the following expression from [12]

(66)

and the corresponding average BEP is obtained
by averaging (66) over the channel realizations as in (45).
For Figs. 4 to 8, we consider the IEEE 802.15.3a CM1

(line-of-sight) channel model [11]. The channel parameters
are chosen as follows: the cluster arrival rate
nsec , the ray arrival rate within a cluster nsec ,
the cluster decay factor and the ray decay factor
within a cluster . The transmitted pulse waveform

is the second derivative of a Gaussian pulse of unit energy
with pulse duration nsec. In general, the frame length
is taken as nsec and a receive filter bandwidth of 3
GHz is considered. Thus each frame has Nyquist-rate
samples.

Fig. 4. Comparison of different detectors with random measurement matrix
and a deterministic channel.

Fig. 5. Comparison of different detectors with orthogonal measurement matrix
and a deterministic channel.

Fig. 4 shows the instantaneous BER results for different de-
tectors, i.e., C-ED, R-ED and N-ED, along with some theoret-
ical BEP plots, i.e., SN-BEP, C-BEP, R-BEP and N-BEP, with a
Gaussian distributed random measurement matrix (Assumption
1). Here, we consider signal transmission with a varying number
of frames per symbol, i.e., . We can see that
with increasing spreading factor, the SN-BEP keeps decreasing.
Whereas the BEP results for the detectors with optimal frame
combining remain consistent and do not vary with a varying
number of frames. The performance of the R-ED follows the
theoretical expression R-BEP exactly. The C-ED remains a bit
away from the C-BEP because the Gaussian measurement ma-
trix does not guarantee (5). Now with regard to the performance
of the compressed detectors against the Nyquist-rate detectors,
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Fig. 6. Comparison of detectors for varying compression ratio with random
measurement matrix and a deterministic channel.

Fig. 7. Comparison of detectors for varying compression ratio with random
measurement matrix and a deterministic channel.

we see that at a compression ratio of , i.e., the sam-
pling rate is only 50% of the Nyquist-rate, the compressed rate
detectors offer a reasonably good performance (see [48] for de-
tails on the loss incurred due to CS). The C-ED performs better
than the reconstructed version, i.e., the R-ED. The reason is that
the reconstruction process loses some information whereas the
compressed domain detection preserves the signal information
albeit in a compressed form and gives a better performance. The
difference between N-BEP and C-BEP is around 2 to 3 dB at
a BER of . Thus CS based EDs are a viable option. For
the sake of comparison, we also include in this figure the per-
formance of matched filter (MF) based compressed detectors
(where it is assumed that the channel is known); when detection
is carried out on the reconstructed signal (R-MF) and when it
is carried out on the compressed signal directly (C-MF), along

Fig. 8. Comparison of detectors for varying compression ratio with orthogonal
measurement matrix and a deterministic channel.

with the MF for the Nyquist-rate sampled signal (N-MF) and its
theoretical plot (MF-BEP).
Fig. 5 shows the instantaneous BER performance for different

detectors when the measurement matrix has orthogonal rows
(Assumption 2). Here and . We see that
the performance of C-ED has improved and it falls exactly on
the C-BEP curve. R-ED does not coincide with R-BEP because
the expression for the R-BEP is based on a random measure-
ment matrix under Assumption 1, but its performance has also
improved in comparison to the previous figure. The SN-BEP
keeps again worsening with an increasing value of .
Fig. 6 shows a BER comparison of different detectors with

varying compression ratios when the measurement matrix is
Gaussian distributed (Assumption 1). We fix the SNR at 17 dB.
Here we see that the performance of the R-ED and C-ED sat-
urates after a certain compression ratio. The reason is that if
is not very large then as the number of measurements in-

creases, the probability of having correlations within the mea-
sured values increases as well (see (6)). In Fig. 7, we increase
the frame time to nsec. We can see that although
the overall performance of all the detectors has been scaled,
nonetheless R-ED and the C-ED show a tendancy of improve-
ment for the larger value of .
Fig. 8 shows a BER comparison of different detectors with

varying values of when the orthogonal measurement matrix
is used (Assumption 2). We consider here an SNR of 17 dB. We
can see that the performance of both the R-ED and C-ED has
improved and does not saturate with increasing . C-ED follows
C-BEP exactly but R-ED remains away from R-BEP because of
the absence of a random measurement matrix.
From Figs. 9 to 12, we consider a Gaussain distributed multi-

path channel, i.e., the channel samples are zero-mean, unit-vari-
ance Gaussian. Considering the limitations of the simulation
software, i.e., Matlab, viz a viz (60), (63) and (64), we take a
frame length of nsec and a receive filter bandwidth
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Fig. 9. Comparison of different detectors with random measurement matrix
and Gaussian channel.

Fig. 10. Comparison of different detectors with orthogonal measurement ma-
trix and Gaussian channel.

of GHz. Now every frame has Nyquist-rate
samples.
Fig. 9 shows the average BER results for C-ED, R-ED and

N-ED along with the theoretical BEPs i.e., SN-ABEP, C-ABEP,
R-ABEP and N-ABEP, with a Gaussian distributed channel.
SN-ABEP has been obtained by averaging the SN-BEP results
over all channel realizations. We consider a random measure-
ment matrix (Assumption 1) with the compression ratio
and . The simulation results for the detectors
follow the BEP expressions quite closely. We can see that the
suboptimal detector SN-ABEP, once again falls a prey to the in-
creasing spreading factor and its performance keeps decreasing.
The proposed detectors remain unaffected by this factor. The

Fig. 11. Comparison of detectors for varying compression ratio with random
measurement matrix and Gaussian channel.

Fig. 12. Comparison of detectors for varying compression ratio with orthog-
onal measurement matrix and Gaussian channel.

R-ED follows the R-ABEP exactly but C-ED is a bit away from
C-ABEP due to the randomness of the measurement matrix.
Fig. 10 shows the average BER comparison of different de-

tectors when an orthogonal measurement matrix is used (As-
sumption 2). Here again and . We see
that R-ED is away from R-ABEP but C-ED follows C-ABEP
exactly due to the choice of the measurement matrix. In gen-
eral the performance of the proposed CS based energy detec-
tors, C-ED and R-ED, remains reasonable in comparison to the
Nyquist-rate based energy detector, N-ED.
Figs. 11 and 12 show the average BER results for the pre-

sented detectors against a varying compression ratio at an SNR
of 15 dB, for a random and an orthogonal measurement matrix,
respectively. The number of frames per symbol is . We
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TABLE I
SUMMARY OF THE PROPOSED DETECTORS

can see that with an increasing compression ratio the perfor-
mance of the proposed detectors increases.

Discussion

From the above simulation results, we can see that C-ED per-
forms better than R-ED in terms of BER. Therefore, a ques-
tion arises as to what is the need of R-ED at all. First, it should
be noted that despite a better performance, C-ED works under
stringent constraints of exact synchronization. If full timing in-
formation is not available, the performance of C-ED will dete-
riorate. On the other hand, such constraints can be relaxed with
respect to R-ED. Since R-ED has to reconstruct the received
signal from its compressed samples as an initial step, the timing
information can be extracted from the reconstructed signal by
resorting to existing methods proposed for Nyquist-rate sam-
pled signals. Secondly, note that the measurement process used
in the paper is assumed to be identical (which usually will be
the case) for each pulse position (i.e., over ). If this process
is changed either due to perturbations or on purpose, the per-
formance of C-ED will be severely affected. On the other hand,
the performance of R-ED is robust to changing measurement
process. Thus, we can say that both proposed detectors are im-
portant and have their own merits. Table I provides a summary
of the salient features of our proposed detectors.
Further, we would like to comment on the issue of narrow

band interference (NBI) in UWB signals w.r.t. our proposed
detectors. NBI has been one of the major challenges as it re-
duces the dynamic range and necessitates more resolution bits
for the effective detection of UWB signals [49], [50], causing
an increase in ADC power consumption [5]. In this regard, the
method presented in [22] to handle NBI can be easily incorpo-
rated in our proposed detection schemes. If the measurement
matrix is designed as a Fourier ensemble with frequencies uni-
formly spaced over the signal bandwidth, then NBI can be iden-
tified by taking the square of the measurements. The measure-
ments affected by NBI will have the highest magnitudes. The
block of such contaminated measurements can be discarded and
detection can be carried out on the rest of the measurements.
Thus by adopting this idea, our proposed detectors can be ro-
bust against NBI as well.

VII. CONCLUSION

In this paper we have developed compressive sampling based
energy detectors to reduce the sampling rate much below the
Nyquist rate. We have shown that compressive sampling helps
in the realization of spreading-factor independent energy detec-
tors. Our energy detectors work both on the reconstructed signal
as well as on the compressed signal directly without reconstruc-
tion. We have derived theoretical BEP expressions to guage the

performance of compressive sampling based energy detectors
which can also be extended to Nyquist-rate sampling based en-
ergy detectors. Simulation results prove the validity of these ex-
pressions if the choice of measurement matrix follows the as-
sumptions adopted in the theoretical derivations.
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