
Surface Impedance Model for Nano-scale
Device Communications over an Interface

Dmitriy Penkin†, Alexander Yarovoy† and Gerard Janssen∗
†Microwave Sensing, Signals and Systems Group, Delft University of Technology, The Netherlands

Email: D.Penkin@tudelft.nl; A.Yarovoy@irctr.tudelft.nl
∗Wireless and Mobile Communications Group, Delft University of Technology, The Netherlands

Email: G.J.M.Janssen@tudelft.nl

Abstract—To take into account the impact of an underlying
half-space on the communication channel between nano-scale
nodes, the surface-impedance-based model is proposed. To
verify this approach, its results are compared to that of the
singularity-based model developed for the particular half-space.
Finally, by using the impedance-based approach, it is shown
that the gain of the channel between nano-scale devices can be
notably increased due to the contribution of surface waves.

Index Terms—Green’s function, nano-scale node, link power
budget, channel gain, wireless nano-sensor network.

I. INTRODUCTION

Wireless sensor networks, composed of a multitude of

autonomous nano-scale nodes with sensing, processing, and

wireless communication capabilities, are envisioned to cause

a revolution in the field of fine-grained environmental sensing

and health monitoring [1]. These nano-sensor devices involved

in Brownian motion may constantly and unpredictably move

in an environment. Since it is of utmost importance to control

the position of such devices to avoid long-term harmful

effects (e.g. [2]), nano-nodes are initially envisioned to be

tightly fixed on an underlying surface. Moreover, the resulting

static network topology ensures that all sensed data will be

correctly conveyed through the network.

As a consequence of their limited volume, the sensor nodes

will operate on an extremely restricted energy budget [3].

In this way, it is crucial to reduce the power consumption

of the devices to the level that meets the capabilities of

a nano-node power supply. Since the energy cost related

to the conventional data transmission at radio-frequency

(RF) is much higher than the energy needed to perform

processing and sensing tasks, the promising solution is to set

up the communication between nano-nodes via surface waves

(e.g. [4]). These waves only propagate along the interface

between differing media and experience low attenuation along

propagation paths compared to the space waves. Note that the

issue of the exponential decrease of surface wave amplitude

with depth can be avoided by the ability to place nano-nodes

very close to the interface. Last but not least, to the authors’

knowledge, such a surface influence has not been considered

for communication between nano-devices so far.

Typically, to develop a mathematical model capable of

calculating the contribution of surface waves is a formidable

task as well as this model can be used for a particular geometry

of underlying half-space. In this regard, when it is possible

to define a surface impedance Zs, which stands for the ratio

between the tangential electric and magnetic fields on the

surface, this can essentially facilitate the solution of an elec-

tromagnetic boundary-value problem in the communication

medium as there is no need to examine in detail the fields in

the bottom half-space. In particular, since nano-nodes behave

as point source radiators due to their size limitations, the

surface-wave influence can be estimated in a straightforward

manner by applying the Green’s function for a point source

above a half-space, introduced by Felsen and Marcuvitz in [5]:

the authors incorporate the impact of the bottom half-space

into their model through its surface impedance value Zs.

In general, the surface impedance is formally determined

for the case of a normally incident plane wave. Since nano-

nodes are situated close to an interface as well as the value

of Zs depends on an incident wave number, the aim of this

paper is to verify the possibility to apply the typical Zs for

properly evaluating the surface wave contribution in the event

of a grazing incident wave. Meanwhile, the other goal is to

expand the applicability limits of the asymptotic expression

for the above Green’s function by comparing its results with

that of an singularity-based approach. Another objective is to

indicate the performance enhancement of the channel between

nano-scale devices due to the contribution of surface waves.

This paper is organized as follows. The surface-impedance-

based model capable of calculating the power budget of

the channel between nano-nodes placed above a bottom

lossy half-space is shown in Section II, whereas the

singularity-based method is developed in Section III. To

broaden the applicability of the impedance-based model, the

comparison analysis of these two approaches is accomplished
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in Section IV. The impact of surface waves on the channel

between nano-scale devices is assessed in Section V. Finally,

conclusions are given in Section VI.

II. SURFACE-IMPEDANCE-BASED MODEL

A. System model

In the paper, we calculate the power budget of a basic

communication system between transmitting (TX) and receiv-

ing (RX) nano-nodes operating in free half-space with param-

eters ε0 = (36π)−1 × 10−9 F/m and μ0 = 4π× 10−7 H/m in

the presence of a bottom half-space (Fig.1). Both TX and RX

devices are located above this interface and equipped with

antennas of dimension l for performing signal transmissions

via RF waves. Note that other node components as well

as a material to fix the node to the surface are assumed to

possess negligible impact on the one-hop channel due to their

small dimensions with respect to the wavelength λ. Also, the

surface is considered to be perfectly flat and non-curved. The

antenna element is electrically very small (l � λ) and acts as

a Hertzian electric dipole as a consequence of the node size

restrictions. The polarization of the antenna is considered to be

vertical because it is subject to considerably less attenuation

than horizontally polarised signals. Eventually, the cylindrical

coordinate system is used to define the positions of the nodes.

For the numerical simulations below, each nano-node is as-

sumed to be equipped with a vertical dipole antenna of length

l = λ/100. The nodes are placed above the boundary surface

at the height z0 = z = λ/10 and the output power is consid-

ered to be the same. The operating frequency is set to 10 GHz.

The power budget analysis is performed here based on the

Green’s function formalism. In this respect, the field strength

at an observation point is treated in terms of the integral of the

Green’s function multiplied by a current density on the trans-

mitting antenna. This current density for an electrically very

small dipole is in particular assumed to be one-dimensional

and triangularly distributed over the antenna aperture [6]:

�je(ρ′, ϕ′, z′) = A

(
1− |z′ − z0|

l/2

)
δ(ρ′ − ρ0)

ρ0
δ(ϕ′ − ϕ0)�z

o,

(1)

where �zo is the unit direction vector of the dipole current.

The TX antenna is fed by an ideal source of frequency f with

source amplitude A, (ρ0, ϕ0, z0) are the coordinates of the

dipole center and point z′ belongs to the antenna aperture (i.e.,

z′ ∈ [z0 − l/2; z0 + l/2]). Since the dipole is approximated as

a point source radiator, the magnitude of the current density

at this point is given by the following expression:

∣∣∣�je(ρ0, ϕ0, z0)
∣∣∣ = z0+l/2∫

z0−l/2

A

(
1− |z′ − z0|

l/2

)
dz′ =

Al

2
. (2)

The electric field at an arbitrary observation point (ρ, ϕ, z)
resulting from a point source is obtained through the Hertz

potential as:

�E(ρ, ϕ, z) = [graddiv + k2]�Ze(ρ, ϕ, z), (3)

(z = 0)
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Fig. 2. The point source radiator above the bottom half-space.

where k = 2π
√
εμ/λ is the wavenumber (for free space it

corresponds to k0 = 2π/λ) and �Ze(x, y, z) is the Hertz vector.

The solution for this vector is known (e.g. [5]) and given by:

�Ze(ρ, ϕ, z) =
1

4πiωε
×

×
∫
V

�je(ρ0, ϕ0, z0)G
e(ρ, ϕ, z, ρ0, ϕ0, z0) dρ dϕ dz,

(4)

where ω = 2πf corresponds to the angular frequency, i is

the imaginary unit and Ge stands for the Green’s function.

The magnitude of induced current on the RX antenna is ob-

tained by assuming that this current is triangularly distributed

on the electrically small dipole:

I =
1

Z0 + Zl

z′′+l/2∫
z′′−l/2

Eτ

(
1− |z′′ − z|

l/2

)
dz′′, (5)

where z is the Z-coordinate of the point-source RX dipole,

Z0 and Zl are the complex impedances of the antenna and

the receiver circuit, respectively. Eτ is the projection of �E
from Eq.(3) onto the vector �τ representing the direction of

the receiving dipole. Since here both TX and RX antennas

are vertically polarized, the value of Eτ is equal to | �E|.
The power available to a RX electronic circuit is given by:

p =
|I|2Re(Zl)

2
. (6)

Let us further focus on the maximum value of p assuming that

there are no losses between the RX dipole and the electronic

circuit (i.e., Zl = Z∗
0 ). Thus, taking into account the above

equations, the final expression for p can be rewritten as:

p =
l2|E|2

8Re(Z0)
=

=
225l4A2

8k2Re(Z0)
·
∣∣∣∣[ ∂2

∂z2
+ k2

]
Ge(ρ, ϕ, z, ρ0, ϕ0, z0)

∣∣∣∣2 . (7)

Note that partial differentiation is performed only with

respect to z as both the antennas are aligned along the Z-axis.

Eventually, as can be seen from Eq.(7), the magnitude of p
can be estimated at any space point if the Green’s function

can be constructed for this particular electrodynamic volume.



B. Impedance-based Green’s function

Based on the surface impedance concept, the Green’s

function for arbitrary distances R from the source in the region

z > 0 has been evaluated in [5] and has the following form:

Ge(ρ, ϕ, z, ρ0, ϕ0, z0) =
e−ikR

4πR
− Zs − cos θ

Zs + cos θ
· e

−ik ̂R

4πR̂
−

− Zs

√
1

λρ

(
e−iπ

1− Z
2

s

) 1
4

e−ik
√

1−Z
2
sρeikZs(z0+z)U(θ − θp),

(8)

where Zs = Zs/
√
μ0/ε0 ≈ Zs/120π is the normalized

impedance and θ = arcsin(ρ/R̂) is the observation an-

gle (Fig.2). The Heaviside step function U(θ−θp) contributes

only if θ exceeds θp = Re(Ωp) − arccos(sech(Im(Ωp))),
where cosΩp = −Zs. The first and the second term on the

right-hand side of Eq.(8) corresponds to the free-space Green’s

function for the unbounded region and the contribution of

waves reflected from the interface, respectively. In other words,

these terms constitute the geometric optical fields, whereas the

third component comprises the surface waves which contribute

only when θ > θp. Note that the latter component can only

asymptotically estimate the influence of surface waves since

the absence of the their residue terms (i.e., when θ < θp)

does not imply the non-existence of surface waves but merely

indicates that their amplitudes are beyond the approximation.

Due to the fact that the decay of the surface waves (∼ 1/
√
ρ)

is slower than that of the direct (∼ 1/R) and reflected waves

(∼ 1/R̂), the surface waves may cause a dominant contribution

at a receiver and, thus, it is of importance to estimate their im-

pact for any arbitrary distance R (i.e., any observation angle θ).

In this regard, we specify a particular geometry for the bottom

half-space and calculate the surface-wave contribution in two

ways: (1) by using the Green’s function from Eq.(8) in which

the Heaviside step function is neglected; (2) by applying

expressions derived based on an singularity-based model.

Next, from the comparative analysis of results coming from

both approaches, the surface-impedance-based model has to be

verified as well as its applicability limits might be expanded.

The bottom half-space, representing a commonly used

substrate for antenna configurations, is further used for our

simulations. In particular, it consists of a thin layer of thickness

b coated on a thick ideal metal (Fig.3). The material of the

thin layer is lossy dielectric with parameters (εg, μ = 1).

C. Impedance of dielectric film covering thick metal

In order to use the surface-impedance-based concept, it is

required to know the specific value of Zs for a given half-space

geometry. In this respect, we consider the model of a plane

electromagnetic wave normally incident on a dielectric layer

with complex dielectric constant εg and magnetic permeability

μg = μ0. By taking care of the boundary conditions for the

electromagnetic field components on both surfaces of the

dielectric layer, the boundary-value problem is treated. By

adopting the criteria of impedance boundary condition at the
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Fig. 3. The lossy dielectric film of thickness b coated on a thick metal.

top of the dielectric film, the mathematical expression for a

distributed surface impedance Zs is given by the following:

Zs = i (μg/εg)
1/2

tan (kgb) , (9)

where kg = 2π
√
εgμg/λ is the wavenumber in the dielectric

layer. Note that although the value of Zs was determined for

the event of a normally incident wave, it will be seen from the

comparative analysis that Eq.(9) is applicable to determine the

distributed impedance in the case of a grazing incident wave.

Next, the lossy carbon is taken as a reference because this

material as well as its composites are widely utilized. Thus,

its dielectric constant εg = 15 − 8i is extracted from [7] at

the operating frequency f = 10 GHz and, eventually, the

value Zs as a function of the thickness b is shown in Fig.4.
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Fig. 4. The distributed impedance of carbon film on the ideal metal.

According to Shevchenko [8], the contribution of surface

waves qualitatively changes with varying impedance value: in

particular, to provide the surface with directive properties, Zs

has to be inductive with a positive imaginary part. In turn,

the larger the non-zero real part of Zs, the higher are the

losses in the boundary layer. Therefore, we can conclude that

the surface-wave contribution is more considerable for the

surface impedance value characterized by a lower real part

as well as a higher inductivity. In this respect, a substantial

surface wave contribution is expected at b ≈ 10−3 m as the

corresponding impedance Zs possesses such features (Fig.4).

III. SINGULARITY-BASED METHOD

As shown in [5], the circular waveguide representation of

the Green’s function G(�r, �ro) for vertical Hertzian electric



dipole located on the z axis (i.e., ρ0 = 0) is given by:

G(ρ, ϕ, z, 0, ϕ0, z0) =
1

4π

∞∫
−∞

κH
(2)
0 (κρ)g(z, z0)dκ, (10)

where κ is complex transverse wavenumber, H
(2)
0 stands for

the Hankel function of the second kind and zero order, whilst

g(z, z0) is the one-dimensional modal Green’s function. Note

that the pole singularities of the latter function are descriptive

of the surface waves (i.e., the waves guided in the direction

transverse to z). Since the longitudinal function g(z, z0) de-

pends on the nature of z stratification, its representation is

derived for the region given above (i.e., Fig.3). In particular, by

adopting the boundary conditions for the electric fields on both

surfaces of the dielectric film as well as the wave equations

in free space and dielectric medium, the functional form of

g(z, z0) is expressed as follows:

g(z, z0) =
4π · e−iγ1(z+z0)

iγ1εg + γ2 tan(γ2d)
, (11)

where γ2
1 = k20 − κ

2 and γ2
2 = k20εgμg − κ

2 = k2g − κ
2

is the longitudinal wavenumber in free space and dielectric

region, respectively. In this way, the term in modulus in the

final equation (7) can be represented as:

M =

[
∂2

∂z2
+ k2

]
Ge(ρ, ϕ, z; 0, ϕ0, z0) =

=

∞∫
−∞

κ
3H

(2)
0 (κρ)e−iγ1(z+z0)

iγ1εg + γ2 tan(γ2d)
dκ.

(12)

As noted above, we have to extract and obtain exactly the

residue contributions to determine the surface wave impact.

Thus, the integral in Eq.(12) possesses simple poles which

can be presented separately as:

M =

∞∫
−∞˜

κ
3H

(2)
0 (κρ)e−iγ1(z+z0)

iγ1εg + γ2 tan(γ2d)
dκ+

+ 2πi
N∑

n=1

lim
κ=κn

[
(κ − κn)

κ
3H

(2)
0 (κρ)e−iγ1(z+z0)

iγ1εg + γ2 tan(γ2d)

]
.

(13)

The underlined lower integration limit indicates that the singu-

larity points are avoided: hence, the integral on the right-hand

side corresponds to the contribution of geometric optical fields,

whereas the sum stands for the influence of surface waves.

The latter term is reconstituted by means of the standard

algebraic method and the expression for M is given by:

M =

∞∫
−∞˜

κ
3H

(2)
0 (κρ)e−iγ1(z+z0)

iγ1εg + γ2 tan(γ2d)
dκ−

−
N∑

n=1

2πκ2
nH

(2)
0 (κnρ)e

−iγ1n(z+z0)

d

εg cos2(γ2nd)
+

tan(γ2nd)

γ2nεg
− i

γ1n

.

(14)

Hence, the contribution of surface waves is shown in explicit

form and can be evaluated if the pole singularities κn are

determined. Evidently, these singularities are roots of the

dispersive equation which is also the denominator of M :

iγ1εg + γ2 tan(γ2d) = 0. (15)

IV. COMPARATIVE ANALYSIS

A. Analysis of dispersive equation

To be able to use the singularity-based model, the roots of

the dispersive equation need to be evaluated first [9]. As this

transcendent equation is unable to be treated analytically, it is

solved in a graphical manner. In the course of its evaluation,

we can conclude the following: (1) each solution κn corre-

sponds to the transverse wavenumber of the respective surface

wave mode and its value lies in the range k0 < κn < kg;

(2) the higher are the operating frequency f , the thickness of

dielectric film b and the dielectric constant εg , the higher is the

total number of surface modes to propagate; (3) there is at least

one surface mode presented in the given bottom half-space.

B. Single-mode scenario

As stated above, in a very thin dielectric film only the

single/fundamental surface mode can propagate. Upon further

analysis of the single-solution case, it was discovered that

its transverse wavenumber is always associated with the

surface impedance and straightforwardly approximated as

κ
(1)
n = k0

√
1− Z

2

s. In particular, the contribution of the

fundamental mode for fixed b is demonstrated in Fig.5, where
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Fig. 5. The ratio Δ = 10 log10(p/pfs) when thickness b is small.

we compare the received power p in the presence of the half-

space with that obtained in free space (hereinafter denoted

as pfs). Since the geometric optical impact is known to not

exceed 6 dB level, the surface wave constructively interferes.

As can be also seen in Fig.5, the difference between two

models increases when the communication distance decreases.

Nonetheless, since the impedance-based model is envisioned

to be a lower-bound estimate of p, at the first approximation

we can neglect the Heaviside step function in Eq.(8) to be able

to calculate the surface wave contribution for short distances R
(in particular, for b = 10−5 m by using Eq.(8) the surface wave

contribution is estimated to be non-zero only when R > 95λ).



C. Multi-mode scenario

The growing number of surface modes can propagate

within the dielectric film with increasing its thickness.

For example, about thirty surface modes excluding the

fundamental one exist in the carbon film of thickness

b = 10 cm (Fig.6). However, as can be seen from the second
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Fig. 6. Roots of the dispersive equation (15) when thickness b = 10cm.

term on the right-hand side of Eq.(14), none of these modes

convey a substantial amount of energy to the free space: i.e.,

experiencing internal reflections they can propagate within

the dielectric slab solely. Meanwhile, the fundamental surface

mode decays with increasing the thickness b: i.e., it loses

energy due to a growing number of higher surface modes in

the slab. In particular, since the transverse wavenumber of

the fundamental surface wave κ
(1)
n , indicated by the circle

in Fig.6, possesses both large real and imaginary parts, the

amplitude of this mode is very minute. Therefore, in the case

of the multi-mode scenario, a negligibly small contribution of

surface waves can come to a receiver located in free space.

The same result (i.e., the almost zero impact of surface

waves) is also envisioned by applying the impedance-based

approach. In particular, starting from b = 10−3 m the real

part of Zs, which is responsible for the losses in the dielectric

layer, is relatively large. Put differently, the energy got into

the dielectric film of large thickness is merely used for

heating this slab rather than propagating to free space.

V. NUMERICAL ANALYSIS OF SURFACE WAVE IMPACT

Since the surface-impedance-based method has been shown

to properly model the impact of surface waves, to bridge the

gap between power demands of nano-scale node and capabil-

ities of its energy unit, the maximum potential contribution of

surface waves is further determined by means of this approach.

In other words, the value Δ = 10 log10(p/pfs) is computed

by specifying the surface impedance factor but not the bottom

half-space geometry. Thus, to prevent the absorption of energy

by the dielectric layer the real part of Zs is set to zero, whilst

its imaginary part changes from low to high values. As can

be seen in Fig.7, the contribution of surface waves is indeed

maximised when the imaginary part is large. In particular,

at big communication distances R, the channel gain can

be increased up to 30 dB due to the implementation of the
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Fig. 7. The ratio Δ = 10 log10(p/pfs) for the bottom half-spaces
characterized by pure imaginary values of surface impedance.

specific bottom half-space. For comparison, in the case of

the carbon film of thickness b = 5 · 10−4 m coated on the

thick metal (Zs = 0.004 + 0.111i, Fig.4), the channel gain at

R = 100λ is about 20 dB.

VI. CONCLUSION

The channel power budget model has been developed

based on the surface impedance factor. Such a model notably

simplifies the electromagnetic problem as there is no need to

take care of fields within the bottom half-space. To test the

feasibility of this impedance-based approach, the analytical

singularity-based framework has been also built for the

particular geometry of the bottom half-space. The comparative

analysis of both the approaches has not only verified the

impedance-based concept but also expanded its applicability

limits. Eventually, by applying the impedance-based model,

the gain of the peer-to-peer channel between nano-scale

devices has been shown to significantly increase. In particular,

the possibility to enhance this gain up to 30 dB due to the im-

plementation of the specific half-space has been demonstrated.
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