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Abstract—In this work, we present a new space-time block
code for time- and frequency-selective (doubly-selective) channels.
It can be interpreted as the extension of the Alamouti code to
doubly-selective channels, and relies on a joint time-frequency
reversal of the transmitted sequences. Under certain channel
conditions, the proposed space-time block code belongs to the
class that achieves full spatial, delay, and Doppler diversity using
a maximum likelihood (ML) receiver, as well as a linear zero-
forcing (LZF) or linear minimum mean-squared error (LMMSE)
receiver. For realistic doubly-selective channels, a real-valued
linear data model is presented, for which different receiver
structures can be developed.

Index Terms—Space-time block coding, doubly-selective chan-
nels, delay diversity, Doppler diversity.

I. INTRODUCTION

Modern wireless communication systems not only require
high transmission rates giving rise to frequency-selectivity
due to multipath propagation, but they also need to support
high-mobility terminals and scatterers, which induce Doppler
shifts. Advanced techniques are needed to accurately model
time- and frequency-selective (doubly-selective) channels and
to counteract the related performance degradation. How-
ever, doubly-selective channels can also provide multiplicative
delay-Doppler diversity gains if the transceiver is properly
designed [1], with diversity being an effective way to combat
fading channels.

In the last decade, multi-antenna systems have attracted a
lot of research interest for future wireless systems. The use
of multiple transmit and/or receive antennas can significantly
enhance communication system performances such as channel
capacity and reliability [2]. Space-time block coding (STBC)
[3], [4] has been introduced to achieve the spatial diversity
offered by multiple transmit and/or receive antennas. However,
as STBC is typically designed for flat-fading channels, the
time- and frequency-selectivity will seriously degrade the
system performance.

Among the papers considering time-selective channels, [6]
designs STBC for purely time-selective channels by transform-
ing the time-selective channels into frequency-selective chan-
nels, and by adjusting existing space-time code designs over
frequency-selective MIMO channels to collect joint space-
Doppler gains over purely time-selective MIMO channels.
Further, [7] uses digital phase sweeping (DPS) to develop a

space-time code that can achieve full space-delay-Doppler di-
versity for any number of transmit-receive antennas. However,
to quantify the maximum Doppler diversity order, the above
papers rely on a parsimonious critically sampled complex-
exponential basis expansion model (CCE-BEM) for the under-
lying purely time-selective or doubly-selective channels [9].

In this paper, we develop a novel STBC for multi-antenna
transmissions over doubly-selective channels. The proposed
STBC is designed for a multiple-input single-output (MISO)
system with 2 transmit antennas and 1 receive antenna, but it is
straightforward to extend the ideas to a general multiple-input
multiple-output (MIMO) system. The proposed technique can
be interpreted as the extension of the Alamouti code to
doubly-selective channels, and relies on a joint time-frequency
reversal of the transmitted sequences. Assuming a block fading
channel where the time-variation from subblock to subblock
is modeled by a CCE-BEM, the proposed STBC belongs to
the class that achieves full spatial, delay, and Doppler diversity
using a maximum likelihood (ML) receiver, as well as a linear
zero-forcing (LZF) or linear minimum mean-squared error
(LMMSE) receiver. For realistic doubly-selective channels,
which can not exactly be modeled by a block fading CCE-
BEM channel, a real-valued linear data model is presented,
for which different receiver structures can be developed. This
paper assumes that the receiver has perfect channel state infor-
mation (CSI), as well as perfect knowledge of the maximum
delay spread τmax and the maximum Doppler spread fmax

which can be derived from the wireless transmission channel.
The transmitter on the other hand has no access to CSI.

Notation: We use upper (lower) bold face letters to denote
matrices (column vectors). (·)∗, (·)T and (·)H represent com-
plex conjugate, transpose and complex conjugate transpose
(Hermitian), respectively. E{x} stands for the expectation with
respect to x. a mod b gives the remainder of a divided by b.
We use [x]p to indicate the (p+1)st element of x, and [X]p,q

to indicate the (p + 1, q + 1)st entry of X. Further, we let IN

denote an N × N identity matrix and 0M×N an M × N all-
zero matrix. FN denotes the unitary N -point DFT matrix with
[FN ]p,q = 1√

N
e−j 2π

N
pq . We use the symbol ⊗ to denote the

Kronecker product between matrices. The J × J permutation
matrices {P(n)

J }J−1
n=0 are defined to perform a reversed cyclic

shift, i.e., [P
(n)
J a]p = [a](J−p+n) mod J .
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Fig. 1. System model of the proposed STBC system.

II. SYSTEM MODEL

We focus on a discrete-time baseband-equivalent descrip-
tion. Suppose xt[n] is the symbol sequence transmitted over
the t-th transmit antenna. The received signal can then be
written as

y[n] =
2∑

t=1

L∑
l=0

ht[n; l]xt[n − l] + η[n], (1)

where ht[n; l] is the order-L time- and frequency-selective
channel from the t-th transmit antenna to the receive an-
tenna, and η[n] is the additive noise. Suppose now that the
STBC has a length of N . In order to avoid inter block
interference (IBI), we design our STBC codewords in such
a way that the last L symbols within each codeword are
zero (as shown in the next section). Since IBI is then
avoided, the equalizer at the receiver can be designed for
each codeword separately. For simplicity reasons, we here
focus on the first codeword; the other codewords can be
treated in a similar fashion. Parsing xt[n] and y[n] into blocks
of length N , with xt = [xt[0], xt[1], . . . , xt[N − 1]]T and
y = [y[0], y[1], . . . , y[N − 1]]T , respectively, the input-output
relationship can be expressed as

y =

2∑
t=1

Htxt + η, (2)

where Ht is the N × N channel matrix with [Ht]n,n′ =
ht[n; (n − n′) mod N ] (we may use the modulo operator
here since every codeword has L zeros at the end), and
η = [η[0], η[1], . . . , η[N − 1]]T . For simplicity, we assume
that η is a circular complex Gaussian noise vector with zero
mean and covariance matrix E{ηηH} = σ2

ηIN .

III. SPACE-TIME BLOCK CODING

Orthogonal STBC [3], [4] has been designed to achieve the
spatial diversity offered by multiple transmit and/or receive
antennas. The STBC schemes proposed in [3], [4] are designed
for flat-fading channels, which lead to a performance degra-
dation in time- and frequency-selective channels. Our goal is
to design efficient STBC schemes to counteract the effects of
doubly-selective channels. We assume a block fading CCE-
BEM channel, which is defined as a block fading channel
where the time-variation from subblock to subblock is mod-
eled by a CCE-BEM. In this section, we develop and analyze
the STBC under this block fading CCE-BEM channel model,

and in the next section, we show how to decode the STBC for
real-life channels, which do not exactly fit this block fading
CCE-BEM channel model.

A. Block Fading CCE-BEM Channel Model

We assume that within the span of one STBC codeword, the
doubly-selective channel behaves like a block fading channel,
where the fading from subblock to subblock can be described
by a CCE-BEM. Assume for instance that the span of the
STBC codeword can be split into 2P ′ subblocks of length
K ′, i.e., N = 2P ′K ′. Every channel is then assumed to be
constant within every subblock of length K ′ and to vary over
the 2P ′ subblocks as a CCE-BEM, which uses 2Q+1 complex
exponential basis functions to model the time variation over
the 2P ′ subblocks:

ht[n; l] =

Q∑
q=−Q

ej2π(�n/K′�)q/(2P ′)ht,q[l], (3)

where ht,q[l] is the q-th CCE-BEM coefficient of the l-th
channel tap within the STBC codeword. The (L+1)(2Q+1)
BEM coefficients {{ht,q[l]}L

l=0}Q
q=−Q remain constant during

each length-N block, and are allowed to change over different
length-N blocks. The 2Q+1 CCE-BEM basis functions used
to capture the time variations are the same for every length-
N block. Q can be regarded as the discrete Doppler spread
index with frequency-domain resolution 1/(NT ), and it needs
to satisfy Q/(NT ) ≥ fmax.

Under the block fading CCE-BEM channel model, the
channel matrix Ht can be written as

Ht =

Q∑
q=−Q

(Λ2P ′,q ⊗ IK′)HN,t,q, (4)

where Λ2P ′,q is the 2P ′ × 2P ′ diagonal matrix given by
[Λ2P ′,q]p,p = ej2πpq/(2P ′) and HN,t,q is the N ×N circulant
matrix given by [HN,t,q]n,n′ = ht,q[(n − n′) mod N ].

B. Code Design

In [8], it has been shown how to generate orthogonal
full-diversity subchannels in case the CCE-BEM is adopted
to model the time-variation of the channel from sample to
sample. It has been introduced there to develop a multi-user
communications scheme where users remain orthogonal after
propagation over a doubly-selective channel and where the
full delay-Doppler diversity of a doubly-selective channel is
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enabled. Similarly, the same transmission scheme can be used
to generate two orthogonal full-diversity subchannels in case
the CCE-BEM is used to model the time-variation of the
channel from subblock to subblock. This will be the basis
of our STBC design.

Assuming K ′ > L and P ′ > 2Q, and defining K = K ′−L
and P = P ′ − 2Q, let us introduce the channel-independent
N × PK spreading matrices Cu and N × P ′K ′ despreading
matrices Du defined as [8]

Cu = [FH
2P ′(cu ⊗ T2)] ⊗ T1, (5)

Du = [FH
2P ′(cu ⊗ IP ′)] ⊗ IK′ , (6)

where T1 = [IK ,0K×L]T is the K ′ × K zero padding
matrix, T2 = [0P×Q, IP ,0P×Q]T is the P ′ × P two-sided
zero inserting matrix, and {cu}2

u=1 is an arbitrary set of
2 orthonormal code vectors. Notice that the last L rows
of the spreading matrix Cu are set to zero, which avoids
the IBI. Similar to [8], it is possible to show that these
spreading matrices Cu and despreading matrices Du can be
used to create two orthogonal full-diversity subchannels under
the assumption of a block fading CCE-BEM channel model.
The composite channel matrix consisting of the block fading
CCE-BEM channel as well as the spreading and despreading
operations can be expressed as [8]

DH
u′HtCu =

{
HtT, u′ = u;
0P ′K′×PK , u′ �= u,

(7)

where Ht =
∑Q

q=−Q JP ′,q ⊗ HK′,t,q and T = T2 ⊗ T1,
with JP ′,q the P ′×P ′ circulant matrix given by [JP ′,q]p,p′ =
δ[(p − p′ − q) mod P ′] and HK′,t,q the K ′ × K ′ circulant
matrix given by [HK′,t,q]k,k′ = ht,q[(k − k′) mod K ′].

The proposed STBC now proceeds as follows. We start by
demultiplexing a 2PK×1 data vector s into two PK×1 data
subvectors s1 and s2, where the data symbols are assumed to
be circular complex with zero mean and covariance matrix
E{ssH} = σ2

sI2PK . On the first and second antenna, we then
send

x1 = C1s1 − C2Ps∗2,

x2 = C1s2 + C2Ps∗1,
(8)

where P is a PK × PK permutation matrix that will be
determined later on. The received signal can now be expressed
as

y = H1x1 + H2x2 + η

= H1C1s1 − H1C2Ps∗2 + H2C1s2 + H2C2Ps∗1 + η.
(9)

Applying the despreading operations D1 and D2 at the re-
ceiver, we obtain

ȳ1 = DH
1 y = H1Ts1 + H2Ts2 + η̄1, (10)

ȳ2 = DH
2 y = H2TPs∗1 − H1TPs∗2 + η̄2. (11)

Since the N × P ′K ′ despreading matrix Du is a tall matrix
and DH

u Du = IP ′K′ [8], η̄u is still a circular complex

Gaussian noise vector with zero mean and covariance matrix
E{η̄uη̄H

u } = σ2
ηIP ′K′ .

We wish to be able to decode the two multiplexed transmit-
ted data streams s1 and s2 separately at the receiver, similar to
the scalar case for Alamouti decoding [3]. In order to achieve
that, we now have to find the PK × PK permutation matrix
P such that there exists a P ′K ′ × P ′K ′ permutation matrix
P′ for which

P′
HtTP = H

T
t T. (12)

Since Ht is a block circulant matrix of circulant matrices, it is
easy to show similar to [5] that the permutation matrices that
satisfy this property are given by P = P

(P−1)
P ⊗P

(K−1)
K , and

P′ = P
(P ′−1)
P ′ ⊗ P

(K−1)
K′ . Note that P actually represents a

PK ×PK element reversal, where due to the structure of the
spreading matrices, the first part (P

(P−1)
P ) can be interpreted

as a frequency reversal and the second part (P
(K−1)
K ) as a

time reversal. As a result, (11) can be rewritten as

P′ȳ∗
2 = H

H
2 Ts1 − H

H
1 Ts2 + P′η̄∗

2, (13)

Now applying F = FP ′ ⊗ FK′ to (10) and (13), we get

Fȳ1 = G1FTs1 + G2FTs2 + Fη̄1, (14)

FP′ȳ∗
2 = G

∗
2FTs1 − G

∗
1FTs2 + FP′η̄∗

2. (15)

In these formulas, Gt = FHtF
H is a P ′K ′ ×P ′K ′ diagonal

matrix. Stacking (14) and (15), we obtain the following
relationship

y̌ =

[
Fȳ1

FP′ȳ∗
2

]
=

[
G1 G2

G
∗
2 −G

∗
1

] [
FTs1

FTs2

]
+

[
Fη̄1

FP′η̄∗
2

]

= G

[
FTs1

FTs2

]
+ η̌.

(16)

Similar to [5], if we define G12 = (G∗
1G1 + G

∗
2G2)

1/2 and
apply the unitary matrix U = G(I2 ⊗ G

−1
12 ), we obtain

UH y̌ =

[
G12FTs1

G12FTs2

]
+ UH η̌. (17)

Note that if G1 and G2 share a common zero, we can still
design a unitary U without compromising the validity of (17),
by replacing either one of the common zeros by a one in the
formula for U, as explained in [5].

In conclusion, by applying complex conjugations and linear
unitary matrix operations, we can separate the two substreams,
leading to two matrix equations of the form

zu = G12FTsu + ζu = Hsu + ζu, (18)

where zu(ζu) represents the corresponding part of
UH y̌(UH η̌) in (17). Every stream can then be decoded
using your favorite decoder. Note that all these derivations
only hold under the assumption of a block fading CCE-BEM
channel model.

Similar to [8], we can show that if a (near-)ML decoder
is used, the proposed STBC enables the maximum space-
delay-Doppler diversity that the doubly-selective channel can
offer, which is multiplicative in the degrees of freedom of the
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channel in space, time and frequency dimensions. The proof
is an extension of that in [8], and the details can be found in
[12]. Using the results of [11], we can even show that if a LZF
or LMMSE decoder is used, this full diversity order can still
be achieved. It is shown in [11] that if det(HHH) > 0, ∀H,
i.e., H has full column rank for any channel realization, then
the LZF and LMMSE decoder can obtain the same diversity
order as the ML decoder.

IV. PROPOSED RECEIVER FOR REALISTIC CHANNELS

The STBC design and analysis discussed before is based on
the block fading CCE-BEM channel model. The nice algebraic
structure of this block fading CCE-BEM channel model allows
us to extend the Alamouti code to doubly-selective channels
enabling the full space-delay-Doppler diversity, as mentioned
in Section III-B. Although this channel model was useful to
design and analyze our STBC, it does not perfectly model real-
life doubly-selective channels under all circumstances [10].
Hence, the receiver processing discussed in Section III-B can
only be applied if we approximate the true channel by its best
possible fit to a block fading CCE-BEM channel. The related
modeling error will of course introduce a bit-error-rate (BER)
performance floor at medium to high SNR, and this floor will
increase with the Doppler spread. To avoid this floor, we will
next propose an alternative receiver for the proposed STBC
that is suitable for realistic doubly-selective channels, which
do not rely on any specific channel model, so that there is no
channel modeling error. More specifically, we will present a
real-valued linear data model for the proposed STBC on which
any existing receiver structure can be applied.

Defining the N × PK matrix Kt,u as Kt,u = HtCu, the
received vector y can be written as

y = K1,1s1 − K1,2Ps∗2 + K2,1s2 + K2,2Ps∗1 + η. (19)

Further defining

K̃t,u =

[�(Kt,u) −�(Kt,u)
�(Kt,u) �(Kt,u)

]
, (20)

˜̃
Kt,u =

[�(Kt,u) �(Kt,u)
�(Kt,u) −�(Kt,u)

]
, (21)

we can write ỹ = [�{yT },�{yT }]T as

ỹ = K̃1,1s̃1 − ˜̃
K1,2(I2 ⊗ P)s̃2 + K̃2,1s̃2

+ ˜̃
K2,2(I2 ⊗ P)s̃1 + η̃

=
[
K̃1,1 + ˜̃

K2,2(I2 ⊗ P) K̃2,1 − ˜̃
K1,2(I2 ⊗ P)

] [
s̃1

s̃2

]
+ η̃

= K̃s̃ + η̃,
(22)

where s̃i = [�{sT
i },�{sT

i }]T , i = 1, 2. On this real-valued
data model, one can then apply any decoder, from a (near-)ML
decoder to a LZF or LMMSE decoder. In this paper, we only
consider the LMMSE decoder, and the estimated transformed
symbol sequence is then given by

ˆ̃s = K̃H(K̃K̃H +
σ2

s

σ2
n

I2N )−1ỹ. (23)

From ˆ̃s, the original transmitted symbols can be recovered.
Note that when using (23), the spreading codes cu do

not strictly have to be orthogonal. However, if the block
fading CCE-BEM channel model holds, we have shown in
the previous section that orthogonal codes remain orthogonal
after propagation, leading to an STBC with full spatial, delay,
and Doppler diversity (note that (23) is then equivalent to
the receiver processing of Section III, and thus its diversity
analysis would be the same). As a consequence, we expect that
if a more general realistic channel model holds, we can still
benefit from using orthogonal codes. Although this realistic
channel model will not fully maintain the orthogonality of the
codes after propagation, it will approximately do so, and we
still expect to obtain a diversity benefit. So we will always
consider orthogonal codes in this work.

V. SIMULATION RESULTS

In this section, the proposed STBC is examined and com-
pared with other coding schemes by simulations. We only
consider a system with two transmit antennas and one re-
ceive antenna. The maximum channel delay spread is set
to L = 2. The channel taps from each transmit antenna to
the receive antenna are i.i.d. complex Gaussian distributed
with zero mean and variance E{|ht[n, l]|2} = 1/(L + 1)
(i.e., uniform power delay profile) and they follow Jakes’
Doppler profile. QPSK symbols are used for transmission. The
2 orthonormal code vectors are set to c1 = [1/

√
2, 1/

√
2]T

and c2 = [1/
√

2, −1/
√

2]T , which are the columns of the
2×2 unitary Hadamard matrix. The normalized Doppler spread
is defined as fd = vf

c T , where v denotes the mobile velocity,
f is the carrier frequency, and c is the speed of light. The
receiver applies the LMMSE decoder of (23).

Test Case 1: We first compare the proposed STBC with
the DPS algorithm of [7] for doubly-selective channels. The
symbol block lengths are set to P = 27 and K = 8. The
frequency domain guard band length is set to Q = 3, which is
large enough for the Doppler spread used in this simulation,
for both approaches. The spectral efficiency of the proposed
STBC is ε = 0.65, which is higher than the spectral efficiency
of DPS εDPS = 0.54, meaning that we disfavor our approach.
We use the LMMSE decoder for both algorithms. It is clearly
shown in Fig. 2 that the proposed STBC can achieve a better
BER performance due to a larger coding gain. The diversity
order is almost the same for both approaches, which increases
as the Doppler spread increases.

Test Case 2: We next compare the proposed STBC with
the STBC designed for frequency-selective channels in [5].
The zero-padding only STBC in [5] can actually be regarded
as a special case of the proposed STBC with P = 1 and
Q = 0. Without data symbol spreading and guards in the
frequency domain (P = 1, Q = 0), a higher spectral efficiency
can be achieved, and the block length can be made smaller,
which also leads to a lower complexity. A natural question
is then if we can ignore the time-selectivity and only use the
STBCs designed for a frequency-selective channel in doubly-
selective channels. To have the same spectral efficiency, we set
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Fig. 2. BER comparison of proposed STBC with DPS [7].

Q = 0 for the proposed STBC, and keep K = 5 fixed for both
approaches. Since [5] considers a purely frequency-selective
channel, the decoder of [5] relies on the fact that the channel
is constant during the entire space-time codeword. To obtain a
fair comparison, we simulate the approach of [5] by using our
LMMSE receiver, with P = 1 and Q = 0, so that the STBC
design is the same as in [5], but the receiver does not require
the channel to be constant. The simulation results in Fig. 3
show that we get a better BER performance as we increase P .
But the BER performance is worse compared to the Q > 0
case shown in Fig. 2. This is due to the interference related to
the lack of frequency-domain guard bands. However, Doppler
diversity can still be explored even without a frequency-
domain guard band. As shown in the figure, when P = 1, i.e.,
when the data symbols are only spread in the time domain,
a higher Doppler spread leads to a worse BER performance.
When P > 1, a higher Doppler spread leads to a better BER
performance, and as P increases, the BER becomes smaller
due to an increasing Doppler diversity.

VI. CONCLUSIONS

We have developed a novel STBC for multi-antenna trans-
missions over doubly-selective channels. By spreading the
data symbols in the space-time-frequency dimensions with
appropriate guard bands, the proposed STBC can achieve the
full spatial, delay, and Doppler diversity, using the ML receiver
as well as using a LZF or LMMSE receiver, under a specific
channel model. Further, a real-valued linear data model has
been presented for realistic doubly-selective channels, for
which different receiver structures can be developed. Simula-
tion results have shown significantly improved performance by
jointly exploring the space-delay-Doppler diversity in doubly-
selective channels.
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