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Abstract

In a parametric multipath propagation model, a source is received by an antenna array via a
number of rays, each described by an arrival angle, a delay and a fading parameter. Unlike the
fading, the angles and delays are stationary over long time intervals. This fact is exploited in a new
subspace-based high-resolution method for simultaneous estimation of the angle/delay parameters
from multiple estimates of the channel impulse response. A computationally expensive optimization
search can be avoided by using an ESPRIT-like algorithm. Finally, we investigate certain resolution
issues that take the fact that the source is bandlimited into account.

1. Introduction

Source localization is an issue of interest in wireless communications. A major motivation is personal
safety, such as in the emergency localization (E-911 service), which will be a system requirement for wire-
less operators in the near future [2]. Some other applications are accident reporting, automatic billing,
fraud detection, cargo tracking, and intelligent transportation systems. Methods for wireless position
localization are based on direction of arrival (DOA) and/or time difference of arrival (TDOA) estimation
of signals. A second type of application in wireless communication is the estimation of a parametric
propagation channel, to assist equalization and directive transmission in the downlink. Estimating prop-
agation parameters from measurements at a phased antenna array also has applications in radar, sonar,
and seismic exploration.

This paper focuses on the joint estimation of angles and relative delays of multipath propagation signals
emanating from a single source and received by a single antenna array. In comparison to “classical”
disjoint techniques which first estimate delays and subsequently the angle corresponding to each delay,
joint estimation has an advantage in cases where multiple rays have approximately equal delays (or
angles). Parametric joint angle/delay estimation has received increased research interest lately [1,3-8].
Many of the proposed algorithms are based on maximum-likelihood or multidimensional MUSIC, which
is unattractive for online estimation. The approach in [3] is an off-line channel sounding method using
a range of unmodulated carriers, the other algorithms are based on knowledge of the source signal and
in particular the modulation waveform. The algorithm in [8] is based on a multi-dimensional version of
ESPRIT. Only a few of the proposed methods allow for the simultaneous estimation of more paths than
the number of antennas available [5, 6, 8].

One aspect of this multipath estimation problem which has received little attention so far is that of
stationarity. In mobile communication, arrival angles and time delays are relatively stationary. In
contrast, the amplitude and relative phase of each path is highly nonstationary and subject to (Rayleigh)
fading. The stationarity of the fading is related to the speed of the mobile: its coherence time is roughly
the inverse of the Doppler shift, or given by
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where c is the speed of light, v the speed of the mobile, and f. the carrier frequency. At 1800 MHz and
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a mobile speed of 1 m/s (walking speed), the coherence time is 160 ms, at 30 m/s (100 km/h), this is
5.6 ms. A typical TDMA system such as GSM or DCS1800 has a slot length of order 0.6 ms and a spacing
between slots belonging to the same source in the order of 5 ms. Thus the fading within a single time
slot is stationary; at 30 m/s it is also uncorrelated among slots, while at 1 m/s it is uncorrelated every 30
slots. We also note the stationarity of the angles and delays of arrival paths, even for fast-moving users.
Over 40 slots, a mobile moving at 30 m/s changes angular position only by 0.1° with respect to a base
station 3 km away.

The method presented herein is an effective way to exploit the stationarity of angles and delays, as well
as the independence of fading over many time slots. At each time slots a channel estimate is obtained.
Multiple channel estimates can be combined if they have the same angles and delays. In comparison to
algorithms that are based only on a single channel estimate, the estimation is (of course) more accurate,
but also the number of rays that can be resolved is larger. Two short versions of various parts of this
work appeared as [1,7].

In summary, the major assumptions we make on the multipath scenario are: (i) the number of rays is
small and discrete (i.e., specular multipath), (ii) the signals are narrowband with respect to the array
aperture, (i4¢) the antenna array response is unambiguous and of known structure, (iv) the modulation
waveform is known, (v) the radio channel is time-slotted.

The outline of the paper is as follows. Section 2 introduces the data model, section 3 outlines the basic
technique and section 4 presents an ESPRIT-based algorithm. Resolution issues are treated in section 5,
while section 6 discusses the Cramer-Rao bound. We close with simulations in section 7 and conclusions
in section 8.

Notation * denotes matrix complex conjugate transpose, T the matrix transpose, and } is the matrix
pseudo-inverse (Moore-Penrose inverse). I, is the m x m identity matrix, 0, is a column vector of zeros.
® is the Kronecker product, @ the element-wise product, o is the Khatri-Rao product [9], which is a
column-wise Kronecker product:

AoB:[a1®b1 a2®b2 ]

2. Data model

Consider the case of a single user transmitting a digital signal in a specular multipath environment. As
discussed in the introduction, we regard the channel to be fading but stationary over short time intervals;
the impulse response in the n-th interval is denoted by h(™ (). Typically, such an interval would coincide
with a single time slot in a TDMA system. At each time interval, we collect data over N symbol periods;
in total, there are S time slots.

The received baseband signal at an M-element, antenna array at time ¢ in the n-th interval, x(™ (t) =
[z (#) ... 27 (#)]7, can be written as the convolution of the transmitted digital sequence {sl(")} with
the channel h(™ (%),
x((t) = Y 8B (¢~ 1T) + 0 (1), (1)
1

where T is the symbol period and n(¢) is the additive noise. Let @) be the number of paths in this specular
multipath environment. Each path is parameterized by a DOA 6;, time delay 7; (measured in symbol
periods T'), and complex path attenuation (fading) B;(n) which is varying between time slots but not
within a symbol period. The channel can thus be modeled as

Q
h™(t) = Z a(0;)Bi(n)g(t — ) (2)
i=1
where a(0;) is the array response to a path from direction ;, and g(t) is the known modulation pulse shape.
It is reasonable to assume that g(¢) has finite support, say on t € [0, L,T). With T, = [maxi<i<g 71,
the channel length is LT = L,T + Tyae, i-e., h(™(t) is nonzero for ¢ € [0, LT).



The antenna outputs are sampled at a rate of P times the symbol rate. If we stack each set of P samples
of x(™(-) and collect the samples in an M P x N matrix X, then (1) leads to

XM = AME™ L N®  p=1,....8

where H(™ is an M P x L matrix of samples of h(-) and S( is an L x N Toeplitz matrix of data symbols.
1f (™) is known from training, then a least-squares estimate of H™ can be obtained as FH'") = X(M§m1,
provided N > MP. Alternatively, H™ can be obtained from a blind channel estimation. The noisy
channel estimates are

) = A 4 V] 3)

After the channel matrix H(™ has been estimated, it will be convenient to rearrange it into
H® = [0)(0) h™(L) - hOV(L—H)T)), (M x LP)
which satisfies the factorization (viz. (2))

Bi(n) 0 g”(m)
H™ =[a(4;) - a(dg)] : =: A(9) diag[B(n)] GT (7).  (4)

0 Ba(n) g’(rq)

(kT — 73)lk=0,1/P,-...L—1/p is an LP-dimensional column vector containing the samples of

Here, g(7;)
, 0

lg
g(t—m),0=1[0

1...0Q],and T = hj...ﬂQL
3. Joint Angle and Delay Estimation
3.1. Space-Time Manifold

Similar to the array response vector a(f), we can define the space-time response vector u(6,7) as as
u(f,7) = g(r) ®a(d).

This M P L-dimensional vector is the response of the array to a channel with a single path with direction 8
and delay 7, and includes the pulse shape function. As 8 and 7 vary over the space of DOAs and delays,
the MLP x 1 vector u(f,7) traces a multidimensional space-time manifold. The space-time response
matrix with @ paths is defined as

U(0,7) = G(r) o A(0) = [u(61,71),- -, u(0g, Q)] - ()

The space-time manifold is a combination of the array manifold a(), which is determined by the array
geometry, and the delay manifold g(7), which depends on the pulse-shape function and the sampling
phase. Since the array manifold a(f) and pulse shape function g(7) are both assumed known functions,
this will enable to extract the desired parameters 6 and 7 from knowledge of the column span of U(8, 7).
3.2. Method outline

The key observation to be made at this point is that the space-time matrix U(f#,7) can be assumed
time-invariant over the observation interval, since the angle/delay parameters are stationary. Thus, we
have

vec(H™) = (G(1) 0 A(8))B(n) = U(8,7)B(n). (6)

We have used the general relation vec(A diag[b] C) = (CT o A)b as it applies to (4).

As a first step we estimate H(™). Applying the vec operation to (3) and using (5) and (6), we arrive at
y(n) =U(0,7)3(n) + v(n), n=1,...,5,

where y(n) = vec(H(")), and v(n) = vec(V(")). In matrix form, the above equation is

est est

Yi=[y(1) - y(S)] = U@, 7B+ V ™)



where B = [3(1) ... B(S)], and similarly for V.

The joint angle/delay estimation (JADE) problem is, for given channel estimates Y, to find the angles
0 and delays T using the model in (7). As an aside, note the resemblance of the JADE model to the
familiar DOA model

X =AB)S+N (8)

where X is the array output measurements, S is the matrix of signals and N the additive noise. The
difference to (7) is (i) the “data” are the channel estimates, not the array outputs, (i¢) the manifold
matrix is parametrized by both angles and delays, (i4i) the path fadings play the role of the signals.
The next and last step of the method thus consists of jointly estimating the parameters (@, ) that satisfy
the model (7). Many of the well known methods such as maximum likelihood (ML), subspace fitting (SF),
and MUSIC (see [10] for an overview) that have been developed for the DOA model (8) are applicable
to the JADE problem. These algorithms estimate the desired parameters by solving an optimization
problem of the general form

[0,F) = axgmin M — U(8, )T} (9)

where M is a matrix obtained from the data Y (typically a basis for its column span) and T is any square
invertible matrix. These algorithms as they apply to the JADE model are described in some detail in [7].
Identifiability of the parameters using such algorithms is addressed in section 3.3. For the solution to
(9) to be ML, however, requires additional conditions to be satisfied: first, that the noise V is Gaussian
and second, that the path fadings are uncorrelated from time slot to time slot (i.e., BB* ~ I). These
two assumptions are discussed in in section 6. All methods to solve (9) without using further structure
of A(0) or G(7) require multi-dimensional searches. A closed-form ESPRIT-like algorithm is possible if
the array manifold has a doublet structure, and will be discussed in section 4.

3.3. Conditions for identifiability

To be able to identify @, T using (7), we need that Y is a rank deficient matrix (under noise-free
conditions). This implies that

1. U(0, 1) be strictly tall and full column rank. Thus it is necessary that Q < M LP. For U(6,T) to be
full column rank it is neither necessary nor sufficient that A(6) and/or G(7) be full rank. Even if a
few angles or delays are identical, so that A(6) or G(7) are rank deficient, U may still be full rank,
and it is easy to find counterexamples for the contrary (see section 5). Sufficient conditions occur
in the simple case where @ < max{M, LP}: by Proposition 2 proved in section 5, U is guaranteed
to be full rank even if there are up to @) identical angles or delays.

2. B be wide and full row rank. This implies S > @Q, i.e., we need to collect at least as many channel
estimates as the number of multipaths. The full rank condition will be satisfied when the channel
estimates are taken during a time interval larger than the coherence time of the channel. Note that
it is not necessary that the fadings be uncorrelated from slot to slot (although this would improve
the conditioning of B).

To summarize, the most important condition for parameter identifiability is that the number of paths
satisfies ) < M PL. Thus, JADE in general does not require more antennas than paths present (as is
needed for identifiability in DOA models).

The rank condition on B can be alleviated by introducing spatial and temporal smoothing techniques,
i.e., by constructing Hankel matrices out of each of the channel impulse response matrices. Ultimately,
all rank conditions on B can be lifted, which brings us back to the single channel estimate version of the
JADE algorithm considered in [8]. The penalty for smoothing is a reduced number of paths that can be
estimated.

3.4. Multiple users

When there are more than one user in the same time slot, we can independently estimate the channel
matrices H using each user’s unique (usually orthogonal) training signal. We can then proceed as in the



single-user case, but with decoupled problems. If no training signals are available, we can still find the
space-time channel H for each user using blind methods, which exploit finite alphabet structures and
oversampling [11].

If the training sequences from each user are perfectly orthogonal, then ML is optimal, but since the
estimation noise is independent from user to user, the ML problem “decouples”, such that applying the
JADE method to each user separately is still optimal. If the users’ training sequences are not perfectly
orthogonal, then the estimation noise is not independent from user to user. When the training signals
are correlated between users, the optimal approach is to do parameter estimation jointly for all users.
However, this is not computationally feasible, since the optimal approach ML requires that the noise
be independent in order to arrive at a computationally tractable optimization problem such as (9). In
summary, it is best in all cases of multi-user non-blind channel estimation to apply JADE to each user
separately.

3.5. Estimating the number of paths

If not known in advance, the number of paths present can be estimated. Given the similarity of the
JADE model to the angle-spread only model (8), many of the signal detection methods are applicable
to our model. The most direct approach involves finding the multiplicity of the smallest eigenvalue of
the covariance matrix of the channel estimates. Also the detection method based on the AIC and MDL
principle outlined in [12] can be used, since the path fadings are normally distributed. The effects of
angle spread and delay spread on the performance of these two methods need further study.

4. JADE-ESPRIT

We now discuss a computationally attractive closed-form algorithm to solve the JADE problem (7) in an
approximate sense. A Fourier transform on the channel estimates is used to map G to a Vandermonde
matrix F, after which the ESPRIT algorithm [13] can be used to estimate the delays. If the antenna
array is uniform linear or otherwise has the ESPRIT doublet-structure, then the angles and delays can
be estimated jointly in a closed form, as follows.

We use the fact that a delay in the time domain maps to a pointwise multiplication by a phase progression
in the frequency domain. This property is to a very good approximation true also for sampled signals
in case the Nyquist condition is satisfied. Thus, by taking the Fourier transform of the rows of H,
we effectively perform a Fourier transform on every column g(7;) of G. We can then divide out the
known Fourier transform f of the sampled pulse shape function g on its nonzero support. After some
rearrangements, the channel model in (4) thus becomes (see [8] for details):

8 0 ][ £(40)
H™ = [a(¢) -+ a(yo)] : =: A(¢) diag[B(n)] F'(¢) (M x LP"))
0 a5 | L £ (¢q)
(10)
where P’ is the Nyquist rate,
£(gs) =L i .. f7 7T, di=e /0
and similarly, for a uniform linear array with sensor spacing A wavelengths,
a(wz) — [1 '(pz L ,ébzgwfl]T’ wl — ej27rAsin01- .
The JADE model (7) becomes, with obvious notation,
Y=U@,¢)B+V, U, ¢)=F(@)oA). (11)

Obviously, U(1, ¢) has a double Vandermonde structure, similar to the situation of 2-D DOA estimation
using a uniform rectangular array. A matrix E containing a basis of the column span of U can be estimated
by taking the left singular vectors corresponding to the largest @) singular values of Y. Without noise,



ET-! = U(%, ¢), where T is a square invertible () x ) matrix. To estimate (1, ¢) using the Vandermonde
structure of U(, ¢), define the following selection matrices:

Jy = Ipp ®[Im—1 04], Jy = ILop ®[01 In],
Jy = [Irp—1 0] @I, Jy = [0 Irp1]®1In

and let Vy = J,U and similarly for V3, Vs, Vi, The shift invariance structure in U gives that V;, =
V¥, Vi = V@ where ¥ = diag[¢)1 ... ¢q] and ® = diag[¢1 ... ¢q]- Finally let

{ E¢ = Jd,E { E¢, = J¢,E
! .— ! ! —— 12
E¢ = J d)E E o = J ¢E
These data matrices have the structure
Ey, = VT E, = V4T (12)
E;} = Vu,¥T E;5 = V4T

Since ® and ¥ are diagonal, the ¥;’s and ¢;’s are given by the rank-reducing numbers of the matrix pencils
(Ey,Ey) and (Ej, Ey) respectively. To obtain them one needs to jointly diagonalize ELEQJ) =TT
and E;E;, = T !®T. The reader is referred to [8,14] for details of joint diagonalization methods. The
connection of the 8;’s and 7;’s is provided by the fact that they have the same eigenvectors, the columns
of T—1.

The algorithm could be extended with ideas from Unitary-ESPRIT: the number of columns can be
doubled and all computations can be kept in the real domain [14,15].

The above algorithm will be referred to as JADE-ESPRIT. It is quite similar to the recently developed
SI-JADE algorithm [8,11]. SI-JADE, however, only acts on a single channel estimate H® | so that
the vectorization into y becomes useless. To enable identification, a block Hankel matrix H has to be
constructed, by stacking horizontal shifts of H('). This reduces the number of columns and may also
introduce an undesired coupling between the angle and delay estimates in case the model is not perfectly
satisfied.

It is also possible to combine both algorithms. In this case every H(™ is replaced by a block Hankel
matrix H(™ based on it. This would be useful in situations where sufficient fading diversity cannot be
guaranteed so that B can be rank deficient.

Note that if only delay estimates are of interest (as is the case for TDOA-based triangularization methods
for localization), then these can be estimated without knowledge of the array manifold, by just using the
second set of equations in (12). This is attractive when the array manifold is unknown or not reliably
calibrated.

The JADE-ESPRIT algorithm requires stricter identifiability conditions. That is, to uniquely identify
¥, ® using (12), V, and V4 need to be tall and full rank, which implies that @ < min(M(LP' —
1),(M - 1)LP’"). If Q < max{M —1,LP — 1}, then by Proposition 2 proved in section 5, Vy and Vg
are guaranteed to be full rank even if there are up to () identical angles (or delays).

5. Number of resolvable paths

We will assume that the identifiability requirements are satisfied. Therefore, MLP — 1 is an upper
bound on the maximum number of resolvable paths @,q;- Furthermore, for any fixed M, L, P, we have
@ mae = rank U. To see why, note that U has only p := rank U linearly independent columns, and thus
the angle-delay subspace (i.e., column span of U) is p-dimensional. Thus there can be at most p paths
that will yield unique parameter estimates.

The following result shows that the resolution power in space and in time each affect the resolution power
in space-time:

Proposition 1.  Let Q) be the dimension of the parameter vectors (0,7), and let U(0,7) = G(7)0A(0).
Then
rank U(0, 7) < min{Q, rank G(7) - rank A(0)} (13)

A sufficient condition for equality is to have G and/or A tall and full rank.



PRrOOF Define the singular value decompositions A = U4V, G = UgEGV(, (the matrices Uy g
and V4 g are not related to U and V) and note that

GoA=Ug@Uu)(Bag@B4) (V5o VY,

where we have used the general relations proved in [9] (A®B)(C®D) = (AC®BD) and (A®B)(CoD) =
(AC) o (BD). Observing that Ug ® Uy is a unitary matrix, that rank(VE o V) =rank Vi = Q, and
that rank(Eg @ £4) = rank G - rank A, we have

rank(GoA) = rank{(Zg®¥ 4)(VoV%)} < min{rank(Ee®¥ 4),rank(VoVE)} = min{rank G-rank A, Q}

To see that a sufficient condition for equality is that G is tall (@ < LP) and full rank, we note that by
results in [9], all @ columns of U are linearly independent, and thus rank U = @ = min{@, @ -rank A}.
The argument for the case when A is tall and full rank is similar. m|

A simple counterexample of matrices where both A and G are full rank (but “wide”), and G o A is rank
deficient (even though it is “tall”), is provided by

1 0 011
O I I
001 31 )

G o A has size 6 x 5, but is of rank 4. Note that any 3-pair of columns of A are linearly independent
(and the same with 2-pairs of columns of G), so that the array and time manifolds can be considered
unambiguous for this instance. It follows that distinct angles and delays, and unambiguous space and
time manifolds are not sufficient to have an unambiguous space-time manifold. (For practical purposes,
however, such counterexamples can be considered contrived: equality holds in (13) for almost every
6,7).)

We continue to show that the number of resolvable paths is not determined by the oversampling factor P,
if we sample at or beyond the Nyquist rate. If we increase P, then the number of rows of the space-time
manifold matrix increases, so it appears that we can also tolerate more paths and expect to resolve them,
since @ is limited only by M LP. Yet oversampling past a certain rate should not increase the resolution
power when the signal has finite bandwidth [16]. In typical communication systems, the modulation
waveform g¢(t) is bandlimited, with spectrum nonzero only for |w| < Z(1 + «), where 0 < a < 1 is the
excess bandwidth with respect to the symbol rate. As far as the rank of U is concerned, this implies that
P is effectively replaced by (1 + «):

Proposition 2.  The effective rank of U is at most M (1 + a)L.

PRrOOF The spectrum of g(t) is nonzero for |w| < Z(1 + ). Consider the discrete Fourier transform f
of the sampled pulse shape function g, consisting of LP samples. If we sample faster than the Nyquist
rate (1 + «)/T, i.e., P > 1+ «, then f has only « := (1 + &)L nonzero elements out of a total of LP —
all others are effectively' zero. Thus f has the form

f:[flfg f’)’/20 ...0f7/2+1 er]T.

Moreover, since a delay in the time domain is equivalent to pointwise multiplication with a phase pro-
gression in the frequency domain,

gr) & f(n)=[ ¢---¢"" ot g=eE, (14)

sampling g(t — 7) rather than g(t) does not change the above argument, and the zero entries do not
change location.

With @ paths, we can construct a matrix F consisting of @ columns of this form. Thus, it cannot
have rank bigger than (1 + a)L. The same must hold for G, since G = }'L_}JF, where Frp is the
LP x LP DFT matrix, which is a scaling of a unitary matrix. Applying proposition 1, we obtain that
rank U < min{Q, M(1+ a)L}. |

INot precisely, since g(t) was supposed to have finite support.



normalized svs of U

566009

. . . . . . R
0 5 10 15 20 25 30 35 40
sv index

Figure 1. Singular values of U for various oversampling rates P, with number of rays () = M PL — 1.

Numerical example. As an example of proposition 2, consider the case of a signal arriving at an M = 2-
element antenna via @) paths with total delay spread é = 3 symbol periods (7' = 1) and total angle spread
120°. The paths are considered equispaced in time and space: the first path has delay 0, the second %,
the third Q2—fl, and so on. The modulation waveform is a raised-cosine pulse with excess bandwidth
a = 0.25, truncated to zero outside the interval (—3,3]. We observe the rank of U as the oversampling
rate increases. Taking P = 2,3,4 and 5, and @) to be the maximum number of paths resolvable if the
pulse shape would be not bandlimited, Q = M LP — 1, we note that even though we simulate more paths
with higher oversampling rates, the singular value plots in Figure 1 are overlapping: the large singular
values are all the same and the increase in rank is only noticeable from the addition of small singular
values, which is unobservable in practice. Thus, the effective rank of U does not increase. O

Remarks on rank. So far we assumed that A has maximum attainable rank M. But its rank is affected
by angle-spread and beamwidth, such that, for example, if the beamwidth is large compared with the
angle-spread, then the number of resolvable paths in space is far from reaching M. As an illustration,
say we have 4 equispaced antennas and 4 angles equally spaced in the interval [0°,90°]. Then rank A
depends on the spacing of the sensors, i.e., on the beamwidth. With a spacing of A/100, where X is the
wavelength, the beamwidth is large compared to the angle spread of 90°, and the numerical rank of A is
only 2. For \/5, the beamwidth decreases to = 75° and rank A increases to 3. Finally for half-wavelength
spacing the beamwidth is =~ 30° and rank A reaches 4.

By looking at the structure of A for fixed M and @, it is noted that its condition improves if the angle
spread increases, since the vector-norm separation of its columns increases; the same improvement in
condition is expected if the sensor spacing increases (and thus beamwidth decreases), since this causes
the separation of the rows of A to increase. We can thus conclude that the number of resolvable paths is
directly proportional with the total angle spread and inversely proportional with the array beamwidth.
An exact relationship does not exist, because the rank of A depends in a very complex manner on the
array geometry, exact definition of beamwidth and angle spread, as well as the tolerance for numerical
rank determination (recall that A is always of full theoretical rank for distinct paths). However, a rule-of-
thumb can be given: The effective rank of A is min(M, ), 1+ Angle Spread/ Beamwidth). We emphasize
that the last argument of min is just a “ball-park estimate”, inspired by the Rayleigh resolution criterion.
A similar reasoning applies in the delay-spread only model, such that the rank of G is not always LP
or even L(1 + a) but depends on the delay-spread and pulse-width: with a very wide pulse shape we
cannot distinguish multiple paths with a short total delay-spread. Again, an exact relationship does not
exist, but a heuristic can be given: the approximate number of resolvable paths is min(L(1 + a),@,1 +
Delay Spread/ Pulsewidth).



6. The Cramer-Rao bound

The Cramer-Rao bound (CRB) provides a lower bound on the variance of any unbiased estimator. We
derive the lower bound on the covariance matrix of [@,+] for the JADE problem (7). To this end we
assume the estimation noise v(n), n = 1,...,S5 is a complex, stationary, zero-mean Gaussian random
process, uncorrelated from slot to slot and from path to path. Formally, the last two assumptions are (7)
E[v(n)v(m)*] = 028nmI, E[v(n)v(m)'] =0, and (ii) E[v(n)v(n)*] = 021, E[v(n)v(n)"] = 0, where
o7 is the variance of the entries of the estimation noise matrix V and 4, ,,, denotes the Kronecker delta.
For the case of non-blind channel estimation, it can be shown that, if the entries of the noise N are i.i.d.
complex normally distributed with variance o2, and if the training sequences are designed to have perfect
autocorrelation properties (i.e., SS* = NI},), then the estimation noise V is indeed white and Gaussian,
with its columns satisfying (i) and (ii) above with o3 = % For blind channel estimation techniques, the
estimation noise distribution is difficult to assess and may not be white and Gaussian.

The CRB depends on whether the path fadings are modeled as unknown deterministic (i.e., fixed) quanti-
ties or as random variables with a known distribution. The deterministic CRB appeared (without proof)
in [1]:
2 (S -t
CRB(0,T) = %h {Zreal (B(n)*D*PﬁDB(n))} (15)

n=1
where B(n) = I, ® diag[3(n)], P§ = I — UUf, and D = [G o A, G’ o A]. Here, prime denotes
differentiation where each column is differentiated with respect to the corresponding parameter and all
matrices are evaluated at the true parameter values:

p , da da
N = AO) =[O e

and similarly for G' = G'(7) . The proof of this claim is similar to the one in [17] and left to the
appendix.

For a Rayleigh-fading channel, the path fadings 3 have a zero-mean complex Gaussian distribution, with
some covariance matrix Rp. A key assumption needed here is that the fadings are uncorrelated from
time slot to time slot (otherwise the joint likelihood function will not be the product of the individual
likelihoods from each slot). This assumption is only valid when the radio channel is sufficiently fast fading

(coherence time shorter than the frame length). For this case, the Cramer-Rao bound has been developed
in [7]:

2
CRB(O,T) = % {real (D*PED 6 (1242 ® REU'RY'UR)T)} (16)

Here 1545 is a 2 X 2 matrix of ones, and Ry is the covariance matrix of the channel estimates, given by
Ry = URBU* + U,ZLI.

7. Simulations results

The performance of the algorithm is assessed by the following computer simulations. We initially assume
one source emitting signals that arrive at an array of M = 2 half-wavelength spaced sensors via ) = 3
paths. The additive noise at the array has a variance of -15 dB. The angles-of-arrival are [—5, 0, 10]° and
time delays [0, 0.8, 1.0]T. The path fadings are generated from a complex Gaussian distribution with
mean zero and variance [1, .9, .8] respectively for the three rays. We also assume the communication
systems uses training bits, from which the channel is estimated using least squares. We collect samples of
x(t) during N = 40 symbol periods and a total of S = 20 time slots. The pulse shape function is a raised
cosine with 0.35 excess bandwidth, truncated to a length of L, = 6 symbols. The sampling rate is P = 2
and the symbol rate is normalized to 7' = 1. The experimental standard deviation of the estimates is
averaged over 500 Monte-Carlo runs of JADE-ESPRIT, and is compared against the deterministic CRB.

Basic performance of JADE-ESPRIT. Figure 2 shows the experimental standard deviation of the angle
and delay estimates as a function of the noise power o2. The three curves correspond to each of the three
paths. Compared to the CRB, the difference is approximately 3 to 5 dB. The bias of the estimates was
at least an order of magnitude smaller than their standard deviation.
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Figure 3. Standard deviation of estimates vs. noise

Comparison to other algorithms. To fairly compare the JADE approach to other algorithms, we need
algorithms that use multiple channel estimates. The only obvious choice is the optimal IQML-2D method
of [18]. IQML-2D was originally developed for estimating the two-dimensional modes of sinusoids in
Gaussian noise, being based on ML. It can be used to determine angles and delays if both manifolds have
Vandermonde structure. Thus IQML-2D can use the same model as JADE-ESPRIT (11), but it requires
more antennas than paths. We thus let M = 4 and @) = 3 for the comparison. The results are shown in
Figure 3; for readability, only the statistics of the first path are shown, the other paths exhibiting similar
behavior. “JADE-MUSIC” is the MUSIC-based JADE algorithm [1]. We note that IQML-2D approaches
the CRB as the noise decreases, as expected, while the JADE-based algorithms do not. However at lower
SNR’s JADE outperforms IQML-2D.
8. Conclusions

In this work we have presented a unified view of a parametric, subspace-based method to jointly estimate
multipath parameters. The main novel parts of this work are (i) an algorithm that uses shift-invariance
techniques arising from exploiting uniform sampling in space and time; and (i7) an analysis of the resolu-

tion power of the approach. We have exploited both spatial and temporal information, in particular the
known pulse-shape function. Relying on the spatial manifold alone to extract the desired parameters has

10



proved to be of limited value in practice, because of the expense of array calibration and variability of the
array response due to changes in the environment. The JADE approach relies on both the spatial and
the temporal manifold, resulting in increased robustness, since the temporal manifold is known exactly
and does not change with the environment.

9. Appendix

To prove the deterministic Cramer-Rao bound, let the parameter vector be defined as [a,zb nT1T, where
n = [BT,TT]T. The likelihood function of the data, which is the channel estimates y, i.i.d. Gaussian,
satisfying (7) is:

S
Ly (1),--¥(5)) = Gomyprs o7 3y 7T o {—Uih S ly(m) ~ UBG))* - [y(n) - Uﬂ(n)]}

Thus, the log-likelihood function is

5
InL = const — MPLSInoj — % Z[y(n) —Ugm)]* - [y(n) —UB(N)]. (17)
h

We compute the derivatives of the above with respect to a7, {B(n) := real 3(n)}, {B(n) := imag B(n)},
and 7).

dlnL MPLS 1S
22

7)
OInL 2 N OlnL iim ry
5By = orelUV, s = imagU ()

The derivatives of (17) with respect to ) are different from the ones in the angle-spread only model:

OlnL 1
= _2

a0; {2 real {B*(n)U*y(n)} — B*(n)U*UB(n)}

real {B;(n)dg,v(n)} i

Il
\'I—\
o

S
>

and similarly,

alnL_ 2Zrea‘1{/62 ( )} 7::13'-'3@3

67-1- Oy ot
where dy, is the derivative with respect to 8; of the i-th column of U, dy, = g(;) ® da(;)/06; similarly

for d,,. Written more compactly,

s
agnL = 2 Zreal{ (diag[B])*(n)Dgv(n)}, B;LTL = %Z real {(diag[8])"(n)D7v(n)},

where Dg = [dg,...ds,] == G o A" and Dr = [d;,...d;,] := G' o A. Finally, since D =
[Dg D7] (MPL x 2Q), we arrive at

5
61nL = 12 Z real {B*(n)D*v(n)}
Oh e

Using results proven in [17], we first note that g(I:QL) is not correlated with any of the other derivatives
h

5 <6lnL)2 _ MPLS
ocp)) | on
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computed above. Then we obtain



2
= —real [U*U] ..,
Oh

| (35 (g5t |-
| (G55 (Gaios)
G
Kam) (alr;’L) ] _ —’%real [U*DB(m)],
) nlL

[(8“ (%) ]z—zlmag [U*DB(n),

CEYCT e —

Finally the Fisher Information Matrix (FIM) for the parameters is given by E[wwT], where w :=

dInL/do2 B (1) BT(I) ... BYS) BT(S) nT]. Again using results in [17] we can show that the CRB

for the parameters of interest is

2
= ——imag [U*U] 6pn,m,
Th

= —2real [U*U] én,m.,
Th

CRB(n) ™' =~ {Zreal n)*D*PLDB(n ))}
Oh

which completes the proof.
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