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We present a minimal continuous parametrization of all mul-
tivariate rational contractive transfer functions. In contrast
to traditional minimal parametrizations, this parametrization
does not contain any structural indices, which makes it very
suitable for identification algorithms that use nonlinear opti-
mization to estimate the parameters.

1. INTRODUCTION

State-space model identification is concerned with the fitting
of state-space models to measured input-output data corre-
sponding to an unknown dynamical system. An optimal ap-
proach to this problem requires solving a non-linear optimiza-
tion problem. A critical issue is then to have a minimal num-
ber of unknown parameters to be estimated. Thus, there has
been an active search for canonical system representations.
For multi-input multi-output systems, a number of canoni-
cal forms are known, based e.g., on the observer or controller
canonical forms or on balanced realizations [1, 2].

For the purpose of identification, an important deficiency
in all canonical representations known to date is that they re-
quire both continuously varying parameters (in ||R , say), and
discrete parameters (in a subset of |N ). The latter parameters
are extra parameters that specify the structure of the system,
such as the Kronecker indices. Since these “structural” pa-
rameters often have little physical meaning, the only way to
solve the optimization problem is to enumerate over a suffi-
cient range of structural parameter values to cover all systems
of a given order, and to perform a non-linear search over the
continuous parameters for each such choice.

The purpose of this paper is to show that the class of con-
tractive (alias passive, or bounded real) asymptotically stable
systems is covered by a minimal representation without any
structural parameters. The representation is not unique, but
for each system T

�
z � there is only a finite number of equiva-

lent descriptions (unless the system is overparametrized). Be-
cause the solutions are isolated, this does not pose a problem
for numerical optimization techniques, especially since we
start with reasonably accurate initial points. The parametriza-
tion guarantees stability of the predictor, which is an obvious
advantage. Although the contractive assumption may not be
met by the “true” system to be identified, this can always be
assured by appropriately scaling the input-output data.

The main ideas behind this parametrization are well known
to insiders; the new aspects are in the details. Assuming T

�
z �

is rational and contractive, it is known that there is a (non-
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unique) embedding of T
�
z � into an allpass (alias lossless, in-

ner or para-unitary) system by adding extra inputs and out-
puts to it. Minimal parametrizations of allpass systems are
known and are based on a factorization of the realization ma-
trix into elementary Givens rotations. The rotation angles
are the parameters of the representation. Although such em-
bedding/factorization techniques have been known for a long
time (e.g., [3–7]) and go back to classical Darlington net-
work synthesis theory, existing literature has overlooked cer-
tain minor details and either ended up with too many contin-
uous parameters, or with an additional set of discrete (struc-
tural) parameters with values ±1. We show in this paper that
the freedom in the orthogonal embedding step is sufficient to
get rid of all extra parameters.

2. STATE-SPACE PREDICTION-ERROR METHODS

Consider a linear time-invariant system with m inputs uk and
p outputs yk (column vectors), k denoting discrete time. The
objective is to find an n-th order state-space model that relates
yk and uk, based on a batch of input-output measurements.

One-step ahead prediction-error methods (PEM) are based
on the optimal (in the mean square sense) prediction of yk by
ŷk
�
θ � from past measurements {yk−s}∞

s � 1 � {uk−s}∞
s � 0, where

the parameter vector θ symbolizes a given candidate model.
If the model is correct, then the prediction error εk

�
θ � : � yk −

ŷk
�
θ � is a white noise sequence, and, assuming a Gaussian

noise model, one can show that the ML estimate of θ is the
minimizing argument of the concentrated criterion function
[8]

V
�
θ ��� log det

N

∑
k � 1

εk
�
θ � εT

k
�
θ ��� (1)

Two major types of state-space models are widely used:
1. Output error models (OE), which postulate a purely de-
terministic input-output relation corrupted by additive white
measurement noise ek. Thus yk � ŷk

�
θ �	� ek, εk

�
θ �
� ek, and

the predictor model is simply

xk � 1 � Axk � Buk

ŷk
�
θ ��� Cxk � Duk � (2)

where θ represents the unknown parameters in the system ma-
trices A � B � C and D.
2. Kalman predictor models (KP), which allow output mea-
surements that are corrupted by several noise and disturbance
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sources, some of which may have passed through parts of the
system dynamics. A suitable state-space model is

xk � 1 � Axk � Buk � Kek

yk � Cxk � Duk � ek � (3)

where ek is the innovation process and K is the (stationary)
Kalman gain, to be estimated along with

�
A � B � C � D � . If the

model is correct, the innovations coincide with the one-step
ahead prediction errors, i.e., yk � ŷk

�
θ �� ek, εk

�
θ ��� ek. Sub-

stitution in (3) leads to the predictor model

xk � 1 � Ãxk � B̃uk � Kyk

ŷk
�
θ ��� Cxk � Duk

(4)

where Ã � A−KC, B̃ � B−KD, and θ represents the unknown
parameters of Ã � B̃ � C � D and K.

For both models, an implementation of the PEM (1) re-
quires a non-linear multidimensional optimization. Reason-
ably accurate initial estimates can efficiently be obtained by
subspace model identification techniques such as N4SID [9].

3. OUTPUT-ERROR MODEL PARAMETRIZATION

Parametrization of an OE structure (2) is equivalent to para-
metrizing a linear filter without any special constraints on the
involved system matrices. Our proposed technique ensures
stability as well, but it also imposes the additional property
that the predictor is contractive (or passive). A discrete-time
system T

�
z � is called contractive if � T � ∞ ≤ 1, where � T � ∞ �

supu∈ � 2 � T ∗ u ����� u � . T
�
z � is lossless if T

�
z � T∗ � z̄ −1 ��� I,

T∗ � z̄ −1 � T � z ��� I. In essence, the passivity property puts a
bound on the gain of the predictor. This is sometimes an un-
desirable restriction and may require a scaling of the output
vector so that the resulting scaled system is passive.

For −1 ≤ s ≤ 1, c ��� 1 − s2, and integers n � m � p, define the
plane rotations

Qi j
�
s ���

������
i n � j

I
c s

I
−s c

I

������� ∈ ||R  n � m � p ! ×  n � m � p ! (5)

Zi j
�
s �"�

������
n � i n � p � j

In

c s
I

−s c
I

������� ∈ ||R  n � p � m ! ×  n � p � m !
(6)

Also define permutations Π1 # n � 1 and ΠD by

Π1 # n � 1

������
x1...

xn � 1
xn � 2...

������� �
��������

x2...
xn � 1
x1

xn � 2...

��������� � ΠD � �� In

0 Ip

Im 0

�� � (7)
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Figure 1. Cascade parametrization of a rational stable con-

tractive MIMO system.

Theorem 1. There is a minimal continuous parametriza-
tion with n

�
m � p �.� pm bounded coefficients which covers

the set of all rational stable contractive systems with m in-
puts, p outputs and n states.

In particular, every such system may be specified in terms
of two matrices S  1 ! : n×

�
m � p � , S  2 ! : p×m with entries −1 ≤

s  · !i j ≤ 1 as T
�
z ��� D � C

�
I − Az � −1zB where/ n m

n A B
p C D 0 � 1 In � p 0  n � p ! ×m 2 Zp #m · · ·Z12Z11 (8)

·ΠD · Qn #m � p · · ·Q12Q11 · Π1 # n � 1

/
In � m

0p×  n � m ! 0
for Qi j : � Qi j

�
s  1 !i j � � Zi j : � Zi j

�
s  2 !i j � . The parametrization is

not unique, but for strictly contractive systems which are con-
trollable via the first input, only a finite (discrete) set of para-
meter matrices lead to the same T

�
z � .

The structure of this parametrization is perhaps better un-
derstood from figure 1, which shows the state space mapping/

xk � 1
yk 0 � /

A B
C D 0 / xk

uk 0
in terms of the factorization (8). The proof is in three steps.

Step 1: Lossless embedding

Assume that T
�
z � is specified in terms of a minimal realiza-

tion
�
A � B � C � D � with A ∈ ||R n # n, B ∈ ||R n #m, C ∈ ||R p # n, D ∈

||R p #m. Step 1 is to find an invertible state transformation R,
and state matrices B2, D12 such that

ΣΣΣ1 � /
R−1

I 0 / n m p

n A B B2
p C D D12 0 �� R

I
I

�� (9)
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is isometric: ΣΣΣ1ΣΣΣ∗
1 � I, so that the corresponding transfer

function Σ1
�
z � is (partially) lossless and embeds T

�
z � . Defin-

ing M � RR∗, this is equivalent to solving

AMA∗ � BB∗ � B2B∗
2 � M

AMC∗ � BD∗ � B2D∗
12 � 0

CMC∗ � DD∗ � D12D∗
12 � I � (10)

Under the conditions of theorem 1, the bounded real lemma
(see [6, 10]) claims that solutions M 3 0 exist, and that for
each solution I − DD∗ −CMC∗ ≥ 0 ( 3 0 holds if T is strictly
contractive). M is found as the solution of a discrete alge-
braic Riccati equation. It is not unique but there are at most
2n−1 isolated solutions. The non-uniqueness has to do with
the choice of the spectral factor of I − T

�
z � T∗ � z̄ −1 � .

Take any solution M. Then D12 and B2 follow from

D12D∗
12 � I − DD∗ −CMC∗

B2 � −
�
AMC∗ � BD∗ � D†

12
(11)

where
�
· � † denotes the pseudo-inverse. D12 is a square root

of a positive semidefinite matrix. We choose D12 to be lower
triangular with diag

�
D12 � ≥ 0. (This aspect is new in compar-

ison with [7].) If T is strictly contractive, then for the chosen
M this D12 is unique and diag

�
D12 �43 0, otherwise D12D∗

12
might be singular with a continuum of suitable factors.

Step 2: Transformation into Hessenberg form

Suppose at this point that we have

ΣΣΣ1 � :

/ n m p

n A B B2
p C D D12 0

where ΣΣΣ1ΣΣΣ∗
1 � I, D12 is lower triangular and diag

�
D12 � ≥ 0.

Denote by b1 the first column of B. Step 2 is to find a unitary
state transformation Q such that

1 A 5 b 51 2 : � Q 1 A b1 2 / Q∗

1 0 � 0

is in lower Hessenberg form. We omit a description of this
(standard) procedure. Some freedom is left; we can use it to
guarantee that all entries on the super-diagonal are nonneg-
ative (a “positive lower Hessenberg” form). It can be shown
that the entries of the superdiagonal of 1A 5 b 51 2 are strictly pos-
itive and Q is unique if and only if the system is controllable
via its first input. Without this condition, there might exist a
continuum of suitable Q.

Step 3: Factorization of ΣΣΣ1

Suppose at this point that we have an embedding ΣΣΣ1, isomet-
ric, in the required positive Hessenberg form, and with D12

lower triangular with nonnegative main diagonal. The final
step is to factor ΣΣΣ1 into elementary Givens rotations, produc-
ing the actual parameters of the state space model. It suffices
for our purposes to consider rotations of the form

q
�
s ��� /

c s
−s c 0 � c � � 1 − s2 � −1 ≤ s ≤ 1 �

For ease of description, we move column 1 of ΣΣΣ1 behind
column n � 1, giving

Φ � ΣΣΣ1Π∗
1 # n � 1 �

p

0

p

n

n m � :

/ n m p

n A B B2
p C D D12 0

where the permutation Π1 # n � 1 is defined in (7). (Note that we
redefined A � B � · · · for ease of notation.) Subsequently, we ap-
ply a sequence of rotations to the columns of Φ to reduce it
to a submatrix of the identity matrix, taking care that A and
D12 remain lower triangular with nonnegative diagonal en-
tries throughout the transformations.
• Apply a Givens rotation q∗

11 �61 cs −s
c 2 to columns 1 and n � 1

of Φ, to cancel b11 against a11, i.e., 1 a11 b11 2 q∗
11 �71 a 511 0 2 .

This rotation is specified by

s � b11
�
a2

11 � b2
11 � −1 8 2 � c � � 1 − s2 �

(If both a11 � 0 and b11 � 0, then we may select any s in the
range 1 −1 � 1 2 .) Because a11 ≥ 0, c ≥ 0 and sign

�
s ��� sign

�
b11 � ,

we have a 511 ≥ 0, so that the positivity property of the main
diagonal of A is invariant.
• In the same way, use the transformed a11 to zero all entries
of the top row of 1 B B2 2 . This defines a sequence of Givens
rotations q∗

12 � · · · � q∗
1 #m � p which are applied in turn to Φ. Be-

cause Φ is isometric, the norm of each row is 1. This property
is retained by the rotations, so that after the transformations
we must have a11 ��� 1.
• It is clear that A remains lower triangular during the rota-
tions. We have to show that D12 also remains lower triangu-
lar, with nonnegative main diagonal, and that the first column
of C is zero. This nontrivial fact follows from the orthonor-
mality of the rows of Φ, which is invariant under the trans-
formations. Indeed, after the first row of B has been zeroed,
a11 3 0 because the realization is controllable. After

�
B2 � 11

has been zeroed, we have for the transformed Φ,

p

row 1: 000

0row n � 1:

n m

(12)

Since the rows are orthonormal, the first entry of the n � 1-st
row, the transformed c11, must be zero at this point. Hence,
subsequent rotations of the first column and columns 2 to p of1 B2

D12 2 do not destroy the zeros on the n � 1-st row. The same
holds for rows n � 2 � · · ·, so that D12 stays lower triangular
while B2 is made zero. The fact that

�
D12 � 11 ≥ 0 after rota-

tion q1 #m � 1 follows directly from the following lemma:
Suppose 1 a b 2 1 cs −s

c 2 �91 0 r 2 where b ≥ 0, c � � 1 − s2 ≥ 0.
Then r ≥ 0.

Thus, diag
�
D12 � ≥ 0 is invariant under the transformations.

• At this point, we have obtained

ΣΣΣ1Π∗
1 # n � 1Q∗

11 · · ·Q∗
1 #m � p �

pn m

p

0 0
0

0

1
0

n
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where each Qi j is an embedding of qi j, as defined in (5). The
zeroing of the second through the n-th row of 1B B2 2 proceeds
similarly. This gives

Φ 5 � ΣΣΣ1Π∗
1 # n � 1Q∗

11Q∗
12 · · ·Q∗

n #m � p � / n m p

n I 0 0
p 0 D 5 D 512 0 (13)

where D 512 is lower triangular with nonnegative main diago-
nal. In similar ways, we now use the main diagonal entries
of D 512 to zero the entries of D 5 . As before, this can be done
by Givens rotations z∗

11 � · · ·, maintaining the positivity of these
diagonal entries at all times. In the end, we obtain

Φ 5 Π∗
DZ∗

11Z∗
12 · · ·Z∗

pm �:1 In � p 0 2
where each Zi j is an embedding of zi j as defined in (6). Con-
versely, after substituting (13) and inverting all rotations, we
have a factorization for ΣΣΣ1. Since T

�
z � is specified by the first

n � m columns of ΣΣΣ1, it follows that equation (8) holds. ;
4. KALMAN PREDICTOR PARAMETRIZATION

Consider the KP model (4). The model takes uk and yk as
inputs and delivers the optimal one-step ahead predictor ŷk

as output. However, yk does not appear in the measurement
equation of (4). Thus, a slightly modified parametrization
strategy is necessary for this case. The system matrix describ-
ing the KP model takes the form

T � / n m p

n Ã B̃ K
p C D 0 0 � (14)

If we scale the input-output data such that T is (strictly) con-
tractive, then a parametrization of T may be obtained as in
theorem 1 (assuming Ã is stable). However, that parame-
trization is not minimal, since we already know that the (2,3)
block of T should be equal to zero (in fact the problem is ill-
defined without this constraint). The following parametriza-
tion is minimal and ensures that the (2,3) block is zero.

Define Qi j and Zi j as in (5), except that the Givens rotations
are embedded in matrices of size n � m � 2p. Also define

Π̂D � �� In � m

0 Ip

Ip 0

�� � Π̃D � ���� In

0 Ip

Im 0
Ip

� ���
Theorem 2. There is a minimal continuous parametriza-
tion with n

�
m � 2p �	� pm bounded coefficients, which covers

the set of all frational stable contractive Kalman predictors
(4) with m inputs, p outputs and n states.

In particular, every such system may be specified (up to
state equivalence) in terms of two matrices S  1 ! : n×

�
m � 2p � ,

S  2 ! : p × m with entries −1 ≤ s  · !i j ≤ 1 as/ n m p

n Ã B̃ K
p C D 0 0 �61 In � p 0  n � p ! ×  m � p !<2 Zp #m · · ·Z12Z11 (15)

·Π̃D · Qn #m � 2p · · ·Q12Q11 · Π̂DΠ1 # n � 1

/
In � m � p

0p×  n � m � p ! 0

...
ŷ1 & k|k−1

ŷp & k|k−1

S $ 2 %
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Figure 2. Kalman filter parametrization.

for Qi j : � Qi j
�
s  1 !i j � � Zi j : � Zi j

�
s  2 !i j � . The parametrization is

not unique, but for strictly contractive systems which are con-
trollable via the first input, only a finite (discrete) set of para-
meter matrices lead to state-equivalent systems.

The proof is mostly the same as the proof of theorem 1 and
omitted for brevity. The structure of this parametrization is
depicted in figure 2.
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