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The lossless embedding problem, also known as the Darlington synthesis or unitary extension problem, considers
the extension of a given contractive system to become the partial input-output operator of a lossless system. In
the paper, the embedding problem is solved for discrete-time time-varying systems with finite but possibly time-
varying state dimensions, for the strictly contractive as well as the boundary case. The construction is donein a
state space context and gives rise to atime-varying Riccati difference equation which is shown to have a closed-
form solution. As a corollary, a discrete-time Bounded Real Lemma is formulated, linking contractiveness of an
input-output operator to conditions on its state realization.
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1. INTRODUCTION

In aHilbert space setting, a bounded discrete-time linear time-varying system is specified by itsinput-output map-
ping: abounded operator T : ¢! - ¢, where £4" and ¢}’ are certain generalized ¢, sequences. The lossless em-
bedding problem which we study is, given a causal input-output operator T, to find a minimal extension of this
system by adding more inputs and outputs to it such that the resulting system 2,
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islossdess: =5 = |, 33" =1, and has T asits partial input-output operator when the extra inputs are forced to
zero: T = Z13. The extension should be minimal in the sense that only a minimal number of inputs and outputs are
added, and also the degree of the resulting system should not be increased. The solution of the embedding problem
inherently involves the (spectral) factorization of 555 = | =TT and of 1,57, = I - TT" Hence, a necessary
condition for the existence of alossless embedding isthat T isacontractive system: || T|| < 1.

We will solve the lossless embedding problem for contractive time-varying systemsin a state space context, under
the assumption that the number of states of T isfinite at any point in time. While it is clear that contractivity isa
necessary condition for the existence of an embedding, we will show in the sequel that strict contractivity is also
sufficient to construct asolution when T is of locally finite degree. Thisresult has been reportedin condensed form
in[VD2]. If T is contractive but not strictly contractive, then we need an extra condition to be satisfied in order
to construct an embedding: the range of the Hankel operator associated with T should be closed. Not al systems
havethisproperty. Thisisreminiscent of the LTI infinite-dimensional case, whereitisknownthat not all contractive
systems have an embedding, see[D2].
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Thelossless embedding problem is known under various namesin anumber of fields: in mathematicsasinner dila-
tionsor asthe unitary extension problem, in control asthe Bounded Real Lemma (BRL), anditislargely equivalent
to the computation of aspectral factor of (I —=T"T). Thereare many applicationsof this problem. In network theory,
the classical applicationisDarlington synthesis, which providesa structured way to construct arealization of apas-
sive system using lossless componentsonly. Once X isobtained, it can be factored into variouskinds of “ladder” or
“lattice” cascaderealizationsconsisting of losslessdegree-1 sections[V D3], similarto [DD1, D1] for time-invariant
systems. This provides one of the most stable types of realization of transfer functions, with respect to parameter
variationsand noise sensitivity. Particular applications could be switched multi-ratefilter banks, wherethe switches
provide a time-varying state dimension, and implementations of non-uniformly sampled systems. In control, the
BRL relates the contractivity of a system to properties of its state space realization [AV, AHD, V1], which has ap-
plications in H. optimal control and sensitivity minimization. There is a close connection between the BRL and
certain Riccati equations, and thereis growing interest in extensions of resultsto time-varying systems. Reference
meaterial on Riccati equationsis contained in the book [BLW].

Inthepresent paper, the classical time-invariant theory isextended to thetime-varying context. We describeacausal
linear time-varying system by a bounded upper operator

0 T
mapping input sequencesin £, u=1[--- U-1 Ugp Uy ---],to corresponding output sequencesy viay = uT. Thei-th

row of T contains the impulse response of the system for an impulse at time i; causality implies that the impulse
response s zero beforetimei, hence T is upper triangular. The entries T of T are matrices; the number of rows of
Tij correspondsto the number of inputs of the system at timeinstant i, while the number of columns of Tj; isequal to
the number of outputs of the system at time instant j. These numbers are not necessarily constant. In fact, we will
show in this paper that the concept of time-varying state dimensions (which is necessary for minimal realizations)
forces one to adopt the concept of time-varying input-output dimensions, too. A physical interpretation is that the
system contains switchesthat switch on or off certain inputs, outputs, or states at certain times. Time-varying input-
output dimensionsal so occur in multirate sampled data systems, and in time-varying Hankel-norm model reduction
[DV]. With the concept of time-varying input and output dimensions, it is also possible to incorporate finite upper
triangular matrices T into the framework of time-varying systems, by choosing the dimensions of Tjj to be zero
for i, j outside a certain interval. This leads to new computational algorithms for certain types of linear algebra
problems[VD3, VD4].

We assume that the upper input-output operators T admit a state space realization of the form
Xir1 = XA +UB; T:[A- G ]
Yi = XG+ub; ' Bi Di
in which the matrices { Aj, Bj,Ci, Di} are uniformly bounded and have finite (but not necessarily constant) dimen-
sions. For agiven system T with realization { T;}, we seek to determine alossless embedding system 3 with state

spaceredlization{Z;} of theform
A G | G R
Bi Di | Di; | (12)
|

R
Si= |
I Boi D21 Doy

Z; containsthe given realization T, suitably state space transformed by some boundedly invertible R;, so that 213
isequal to the given input-output operator T. Z isextended by matrices By, Cy, D21, D12, D2 corresponding to the
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secondary inputs and outputs. It can be shown that a system islosslessif itsrealization is unitary at all times, and
henceweimmediately obtain alosslessembedding > of T if werequireZ;ZP= |, £-%; = |. Theembedding problem
thus reduces to the problem of finding the state transformations R, and the embedding matrices By, C,, D21, D12 in
(1.2) such that ¥ is unitary. The induced set of orthonormality conditions gives rise to a set of equations whose
solution depends at each timeinstant i on the positivity of amatrix M; = R'R;, which satisfies the recursive Riccati
equation

Mit1=AMA +BB; + [AMC +BDi] (I -D/D; -C'MiC) ™ [DiB + CMIA] . (1.3

This Riccati equation is similar to that which is obtained in optimal control problems. If T is strictly contractive,
then (1.3) has a positive semidefinite solution { M; }, which can be specified explicitly in terms of the operator T
and the controllability operator of the given realization. The connectionis obtained by elaborating on the following
idea: partition T as

Ti-1,-1
0

Ti—:l,i | [ Ki Hi] (1.4)

Tii 0 E

T iscontractive only if K; is contractive, for al i in turn. Given the contractiveness of K; for somei, the conditions
for having K;.1 contractive can be specified in terms of K; and the new column of K, ;. When we assume a state
realization for T, then it turns out that we can define afinite matrix M; in terms of K; and the controllability operator
of the realization, such that the contractiveness of K; (or positivity of | —KK;) is summarized by having My = 0 for
al k<i. Given the contractivity of K;, the extra conditionsto ensure that K; 1 isalso contractive is summarized by
having M;1 =0, where M, 1 is obtained by the Riccati recursion (1.3). The explicit solution for M can be used to
give simple derivations of properties of the Riccati recursion.

We a so consider the (mathematically complicated) boundary casewhere T is contractive, but not necessarily inthe
strict sense. In that case, the inverted term in (1.3) is not necessarily bounded and the inverse has to be replaced
by a pseudo-inverse. Under the sufficient condition that the realization is uniformly observable, we show that the
modified recursion has a hermitian, positive, bounded solution { M; }, which we also give in closed form.

Section 2 introduces a convenient diagonal algebra notation for time-varying systems, which isused in section 3 to
define a diagona operator form for K; and H;. The recursive equation for M is derived in sections 4 and 5, for the
strictly contractive and the boundary case, respectively. These results are used in section 6 to solve the embedding
problem.

2. DIAGONAL ALGEBRA NOTATION

Expressions in time-varying state space theory quickly lead to an abundance of time indices. This can be avoided
by collecting state space quantities A; etc. into diagonals. The resulting ‘ diagonal algebra’ wasintroduced in [AD]
and refined in [ADD, VD1, DD2, DV]. We adopt the notation from the | atter paper.

2.1. Spaces

Our theory will take place in spaces of non-uniform ¢, series. The sequence N =[NiJinz (N O N ) iscalled an
index sequence. Using N, signalslive in the space of non-uniform sequences

N:---IZIN_llilElNlD./\/'gD--- ocN,

whereV; OC ™. (Thebox denotesthe position of the O-th component.) WewriteN = #(\). Thespaceefz\/ imposes
an £ norm on the series;
' = {(xON, ||x]]2 < o} .
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We will think of vectorsin the \Vj's to be row vectors, and (row) sequencesin N to have entriesin V. Thus, the
action of matricesor operators happensat theright of the argument, asin aA, whichistheresult of the application of
the operator A to the sequencea. Finite vectors can be covered in many ways by taking the dimensions of all except
afinite number of the \Vj’s equal to zero. The following classes of bounded operators £31 - £ are defined:

X(M,N): the space of bounded operators 4! — 3. An operator T [ X (M, ) has amatrix representation
T = [Tij]%, with Tij O M; x NVj. We usually drop the indexing spaces as relaxation of notation.

UM,N), LM,N), D(M,N) : the space of bounded upper triangular, lower triangular, and diagonal opera-
tors ¢! — ¢4, respectively.

Our input-output operators T will be operatorsin X. Causal input-output operators are in addition upper. Next,
shifted spaces and the shift operator are defined:

N® - the k-th shift rightwardsin the series of spaces, asin V() =[--- N, No,++].

Z: thecausal bilateral shift operator Z: £ — £, defined by (x2)i = Xi-1.

A® - the*diagonal’ shift of an operator A 0 X’ in the South-East direction: A = (Z4)PAZ.

Ty ODMY, N): the k-th diagonal above the main (0-th) diagonal of an operator T O 4/(M,N). T can be
formally decomposed into a sum of shifted diagonal operatorsasin T = S ZkT[k] .

2.2. Realizations

Time-varying state realizations of thetype (1.1) can be rewrittenin global operator form by assembling the matrices

{A}, {Bi} etc. into diagonal operators A = diag(A)), etc., acting on sequencesu = [--- Up Uy ---] 0%, y=
[ Yoyr -] Defz‘f,x=[--- Xo X1 ] Dég. Together, A,B,C,D definearedlization T of T as
xZ1 = xA+uB A C _
_ . _ (B-D ) ]
y — xC4uD T [ B D ] D (BxM) - (BUYxN) (2.1

This definition constitutes the same set of time-varying state equationsasin (1.1), but now written in an index-free
form and acting on sequences. T isarealization of T if asolution of (2.1) satisfiesuT =y, that is, if

0, k<O 0, i> ]
T[k] = D, k=0 or T” = Di; i = J (22)
BWAKD...ADC, k>0 BiA+1--Aj-Cj, i<]j.

An important notion in this context is strict stability of arealization. Let £4 be the spectral radius of the operator
AZ: Up = limn_ || (AZ)"||/". We shall say that the redlization (2.1) is strictly stable if £4 < 1.1 In that case, the
operator (I - AZ)™! exists as a bounded operator and by substitution in (2.1) one obtains

T=D+Bz(I-A2)"'C. (2.3)

If an upper operator has a state space realization with state space sequences B where each B; has finite dimension,
then we shall say that the operator islocally finite. We will assume throughout the paper that al input-output oper-
ators have this property.

An equivalent realization is found by applying a state transformation X = XR on the state sequence x of the system,
where RO D(B, B) isabounded and boundedly invertible diagonal operator. Therealization T isthen transformed

w e[ el ]

LSince (AZ)" = Z"AM ... AR A | we have £a = limp_ e [[AM - AR AD || YM = limy_ o SUpy || Aken - A-2Ak-1 ||¥/", which leads to the
more usua definition of exponential stability for time-varying realizations.
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Itis easy to see that ERA[R(_l)]-l = £, hence that strict stability is preserved under the transformation.

In the question whether there exist state transformations such that the resulting redlization is in input normal form
(A"A+ BB = 1) or output normal form (AA”+ CC"= 1), the following Lyapunov equations arise:

ANA+BB=AY  rep. AASYATicct=A

For strictly stable realizations (£ < 1), bounded solutions exist and are unique, A¢ =0, Ay =0, and are given by
the uniformly converging sums

Ae = Sko (A{k}) (BDB)(kH)A{k} where Al = AR ... AL AIOH — |

No = 3o (AK)(BEB)MDAK,  where K = A A, A0, @49

¢ iscalled the controllabiliy Gramian, /A, is called the observability Gramian. A readlization is called controllable
if Ac > 0and uniformly controllableif Ac isuniformly positive definite, Ac > 0, so that it isinvertible. Similarly,
arealization is called observable if Aq > 0 and uniformly observable if Ay > 0. A realization is minimal if it is
both controllable and observable. If T admits alocally finite realization, then it is always possible to choose this
realization to be either uniformly controllable or uniformly observable, although it may not be possibleto have both
[VD1, V2]. A uniformly controllable realization can be transformed into a realization in input normal form by a
state transformation R given by A. = R'R, and a uniformly observable realization can be transformed to output
normal form by choosing R afactor of AZ2.

If astrictly stablerealization T isunitary: TET =1, TTH = 1, then the corresponding input-output operator T [/
islossless (or inner): TET =1, TTP=1. A dightly more general version of this, not using normalized realizations,
is given by the following lemma:

LemmaZ2.1. LetT OU bean input-output operator with strictly stable state realization T. Then
-1
MOD: TD[M I]T:[M I] O TOT =1

-1)
MOD: T[M( I]TD:{M I] 0 ToT =1

PROOF Inthefirst relation to prove, the assumption isthat thereisan M O D such that
AMA+BB=MY; AMC+BD=0; C'MC+DD=1.

Note that thefirst equation isthe Lyapunov equation, so that M isin fact the controllability Gramian A¢ of T. Using
these equations, we derive that

I-ToT = 1 - [D+BZ( AZ) 10] [D+BZ( AZ) 10]
= | -D'D-CcHi-2"A%"1z"8"D - D"BZ(1-AZ)IC
-CH1-Z"A%1ZBMBZ(1-AZ)1C
= C™C + CH1-Z"AY" 1ZDADMC + C'MAZ(1-AZ2)IC -

-CH1=-Z"AD 1 Z5MED - ATMAY Z (1 -AZ)IC
= cH —zDAD) L —zDAE5|v| | -AZ) + Z"ATM(1 - AZ) +
| -ZPADMAZ - ZHMY - ATVA)Z }( -AZ)lc
= 0.
The second relation follows likewise. m|



If an input-output operator T 0/ isinvertible, and the inverse T™ 0/ (T is called outer), then D is boundedly
invertible and arealization T* of T~* is obtained by rewriting (2.1) as

{xZ‘l = x(A-CcDB) + yD™'B A-CDB -CcD™!

u = -xCD! + yD1 = D'B D1 (25)

2.3. Hilbert-Schmidt spaces

In the analysis of time-varying systems, we frequently need to apply input sequences that are zero up to, or after
apointiintime, fori =---,-1,0,1,---inturn. To apply an input-output operator to all such sequencesin asingle
expression, it is convenient to act on a stack of £»-sequences. Thus let

M ={u= ||, u0&": ullas= Y llull3 <w}.
Uz

Xg"‘ is a Hilbert-Schmidt space, with respect to the HS inner product
[A, Bljs = trace AB". (2.6)

We will aso need Hilbert-Schmidt spaces 4>, £, D, which are subspaces of > and consist of those elements of
U, L, D, respectively, for which the HS norm is bounded.

Forud XM, T OX(M,N), theexpressiony = uT iswell defined, and givesy O Xé\f. Thei-throw y; of y satisfies
yi=uT0O Efz‘f. Theelementsof U, contain all £, sequencesthat are zero before pointi intime, for all i, and likewise,
we will use the space £,Z to obtain all sequences that are zero from point i on, for al i. We define Py, asthe
projection operator of X2 onto 4z, Po asthe projection operator of X, onto Dy, and P, asthe projection operator
of X, onto £,Z7L.

Among al operators [X2 — X>], we will only consider those that are left D-invariant: y=uT O Dy = (Du)T, for
all D O D. Left D-invariant operators essentially treat each row of u [0 x> independently. Operatorsin X are left
D-invariant, and so are the above-defined projection operators.

2.4. Diagonal expansions

Thereis an isomorphism between elements of X, and the space £2(D) of £»-sequences of diagonals. In particular,
when we write u 0 X, as asum of its diagonals,

Uu=- -+ U[0]+ZU[1]+ZZU[2]+ = ---+u[0]+u[(1_]l)Z+ UEZ_]Z)ZZ‘F T
we can associate to u the sequence
. -1 -2
=[- upq “[(1]) Ufz]) -] 042(D).

We call (0 the diagonal expansion of u O X,. Left D-invariant bounded operators [X> — X»] have a convenient
matrix representation (tensor representation) in terms of the diagonal expansion. For example, for T [ I/, we can
writey = uT < §= 0T, where

@ -1

(-1)

i o T T

T= To Ty 2.7)
T(_l)

0]

The entriesin this matrix representation are themselves diagonals.
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3. PRELIMINARY RELATIONS

Theanalysisof the state space structure needed to represent an input-output operator T [/ isbased on the properties
of an operator mapping ‘past’ inputs (inputsin £,Z2) to ‘future’ outputs (the part of outputsin ¢4>) and which we
shall call the corresponding Hankel operator. Other operators between subspaces of x> will play animportant role
aswell. Using the projection operators defined in the previous section, the action of an input-output mapping T O U
onaninput u 0 £,Z* can be broken down into a few operators on a reduced domain and range. Thus, define the
operators Hy, Kt and Vi in the following way:

Hr @ L7270 - o, UHT = Py, (UT)
Kt: Ezz_l - ,sz_l, UKt = Pﬁzz-l(uT)
Vt: Ezz_l - Dy, uvT = Po(UT) .

For ud £,Z* wehavethat uT = uKt + uHt. Wecall Hr the Hankel operator of T: itisthe map of inputsin £,Z72
to the part in U of the corresponding outputs, and plays a crucia role in realization theory [VD1, V2]. Ky can be
called a‘past Toeplitz' operator associated to T. Notethat Vi isafurther restriction of Hr.

We will define the one-sided diagonal expansions of signalsuin £,Z 1 andyinif; as
= 2 -
u = [ U[_l] u[_z] o ] 0 82 (D) )
2 (-1)

Induced by the isomorphy, the definitions

Mg Y Yy 106(D).

y=uHr O U o g = OHrOg(D)
y=uKy 0O Ezz_l o y = 0KrO f;('D)
D=uy O D, - D = V% OD,

lead to diagonal matrix representations of Ht, Ky, and Vr as

-1 (2 6N
T T[(le) o e T[Oi) 2) 0
. T2 Ty e = T2 & — T[(l] T[E)] 3.1)
T = , ; T=] 1y | T = T[(l) T[(z) T . 3

T3

Note that these are (mirrored) submatricesof T in (2.7). Taking thei-th entry of each diagonal gives back the (mir-
rored) submatricesK;, H; of T asdefinedin (1.4).

Connected to a state realization, we can distinguish controllability and observability operators
B

B Al
C:= | g@A@AD 0= [c ACTY AAICD ], (32)

which play the same role as the corresponding operatorsin the time-invariant context. If the realization is strictly
stable, £ < 1, then CPand O are bounded operators[D; — £5(D)] and [D, — £3 (D)], andin fact, they are diagonal
expansions of [BZ(1 -AZ) 1" and (I - AZ)1C, respectively. From equation (2.4) it is seen that the controllability
and observability Gramiansare given by A¢ = C"C and A, = OOV, respectively. Itisstraightforward to verify using
(2.2) that if { A, B,C, D} isaredlization of T, then Hr admits a decomposition

Hr =CO.
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Since Vr isthefirst column of Hr, we have from equation (3.2) that

Vr=C-C, (3.3)
and from (3.2) and (3.1), it is seen that C and K satisfy the shift-invariance properties
_ B (= T 0
1) = D | o
en-[8]. ko[ 54

4. STRICTLY CONTRACTIVE SYSTEMS

As indicated in the introduction, alossless embedding of an input-output operator T [0/ is possible only if T is
at least contractive. In this section, we will explore the consequences of assuming the strict contractivity of T, to
determine sufficient conditions for an embedding to exist if T is strictly contractive. This is done in two steps.
Lemma4.4 derives ageneral relation in terms of V7 and Kt whichisadirect consequence of the strict contractivity
of T. Theorem 4.5 usesthisrel ation to show that somequantity M [ D, defined by M = C™{(1 -K+K)~1¢, ispositive,
and will give arecursion for thisM in terms of state space quantities of T. This recursion turns out to be the same
Riccati recursion as for M in the embedding problem (viz. equation (1.3)), and will prove the essential step in the
embedding problem for strictly contractive systems (section 6). Thecasewhere T iscontractive, but not necessarily
strictly contractive, is discussed in section 5.

4.1. Contractivity of an input-output operator

A left D-invariant hermitian operator A: [X, — A>] ispositive semidefinite, A= 0, if for all u O X, A, ulys=0.
This definition is equivalent to the usual definition of positivity of operatorsin Hilbert space, but now applies to
argumentsu O X>. Ais uniformly positive definite, notation A>> 0, if there exists an € > 0 such that, for all uin
Xo, WA, uls= e, ulls. Itisknown that a positive definite operator A X isuniformly positiveif and only if Ais
boundedly invertiblein X'. We will sometimes use the following form of the above definitions, which are obtained
by using the definition of the Hilbert-Schmidt inner product (2.6).

Lemmad4.l LetAO[X2 — X»] bealeft D-invariant hermitian operator. Then
A=0 = Po(uAub) =0, for all ul As,
A>0 - [O&>0:Po(uAu”) =ePo(uu), for all uld As.

PROOF [WA, ulfs = trace Po(uAu™). Because of |eft D-invariance, trace Po(uAu™) = 0 for all u 0 A, implies that

DPo(uAU)DY > 0 for al D O D: in particular, al individual entries of the diagonal Po(uAu™) must be positive

semidefinite, so that Po(uAu®) = 0. The reverseis obvious. m|

Let T bean input-output operator in /. We define T to be contractive, respectively strictly contractive, if
I-TTP20, resp. I-TTU>o0.

In the latter case, | - TT"is boundedly invertible. In this section, we will from now on focus on the case that T is

gtrictly contractive. The more general case is treated in section 5. Because of the identity | + TH(1 -TTH T =

(1-TT)itisclear that | =TT > Oimpliesthat | -TET >> 0 aso.

Lemma4.2. If T OX isstrictly contractive, then Kt and Ky are strictly contractive.

PROOF Letul £,Z7, andy = uKr. Since T is strictly contractive, we have from the above definition that

Po[u(l -KrKf) u'] Po(uu®) —Po(yy")

> Po[u(l-TTHu]
> gPo(uu)  (somee>0).
Hence K isstrictly contractive. A similar derivation holdsfor K, whichisisometrically isomorphic to K. |
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4.2. Strict contractivity in terms of a state spacerealization

The following lemmais standard. It will be used to derive a recursive relation that describes the contractivity of
@_1) in terms of that of Kr.

Lemma4.3. (Schur Complementsand Inversion Formula) Wth 1 and H, Hilbert spaces, let A: H1 — Ho,
B:Hi1 - H2, C:Ho - Hp bebounded operators, and let A and C be self-adjoint. Then

_[A B (1) C>»0
=18 ¢ ] >0 - { (2) A-BCIB > 0.

If X > 0, then
-1

[A B” ]

B C z[o - ]*[ | ](A‘BDC‘lB)‘l[I -8

0o ct -C1B
PROOF X > Oimpliesthat C > 0, so that C™! exists. The result isimmediate, from the factorization
[A BD]_[I be—lHA—be—ls OH | o]
BC | [0 I 0 cljlciB |
Lemmad.4. LetT OU beaninput-output operator. If T is strictly contractive, then
| =T Tioy =V (1 =KrKP) Vr > 0.

PROOF Since T is strictly contractive, lemma 4.2 ensures that Kt and Ké_l) are also dtrictly contractive. Using

equation (3.4), we have that

eIy - [ 1TV ik

an o . 4.1
R 1R 43

With lemma 4.3, it is seen that this expression is uniformly positive if and only if

(1) 1-K¥Kr>0
(2 1-TgTo ~ Vil =VERr (1 -KPKy) KV > 0.

Thefirst conditionis satisfied because T is strictly contractive. The second condition is equal to the result, because
of the equality | + Ky (1 -KEK7) 1K = (1 -KrKP) ™. o

Theorem 4.5. Let T OU bealocally finiteinput-output operator with state space realization { A,B,C, D}, where
AOD(B,B) isstrictly stable (¢4 < 1). If T is strictly contractive, then M 0 D(B, B), defined by

M =1 -KrKH) e, (4.2)
satisfiesthe relationsM = 0, | -D"D-C"MC > 0, and
MY = A'MA+BB + [A'MC+B™D] (I-D'D-C"MC) ™ [D'B+CMA] . (4.3)

If in addition the state space realization is uniformly controllable, then M > 0.

PrROOF If T isstrictly contractive, then M is well-defined and M > 0. With the definition of M and using the fact
that D = Tj) and V- = C -C (equation (3.3)), the uniform strict positivity of | ~D"D ~C™MC follows directly from
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lemma4.4. Therecursiverelation for M is obtained by an application of Schur’sinversion formula (lemma4.3) to
equation (4.1), which gives

e . oo oo |21 Ry (1-RORy)
[| REDRE ] _[ (|—KTDKT)‘1]+[(I—KTDKT)‘1K$VT]¢ [| VrKr (1-K7Kr) ] (4.4)
with e I I
®? = 1 =TgTo ~VrVr —VrKr (I -KrKr) KV
| -D'D-CcHMC.

The invertibility of ®2 was already shown. Inserting this expression into the definition of M1, and using the
expression for C() in (3.4), M1 is obtained as

MY C(—l)m[|_~(—1)~(—1)D]_1C(—1)_

Il
(@
&
O
—
+
~
)
—
|
i3
i
e
=7
i
)
SN——
A
b3

-1)0 -
P]c(l)

= [B" ADCD][CE;] + [B ADCD][-\[}?] }?T]

O

(R S P L T O R R

= BB+ATCA + ATCKr(I-KiKr)K7cA +
+ (BDD+AEBD[| + Ry (1-KPR) KTD] CC) o2, (DDB+CDCD[| +RI(1-RPRr) RT] CA)
= BB+AMA + (A'MC+B'D)®?(D'B+CMA).
O

The equation (4.3) for M is actually a recursive equation, which becomes apparent if we write M = diag[M;] and
takethe i-th entry of every diagonal in the equation: this produces the Riccati recursion (1.3). Theorem 4.5 claims
that for astrictly contractive system, the Riccati recursion hasa positive solution M, whichisgivenin explicit form.
This M playsacrucia role in the construction of alossless embedding, later in section 6. It aso furnishes part of
the proof of the Bounded Real Lemma.

5. CONTRACTIVE SYSTEMS: THE BOUNDARY CASE

We will now derive an equivalent of theorem 4.5 for the case where T is contractive but not necessarily strictly
contractive: | —TT">0. Whilethe mathematical derivation is more complicated now, the resulting theorem is only
dlightly altered. It will turn out that K7 is not strictly contractive, and that, instead of (I -KrKE)™, we will have
to use the pseudo-inverse of (1 —-KHKy). Mathematical complications arise because the range of (1 -KHKr) isnot
necessarily closed, so that its pseudo-inverse can be unbounded.

5.1. Schur inversion formulasfor positive semi-definite operators

Let be given some operator A on a Hilbert space H. Therange of AisR(A) = {Ax: x O H}, itsclosureisR(A),
and its nullspace is denoted by AV (A) = {x: Ax = 0}, which is a closed subspace. An orthogonal complement is
denoted by [J. The operator pseudo-inverse of A is defined as follows (following Beutler and Root [BR]).

10
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Definition 5.1.  Let H be a Hilbert space, and A be a bounded linear operator defined on 7. The linear operator
A":H _ H isapseudo-inverseof Aif and onlyif it is defined on R(A) O R (A)" (which isdensein #) and satisfies
the following conditions:

1 NEA) = RA"

2  RA) = NAT (=RA))

(3) AATX = x foral xOR(A).

Itisprovenin[BR] that (A")T = A, (ANP= (ADT, (A"A)T = ATA™ and that AT is bounded if and only if R(A) is
closed. We will also apply aresult of Douglas [D3] on majorization of operators on Hilbert spaces:

Theorem 5.2. Let A and B be bounded operators on a Hilbert space 4. The following are equivalent:

(1) AAY < A?BBY (someA >0),
(2 RA O R(B),
3 A = BC for somebounded operator Con#.

If (1)-(3) are valid, then a unique operator C exists such that

(@ [C] inf{ u: AAY<uBB"},
(b)  NA) = N(©),
(© RE 0O R@ED.

The ‘unique operator C' in thistheorem isin fact C = BYA, since also BT is uniquely defined and BTA qualifies for
C. Consequently, if AA”< BB, then this C satisfies ||C|| < 1.

Using pseudo-inverses, the Schur inversion formula (lemma 4.3) can be extended to the case where X is not uni-
formly positive.

Lemmab5.3. Wth#, and H, Hilbert spaces, let A: Hy — Ho, B:Hy1 - H2,C:Ho — H2 bebounded operators,
and let A and C be self-adjoint. Then

A B (1) cC = o
X = [ B ] >0 - (2) R(B) O R(CY?); i.e, By=C"?Bishounded,
(3) A-BB; = 0.

Lemma5.4. LetA B,C,X beasinlemma5.3. Let X =0 and write By = C/2B. Define the operator W¥:
Wi | (A= BIB,)"/2 I -BY[ 1
- | | ctz |-

Then W* is well-defined and bounded on R(X1/2). If v is some bounded operator with rangein R(X%/2), and if
vi = X7y, v, = Wiy

then v1 and v; are bounded, and ViV, = V5.

The proof of both lemmas appears as an appendix. Notethat W* # X1/2, but rather W¥ = UX'/2 on R(X1/2), where
U is some Hilbert space isometry such that U™U = I. The point isthat W* is specified in terms of A, B,C, whereas
it is hard to do so for X'/2,

5.2. Contractivity in terms of a state space realization

We are now ready to derive a solution to the embedding problem along the lines of section 4 for the case where T
is contractive, but not necessarily strictly contractive. Recall the definition of Ht and Kt of section 3.

11



Lemmab.5. LetT bean input-output operator inZ{. If T is contractive, then
| -KrKF = HrHY = 0, (5.1)

and hence Kt and K are contractive.
PROOF Letul £Z2, and put y = uT = uKy + uHt. The contractivity of T implies

Po(uu”) =Po(yy”) 2 0
= Po(ul-TTHu") =0
< Po(u[l —=KrKF- HTHTD]u =0
= Po(u[l —-KrKHu?) Po(uHTHTDuD) > 0.

Hence | —K7KY > 00n £,Z7. Kt isisometrically isomorphic to Kt and is also contractive, |

Corollary 5.6. If T isa uniformly observable realization of T, then R(KYC) O R(I - KFKt)Y2 and hence C;
defined by

C1= (1 -KPKq) 2K ¢ (5.2)
is bounded.

PROOF Apply theorem 5.2t (5.1). From | -KKY>HrHY it followsthat Hr = (1 -K1K)/2N, for some operator
N with ||N|| < 1. Taking diagonal expansions, we have that Hr = (I -KrKF)Y/2N, and with Fr = CO such that
00> 0, we obtain

Kie = Klcoo (ooH1
= KPHroY00H™?
= KH(1-KrKPY2NoH oo™
(I -K&K7)Y2¢4
where C; = KIN- OO0 is bounded. O

For C, defined in (5.2), define the operator M O D by
M=CC+CCy. (5.3)

M is bounded, and M > 0 if C™C >> 0, i.e, if the realization is uniformly controllable. This definition of M is
compatible with the definition of M in (4.2) if T is strictly contractive, viz. M = CY(1 - KyKP)~1¢, because then
CC1 = CK1 (1 -KPKr)IKEC, and | + Ky (1 -KPKT)7IKE = (1 -K7KE) ™. Thelatter relation is however not nec-
essarily valid if apseudo-inverseis used.

The following theorem subsumes theorem 4.5.

Theorem 5.7. Let T OU beaninput-output operator with a strictly stable state spacerealization { A,B,C,D}. If
T is contractive and the realization is uniformly observable, then M defined by (5.2) and (5.3) is bounded, M > 0,
and

M) = AMA+ BB + ([AMC+BD]o") - (#'[DB+CMA)) (54)

with ® = (I -D"D-C"MC)¥/2 and | -D'D -C"MC = 0. If, in addition, the state space realization is [uniformly]
controllablethenM > 0[M > Q].
PROOF The proof usesthe expressionsfor Vr, Kt and C asgiven by equations(3.3) and (3.4). Tofind an expression
for M1 put
CTOT . —UEL R
X = (1-R%n) D = | “ToTo-VeVr VeKe
-KPVr | -KPKr

12



Accordingtolemmas.5, X > 0. Lemma5.3thenimpliesthat R(KVr) O R (1 -KPKr)Y2 sothat (1 -KFKT) /2K =
C1Cisbounded. (Thisresult would also follow from corollary 5.6 because R (K:Vr) = R(KPCC) DR(KFC).) Let

o 1/2
® = [1-TgTg -V -cieitd]
[I -DD -CHCTC + cLty)C)?
(1-D'D-CMC)Y2,
The third item of lemma5.3 impliesthat | —-D"D -C"MC > 0. Put
o' I CePT 1

| | (1 -KPKy)1/2
~0(-) _ po-y | B | D'B+ClCCA
K] =Kt [ CA ] B [ KECA

wH

\Y

Then lemma 5.4 yields that the operator v; = X/2v = ¢{™ is bounded, and v, = W#v is such that viv; = Vs,
Evaluation of v, gives

Wi = | o' I CeP 1 D'B+CCCA

2= | | | (I -RPRT)1/2 KeA

_[et I C¢f [ D"B+CCA
| | | CIA
[ o"(D'B+CHVA)
B C1A ‘

Hence
[C3Ca)™ = vivi = v,
= ACIC1A+ ([B'D + ATMC|@T) - (0T[D'B + CMA])

and with CY = [ £ | wefinally obtain
MED = [ete)Y 4 ey Y

BB+ AL CA+ ATCIC1A+ ([B'D + AMC]®T) - (#T[DB + CHVA))
A"MA+ BB + ([B'D + AMC]®T) - (dT[D"B +CTMA)) .

O

Theresult of thissectionisthusarelatively simple extension of theorem 4.5, although we need the given realization
to be uniformly observable. This condition istoo strong: we only need “observability at the boundary”, but thisis
hard to express. Therecursionfor M isvery closeto (and encompasses) the expression that we have obtained before
inthestrictly contractive case. The abovetheoremwill allow the embedding theoremsin the next sectionto include
contractive systemsthat need not be strictly contractive. It aso givespart of the proof of the Bounded Real Lemma.

6. LOSSLESSEMBEDDING

In this section, we will solve the lossless embedding problem as defined in the introduction. We start with an inter-
mediate result.

Theorem 6.1. (Isometric embedding) Let T O U(M,N') be a locally finite input-output operator with strictly
stable state realization T = {A,B,C,D}. If I=TFT > 0, or | =T®T >0 and T is uniformly observable, then T has
anextension 3, DU (M XN, N),
T
2a= [ a1 ]

13



suchthat 3.5, = | and Ay, = A. Arealization for 3y is

A C A C
In= |: B, Do :| h |: —CDT(DDB-FC[MA) (] :| (6'1)
where ® = (1 -D"D -C"MC)¥/2 and M is as defined in (5.3).
PROOF Let £, be of theform
A C
. = B D (6.2)

B> Do

inwhich B, and Dy; areto be determined such that =55, = |. Using lemma2.1, thisisthe caseif thereisanM > 0
such that

AMA + BB + BB, = M
AMC + BD + BDy = 0 (6.3)
CMC + DD + DjDx; = |

We will show that M given by equation (5.3) is a positive semidefinite solution to these equations. Indeed, under
the conditions imposed on T, theorem 4.5 [theorem 5.7] ensures that this M satisfiesM =0, | —-D'D-CMC > 0
[I-D"'D-C"MC=0], and

MY = ATMA+B™B + ([AMC+BD]o!) - (¢ [DB+CMA)) , (6.4)

where ® = (1 -D'D -C"MC)¥2. With B, and Dy; asin (6.1), it immediatedly follows that equations (6.3) are
satisfied. .

In the above theorem, M can be interpreted as the controllability Gramian of 3, and sinceM = CC + chcl with C1
asin (5.2), it isseen that CECl isthe controllability Gramian of Z»;. (A more detailed analysis showsthat —C; isits
controllability operator.)

Suppose that || T|| < 1 so that | - T™T isinvertible. A result of Arveson [A], which is applicable in the present
context, claims that there is afactor 2,1 of | — THT which is outer, i.e., such that Zg% O U. We will show that our
choice for 251, as defined by the realization 2, in (6.1), isin fact outer. To this end, we will look at a possible
realization for 51, viz. (2.5),

A C ] _ [ A-CD3B, -CD3i ] 65)

2=
. [ B* D" D;iB.  Di
and will show that this realization is strictly stable: £ax < 1. In that case, we can conclude that 51 O U/.

Proposition 6.2.  Suppose || T|| < 1. Define Z3, asin (6.5) and theorem 6.1. Then £ax < 1, and Z»; isouter.
PROOF We first assert that the controllability operator of 3, is given by C* = —(1 -KPKr)1KFC. Itis sufficient

to show that the given formula of C* satisfies the recursion C*(-1) = [ C'f’ Ax ] . Indeed, with equations (3.3), (3.4),
(4.4),
Y = —(1-KPRp) ORI DD =

= ([ gokeror | Loy | o[ o) [ 52 ][4]
0 |

B _[ (I -KFKr) KA ] - [ (1 -R2Rr)1R0ec ] ®2(D"B+CMA)
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_ -®72(D'B+CHMA)
~ | —(1-KPKy)IKEC[A+ Co (DB + CTMA))
_ D318,
~ | exa-coiey) |
Thecontrollability Gramian of £3; isA* = C"Kr (1 -KPKr)2KEC, whichisbounded becausetheinverseis bounded

and CC is bounded. According to aresult of Anderson and Moore [AM, thm. 4.3] (seeaso [N]), if A* is bounded
and £a < 1,2 then £« < 1. It followsthat 35} 0114, so that T, is outer. O

Using theorem 6.1, it is straightforward to solve the |ossless embedding problem.

Theorem 6.3. (Orthogonal embedding) Let T O4/(M;1,N7) bealocallyfiniteinput-output operator with strictly
stable staterealization T = {A,B,C,D}. If =TT > 0, or | -T"T >0 and T isuniformly observable, and if there-
alization T isuniformly controllable, then the | osslessembedding problemhasa solution & 0 1/ (M1 X N1, N1 X N>)
such that Z isinner, 211 = T, 2y isouter, and = has a unitary realization £ where As is state equivalent to A. If
AOD(B,BY), then N> is specified by #(N2) = #(B) —#(BY) +#(M;).

ProoF The proof is by construction. Let £ be of the form

[ A C C
[Za Xy = B D |Dp

| Bo D2 | D

"R ] R (6.6)
s - A zb][ | ] == 5,

| I |

in which RO D(B, B) is a boundedly invertible state transformation. R, By, D12, D21, D2, are to be determined
such that Z is unitary, in which case Z isinner (lemma2.1).

First, determine M, By, D12 and hence £, asin theorem 6.1. Because T is uniformly controllable, M > 0. If we
definethe state transformation Rby M = R'R, then Risinvertible, and £, isanisometry (£L'Z/ =1). Theextension
of arectangular isometric matrix to asguare unitary matrix by adding columnsisastandard linear algebraprocedure
that alwayshasasolution. The same holdsfor diagonalsof matrices. Hence, we can extend £/, to aunitary matrix Z,
which isthe realization of aninner system Z. Theresulting dimension sequence of Z isgiven by [#(B) +#(M1) +
#(N1)], and the number of columns of each diagonal entry of Z/, is the sequence [#(B(Y) + #(N1)], hence the
number of columnsto be added isequal to #(N>) = #(B) —#(BY) +#(M1). Thisnumber is non-negative because
the columns of X/, are linearly independent. m|

One difference with the time-invariant situation is that the solution of the embedding problem givesriseto atime-
varying number of added extraoutputs if the number of states of T istime-varying (B # B(1), even if the number
of inputs and outputs of T is fixed. Another differenceis that, for the boundary case, we need both uniform con-
trollability and uniform observability in order to construct an embedding. It is known that not every time-varying
system admits such arealization, not even if it has a finite state dimension; the condition is that the range of Ht
must be closed. See[VD1, V2].

The construction used in the proof of the theorem is computational: it can be used to recursively compute the re-
alization of alossless embedding from arealization of T. The recursion runs forward in time: from My and the
realization of T at time instant k, we can compute both My ; (using recursion (1.3)) and £, the realization of Z at
instant k. Anexactinitia point for the recursion can be obtained for the special caseswhere T has zero states before
acertain point nintime (take M, to bea0x0matrix), or when T istime-invariant or periodic before point nintime,

2The actual condition in [AM] isthat (A—CD3}By,D51By) is uniformly stabilizable, but it is also shown that thisis the caseif and only if
(A, DE%Bz) isuniformly stabilizable. For this, it is sufficient that £ < 1.

15



in which case M;, is the solution of the resulting algebraic Riccati equation. In other, more general cases, we can
take M, = 0 as an approximate initial value. It can be shown that the Riccati recursion with thisinitial value does
not break down (because it is the exact initial value of arelated system, which has zero states before time instant
n and is the same as the original system after time n), and convergesto the exact solution if the systemis strictly
stable[V2]. A proof of thisis omitted for brevity.

A reformulation of theorem 6.1 and proposition 6.2 |eads to the Bounded Real Lemmawhich appearsin system and
control theory.

Theorem 6.4. (Bounded Real Lemma) Let T OU(M,N') beabounded causal locally finite input-output oper-
ator, with strictly stable state realization T = { A, B,C,D}, and A0 D(B,B(D).

e | T|| < lifandonlyif thereexists M O D(B, B), B, 0 D(N,BY), Dy O DN, N) solving

AMA + BB + BB, = MM
cC™MC + D'D + DyDy = | (6.7)
AMC + BD + BDxn = 0

withM 20, | -D'D-C"MC > 0and £, ¢p1p, < 1.
e If T isuniformly observable, then || T|| < 1if and only if (6.7) has a solution M, B;, D»; such that M = 0.

PrROOF The‘only if’ part is directly derived from theorem 6.1 and proposition 6.2. The ‘if’ part is a corollary of
theorem 6.1: given such M, it followsthat there exists an isometric embedding 3, such that 355, = TOT 4 55,55 =
|, sothat 35,551 = | =TT 2 0. If in addition D2 isinvertible and eA{D;%Bz < 1, then by proposition 6.2 we can
concludethat 25 isinvertible, sothat | -TUT > 0, i.e, || T < 1. i

7. CONCLUDING REMARKS

Many control applications give rise to the Riccati equation (1.3). Usually, the existence of a stahilizing solution is
of importance. In the context of our embedding problem, thiswould be a solution for which A-CD31B; is strictly
stable, or Z,; isouter. The uniqueness of such a solution is a standard result which is straightforward to prove.

While this paper was in review, more has become known on time-varying Riccati equations. We mention in par-
ticular the papers[N], in which detailed attention is paid to the convergence of the recursion to maximal/minimal
solutions, and [HI], where the solution of a Kalman-Szego-Popov-Yakubovich (KSPY') system of equationsis pre-
sented. The equations(6.7) can be viewed asaparticular instance of these equations. Although [HI] gives solutions
to amore general class of problems, the boundary case is not considered. A major difference with [HI] isin the
proofs of the results: whereas [HI] relies heavily on insights gained in optimal control theory, the approach taken
in this paper is more based on first principles: | -TST =335, = 1-KEKr =KE Ks,,. Theanalysisof the latter
equation directly leads to arecursion in which the given expressionsfor M, D2;, B, turn up, along with an explicit
expression for the controllability operator of the realization for 2»1. Similar analysis of Kzﬁ = (Kzﬂ)‘l leads to
the realization of the inverse, the given expression for the controllability operator, and the fact that our choice for
201 isouter.

A. APPENDIX: DERIVATION OF LEMMAS5.3AND 5.4

The contents of lemmas 5.3 and 5.4 is well known for finite matrices (see e.g., [CHM, BCHM)]) for generalized
inverse formulas involving Schur complements). The matrix caseis readily extended to operators if the operators
are assumed to have closed range. Without this condition, complications arise because the pseudo-inversesthat are
involved are unbounded operators.
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We will repeatedly use theorem 5.2 in the following form. Let X > 0 be a bounded operator on a Hilbert space H.
If visabounded operator whose rangeisin R(X), then v = Xv;, for some bounded v; O R (X") for which we can
take v; = X'v. A second fact that is used in the proof of lemma5.4 is that XTX = Pxo: the orthogonal projector
onto R(XD), with domain # [BR].

A.l. Proof of lemma5.3

Suppose first that X = 0; we show that (1), (2), (3) hold. It isimmediatethat A= 0, C= 0. The fact that R(B) O
R(CY?) isproven by showing that there exists A such that BBP< AC; Douglas' theorem thenimpliestheresult. The
proof is by contradiction. Suppose that thereis not such aA. Then there exists asequence {x, : N[O N } such that

(BB™n,Xn) = n(Cxn, %) > O. (A1)

In particular, || B, || > 0 (all n). For any un, X > 0implies
A BU Un U
(3 ) 2]
i.€., (AUn, Un) + (B™n, Un) 4 (Bun,Xn) + (CXn, Xn) = 0. Choose up = —%B[B(n. Using (A.1), we obtain

(B{%—%+%}B[5(n,xn) > 0.

Butif n> || +A|[?, thetermin bracesissmaller than—1/+/n, which givesacontradiction. Hence R (B) 0 R(CY?).
Define L = C%2 (athough L = L we will not usethis), and let By = LTB. Then B; is bounded, and B = LB; with
R(B1) OR(LY), whichimplies

N(BD O N(L). (A.2)

To prove A-BB; > 0, we will show that

x:[ A BiLY

]
LB LLD]ZO H [A .
1

B | ] >0, (A.3)
fromwhich A-B}B; > 0 follows directly by applying vectors of the form [_IBl] a. Thusfor x 0 H1 O Ho, take x of
theform

B [ X]_—l}J—XZ ] H [ N(L)fglR(L[D ]

wherex; 0N (L) and X, OR(LY). Notethat N'(L) DR(L) isdenseinHy. Then AV(BY) O N (L) impliesBix; =0,
whilex, O R(LY) impliesthat x, = L5, for some bounded x,. Using these observations, it follows that

([ BA1 BI?] |:X1‘L:‘X2:|7|:X1‘L|1‘X2:|)

(Au,u) + (BXq, U) + (BaU,Xq) + (X1,X1) + (B5X2, U) + (B1U, X2) + (X2, X2)
(AU7 U) + (B]E_k% U) + (B]_U,Xg) + (X27X2)
(Au,u) + (B, U) 4 (B1U, X5) + (%X, %)

SHEE

Hence relation (A.3) holds on a dense subset of H1 0 Hp. By continuity, it holds everywhere, and consequently
A-B[B; >0.

AV
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It remainsto provethereverseimplication: X = 0if thethree conditionsare satisfied. BecauseC = 0 adecomposition
of C asC = LL"is defined. Using this decomposition and B = LB,

| A BIL"] [1 BY][ A-BiB: |
“ | LBy LLP | L [ B, LY |-

Under the stated conditions, the operator

We [ ! ) ] [ ! BI?] [ (A-BB)Y/? | ] (A4

iswell defined, and is afactor of X such that X = WWE. Hence X = 0. O

A.2. Proof of lemma 5.4

Let X >0 have afactorization X = WW", then R(XY/?) = R(W) (by theorem 5.2). It can beinferred from Beutler
and Root [BR] that XT = WIWT = X1/2X1/2 henceif R(v) O R(XY?) = R(W), then v; and v, defined by

=

v o= X2y, R(v1) OR(X/?)
v, = W'y, R(v2) OR(WD)

are bounded, and® vV{\y = V5.
Let L=CY2 B; = LTBand put W asin (A.4), so that X = WW". Define the operator W by

e[ W[

Wewill prove that W¥ =W on R(W). Theresult will be, for abounded operator v with R(v) 0 R(XY/2) = R(W),
that Wv = Wy, so that vy := X'/?v and v, := W*v are bounded and satisfy V{V1 = V5V,. Indeed, for any v with
range in R(W) we have that the operator v; = W'v is bounded and such that v = Wv;. Hence W = W*Wv; =
WWv; = W'y, so that W* = W on R(W) if and only if

WW=WW onRWHJ.
To analyze W*W, wefirst prove that B~ B{LTL = 0. Indeed, if x 0 A/(L) then x O A/ (BY) (by equation (A.2)), and
hence both Bfx = 0 and Lx = 0. If, on the other hand, x 0 A/(L)", then LTLx = x since L'L is the projector onto
N (L)Y, and hence BfL Lx = BX.
With the definition of W* and the above result,

wiw = | (A-BBy)"? | ] [ | —||3§] [ | g ] [ | ] ] [ | BF] [ (A—BBy)Y/2 |
_ L (A—BEBl)T/Z :| [ I BEI_BELTL :| [ (A—BEB1)1/2 :|
I | LTL |
_ (A-BBy)/2(A-BLB,) Y2 ] _ [ P, ] |
LL P,

P1 and P, are projectors onto R(A~-B{B1)1/2 and R(LY), respectively. Now, using

W= [ (A-BB)Y/2 | ][ BI1 LD]

3We are careful here not to write Xtv. Although R(X) = R(X1/2), we only have that R(X) 0O R(X%/2), and hence X v can be unbounded
with R(v) OR(XY2).
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and R(B;) O R(LY), we have that

Since WW is the projector onto R (WD), and W*W is the projector onto the range at the right hand side of the
expression, this proves that W*W = W'W on R (WD), as required. Hence W* = W' on R (W), which aso implies

that W* is well-defined on R(W). i
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