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The lossless embedding problem, also known as the Darlington synthesis or unitary extension problem, considers
the extension of a given contractive system to become the partial input-output operator of a lossless system. In
the paper, the embedding problem is solved for discrete-time time-varying systems with finite but possibly time-
varying state dimensions, for the strictly contractive as well as the boundary case. The construction is done in a
state space context and gives rise to a time-varying Riccati difference equation which is shown to have a closed-
form solution. As a corollary, a discrete-time Bounded Real Lemma is formulated, linking contractiveness of an
input-output operator to conditions on its state realization.
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1. INTRODUCTION

In a Hilbert space setting, a bounded discrete-time linear time-varying system is specified by its input-output map-
ping: a bounded operator T :

���
2 →

���
2 , where

���
2 and

���
2 are certain generalized

�
2 sequences. The lossless em-

bedding problem which we study is, given a causal input-output operator T , to find a minimal extension of this
system by adding more inputs and outputs to it such that the resulting system Σ,

Σ � � Σ11 Σ12

Σ21 Σ22 �	�
is lossless: Σ∗Σ � I � ΣΣ∗ � I, and has T as its partial input-output operator when the extra inputs are forced to
zero: T � Σ11. The extension should be minimal in the sense that only a minimal number of inputs and outputs are
added, and also the degree of the resulting system should not be increased. The solution of the embedding problem
inherently involves the (spectral) factorization of Σ∗

21Σ21 � I − T∗T and of Σ12Σ∗
12 � I − TT∗. Hence, a necessary

condition for the existence of a lossless embedding is that T is a contractive system: 
 T 
 ≤ 1.

We will solve the lossless embedding problem for contractive time-varying systems in a state space context, under
the assumption that the number of states of T is finite at any point in time. While it is clear that contractivity is a
necessary condition for the existence of an embedding, we will show in the sequel that strict contractivity is also
sufficient to construct a solution when T is of locally finite degree. This result has been reported in condensed form
in [VD2]. If T is contractive but not strictly contractive, then we need an extra condition to be satisfied in order
to construct an embedding: the range of the Hankel operator associated with T should be closed. Not all systems
have this property. This is reminiscent of the LTI infinite-dimensional case, where it is known that not all contractive
systems have an embedding, see [D2].
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The lossless embedding problem is known under various names in a number of fields: in mathematics as inner dila-
tions or as the unitary extension problem, in control as the Bounded Real Lemma (BRL), and it is largely equivalent
to the computation of a spectral factor of � I −T∗T � . There are many applications of this problem. In network theory,
the classical application is Darlington synthesis, which provides a structured way to construct a realization of a pas-
sive system using lossless components only. Once Σ is obtained, it can be factored into various kinds of “ladder” or
“lattice” cascade realizations consisting of lossless degree-1 sections [VD3], similar to [DD1, D1] for time-invariant
systems. This provides one of the most stable types of realization of transfer functions, with respect to parameter
variations and noise sensitivity. Particular applications could be switched multi-rate filter banks, where the switches
provide a time-varying state dimension, and implementations of non-uniformly sampled systems. In control, the
BRL relates the contractivity of a system to properties of its state space realization [AV, AHD, V1], which has ap-
plications in  ∞ optimal control and sensitivity minimization. There is a close connection between the BRL and
certain Riccati equations, and there is growing interest in extensions of results to time-varying systems. Reference
material on Riccati equations is contained in the book [BLW].

In the present paper, the classical time-invariant theory is extended to the time-varying context. We describe a causal
linear time-varying system by a bounded upper operator

T �
��������� . . .

...
...

T−1 � −1 T−1 � 0 T−1 � 1 · · ·
T00 T01

0 T11 · · ·
. . .

����������
mapping input sequences in

�
2, u ��� · · · u−1 u0 u1 · · · � � to corresponding output sequences y via y � uT . The i-th

row of T contains the impulse response of the system for an impulse at time i; causality implies that the impulse
response is zero before time i, hence T is upper triangular. The entries Ti j of T are matrices; the number of rows of
Ti j corresponds to the number of inputs of the system at time instant i, while the number of columns of Ti j is equal to
the number of outputs of the system at time instant j. These numbers are not necessarily constant. In fact, we will
show in this paper that the concept of time-varying state dimensions (which is necessary for minimal realizations)
forces one to adopt the concept of time-varying input-output dimensions, too. A physical interpretation is that the
system contains switches that switch on or off certain inputs, outputs, or states at certain times. Time-varying input-
output dimensions also occur in multirate sampled data systems, and in time-varying Hankel-norm model reduction
[DV]. With the concept of time-varying input and output dimensions, it is also possible to incorporate finite upper
triangular matrices T into the framework of time-varying systems, by choosing the dimensions of Ti j to be zero
for i � j outside a certain interval. This leads to new computational algorithms for certain types of linear algebra
problems [VD3, VD4].

We assume that the upper input-output operators T admit a state space realization of the form

xi � 1 � xiAi � uiBi

yi � xiCi � uiDi
Ti � � Ai Ci

Bi Di � (1.1)

in which the matrices {Ai � Bi � Ci � Di} are uniformly bounded and have finite (but not necessarily constant) dimen-
sions. For a given system T with realization {Ti}, we seek to determine a lossless embedding system Σ with state
space realization {ΣΣΣ i} of the form

ΣΣΣ i � �� Ri

I
I

�� �� Ai Ci C2 � i
Bi Di D12 � i

B2 � i D21 � i D22 � i �� �
�

R−1
i � 1

I
I

�� (1.2)

ΣΣΣ i contains the given realization Ti, suitably state space transformed by some boundedly invertible Ri, so that Σ11

is equal to the given input-output operator T . ΣΣΣ is extended by matrices B2, C2, D21, D12, D22 corresponding to the
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secondary inputs and outputs. It can be shown that a system is lossless if its realization is unitary at all times, and
hence we immediately obtain a lossless embedding Σ of T if we require ΣΣΣ iΣΣΣ∗

i � I � ΣΣΣ∗
i ΣΣΣ i � I. The embedding problem

thus reduces to the problem of finding the state transformations Ri and the embedding matrices B2, C2, D21, D12 in
(1.2) such that ΣΣΣ is unitary. The induced set of orthonormality conditions gives rise to a set of equations whose
solution depends at each time instant i on the positivity of a matrix Mi � R∗

i Ri, which satisfies the recursive Riccati
equation

Mi � 1 � A∗
i MiAi � B∗

i Bi ��� A∗
i MiCi � B∗

i Di � � I − D∗
i Di −C∗

i MiCi � −1 �D∗
i Bi � C∗

i MiAi ��� (1.3)

This Riccati equation is similar to that which is obtained in optimal control problems. If T is strictly contractive,
then (1.3) has a positive semidefinite solution {Mi }, which can be specified explicitly in terms of the operator T
and the controllability operator of the given realization. The connection is obtained by elaborating on the following
idea: partition T as

T � ������ . . .
...

...
Ti−1 � i−1 Ti−1 � i · · ·

0 Tii · · ·
. . .

������� � � Ki Hi

0 Ei � (1.4)

T is contractive only if Ki is contractive, for all i in turn. Given the contractiveness of Ki for some i, the conditions
for having Ki � 1 contractive can be specified in terms of Ki and the new column of Ki � 1. When we assume a state
realization for T , then it turns out that we can define a finite matrix Mi in terms of Ki and the controllability operator
of the realization, such that the contractiveness of Ki (or positivity of I −K∗

i Ki) is summarized by having Mk ≥ 0 for
all k ≤ i. Given the contractivity of Ki, the extra conditions to ensure that Ki � 1 is also contractive is summarized by
having Mi � 1 ≥ 0, where Mi � 1 is obtained by the Riccati recursion (1.3). The explicit solution for M can be used to
give simple derivations of properties of the Riccati recursion.

We also consider the (mathematically complicated) boundary case where T is contractive, but not necessarily in the
strict sense. In that case, the inverted term in (1.3) is not necessarily bounded and the inverse has to be replaced
by a pseudo-inverse. Under the sufficient condition that the realization is uniformly observable, we show that the
modified recursion has a hermitian, positive, bounded solution {Mi }, which we also give in closed form.

Section 2 introduces a convenient diagonal algebra notation for time-varying systems, which is used in section 3 to
define a diagonal operator form for Ki and Hi. The recursive equation for M is derived in sections 4 and 5, for the
strictly contractive and the boundary case, respectively. These results are used in section 6 to solve the embedding
problem.

2. DIAGONAL ALGEBRA NOTATION

Expressions in time-varying state space theory quickly lead to an abundance of time indices. This can be avoided
by collecting state space quantities Ai etc. into diagonals. The resulting ‘diagonal algebra’ was introduced in [AD]
and refined in [ADD, VD1, DD2, DV]. We adopt the notation from the latter paper.

2.1. Spaces

Our theory will take place in spaces of non-uniform
�

2 series. The sequence N � � Ni � i∈ ZZ (Ni ∈ |N ) is called an
index sequence. Using N, signals live in the space of non-uniform sequences! � · · · ⊕

!
−1 ⊕

!
0 ⊕
!

1 ⊕
!

2 ⊕ · · · ∈ |C N �
where

!
i ∈ |C Ni . (The box denotes the position of the 0-th component.) We write N � # � ! � . The space

� �
2 imposes

an
�

2 norm on the series: � �
2 � {x ∈

! � 
 x 
 2 " ∞} �
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We will think of vectors in the
!

j’s to be row vectors, and (row) sequences in
!

to have entries in
!

j . Thus, the
action of matrices or operators happens at the right of the argument, as in aA, which is the result of the application of
the operator A to the sequence a. Finite vectors can be covered in many ways by taking the dimensions of all except
a finite number of the

!
j’s equal to zero. The following classes of bounded operators

���
2 →

���
2 are defined:# �%$ � ! � : the space of bounded operators

� �
2 →

� �
2 . An operator T ∈

# �&$ � ! � has a matrix representation
T �'� Ti j � ∞−∞, with Ti j ∈ $ i ×

!
j. We usually drop the indexing spaces as relaxation of notation.( �&$ � ! � , )*�&$ � ! � , +,�&$ � ! � : the space of bounded upper triangular, lower triangular, and diagonal opera-

tors
���

2 →
���

2 , respectively.

Our input-output operators T will be operators in
#

. Causal input-output operators are in addition upper. Next,
shifted spaces and the shift operator are defined:!.-

k / : the k-th shift rightwards in the series of spaces, as in
!.-

1 / �'� · · · ! −2
!

−1
!

0 � · · · � �
Z : the causal bilateral shift operator Z :

���
2 →

���10 1 2
2 , defined by � xZ � i � xi−1.

A
-
k / : the ‘diagonal’ shift of an operator A ∈

#
in the South-East direction: A

-
k / �3� Zk � ∗AZk �

T4 k 5 ∈ +6�%$ - k / � ! � : the k-th diagonal above the main (0-th) diagonal of an operator T ∈
( �&$ � ! � . T can be

formally decomposed into a sum of shifted diagonal operators as in T � ∑∞
k 7 0 ZkT4 k 5 �

2.2. Realizations

Time-varying state realizations of the type (1.1) can be rewritten in global operator form by assembling the matrices
{Ai}, {Bi} etc. into diagonal operators A � diag � Ai � , etc., acting on sequences u �8� · · · u0 u1 · · · � ∈ ���2 , y �� · · · y0 y1 · · · � ∈ ���2 , x �'� · · · x0 x1 · · · � ∈ �:92 . Together, A � B � C � D define a realization T of T as

xZ−1 � xA � uB
y � xC � uD

T � � A C
B D � : �%; × $<� → �=; - −1 / × ! � � (2.1)

This definition constitutes the same set of time-varying state equations as in (1.1), but now written in an index-free
form and acting on sequences. T is a realization of T if a solution of (2.1) satisfies uT � y, that is, if

T4 k 5 � >? @ 0 � k " 0
D � k � 0
B
-
k / A - k−1 / · · ·A - 1 / C � k A 0

or Ti j � >? @ 0 � i A j
Di � i � j
BiAi � 1 · · ·A j−1C j � i " j � (2.2)

An important notion in this context is strict stability of a realization. Let
�

A be the spectral radius of the operator
AZ:
�

A � limn→∞ 
B� AZ � n 
 1 C n. We shall say that the realization (2.1) is strictly stable if
�

A " 1.1 In that case, the
operator � I − AZ � −1 exists as a bounded operator and by substitution in (2.1) one obtains

T � D � BZ � I − AZ � −1C � (2.3)

If an upper operator has a state space realization with state space sequences ; where each ; i has finite dimension,
then we shall say that the operator is locally finite. We will assume throughout the paper that all input-output oper-
ators have this property.

An equivalent realization is found by applying a state transformation x̂ � xR on the state sequence x of the system,
where R ∈ +,�=; � ;�� is a bounded and boundedly invertible diagonal operator. The realization T is then transformed
to

T DE� � R
I � � A C

B D � �� F R - −1 /=G −1

I

�� �
1Since H AZ I n J ZnA 0 n 2 · · ·A 0 2 2 A 0 1 2 , we have K A J limn→∞ L A 0 n 2 · · ·A 0 2 2 A 0 1 2 L 1 M n J limn→∞ supk L Ak−n · · ·Ak−2Ak−1 L 1 M n, which leads to the

more usual definition of exponential stability for time-varying realizations.
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It is easy to see that
�

RA � R 0 −1 2 � −1 � � A, hence that strict stability is preserved under the transformation.

In the question whether there exist state transformations such that the resulting realization is in input normal form
(A∗A � B∗B � I) or output normal form (AA∗ � CC∗ � I), the following Lyapunov equations arise:

A∗ΛcA � B∗B � Λ
- −1 /
c resp. AΛ

- −1 /
o A∗ � CC∗ � Λo �

For strictly stable realizations (
�

A " 1), bounded solutions exist and are unique, Λc ≥ 0, Λo ≥ 0, and are given by
the uniformly converging sums

Λc � ∑∞
k 7 0 � A{k} � ∗ � B∗B � - k � 1 / A{k} � where A{k} � A

-
k / · · ·A - 1 / , A{0} � I,

Λo � ∑∞
k 7 0 � A 4 k 5 � ∗ � B∗B � - k � 1 / A 4 k 5 � where A

4 k 5 � A · · ·A
- −k � 1 / , A

4 0 5 � I.
(2.4)

Λc is called the controllabiliy Gramian, Λo is called the observability Gramian. A realization is called controllable
if Λc A 0 and uniformly controllable if Λc is uniformly positive definite, Λc N 0, so that it is invertible. Similarly,
a realization is called observable if Λo A 0 and uniformly observable if Λo N 0. A realization is minimal if it is
both controllable and observable. If T admits a locally finite realization, then it is always possible to choose this
realization to be either uniformly controllable or uniformly observable, although it may not be possible to have both
[VD1, V2]. A uniformly controllable realization can be transformed into a realization in input normal form by a
state transformation R given by Λc � R∗R, and a uniformly observable realization can be transformed to output
normal form by choosing R a factor of Λ−1

o .

If a strictly stable realization T is unitary: T∗T � I, TT∗ � I, then the corresponding input-output operator T ∈
(

is lossless (or inner): T∗T � I, TT∗ � I. A slightly more general version of this, not using normalized realizations,
is given by the following lemma:

Lemma 2.1. Let T ∈
(

be an input-output operator with strictly stable state realization T. Then

∃M ∈ + : T∗
�

M
I � T � � M

- −1 /
I � ⇒ T∗T � I

∃M ∈ + : T

�
M
- −1 /

I � T∗ � � M
I � ⇒ T∗T � I

PROOF In the first relation to prove, the assumption is that there is an M ∈ + such that

A∗MA � B∗B � M
- −1 / ; A∗MC � B∗D � 0; C∗MC � D∗D � I �

Note that the first equation is the Lyapunov equation, so that M is in fact the controllability Gramian Λc of T. Using
these equations, we derive that

I − T∗T � I −

F
D � BZ � I − AZ � −1C G ∗ F D � BZ � I − AZ � −1C G� I − D∗D − C∗ � I − Z∗A∗ � −1Z∗B∗D − D∗BZ � I − AZ � −1C

− C∗ � I − Z∗A∗ � −1Z∗B∗BZ � I − AZ � −1C� C∗MC � C∗ � I − Z∗A∗ � −1Z∗A∗MC � C∗MAZ � I − AZ � −1C −
− C∗ � I − Z∗A∗ � −1 Z∗ � M - −1 / − A∗MA � Z � I − AZ � −1C� C∗ � I − Z∗A∗ � −1 O � I − Z∗A∗ � M � I − AZ � � Z∗A∗M � I − AZ � �� � I − Z∗A∗ � MAZ − Z∗ � M - −1 / − A∗MA � Z P6� I − AZ � −1C� 0 �

The second relation follows likewise. Q
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If an input-output operator T ∈
(

is invertible, and the inverse T−1 ∈
(

(T is called outer), then D is boundedly
invertible and a realization T× of T−1 is obtained by rewriting (2.1) asR

xZ−1 � x � A −CD−1B � � yD−1B
u � −xCD−1 � yD−1 T× � � A −CD−1B −CD−1

D−1B D−1 � � (2.5)

2.3. Hilbert-Schmidt spaces

In the analysis of time-varying systems, we frequently need to apply input sequences that are zero up to, or after
a point i in time, for i � · · · � −1 � 0 � 1 � · · · in turn. To apply an input-output operator to all such sequences in a single
expression, it is convenient to act on a stack of

�
2-sequences. Thus let# �

2 � { u � ���� ...
u0
u1...

����� � ui ∈
� �

2 : 
 u 
 2HS � ∑ 
 ui 
 22 " ∞ } �# �
2 is a Hilbert-Schmidt space, with respect to the HS inner product

〈A � B〉HS � trace AB∗ � (2.6)

We will also need Hilbert-Schmidt spaces
(

2, ) 2, + 2 which are subspaces of
#

2 and consist of those elements of(
, ) , + , respectively, for which the HS norm is bounded.

For u ∈
# �

2 , T ∈
# �%$ � ! � , the expression y � uT is well defined, and gives y ∈

# �
2 . The i-th row yi of y satisfies

yi � uiT ∈
���

2 . The elements of
(

2 contain all
�

2 sequences that are zero before point i in time, for all i, and likewise,
we will use the space ) 2Z−1 to obtain all sequences that are zero from point i on, for all i. We define PS 2 as the
projection operator of

#
2 onto

(
2, P0 as the projection operator of

#
2 onto + 2, and P T

2Z−1 as the projection operator
of
#

2 onto ) 2Z−1.

Among all operators � # 2 →
#

2 � , we will only consider those that are left D-invariant: y � uT ⇒ Dy �3� Du � T , for
all D ∈ + . Left D-invariant operators essentially treat each row of u ∈

#
2 independently. Operators in

#
are left

D-invariant, and so are the above-defined projection operators.

2.4. Diagonal expansions

There is an isomorphism between elements of
#

2 and the space
�

2 �U+V� of
�

2-sequences of diagonals. In particular,
when we write u ∈

#
2 as a sum of its diagonals,

u � · · · � u 4 0 5 � Zu 4 1 5 � Z2u 4 2 5 � · · · � · · · � u 4 0 5 � u
- −1 /4 1 5 Z � u

- −2 /4 2 5 Z2 � · · · �
we can associate to u the sequence

ũ �3� · · · u 4 0 5 u
- −1 /4 1 5 u

- −2 /4 2 5 · · · � ∈ � 2 �U+	� �
We call ũ the diagonal expansion of u ∈

#
2. Left D-invariant bounded operators � # 2 →

#
2 � have a convenient

matrix representation (tensor representation) in terms of the diagonal expansion. For example, for T ∈
(

, we can
write y � uT ⇔ ỹ � ũT̃ , where

T̃ �
���������� . . .

...
...

T
-
1 /4 0 5 T4 1 5 T

- −1 /4 2 5 · · ·

T4 0 5 T
- −1 /4 1 5

T
- −1 /4 0 5 · · ·

. . .

� ��������� (2.7)

The entries in this matrix representation are themselves diagonals.
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3. PRELIMINARY RELATIONS

The analysis of the state space structure needed to represent an input-output operator T ∈
(

is based on the properties
of an operator mapping ‘past’ inputs (inputs in ) 2Z−1) to ‘future’ outputs (the part of outputs in

(
2) and which we

shall call the corresponding Hankel operator. Other operators between subspaces of
#

2 will play an important role
as well. Using the projection operators defined in the previous section, the action of an input-output mapping T ∈

(
on an input u ∈ ) 2Z−1 can be broken down into a few operators on a reduced domain and range. Thus, define the
operators HT , KT and VT in the following way:

HT : ) 2Z−1 →
(

2 � uHT � PS 2 � uT �
KT : ) 2Z−1 → ) 2Z−1 � uKT � P T

2Z−1 � uT �
VT : ) 2Z−1 → + 2 � uVT � P0 � uT � �

For u ∈ ) 2Z−1 we have that uT � uKT � uHT . We call HT the Hankel operator of T : it is the map of inputs in ) 2Z−1

to the part in
(

2 of the corresponding outputs, and plays a crucial role in realization theory [VD1, V2]. KT can be
called a ‘past Toeplitz’ operator associated to T . Note that VT is a further restriction of HT .

We will define the one-sided diagonal expansions of signals u in ) 2Z−1 and y in
(

2 as

ũ− � � u - 1 /4 −1 5 u
-
2 /4 −2 5 · · · � ∈

� −
2 �U+	� �

ỹ � � � y 4 0 5 y
- −1 /4 1 5 y

- −2 /4 2 5 · · · � ∈
� �

2 �U+V� �
Induced by the isomorphy, the definitions

y � uHT ∈
(

2 ⇔ ỹ � � ũ−H̃T ∈
� �

2 �=+	�
y � uKT ∈ ) 2Z−1 ⇔ ỹ− � ũ−K̃T ∈

� −
2 �U+	�

D � uVT ∈ + 2 ⇔ D � ũ−ṼT ∈ + 2

lead to diagonal matrix representations of HT , KT , and VT as

H̃T � ������� T4 1 5 T
- −1 /4 2 5 T

- −2 /4 3 5 · · ·

T4 2 5 T
- −1 /4 3 5

T4 3 5 . . .
...

�������� � ṼT � ����� T4 1 5
T4 2 5
T4 3 5

...

������ � K̃T � ������� T
-
1 /4 0 5 0

T
-
1 /4 1 5 T

-
2 /4 0 5

T
-
1 /4 2 5 T

-
2 /4 1 5 T

-
3 /4 0 5

...
...

. . .

�������� � (3.1)

Note that these are (mirrored) submatrices of T̃ in (2.7). Taking the i-th entry of each diagonal gives back the (mir-
rored) submatrices Ki, Hi of T as defined in (1.4).

Connected to a state realization, we can distinguish controllability and observability operatorsW
: � ����� B

-
1 /

B
-
2 / A - 1 /

B
-
3 / A - 2 / A - 1 /

...

������ X : � F C AC
- −1 / AA

- −1 / C - −2 / · · ·G � (3.2)

which play the same role as the corresponding operators in the time-invariant context. If the realization is strictly
stable,

�
A " 1, then

W ∗ and X are bounded operators � + 2 →
� −

2 �=+	�Y� and � + 2 →
� �

2 �U+V�Y� , and in fact, they are diagonal
expansions of � BZ � I − AZ � −1 � ∗ and � I − AZ � −1C, respectively. From equation (2.4) it is seen that the controllability
and observability Gramians are given by Λc � W ∗ W and Λo � X	X ∗, respectively. It is straightforward to verify using
(2.2) that if {A � B � C � D} is a realization of T , then H̃T admits a decomposition

H̃T � W X �
7



Since ṼT is the first column of H̃T , we have from equation (3.2) that

ṼT � W ·C � (3.3)

and from (3.2) and (3.1), it is seen that
W

and K̃T satisfy the shift-invariance propertiesW - −1 / � � BW
A �V� K̃

- −1 /
T � � T4 0 5 0

ṼT K̃T � � (3.4)

4. STRICTLY CONTRACTIVE SYSTEMS

As indicated in the introduction, a lossless embedding of an input-output operator T ∈
(

is possible only if T is
at least contractive. In this section, we will explore the consequences of assuming the strict contractivity of T , to
determine sufficient conditions for an embedding to exist if T is strictly contractive. This is done in two steps.
Lemma 4.4 derives a general relation in terms of ṼT and K̃T which is a direct consequence of the strict contractivity
of T . Theorem 4.5 uses this relation to show that some quantity M ∈ + , defined by M � W ∗ � I−K̃T K̃∗

T � −1 W , is positive,
and will give a recursion for this M in terms of state space quantities of T . This recursion turns out to be the same
Riccati recursion as for M in the embedding problem (viz. equation (1.3)), and will prove the essential step in the
embedding problem for strictly contractive systems (section 6). The case where T is contractive, but not necessarily
strictly contractive, is discussed in section 5.

4.1. Contractivity of an input-output operator

A left D-invariant hermitian operator A : � # 2 →
#

2 � is positive semidefinite, A ≥ 0, if for all u ∈
#

2, 〈uA � u〉HS ≥ 0 �
This definition is equivalent to the usual definition of positivity of operators in Hilbert space, but now applies to
arguments u ∈

#
2. A is uniformly positive definite, notation A N 0, if there exists an ε A 0 such that, for all u in#

2, 〈uA � u〉HS ≥ ε〈u � u〉HS � It is known that a positive definite operator A ∈
#

is uniformly positive if and only if A is
boundedly invertible in

#
. We will sometimes use the following form of the above definitions, which are obtained

by using the definition of the Hilbert-Schmidt inner product (2.6).

Lemma 4.1. Let A ∈ � # 2 →
#

2 � be a left D-invariant hermitian operator. Then

A ≥ 0 ⇔ P0 � uAu∗ � ≥ 0 � for all u ∈
#

2,
A N 0 ⇔ ∃ ε A 0 : P0 � uAu∗ � ≥ εP0 � uu∗ � � for all u ∈

#
2.

PROOF 〈uA � u〉HS � trace P0 � uAu∗ � . Because of left D-invariance, trace P0 � uAu∗ � ≥ 0 for all u ∈
#

2 implies that
DP0 � uAu∗ � D∗ ≥ 0 for all D ∈ + : in particular, all individual entries of the diagonal P0 � uAu∗ � must be positive
semidefinite, so that P0 � uAu∗ � ≥ 0. The reverse is obvious. Q
Let T be an input-output operator in

(
. We define T to be contractive, respectively strictly contractive, if

I − TT∗ ≥ 0 � resp. I − TT∗ N 0 �
In the latter case, I − TT∗ is boundedly invertible. In this section, we will from now on focus on the case that T is
strictly contractive. The more general case is treated in section 5. Because of the identity I � T∗ � I − TT∗ � −1T �� I − T∗T � −1 it is clear that I − TT∗ N 0 implies that I − T∗T N 0 also.

Lemma 4.2. If T ∈
#

is strictly contractive, then KT and K̃T are strictly contractive.

PROOF Let u ∈ ) 2Z−1, and y � uKT . Since T is strictly contractive, we have from the above definition that

P0 � u � I − KT K∗
T � u∗ �Z� P0 � uu∗ � − P0 � yy∗ �

≥ P0 � u � I − TT∗ � u∗ �
≥ εP0 � uu∗ � � some ε A 0 � �

Hence KT is strictly contractive. A similar derivation holds for K̃T , which is isometrically isomorphic to KT . Q
8



4.2. Strict contractivity in terms of a state space realization

The following lemma is standard. It will be used to derive a recursive relation that describes the contractivity of
K̃
- −1 /
T in terms of that of K̃T .

Lemma 4.3. (Schur Complements and Inversion Formula) With  1 and  2 Hilbert spaces, let A :  1 →  2,
B :  1 →  2, C :  2 →  2 be bounded operators, and let A and C be self-adjoint. Then

X : � � A B∗

B C � N 0 ⇔
R � 1 � C N 0� 2 � A − B∗C−1B N 0 �

If X N 0, then �
A B∗

B C � −1 � � 0 0
0 C−1 � � � I

−C−1B � � A − B∗C−1B � −1

F
I − B∗C−1 G �

PROOF X N 0 implies that C N 0, so that C−1 exists. The result is immediate, from the factorization�
A B∗

B C � � � I B∗C−1

0 I � � A − B∗C−1B 0
0 C � � I 0

C−1B I � � Q
Lemma 4.4. Let T ∈

(
be an input-output operator. If T is strictly contractive, then

I − T∗4 0 5 T4 0 5 − Ṽ∗
T � I − K̃T K̃∗

T � −1 ṼT N 0 �
PROOF Since T is strictly contractive, lemma 4.2 ensures that K̃T and K̃

- −1 /
T are also strictly contractive. Using

equation (3.4), we have that

I − K̃
- −1 / ∗
T K̃

- −1 /
T � [ I − T∗4 0 5 T4 0 5 − Ṽ∗

TṼT −Ṽ∗
T K̃T

−K̃∗
TṼT I − K̃∗

T K̃T \ � (4.1)

With lemma 4.3, it is seen that this expression is uniformly positive if and only if] � 1 � I − K̃∗
T K̃T N 0� 2 � I − T∗4 0 5 T4 0 5 − Ṽ∗

TṼT − Ṽ∗
T K̃T � I − K̃∗

T K̃T � −1 K̃∗
TṼT N 0 �

The first condition is satisfied because T is strictly contractive. The second condition is equal to the result, because
of the equality I � K̃T � I − K̃∗

T K̃T � −1 K̃∗
T �'� I − K̃T K̃∗

T � −1. Q
Theorem 4.5. Let T ∈

(
be a locally finite input-output operator with state space realization {A � B � C � D}, where

A ∈ +6�=; � ; - −1 / � is strictly stable (
�

A " 1). If T is strictly contractive, then M ∈ +,�=; � ;�� , defined by

M � W ∗ � I − K̃T K̃∗
T � −1 W � (4.2)

satisfies the relations M ≥ 0, I − D∗D −C∗MC N 0 � and

M
- −1 / � A∗MA � B∗B � � A∗MC � B∗D � � I − D∗D −C∗MC � −1 � D∗B � C∗MA � � (4.3)

If in addition the state space realization is uniformly controllable, then M N 0.

PROOF If T is strictly contractive, then M is well-defined and M ≥ 0. With the definition of M and using the fact
that D � T4 0 5 and ṼT � W ·C (equation (3.3)), the uniform strict positivity of I − D∗D −C∗MC follows directly from

9



lemma 4.4. The recursive relation for M is obtained by an application of Schur’s inversion formula (lemma 4.3) to
equation (4.1), which givesF

I − K̃
- −1 / ∗
T K̃

- −1 /
T
G −1 � � 0 � I − K̃∗

T K̃T � −1 � � � I� I−K̃∗
T K̃T � −1K̃∗

TṼT � Φ−2

F
I Ṽ∗

T K̃T � I−K̃∗
T K̃T � −1 G (4.4)

with
Φ2 � I − T∗4 0 5 T4 0 5 − Ṽ∗

T ṼT − Ṽ∗
T K̃T � I − K̃∗

T K̃T � −1K̃∗
TṼT� I − D∗D −C∗MC �

The invertibility of Φ2 was already shown. Inserting this expression into the definition of M
- −1 / , and using the

expression for
W - −1 / in (3.4), M

- −1 / is obtained as

M
- −1 / � W - −1 / ∗ F I − K̃

- −1 /
T K̃

- −1 / ∗
T
G −1 W - −1 / �� W - −1 / ∗ � I � K̃

- −1 /
T ^ I − K̃

- −1 / ∗
T K̃

- −1 /
T _ −1

K̃
- −1 / ∗
T � W - −1 /� � B∗ A∗ W ∗ � � BW

A � � � B∗ A∗ W ∗ � � T4 0 5 0
ṼT K̃T � ·

· ` � 0 0
0 � I − K̃∗

T K̃T � −1 � � � I� I−K̃∗
T K̃T � −1K̃∗

TṼT � Φ−2

F
I Ṽ∗

T K̃T � I−K̃∗
T K̃T � −1 Gba ·

�
T4 0 5 0
ṼT K̃T � ∗ �

BW
A �� B∗B � A∗ W ∗ W A � A∗ W ∗K̃T � I−K̃∗

T K̃T � −1 K̃∗
T
W

A �� ^ B∗D � A∗ W ∗

F
I � K̃T � I−K̃∗

T K̃T � −1 K̃∗
T
G W C _ · Φ−2 · ^ D∗B � C∗ W ∗

F
I � K̃∗

T � I−K̃∗
T K̃T � −1 K̃T

G W A _� B∗B � A∗MA � � A∗MC � B∗D � Φ−2 � D∗B � C∗MA � � Q
The equation (4.3) for M is actually a recursive equation, which becomes apparent if we write M � diag �Mi � and
take the i-th entry of every diagonal in the equation: this produces the Riccati recursion (1.3). Theorem 4.5 claims
that for a strictly contractive system, the Riccati recursion has a positive solution M, which is given in explicit form.
This M plays a crucial role in the construction of a lossless embedding, later in section 6. It also furnishes part of
the proof of the Bounded Real Lemma.

5. CONTRACTIVE SYSTEMS: THE BOUNDARY CASE

We will now derive an equivalent of theorem 4.5 for the case where T is contractive but not necessarily strictly
contractive: I −TT∗ ≥ 0. While the mathematical derivation is more complicated now, the resulting theorem is only
slightly altered. It will turn out that KT is not strictly contractive, and that, instead of � I − K̃T K̃∗

T � −1, we will have
to use the pseudo-inverse of � I − K̃∗

T K̃T � . Mathematical complications arise because the range of � I − K̃∗
T K̃T � is not

necessarily closed, so that its pseudo-inverse can be unbounded.

5.1. Schur inversion formulas for positive semi-definite operators

Let be given some operator A on a Hilbert space  . The range of A is cd� A �e� {Ax : x ∈  }, its closure is cd� A � ,
and its nullspace is denoted by

! � A �f� {x : Ax � 0}, which is a closed subspace. An orthogonal complement is
denoted by ⊥. The operator pseudo-inverse of A is defined as follows (following Beutler and Root [BR]).
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Definition 5.1. Let  be a Hilbert space, and A be a bounded linear operator defined on  . The linear operator
A† :  →  is a pseudo-inverse of A if and only if it is defined on cd� A � ⊕ cd� A � ⊥ (which is dense in  ) and satisfies
the following conditions: � 1 � ! � A† �g� cd� A � ⊥� 2 � cd� A† �g� ! � A � ⊥ �h� cd� A∗ �i�� 3 � AA†x � x for all x ∈ cd� A � .
It is proven in [BR] that � A† � † � A, � A† � ∗ �3� A∗ � †, � A∗A � † � A†A∗†, and that A† is bounded if and only if cd� A � is
closed. We will also apply a result of Douglas [D3] on majorization of operators on Hilbert spaces:

Theorem 5.2. Let A and B be bounded operators on a Hilbert space  . The following are equivalent:� 1 � AA∗ ≤ λ2 BB∗ (some λ A 0) �� 2 � cd� A � ⊂ cd� B � �� 3 � A � BC for some bounded operator C on  �
If � 1 � - � 3 � are valid, then a unique operator C exists such that� a � 
 C 
 � inf{µ : AA∗ ≤ µBB∗ } �� b � ! � A �g� ! � C � �� c � cd� C � ⊂ cd� B∗ � �
The ‘unique operator C’ in this theorem is in fact C � B†A, since also B† is uniquely defined and B†A qualifies for
C. Consequently, if AA∗ ≤ BB∗, then this C satisfies 
 C 
 " 1.

Using pseudo-inverses, the Schur inversion formula (lemma 4.3) can be extended to the case where X is not uni-
formly positive.

Lemma 5.3. With  1 and  2 Hilbert spaces, let A :  1 →  2, B :  1 →  2, C :  2 →  2 be bounded operators,
and let A and C be self-adjoint. Then

X : � � A B∗

B C � ≥ 0 ⇔ >? @ � 1 � C ≥ 0 �� 2 � cd� B � ⊂ cd� C1 C 2 � ; i.e., B1 � C† C 2B is bounded �� 3 � A − B∗
1B1 ≥ 0 �

Lemma 5.4. Let A � B � C � X be as in lemma 5.3. Let X ≥ 0 and write B1 � C† C 2B. Define the operator W‡:

W‡ � � � A − B∗
1B1 � † C 2

I � � I −B∗
1

I � � I
C† C 2 � �

Then W‡ is well-defined and bounded on cd� X1 C 2 � . If v is some bounded operator with range in cd� X1 C 2 � , and if

v1 � X† C 2v � v2 � W‡v

then v1 and v2 are bounded, and v∗
1v1 � v∗

2v2.

The proof of both lemmas appears as an appendix. Note that W‡ j� X† C 2, but rather W‡ � UX† C 2 on cd� X1 C 2 � , where
U is some Hilbert space isometry such that U∗U � I. The point is that W‡ is specified in terms of A � B � C, whereas
it is hard to do so for X† C 2.

5.2. Contractivity in terms of a state space realization

We are now ready to derive a solution to the embedding problem along the lines of section 4 for the case where T
is contractive, but not necessarily strictly contractive. Recall the definition of HT and KT of section 3.
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Lemma 5.5. Let T be an input-output operator in
(

. If T is contractive, then

I − KT K∗
T ≥ HT H∗

T ≥ 0 � (5.1)

and hence KT and K̃T are contractive.

PROOF Let u ∈ ) 2Z−1, and put y � uT � uKT � uHT . The contractivity of T implies

P0 � uu∗ � − P0 � yy∗ � ≥ 0
⇔ P0 � u � I − TT∗ � u∗ � ≥ 0
⇔ P0 � u � I − KT K∗

T − HTH∗
T � u∗ � ≥ 0

⇔ P0 � u � I − KT K∗
T � u∗ � ≥ P0 � uHT H∗

T u∗ � ≥ 0 �
Hence I − KT K∗

T ≥ 0 on ) 2Z−1. K̃T is isometrically isomorphic to KT and is also contractive. Q
Corollary 5.6. If T is a uniformly observable realization of T, then cd� K̃∗

T
W � ⊂ cd� I − K̃∗

T K̃T � 1 C 2 and hence
W

1

defined by W
1 �3� I − K̃∗

T K̃T � † C 2 K̃∗
T
W

(5.2)

is bounded.

PROOF Apply theorem 5.2 to (5.1). From I −KT K∗
T ≥ HT H∗

T it follows that HT �k� I −KT K∗
T � 1 C 2N, for some operator

N with 
 N 
 ≤ 1. Taking diagonal expansions, we have that H̃T �l� I − K̃T K̃∗
T � 1 C 2Ñ, and with H̃T � W X such thatX	X ∗ N 0, we obtain

K̃∗
T
W � K̃∗

T
W X	X ∗ � XmX ∗ � −1� K̃∗

T H̃T X ∗ � XmX ∗ � −1� K̃∗
T � I − K̃T K̃∗

T � 1 C 2Ñ X ∗ � XmX ∗ � −1� � I − K̃∗
T K̃T � 1 C 2 W 1

where
W

1 � K̃∗
T Ñ · X ∗ � XmX ∗ � −1 is bounded. Q

For
W

1 defined in (5.2), define the operator M ∈ + by

M � W ∗ W � W ∗
1
W

1 � (5.3)

M is bounded, and M N 0 if
W ∗ W N 0, i.e., if the realization is uniformly controllable. This definition of M is

compatible with the definition of M in (4.2) if T is strictly contractive, viz. M � W ∗ � I − K̃T K̃∗
T � −1 W , because thenW ∗

1
W

1 � W ∗K̃T � I − K̃∗
T K̃T � −1K̃∗

T
W

, and I � K̃T � I − K̃∗
T K̃T � −1K̃∗

T �3� I − K̃T K̃∗
T � −1. The latter relation is however not nec-

essarily valid if a pseudo-inverse is used.

The following theorem subsumes theorem 4.5.

Theorem 5.7. Let T ∈
(

be an input-output operator with a strictly stable state space realization {A � B � C � D}. If
T is contractive and the realization is uniformly observable, then M defined by (5.2) and (5.3) is bounded, M ≥ 0,
and

M
- −1 / � A∗MA � B∗B �on � A∗MC � B∗D � Φ† p · n Φ† �D∗B � C∗MA � p (5.4)

with Φ �.� I − D∗D −C∗MC � 1 C 2 and I − D∗D −C∗MC ≥ 0. If, in addition, the state space realization is [uniformly]
controllable then M A 0 [M N 0].

PROOF The proof uses the expressions for ṼT , K̃T and
W

as given by equations (3.3) and (3.4). To find an expression
for M

- −1 / , put

X �q� I − K̃∗
T K̃T � - −1 / � [ I − T∗4 0 5 T4 0 5 − Ṽ∗

TṼT −Ṽ∗
T K̃T

−K̃∗
TṼT I − K̃∗

T K̃T \ �
12



According to lemma 5.5, X ≥ 0. Lemma 5.3 then implies that cd� K̃∗
TṼT � ⊂ cd� I−K̃∗

T K̃T � 1 C 2 so that � I−K̃∗
T K̃T � † C 2 K̃∗

TṼT �W
1C is bounded. (This result would also follow from corollary 5.6 because cd� K̃∗

TṼT �r�scd� K̃∗
T
W

C � ⊂ cd� K̃∗
T
W � .) Let

Φ � F
I − T∗4 0 5 T4 0 5 − Ṽ∗

TṼT −C∗ W ∗
1
W

1C G 1 C 2� � I − D∗D −C∗ � W ∗ W � W ∗
1
W

1 � C� 1 C 2� � I − D∗D −C∗MC � 1 C 2 �
The third item of lemma 5.3 implies that I − D∗D −C∗MC ≥ 0. Put

W‡ � �
Φ†

I � � I C∗ W ∗
1

I � � I � I − K̃∗
T K̃T � † C 2 �

v � � K̃∗
T
W � - −1 / � K̃∗ - −1 /

T

�
BW
A � � � D∗B � C∗ W ∗ W A

K̃∗
T
W

A � �
Then lemma 5.4 yields that the operator v1 � X† C 2v � W - −1 /

1 is bounded, and v2 � W‡v is such that v∗
1v1 � v∗

2v2.
Evaluation of v2 gives

v2 � W‡v � �
Φ†

I � � I C∗ W ∗
1

I � � I � I − K̃∗
T K̃T � † C 2 � � D∗B � C∗ W ∗ W A

K̃∗
T
W

A �� �
Φ†

I � � I C∗ W ∗
1

I � � D∗B � C∗ W ∗ W AW
1A �� �

Φ† � D∗B � C∗MA �W
1A � �

Hence � W ∗
1
W

1 � - −1 / � v∗
1v1 � v∗

2v2� A∗ W ∗
1
W

1A ��n � B∗D � A∗MC � Φ† p · n Φ† �D∗B � C∗MA � p
and with

W - −1 / � F Bt
A
G we finally obtain

M
- −1 / � � W ∗ W � - −1 / � � W ∗

1
W

1 � - −1 /� B∗B � A∗ W ∗ W A � A∗ W ∗
1
W

1A � n � B∗D � A∗MC � Φ† p · n Φ† �D∗B � C∗MA � p� A∗MA � B∗B � n � B∗D � A∗MC� Φ† p · n Φ† �D∗B � C∗MA � p � Q
The result of this section is thus a relatively simple extension of theorem 4.5, although we need the given realization
to be uniformly observable. This condition is too strong: we only need “observability at the boundary”, but this is
hard to express. The recursion for M is very close to (and encompasses) the expression that we have obtained before
in the strictly contractive case. The above theorem will allow the embedding theorems in the next section to include
contractive systems that need not be strictly contractive. It also gives part of the proof of the Bounded Real Lemma.

6. LOSSLESS EMBEDDING

In this section, we will solve the lossless embedding problem as defined in the introduction. We start with an inter-
mediate result.

Theorem 6.1. (Isometric embedding) Let T ∈
( �%$ � ! � be a locally finite input-output operator with strictly

stable state realization T � {A � B � C � D}. If I − T∗T N 0, or I − T∗T ≥ 0 and T is uniformly observable, then T has
an extension Σa ∈

( �%$ ×
! � ! � ,

Σa � � T
Σ21 �
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such that Σ∗
aΣa � I and AΣa � A. A realization for Σ21 is

ΣΣΣ21 � � A C
B2 D21 � � � A C

−Φ† � D∗B � C∗MA � Φ � (6.1)

where Φ �'� I − D∗D −C∗MC � 1 C 2 and M is as defined in (5.3).

PROOF Let ΣΣΣa be of the form

ΣΣΣa � ��
A C
B D
B2 D21

�� (6.2)

in which B2 and D21 are to be determined such that Σ∗
aΣa � I. Using lemma 2.1, this is the case if there is an M ≥ 0

such that >? @ A∗MA � B∗B � B∗
2B2 � M

- −1 /
A∗MC � B∗D � B∗

2D21 � 0
C∗MC � D∗D � D∗

21D21 � I
(6.3)

We will show that M given by equation (5.3) is a positive semidefinite solution to these equations. Indeed, under
the conditions imposed on T , theorem 4.5 [theorem 5.7] ensures that this M satisfies M ≥ 0, I − D∗D −C∗MC N 0
[I − D∗D −C∗MC ≥ 0], and

M
- −1 / � A∗MA � B∗B � n � A∗MC � B∗D � Φ† p · n Φ† �D∗B � C∗MA � p � (6.4)

where Φ �u� I − D∗D −C∗MC � 1 C 2. With B2 and D21 as in (6.1), it immediatedly follows that equations (6.3) are
satisfied. Q
In the above theorem, M can be interpreted as the controllability Gramian of Σ, and since M � W ∗ W � W ∗

1
W

1 with
W

1

as in (5.2), it is seen that
W ∗

1
W

1 is the controllability Gramian of Σ21. (A more detailed analysis shows that −
W

1 is its
controllability operator.)

Suppose that 
 T 
 " 1 so that I − T∗T is invertible. A result of Arveson [A], which is applicable in the present
context, claims that there is a factor Σ21 of I − T∗T which is outer, i.e., such that Σ−1

21 ∈
(

. We will show that our
choice for Σ21, as defined by the realization ΣΣΣ21 in (6.1), is in fact outer. To this end, we will look at a possible
realization for Σ−1

21 , viz. (2.5),

ΣΣΣ×
21 � � A× C×

B× D× � � � A −CD−1
21B2 −CD−1

21
D−1

21B2 D−1
21 � (6.5)

and will show that this realization is strictly stable:
�

A× " 1. In that case, we can conclude that Σ−1
21 ∈
(

.

Proposition 6.2. Suppose 
 T 
 " 1. Define ΣΣΣ×
21 as in (6.5) and theorem 6.1. Then

�
A× " 1, and Σ21 is outer.

PROOF We first assert that the controllability operator of ΣΣΣ×
21 is given by

W × � − � I − K̃∗
T K̃T � −1K̃∗

T
W

. It is sufficient

to show that the given formula of
W × satisfies the recursion

W × - −1 / � � B×W ×A× � . Indeed, with equations (3.3), (3.4),

(4.4),W × - −1 / � − � I − K̃∗
T K̃T � − - −1 / K̃∗ - −1 /

T

W - −1 / �� − ` � 0 � I − K̃∗
T K̃T � −1 � � � I� I−K̃∗

T K̃T � −1K̃∗
TṼT � Φ−2

F
I Ṽ∗

T K̃T � I−K̃∗
T K̃T � −1 Gva � D∗ Ṽ∗

T

0 K̃∗
T � � BW

A �� −
�

0� I − K̃∗
T K̃T � −1K̃∗

T
W

A � −
�

I� I − K̃∗
T K̃T � −1K̃∗

T
W

C � Φ−2 � D∗B � C∗MA �
14



� �
−Φ−2 � D∗B � C∗MA �

− � I − K̃∗
T K̃T � −1K̃∗

T
W �A � CΦ−2 � D∗B � C∗MA �Y� �� �

D−1
21B2W × � A −CD−1

21B2 � � �
The controllability Gramian of ΣΣΣ×

21 is Λ× � W ∗K̃T � I−K̃∗
T K̃T � −2K̃∗

T
W

, which is bounded because the inverse is bounded
and
W ∗ W is bounded. According to a result of Anderson and Moore [AM, thm. 4.3] (see also [N]), if Λ× is bounded

and
�

A " 1,2 then
�

A× " 1. It follows that Σ−1
21 ∈
(

, so that Σ21 is outer. Q
Using theorem 6.1, it is straightforward to solve the lossless embedding problem.

Theorem 6.3. (Orthogonal embedding) Let T ∈
( �%$ 1 � ! 1 � be a locally finite input-output operator with strictly

stable state realization T � {A � B � C � D}. If I −T∗T N 0, or I −T∗T ≥ 0 and T is uniformly observable, and if the re-
alization T is uniformly controllable, then the lossless embedding problem has a solution Σ ∈

( �%$ 1 ×
!

1 � ! 1 ×
!

2 �
such that Σ is inner, Σ11 � T, Σ21 is outer, and Σ has a unitary realization ΣΣΣ where AΣ is state equivalent to A. If
A ∈ +6�=; � ; - −1 / � , then

!
2 is specified by # � ! 2 �e� # �=;w� − # �%; - −1 / � � # �&$ 1 � .

PROOF The proof is by construction. Let ΣΣΣ be of the form� ΣΣΣa ΣΣΣb �Z� ��
A C C2

B D D12

B2 D21 D22

��
ΣΣΣ � ��

R
I

I

�� � ΣΣΣa ΣΣΣb � �� � R - −1 / � −1

I
I

�� �q� ΣΣΣ Da ΣΣΣ Db � � (6.6)

in which R ∈ +,�=; � ;w� is a boundedly invertible state transformation. R, B2, D12, D21, D22 are to be determined
such that ΣΣΣ is unitary, in which case Σ is inner (lemma 2.1).

First, determine M, B2, D12 and hence ΣΣΣa as in theorem 6.1. Because T is uniformly controllable, M N 0. If we
define the state transformation R by M � R∗R, then R is invertible, and ΣΣΣ Da is an isometry (ΣΣΣ D ∗a ΣΣΣ Da � I). The extension
of a rectangular isometric matrix to a square unitary matrix by adding columns is a standard linear algebra procedure
that always has a solution. The same holds for diagonals of matrices. Hence, we can extend ΣΣΣ Da to a unitary matrix ΣΣΣ,
which is the realization of an inner system Σ. The resulting dimension sequence of ΣΣΣ is given by � # �=;w� � # �&$ 1 � �
# � ! 1 �x� , and the number of columns of each diagonal entry of ΣΣΣ Da is the sequence � # �=; - −1 / � � # � ! 1 �Y� , hence the
number of columns to be added is equal to # � ! 2 �y� # �=;w� −# �=; - −1 / � � # �%$ 1 � . This number is non-negative because
the columns of ΣΣΣ Da are linearly independent. Q
One difference with the time-invariant situation is that the solution of the embedding problem gives rise to a time-
varying number of added extra outputs if the number of states of T is time-varying ( ; j�z; - −1 / ), even if the number
of inputs and outputs of T is fixed. Another difference is that, for the boundary case, we need both uniform con-
trollability and uniform observability in order to construct an embedding. It is known that not every time-varying
system admits such a realization, not even if it has a finite state dimension; the condition is that the range of HT

must be closed. See [VD1, V2].

The construction used in the proof of the theorem is computational: it can be used to recursively compute the re-
alization of a lossless embedding from a realization of T . The recursion runs forward in time: from Mk and the
realization of T at time instant k, we can compute both Mk � 1 (using recursion (1.3)) and ΣΣΣk, the realization of Σ at
instant k. An exact initial point for the recursion can be obtained for the special cases where T has zero states before
a certain point n in time (take Mn to be a 0×0 matrix), or when T is time-invariant or periodic before point n in time,

2The actual condition in [AM] is that H A −CD−1
21B2 { D−1

21B2 I is uniformly stabilizable, but it is also shown that this is the case if and only ifH A { D−1
21B2 I is uniformly stabilizable. For this, it is sufficient that K A | 1.
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in which case Mn is the solution of the resulting algebraic Riccati equation. In other, more general cases, we can
take Mn � 0 as an approximate initial value. It can be shown that the Riccati recursion with this initial value does
not break down (because it is the exact initial value of a related system, which has zero states before time instant
n and is the same as the original system after time n), and converges to the exact solution if the system is strictly
stable [V2]. A proof of this is omitted for brevity.

A reformulation of theorem 6.1 and proposition 6.2 leads to the Bounded Real Lemma which appears in system and
control theory.

Theorem 6.4. (Bounded Real Lemma) Let T ∈
( �%$ � ! � be a bounded causal locally finite input-output oper-

ator, with strictly stable state realization T � {A � B � C � D}, and A ∈ +,�=; � ; - −1 / � .} 
 T 
 " 1 if and only if there exists M ∈ +,�%; � ;�� , B2 ∈ +,� ! � ; - −1 / � , D21 ∈ +,� ! � ! � solving>? @ A∗MA � B∗B � B∗
2B2 � M

- −1 /
C∗MC � D∗D � D∗

21D21 � I
A∗MC � B∗D � B∗

2D21 � 0
(6.7)

with M ≥ 0, I − D∗D −C∗MC N 0 and
�

A−CD−1
21B2 " 1.} If T is uniformly observable, then 
 T 
 ≤ 1 if and only if (6.7) has a solution M, B2, D21 such that M ≥ 0.

PROOF The ‘only if’ part is directly derived from theorem 6.1 and proposition 6.2. The ‘if’ part is a corollary of
theorem 6.1: given such M, it follows that there exists an isometric embedding Σa such that Σ∗

aΣa � T∗T � Σ∗
21Σ21 �

I, so that Σ∗
21Σ21 � I − T∗T ≥ 0. If in addition D21 is invertible and

�
A−CD−1

21B2 " 1, then by proposition 6.2 we can

conclude that Σ21 is invertible, so that I − T∗T N 0, i.e., 
 T 
 " 1. Q
7. CONCLUDING REMARKS

Many control applications give rise to the Riccati equation (1.3). Usually, the existence of a stabilizing solution is
of importance. In the context of our embedding problem, this would be a solution for which A −CD−1

21B2 is strictly
stable, or Σ21 is outer. The uniqueness of such a solution is a standard result which is straightforward to prove.

While this paper was in review, more has become known on time-varying Riccati equations. We mention in par-
ticular the papers [N], in which detailed attention is paid to the convergence of the recursion to maximal/minimal
solutions, and [HI], where the solution of a Kalman-Szegö-Popov-Yakubovich (KSPY) system of equations is pre-
sented. The equations (6.7) can be viewed as a particular instance of these equations. Although [HI] gives solutions
to a more general class of problems, the boundary case is not considered. A major difference with [HI] is in the
proofs of the results: whereas [HI] relies heavily on insights gained in optimal control theory, the approach taken
in this paper is more based on first principles: I −T∗T � Σ∗

21Σ21 ⇔ I − K̃∗
T K̃T � K̃∗

Σ21
K̃Σ21 . The analysis of the latter

equation directly leads to a recursion in which the given expressions for M, D21, B2 turn up, along with an explicit
expression for the controllability operator of the realization for Σ21. Similar analysis of K̃Σ−1

21
� � K̃Σ21 � −1 leads to

the realization of the inverse, the given expression for the controllability operator, and the fact that our choice for
Σ21 is outer.

A. APPENDIX: DERIVATION OF LEMMAS 5.3 AND 5.4

The contents of lemmas 5.3 and 5.4 is well known for finite matrices (see e.g., [CHM, BCHM]) for generalized
inverse formulas involving Schur complements). The matrix case is readily extended to operators if the operators
are assumed to have closed range. Without this condition, complications arise because the pseudo-inverses that are
involved are unbounded operators.
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We will repeatedly use theorem 5.2 in the following form. Let X ≥ 0 be a bounded operator on a Hilbert space  .
If v is a bounded operator whose range is in cd� X � , then v � Xv1, for some bounded v1 ∈ cd� X∗ � for which we can
take v1 � X†v. A second fact that is used in the proof of lemma 5.4 is that X†X � PX∗ : the orthogonal projector
onto cd� X∗ � , with domain  [BR].

A.1. Proof of lemma 5.3

Suppose first that X ≥ 0; we show that (1), (2), (3) hold. It is immediate that A ≥ 0, C ≥ 0. The fact that cd� B � ⊂cd� C1 C 2 � is proven by showing that there exists λ such that BB∗ ≤ λC; Douglas’ theorem then implies the result. The
proof is by contradiction. Suppose that there is not such a λ. Then there exists a sequence {xn : n ∈ |N } such that� BB∗xn � xn � ≥ n � Cxn � xn �6A 0 � (A.1)

In particular, 
 B∗xn 
~A 0 (all n). For any un, X ≥ 0 implies� � A B∗

B C � � un

xn � � � un

xn � � ≥ 0 �
i.e., � Aun � un � � � B∗xn � un � � � Bun � xn � � � Cxn � xn � ≥ 0. Choose un � − 1�

n B∗xn. Using (A.1), we obtain� B R A
n

−
2�
n
� I

n � B∗xn � xn � ≥ 0 �
But if n A�
 I � A 
 2, the term in braces is smaller than −1 � � n, which gives a contradiction. Hence cd� B � ⊂ cd� C1 C 2 � .
Define L � C1 C 2 (although L � L∗, we will not use this), and let B1 � L†B. Then B1 is bounded, and B � LB1 withcd� B1 � ⊂ cd� L∗ � , which implies ! � B∗

1 � ⊃
! � L � � (A.2)

To prove A − B∗
1B1 ≥ 0, we will show that

X � � A B∗
1L∗

LB1 LL∗ � ≥ 0 ⇒
�

A B∗
1

B1 I � ≥ 0 � (A.3)

from which A−B∗
1B1 ≥ 0 follows directly by applying vectors of the form

F
I

−B1

G a. Thus for x ∈  1 ⊕  2, take x of

the form

x � � u
x1 � x2 � ∈

�  1! � L � ⊕ cd� L∗ � �
where x1 ∈

! � L � and x2 ∈ cd� L∗ � . Note that
! � L � ⊕ cd� L∗ � is dense in  2. Then

! � B∗
1 � ⊃

! � L � implies B∗
1x1 � 0,

while x2 ∈ cd� L∗ � implies that x2 � L∗x D2, for some bounded x D2. Using these observations, it follows that� � A B∗
1

B1 I � � u
x1 � x2 � � � u

x1 � x2 � ���� Au � u � � � B∗
1x1 � u � � � B1u � x1 � � � x1 � x1 � � � B∗

2x2 � u � � � B1u � x2 � � � x2 � x2 �
≥ � Au � u � � � B∗

1x2 � u � � � B1u � x2 � � � x2 � x2 ���� Au � u � � � B∗x D2 � u � � � B1u � x D2 � � � x D2 � x D2 ���� X � u
x D2 �w� � u

x D2 � � ≥ 0 �
Hence relation (A.3) holds on a dense subset of  1 ⊕  2. By continuity, it holds everywhere, and consequently
A − B∗

1B1 ≥ 0.
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It remains to prove the reverse implication: X ≥ 0 if the three conditions are satisfied. BecauseC ≥ 0 a decomposition
of C as C � LL∗ is defined. Using this decomposition and B � LB1,

X � � A B∗
1L∗

LB1 LL∗ � � � I B∗
1

L � � A − B∗
1B1

I � � I
B1 L∗ � �

Under the stated conditions, the operator

W � � I
L � � I B∗

1
I � � � A − B∗

1B1 � 1 C 2
I � (A.4)

is well defined, and is a factor of X such that X � WW∗. Hence X ≥ 0. Q
A.2. Proof of lemma 5.4

Let X ≥ 0 have a factorization X � WW∗, then cd� X1 C 2 �e�zcd�W � (by theorem 5.2). It can be inferred from Beutler
and Root [BR] that X† � W∗†W† � X† C 2X† C 2 � hence if cd� v � ⊂ cd� X1 C 2 �e��cd�W � , then v1 and v2 defined by

v1 � X† C 2v � cd� v1 � ⊂ cd� X1 C 2 �
v2 � W†v � cd� v2 � ⊂ cd�W∗ �

are bounded, and3 v∗
1v1 � v∗

2v2.

Let L � C1 C 2, B1 � L†B and put W as in (A.4), so that X � WW∗. Define the operator W‡ by

W‡ � � � A − B∗
1B1 � † C 2

I � � I −B∗
1

I � � I
L† � �

We will prove that W‡ � W† on cd�W � . The result will be, for a bounded operator v with cd� v � ⊂ cd� X1 C 2 �B�dcd�W � ,
that W†v � W‡v, so that v1 : � X† C 2v and v2 : � W‡v are bounded and satisfy v∗

1v1 � v∗
2v2. Indeed, for any v with

range in cd� W � we have that the operator v1 � W†v is bounded and such that v � Wv1. Hence W‡v � W‡Wv1 �
W†Wv1 � W†v � so that W‡ � W† on cd�W � if and only if

W‡W � W†W on cd� W∗ � �
To analyze W‡W , we first prove that B∗

1 −B∗
1L†L � 0. Indeed, if x ∈

! � L � then x ∈
! � B∗

1 � (by equation (A.2)), and
hence both B∗

1x � 0 and Lx � 0. If, on the other hand, x ∈
! � L � ⊥, then L†Lx � x since L†L is the projector onto! � L � ⊥, and hence B∗

1L†Lx � B∗
1x.

With the definition of W‡ and the above result,

W‡W � � � A − B∗
1B1 � † C 2

I � � I −B∗
1

I � � I
L† � ·

�
I

L � � I B∗
1

I � � � A − B∗
1B1 � 1 C 2

I �� � � A − B∗
1B1 � † C 2

I � � I B∗
1 − B∗

1L†L
L†L � � � A − B∗

1B1 � 1 C 2
I �� � � A − B∗

1B1 � † C 2 � A − B∗
1B1 � 1 C 2

L†L � � :

�
P1

P2 � �
P1 and P2 are projectors onto cd� A − B∗

1B1 � 1 C 2 and cd� L∗ � , respectively. Now, using

W∗ � � � A − B∗
1B1 � 1 C 2

I � ·

�
I

B1 L∗ �
3We are careful here not to write X†v. Although ��H X I J ��H X1 M 2 I , we only have that ��H X I ⊂ ��H X1 M 2 I , and hence X†v can be unbounded

with ��H v I ∈ ��H X1 M 2 I .
18



and cd� B1 � ⊂ cd� L∗ � , we have that cd� W∗ � ⊂ c � � A − B∗
1B1 � 1 C 2

L∗ � �
Since W†W is the projector onto cd� W∗ � , and W‡W is the projector onto the range at the right hand side of the
expression, this proves that W‡W � W†W on cd�W∗ � , as required. Hence W‡ � W† on cd�W � , which also implies
that W‡ is well-defined on cd�W � . Q
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