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Abstract—Finite impulse response (FIR) graph filters play a
crucial role in the field of signal processing on graphs. However,
when the graph signal is time-varying, the state of the art FIR
graph filters do not capture the time variations of the input signal.
In this work, we propose an extension of FIR graph filters to
capture also the signal variations over time. By considering also
the past values of the graph signal, the proposed FIR graph filter
extends naturally to a 2-dimensional filter, capturing jointly the
signal variations over the graph and time. As a particular case
of interest we focus on 2-dimensional separable graph-temporal
filters, which can be implemented in a distributed fashion at the
price of higher communication costs. This allows us to give filter
specifications and perform the design independently in the graph
and temporal domain. The work is concluded by analyzing the
proposed approach for stochastic graph signals, where the first
and second order moments of the output signal are characterized.

I. INTRODUCTION

Signal processing on graphs emerged recently as a tool
to extend classical signal processing concepts from time and
image signals to signals that reside on the vertices of an
irregular graph. The breakthrough in this area is the definition
of the graph Fourier transform (GFT) [1]–[3], which extends
the analysis of graph signals to the graph frequency domain.
By having a specific definition of graph frequency, graph filters
emerged as a basic building block to process the spectral
content of graph signals. Graph filters have been used in
applications like data classification and customer behavior
prediction [1], signal denoising and smoothing [4], [5], solving
consensus problems [6], anomaly and event boundary detec-
tion [7], [8], to name a few. Finite impulse response (FIR)
graph filters appeared first with the property of having a
polynomial frequency response, meaning they can be easily
implemented in a distributed manner in the node domain
[1], [9]. Secondly, infinite impulse response (IIR) graph fil-
ters were proposed due to the necessity to achieve better
interpolation or extrapolation properties around the known
graph frequencies [8], [10], [11]. However, the aforementioned
works focus mainly on time-invariant graph signals, whereas
time can carry extra information, for example financial time
series of companies or goods in a stock market, temperature
measurements taken continuously in time by a sensor network,
or political popularity in social media. For these cases we
can be interested in computing predictions, statistics or make
inferences on this signal. This can potentially be more accurate
when the time dependency of the signals is taken into account.
Such aspects are catching attention recently, also in the graph
signal processing area [11], [12].

In [11], an autoregressive moving average (ARMA) is
proposed which has the ability to process jointly the graph
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and temporal variations of the signal. However, in the design
process stability issues arise. To avoid the latter problem
related to IIR filters, we present an extension of FIR graph
filters to capture also the time-variations of the graph signal.
By incorporating also a temporal memory while computing
the filter output, the well-known FIR graph filters extend
to 2D filters operating jointly on the graph and temporal
spectral domain. In contrast to [11], the proposed 2D filter has
more degrees of freedom to approximate a desired frequency
response. Further, as a particular case we analyze the class of
separable 2D frequency responses. This property allows us to
give filter specifications and perform the design independently
in the graph and temporal domain.

The paper is concluded by analyzing the proposed approach
for a time-varying random process over the graph. For this
case, we calculate in closed form the first and second order
moments of the filter output and we show that, in the mean,
the proposed filter behaves as the same filter operating on a
deterministic signal being the mean of the graph process.

II. PRELIMINARIES

Let us consider an undirected and connected graph G of N
nodes. We indicate with x ∈ RN the graph signal and with L
the graph Laplacian [3]. The GFT x̂ of x and its inverse are
calculated as

x̂i = 〈x,φi〉, and xi =

N∑
n=1

x̂nφn(i), (1)

respectively, where 〈·〉 denotes the inner product, Φ =
[φ1, . . . ,φN ]> are the Laplacian’s eigenvectors and φn(i) is
the ith entry of φn. The corresponding eigenvalues {λn}Nn=1

form the graph frequencies. We present our results for a
Laplacian1 matrix L, where we only require L to be symmetric
and local: for all i 6= j, Lij = 0 whenever the nodes ui and
uj are not neighbours and Lij = Lji otherwise.

A graph filter H is defined as a linear operator that acts on
a graph signal x by shaping its spectrum as

Hx =

N∑
n=1

H(λn)〈x,φn〉φn. (2)

The graph frequency response H : {λn}Nn=1 → R controls
how much H amplifies the signal component of each graph
frequency (suppose for now 〈x,φn〉 6= 0)

H(λn) = 〈Hx,φn〉/〈x,φn〉. (3)

Given a desired graph frequency response H∗(λ), the filter
coefficients are found by solving a linear system when the
graph and thus the frequencies λn are known [1], [3], [13]. In
case the graph is not known, we can approximate H by using
a K-th order polynomial of L and the filter output is

1Note that the core idea can be applied also to directed graphs using the
adjacency matrix instead of the Laplacian.



y =
(
a0I +

K∑
k=1

akL
k
)
x. (4)

To such a design approach is commonly referred as universal
design [9], [11]. An order-K FIR graph filter (FIRK) can be
computed distributively, since LKx = L(LK−1x) and each
node can compute the K-th term from the values of the (K−
1)-th term in its neighbourhood.

III. FIR GRAPH FILTERS WITH TIME-VARYING INPUT

In this section, we present the recursions that implement 2D
graph-temporal filters. We start building our approach from
an intuitive extension of (4), which can also be implemented
distributively with the same computational efforts. Then, we
move to the more general approach, which requires K times
more data exchanges and computational power to implement
a 2D FIR filter, but it offers the more complete 2D transfer
function. Further, we present two particular subclasses, which
are able to implement casual 2D FIR filters and separable
filters in the graph and temporal domain, respectively.
2D FIR graph filters (intuitive extension). Temporal varia-
tions of the input signal can be captured by the FIR filter taking
into account its temporal history. Consider the recursion

yt =

K∑
k=0

akL
kxt−k, (5)

where now the output at time t ≥ K , i,e., yt, depends on the
past K realizations of the input signal, where xt−k is graph-
shifted with Lk (this favors a distributed implementation).
Recursion (5) provides the intuition that it represents an FIRK
filter in both the graph and temporal frequency domain. To see
this, we calculate the joint transfer function of the filter (5).
Applying first the GFT and then the z-transform to (5), the
joint graph-temporal transfer function can be written as

H(z, λ) =

K∑
k=0

akλ
kz−k. (6)

We can now formally see that, the joint transfer function (6)
implements an FIR filter of order K in the graph domain,
as well as, an FIR filter of the same order in the temporal
domain. In a distributed computation, for computing yt we
need to access to the terms Lxt−1,L2xt−2, . . . ,L

Kxt−K .
To reduce the computation effort, we can consider that
each node memorizes the terms xt−1,Lxt−2, . . . ,LKxt−K−1
while computing yt−1. In this way, each node can compute
Lkxt−k directly from Lk−1xt−k, which leads to the same
computational effort as computing (4). From (6), we observe
that the zeros of the polynomial in λ and in z are correlated
to each other2. This affects the joint design, and thus the
approximation accuracy, where a tradeoff has to be found
between the filter approximations in each domain.

We illustrate this in Fig. 1, where we approximate with
an FIR3 filter an ideal step function in the graph frequency
domain with cut-off frequency λc = 0.5. We can see that for a
high normalized temporal frequency the filter response differs
from the case of f = 0, for which the filter has been designed.
This behavior can be addressed to the fact that the joint transfer
function (6) is not a complete 2-dimensional polynomial of

2In case of ARMA filters this is observed for the poles, which affects both
the filter design and stability.
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Fig. 1. The joint graph and temporal frequency response of the FIR3 graph
filter, designed to approximate an ideal low pass (step) response with cut-off
frequency λc = 0.5. A normalized Laplacian has been used, λ ∈ [0, 2] and
the temporal normalized frequency f ∈ [0, 1].

order K. Indeed, all the cross term monomials of the form
λαz−β with α 6= β are missing. However, even considering all
these challenges, this approach can still be used to approximate
some specific 2-dimensional filter masks.3

General 2D FIR. The approximation accuracy of the 2D FIR
filter can be improved if we incorporate also the missing cross
term monomials in (5). This can be achieved by considering
all K graph-shifts for every past input of the graph signal.
Clearly, this approach considers more data exchanges and
computational power to implement a filter of the same order in
both the graph and temporal domain. More formally, consider
the recursion

yt =

Kg∑
k=0

Kt∑
l=0

ak,lL
kxt−l, (7)

with Kg and Kt the memory of the filter in the graph and
temporal domain, respectively. We can now calculate the joint
transfer function of (7) in the same way as we did for (5). By
applying the GFT and the z-transform we obtain

H(z, λ) =

Kg∑
k=0

Kt∑
l=0

ak,lλ
kz−l, (8)

which is now an FIR of order Kg in the graph domain and of
order Kt, not necessarily equal to Kg, in the temporal domain.
From the joint frequency response (8), we can see that now we
have a full polynomial in the variables λ and z. Thus with this
expression we can operate on all the KgKt coefficients ak,l,
instead of the K offered by (5), to approximate a given two
dimensional frequency response. Further, with respect to (5)
and the ARMA filter [11], recursion (7) has the potential to
achieve filters of different orders in each domain. Similar to the
distribution implementation of (5), the computational efforts
of computing the output yt can be reduced by allowing the
nodes to keep in memory the terms Lkxt−l for k ∈ [0,Kg]
and l ∈ [1,Kt] obtained while computing yt−1. Thus, for
the computation of yt only the terms Lxt, . . . ,LKgxt have
to be computed. For a 2D FIR filter of order K in both
graph and time, this means that we need only K times more
computational efforts compared to (4).

One possible application of (7) is in prediction applications,
where differently from the ARMA approaches [11] or the
autoregressive models [12] it does not have stability issues.

3This holds also for the ARMA filters [11], which render both approaches
suitable for graph signals that varies slowly in time (f ≈ 0), where its graph
frequency response is similar to the static case (f = 0).



Causal 2D FIR. Given the general form (7) and its particular
version (5) there is room to use an intermediary approach,
which can be implemented in a causal way with relaxed
implementation costs. The causal 2D FIR with most degrees
of freedom can be implemented as

yt =

Kt∑
l=0

l∑
k=0

ak,lL
kxt−l. (9)

Being a causal implementation, the terms Lxt, . . . ,LKgxt
are not anymore necessary to be computed in (9), thus the
distributed implementation costs are the same as (4).
Separable 2D FIR. In the rest of this paper, we will address
a particular subclass of interest of (7) which has the property
to achieve a separable 2-dimensional frequency response in
graph and time. By setting ak,l = bkcl we can express (7) as

yt =

 Kg∑
k=0

bkL
k

( Kt∑
l=0

clxt−l

)
, (10)

where bk are the filter coefficients relative to the graph part
and cl to time. Similar to the derivation of (7), the transfer
function of (10) can then be written as H(z, λ) = Ht(z)Hg(λ)

where Ht(z) =
∑Kt
l=0 clz

−l and Hg(λ) =
∑Kg

k=0 bkλ
k.

This separable approach offers us the freedom to handle the
filter specifications independently in the graph and temporal
domain. We can also see (10) as first computing locally at
each node the temporal filtering, i.e., x̃t =

∑Kt
l=0 clxt−l and

then performing the overall output yt by filtering x̃t on the
graph, i.e., yt =

∑Kg

k=0 bkL
kx̃t. In contrast to the latter, (10)

allows for an online processing of the time-varying graph
signal. In the sense that, when xt+1 becomes available, (10)
requires processing only this signal among the graph and not
calculating locally x̃t+1 and then perform a graph filter. This
means that we can track the time variations of the graph signal.
However, notice that the separable filters have only Kg + Kt
degrees of freedom instead of KgKt of the general case (7).
Thus it can address a limited class of 2-dimensional frequency
responses, but a very practical class.
Filter design problem. Consider a given 2-dimensional fre-
quency mask H∗(ejω, λ) and we are interested in finding the
filter coefficients in order to approximate it.

The design problem, for the non-separable cases, can be
achieved by a 2-dimensional polynomial fitting of H(z, λ) in
the form (6) or (8) (for z = ejω) to H∗(ejω, λ).4 However,
in case of the prediction task, where yt = xt+1, we can use
some training data and design the filter coefficients directly in
the graph domain by solving

min
ak,l

∥∥∥∥∥xt+1 −
Kt∑
l=0

l∑
k=0

ak,lL
kxt−l

∥∥∥∥∥
2

2

, (11)

for the causal model (9), or for the more general case we can
substitute the causal FIR in (11) with (7).

For the case that the desired frequency response is separable,
i.e., H∗(ejω, λ) = H∗t (ejω)H∗g (λ) we have the benefit to
separate the filter design as well. Thus, we can use any desired
method to find the coefficients bk that approximate H∗g (λ),
as well as any of the well-known techniques to find the

4This aspect will be covered in more detail in future research.

coefficients cl for approximating H∗t (ejω). The latter renders
the separable approach very practical, since we can give
our specifications independently in the graph and temporal
domain.

IV. STOCHASTIC ANALYSIS

We now analyze the FIR filter behavior when the graph
signal has a stochastic nature over time. This may happen,
for instance, when the signal on the graph is corrupted by
noise. Similar to the ARMA1 graph filter [14], we characterize
statistically the 2-dimensional FIR when the graph signal has
a temporally non-stationary mean but a temporally stationary
covariance. We consider the following signal model.

Random signal model. The graph signal xt at time instant
t is a realization of a random process with time-vaying first
order moment x̄t and time-invariant covariance matrix Σx.
Further, the signal xt is independent over time.

The above random signal model considers that the graph
signal might be correlated among the nodes for a fixed time
instant t, but has independent realizations with different means
over time. It can be interpreted, for instance, as a desired time-
varying signal x̄t embedded in noise, more specifically in the
form xt = x̄t + nt, with nt being time-independent zero-
mean noise with covariance matrix Σx. With this in place,
the following can be claimed.5

Proposition 1: Consider a separable 2D FIR filter of orders
Kg and Kt in the graph and temporal domain, respectively,
and consider a graph signal that follows the proposed random
signal model. Then, the expected value ȳt and the covariance
matrix Σy of the output signal are given by

ȳt =

Kg∑
k=0

Kt∑
l=0

bkclL
kx̄t−l (12a)

and
Σy = ‖c‖22

( Kg∑
k=0

bkL
k

)
Σx

( Kg∑
m=0

bm(Lm)>

)
, (12b)

where c = [c1, c2, ..., cKt ]
>.

Proof: (Sketch) The results can be proven by applying the
definitions of the expected value and the covariance matrix to
the separable version of (7).

Proposition 1 extends the analysis of 2-dimensional FIR
filters to a stochastic environment. It says that, in the mean, the
FIR filter behaves as the same 2-dimensional filter operating
on a deterministic time-varying signal, being the time-varying
mean of the input graph process. Further, it gives us a closed-
form formula to calculate the covariance matrix of the output
signal in order to see how far from the mean a given realization
can be. We notice from (12b) that the variance of the output
signal, at each node, depends on the squared norm of the
temporal filter taps. This gives us a handle on the variance
of the output signal by tuning these coefficients.

Corollary 1: Under the same conditions of Proposition 1
and additionally given that the covariance matrix of the input
signal is diagonalizable with the graph Laplacian, i.e., Σx =
ΦPΦ>, the covariance matrix of the 2D FIR output is

Σy = ‖c‖2Φdiag(b̂)Pdiag(b̂)Φ>, (13)

5We derive the statistics for the separable case of interest, but the same can
be derived also for (7) or (9).
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Fig. 2. Different 2-dimensional FIR approximations. From left to right, we
have a low-pass (LP) filter in both graph and temporal frequency domain and
a high-pass (HP) filter in both domains. A normalized Laplacian has been
used and also the temporal frequencies are normalized (×π rad/sample).
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Fig. 3. Errors as a function of time for the 2-dimensional FIR graph-temporal
filter (solid line) and for the classical FIR graph filter (dashed line).

where b̂ is a vector with nth entry b̂n =
∑Kg

k=0 bkλ
k
n.

Corollary 1 is a straightforward extension of (12b) when Σx

shares the same eigenvectors of the graph Laplacian. In case
the random graph signal has also a constant mean among the
graph, i.e., x̄t = x̄1, we can say that (13) gives insights how
the 2D FIR filter operates on the so-called power spectral
density [15]–[17] (P ) of the time-varying graph signal. In this
case Σy contains information on both the graph and temporal
power spectral density of the output signal.

V. NUMERICAL EVALUATION

To illustrate our conclusions, we first show that (10) can ap-
proximate different separable filters with given specifications.
Then, we use the 2-dimensional FIR filter to denoise a time-
varying signal which is also affected by interference. Finally,
we simulate a scenario where the graph signal is a stochastic
process with a time-varying mean. For the filter design, we
use the polynomial approximation [9] for the graph domain
and the windowing method for the time domain [18]. The
results are carried over a graph of 100 nodes randomly placed
in a squared area, with two nodes being neighbors if they are
physically closer than 15% of the maximum distance in the
area and the FIR filter of orders are Kg = Kt = 10.
Filter approximation. With reference to Fig. 2, we can
see that the proposed approach can approximate different
desired 2-dimensional separable frequency responses. For this
particular case, the cut-off frequencies in both domains are
chosen as the half of the respective bands.
Denoising and interference cancellation. Consider a graph
signal of the form xt = st + it + nt, where

〈st,φn〉 =

{
ejπt/4 if λn < 0.5
0 otherwise, (14)

is the signal of interest, 〈it,φn〉 = ej3πt/4, ∀λn, is the
interfering signal and nt is a zero mean additive Gaussian

0 20 40 60 80 100
-1

-0.5

0

0.5

1

0 20 40 60 80 100
-1

-0.5

0

0.5

1

y

y
y

t

t

t

t

t

mean

total
Fig. 4. The output signal of the filter and its expected value as a function
of time for two nodes, node 5 (top) and node 100 (bottom).

noise with Σxx = σ2I and σ2 = 0.1. Our goal is to recover
the graph signal of interest st using a 2-dimensional FIR graph
filtering approach. In this way, we aim to use the FIR filter
to cancel the out of band noise in the graph and time domain
and also suppress the interferer in the temporal domain.

To measure the performance of our solution, we define the
following two errors

e(interf)
t =

‖ŷt − ŷ∗t ‖
‖ŷ∗t ‖

, e(total)
t =

‖ŷt − ŝt‖
‖ŝt‖

(15)

where ŷt and ŷ∗t are the graph Fourier transforms of the filter
outputs at time t when the input signals are xt and st +
nt, respectively. The first error, e(interf)

t , is a measure on how
good we attenuate the interfering signal. Indeed, it tells us
how well we approximate the filter output ŷ∗t when there is
no interference. Meanwhile, the second error, e(total)

t tells us
how good we suppress the interference and the noise. For our
simulations, the coefficients bk are designed to approximate
an ideal low pass step function with λc = 0.5, meanwhile the
coefficients cl are found by approximating a low-pass temporal
filter with cut-off frequency ωc = π/2. In Fig. 3, we can see
that after some initial assessment time of the filter, both errors
reduce. Specifically e(interf)

t is reduced by an order of two6.
This shows the robustness of the 2-dimensional FIR filter (7)
to interference, where the interfering signal is attenuated by
the filter. An FIR graph filter that considers the input signal
only once, in the beginning of the filtering, produces errors
which are much higher due to their impossibility to operate
on the temporal frequencies.
Stochastic analysis. With the same setup as in the previous
paragraph, we plot in Fig. 4 the output signal of the filter
and its analytical expected value (12a) as a function of time
for two representative nodes. We can notice that the output
signal oscillates with the same frequency of the desired input
signal around its expected value. Further, due to the fact that
we attenuate the noise out of the band of interest we have
also a reduction of the signal variability around its mean. The
theoretical/empirical variance for node 5 is 0.0074/0.0069 and
for node 100 is 0.0140/0.0149. These results show also that
the variance of the output signal is reduced by more than one
order w.r.t. the variance of the input signal. The empirical
variance is calculated over 1000 samples.

6To further reduce the error the filter can also be designed as a band-pass
around the oscillating frequency of st.
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