
H. Dedieu(ed.),Proc11-th ECCTD (Davos),pp. 167-172.Elsevier, 1993 1

Connections of Time-Varying Systems and Computational Linear Algebra

Alle-Janvan der VeenandPatrickDewilde

Delft University of Technology
Departmentof ElectricalEngineering
2628CD Delft, The Netherlands

Linear algebraproblemssuchasmatrix-vectormultiplication, inversionandfactorizations
may be studiedfrom the point of view of time-varyingsystemsandstaterealizations.This
leadsto new andefficient algorithmsfor solving certainlargestructuredmatrix problems.In
this paper, we treatthe matrix inversionproblemin moredetail.

1. STATE REALIZATION OF A MATRIX

In a numberof signal processingapplications,suchas inversefiltering and spectrumes-
timation, the basicalgorithmickernelconsistsof QR-factorizationsandmatrix inversionsof
fairly large matrices. Usually, thesematricesare not fully randombut have somekind of
structure,which is inheritedfrom theunderlyingsignalproperties.For example,in stationary
environments,the covariancematricesformedon the datahavea Toeplitzstructure(constant
alongdiagonals).Efficient algorithmswhich exploit this structureareknownin this case:the
inversecan be computedvia Levinsonrecursionsor Gohberg/Semenculrecursions[1], and
the QR-factorizationcan be computedvia a generalizationof the Schurrecursion[2]. The
resultingalgorithmshavecomputationalcomplexityof order

�
(n2) for matricesof size(n×n),

ascomparedto
�

(n3) for algorithmsthat do not takethe Toeplitzstructureinto account.
In this paper, we considera different(complementary)kind of structurein a matrix which

applies,for example,to non-stationarysignalmodels.Let T = [Tij ]n
i,j=1 bea matrixwith entries

Tij . For addedgenerality, we will allow T to bea block matrix so that theentriesarematrices
themselves:Tij is an Mi × Nj matrix, wherethe dimensionsMi andNj neednot be constant
over i and j, andcanevenbe equalto zeroat somepoints. Whena (row) vector is viewed
as a signal sequenceon a finite discrete-timeinterval, then a vector-matrix multiplication
correspondsto the applicationof a systemto the signal. The i-th row of the matrix is the
impulseresponseof the systemdue to an impulseat time i, and the systemis causalif the
matrix is block upper.

We will say that T hasa staterealization(computationalnetwork) if thereexist matrices

Tk =

�
Ak Ck

Bk Dk � , T �k =

�
A �k C �k
B �k 0 � , k = 1, ����� , n ,

suchthat the entriesof T aregiven by

Tij = ��� �	 Di , i = j ,
BiAi+1 ����� Aj−1Cj , i < j ,
B �i A �i−1 ���
� A �j+1C �j , i > j .
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Figure 1. Computationalnetworkcorrespondingto an uppertriangularT.

The statematrices � Ak,Bk,Ck,Dk,A �k,B �k,C �k � n
1 must havecompatibledimensionsin order for

themultiplicationsto makesense,but theyneednotbesquare.If [Tij ] is describedin this way,
then a vector-matrix multiplication z = uT, whereu = [u1, u2, ���
� , un], z = [z1, z2, ����� , zn],
canbe computedvia the time-varyingforwardandbackwardstaterecursions

(T) � xk+1 = xkAk + ukBk

yk = xkCk + ukDk
(T � ) � x �k−1 = x �kA �k + ukB �k

y �k = x �kC �k
zk = yk + y �k , x1 = [ ⋅ ] , x �n = [ ⋅ ] .

(1)

Here,[ ⋅ ] denotesa 0×0 matrix,xk is theforwardstate,andx �k is thebackwardstate,andthese
variablescanbeviewedastheintermediatequantitiesin thecomputation.Thecomputationof
thevector-matrix productusingthestateequationsis moreefficientthanadirectmultiplication
if, for all k, the dimensionsof xk andx �k arerelatively small comparedto the matrix size. If
this dimensionis, on average,equalto d, thena vector-matrix multiplicationhascomplexity�

(d2n) (this can be reducedfurther to
�

(dn) by consideringspecialtypesof realizations),
anda matrix inversionhascomplexity

�
(d2n) ratherthan

�
(n3), aswe showin section2.

A simple exampleof a computationalnetwork is depictedin figure 1, in which a state
realizationis shownof thevector-matrix multiplicationy = uT, whereT is anuppertriangular
matrix, so that only the forwardstaterecursionsarenecessaryin the computation.

A first questionto answeris, givena matrix T, whendoesthereexist a computationalnet-
work with a low numberof statesthat realizesthis matrix. To this end,definethesubmatrices

Hk =
������

Tk−1,k Tk−1,k+1 ���
� Tk−1,n

Tk−2,k Tk−2,k+1
...

...
. . . T2,n

T1,k �
��� T1,n−1 T1,n

� ������ , H �k =
������

Tk,k−1 Tk,k−2 ����� Tk,1

Tk+1,k−1 Tk+1,k−1
...

...
. . . Tn−1,1

Tn,k−1 ���
� Tn,2 Tn,1

� ������ . (2)

The Hk canbe called time-varyingHankel matrices,as they would havea Hankel structure
in the time-invariantcontext. In termsof the Hk, we havethe following result.

Theorem 1 ([3]) Theminimal dimensionof xk and x �k of any staterealizationof T is equal
to the rank of Hk and H �k, respectively.

Basedon factorizationsof the Hk, it is possibleto derive minimal realizationsof a given
matrix [3, 4]. It is alsopossibleto computeoptimalapproximaterealizationsof lower system
orderof a given matrix whoseHankelmatricesdo not possesslow rank [5, 4].
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2. MATRIX INVERSION

As an exampleof how time-varyingstaterealizationscanbe usedin matrix computations,
we considertheproblemof matrix inversion. If the matrix is block upperandhasan inverse
which is againupper, then it is straightforwardto derivea staterealizationof the inverseof
thematrix, given a staterealizationof the matrix itself.

Theorem 2 ([3]) Let T be a block upper triangular matrix, whoseentries Tii on the main
diagonalare square and invertible. ThenS= T−1 is again block uppertriangular. If T hasa
staterealization � Ak,Bk,Ck,Dk � n

1, thena realizationof S is givenby

Sk =

�
Ak − CkD−1

k Bk −CkD−1
k

D−1
k Bk D−1

k � .

Thenextstepis to showhow amoregeneralmatrixT which is notblock uppercanbemapped
by a unitarymatrixU∗ to block-upper. (( ⋅ )∗ standsfor complexconjugatetranspose.)Wefirst
considerthespecialcasewhereT is lower triangular. This caseis relatedto theinner-coprime
factorizationin [5].

Proposition 3 ([5]) Let T be a block lower matrix, with state realization � A �k,B �k,C �k,D �k � n
1

normalizedsuchthat (A �k)∗A �k + (B �k)∗B �k = I. ThenT hasa factorizationT = U∆, where U is a
unitary block lower matrix and ∆ is a block uppermatrix. Realizationsof U and ∆ are given
by

U �k =

�
A �k C �U,k

B �k D �U,k � , ∆∆∆k =

�
(A �k)∗ (A �k)∗C �k + (B �k)∗D �k

(C �U,k)
∗ (D �U,k)

∗D �k + (C �U,k)
∗C �k �

where U �k is a square unitary matrix and C �U,k and D �U,k are determinedby completing � A �k
B �k � to

a square unitary matrix, for eachk in turn.

The realizationfor ∆ is not necessarilyminimal, which is seen,for example,if T is taken
to be unitary itself. BecauseA �k and B �k neednot haveconstantdimensions,the numberof
columnsaddedto obtainU �k is not necessarilyconstantin time, so that thenumberof outputs
of U canbe time-varying.In particular, U canbe a block matrix whoseentriesarematrices,
evenif T itself hasscalarentries.

The moregeneralcaseis a corollaryof the aboveproposition.

Theorem 4 LetT bea blockmatrixwith realizationsT � = � A �k,B �k,C �k,0 � n
1, T = � Ak,Bk,Ck,Dk � n

1,
with normalization(A �k)∗A �k + (B �k)∗B �k = I. ThenT = U∆, with U a block lower unitary matrix,
∆ a block uppermatrix, havingrealizations

U �k =

�
A �k C �U,k

B �k D �U,k � , ∆∆∆k = �� (A �k)∗ (B �k)∗Bk (A �k)∗C �k + (B �k)∗Dk

0 Ak Ck

(C �U,k)
∗ (D �U,k)

∗Bk (C �U,k)
∗C �k + (D �U,k)

∗Dk

� ��
where C �U,k and D �U,k are determinedby completing � A �k

B �k � to a square unitary matrix.

Using the abovetheorem,a given matrix T is mappedto a block-uppermatrix ∆. At this
point, it shouldbe remarkedthat the inverseof a block-uppermatrix is not necessarilyupper
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itself. A simpleexamplewhereT is block upperandT−1 is block lower is given by the pair
of matrices

T = ���� 1 0 0
1/2 2 0

0 1/4 1
⋅ ⋅ ⋅

� ���� [(MT)k] = [2 1 0]
[(NT)k] = [1 1 1]

T−1 = �� 1 0 0 ⋅
−1/4 1/2 0 ⋅
1/16 −1/8 1 ⋅

� �� [(MT−1)k] = [1 1 1]
[(NT−1)k] = [2 1 0]

Themaindiagonalof eachmatrix consistsof theunderlinedentries.Theentries‘ ⋅’ areblock-
matrix entrieswith oneof the dimensionsequalto zero. Whenviewed as matriceswithout
consideringtheir block structure,T−1 is of coursejust the matrix inverseof T. Mixed cases
(the inversehasa lower andanupperpart)canalsooccur, andtheseinversesarenot trivially
computed,asthey requirea ‘dichotomy’: a splitting of spacesinto a part that determinesthe
upperpart anda part that gives the lower part.

Hence,the final caseto considerin orderto connecttheorem4 with theorem2 is a block
uppermatrix whoseinverseis not block upper. Beforetheorem2 canbe applied,the matrix
must be factoredinto the product of an isometric matrix and an invertible matrix whose
inverseis upperagain. This QR-factorizationis known, in systemtheory, as the inner-outer
factorization. The factorizationcan be computedin statespaceterms,as discussedin the
following theorem.

Theorem 5 ([6, 4]) Let T be a block upper matrix. ThenT has a factorization T = VT0,
where V is upperand an isometry(V∗V = I), and T0 is an uppermatrix with upper inverse.

Realizationscan be computedfroma realizationT = � Ak,Bk,Ck,Dk � n
1 of T as follows. Let

Y1 = [ ⋅ ], and recursivelycomputeunitary matricesWk suchthat

W∗
k

�
Yk

I � �
Ak Ck

Bk Dk � = �� Yk+1 0
0 0
∗ Xk

� �� , YkY∗
k > 0 ,XkX∗

k > 0 . (3)

Each Wk is obtainedfrom a QR-factorizationwhich putszero matricesof maximalpossible
dimensionsat the indicatedpositions. Partition the rows of Wk compatiblywith the right
hand side of equation(3). Let (⋅) � denotea pseudo-inverse.Thenrealizationsof V and T0

are

Vk = Wk �� I 0
0 0
0 I

� �� , (T0)k =

�
I

X� ∗
k � �

Ak Ck

C∗
kY

∗
kYkAk + D∗

kBk C∗
kY

∗
kYkCk + D∗

kDk � .

Using theorems4 and5, a QR-factorizationof T follows asT = (UV)T0, whereU is block
lower andunitary, V is block upperandisometric,andT0 is outer: uppertriangularwith upper
inverse.Thesematriceshaverealizationsasstatedin thetheorems,if propersubstitutionsare
made.

If T is invertible,thenT−1 follows from theaboveQR-factorizationasT−1 = T−1
0 V∗U∗, where

T−1
0 is uppertriangularand hasa realizationthat is obtainedfrom that of T0 using theorem
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2. The realizationsof V∗ and U∗ follow trivially from thoseof V and U. All calculations
in determiningthe factorizationare forward recursionsbasedon staterealizations;only the
explicit computationof the inverserequiresbackwardrecursionsin order to computethe
transfermatrix of the given realization.

NUMERICAL EXAMPLE

To illustratethe abovetheoremswith a numericalexample,considerthe following matrix
T:

T =

���������
0.2500 0.0500 0.0270 −0.0056 −0.0119 −0.0081
0.0276 0.5550 0.0250 0.0910 0.0558 0.0219
0.0183 0.6055 0.3415 0.0350 0.0883 0.0615
0.0089 0.2927 0.5191 0.3428 0.0495 0.0855
0.0038 0.1268 0.2249 0.5159 0.3442 0.0500
0.0022 0.0728 0.1291 0.2961 0.6017 0.5576

� ���������
Computationof the ranksof the time-varyingHankelmatricesHk andH �k definedin equation
(2) revealsthat

[dk]6
1 = [rankHk]6

1 = [0 1 2 2 2 1]
[d �k]6

1 = [rankH �k]6
1 = [0 1 1 1 1 1]

so that, accordingto theorem1, T hasa time-varyingstaterealizationT, T � with at most
two statesin the forward recursions,andat most onestatein the backwardrecursion.Such
realizationscanbe computedusingthe theorypresentedin moredetail in [3, 4].

Using a realizationof T in outputnormal form, the inner-coprime factorsU and ∆ in the
factorizationT = U∆ arecomputedas

U =

���������
0 1.000 0 0 0 0 ⋅

−0.798 0 0.603 0 0 0 ⋅
−0.531 0 −0.702 0.475 0 0 ⋅
−0.257 0 −0.339 −0.787 0.447 0 ⋅
−0.111 0 −0.147 −0.341 −0.776 0.498 ⋅
−0.064 0 −0.084 −0.196 −0.445 −0.867 ⋅

� ��������� [(MU)k] = [1 1 1 1 1 1]
[(NU)k] = [2 1 1 1 1 0]
[(d �U)k] = [0 1 1 1 1 1]

∆ =

������������
−0.035 −0.858 −0.368 −0.255 −0.181 −0.113

0.250 0.050 0.027 −0.006 −0.012 −0.008
0 0.214 −0.445 −0.187 −0.147 −0.113
0 0 −0.348 −0.487 −0.232 −0.164
0 0 0 −0.379 −0.513 −0.249
0 0 0 0 −0.351 −0.459
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

� ������������
[(M∆)k] = [2 1 1 1 1 0]
[(N∆)k] = [1 1 1 1 1 1]
[(d∆)k] = [0 2 3 3 2 1]

Thesematricesare block-matrices: Uij is a matrix of size (MU)i × (NU)j. Note that the
dimensionsof someof the blocks are vanishing,signified by the ‘ ⋅’-entries. Such entries
occurautomaticallyin the formalismwhenever, in theorem4, � A �k

B �k � is alreadya squareunitary
matrix.
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The next step is to factor ∆ into ∆ = VT0, whereV is upperand an isometry, and T0 is
upperwith upperinverse.Theorem5 yields

V =

������������
−0.137 −0.960 0.171 −0.098 0.074 0.124
0.991 −0.133 0.024 −0.014 0.010 0.017

0 −0.247 −0.679 0.388 −0.295 −0.491
0 0 −0.713 −0.393 0.299 0.497
0 0 0 −0.828 −0.289 −0.481
0 0 0 0 −0.857 0.515
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

� ������������
[(MV)k] = [2 1 1 1 1 0]
[(NV)k] = [1 1 1 1 1 1]
[(dV)k] = [0 1 1 1 1 1]

T0 =

���������
0.252 0.167 0.077 0.029 0.013 0.008

0 0.870 0.459 0.292 0.211 0.138
0 0 0.488 0.430 0.234 0.175
0 0 0 0.458 0.477 0.238
0 0 0 0 0.409 0.441
0 0 0 0 0 −0.157

� ��������� [(MT0)k] = [1 1 1 1 1 1]
[(NT0)k] = [1 1 1 1 1 1]
[(dT0)k] = [0 1 2 3 2 1]

We havethusobtainedtheQR-factorizationT = UVT0, whereT0 is outerandcanbe inverted
straightforwardly. It shouldbestressedthatall computationscanbe kept in statespaceterms
sothatU, V andT0 arenevercomputedexplicitly. This is importantin largestructuredmatrix
applications,wherethe numberof points in time (the numberof rows andcolumnsof T) is
large, but the statedimensionsare relatively small. In suchcases,the discussedconnection
with time-varyingsystemsprovidesan efficient algorithmto computethe exactinverseof a
given matrix.
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