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Two classes of algorithms proposed for the blind equaliza-
tion of multiple channels driven by a single source are the
Mutually Referenced Equalizers (MRE) method by Gesbert
et al., and the Subspace Intersection (SSI) method by Van
der Veen et al. Although these methods seem at first sight
unrelated, we show here that a variant of the SSI method and
a particular member in the class of MRE methods provide
mathematically identical solutions.

1. INTRODUCTION

Blind equalization has been an active research area during
the last two decades, but especially during the last few years.
Two major factors appear to drive the wide interest in this
topic. Firstly, there is an increasing number of interesting
and promising applications in the area of digital communi-
cations, wireless or not. Secondly, the fact was recognized
that channel oversampling, either temporally (fractionally
spaced equalizers) or in space (antenna arrays), offers sev-
eral new leverages for solving the blind equalization prob-
lem, and thus enhances its applicability.

By oversampling an analog channel carrying a single
discrete source signal, this signal is effectively seen through
several parallel linear channels. These may be the polyphase
representations of a single physical channel or correspond to
different physical links in the case of multiple antennas, or
combinations of the two. In any case, we obtain a single-
input, multiple-output (SIMO) channel model.

From an algebraic perspective, oversampling leads to
a low-rank model for the output vector signal. This has
been extensively exploited in the so-called second-order
statistics and algebraic methods for the SIMO identifica-
tion problem [1]. At least three classes can be identified.
The first addresses the problem of estimating the channels,
viz. e.g. [2–4], the second considers the estimation of chan-
nel inverses (equalizers) [5–7], and the third attempts to
recover the transmitted symbols directly from a (typically
small) batch of output samples without resorting to chan-
nel/equalizer estimates [8, 9].

Categories 2 and 3 have the advantage of by-passing the
channel estimation and inversion step, which in cases re-

sults in increased robustness. The direct symbol-estimation
methods [8, 9] have sometimes been called row-span meth-
ods as they exploit the row-span information of the data ma-
trix to find the vector of unknown symbols. Following a
seemingly different strategy, MRE techniques [5] estimate a
collection of channel equalizers by forcing them to produce
the same (unknown) output sequence, up to fixed equaliza-
tion lags. As we show here, these two methods are in fact
more or less identical, with small differences depending on
the implementation.

We first review the row-span method of [8]. The symbol
estimates produced by this technique can be regarded as the
outputs of linear equalizers, averaged across all equalization
lags. We show that these equalizers optimize a maximal co-
herence (MC) criterion. Finally, we demonstrate the equiv-
alence between the MC criterion and a particular member in
the class of MRE criteria.

2. DATA MODEL

2.1. Data matrices

Suppose that a digital symbol sequence
�
si � is transmit-

ted through a medium and received by an array of M sen-
sors. The received signals are sampled at a rate which is P
times faster than the symbol rate, here normalized to T � 1.
Hence, during each symbol period, a total of MP scalar
measurements are available, which can be stacked into MP-
dimensional vectors xi as

xi �
��
� x1

i
...

xMP
i

���
	�


Assuming an FIR channel, we can model xi as the output of
an MP-dimensional vector channel with impulse response�
h0 � h1 � · · · � hL−1 � , where L denotes the channel length in

symbols. In the noise free case, a sample vector xi is then
given by the convolution

xi � L−1

∑
k  0

hksi−k 
 (1)



Consider a finite block of data and define the mMP × N
block-Toeplitz data matrix

��� i � �
�������
�

xi xi � 1
. . . xi � N−1

xi−1 xi
. . .

. . .
. . .

. . .
. . .

. . .

xi−m � 1
. . .

. . .
. . .

��������
	 


N is the block length, while m can be interpreted as the mem-
ory of an equalizer acting on the rows of

� � i � . Let n �
L � m−1. From (1),

� � i � has a factorization as
� � i � ����� � i � ,

where � is the mMP × n channel matrix,

���
��
� h0 · · · hL−1 0

. . .
. . .

. . .
0 h0 · · · hL−1

���
	 (2)

and

� � i � �
����
�

si si � 1
. . . si � N−1

. . .
. . .

. . .
. . .

si−n � 1
. . .

. . .
. . .

�����
	 


We will assume that � is full rank and that m and N are suffi-
ciently large, so that this is a low rank factorization (mMP ≥
L � m − 1 ≤ N). In that case, we can recover any row of � � i �
by taking linear combinations of the rows of

� � i � .
2.2. Equalizers

An equalizer with delay k acting on
� � i � tries to recon-

struct the k � 1-st row of � � i � :
w∗

k
��� i � � � si−k si−k � 1 · · · � 


See figure 1 � a � . Since � � i � has n rows, there is a total of n
possible delays, and hence there are n different equalizers wk

(k � 0 � · · · � n − 1). Note in particular that

w∗
i
��� i � � � s0 s1 · · ·�

so that

w∗
i
��� i � � w∗

k
��� k � � i � k � 0 � · · · � n − 1 


Hence we can make the n equalizers all produce the same
output sequence by properly delaying the data sequences.

2.3. Normalization

If m is sufficiently large, then
� � i � is rank deficient. This is a

source of non-uniqueness for the equalizers {wk}, since any
vector from the left null space of

� � i � may be added. Op-
timization algorithms avoid this by asking for equalizers of

minimal norm (this also helps in reducing noise amplifica-
tion). Alternatively, we can achieve the same effect by defin-
ing equalizers to act on a minimal basis for the row span of� � i � , rather than

� � i � itself. Thus introduce the SVDs:��� i � � UiΣiV
� i � � i � 0 � · · · � n − 1 


If
� � i � has rank n, then Ui has n orthonormal columns, V

� i �
has n orthonormal rows, and Σi is a diagonal matrix contain-
ing the n nonzero singular values. The rows of V

� i � form an
orthonormal basis for the row span of

� � i � . A “normalized”
equalizer acting on V

� i � is called ti, which is related to wi via

ti � ΣiU
∗
i wi

hence also satisfies

t∗
i V
� i � � �

s0 s1 · · · � � (3)

t∗
i V
� i � � t∗

kV
� k � � i � k � 0 � · · · � n − 1 


2.4. Super-equalizers

Define

XT �
��
�
� � 0 �

...� � n−1 �
���
	 � VT �

��
� V

� 0 �
...

V
� n−1 �

���
	 
 (4)

“Super-equalizers” are long vectors that collect several equal-
izers with different delays, each reconstructing the same se-
quence

�
s0 s1 · · · � . They act on the data XT or on the normal-

ized data VT , respectively:

w∗ � �w∗
0 · · · w∗

n−1 � � t∗ � � t∗
0 · · · t∗

n−1 � 

Hence the super-equalizer combines the outputs of the reg-
ular equalizers, forming an average over all admissible de-
lays. (By itself, it can also be interpreted as an ordinary
equalizer of length n � m−1 at delay n−1.) See figure 1 � b � .
There is an issue of how to weight the outputs of each equal-
izer and combine them in an optimal fashion.

3. BLIND EQUALIZATION

3.1. Subspace intersection method

From an algebraic perspective, the problem of blind equal-
ization is, for given a data matrix

�
, to find a factoriza-

tion
� ����� where � meets the required Toeplitz structure.

Since a Toeplitz matrix is generated by a single vector in a
linear way, this translates to finding

s � � s0 s1 · · · sN−1 �
such that

s ∈ row � � � 0 � �
s ∈ row � � � 1 � �

...
s ∈ row � � � n−1 � �
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�
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�
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�
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z

� b �
z
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z

Fig. 1.
�
a  Equalizer with delay k;

�
b  Super-equalizer, combining the outputs of several equalizers at different delays

where ‘row � · � ’ stands for the row span. Thus, we have to
find a single (hopefully unique) vector s which is in the in-
tersection of all n subspaces.

Numerically, there are several ways to compute the inter-
section. The usual way is to construct the union of the com-
plement of all subspaces, and take the complement again.
The problem with this is that the complementary spaces
can be highly dimensional. It was proven in [8] that, since
the rows of V

� i � form a minimal and orthonormal basis for
row � � � i � � , the same result can be obtained by constructing
the matrix VT in (4) and looking for the right singular vec-
tor corresponding to the largest singular values of VT . In the
noise-free case it is equal to the vector in the intersection;
with noise perturbations, we find a sequence that “best” fits
all subspaces. The corresponding left singular vector can be
interpreted as the equalizer that returns this sequence.

In particular, it is proven in [8] that, if tssi is the principal
left singular vector of VT and n � L � m − 1, then

t∗
ssiVT � α

�
s0 s1 · · · sN−1 �

where α is some nonzero scalar that makes the output se-
quence have norm 1. The reason, essentially, is that be-
cause of the normalization, the largest singular value of
VT is bounded by ! n. This bound is attained when t∗

ssi ��
t∗
0 · · · t∗

n−1 � where each component by itself is an equalizer
on the normalized signals (viz. (3)), returning a multiple αi

of
�
s0 s1 · · ·� . In fact, one can show that all scalings αi will

be the same.
Thus, tssi is a super-equalizer in the sense of section 2.4.

The corresponding equalizer on unnormalized data XT is de-
noted by wssi, related to tssi via

wssi � �w∗
0 · · · w∗

n−1 � ∗ � wi � UiΣ−1
i ti 
 (5)

3.2. Maximal coherence criterion

The principal left singular vector tssi of VT can also be ex-
pressed in terms of a criterion on the unnormalized received
data. Indeed, tssi can be written as

tssi � arg max"
u
"
2  1

u∗ #
V u

where # V � VTV∗
T . Define the (empirical) correlation matri-

ces

Ri $ j � � � i � � � j � ∗ �
#

X � XT X∗
T �

��
� R0 $ 0 · · · R0 $ n−1

...
...

Rn−1 $ 0 · · · Rn−1 $ n−1

���
	 �

#
0 �

��
� R0 $ 0 0

. . .
0 Rn−1 $ n−1

���
	 


Then # X � # 1 % 2
0
#

V
# 1 % 2

0 , where

# 1 % 2
0 �

���
�

R1 % 2
0 $ 0 0

. . .

0 R1 % 2
n−1 $ n−1

����
	 � R1 % 2

i $ i : � UiΣi 

It follows that w∗ #

Xw � u∗ #
V u for w � # −1 % 2∗

0 u. Now de-
note by wssi the corresponding super-equalizer provided by
the SSI method (related to tssi as in equation (5). By sub-
stitution, wssi is found to optimize the following constrained
criterion:

wssi � arg max
w∗ &

0w  1
w∗ #

X w � arg max
w∗ &

0w  1
Jssi � (6)

where Jssi is given by

Jssi : �(' n−1

∑
i  0

w∗
i
��� i � ' 2

and the constraint can be written as

w∗ #
0w � n−1

∑
i  0

' w∗
i
� � i � ' 2 � 1 
 (7)

Thus, the subspace intersection solution is also obtained by
maximizing the power of the sum of all equalizers outputs,



subject to the constraint that the sum of the powers is kept
to a constant. The SSI method tends to maximize the coher-
ence of the equalizers outputs. Indeed, in the noise-free case,
all equalizers return the same output sequence

�
s0 s1 · · ·� , up

to a common scaling. Note that this result holds true only in
the case of the constraint specified in (7).

3.3. The MRE method

The idea behind the mutually referenced equalizer (MRE)
method for blind equalization [5] is to find a vector of n
equalizers w � �w∗

0 · · · w∗
n−1 � ∗ that optimizes1

min
w

n−2

∑
i  0
' w∗

i
��� i � − w∗

i � 1
��� i � 1 � ' 2 
 (8)

Each wi plays the role of an equalizer with delay i and serves
as a training for the next equalizer. The criterion provides a
collection of exact channel inverses in the noise free case [5].
To avoid trivial solutions, w should be constrained, e.g. by
fixing one of its entries or its norm. Another suitable con-
straint is one that keeps the sum of output powers to a con-
stant, w∗ #

0w � 1. The motivation for this particular choice
is that it avoids trivial null space solutions w∗

i
� � i � � 0 ∀i,

which is necessary at least in the noise free case.
The MRE method can be extended to look at all avail-

able cross-differences [5], i.e. to solve

wmre : � arg min
w∗ &

0w  1

n−1

∑
i  0

n−1

∑
k  0

' w∗
i
��� i � − w∗

k
��� k � ' 2 
 (9)

Elaborating on this expression, we find

Jmre : � n−1

∑
i  0

n−1

∑
k  0

' w∗
i
��� i � − w∗

k
��� k � ' 2

� n−1

∑
i  0

n−1

∑
k  0

w∗
i Riiwi � wkRkkwk − w∗

i Rikwk − w∗
kRkiwi

� 2w∗

����
�
� n − 1 � R0 $ 0 −R0 $ 1 · · · −R0 $ n−1

−R1 $ 0 � n − 1 � R1 $ 1 ·
...

...
−Rn−1 $ 0 · · · � n − 1 � Rn−1 $ n−1

�����
	 w 


It thus follows that

Jmre � 2Jssi � 2nw∗ #
0w 


Under the constraint w∗ #
0w � 1, we finally obtain

min
w∗ &

0w  1
Jmre � 2n − max

w∗ &
0w  1

Jssi �
so that

wmre � wssi 

Hence we conclude that the SSI method and the extended
MRE method under output power constraint provide identi-
cal solutions.

1In [5], the MRE criterion is presented in a stochastic setting. A finite
sample implementation of the method leads to (8).

3.4. Remarks

The SSI method as described here is slightly different from
that in [8]. There, the sequence to be recovered was ex-
tended with additional tail symbols, which changed the de-
finition of VT in such a way that only a single matrix V

� 0 �
was needed. The advantage of this is that only a single data
matrix has to be normalized, leading to substantial compu-
tational savings. Otherwise, the two variants of the method
lead to similar results that are asymptotically identical. The
variant as presented here was chosen for expository reasons.

With noise, the SSI method on normalized data VT and
on original data XT are slightly different. The reason is that,
with noise, each

� � i � is always full rank, whereas V
� i � is pre-

sumably obtained from a truncated SVD, resulting in an ap-
proximate n-dimensional basis for the row span of

� � i � . If
we omit the truncation, i.e. define V

� i � to contain all mMP
right singular vectors of

� � i � , then the maximum coherence
solution is exactly equal to the SSI method on VT .
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