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Two classes of agorithms proposed for the blind equaliza-
tion of multiple channels driven by a single source are the
Mutually Referenced Equalizers (M RE) method by Gesbert
et al., and the Subspace Intersection (SSI) method by Van
der Veen et al. Although these methods seem at first sight
unrelated, we show herethat avariant of the SSI method and
a particular member in the class of MRE methods provide
mathematically identical solutions.

1. INTRODUCTION

Blind equalization has been an active research area during
thelast two decades, but especially during thelast few years.
Two major factors appear to drive the wide interest in this
topic. Firstly, there is an increasing number of interesting
and promising applicationsin the area of digital communi-
cations, wireless or not. Secondly, the fact was recognized
that channel oversampling, either temporally (fractionally
spaced equalizers) or in space (antenna arrays), offers sev-
eral new leverages for solving the blind equalization prob-
lem, and thus enhances its applicability.

By oversampling an analog channel carrying a single
discrete source signal, thissignal is effectively seen through
several parallel linear channels. These may bethe polyphase
representations of asinglephysical channel or correspond to
different physical links in the case of multiple antennas, or
combinations of the two. In any case, we obtain a single-
input, multiple-output (SIMO) channel model.

From an algebraic perspective, oversampling leads to
a low-rank model for the output vector signal. This has
been extensively exploited in the so-called second-order
statistics and algebraic methods for the SIMO identifica
tion problem [1]. At least three classes can be identified.
The first addresses the problem of estimating the channels,
viz. e.g. [2-4], the second considers the estimation of chan-
nel inverses (equalizers) [5-7], and the third attempts to
recover the transmitted symbols directly from a (typically
small) batch of output samples without resorting to chan-
nel/equalizer estimates[8, 9].

Categories 2 and 3 have the advantage of by-passing the
channel estimation and inversion step, which in cases re-

sultsin increased robustness. The direct symbol-estimation
methods [8, 9] have sometimes been called row-span meth-
ods asthey exploit the row-span information of the datama-
trix to find the vector of unknown symbols. Following a
seemingly different strategy, MRE techniques[5] estimatea
collection of channel equalizers by forcing them to produce
the same (unknown) output sequence, up to fixed equaliza-
tion lags. As we show here, these two methods are in fact
more or lessidentical, with small differences depending on
the implementation.

Wefirst review the row-span method of [8]. The symbol
estimates produced by this technique can be regarded asthe
outputs of linear equalizers, averaged acrossall equalization
lags. We show that these equalizers optimize a maximal co-
herence (MC) criterion. Finally, we demonstrate the equiv-
aence between the M C criterion and a particular member in
the class of MRE criteria

2. DATA MODEL

2.1. Datamatrices

Suppose that a digital symbol sequence [s] is transmit-
ted through a medium and received by an array of M sen-
sors. The received signals are sampled at arate which is P
times faster than the symbol rate, here normalizedto T = 1.
Hence, during each symbol period, a total of MP scalar
measurements are available, which can be stacked into MP-
dimensional vectors x; as

X

Xj = :
X1

Assuming an FIR channel, we can model x; as the output of
an MP-dimensional vector channel with impulse response
[ho,h1,-+-,h 1], where L denotes the channel length in
symbols. In the noise free case, a sample vector X; is then
given by the convolution

L1
Xi=Y hxS«- D
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Consider a finite block of data and define the mMP x N
block-Toeplitz data matrix

Xi Xi+1 Xi+N-1

Xi-m+1

N istheblock length, while mcan beinterpreted asthe mem-
ory of an equalizer acting on the rows of X(). Letn =
L-+m-1. From (1), X hasafactorizationas ¥ ) = HSW,
where H isthe mMP x n channel matrix,

hg - hi_g 0
"= 2
0 ho - hia
and
S S+1 S+N-1
s = .
S-n+1

Wewill assumethat H isfull rank and that mand N are suffi-
ciently large, so that thisisalow rank factorization (mMP =
L+ m-1<N). Inthat case, we can recover any row of S
by taking linear combinations of the rows of X,

2.2. Equalizers

An equalizer with delay k acting on X tries to recon-
struct the k+ 1-st row of S:

WXV = sk Sogr o]

See figure 1(a). Since S() has n rows, thereis atotal of n
possibledelays, and hencethereare n different equalizerswy
(k=0,---,n—1). Notein particular that

so that

wix O =wix® - jk=0,---,n-1.
Hence we can make the n equalizers al produce the same
output sequence by properly delaying the data sequences.

2.3. Normalization

If missufficiently large, then X isrank deficient. Thisisa
source of hon-uniquenessfor the equalizers{wy}, since any
vector from the left null space of X'{) may be added. Op-
timization algorithms avoid this by asking for equalizers of

minimal norm (this also helps in reducing noise amplifica-
tion). Alternatively, we can achievethe sameeffect by defin-
ing equalizersto act on aminimal basis for the row span of
X0 rather than X() itself. Thusintroduce the SVDs:

x0=uyzv®,  i=0,---,n-1.

If X0 has rank n, then U; has n orthonormal columns, V()
has n orthonormal rows, and ; isadiagonal matrix contain-
ing the n nonzero singular values. The rows of V() form an
orthonormal basisfor the row span of X, A “normalized”
equalizer actingon V() iscalledt;, which isrelated tow; via

ti =ZU W
hence also satisfies
V0 = o s, 3)
ti[v(i) _ tE\/("), i,k=0,---,n-1.
2.4. Super-equalizers
Define
x© v(©
(- v(n-1)

“Super-equalizers’ arelong vectorsthat collect several equal-
izerswith different delays, each reconstructing the same se-
quence[s S --+]. They act on thedata Xt or on the normal-
ized data Vi, respectively:

w=wg W], U=t ]

Hence the super-equalizer combines the outputs of the reg-
ular equalizers, forming an average over all admissible de-
lays. (By itself, it can aso be interpreted as an ordinary
equalizer of lengthn+ m-1at delay n—1.) Seefigure 1(b).
Thereisanissueof how to weight the outputs of each equal-
izer and combine them in an optimal fashion.

3. BLIND EQUALIZATION

3.1. Subspaceintersection method

From an algebraic perspective, the problem of blind equal-
ization is, for given a data matrix X, to find a factoriza-
tion X = HS where S meetstherequired Toeplitz structure.
Since a Toeplitz matrix is generated by a single vector in a
linear way, thistrandates to finding

S=[S S Sn-1)

such that
s O row(xO)
s O row(xW)

s O row(x(MD)
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Fig. 1. (a) Equalizer with delay k; (b) Super-equalizer, combining the outputs of several equalizers at different delays

where ‘row( )’ stands for the row span. Thus, we have to
find a single (hopefully unique) vector swhich isin thein-
tersection of all n subspaces.

Numerically, thereare several waysto computetheinter-
section. The usual way isto construct the union of the com-
plement of all subspaces, and take the complement again.
The problem with this is that the complementary spaces
can be highly dimensional. It was proven in [8] that, since
the rows of V() form aminimal and orthonormal basis for
row(X' ("), the same result can be obtained by constructing
the matrix Vr in (4) and looking for the right singular vec-
tor corresponding to the largest singular values of V. Inthe
noise-free case it is equal to the vector in the intersection;
with noise perturbations, we find a sequence that “best” fits
all subspaces. The corresponding left singular vector can be
interpreted as the equalizer that returns this sequence.

Inparticular, itisprovenin[8] that, if tsy isthe principal
left singular vector of Vr and n= L + m—1, then

tsVr=afso st S

where o is some nonzero scalar that makes the output se-
guence have norm 1. The reason, essentialy, is that be-
cause of the normalization, the largest singular value of
Vr is bounded by /n. This bound is attained when tg =
[ty - t5;] where each component by itself is an equalizer
on the normalized signals (viz. (3)), returning a multiple a;
of [so 51 --]. Infact, one can show that all scalings a; will
be the same.

Thus, tsg isasuper-equalizer in the sense of section 2.4.
The corresponding equalizer on unnormalized data Xy isde-
noted by w, related to ty via

Wes = W5 ---whqlY,  wi=UZ . (5)
3.2. Maximal coherencecriterion
The principal left singular vector tsg of Vr can aso be ex-
pressed in terms of a criterion on the unnormalized received
data. Indeed, ts can be written as

tss = arg max u“Ryu
flull?=1

where Ry = Vi, Define the (empirical) correlation matri-
ces

R, = xOx0)
Roo -+ Rona
Rx = XXf= : : ;
Ra-1,0 Ro-1,n-1
Ro,0 0
Ro =
0 Rn-1,n-1

Then Ry = Ré/ ZRVRé/ 2, where

1/2
Ro 0
Ré/z = ) Rl:h/2 =Uiz;.
2

0 él,n—l
It followsthat W"Ryxw = uPRyu forw = Ral/ZDu. Now de-
note by wsg the corresponding super-equalizer provided by
the SSI method (related to tsg as in equation (5). By sub-
stitution, weg isfound to optimize the following constrained

criterion:

Weg = arg max W-RxW=arg max Js 6
s gWDR(JW:l X ngRow:l s ( )

where Jg5 iSgiven by
S Oy 2
Jesi = || i;Wi X
and the constraint can be written as
W Row = rinwiﬂxmnz =1 @
i=l

Thus, the subspace intersection solution is also obtained by
maximizing the power of the sum of all equalizers outputs,



subject to the constraint that the sum of the powers is kept
to aconstant. The SSI method tends to maximize the coher-
ence of theequalizersoutputs. Indeed, inthe noise-freecase,
all equalizersreturn the same output sequence[sy S -+, up
to acommon scaling. Notethat thisresult holdstrueonly in
the case of the constraint specifiedin (7).

3.3. The MRE method

The idea behind the mutually referenced equalizer (MRE)
method for blind equalization [5] is to find a vector of n
equalizersw = [wg -+ w5 ;]” that optimizes!

n-2 ) )
min i;uwi%') —wil A2, (8)

Each w; playstherole of an equalizer with delay i and serves
asatraining for the next equalizer. The criterion provides a
collection of exact channel inversesinthenoisefreecase[5].
To avoid trivial solutions, w should be constrained, e.g. by
fixing one of its entries or its norm. Another suitable con-
straint is one that keeps the sum of output powersto a con-
stant, wWWRow = 1. Themotivation for this particular choice
is that it avoids trivial null space solutions wix'() = 0 i,
which is necessary at least in the noise free case.

The MRE method can be extended to look at all avail-
able cross-differences[5], i.e. to solve

n-1n-1

Z; zoanX‘” —wix®)2. (9
=0k=

Whre :=arg min
e gWDR0W=1i

Elaborating on this expression, we find

n-1n-1 .
Ime:=3 zOanW —wier®|2

n-1 n—|1: k=
= % ZOWPRiWi + WicRaWi = Wi Riwic = WicRigwi

iSOK=

(n - 1) F\’O,O _RO,l _RO,n—l
_Rl,O (n - l) R]_’l .
=2wH } i w.
-Rn-1,0 (N-1)Rp-1n1

It thus follows that
Jmwe+2Js = 2nW Row.
Under the constraint W-Row = 1, we finally obtain

min - Jwe=2n— maxX Jg
wHRow=1 e wHRow=1 S
S0 that
Wme = Ww .
Hence we conclude that the SSI method and the extended
MRE method under output power constraint provide identi-
cal solutions.

1in [5], the MRE criterion is presented in a stochastic setting. A finite
sample implementation of the method leadsto (8).

3.4. Remarks

The SSI method as described here is dlightly different from
that in [8]. There, the sequence to be recovered was ex-
tended with additional tail symbols, which changed the de-
finition of Vi in such away that only a single matrix V(©)
was heeded. The advantage of thisisthat only asingle data
matrix has to be normalized, leading to substantial compu-
tational savings. Otherwise, the two variants of the method
lead to similar resultsthat are asymptotically identical. The
variant as presented here was chosen for expository reasons.

With noise, the SSI method on normalized data i+ and
onorigina dataXt are dightly different. The reasonisthat,
with noise, each X'V isalwaysfull rank, whereasV() ispre-
sumably obtained from atruncated SV D, resulting in an ap-
proximate n-dimensional basis for the row span of X, If
we omit the truncation, i.e. define V() to contain all mMP
right singular vectors of X', then the maximum coherence
solution is exactly equal to the SSI method on V.
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