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ABSTRACT

We introduce a new compressive power spectrum estimation

approach in both frequency and direction of arrival (DOA).

Wide-sense stationary signals produced by multiple uncor-

related sources are compressed in both the time and spatial

domain where the latter compression is implemented by ac-

tivating only some of the antennas in the underlying uniform

linear array (ULA). We sample the received signal at every ac-

tive antenna at sub-Nyquist rate, compute both the temporal

and spatial correlation functions between the sub-Nyquist rate

samples, and apply least squares to reconstruct the full-blown

two-dimensional power spectrum matrix where the rows and

columns correspond to the frequencies and the angles, res-

pectively. This is possible under the full column rank condi-

tion of the system matrices and without applying any sparsity

constraint on the signal statistics. Further, we can estimate

the DOAs of the sources by locating the peaks of the angular

power spectrum. We can theoretically estimate the frequency

bands and the DOAs of more uncorrelated sources than active

sensors using sub-Nyquist sampling.

1. INTRODUCTION

Compressive sampling and multi-coset sampling have drawn

a lot of interest from the signal processing community due to

the possibility to reconstruct a signal sampled at sub-Nyquist

rate with no or little information loss under the constraint that

the signal is sparse in a particular basis [1, 2]. All these works

on sub-Nyquist sampling are important especially when it is

needed to relax the requirements on the analog-to-digital con-

verters (ADCs). For a wide-sense stationary (WSS) signal, it

has also been shown that perfect reconstruction of its second-

order statistics from sub-Nyquist rate samples is theoretically

possible even without sparsity constraint [3]. This invention

is important for some applications, such as wideband spec-

trum sensing for cognitive radio, where only perfect recon-

struction of the temporal auto-correlation function is required

instead of the signal itself. The principle of reconstructing the

temporal auto-correlation function of a signal from the time-

domain compressive measurements has in a dual form also

been proposed in the spatial domain. Given a linear antenna

array, [4] and [5] show that if the locations of the antennas

are arranged according to a nested or coprime array, the spa-

tial correlation values between the outputs of the antennas in

the array can be used to generate the spatial correlation val-

ues between the outputs of the antennas in the virtual array or

difference co-array (which is uniform in this case) which gen-

erally has more antennas and a larger aperture than the actual

array. This enhances the degrees of freedom and allows [4]

and [5] to estimate the direction of arrival (DOA) of more un-

correlated sources than sensors. The minimum redundancy

array (MRA) of [6] can also be used to produce this feature

but in a more optimal way. This has been exploited by [7] to

perform compressive angular power spectrum reconstruction.

The advantage offered by the nested and coprime arrays over

the MRA however, is the possibility to derive a closed-form

expression for the array geometry and the achievable number

of correlation values in the resulting uniform difference co-

array. In the aforementioned concept, the spatial compression

is performed in the sense that we select a subset of antennas

from a uniform linear array (ULA).

In this paper, we jointly reconstruct both the frequency-

domain and angular-domain power spectrum using compres-

sive samples. We use a ULA as the underlying array and ac-

tivate only some of its antennas leading to a spatial-domain

compression. The received signal at each active antenna is

then sampled at sub-Nyquist-rate using multi-coset sampling.

Next, we compute all the correlation values between the re-

sulting sub-Nyquist rate samples at all active antennas both

in the time domain and the spatial domain and use them to

reconstruct the two-dimensional (2D) power spectrum matrix

where each row gives the power spectrum in the frequency

domain for a given angle and where each column contains

the power spectrum in the angular domain for a given fre-

quency. Further, we can estimate the DOA of the sources

active at each frequency by locating the peaks in the angu-

lar power spectrum. This 2D power spectrum reconstruction

can be done for more uncorrelated sources than active sensors

without any sparsity constraint on the true power spectrum.

2. PRELIMINARIES

First, consider a ULA having Ns antennas receiving signals

from K uncorrelated WSS sources. We assume that the dis-

tance between the sources and the ULA is large enough com-

pared to the length of the ULA and thus the wave incident
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on the ULA is assumed to be planar and the sources can be

assumed as point sources. We also assume that the inverse

of the bandwidth of the aggregated incoming signals is larger

than the propagation delay across the ULA, which allows us

to represent the delay between the antennas as a phase shift.

Based on these assumptions, we can write the ULA output as

x(t) =

Q
∑

q=1

a(θq)sq(t) + n(t) = As(t) + n(t) (1)

where x(t) is the Ns × 1 output vector containing the

received signal at the Ns antennas of the ULA, n(t) is

the Ns × 1 additive white Gaussian noise vector, s(t) =
[s1(t), s2(t), . . . , sQ(t)]

T is the Q×1 extended source vector

with sq(t) the incoming signal from the investigated an-

gle θq , and A = [a(θ1),a(θ2), . . . ,a(θQ)] is the Ns × Q
extended array manifold matrix with a(θq) the Ns × 1 ar-

ray response vector containing the phase shifts experienced

by sq(t) at each element of the ULA. Note that {θq}
Q
q=1

is known and might only approximately contain the actual

DOAs of the K sources. We generally assume that n(t)
and s(t) are uncorrelated, that the impact of the wireless

channel has been taken into account in s(t), and that the

noises at different antennas are uncorrelated with variance

σ2
n, i.e., E[n(t)nH(t)] = σ2

nINs
, with INs

the Ns × Ns

identity matrix. We consider the first element of the ULA as

a reference point and express the array response vector a(θq)
as a(θq) = [1, a(θq)

d, a(θq)
2d, . . . , a(θq)

(Ns−1)d]T , where

a(θq) = exp (j2πsin(θq)) and d is the distance between two

consecutive antennas in wavelengths, which is set to d ≤ 0.5
in order to prevent spatial aliasing.

In order to simplify the further analysis, we introduce

x[m] = x(mT ), n[m] = n(mT ), and s[m] = s(mT )
as a digital representation of x(t), n(t), and s(t), res-

pectively, where 1/T is the Nyquist sampling rate at ev-

ery ADC associated with each antenna. We then collect

the output vectors x[m] at Nt consecutive sample indices

into the Ns × Nt matrix X[n], for n = 0, 1, . . . , Nn−1,

as X[n] = [x[nNt],x[nNt + 1], . . . ,x[(n+ 1)Nt − 1]] and

write X[n] as

X[n] = AS[n] +N[n] (2)

where N[n] is similarly defined as X[n] and the Q×Nt ma-

trix S[n] is given by S[n] = [s[nNt], s[nNt + 1], . . . , s[(n +
1)Nt − 1]]. Let us also write the Q × 1 vector s[nNt + i] as

s[nNt + i] = [s1[nNt + i], s2[nNt + i], . . . , sQ[nNt + i]]T

with sq[m] = sq(mT ) a digital representation of sq(t).

3. TIME-DOMAIN AND SPATIAL-DOMAIN

COMPRESSION

In this section, we introduce the compression operations on

the output matrix X[n] both in the spatial domain and time

domain. The spatial-domain compression is implemented by

activating only Ms out of Ns available antennas in the ULA

leading to a possibly non-ULA of less active antennas than

sources. Further, in the receiver branches associated with the

Ms active antennas, time-domain compression is performed

by sampling the received analog signal at sub-Nyquist-rate

using the multi-coset sampling principle discussed in [2],

which can be implemented using the practical sampling de-

vice proposed in [3]. Here, the multi-coset sampling process

is represented by selecting only Mt out of Nt time samples.

We first introduce the Ms × Ns spatial-domain selection

matrix Cs, which is formed by selecting Ms rows of INs
.

Here, the indices of the selected rows of INs
used to con-

struct Cs correspond to the indices of the Ms active antennas

selected from the Ns available antennas in the ULA. Based

on (2), the Ns × Nt matrix X[n] is then compressed in the

spatial-domain by Cs leading to the Ms ×Nt matrix

Y[n] = CsX[n]
∆
= BS[n] +M[n] (3)

where Y[n] = [y[nNt],y[nNt + 1], . . . ,y[(n + 1)Nt − 1]]
with y[nNt+ l] = [y1[nNt+ l], y2[nNt+ l], . . . , yMs

[nNt+
l]]T , B = [b(θ1),b(θ2), . . . ,b(θQ)] is the Ms × Q ar-

ray response matrix with b(θq) = Csa(θq) the Ms × 1
array response vector associated with the Ms activated an-

tennas, the Ms × Nt matrix M[n] is given by M[n] =
[m[nNt],m[nNt + 1], . . . ,m[(n+ 1)Nt − 1]], and m[m]
is the Ms × 1 discrete noise vector given by m[m] =
Csn[m]. Observe that m[m] generally has correlation matrix

E
[

m[m]mH [m′]
]

= σ2
nIMs

δ[m − m′]. The next step is

to introduce the Mt × Nt time-domain selection matrix Ct

formed by selecting Mt rows of the Nt × Nt identity matrix

INt
, and further compress Y[n] in (3) in the time domain,

leading to the Ms ×Mt matrix

Z[n] = Y[n]CT
t . (4)

4. POWER SPECTRUM RECONSTRUCTION

Denote the j-th row of Z[n] and Y[n] in (4) as zTj [n] and

yT
j [n], respectively, and write the Mt×1 vector zj [n] in terms

of its elements as zj [n] = [zj,1[n], zj,2[n], . . . , zj,Mt
[n]]T

and the Nt × 1 vector yj [n] as yj [n] = [yj [nNt], yj [nNt +
1], . . . , yj [(n + 1)Nt − 1]]T . This allows us to rewrite the

time-domain compression in (4) in terms of the row vectors

of Z[n] and Y[n], i.e.,

zj [n] = Ctyj [n], j = 1, 2, . . . ,Ms. (5)

Using (5), our next step is to calculate the correlation matrix

between zi[n] and zj [n] for all i, j = 1, 2, . . . ,Ms as

Rzi,zj = E
[

Ctyi[n]yj [n]
HCH

t

]

= CtRyi,yj
CH

t . (6)

In practice, the expectation operator in (6) can be estimated

by taking an average over Nn available matrices Z[n]. Af-

ter cascading all columns of Rzi,zj into the M2
t × 1 vector

vec(Rzi,zj ) and by taking into account the fact that Ct is a

real matrix, we can express vec(Rzi,zj ) based on (6) as

vec(Rzi,zj ) = (Ct ⊗Ct)vec(Ryi,yj
) (7)
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where vec(.) is the operator that cascades all columns of a

matrix into a single column vector and ⊗ represents the Kro-

necker product operation. Up to this stage, let us recall that

{sq(t)}
Q
q=1 in (1) are WSS processes since we have K WSS

sources. Based on this fact, as well as (3), it is obvious that

the elements of yj [n] in (5) also form a WSS sequence. This

means that the Nt × Nt matrix Ryi,yj
in (7) has a Toeplitz

structure allowing us to condense Ryi,yj
into the (2Nt −

1) × 1 vector ryi,yj
= [ryi,yj

[0], ryi,yj
[1], . . . , ryi,yj

[Nt −
1], ryi,yj

[1−Nt], . . . , ryi,yj
[−1]]T and write

vec(Ryi,yj
) = Tryi,yj

(8)

where T is a special N2
t × (2Nt− 1) repetition matrix whose

i-th row is given by the ((i−1+(Nt−2)
⌊

i−1
Nt

⌋

) mod (2Nt−

1)+1)-th row of the identity matrix I2Nt−1. By combining (7)

and (8), we obtain

vec(Rzi,zj ) = (Ct ⊗Ct)Tryi,yj
= Rctryi,yj

(9)

where Rct = (Ct⊗Ct)T is an M2
t × (2Nt−1) matrix. Ob-

serve that it is possible to reconstruct ryi,yj
from vec(Rzi,zj )

in (9), for all i, j = 1, 2, . . . ,Ms, using least squares (LS) if

M2
t ≥ 2Nt − 1 and Rct has full column rank.

The next step is to figure out the relationship between

{ryi,yj
}Ms

i,j=1 in (9) and the extended source matrix S[n]
in (3). By taking into account the fact that every row of Y[n]
and S[n] is a WSS sequence and the assumption that the

extended source vector s[m] and the noise vector m[m] are

uncorrelated, it is straightforward to find that the correlation

matrix between y[nNt + l] and y[nNt + l′] is given by

Ry[l − l′] = BRs[l − l′]BH + σ2
nIMs

δ[l − l′] (10)

for l, l′ = 0, 1, . . . , Nt − 1. Since the point sources are as-

sumed to be uncorrelated, the elements of s[m] are also un-

correlated and thus the Q×Q matrix Rs[l − l′] is a diagonal

matrix. By exploiting this fact and stacking all columns of the

Ms × Ms matrix Ry[l − l′] in (10) into the M2
s × 1 vector

vec(Ry[l − l′]), we obtain

vec(Ry[l − l′]) = (B∗ ⊙B)diag(Rs[l − l′])

+ σ2
nvec(IMs

)δ[l − l′], l, l′ = 0, 1, . . . , Nt − 1, (11)

where ⊙ represents the Khatri-Rao product operation. Let

us now investigate the relationship between the elements

of {ryi,yj
}Ms

i,j=1 in (9) and vec(Ry[l − l′]) in (11). We

can find that {vec(Ry[l − l′])}Nt−1
l,l′=0 is actually related to

{ryi,yj
}Ms

i,j=1 as vec(Ry[l − l′]) = [ry1,y1
[l − l′], ry2,y1

[l −

l′], . . . , ryMs ,yMs
[l − l′]]T . Hence, we can use the ele-

ments of the reconstructed {ryi,yj
}Ms

i,j=1 in (9) to form

{vec(Ry[l − l′])}Nt−1
l,l′=0 in (11) and then use them to recon-

struct {diag(Rs[l−l′])}Nt−1
l,l′=0 in (11), which can be performed

using LS if M2
s ≥ Q and B∗ ⊙B has full column rank.

If we combine the Q× 1 vectors {diag(Rs[l − l′])}Nt−1
l,l′=0

as R̄s = [diag(Rs[0]), diag(Rs[1]), . . . , diag(Rs[Nt − 1]),

diag(Rs[1 − Nt]), . . . , diag(Rs[−1])], we can observe that

the q-th row of R̄s actually corresponds to the temporal auto-

correlation of the incoming signal from the investigated angle

θq, which can be written as rTsq = [rsq [0], rsq [1], . . . , rsq [Nt−
1], rsq [1 − Nt], . . . , rsq [−1]]. By defining F2Nt−1 as the

(2Nt − 1) × (2Nt − 1) discrete Fourier transform (DFT)

matrix, we can compute the power spectrum of sq[m] as

psq = F2Nt−1rsq , where psq is the (2Nt − 1) × 1 power

spectrum vector of the incoming signal from the investigated

angle θq. By combining {psq}
Q
q=1 into the Q × (2Nt − 1)

matrix P̄s = [ps1 ,ps2 , . . . ,psQ ]
T , we can write

P̄s = R̄sF2Nt−1. (12)

Note that P̄s in (12) can be perceived as a 2D power spectrum

matrix where every row of P̄s gives the power spectrum in

the frequency-domain for a given investigated angle and every

column of P̄s provides the power spectrum information in the

angular domain for a given frequency.

5. CONSTRUCTION OF THE COMPRESSION

MATRICES

Recall that the 2D power spectrum matrix P̄s can be recon-

structed from vec(Rzi,zj ) in (9), which contains the cross-

correlations between the rows of the measurement matrix

Z[n] in (4), by solving (9) and (11) using LS and then ap-

plying the DFT on the rows of the resulting matrix R̄s. We

now discuss the choice of the selection matrix Ct and the

extended array response matrix B that ensure the uniqueness

of the LS solution of (9) and (11), respectively.

We first investigate the choice of Ct that results in a full

column rank matrix Rct . Since the rows of Ct and T in (9)

are formed by selecting the rows of the identity matrix, it is

clear that every row of both Ct ⊗ Ct and T only contains a

single one and zeros elsewhere. This fact guarantees that each

row of Rct has only a single one and thus, in order to ensure

the full column rank condition of Rct , we need to ensure that

each column of it has at least a single one. This problem

actually has been encountered and solved in [3] where the so-

lution is to construct Ct by selecting the rows of INt
based on

the so-called minimal length-(Nt − 1) sparse ruler problem.

In practice, this results in a multi-coset sampling procedure

called the minimal sparse ruler sampling [3].

Next, we examine the choice of B, which boils down to

the selection of the activated antennas in the ULA and the

investigated angles {θq}
Q
q=1. Let us write B∗ ⊙B in terms of

{b(θq)}
Q
q=1 as

B∗ ⊙B = [b∗(θ1)⊗ b(θ1), . . . ,b
∗(θQ)⊗ b(θQ)] (13)

and b(θq) in terms of a(θq) as

b(θq) =
[

a(θq)
d1 , a(θq)

d2 , . . . , a(θq)
dMs

]T
(14)

where di is the distance in wavelengths between the i-th ac-

tive antenna and the reference antenna of the ULA defined in

3
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Section 2. It is clear from (13) and (14) that the q-th column

of B∗ ⊙B contains the elements exp (j(di − dj)2πsin(θq)),
for i, j = 1, 2, . . . ,Ms. While our task to find general design

conditions to guarantee the full column rank of B∗ ⊙ B is

not trivial, the following theorem suggests one possible way

to achieve a full column rank B∗ ⊙B.

Theorem 1: The matrix B∗ ⊙ B has full column rank

if: 1) There exist Q distinct values of θq satisfying −π
2 <

{θq}
Q
q=1 ≤ π

2 , and 2) There exists an integer Nv ≥ Q such

that {di − dj}
Ms

i,j=1 contains an arithmetic sequence of Nv

terms having a difference of d ≤ 0.5 between each two con-

secutive terms.

The proof of Theorem 1 can be found in Appendix A. The

second condition indicates that there exist Nv distinct rows

from B∗ ⊙ B that form the array response matrix of a vir-

tual ULA with Nv antennas, which can only be achieved

for Nv ≤ 2Ns − 1. This second condition also implies

that we have more antennas in this virtual ULA than inves-

tigated angles. Some possible ways to satisfy Theorem 1 is

to select the Ms active antennas from the Ns antennas in the

ULA based on the MRA discussed in [6] (which also obeys

the minimal sparse ruler problem [7]), the two-level nested

array [4], or the coprime array [5]. For the MRA and the

two-level nested array, Theorem 1 can be satisfied even for

Nv = 2Ns − 1. Note that although the Q different values of

θq can be chosen in an arbitrary fashion, they should not be

too close to each other, since otherwise the resulting B∗ ⊙B

might be ill-conditioned. Theorem 1 also implies that the

maximum number of detectable sources is upper bounded by

K ≤ 2Ns − 1 since we cannot detect more than Q sources.

Apart from satisfying Theorem 1, another way to achieve a

full column rank B∗ ⊙B is suggested by Theorem 2.

Theorem 2: The matrix B∗ ⊙B has full column rank if:

1) {(di−dj)mod Q
2 }

Ms

i,j=1 has at least Q different values and

2) the grid of investigated angles {θq}
Q
q=1 is designed based

on the inverse sinusoidal angular grid where

θq = sin
−1

(

2

Q

(

q − 1−

⌈

Q− 1

2

⌉))

, (15)

The proof for this theorem can be found in Appendix B. Note

that the first condition from Theorem 2 is less strict than the

second condition from Theorem 1. A good option is to use a

configuration satisfying Theorem 1 with Nv = 2Ns − 1 and

d = 0.5, and to use (15) with Q = 2Ns − 1. This will not

only ensure that the resulting M2
s × (2Ns−1) matrix B∗⊙B

has full column rank but also that there exists a (2Ns − 1) ×
(2Ns−1) submatrix from B∗⊙B that forms a row-permuted

version of the (2Ns − 1) × (2Ns − 1) inverse DFT matrix,

meaning that B∗ ⊙B is well-conditioned.

6. NUMERICAL STUDY

In this section, we examine the proposed approach with some

numerical study. We consider a ULA having Ns = 36 an-

tennas as the underlying array and construct an MRA of ac-

tive antennas by selecting the antenna indices based on the

minimal length-35 sparse ruler problem discussed in [3, 7].

This leads to Ms = 10 activated antennas with {dj}
10
j=1 =

{0, d, 4d, 10d, 16d, 22d, 28d, 30d, 33d, 35d} where d is set to

d = 0.5. The set of investigated angles {θq}
Q
q=1 is set ac-

cording to (15) with Q = 2Ns − 1 = 71. In the receiver

branch corresponding to each active antenna, the time-domain

compression rate of Mt/Nt = 0.4048 is obtained by setting

Nt = 84 and Mt = 34. We construct the 34 × 84 selection

matrix Ct by first solving the minimal length-83 sparse ruler

problem which gives the indices of the 16 rows of INt
that

have to be selected. The selection of these 16 rows will en-

sure that the resulting matrix Rct in (9) has at least a single

one in each column. The additional 18 rows of Ct are then

randomly selected from the remaining rows of INt
that have

not been selected. We simulate the case when we have more

sources than active antennas by generating K = 12 uncor-

related sources having DOAs with 9 degrees of separation,

i.e., the set of DOAs is given by {−540,−450, . . . , 450}. The

sources produce complex baseband signals whose frequency

bands are given in Table 1 and which are generated by passing

circular complex zero-mean Gaussian i.i.d. noise with vari-

ance σ2 = 5 into a digital filter of length Nt = 84 with the

unit-gain passband of the filter for each source set according

to Table 1. This will ensure that the true auto-correlation se-

quence for each source is limited to −Nt +1 ≤ m ≤ Nt − 1.

We assume a spatially and temporally white noise with vari-

ance σ2
n = 5 and set the number of measurement matrices

Z[n] to Nn = 5951.

Table 1. The frequency band occupied by the sources
Source Actual DOA Occupied frequency band

1 −540 [−0.275π,−0.2π]

2 −450 [−0.8π,−0.725π]

3 −360 [−0.35π,−0.275π]

4 −270 [0.35π, 0.425π]

5 −180 [0.875π, 0.95π]

6 −90 [0.05π, 0.125π]

7 00 [−0.95π,−0.875π]

8 90 [−0.65π,−0.575π]

9 180 [−0.425π,−0.35π]

10 270 [0.575π, 0.65π]

11 360 [0.125π, 0.2π]

12 450 [0.5π, 0.575π]

Fig. 1 illustrates the estimate of the power spectrum as a

function of the frequency and the investigated angles. It is

clear that the 12 uncorrelated sources can generally be de-

tected. We can find the DOA estimates by locating the peak

of this spectrum though the actual DOAs might not fall on top

of the defined investigated angles. For a given DOA estimate,

we can locate the active frequency band of the corresponding

source together with the value of the power spectrum esti-

mate. The top view of Fig. 1, which is provided by Fig. 2,

4
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gives a much clearer picture of the quality of the estimate.

We can easily compare this figure with the data provided in

Table 1. Observe that the estimate of the DOA, the power

spectrum, as well as the active frequency band of the sources

is quite satisfactory except for the sources with DOAs −90

and 90. For these two sources, it is apparent from Fig. 2

that the impact of the grid mismatch effect is quite signifi-

cant and their power spectrum estimates seem to have been

distributed among the two nearest grid points. Note that this

2D power spectrum estimate can be produced without apply-

ing any sparsity contraint on the true power spectrum, but can

of course be improved if such a constraint is used.

A. PROOF OF THEOREM 1

The second requirement of Theorem 1 implies that there ex-

ists a Q × Q matrix B́ = [b́(θ1), b́(θ2), . . . , b́(θQ)], which

is a submatrix of B∗ ⊙ B in (13), that forms the array re-

sponse matrix of a virtual ULA of Q antennas with b́(θq)

given by b́(θq) = [a(θq)
d̄, a(θq)

d̄+d, . . . , a(θq)
d̄+(Q−1)d]T ,

where d̄ gives the distance between the first antenna in the vir-

tual ULA and the reference antenna in the underlying ULA in

Section 2. Hence, it is clear that B́ is a column-wise Vander-

monde matrix. From the well-known properties of a column-

wise Vandermonde matrix, B́ has full column rank due to the

first requirement of Theorem 1 and since d ≤ 0.5. It is then

trivial to show that B∗ ⊙B also has full column rank.

B. PROOF OF THEOREM 2

Based on (13) and (14) and the fact that the inverse sinu-

soidal angular grid in (15) is used, we can write B∗ ⊙ B

in terms of its row vectors, i.e., B∗ ⊙ B = [β(d1 −
d1),β(d2−d1), . . . ,β(dMs

−dMs
)]T , with β(di−dj) given

by β(di−dj) = [ej
4π
Q

(di−dj)(−⌈Q−1

2 ⌉), . . . , ej
4π
Q

(di−dj)(−1),

1, ej
4π
Q

(di−dj), . . . , ej
4π
Q

(di−dj)(Q−1−⌈Q−1

2 ⌉)]T . Observe that

B∗⊙B is a row-wise Vandermonde matrix since the elements

of β(di − dj) are ordered according to geometric progres-

sion. In order to ensure that B∗ ⊙ B has full column rank,

we need Q distinct values of 4π
Q
(di − dj) modulo 2π which

is guaranteed by the first requirement of Theorem 2.
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Fig. 1. The power spectrum estimate (in watt/radian/sample) as a

function of frequency (radian/sample) and angle (degree).
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Fig. 2. The top view of Fig. 1.
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