
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 93 (2013) 3435–3448
0165-16
http://d

☆ This
(Project
on Sign

n Corr
E-m

g.j.t.leus
journal homepage: www.elsevier.com/locate/sigpro
Direction of arrival estimation for more correlated sources
than active sensors$

Dyonisius Dony Ariananda n, Geert Leus
Faculty of Electrical Engineering Mathematics and Computer Sciences, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, Zuid
Holland, The Netherlands
a r t i c l e i n f o

Article history:
Received 17 August 2012
Received in revised form
29 March 2013
Accepted 2 April 2013
Available online 19 April 2013

Keywords:
Dynamic array
Periodic scanning
More correlated sources than active sensors
Underlying array
Least squares
Sparsity-regularized least squares
Second-order statistics
84/$ - see front matter & 2013 Elsevier B.V.
x.doi.org/10.1016/j.sigpro.2013.04.011

work is supported by NWO-STW unde
10382). Part of this work appeared at the
als, Systems, and Computers, November 201
esponding author. Tel.: +31 15 2781797; fax
ail addresses: d.a.dyonisius@tudelft.nl (D.D. A
@tudelft.nl (G. Leus).
a b s t r a c t

In this paper, a new direction of arrival (DOA) estimation method for more correlated
sources than active receiving antennas is proposed. The trick to solve this problem using
only second-order statistics is to consider a periodic scanning of an underlying uniform
array, where a single scanning period contains several time slots and in different time
slots different sets of antennas are activated leading to a dynamic non-uniform array with
possibly less active antennas than sources in each time slot. We collect the spatial
correlation matrices of the active antenna arrays for all time slots and are able to present
them as a linear function of the spatial correlation matrix of the underlying array. We
provide a necessary and sufficient condition for this system of equations to be full
column-rank, which allows for a least squares (LS) reconstruction of the spatial correlation
matrix of the underlying array. Some practical greedy algorithms are presented to design
dynamic arrays satisfying this condition. In a second step, we use the resulting spatial
correlation matrix of the underlying array to estimate the DOAs of the possibly correlated
sources by spatial smoothing and MUSIC. Alternatively, we can express this matrix as a
linear function of the correlation matrix of the sources (incoming signals) at a grid of
investigated angles, and solve this system of equations using either LS or sparsity-
regularized LS (possibly assisted by additional constraints), depending on the grid
resolution compared to the number of antennas of the underlying array.

& 2013 Elsevier B.V. All rights reserved.
1. Context

In this section, we present the underlying model that
will be used in the next sections and discuss related work
on direction of arrival (DOA) estimation. Here, we restrict
our attention to deterministic methods as well as stochas-
tic methods exploiting up to second-order statistics. The
presented approaches are further classified into methods
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that can handle correlated sources as well as methods that
can handle more sources than sensors.

To set the stage, let us consider a uniform array of N
antennas receiving K narrowband signals produced by
possibly correlated sources. For simplicity, we assume in
this paper that this uniform array of N antennas is one-
dimensional, i.e., we adopt a uniform linear array (ULA),
but our exposition can be extended to higher dimensional
arrays. The output of the ULA can be written as

xðtÞ ¼ ∑
K

k ¼ 1
aðθkÞskðtÞ þ nðtÞ ¼AsðtÞ þ nðtÞ ð1Þ

where t is the time index, xðtÞ is the N�1 output vector
containing the received signals at the N antennas, nðtÞ is
the N�1 noise vector containing the noises at the N
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antennas, sðtÞ ¼ ½s1ðtÞ; s2ðtÞ;…; sK ðtÞ�T is the K�1 source
vector with sk(t) the incoming signal from the k-th source
with angle θk, and A¼ ½aðθ1Þ; aðθ2Þ;…; aðθK Þ� is the N�K
array response matrix with aðθkÞ the array response vector
for the k-th source. If we consider the first element of the
ULA as a reference point, we can express the array
response vector as aðθkÞ ¼ ½1;ϕðθkÞd;ϕðθkÞ2d;…;

ϕðθkÞðN−1Þd�T , where d is the distance in wavelengths
between two antennas and ϕðθkÞ ¼ expðj2πsinθkÞ. We
always consider that −π=2≤θkoπ=2 and that fθkgKk ¼ 1
contains different values. We generally assume that the
impact of the wireless channel has been taken into
account in sðtÞ, that nðtÞ and sðtÞ are uncorrelated, and
that the noises at the different antennas are mutually
uncorrelated with variance s2n, i.e., E½nðtÞnHðtÞ� ¼ s2nIN , with
IN the N�N identity matrix. However, the incoming
signals can possibly be correlated with correlation matrix
E½sðtÞsHðtÞ� ¼ Rs. As a result, the spatial correlation matrix
E½xðtÞxHðtÞ� ¼ Rx can be written as

Rx ¼ARsA
H þ s2nIN : ð2Þ

To model the more general case of a non-uniform linear
array (NULA), we can select M (≤N) antennas from the
above ULA of N antennas, which is referred to as the
underlying array in the following. Defining yðtÞ as theM�1
output vector representing the received signals at the M
selected active antennas, we obtain

yðtÞ ¼ CxðtÞ ¼ ∑
K

k ¼ 1
bðθkÞskðtÞ þmðtÞ ¼ BsðtÞ þmðtÞ; ð3Þ

where C is an M�N selection matrix containing M rows
from IN , and where we further introduced bðθkÞ ¼ CaðθkÞ
and B¼ CA as the downsampled array response vector and
matrix, respectively, which are both related to the set of M
active antennas. Note that mðtÞ is the M�1 noise vector
obtained as mðtÞ ¼ CnðtÞ, which has correlation matrix
E½mðtÞmHðtÞ� ¼ s2nIM . The spatial correlation matrix of the
active antennas can then be written as

Ry ¼ E½yðtÞyHðtÞ� ¼ CRxCH ¼ BRsBH þ s2nIM : ð4Þ
To retain the same aperture as the underlying ULA, we
assume that C always selects the first and last antennas of
the underlying ULA. We also assume that both the NULA
and the underlying ULA introduce no spatial aliasing,
which can be guaranteed by taking d≤1=2 and by design-
ing C such that the indices of the selected antennas are
coprime [1], which is true for most existing NULA designs.

Based on the above model for a NULA, we will now
discuss a number of state-of-the-art DOA estimation
methods that can either handle correlated sources or more
sources than sensors. Note that modeling a NULA by
selecting a subset of antennas from a ULA turns out to be
useful to explain some of the following DOA estimation
methods. Moreover, the dynamic array concept we will
propose in this paper will also build upon such a model, as
will be explained in Section 2.

1.1. Handling correlated sources

Depending on the characteristics of the sources sðtÞ and
the number of sources, K, relative to the total number of
active antennas in the array, M, it is possible to perform
DOA estimation based on Ry in (4) using existing
approaches. It is clear that the signal correlation matrix
Rs in (4) is diagonal when the incoming signals are
uncorrelated, is nondiagonal and full rank when the
signals are partially correlated, and is nondiagonal and
rank deficient when the signals are fully correlated (coher-
ent) [2]. When Rs has full rank and M4K , MUSIC in [3] (or
root-MUSIC in [4]) can be applied. For uncorrelated or
mildly correlated incoming signals, MUSIC performs very
well but for highly or fully correlated signals, Rs in (4) is
close to or exactly singular and the MUSIC performance
deteriorates. As discussed in [5], for an array that contains
a sufficient number of translational equivalent subarrays
(this is for instance the case for a ULA, i.e., when we do not
perform antenna selection and C¼ IN), the highly or fully
correlated sources in sðtÞ can be handled by applying the
spatial smoothing preprocessing scheme in [2,6] to Ry in (4).
This scheme leads to a spatially smoothed correlation
matrix Ry that can be expressed in terms of a full rank
matrix R s, which is a modified version of Rs in (4). Hence,
MUSIC (or root-MUSIC) can now be applied to Ry. Inter-
estingly, instead of using spatial smoothing and MUSIC to
estimate the DOA of coherent incoming signals, [5] intro-
duces a new method that relies on the evaluation of the
distance between the investigated steering vectors and the
subspace spanned by the columns of the product of the
noise correlation matrix and the signal eigenvectors. This
distance evaluation is based on the predefined distance
metric called normalized distance functional. For another
class of approaches, a fine grid of investigated angles is
defined in the angular domain and then the output of the
array is expressed in terms of a linear combination of the
steering vectors of these investigated angles. For the
model in (3), this is equivalent to writing yðtÞ as

yðtÞ ¼ ∑
Q

q ¼ 1
bð ~θqÞs ~θq

ðtÞ þmðtÞ ¼ ~B ~sðtÞ þmðtÞ; ð5Þ

where ~sðtÞ ¼ ½s ~θ1
ðtÞ; s ~θ2

ðtÞ;…; s ~θQ
ðtÞ�T is the Q�1 extended

source vector with s ~θq
ðtÞ the incoming signal from the q-th

investigated angle ~θq, and ~B ¼ ½bð ~θ1Þ;bð ~θ2Þ;…;bð ~θQ Þ� is the
M � Q extended subsampled array response matrix with
bð ~θqÞ the subsampled array response vector for the q-th
investigated angle ~θq. As before, we always consider that
−π=2≤ ~θqoπ=2 and that f ~θqgQq ¼ 1 contains different values.
It is important to note that f ~θqgQq ¼ 1 is known and might
approximately contain the set of actual angles of arrival
fθkgKk ¼ 1 contained in B in (3), which is not known by the
receiver. Based on (5) and defining the extended source
correlation matrix as E½~sðtÞ~sðtÞH � ¼ R ~s , we can also express
Ry in (4) as

Ry ¼ ~BR ~s
~B
H þ s2nIM : ð6Þ

The DOA estimation approach proposed in [7] exploits
the model described by (5) with Q⪢M. In this case, ~B has
more columns than rows and as a result, the columns of ~B
play the role of an overcomplete basis for yðtÞ. To over-
come this problem, [7] assumes that the coefficient vector
with respect to this overcomplete basis is generally sparse.
Further, [7] exploits multiple measurement vectors (MMV)
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by collecting data from multiple time indices, based on the
assumption that the DOAs do not change within the
duration of the sample acquisition. Hence, their data
model is given by Y¼ ~B ~S þM, where Y, M, and ~S respec-
tively stack yðtÞ, mðtÞ and ~sðtÞ over different time indices in
a row-wise fashion. Next, the so-called ℓ1 singular value
decomposition (ℓ1�SVD) algorithm consisting of a dimen-
sionality reduction of the MMV model as well as a mixed
ℓ2;1�norm minimization is used to exploit the group
sparsity of the columns of ~S in the MMV model. A closely
related method can be found in [8], with the difference
that a mixed ℓ2;0�norm approximation is used instead of a
mixed ℓ2;1�norm to exploit the group sparsity of the
columns of ~S, leading to the so-called joint ℓ0 approxima-
tion (JLZA) algorithm.

Other grid-based methods directly exploit (6) again
with Q⪢M, such as the work of [9]. There, the columns of ~B
play the role of overcomplete basis for each column of Ry

and as before sparsity is assumed in the coefficient vector
corresponding to this basis. Since all columns of Ry have
the same sparse structure with respect to this overcom-
plete basis, group sparsity is again exploited to estimate
the DOA of the incoming signals leading to the so-called
ℓ1 sparse representation of array covariance vectors
(ℓ1�SRACV) algorithm. As the ℓ1�SVD and JLZA algo-
rithms, the ℓ1�SRACV algorithm is robust to the correla-
tion of the incoming signals. The model in (6) is also
exploited in [10,11], where a spatial correlation matching
approach is considered. The resulting so-called sparse
iterative covariance-based estimation (SPICE) method is
derived assuming uncorrelated sources and sparsity of the
sources in the angular domain, i.e., the extended source
correlation matrix R ~s in (6) is diagonal with only a few
non-zero diagonal elements. Although SPICE has been
derived based on uncorrelated sources, it has been shown
to be robust against correlation.

1.2. Handling more sources than sensors

Most of the aforementioned methods can handle cor-
related sources, but they generally require more active
antennas than sources (M≥K). This is understandable for
those methods involving the use of MUSIC, and it has also
been shown to hold for the grid-based methods exploiting
sparsity, which actually require M≥2K . For uncorrelated
sources, on the other hand, some approaches have been
proposed for DOA estimation when there are more sources
than physical receiving antennas. One example in [12,13]
exploits the Caratheodory theorem and constructs the so-
called augmented correlation matrix from the spatial
correlation matrix. However, they rely on the exact knowl-
edge of the spatial correlation matrix, which is unavailable
in practice and has to be estimated from sample averaging.
When this is the case, the augmented correlation matrix
might not be positive semi-definite, i.e., it might not be a
valid correlation matrix, thereby leading to a performance
degradation. In [14], a complex algorithm has been intro-
duced to convert the augmented correlation matrix into a
valid positive semi-definite correlation matrix.

More popular techniques for uncorrelated sources
exploit the fact that the source correlation matrix Rs is
diagonal and rewrite (4) as

vecðRyÞ ¼ ðBn⊙BÞdiagðRsÞ þ s2nvecðIMÞ ð7Þ
where ⊙ denotes the Khatri-Rao product operation and
vecð�Þ is the operator that cascades all columns of a matrix
in a large column vector. Observe that the Nv distinct rows
of Bn⊙B provide the array response matrix of a virtual
array (also known as co-array) of Nv virtual antennas
receiving K virtual sources at the angles fθkgKk ¼ 1 (note that
generally Nv4M and the upper bound is given by
Nv ≤MðM−1Þ þ 1). The problem now is that only a single
measurement vector is available and thus the behavior of
the model (7) is similar to an array receiving constant and
hence fully coherent source signals, which is problematic
for DOA estimation. A first method to solve this issue relies
on the assumption that diagðRsÞ, and thus vecðRyÞ, is time-
varying, which basically means that quasi-stationary sources
are assumed and thus enough linearly independent mea-
surement vectors can be obtained [15]. But it is clear that this
method will fail in case of stationary sources, which was the
starting point of this paper. A second technique again relies
on gridding and exploits the model (6), which for uncorre-
lated sources can be written as

vecðRyÞ ¼ ð ~Bn

⊙ ~BÞdiagðR ~s Þ þ s2nvecðIMÞ: ð8Þ
If we select the angular resolution such that Q ¼Nv, we can
solve (8) using ordinary least squares (LS) [16]. This is
particularly interesting if we want to obtain an analytical
performance analysis of the solution. However, when Nv is
too small, this leads to a bad angular resolution and it will be
difficult to estimate the DOA of off-grid sources. The other
option is to take a fine grid of investigated angles, for which
Q4Nv. In that case, we have to rely on the sparsity (possibly
assisted by the positivity) of diagðR ~s Þ to solve the under-
determined problem (8), as was recently advocated in [17]. A
final technique is based on constructing special array geo-
metries of M antennas, through the design of the selection
matrix C in (3), such that the overall virtual array of Nv

antennas subsumes a ULA of Nu antennas, referred to as the
virtual ULA, where generally MoNu≤Nv. Examples of such
array designs are the two-level nested array [18], the
coprime array [19], and the minimal sparse ruler array [16].
Under this virtual ULA, the DOAs can again be estimated
using gridding and adopting the earlier mentioned LS [16] or
sparsity-constrained LS (possibly assisted by a positivity
constraint) [17]. Different from a general virtual array,
~B
n

⊙ ~B now has a Vandermonde structure, which simplifies
the implementation and analysis of these methods. Alterna-
tively, it is now also possible to apply spatial smoothing and
MUSIC based on the single available measurement vector
from the virtual ULA.
1.3. Handling more correlated sources than sensors

All the above methods either focus on correlated
sources, but then the upper bound of the number of
sources is lower than the number of antennas, or they
focus on detecting more uncorrelated sources than sen-
sors. To the best of our knowledge, there are no determi-
nistic or stochastic methods using up to second-order
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statistics that can handle more correlated sources than
sensors. Only higher-order statistics have been exploited
up to now to solve this problem (see e.g. [20]). In this
paper, we will fill this gap, and introduce a new approach
to tackle more correlated sources than active sensors. The
paradigm shift introduced to reach this goal is to periodi-
cally change the selection of the M active antennas from
the underlying ULA of N antennas. This will be explained
in detail in the following sections.
2. Dynamic array through periodic scanning

In this section, we introduce a novel dynamic array for
DOA estimation of possibly correlated or even fully coher-
ent signals when the number of sources is more than the
number of active antennas at any given time. The under-
lying ULA consisting of N antennas discussed in Section 1
is used as an array of available antennas from which we
activate only M antennas within a specific time slot, where
the set of M activated antennas can differ from time slot to
time slot. In this way, even though the number of required
physical antennas is equal to N, the number of active
antennas per time slot, and thus the number of hardware
receiver branches, is reduced from N to M. This scheme
reduces the power consumption without compromising
the ability to locate the DOAs of the sources. In other
words, the number of sources we will be able to detect is
the same as if we had all N antennas from the underlying
ULA available all the time. Note that instead of antenna
switching, we can equivalently employ MoN adjustable
antennas to construct a dynamic array allowing us to alter
the position of each antenna in every time slot.

Let us now discuss the conceived dynamic array in
some more detail. We basically focus on some kind of
periodic scanning with P scanning periods, where a single
scanning period consists of L time slots, and where a single
time slot consists of S samples (see Fig. 1). The set of M
activated antennas within a single scanning period is
different from time slot to time slot whereas the set of
active antennas in the l-th time slot of different scanning
periods is the same. Defining xðtÞ as the output vector of
the underlying ULA of N antennas, as in Section 1, and
assuming for simplicity that the sample period is 1, we
introduce ylðτÞ as the M�1 vector representing the output
of the M active antennas of the linear array in the l-th time
Fig. 1. Description of the periodic scanning process where a single scanning pe
period is L¼3 and the number of samples per slot per antenna is given by S¼2
slot (l¼ 0;1;…; L−1), which is given by

ylðτÞ ¼ ClxðpLSþ lSþ sÞ

where ⌊τ=S⌋¼ p (p¼ 0;1;…; P−1) indicates the scanning
period index, s¼ τ−pS (s¼ 0;1;…; S−1) indicates the sam-
ple index within the l-th time slot of the p�th scanning
period, and where the M�N matrix Cl is constructed by
selecting M out of N rows from the identity matrix IN . Note
that the indices of the M selected rows represent the
indices of the M active antennas in the l-th time slot
selected from the N available antennas in the underlying
ULA. We are then able to compute the M �M spatial
correlation matrix of ylðτÞ as

Ryl ¼ E½ylðτÞylðτÞH � ¼ ClRxCT
l ð9Þ

where the second equality is due to the fact that Cl is a real
matrix. Note that the expectation operation in (9) can be
estimated by taking an average over PS time samples. Next,
let us stack all columns of Ryl into theM2 � 1 vector vec ðRyl Þ.
Based on (9), we can then express vec ðRyl Þ as
ryl ¼ vecðRyl Þ ¼ ðCl⊗ClÞvecðRxÞ ð10Þ

where⊗ denotes the Kronecker product operation. Finally, we
can combine ryl in (10) for all time slots l¼ 0;1;…; L−1 into a
single vector ry, which is given by ry ¼ ½rTy0 ; rTy1 ;…; rTyL−1 �

T . The
relationship between ry and Rx is then provided by

ry ¼Ψ vecðRxÞ ð11Þ

where the M2L� N2 matrix Ψ is given by

Ψ¼ ½ðC0⊗C0ÞT ; ðC1⊗C1ÞT ;…; ðCL−1⊗CL−1ÞT �T : ð12Þ

This equation forms the basis of this paper and it allows for
the reconstruction of vecðRxÞ from ry, which will be discussed
in the next section.
3. Reconstruction of spatial correlation matrix Rx

One option to solve (11) is using ordinary LS. If Ψ has
full column rank, we then obtain

vecðR̂xÞ ¼ ðΨTΨÞ−1ΨTry: ð13Þ

Alternatively, we could add a positive semi-definite (p.s.d.)
constraint on Rx in the aforementioned ordinary LS pro-
blem, leading to the following constrained LS reconstruction
riod consists of L time slots. Here the number of time slots per scanning
.
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problem:

R̂x ¼ arg min
Rx

∥ry−Ψ vecðRxÞ∥22 s:t: Rx≽0N�N ; ð14Þ

where 0m�n denotes an m� n matrix containing only zeros.
This could possibly alleviate the requirement of a full
column rank Ψ, but comes at the expense of a large
computational complexity. Either way, it is still of great
interest to design fClgL−1l ¼ 0 such that Ψ has full column rank,
which clearly requires M2L≥N2. Observe that, since MoN,
we can only have M2L≥N2 if at least two time slots per
scanning period are adopted, i.e., L≥2. In other words, a
dynamic array through periodic scanning is indispensable
for generating a full column rank Ψ.

In the remainder of this section, we will first propose a
necessary and sufficient condition for the periodic sub-
sampling procedure to have a full column rank Ψ in (12).
Next, we will develop some practical greedy approaches to
design a periodic scanning scheme that satisfies this
condition. Finally, we will discuss some trade-offs related
to the design of the dynamic array.
3.1. Establishing perfect reconstruction

In order to simplify our analysis, let us start by
introducing the following lemma.

Lemma 1. Cl⊗Cl will have a one in the ½ði−1ÞN þ j��th and
½ðj−1ÞN þ i��th columns if and only if Cl contains the i-th and
j-th rows of the identity matrix IN .

The proof of this lemma can be found in Appendix A.
This lemma directly implies the following corollary.

Corollary 1. If Cl is constructed by selecting M different rows
of IN , the rows of Cl⊗Cl have a single one at exactly M2

different positions. Out of the M2 rows of Cl⊗Cl, M rows are
produced by the self-Kronecker product of every row of Cl. On
the other hand, every pair of two different rows of Cl

contributes to two different rows of Cl⊗Cl, each of which
has a single one at a different position. Since we have ðM2 Þ
possible combinations of two different rows, all Kronecker
products between any two different rows of Cl lead to
MðM−1Þ rows of Cl⊗Cl, all of which have a single one at a
different position.

Let us now define Γl as the set of M indices selected
from f1;2;…;Ng representing the rows of IN that we use to
construct Cl. Then, the set of the M2 indices of the columns
of Cl⊗Cl that contain a one is provided by

Ωl ¼ fði−1ÞN þ jji; j∈Γlg: ð15Þ

Since every row of Cl⊗Cl has only a single one, it is clear
from (12) that every row of Ψ also has only a single one. As
a result, Ψ will have full column rank if and only if each of
its columns has at least a single one, which from (12) and
(15) is equivalent to

⋃
L−1

l ¼ 0
Ωl ¼ f1;2;…;N2g: ð16Þ

This result leads to the following theorem.
Theorem 1. Ψ in (12) has full column rank if and only if
every possible combination of two antennas in the under-
lying ULA is active in at least one of the L possible time slots
within a single scanning period.

Proof. Note that the condition in Theorem 1 is equivalent
to using every possible pair of two different rows of IN in at
least one of the L possible matrices fClgL−1l ¼ 0. Based on
Lemma 1 and Corollary 1, this will guarantee that the
½ði−1ÞN þ j��th and the ½ðj−1ÞN þ i��th columns of Ψ have
at least a single one for all i; j∈f1;…;Ng. This proves the
sufficiency part of the theorem. In order to prove the
necessity part, let us assume that Ψ in (12) has full column
rank and that the a-th and b-th antennas in the underlying
ULA are never simultaneously active in the same time slot.
This equivalently means that none of the matrices fClgL−1l ¼ 0
contains both the a-th and b-th rows of the identity matrix
IN . According to Lemma 1 and using (12), it is then obvious
that the ½ða−1ÞN þ b��th and the ½ðb−1ÞN þ a��th columns
of Ψ only contain zeros and thus Ψ does not have full
column rank, which contradicts the initial assumption.
This concludes the proof. □

Note that Theorem 1 automatically requires M≥2.
Further note that since each row of Ψ only contains
a single one and zeros elsewhere, the reconstruction of
vec ðRxÞ using ordinary LS as in (13) is computationally
easy to perform.

3.2. Greedy dynamic array design

As we will discuss in Section 3.3, subject to the full
column rank condition of Ψ, it is generally not possible to
minimize both the number of active antennas per time slot
M and the number of time slots per scanning period L
simultaneously. In this section, we discuss a greedy
dynamic array design that aims to either minimize M
given L or minimize L given M subject to (16).

Based on Theorem 1, we first try to minimize L given M
subject to (16) by defining Λ as Λ¼ fði; jÞji; j∈f1;2;…;

Ng; io jg and Λl as the set of all possible combinations of
two row indices of IN that are used to construct Cl, that is

Λl ¼ fði; jÞji; j∈Γl; io jg:
Our task to minimize L given M subject to (16) can now be
expressed as

min
L;fΓlgL−1l ¼ 0

L subject to ⋃
L−1

l ¼ 0
Λl ¼ Λ and jΓlj ¼M; ∀l ð17Þ

where jΓlj denotes the cardinality of the set Γl. The
minimization problem in (17) is generally a non-trivial
combinatorial problem. However, it is possible to find a
lower bound for L. Note that jΛj ¼NðN−1Þ=2 and
jΛlj ¼MðM−1Þ=2. It is then clear that L is lower bounded by

L≥
jΛj
jΛlj

� �
¼ NðN−1Þ

MðM−1Þ

� �
ð18Þ

where ⌈x⌉ denotes the smallest integer not smaller than x.
While the minimization problem in (17) is generally hard
to solve, we propose a greedy algorithm to find a sub-
optimal solution for L and fΓlgL−1l ¼ 0 given M subject to (16).
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Fig. 2. Illustration of the trade-off between the number of active
antennas M and a lower bound on the number of time slots per scanning
period L. Here, we have N¼28.

D.D. Ariananda and G. Leus / Signal Processing 93 (2013) 3435–34483440
This algorithm, called Algorithm 1, is described in Table 1
and its explanation is provided in Appendix B.

Similarly, given a certain value of L, the minimization of
M subject to (16) can be stated as

min
M;fΓlgL−1l ¼ 0

M subject to ⋃
L−1

l ¼ 0
Λl ¼ Λ and jΓlj ¼M; ∀l:

In this case, the lower bound for M is given by

M2−M
2

≥⌈ jΛj
L
⌉¼ ⌈NðN−1Þ

2L
⌉: ð19Þ

We also propose a greedy algorithm to find a sub-optimal
solution for M and fΓlgL−1l ¼ 0 given L subject to (16). This
algorithm, called Algorithm 2, is described in Table 2 and
its explanation is provided in Appendix C.

3.3. Trade-offs for dynamic array design

While we want to achieve (16) to ensure the full
column rank condition of Ψ, we also want to keep the
Table 1
Algorithm 1: A greedy algorithm to find a sub-optimal solution for L and fΓlgL−l ¼

Algorithm 1

1: Introduce Zðf Þ as an N�N indicator matrix at the f-th iteration and denote
2: Initialize f¼0 and Zð0Þ ¼ IN .
3: While Zðf Þ has at least one zero entry do
4: Set f ¼ f þ 1 and Zðf Þ ¼ Zðf−1Þ .
5: Randomly select i; j∈f1;2;…;Ng for which ½Zðf Þ�i;j ¼ 0 and se
6: for κ¼ 1 to M−2 do
7: Define a set Ξ ¼ f1;2;…;Ng\Γf−1.
8: Search in Ξ for the element g that satisfies:

9: For all i′∈Γf−1 set ½Zðf Þ �i′;g and ½Zðf Þ�g;i′ to 1.
10: Update Γf−1 to Γf−1 ¼ Γf−1⋃fgg.
11: end for
12: end while
13: The value of L is given by L¼ f and the output of this algorithm is fΓlgL−1l ¼ 0.

Table 2
Algorithm 2: A greedy algorithm to find a sub-optimal solution for M and fΓlgL−l

Algorithm 2

1: Introduce Zðf Þ as an N�N indicator matrix at the f-th iteration and deno
2: Initialize f¼0 and Zð0Þ ¼ IN .
3: Set f ¼ f þ 1 and Zðf Þ ¼ Zðf−1Þ .
4: for l¼0 to L−1 do
5: Randomly select i; j∈f1;2;…;Ng for which ½Zðf Þ�i;j ¼ 0 and
6: Set both ½Zðf Þ �i;j and ½Zðf Þ�j;i to 1.
7: end for
8: While Zðf Þ has at least one zero entry do
9: Set f ¼ f þ 1 and then set Zðf Þ ¼ Zðf−1Þ .
10: for κ¼ 0 to L−1 do
11: Define a set Ξ ¼ f1;2;…;Ng\Γκ .
12: Search in Ξ for the element g that satisfie
13: For all i′∈Γκ set ½Zðf Þ�i′;g and ½Zðf Þ�g;i′ to 1.
14: Update Γκ to Γκ ¼ Γκ⋃fgg.
15: end for
16: end while
17: The value of M is given by M ¼ f þ 1 and the output of this algorithm is
computational complexity low, the number of active anten-
nas and hardware receiver branches M small, and the
number of antenna reconfigurations L within a scanning
1
0 given M subject to (16).

its element at the i-th row and the j-th column by ½Zðf Þ�i;j .

t Γf−1 ¼ fi; jg. Then also set both ½Zðf Þ�i;j and ½Zðf Þ�j;i to 1.

g¼ arg ming′∈Ξ∑i′∈Γf−1
½Zðf Þ�i′;g′ :

1
¼ 0 given L subject to (16).

te its element at the i-th row and the j-th column by ½Zðf Þ�i;j .

set Γl ¼ fi; jg.

s: g¼ arg ming′∈Ξ∑i′∈Γκ
½Zðf Þ�i′;g′ :

fΓlgL−1l ¼ 0.
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period minimal. However, it turns out that simultaneously
minimizing everything is not possible. Let us consider the
following trade-offs.

Corollary 1 implies that, for each value of l∈f0;1;…;

L−1g, only M2 out of N2 columns of Cl⊗Cl have at least a
single non-zero element. Minimizing M will decrease the
number of non-zero columns of Cl⊗Cl. As a result, in order
to ensure that all columns ofΨ in (12) have at least a single
non-zero element, we need a larger L. This means that
there is a trade-off between M and L for a given amount of
time within a scanning period. Fig. 2 illustrates the trade-off
between M and L for N¼28 where we vary M from 3 to 28.
The value of L is computed by using the lower bound
formula given by (18) to simplify the illustration. As a final
remark on the trade-off between M and L, it is also
important to observe from (11) that the size of Ψ to be
inverted depends quadratically on M and only linearly on L.

Secondly, consider the relation between L, M, the
number of scanning periods P, and the total number of
received samples per time slot per antenna S. Recall that
the larger PS the better the quality of the estimate of Ryl in (9).
If we have a fixed total sensing time (which implies a given
PSL), a larger PS implies a smaller L, which in turn, also
implies a larger number of antennas M that need to be
activated in each time slot. Hence, for a given total sensing
time PSL, we have a trade-off between M and the quality of
the estimate of Ryl in (9). This trade-off can also be
illustrated in Fig. 2. For example, by fixing PSL to PSL≈α,
we can compute for every value of PS the corresponding
value of L as L¼ roundðα=ðPSÞÞ and relate this to a value ofM
from Fig. 2.

Alternatively, we might also require a certain quality for
the estimate of Ryl in (9) and fix PS. In this case, the trade-
off now is between M and the total sensing time PSL.
Again, we can use Fig. 2 to illustrate this trade-off. For
example, by fixing PS to PS≈β, we can compute for every
value of PSL the corresponding value of L as L¼
roundðPSL=βÞ and relate this to a value of M from Fig. 2.

4. Source correlation reconstruction and direction of
arrival estimation

After the reconstruction of Rx, any covariance-based
method capable of handling correlated sources from Sec-
tion 1.1 assuming no subsampling, i.e., C¼ IN , can basically
be used for DOA estimation. Examples are the spatial
smoothing and MUSIC (or root-MUSIC) approach of [2,6],
the ℓ1�SRACV method of [9], or possibly SPICE [10,11].
In addition, we here also introduce some new covariance-
based approaches which again rely on gridding the angu-
lar domain.

4.1. Least squares approach

The first possible approach is based on defining a grid
of investigated angles in the angular domain and using a
model similar to (6) but now with no subsampling, i.e.,
C¼ IN . Using this model and taking (2) into account, we
can write

vecðRxÞ ¼ ð ~An

⊗ ~AÞvecðR ~s Þ þ s2nvecðINÞ ð20Þ
where ~A ¼ ½að ~θ1Þ; að ~θ2Þ;…; að ~θQ Þ� is the N � Q extended
array response matrix for the underlying ULA with að ~θqÞ
the array response vector for the q-th investigated angle ~θq.
From (20), we can reconstruct vecðR ~s Þ from vecðRxÞ using
LS, under the assumption that ~A in (20) has full column
rank, which is only possible if N≥Q . Assuming that ~A has
full column rank, solving (20) using LS leads to

vecðR̂ ~s Þ ¼ ðð ~An

⊗ ~AÞHð ~An

⊗ ~AÞÞ−1ð ~An

⊗ ~AÞHvecðRxÞ: ð21Þ
Because of the Vandermonde structure of ~A , it will always
have full column rank if we take N≥Q . However, in order to
obtain a well-conditioned ~A , we can take N¼Q, use a half
wavelength spacing (d¼0.5) for the underlying ULA in (1),
and adopt an inverse sinusoidal angular grid where the
investigated angles ~θq are defined as

~θq ¼ sin−1 2
Q

q−1−
Q−1
2

� �� �� �
; q¼ 1;2;…;Q : ð22Þ

We can then easily derive that ~A is a permuted version of
the inverse discrete Fourier transform (IDFT) matrix, which
is a unitary matrix that does not introduce any noise
enhancement when inverting the matrix. Furthermore, this
also means that applying the inverse of ~A

n

⊗ ~A to a vector
can easily be computed using fast Fourier transform (FFT)
operations, leading to a complexity of order N2 log N. The
diagonal of the computed estimate of the correlation matrix
R̂ ~s indicates the received power at the investigated angles
f ~θqgQq ¼ 1. Therefore, diagðR̂ ~s Þ can be perceived as the angular
power spectrum estimate. The estimates of the actual DOAs
can be found by locating the peaks of this angular power
spectrum estimate. The off-diagonal components of R̂ ~s , on
the other hand, reveal the correlations between the signals
at the different investigated angles.

4.2. Sparsity-regularized least squares approach

As the number of investigated angles Q reduces, the
probability that the DOA of a particular point source k is
not located on or nearby a grid point increases. Since the
LS approach requires N≥Q , when N is small, Qwill be small
and the angular resolution of the LS estimate is poor and it
will be challenging to estimate the DOA of off-grid point
sources. One way to mitigate this problem is to take a finer
grid of investigated angles by allowing Q4N. When this is
the case, the resulting ~A

n

⊗ ~A in (20) is a wide matrix and
its columns play the role of an overcomplete basis for
vecðRxÞ in (20). In order to solve the resulting under-
determined problem, a popular idea is to assume that
vecðR ~s Þ is generally sparse and formulate the estimate of
R ~s as a solution of the sparsity-regularized LS problem:

R̂ ~s ¼ arg min
R ~s

∥vecðRxÞ−ð ~A
n

⊗ ~AÞvecðR ~s Þ∥22þλ∥vecðR ~s Þ∥1
ð23Þ

where the weight λ≥0 balances the sparsity-bias tradeoff.
This can be regarded as an extension of the method
proposed in [17], which is designed to handle only
uncorrelated sources.

In the noiseless case, it is interesting to discuss condi-
tions on ~A

n

⊗ ~A that guarantee perfect reconstruction of
vecðR ~s Þ in (23). If the number of pairs of correlated sources
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is given by K0, then it is clear that vecðR ~s Þ is a ~K -sparse
vector, i.e., it has at most ~K non-zero elements where
~K ¼ K þ 2K 0. The worst case occurs when ~K ¼ K2, i.e., each
source is highly correlated to the other K�1 sources.
When we try to recover vecðR ~s Þ from vecðRxÞ using
ℓ0�norm minimization, it is well known that the Kruskal
rank of ~A

n

⊗ ~A should satisfy krankð ~An

⊗ ~AÞ≥ 2 ~K [21]. Since
we now have a wide matrix ~A , krank ð ~An

⊗ ~AÞ ¼ krankð ~AÞ
[22]. Based on this fact and by exploiting the Vandermonde
structure of ~A , it is clear that the necessary and sufficient
condition that needs to be satisfied is given by N≥2 ~K . For
vecðR ~s Þ reconstruction using ℓ1�norm minimization, the
coherence property of ~A

n

⊗ ~A is of particular interest. Given

the definition of coherence of ~A as γ ~A ¼maxi≠jjað ~θ iÞHað ~θ jÞj=
∥að ~θ iÞ∥∥að ~θ jÞ∥[23], it is straightforward to show that
γ ~A

n
⊗ ~A ¼ γ ~A [22]. As a result, in a noiseless scenario, a loose

sufficient condition for a unique reconstruction of vecðR ~s Þ
using ℓ1�norm minimization is given by ~K ≤ 1

2 ð1þ 1=γ ~A Þ
[23].

4.3. Spatial smoothing and MUSIC

Since we use a ULA of N antennas as our underlying
array, it is also possible to apply the spatial smoothing
procedure of [2] or [6] to the spatial correlation matrix
estimate R̂x obtained from (13) or (14). Here, we opt to
employ the forward–backward spatial smoothing (FBSS)
introduced in [6], which is theoretically able to detect
more correlated sources than that can be detected by the
forward technique in [2]. Specifically, we divide the under-
lying ULA into Ns overlapping subarrays, each of which has
Na physical antennas, and compute the Na � Na spatially
smoothed correlation matrix R̂ x as

½R̂ x�i;j ¼
1
Ns

∑
Ns−1

i′ ¼ 0
ð½R̂x�iþi′;jþi′ þ ½R̂n

x �Nþ1−i−i′;Nþ1−j−i′Þ ð24Þ

where ½R̂x�i;j represents the element of R̂x at the i-th row
and the j-th column. We can then apply the MUSIC
algorithm of [3] to the resulting R̂ x in order to produce
high resolution DOA estimates. It is important to note that
a larger Ns implies a smaller Na and vice versa, and that the
maximum number of sources that can be detected by
MUSIC after the FBSS preprocessing scheme is given by
min ð2Ns;Na−1Þ [6]. It is easy to show that for our under-
lying ULA, the optimal settings for Ns and Na, which lead to
the largest possible number of sources that can be
detected, are given by Ns ¼ ⌈N=3⌉ with Na ¼N þ 1−⌈N=3⌉.

5. Discussion

We first would like to underline some important issues
with respect to the LS formulation for DOA estimation
discussed in Section 4.1. Recall that in the LS formulation,
the limited grid resolution in the angular domain might
seriously affect the estimation of the DOA of point sources,
especially when it is not located nearby the grid. When
this is the case, we might expect MUSIC with spatial
smoothing discussed in Section 4.3 to perform better than
the LS approach. However, it is important to note that the
LS approach also has its own merits. In fact, the gridding
performed in the LS method aims at estimating the general
angular power spectrum represented by the diagonal of
the estimated signal correlation matrix R ~s , without any
sparsity considerations (i.e., by allowing Q ≤N). In that
sense, our LS approach can actually be interpreted as a
conventional periodogram approach used for spectral
estimation. Let us for instance consider the case where
we have a source that is occupying a whole angular band
(e.g., there are no point sources). We then have a conven-
tional spectral estimation problem instead of a line spec-
trum estimation problem and there is a good chance for
the LS approach to outperform MUSIC, which means that
the considered LS angular power spectrum reconstruction
method is reasonable in some cases. More details can be
found in Section 6. Some extensions of MUSIC have been
proposed in [24,25] to estimate the DOA of spatially
distributed sources but these approaches are not really
designed to estimate an arbitrary smooth angular power
spectrum.

Both the LS and the sparsity-regularized LS provide
information about how the sources are correlated to each
other. This information is available in the off-diagonal
components of R ~s and cannot be produced using the
MUSIC approach. With the ability to use LS, sparsity-
regularized LS, and MUSIC with spatial smoothing, our
dynamic linear array approach has two features that
complement each other. The gridding approach assisted
with LS is very useful for a smooth angular power
spectrum estimation while MUSIC with spatial smoothing
is a more appropriate tool for the DOA estimation of point
sources. In addition, subject to the sparsity of the angular
power spectrum, the sparsity-regularized LS approach is
able to produce an estimate of a smooth angular power
spectrum as well as accurate DOA estimates for point
sources as long as the grid is sufficiently fine.

The fact that diagðR̂ ~s Þ provides the estimate of the
received power at the investigated angles f ~θqgQq ¼ 1 can also
be used as a motivation to add a positivity constraint on
diagðR ~s Þ in the ordinary LS problem discussed in Section 4.1.
This leads to the following constrained LS problem:

R̂ ~s ¼ arg min
R ~s

∥vecðRxÞ−ð ~A
n

⊗ ~AÞvecðR ~s Þ∥22 s:t: diagðR ~s Þ≥0Q

ð25Þ

with 0n denoting an n�1 vector containing only zeros.
Furthermore, if a higher computational complexity is
acceptable, we can even apply a p.s.d. constraint on R ~s ,
which means that the constrained LS problem in (25) now
becomes

R̂ ~s ¼ arg min
R ~s

∥vecðRxÞ−ð ~A
n

⊗ ~AÞvecðR ~s Þ∥22 s:t: R ~s≽0Q�Q :

ð26Þ

Similarly, we can also add a positivity or p.s.d. constraint on
diagðR ~s Þ in (23) for the sparsity-regularized LS approach
discussed in Section 4.2.

Another interesting observation is that the LS and
sparsity-regularized LS approaches can also be adapted
to their one-step counterparts. Instead of first solving (11)
to reconstruct Rx from ry and then (20) to reconstruct R ~s

from Rx, it is actually possible to reconstruct R ~s directly
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Fig. 3. Normalized spectrum (dB) of the MUSIC, LS, and sparsity-
regularized LS approaches versus DOA (degree) for the first experiment.
We have K¼12 sources, N¼40, L¼28, M¼10, P¼57 and SNR¼0 dB. For
the LS and sparsity-regularized LS approaches, we have Q¼40 and Q¼70,
respectively.
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from ry in (11). This is performed by combining (11) and
(20) and solving the resulting problem using a single LS or
sparsity-regularized LS operation. More specifically, we
can write

ry ¼Ψð ~An

⊗ ~AÞvecðR ~s Þ þ s2nΨvecðINÞ ¼GvecðR ~s Þ
þs2nΨvecðINÞ ð27Þ

where the M2L� Q2 matrix G is given by

G¼ ½ððC0
~AÞn⊗ðC0

~AÞÞT ; ððC1
~AÞn⊗ðC1

~AÞÞT ;…; ððCL−1
~AÞn⊗ðCL−1

~AÞÞT �T :
ð28Þ

From this equation, we can directly adopt a one-step LS or
sparsity-regularized LS to reconstruct vecðR ~s Þ from ry.
We expect that the corresponding reconstruction condi-
tions, i.e., full column rank condition on G for LS and
krankðGÞ≥2 ~K or ~K ≤ 1

2 ð1þ 1=γGÞ conditions for sparsity-
regularized LS, will be less strict than in the two-step
approaches. However, since it is not directly clear what
properties are required to obtain these conditions for the
one-step approaches, we generally advocate to first solve
(11) and then reconstruct R ~s from (20) using LS or sparsity-
regularized LS.

6. Numerical study

In this section, we evaluate the proposed approaches
using numerical experiments. In general, we run the
proposed dynamic array through periodic scanning
discussed in Section 2 and then reconstruct the spatial
correlation matrix Rx from ry in (11) using ordinary LS
except for the last experiment where we use (14) to
reconstruct Rx. Next, given the estimate of Rx, we evaluate
the main source correlation matrix reconstruction and
DOA estimation approaches elaborated in Section 4.
For all experiments, we also apply the positivity constraint
on the diagonal elements of R ~s when we adopt the
sparsity-regularized LS since adding this convex constraint
does not incur a large computational cost. In general, we
consider correlated sources as well as a spatially and
temporally white noise, and we assume that the signals
coming from different sources have equal power with the
signal to noise ratio (SNR) defined with respect to the
power of each signal at each antenna.

Under an SNR of 0 dB, we first conduct three experi-
ments and examine the resulting LS, sparsity-regularized
LS, and MUSIC angular power spectrum plots. In the first
experiment, we consider a ULA of N¼40 antennas with
half wavelength spacing as our underlying array and set
the number of time slots per scanning period to L¼28.
We intend to select the activated antennas in each time
slot such that the number of active antennas per time slot
M is minimal. Observe that, according to (19), the lower
bound for M in this setting is given by M≥8. In this
simulation study however, we run Algorithm 2 given in
Table 2 for N¼40 and L¼28 in order to obtain a sub-
optimal solution for M and the indices of the antennas that
are activated in each time slot, which is given by fΓlg27l ¼ 0.
This results in M¼10 (which is larger than the lower
bound) and produces the indices of the corresponding 10
active antennas in each of the 28 time slots. Note that the
antenna array setup suggested by fΓlg27l ¼ 0 produced by
Algorithm 2 leads to a full column rank 2800�1600
matrix Ψ in (12). The total number of time samples per
time slot is S¼1 and the total number of scanning periods
is P¼57 leading to a total number of time samples of
PSL¼ 1596. For the LS approach, we set the number of grid

points to Q ¼N¼ 40 and the investigated angles f ~θqg40q ¼ 1

according to (22) in order to produce a well-conditioned
matrix ~A

n

⊗ ~A in (20). The number of grid points for the
sparsity-regularized LS approach is equal to Q¼70 and
they are also set according to (22). For the sparsity-
regularized LS, the weight λ in (23) is set to λ¼ 2:88. For
the MUSIC approach, the FBSS preprocessing scheme is
conducted by setting the number of subarrays to Ns¼14
and the number of antennas per subarray to Na¼27.
We generate K¼12 sources with 9 degrees of separation,
that is fθkg12k ¼ 1 ¼ f−54○;−45○;…;45○g. Note that the num-
ber of sources is more than the number of active antennas
per time slot M. In order to investigate the performance of
the proposed approach for the case when there is some
correlation between the sources, the signal that arrives at
angle θk is set to be exactly the same as the one arriving at
direction θkþ6 leading to six pairs of fully correlated
sources. The diagonal of R̂ ~s recovered using ordinary LS
and sparsity-regularized LS gives the angular power spec-
trum estimates at the investigated angles ~θq and is
illustrated in Fig. 3. In this figure, the locations of the
actual DOAs are indicated by vertical lines for simplicity.
We then use the 12 highest peaks in the resulting angular
power spectrum estimate to indicate the DOA estimates.
We can see how the 12 correlated sources can generally be
detected using ordinary LS since they are located nearby
the LS grid points. Meanwhile, the sparsity-regularized LS
produces a minor grid mismatch effect but has less power
in the unoccupied angular band. The resulting MUSIC
estimate is also illustrated in Fig. 3 and it generally
outperforms both the LS estimate and sparsity-
regularized LS estimate. It should be noted, however, that
both the LS and the sparsity-regularized LS also provide
information about the magnitude of the correlation



Fig. 4. The magnitude of the elements of the estimated correlation matrix R̂ ~s computed using the sparsity-regularized LS (top) and the LS (bottom)
approaches for the first experiment. Here K¼12, SNR¼0 dB, N¼40, M¼10, P¼57, and L¼28. For the LS and sparsity-regularized LS approaches, we have
Q¼40 and Q¼70, respectively.
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Q¼70, respectively.
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between the signals at the different investigated angles ~θq,
which is provided in Fig. 4. As it is clear from the figure,
both the power of the 12 sources and the magnitude of the
cross-correlation between the sources are clearly identi-
fied by both the LS and the sparsity-regularized LS
approaches.

In the second experiment, we consider a ULA of N¼25
antennas with half wavelength spacing as our underlying
array. We activate M¼5 active antennas in each time slot
and run Algorithm 1 given in Table 1, which produces
L¼36 and the indices of the corresponding 5 active
antennas in each of the 36 time slots. The grid points
setting for the sparsity-regularized LS is the same as in the
first experiment while for the LS approach, we have
Q ¼N¼ 25 where f ~θqg25q ¼ 1 is set based on (22). Here, the
weight λ in (23) for the sparsity-regularized LS is set to
λ¼ 3:88. For the MUSIC approach, the FBSS preprocessing
scheme is conducted by setting the number of subarrays to
Ns¼9 and the number of antennas per subarray to Na¼17.
We maintain S¼1 but have P¼44, which leads to a total
number of time samples of PSL¼ 1584. We now generate
three pairs of fully correlated sources leading to K¼6
sources having DOAs with 10 degrees of separation, that
is fθkg6k ¼ 1 ¼ f−2:97○;7:03○;…;47:03○g. Note that we again
have more sources than active antennas per time slot M.
Fig. 5 illustrates the angular power spectrum estimates.
Again, the location of the actual DOAs is indicated by
vertical lines. Observe that for this realization, the accu-
racy of the DOA estimates produced by the sparsity-
regularized LS is quite comparable to that of the MUSIC
estimates though the sparsity-regularized LS approach
introduces a significant amount of power in the unoccu-
pied angular band. The ordinary LS DOA estimates, on the
other hand, introduce a significant amount of grid mis-
match due to a coarse grid of investigated angles. Fig. 6
describes the magnitude of the correlation between the
signals at the different investigated angles ~θq estimated
using the ordinary LS (bottom part) and the sparsity-
regularized LS (top part) approaches. As it is clear from
the figure, both the power of the six sources and the
magnitude of the cross-correlation between the sources
are better identified by the sparsity-regularized LS than by
the ordinary LS approach.

All simulation settings for the third experiment are
similar to those for the first experiment, but we now
consider a continuous source from 301 to 401, which is
simulated by generating 250 pairs of fully correlated
sources with 0.021 of separation. The parameter λ for the
sparsity-regularized LS is set to λ¼ 0:012. The result is
illustrated in Fig. 7. The MUSIC algorithm clearly fails for
this continuous source scenario while the sparsity-regularized



Fig. 6. The magnitude of the elements of the estimated correlation matrix R̂ ~s computed using the sparsity-regularized LS (top) and LS (bottom) approaches
for the second experiment. Here K¼6, SNR¼0 dB, N¼25, M¼5, P¼44, and L¼36. For the LS and sparsity-regularized LS approaches, we have Q¼25 and
Q¼70, respectively.
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Fig. 7. Normalized spectrum (dB) of the MUSIC, LS, and sparsity-
regularized LS approaches versus DOA (degree) for the third experiment.
Here we have K¼500 sources with DOAs between 301 and 401,
SNR¼0 dB, N¼40, M¼10, and L¼28. For the LS and sparsity-regularized
LS approaches, we have Q¼40 and Q¼70, respectively.
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LS and LS approaches better reconstruct the continuous
angular range where lower sidelobes and a better resolution
are found for the sparsity-regularized LS.

The dynamic array, the FBSS, and the angular grid setting
of the second experiment is now used in the fourth experi-
ment to compute the root mean square error (RMSE)
between the actual DOAs and the DOA estimates. The DOAs
of three pairs of fully coherent sources are randomly
generated between −601 and 601 but with a fixed 101 of
separation. With S¼1 and SNR¼ 0 dB, we first vary P from
P¼4 to P¼100. Based on the resulting spectrum, we locate
the six highest peaks. For every source, we compute the
RMSE between the true DOA and the peak that is closest to
this DOA, selected from the earlier determined six highest
peaks. Fig. 8 illustrates the computed RMSE for the three
approaches for a varying P. Observe how the performance of
the ordinary LS approach is quite poor due to its limited grid
resolution. The performance of the sparsity-regularized LS
approach is much better than the ordinary LS approach but
it tends to flatten at a particular level which is determined
by the resolution of the 70 grid points used by this
approach. Meanwhile, the MUSIC approach performs better
than the two aforementioned approaches and its RMSE
continues to decrease as P increases. A similar situation is
also found in Fig. 9, where we fix the total number of
scanning periods to P¼7 and vary the SNR. In this scenario,
however, the performance of the sparsity-regularized LS has
not yet hit the saturation point defined by the resolution of
its 70 grid points. In fact, its RMSE continues to decrease as
the SNR varies from −10 dB to 0 dB.

A much better performance in terms of RMSE for LS is
found when we increase N and Q to N¼Q ¼ 40 as shown in
Fig. 10. In this fifth experiment, we only focus on the LS and
MUSIC approaches. Here, we haveM¼7 and run Algorithm 1
to produce L¼48. We vary P from P¼1 to P¼40 and the SNR
from −10 dB to 0 dB. The FBSS setting for MUSIC is the same
as in the first experiment and there are four pairs of fully
correlated sources (which again implies K4M) whose DOAs
are generated in the same way as in the fourth experiment.
Note how the performance of the ordinary LS approach is
mainly dictated by the grid resolution.

In the last experiment, we investigate the impact of
applying the p.s.d. constraint on the reconstructed Rx (see
(14)) and focus on the performance of the MUSIC approach by
considering different settings of the dynamic array. In general,
we set the number of active antennas per time slot to M¼3
and examine three different dynamic array settings, i.e.,N¼17,
N¼14, and N¼11. Given M¼3, we execute Algorithm 1 in
Table 1 for N¼17, N¼14, and N¼11, leading to L¼47, L¼33,
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Fig. 10. The performance of the LS and MUSIC DOA estimates for
different SNRs and scanning periods P. Here we have N¼Q ¼ 40, M¼7,
L¼48, and K¼8 correlated sources whose DOAs are randomly generated
with 101 of separation.
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Fig. 11. The impact of the p.s.d. constraint on the reconstructed Rx . Here,
we focus on the MUSIC DOA estimates for different settings of the
dynamic array (different N and L) as well as different SNRs and scanning
periods P using M¼3 active antennas. Here we have K¼4 correlated
sources whose DOAs are randomly generated with 101 of separation.
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and L¼19, respectively. For the FBSS process, it is important to
note that for different values of N, we also have different
optimal values of Ns and Na. Here, we compute Ns and Na as
Ns ¼ ⌈N=3⌉ and Na ¼N þ 1−⌈N=3⌉, respectively (as sug-
gested in Section 4.3). With S¼1, we vary P between P¼4
and P¼40. On top of that, we also evaluate two different SNR
values, i.e., SNR¼ 0 dB and SNR¼−5 dB. We generate two
pairs of fully correlated sources (K¼4) and compute the
RMSE between the actual and the estimated DOAs by
following the same procedure introduced in the fourth
experiment. Fig. 11 illustrates the computed RMSE for this
experiment. As expected, the performance of the MUSIC
approach for all dynamic array settings gets worse for lower
SNR. We can see that applying the p.s.d. constraint on the
reconstructed Rx indeed improves the performance, espe-
cially for N¼14. It is interesting to observe that, for a given
SNR, a larger performance degradation is experienced when
we reduce N¼14 and L¼33 to N¼11 and L¼19, respec-
tively, than when we reduce it from N¼17 and L¼47 to
N¼14 and L¼33, respectively. In fact, when N¼11, we only
have Ns¼4 subarrays of Na¼8 antennas. According to the
theoretical analysis in [6], this setting should still be able to
estimate minð2Ns;Na−1Þ ¼ 7 correlated sources. However, in
practice, we observe that there are a few occasions where
there is only a small difference between the value of the
fourth largest eigenvalue and that of the noise eigenvalues of
the resulting spatially smoothed matrix R̂ x in (24). As a
result, the MUSIC approach might not be able to separate the
fourth signal eigenvector from the noise subspace. Observe
that, for N¼11, applying the p.s.d. constraint on the recon-
structed Rx only offers a small improvement.

7. Conclusions

In this paper, we have developed a new method to
estimate the DOA of possibly fully correlated sources based
on second-order statistics by adopting a so-called dynamic
array, which is formed by performing a periodic scanning
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of an underlying ULA having N available antennas. Here,
different sets of M antennas are activated in different time
slots. We first collect the spatial correlation matrices of the
output of the antenna arrays for all time slots and present
them as a linear function of the spatial correlation matrix Rx.
We then present the theoretical condition that needs to be
satisfied to ensure the full column rank condition of the
system matrix, which later allows us to reconstruct Rx using
LS. Note that, apart from our dynamic array approach which
allows for Rx reconstruction using LS, it is also possible to
use low-rank matrix completion to reconstruct Rx under a
finite number of measurements. This, for instance, is dis-
cussed in [26]. However, this topic is beyond the scope of
our paper and we consider this as a possible topic for future
research. Based on the estimated Rx, we propose three
different options. The first option is to define an angular
grid of investigated angles where the number of grid points
Q is less than or equal to the number of physical antennas N
in the underlying array. This allows us to reconstruct the
correlation matrix of the incident signals at the investigated
angles using LS subject to the full column rank condition of
the system matrix. Since the LS signal correlation matrix
reconstruction is vulnerable to a grid mismatch effect due to
the limited grid resolution, we propose a sparsity-
regularized LS approach as the second option and increase
the grid resolution by allowing Q⪢N. However, this option
theoretically works well only when the actual angular
power spectrum is sparse. The last option is to apply FBSS
on the reconstructed Rx and use the MUSIC algorithm based
on the spatially smoothed correlation matrix. This option
might produce high resolution DOA estimates but does not
provide information about how the sources are correlated to
each other. In general, our dynamic array approach can
estimate the DOAs of the impinging signals even when the
number of correlated sources is larger than the number of
active antennas per time slot. The simulation study has
indicated that our method performs satisfactory even when
some sources are fully coherent.

Appendix A. Proof of Lemma 1

Let us assume that eTi and eTj are the i-th and the j-th
rows of IN , respectively. It is easy to check that for any
i; j∈f1;2;…;Ng, the Kronecker product eTi ⊗eTj results in a
1� N2 vector having a single one at the ½ði−1ÞN þ j��th
position. Correspondingly, eTj ⊗eTi produces a 1� N2 vector
having a single one at the ½ðj−1ÞN þ i��th position. As a
result, if Cl has eTi and eTj as two of its rows, Cl⊗Cl will
definitely have a one in the ½ði−1ÞN þ j��th and ½ðj−1ÞN þ
i��th columns. This proves the sufficiency part of the
lemma. In order to prove the necessity part, let us assume
that Cl⊗Cl has a one in the ½ði−1ÞN þ j��th column but
either the i-th row of IN , the j-th row of IN , or both of them
are missing from Cl. Further assume that the row of Cl⊗Cl

having a one in the ½ði−1ÞN þ j��th column is produced by
the Kronecker product operation between two rows of Cl

taken from the a-th and the b-th rows of IN , i.e., eTa⊗eTb .
Now, eTa⊗eTb results in a 1� N2 vector having a single one
at the ½ða−1ÞN þ b��th position. Therefore, it is obvious
that a¼ i and b¼ j. In other words, the i-th and the j-th
rows of IN are not missing from Cl, which is a
contradiction. A similar proof applies for the row of
Cl⊗Cl that has a single one in the ½ðj−1ÞN þ i��th column.
This concludes the proof of this lemma.

Appendix B. Explanation for Algorithm 1 (see Table 1)

We use the indicator matrix Zðf Þ in Table 1 to indicate
whether a certain combination of two antennas has been
activated in at least one of the first f time slots. Specifically,
½Zðf Þ�i;j ¼ 0 implies that a combination of the i-th and the
j-th antennas has never been simultaneously activated in
the first f time slots whereas ½Zðf Þ�i;j ¼ 1 indicates that the
combination of the i-th and the j-th antennas has been
simultaneously activated at least once in the first f time
slots. Consequently, it is also obvious that Zðf Þ is a
symmetric matrix. Based on Theorem 1, our objective is
to guarantee that every possible combination of two
antennas in the underlying ULA is active in at least one
of the L possible time slots within a scanning period. In
other words, we are only interested in the off-diagonal
components of Zðf Þ and thus, we initialize Zðf Þ with
Zð0Þ ¼ IN .

In general, Algorithm 1 consists of L main iterations
indicated by a while loop in Table 1. The reason to use a
while loop to implement the main iterations is due to the
fact that L is unknown. The objective of the while loop is to
choose M antennas for each time slot. One main iteration
corresponds to the selection of M antennas for one time
slot. The first task in the main iteration (see step 5 in
Table 1) is to randomly select a combination of two
antennas that has not been used in the previous time slot.

The task of the inner for loop in Table 1, which consists
of M−2 iterations, is to choose the remaining M−2 anten-
nas for the considered time slot. For each antenna selec-
tion, our aim is to maximize the number of conversion of
zeros in Zðf Þ to ones. This is done because we want to
ensure that each antenna selection results in a maximum
number of new combinations of two active antennas that
have not been simultaneously used in the previous
time slots.

Note that the main iterations will stop once every
possible pair of two antennas has been selected for at
least one time slot.

Appendix C. Explanation for Algorithm 2 (see Table 2)

For Algorithm 2 in Table 2, we use a similar notation to
the one used for Algorithm 1. However, in this algorithm,
all time slots are considered simultaneously and thus we
now use Zðf Þ to indicate whether a certain combination of
two antennas has been used as two of the first f þ 1 active
antennas in any time slot. The task of the first for loop in
Algorithm 2 is to select the first two antennas for each
time slot. One iteration corresponds to the selection of the
first two antennas for one time slot. Once we have selected
the first two active antennas for each time slot, we proceed
to the while loop indicated by steps 8–16 in Table 2. Here,
one iteration of the while loop corresponds to the selec-
tion of one additional antennas for all time slots. The
reason to use while loop here is due to the fact that M is
not known. The inner for loop inside the while loop
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performs the selection of one additional antenna for one
time slot in each iteration. As in Algorithm 1, each antenna
selection aims to maximize the number of conversion of
zeros in Zðf Þ to ones.
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