
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 9, SEPTEMBER 2012 4775

Compressive Wideband Power Spectrum Estimation
Dyonisius Dony Ariananda, Student Member, IEEE, and Geert Leus, Fellow, IEEE

Abstract—In several applications, such as wideband spectrum
sensing for cognitive radio, only the power spectrum (a.k.a. the
power spectral density) is of interest and there is no need to re-
cover the original signal itself. In addition, high-rate analog-to-dig-
ital converters (ADCs) are too power hungry for direct wideband
spectrum sensing. These two facts have motivated us to investigate
compressive wideband power spectrum sensing, which consists of
a compressive sampling procedure and a reconstruction method
that is able to recover the unknown power spectrum of awide-sense
stationary signal from the obtained sub-Nyquist rate samples. It is
different from spectrum blind sampling (SBS), which aims at re-
constructing the original signal instead of the power spectrum. In
this paper, a solution is first presented based on a periodic sampling
procedure and a simple least-squares reconstruction method. We
evaluate the reconstruction process both in the time and frequency
domain. Then, we examine two possible implementations for the
compressive sampling procedure, namely complex Gaussian sam-
pling and multicoset sampling, although we mainly focus on the
latter. A new type of multicoset sampling is introduced based on
the so-called minimal sparse ruler problem. Next, we analyze the
statistical properties of the estimated power spectrum. The compu-
tation of the mean and the covariance of the estimates allows us to
calculate the analytical normalizedmean squared error (NMSE) of
the estimated power spectrum. Further, when the received signal
is assumed to contain only circular complex zero-mean Gaussian
i.i.d. noise, the computed mean and covariance can be used to de-
rive a suitable detection threshold. Simulation results underline
the promising performance of our proposed approach. Note that
all benefits of our method arise without putting any sparsity con-
straints on the power spectrum.

Index Terms—Compressive sampling, multicoset sampling,
power spectrum estimation, sparse ruler, wide-sense stationary
signals.

I. INTRODUCTION

I N recent years, wideband spectrum estimation and sensing
has become a popular topic in signal processing and

telecommunications. A popular application is cognitive radio
where unlicensed users have to sense a broad frequency range
in order to locate the unoccupied licensed spectrum before
establishing a communication link. One possible approach is
to divide the entire wideband spectrum into a large number
of narrowband channels followed by a channel-by-channel
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sequential sensing. However, this approach might introduce a
significant amount of delay in the spectrum sensing process. In
[1], a filter bank structure is introduced to perform multichannel
spectrum sensing in the wideband regime. Similarly, [2], [3] op-
timize a bank of multiple narrowband detectors to improve the
aggregate opportunistic throughput of a cognitive radio system
by introducing the so-called multiband joint detection and
multiband sensing-time-adaptive joint detection, respectively.
Again, these methods are not efficient due to the need for a large
number of bandpass filters. Another approach is to directly
scan the wideband spectrum using a high-rate analog-to-digital
converter (ADC), such as in [4], where wavelets are used to
detect the edges or boundaries of the occupied bands. However,
such high-rate ADCs consume a large amount of power [5].
To reduce the burden on the ADCs, many researches have

been performed to exploit specific features of the spectrum
(such as sparsity in the spectrum or the edge spectrum [6]–[8]).
These specific properties allow for a reduction of the sam-
pling rate compared to the Nyquist rate while maintaining
perfect signal reconstruction when no noise is present. In [9],
the so-called multicoset sampling is examined and proposed
to reduce the sampling rate when the considered multiband
signals have a frequency support on a union of finite intervals.
Given prior knowledge of the frequency support of the received
signals, [9] has derived the condition for exact reconstruction
as well as proposed an explicit reconstruction formula. Un-
fortunately, in many applications, such as cognitive radio, the
frequency support is not known in advance and the multicoset
sampling approach proposed in [9] is not suitable. In order
to solve this problem, [7], [10] proposed solutions for signal
reconstruction based on multicoset sampling without any prior
knowledge about the frequency support of the original signal.
Closely related ideas can also be found in [8], which discusses
sub-Nyquist rate sampling for sparse multiband analog signals
by means of a so-called modulated wideband converter, which
consists of multiple branches, each of which employs a dif-
ferent periodic mixing function followed by low-pass filtering
and low-rate uniform sampling. Since the objective of the
methods discussed in [7], [8], and [10] is to sample a signal
with unknown frequency support at minimal rate and recon-
struct the spectrum from the samples by exploiting spectrum
sparsity, these approaches fall in the class of spectrum blind
sampling (SBS). In these works, it has been found that the
minimum average sampling rate for most signals is given by
the Landau lower bound (as studied in [9]), which is equal to
the Nyquist rate multiplied with the frequency occupancy ratio.
However, in the worst case scenario, the minimum average
sampling rate increases and is given by the minimum of twice
the Landau lower bound and the Nyquist rate. Note that all of
the above approaches can be cast into a compressive sampling
framework where the signal reconstruction can be carried out
by using your favorite sparse recovery method such as the least
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absolute shrinkage and selection operator (LASSO) algorithm
[11]. Also more classical methods can be adopted, such as the
minimum variance distortionless response (MVDR) method
[12], or multiple signal classification (MUSIC) [7].
All methods aforementioned concentrate on spectral estima-

tion and aim at perfectly reconstructing the original signal. In
fact, for spectrum sensing applications, only the power spectrum
(a.k.a. the power spectral density), or equivalently, the autocor-
relation function, needs to be recovered. Power spectrum esti-
mation methods based on sub-Nyquist rate samples have been
developed in [13], [14] by concentrating on the autocorrelation
function instead of the original signal itself. In [13], the spec-
trum sensing approach proposed by [6], which exploits the em-
bedded sparsity of the edge spectrum, is improved by taking
advantage of the connection between the autocorrelation func-
tion of the compressive measurements and that of the Nyquist
rate samples. Nevertheless, [13] assumes that the compressive
measurements are wide-sense stationary, which is not true for
most compressive sampling matrices. In [14], a compressive
sampling framework is obtained by computing the output en-
ergy of a limited number of wideband filters to reconstruct the
received energy in a large number of spectral bins. Unfortu-
nately, [14] only exploits the output energy of each filter leading
to an under-determined system of equations, while cross-corre-
lations among the outputs of the different filters could also have
been exploited. In [15], a power spectrum estimation method
based on multicoset sampling is proposed by exploiting the fact
that a wide-sense stationary signal corresponds to a diagonal co-
variance matrix of the frequency domain representation of the
signal. This observation is used in [15] to build an overdeter-
mined system of equations relating the frequency domain statis-
tics of the compressive measurements with those of the signal,
which is solvable by adopting a nonnegative least-squares algo-
rithm. Another method labeled as coprime sampling is provided
by [16]. This method aims at estimating the frequencies of si-
nusoids buried in noise by exploiting two uniform sub-Nyquist
samplers with sampling periods that are coprime multiples of
the Nyquist period.
This paper concentrates on efficient power spectrum recon-

struction and aims at designing effective periodic sub-Nyquist
sampling procedures for this, also labeled as power spectrum
blind sampling (PSBS) in [17]. Theoretically, this approach is
able to perfectly reconstruct the unknown power spectrum of a
wide-sense stationary signal using least-squares by exploiting
the cross-correlations between the different outputs of the pe-
riodic sampling device. The least-squares algorithm requires
some rank conditions to be satisfied, which will guide the ac-
tual implementation of the sampling device. In this paper, sam-
pling techniques based on random modulating waveforms can
be adopted, as used in [8], but the main focus will be on multi-
coset approaches. A novel multicoset sampling implementation
is designed based on the minimal sparse ruler problem. The the-
oretical statistical properties of the estimated power spectrum
are also investigated leading to the mean and the covariance
of the estimated power spectrum, which is useful for formu-
lating the normalized mean squared error (NMSE) analytically.
Moreover, the detection threshold used to evaluate the presence
or absence of a signal at a specific frequency can also be de-

rived by assuming the received signal is merely circular com-
plex zero-mean Gaussian i.i.d. noise. All the proposed schemes
are compared via both analysis and simulations. In general, the
developed sampling procedures can significantly decrease the
sampling rate requirements by exploiting the spectral correla-
tion properties without putting any sparsity constraints on the
power spectrum.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Let be a wide-sense stationary analog signal, which is as-
sumed to be complex-valued (e.g., the complex envelope of the
observed real-valued signal) and bandlimited with bandwidth
(which also indicates the Nyquist rate). We then consider

a spectrum sensing application, where the task is to sense the
power spectrum of . Fig. 1 depicts the employed sampling
device, which can be regarded as one possible implementation
of an analog to information converter (AIC) in a compressive
sampling operation. However, note that this sampling device
is capable of modeling any AIC implementation, such as those
proposed in [18], [19]. The considered sampling device has
branches, where the branch modulates the signal with
a possibly complex-valued periodic waveform of period

followed by an integrate-and-dump device with period
(thus with rate equal to times the Nyquist rate). The output of
the branch at the th sampling index can thus be expressed
as

(1)

where yields a single period of , i.e.,
for and elsewhere. Assume

now that is a piecewise constant function having constant
values in every interval of length , i.e., for

, where . Then, (1)
can be rewritten as

(2)

where can be viewed as the output of an integrate-and-
dump process with period (thus with rate equal to the Nyquist
rate) applied to , which is not explicitly computed due to
its high complexity. Note that the average sampling rate of this
periodic sampler is given by the Nyquist rate multiplied by
and hence we will use to keep the complexity low.
The presented sampling device is actually similar to the modu-
lated wideband converter introduced in [8], where the values of

are randomly generated, e.g., adopting complex Gaussian
sampling or random binary (from the set ) sampling. How-
ever, the sampler coefficients can also be set to implement
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Fig. 1. Illustration of the sample acquisition scheme, which modulates the re-
ceived analog signal with different periodic waveforms followed by an in-
tegrate-and-dump process.

Fig. 2. Digital interpretation of the sampling device of Fig. 1, consisting of
a high-rate integrate-and-dump process, followed by a bank of branches,
where each branch consists of a digital filtering operation followed by a down-
sampling operation.

efficient multicoset sampling, which will be discussed in more
detail in Section V.
Fig. 2 underlines the important fact that (2) can actually be

perceived as a digital filtering operation of by the filter
of length followed by an -fold decimation, i.e.,

, where

with representing the convolution operator. This observation
turns out to be useful for the reconstruction process.
The goal of this paper is to reconstruct the power spectrum

of based on the obtained samples . Since
is obtained from by an integrate-and-dump device oper-
ating at Nyquist-rate, the spectrum of is given by a peri-
odic extension of a slightly changed version of the spectrum of

without aliasing. As a result, the power spectrum of
is uniquely determined by the power spectrum of and vice
versa, and thus we will concentrate on reconstructing the power
spectrum of in this paper.
It is well-known that the power spectrum or power spectral

density (PSD) of is given by

where represents the autocorrelation function of , de-
fined as . Therefore, estimating the
power spectrum amounts to estimating the autocorrela-
tion function . The major contribution of this work is that
we will take advantage of all the different cross-spectra of

with for , which will enable
rate-compression without introducing any sparsity constraints

on . Note that the cross-spectrum or cross spectral density
(CSD) of with is given by

where is the cross-correlation func-
tion of with . These ensemble quantities
can be estimated by their sample averages, which in turn re-
sult in estimates of . In the following sections,
we will first describe a time-domain approach to reconstruct

given for . Next, a fre-
quency-domain approach to estimate given for

will be discussed.

III. TIME-DOMAIN RECONSTRUCTION APPROACH

A. Reconstruction Analysis

In this subsection, a method to reconstruct given
for is presented. Since

, the cross-correlation function of with
can be expressed as the -fold decimated version of the

cross-correlation function of with , as follows:

(3)

It is obvious that can be written as

(4)
where is the “deterministic” cross-correlation function
between and

(5)

From (3) and (4), we obtain

(6)

which is based on the following definitions:

(7)

(8)

(9)

By cascading the different cross-correlation func-
tions , we obtain the vector

, for , which
can be derived from (6) as

(10)
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where and are the matrices given by
and ,

respectively, for .
Due to the bandlimitedness of , basically has un-

limited support. However, in many practical situations,
only has significant values within a range and
negligible values outside this range, where is a design pa-
rameter that can be chosen as large as required. Hence, let us
relax the bandlimitedness condition and assume that the sup-
port of is strictly limited to , which is
a rather standard approach when computing a cross-spectrum
from a cross-correlation function. Since from (10), it is clear
that depends on both and , one could think
that under the above assumption the support of is limited
to , but that would mean that also
is nonzero. As a consequence, the support of should also
be limited to .
All these quantities can be collected into the following vec-

tors:

(11)

(12)

where has size and has size
. Let us further introduce two other important observations.
First, based on the definition of in (9), the fact that the
support of is limited to , and the complex
conjugate symmetry in , it is clear that the support of
is limited to and the last entries of

are zero. Second, based on the definition of in (8)
and the fact that the support of is limited to

, it is clear that the first column of is zero.
These two observations allow us to write the linear convolution
in (10) as a circular convolution within , without
any additional zero padding. Hence, we can eventually write the
relation between and as

(13)

where is the matrix given by

. . .
. . .

(14)

Note that (13) is solvable using least-squares (LS) if has full
column rank, which obviously requires .
The inverse problem of (13) can be further simplified by ob-

serving that is a block circulant matrix with blocks of size
, which can easily be converted into a block diagonal

matrix with blocks of size . This can be carried
out solely by using the -point (inverse) discrete Fourier
transform ((I)DFT)

where is the DFT matrix, and
with

being the matrix spectrum of the
matrix sequence

(15)

Consequently, by defining the vector and the
vector as

(16)

(17)

we can re-express (13) as

(18)

From (11), (12), (16), and (17), we can also write and as

where and are, respectively, the and
vector spectra of the and vector sequences
and

(19)

Here, is obtained from the sample-averaged version of ,
while , and thus , is to be estimated. By using (19), we
are able to rewrite (18) as a set of matrix equations:

(20)

If has full column rank for ,
we can compute using LS from (20) for

. Note that the above simplification unin-
tentionally transformed the time-domain approach in some
kind of frequency-domain approach. However, we can also
directly start from the frequency domain, as indicated in
Section IV. Having estimated , we can reconstruct using
(16) and then compute the power spectrum
vector as

(21)

where

and is the DFT matrix.

B. Alternative Time-domain Approach

In this subsection, we present an alternative yet different ver-
sion of the time-domain reconstruction approach presented in
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Section III-A. We start by rewriting (2) in matrix-vector nota-
tion

(22)

where the measurement vectors and the vector
sequence are, respectively, defined as

(23)

(24)

while the compressive sampling matrix is given by

with .
Next, we compute the autocorrelation matrix of

in (23), which is given by . If we also
construct the autocorrelation matrix of in (24) as

, the relationship between and
can be expressed as

(25)

where the elements of are given by
due to the wide-sense stationary property of .While

has a Toeplitz structure, this is not the case for be-
cause the elements of in (23) are generally not wide-sense
stationary due to the nature of the compressive sampling matrix
. Therefore, it is theoretically possible to exploit all columns

of to estimate one of the columns of by first stacking
all columns of into the vector , which
is nothing else than in (11). Here, is the operator that
stacks all columns of a matrix in a large column vector. Based
on (25), it is evident that in (11) can be written as

(26)

where represents the Kronecker product operation.
Since all columns of contain the same informa-
tion, can be condensed into the vector

,
and we can write

(27)

where is a special repetition matrix with the
th row of given by the

th row of the identity matrix . By combining (26)
and (27), we obtain

(28)

where the matrix is actually
given by

(29)

with equal to and obtained by removing the
first column of (which actually has zero entries). If has
full column rank, it is possible to reconstruct the autocorrelation
vector from (28) using LS. Then, we can compute the power

spectrum vector as in (21) by replacing with a zero-padded
version of denoted as , i.e., . Note that
as the time-domain approach only gives a valid power spectrum
estimate when has negligible correlation values above lag

, where can be freely selected, the alternative time-do-
main approach should only be preferred if has negligible
correlation values above lag . Hence, for a fixed , e.g.,
when the sampler is fixed, this is a clear disadvantage of the al-
ternative approach.
Comparing the alternative approach to (13), we further ob-

serve that it is a different method that can not merely be ob-
tained from the time-domain approach by setting in (11)
and (12). If we set in (11), the support of is lim-
ited to . However, as we explained in Section III-A, the
support of is then also limited to . Further, from the
complex conjugate symmetry in , we can then conclude
that setting is only possible when is assumed to be
a white sequence, i.e., . Hence, the minimum
possible value of in (11) and (12) is .

IV. FREQUENCY-DOMAIN RECONSTRUCTION APPROACH

In this section, we develop a frequency-domain reconstruc-
tion approach. The reason for presenting this frequency-domain
method is its tight connection to spectrum blind sampling (SBS)
presented in [7], [8], [10]. SBS also starts from a frequency-
domain viewpoint but focuses on spectrum reconstruction in-
stead of power spectrum reconstruction. Since ,
we can also write the cross-spectrum of with as an
-fold aliased version of the cross-spectrum of and

(30)
It is well known that can be written as

(31)

where is the “deterministic” cross-spectrum between
and

From (30) and (31), we can thus write

where we have that

(32)
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Note that reconstructing for is equivalent
to reconstructing for .
Stacking the different cross-spectra in

the vector , for
, we finally obtain

(33)

where is the matrix given by
, for . Assuming

that has full column rank for , we can solve
(33) for using LS.
The above approach allows us to estimate the power spec-

trum at any specific frequency, and as such does not require
any limits on the support of and thus on the support of

. However, to compute from in practice, the
support of has to be truncated. So we could again, as be-
fore, relax the bandlimitness condition and assume that the sup-
port of and thus is limited to . In
that case, to reconstruct the overall power spectrum , it
suffices to compute for ,
which from (33) is completely determined by for

. It can be shown that such an approach
would be exactly equivalent to the special form of the time-do-
main approach presented in (20).

V. MINIMAL SPARSE RULER SAMPLING

To ensure the uniqueness of the LS solution of (13) and (20),
many different implementations of the considered sampling
procedure can be investigated. Although many types of random
modulating waveforms can be studied [8], such as complex
Gaussian sampling or random binary (from the set )
sampling, we mainly focus on multicoset sampling in this
paper. More specifically, we propose some new multicoset
implementations based on the so-called minimal sparse ruler
problem, which we will label as minimal sparse ruler sampling.
Observing (2), multicoset sampling can be implemented by

simply setting for every branch , one different entry of
to one and the others to zero, i.e., if and

if , where whenever . Con-
cisely, , where , . This is
actually identical to selecting different rows from the iden-
tity matrix . However, note that this row selection cannot be
random, because we need to deterministically guarantee the full
column rank of in (13) or equivalently of
in (20). Observe that every row of only contains a single one,
which means that the full rank conditions can be fulfilled by en-
suring that has at least a single one in each of its columns.
We can find from (5), (7) and (8) that when has a one
in the column corresponding to lag , has a one in the
column corresponding to lag . As a result, if the first
columns of all have at least a single one, then also the last

columns of all have at least a single one, where
represents the largest integer not greater than . Hence, a suffi-
cient condition to guarantee that all columns of have at least
a single one can be achieved by ensuring that the first
columns of all have at least a single one. Therefore, the
problem we now like to solve is how to choose a proper com-
bination of rows of to generate the coefficients of for

, such that has at least a single one in

each of its first columns. Further, note that the aim is to
keep the number of selected rows minimal, in order to minimize
the number of branches and thus to minimize the compres-
sion rate .
Since , it is obvious from (5) that

(34)

which depends on the differences . By introducing
as a set of indices selected from , repre-
senting the row indices of selected by the multicoset sam-
pler, and as the set of related index-differences, given by

, the problem of constructing the
sampler coefficients becomes

(35)

where represents the cardinality of the set . While the
solution of (35) can be found by exhaustive or greedy search
procedures, one possible way to find a suboptimal solution of
(35) is by reformulating the problem as a so-called minimal
length- sparse ruler problem, which has been well-studied.
This is done by introducing as a set of indices selected
from and as the set of related index-differ-
ences, given by , and by solving

(36)

A sparse ruler with length can be regarded as a ruler having
distance marks

, but is still able to measure all integer distances from 0 up
to . The length- sparse ruler having distance marks
is called minimal if there is no length- sparse ruler having

marks. The minimal sparse ruler problem has for instance
been investigated in [20]. Many exact and approximate solu-
tions for the sparse ruler problem have been precomputed and
tabulated. By making the connection between the sparse ruler
problem and our multicoset design problem, the sampler coeffi-
cients can be constructed using any known sparse
ruler, which guarantees the full rank property of and thus the
uniqueness of the simple LS solution to power spectrum recon-
struction.
For the alternative time-domain approach, the aim is to en-

sure the uniqueness of the LS solution of (28), which can be
achieved if in (28) has full column rank. In the case of mul-
ticoset sampling, the full rank condition of can be achieved
if each column of has at least a single one because we know
that every row of will only contain a single one by consid-
ering (5), (7), (8), and (29). Following the same analysis as in the
previous paragraphs, the problem of constructing
while ensuring that has at least a single one in each of its
columns boils down to solving a minimal length- sparse
ruler problem. For the same , this obviously leads to a worse
compression rate than for the time-domain approach. How-
ever, while the minimal length- sparse ruler only provides
a suboptimal solution for the time-domain approach, the min-
imal length- sparse ruler offers the minimum possible
compression rate for the alternative time-domain approach.
This can easily be verified.
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TABLE I
EXAMPLES OF MINIMAL SPARSE RULERS (TD = TIME DOMAIN APPROACH, ATD = ALTERNATIVE TIME DOMAIN APPROACH)

Table I shows some examples of minimal sparse ruler sam-
plers for the time-domain (TD) and alternative time-domain
(ATD) approaches.

VI. ESTIMATION AND DETECTION PERFORMANCE

In this section, we evaluate the estimation and detection
performance of the proposed power spectrum estimators. We
first derive the mean and the covariance of the estimated power
spectrum in (21). Based on the derived mean and covariance,
we then formulate the analytical normalized mean squared
error (NMSE) of the estimate. To evaluate the detection perfor-
mance, we assume the received sequence only contains
circular complex zero-mean Gaussian i.i.d. noise. Based on
this assumption, we simplify the earlier derived mean and
covariance of the estimator and we show that asymptotically,
for a sufficient number of measurements, the estimated power
spectrum is Gaussian as well. Based on these results, we can
finally formulate the decision threshold for a constant false
alarm rate.

A. Estimation Performance

Given measurement vectors , the unbiased estimate
for in (6) can be written as

(37)

where and gives the largest and smallest
value of and , respectively.
Obviously, since is an un-

biased estimate. Following Section III-A, we can now com-
pute the covariance matrix of the estimate for in (11),
which is given by the matrix

. The elements of are
given by

(38)

where , and
can be expressed as

(39)

Observe that the computation of is not trivial since it in-
volves the computation of fourth order moments. Knowledge
about the distribution of the received sequence is thus re-
quired. For example, if is Gaussian distributed, then the
sequences are also jointly Gaussian and the fourth order
moments in (39) can be simplified as the sum of products of
second order moments [22].
Based on the statistical properties of , we can now compute

the expected value and the covariance of the recovered power
spectrum. Denote the estimated power spectrum for in (21)
by . From (13) and (21), assuming that has full column
rank, the relationship between and is given by

(40)

where . The expected value of is thus
given by

(41)

Correspondingly, we denote the co-
variance matrix of by , which can be written as

(42)

where the elements of are given by (38). Note that the vari-
ance of the elements of can be found on the diagonal of .
It is well known that the NMSE of the estimated power spec-

trum is then given by

(43)
where is the trace operator. Since is a linear function of
[see (40)] and is an unbiased estimate of [see (37)],

is an unbiased estimate of as long as the support of the au-
tocorrelation of the received signal is limited to

, which is the assumption we adopt in (12). When this
is the case, the NMSE of is equal to .

Note that in (37), we have used an unbiased estimate
of the cross-correlation instead of a biased one. The
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reason for this can be explained as follows. Using an unbiased
estimate instead of a biased one, the realness of the resulting
power spectrum estimate is not jeopardized, but the positive-
ness of can be affected. However, even when using a biased
estimate, i.e., using a normalization factor instead of
in (37), the positiveness of can generally not be guaranteed,
in contrast to the Nyquist-rate sampling case. This is due to the
fact that the pseudo-inverse of is used in (40), which does
not introduce an additional bias when transforming into .
That is the main reason why we started from an unbiased es-
timate from the beginning. We will come back to this issue in
Section VII.

B. Constant False Alarm Rate (CFAR) Detection Performance

For the detection performance evaluation, let us assume that
the received sequence in Fig. 2 only contains circular
complex zero-mean Gaussian i.i.d. noise with variance , i.e.,

and for all
and . When this is the case, can be simplified to

(44)

The elements of in (42) can then also be simplified ac-
cording to Appendix A and they are given by

(45)

The expected value of is then given by (41) and the covari-
ance matrix of by (42) where the elements of are given
by (44) and those of by (45).
Asymptotically, when the number of measurement vectors

is sufficiently large compared to in (11), i.e., , it can
be shown that the Gaussian approximation is applicable for the
distribution of each element of , when only contains cir-
cular complex zero-mean Gaussian i.i.d. noise. This evaluation
on the asymptotic statistical distribution of is provided in
Appendix B.
Combining (42), (45), and the analysis in Appendix B, we

are now ready to evaluate the detection problem at frequen-
cies under the asymp-

totic Gaussian behavior of . Note that it is always possible
to increase the number of grid points in the frequency domain
by simply padding zeros to , and thus it is always possible
to evaluate the detection problem at frequencies other than the
above specified frequencies. The detection problem is modeled
as a selection between hypothesis , which represents the
occupancy of frequency , and hypothesis , which repre-
sents the absence of a signal at frequency . Here, we want to
maximize the detection probability given the false alarm proba-
bility and thus we adopt the Neyman-Pearson theorem [23]. The
decision rule is given by

where is the decision threshold for frequency . Let us de-
note the mean and variance of the noise power at frequency
as and , respectively. Note that the value of and

for can be found as
the elements of in (41) and those of the diagonal of
in (42) where the elements of in (41) and in (42)
are, respectively, given by (44) and (45). Due to the asymptotic
Gaussian behavior of , the false alarm probability at fre-
quency , , given the threshold value , is given by

where is the tail probability of the standard Gaussian dis-
tribution

As a result, for a given false alarm probability , the deci-
sion threshold at frequency can be computed as

(46)

C. Alternative Time-Domain Approach Case

In this subsection, we again evaluate the estimation and
detection performance of the proposed power spectrum esti-
mators but now for the alternative time-domain approach of
Section III-B. Note that this approach is not a special case of
the time-domain approach and requires a separate analysis. We
start the analysis on the estimation performance by considering

as an unbiased estimate of in (26). Note that the
elements of are simply given by (37) with and it
is evident that . Next, we derive the covari-
ance matrix of , which is given by the matrix

whose
elements are simply given by (38) with .
Based on the statistical properties of , we can compute

the expected value and the covariance of , which is the esti-
mate of in (28). Assuming that in (28) has full column
rank, the expected value of can be written as

(47)

Correspondingly, we denote the covariance
matrix of by , which can be expressed as

(48)

where . Let us denote the zero padded
version of by and replace and by the

vector and the matrix
. The mean and the covariance matrix of are then given

by

(49)

and

(50)

respectively. Similar to the time-domain approach case, the
NMSE of depends on its variance and bias. Since is a
linear function of , which is an unbiased estimate of ,
is also an unbiased estimate of as long as the support of

the autocorrelation of the received signal is limited to



ARIANANDA AND LEUS: COMPRESSIVE WIDEBAND POWER SPECTRUM ESTIMATION 4783

. When this is the case, the NMSE of
is again equal to .
For the detection performance evaluation, we again assume

that the received sequence in Fig. 2 only contains circular
complex zero-mean Gaussian i.i.d. noise. When this is the case,
the elements of in (47) are given by (44) with
, and the elements of in (48) are given by (45) with

. Similar to the time-domain approach case, the
Gaussian approximation is also applicable for the distribution of
each element of under the alternative time-domain approach
when only contains circular complex zero-mean Gaussian
i.i.d. noise and as long as is sufficiently large. This is shown
in Appendix C. The derivation of the detection threshold given
a fixed false alarm probability for this alternative time-domain
approach case follows Section VI-B.

VII. ADDITIONAL CONSTRAINTS

So far, we have assumed that the power spectrum can be
estimated without any additional constraints relying on the as-
sumption that there are enough equations available. As we ex-
plained in Section VI-A, this estimated spectrum is real but not
necessarily positive. Hence, we could think about adding a pos-
itivity constraint to our reconstruction problem. To do so, let us
first combine (16), (18), and (21) to produce

(51)

where is of size
. The power spectrum estimate is then given by the

solution of the following positivity-constrained least-squares
problem:

(52)

where is the vector containing only zeros and
is a component-wise inequality.
Similarly, if we know that the power spectrum is sparse, we

could think about adding a sparsity constraint to our reconstruc-
tion problem. The power spectrum estimate is then given by
the solution of the following sparsity-constrained least-squares
problem:

(53)

where the weight balances the sparsity-bias tradeoff. And
naturally, it is also possible to combine the positivity constraint
with the sparsity constraint.
While this positivity and/or sparsity constraint might lead

to more accurate power spectrum estimates, they also allow
to solve the underdetermined case, i.e., when , and
as such allow to further reduce the sampling rate require-
ments. However, we decided not to include these constraints
from the beginning, because of two reasons. First of all, the
constrained least-squares problems are harder to solve than
the unconstrained one, and thus lead to a higher computa-
tional complexity. And second, the unconstrained solution
allows for an analytical performance evaluation (as carried
out in Section VI), while this is not trivial for the constrained
solutions, since we lose the linear relationship between the

estimated power spectrum and the cross-correlation vector
.
Finally, note that a positive solution can always be obtained

from the unconstrained solution, by simply setting the negative
entries to zero. In that case, the NMSE derived in Section VI-A
can be viewed as an upper bound on the true NMSE while the
optimal detection threshold (as well as the related detection and
false alarm rate) at a specific frequency derived in Section VI-B
will not change at all.

VIII. SIMULATION RESULTS

In this section, we present some simulation results describing
the effectiveness of our proposed methods. In the first part, we
examine the estimation performance of both the time-domain
and alternative time-domain reconstruction approaches while
the detection performance of both approaches is presented in
the second part. We consider minimal sparse ruler sampling
and complex Gaussian sampling, where the latter is merely
considered to show that the proposed techniques also work
for other samplers than multicoset samplers. In this section,
minimal sparse ruler sampling refers to the multicoset sampling
technique for which we define the sampler coefficients by
selecting the rows of an identity matrix according to
Section V, and for which we acquire larger compression rates
by randomly adding extra rows of the identity matrix to the
already selected rows.

A. Estimation Performance

First of all, we evaluate the performance of our time-do-
main approach presented in Section III-A. We consider a
complex baseband signal spanning the frequency bands

, , and . To generate
this signal, we pass circular complex zero-mean Gaussian i.i.d.
noise with variance through a digital filter of length

. As a result, the support of the true autocorrelation
sequence is limited to , as required by
our theory, and it is given by

(54)

In this subsection, we take and , and we vary
the compression rate . The motivation to fix at is
computational complexity since a higher will generally result
in a higher complexity.
We now examine the proposed minimal sparse ruler sampling

discussed in Section V and complex Gaussian sampling. Both
estimates are computed using LS. In the first method, the co-
efficients of for are generated ac-
cording to the length-42 minimal sparse ruler having
distancemarks. This is equivalent to selecting the corresponding

rows from the first 43 rows of the identity matrix
leading to branches in our sampling device. As

a result, we have matrices and of size 121 84
in (10). We then implement the larger cases by randomly
adding additional rows of to the already selected 11 rows.
In the complex Gaussian sampling case, we simply vary the
compression rate from to 0.5. The coefficients of
for are randomly generated according to
a circular complex Gaussian distribution with zero mean and
variance . Note that we keep these coefficients fixed over the
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Fig. 3. The normalized MSE between the estimated power spectrum (minimal
sparse ruler and complex Gaussian sampling) and the true one for various num-
bers of MVs . (a) Noise-free. (b) Noisy ( in active bands).

different simulation runs. In Fig. 3, the NMSE between the es-
timated power spectrum and the true one is calculated for
both the minimal sparse ruler sampling and complex Gaussian
sampling. While no noise is considered in Fig. 3(a), random cir-
cular complex zero-mean Gaussian i.i.d. noise is introduced in
Fig. 3(b), in such a way that the signal-to-noise ratio (SNR) in
the active bands is given by 10 dB. Both the simulated and ana-
lytical NMSE are calculated for a varying number of measure-
ment vectors (MVs) (which is analogous to Nyquist rate
samples) as an attempt to represent different sensing times. We
also provide the simulated and analytical NMSE between the es-
timated power spectrum produced by Nyquist rate sampling and
the true one for different sensing times as a benchmark. Here,
the Nyquist rate estimate is obtained from the proposed mul-
ticoset approach in Section V by setting . From the
figures, it is obvious that the quality of the estimation improves
with and it slowly converges towards that of the Nyquist
rate. We can also see how the NMSE improves as the sensing
time increases, which is to be expected. Observe that the pro-
posed minimal sparse ruler sampling generally performs better
than complex Gaussian sampling. If we compare the structure
of in (14) for complex Gaussian sampling with the one for
minimal sparse ruler sampling, we can easily see that, for the
minimal sparse ruler case, the columns of are not only inde-
pendent but also orthogonal. As a result, the condition number

Fig. 4. The normalized MSE between the estimated power spectrum (minimal
sparse ruler and complex Gaussian sampling) based on the alternative time-
domain approach and the true one for various numbers of MVs . (a) Noise-
free. (b) Noisy ( in active bands).

of for minimal sparse ruler sampling is smaller than the one
for complex Gaussian sampling. This issue might explain why
the performance of minimal sparse ruler sampling is better than
that of complex Gaussian sampling. Note also how the simu-
lated NMSE is on top of the analytical NMSE for the minimal
sparse ruler, complex Gaussian, and Nyquist rate sampling.
Next, we consider the performance of the alternative time-do-

main approach in Section III-B for both minimal sparse ruler
and complex Gaussian sampling. The signal model that is used
here has the same characteristics as the one used in the time-do-
main approach except for the fact that the filter used to gen-
erate the signal now has length . Hence, the support of the
true autocorrelation sequence is now limited to

, as required by our theory. We again se-
lect . For the minimal sparse ruler sampling case, we
first generate the coefficients for ac-
cording to the length-83 minimal sparse ruler leading to
branches in our sampling device. This will result in a ma-

trix of size 256 167 in (28). We again implement the
larger cases by randomly adding additional rows of to
the already selected 16 rows. For complex Gaussian sampling,
we simply vary the compression rate from to 0.5. Note
however that complex Gaussian sampling is theoretically able
to offer a smaller compression rate than the minimal sparse
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Fig. 5. The detection performance of the proposed time-domain approach
(minimal sparse ruler sampling) for various numbers of MVs and . (a)

in active band. (b) in active band.

ruler counterpart while maintaining the full column rank prop-
erty of in (28) although it might not result in an accept-
able performance. Similar to the time-domain reconstruction ap-
proach, we randomly generate the coefficients according
to a circular complex Gaussian distribution with zero mean and
variance and keep these coefficients fixed over the different
simulation runs. Both the simulated and analytical NMSE be-
tween the estimated power spectrum and the true one for the
alternative time-domain approach are depicted in Fig. 4. The
Nyquist rate based estimates in Fig. 4 are obtained from the
multicoset implementation of the alternative time-domain ap-
proach in Section III-B with . In general, we find similar
trends as the ones observed for the time-domain reconstruction
approach (Fig. 3) with respect to the impact of the compres-
sion rate and sensing time, as well as the relative performance
between the minimal sparse ruler and complex Gaussian sam-
pling.

B. Detection Performance

In this subsection, we consider a complex baseband signal
spanning a frequency band between and . Again,
this signal is generated by passing circular complex zero-mean
Gaussian i.i.d. noise through a digital filter of length
where and are set to and , respectively.

Fig. 6. The detection performance of the proposed time-domain approach
(complex Gaussian sampling) for various numbers of MVs and . (a)

in active band. (b) in active band.

On top of this spectrum, we add circular complex zero-mean
Gaussian i.i.d. noise such that a specific SNR is obtained in the
active band. In order to simplify the analysis in the simulation
study, the same filter is used for both the time-domain and
alternative time-domain approaches. This certainly results in a
bias for the estimate under the alternative time-domain ap-
proach. The detection probability should be evaluated in the oc-
cupied band. Note however that the active band is not perfectly
rectangular and there are two transition bands around the edges
of the occupied band. Therefore, we decide to leave small guard
bands around the two edges of the active band and evaluate the
detection performance at the points in the band from to

. Meanwhile, the false alarm probability is based on a
band that is significantly far from the occupied band, namely
from to . The SNR in the active band is varied
from dB to dB while the compression rate is varied be-
tween and . The false alarm probability
is set by determining the detection threshold at each frequency,
which is computed according to (46). For simulation purposes,
we try to vary the false alarm probability between
and , which is smaller than the value suggested by the
IEEE 802.22 standard [24].
We first consider the detection performance of the time-do-

main approach for both the minimal sparse ruler and complex
Gaussian sampling implementation, as shown in Figs. 5 and 6,
respectively. Here, we calculate the false alarm and detection
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Fig. 7. The detection performance of the proposed alternative time-domain ap-
proach (minimal sparse ruler sampling) for various numbers of MVs and
. (a) SNR 2 dB in active band. (b) SNR 5 dB in active band.

occurrences at each frequency point separately based on the es-
timated power at that point. For a given band, we then com-
bine the amount of false alarm and detection occurrences at all
frequency points within that band to calculate the false alarm
and detection probability. The sampler coefficients for the min-
imal sparse ruler and complex Gaussian sampling are generated
in the same way as in Section VIII-A. Two different numbers
of measurement vectors are simulated, i.e., and

. As it is obvious from the figures, minimal sparse
ruler sampling generally has a better performance than complex
Gaussian sampling. This somehow confirms the relative esti-
mation performance between both approaches in the previous
subsection. Both methods, however, have a good performance
for all simulated when and SNR . For
SNR , the performance of minimal sparse ruler sam-
pling still reaches an acceptable level as long as and

.
Next, we evaluate the performance of the alternative time-do-

main approach for the two sampling techniques, depicted in
Figs. 7 and 8. Again, the sampler coefficients for the minimal
sparse ruler and complex Gaussian sampling are generated in
the same way as in Section VIII-A. We observe that the alterna-
tive time-domain approach suffers from a performance degra-
dation compared to its time-domain approach counterpart and
a poorer performance is found for the complex Gaussian sam-
pling case. For and , however, the
performance of the minimal sparse ruler sampling is still accept-
able.

Fig. 8. The detection performance of the proposed alternative time-domain ap-
proach (complex Gaussian sampling) for various numbers of MVs and .
(a) in active band. (b) in active band.

IX. CONCLUSION

In this paper, we have developed a new approach for power
spectrum estimation of wide-sense stationary signals based on
samples produced by a sub-Nyquist sampling device. No spar-
sity constraints are required for this method. In general, the so-
lution can be derived by solving simple LS problems, which
are solvable as long as the rank condition of the corresponding
system equations are satisfied. We have focused on multicoset
sampling where we cast the design of the sampling device as a
minimal sparse ruler problem. We have shown that any sparse
ruler can produce a multicoset sampling design that ensures the
full rank condition of the formulated sampling problem, and
thereby guarantees the uniqueness of the power spectrum es-
timate as the solution to a set of simple LS problems. Moreover,
when minimal sparse rulers are employed, the resulting sam-
plers approach the minimum sampling rate resulting in a strong
compression. Finally, we have derived the mean and the vari-
ance of the estimated power spectrum. Based on these results,
we are able to derive the analytical MSE of our power spec-
trum estimates. Moreover, by assuming that the received signal
only contains circular complex zero-mean Gaussian i.i.d. noise,
we are able to derive the detection threshold which is advanta-
geous when we intend to adopt the Neyman-Pearson theorem
for evaluating the detection performance. The simulation study
shows that the performance of our proposed approach is quite
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acceptable in terms of both estimation and detection, therefore
making it a promising candidate for power spectrum estimation
and sensing of wide band signals. Cognitive radio is for instance
one possible interesting application.

APPENDIX A
DERIVATION OF FOR

CFAR DETECTION PERFORMANCE EVALUATION
(TIME-DOMAIN APPROACH)

We start by considering in (38) and
in (39), which are valid for a general

received signal . When the received signal has a
Gaussian distribution, also has a Gaussian distribution.
We can then adopt the following result for Gaussian random
variables, which is proven in [21], [22]: If , and
are jointly complex or real Gaussian random variables then

. This al-
lows us to rewrite in (39) as (55), shown
at the bottom of the page.
For CFAR detection performance evaluation, we as-

sume that the received signal only contains circular
complex zero-mean Gaussian i.i.d. noise. When this is
the case, the third and last terms in (55) are zero since

, and

As a result, (55) can be rewritten as

(56)

By inserting (56) into (38), can be ex-
pressed as

(57)

If we then consider (44), we can observe in (57) that only the
terms with and have a nonzero value. Hence, we
have

(58)

which is the result provided in (45).

APPENDIX B
EVALUATION OF THE STATISTICAL DISTRIBUTION OF
FOR CIRCULAR COMPLEX ZERO-MEAN GAUSSIAN
I.I.D. NOISE (TIME-DOMAIN APPROACH)

In order to evaluate the statistical distribution of for cir-
cular complex zero-mean Gaussian i.i.d. noise , we first
rewrite (37) as

(59)

(55)
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For now, we only concentrate on the most inner summation in
(59). Without loss of generality, we only consider in the
following analysis to simplify the writing. Note that the results
of the analysis also hold for . We have three possible cases
for
1) : In this case, is the sum of the product of two
i.i.d. Gaussian distributions. Note also that the terms in
the summation have identical distributions and they are
also independent to one another. Hence, we can exploit the
central limit theorem to assume that in this case, has a
Gaussian distribution for sufficiently large .

2) and : In this case, will have a chi-square
distribution with degrees of freedom. The chi-square
distribution will converge to a Gaussian distribution for a
sufficiently large value of .

3) and : Similar to the first case, is now again
the sum of the product of two i.i.d. Gaussian distributions.
Even though the terms in the summation are identically
distributed, they are generally dependent. As an example,
the summation for and can be written as

(60)

Note that the same sample has a contribution in the
first and third terms in (60). In general, for all possible values of
, every single term has a statistical dependency on at most two
other terms in the summation. In order to simplify the analysis,
let us split into two separate summations, that is

(61)

Note that we basically put every consecutive terms in to-
gether into one group where every term is a product of two i.i.d.
Gaussian random variables. The first pair of brackets in (61)
contains the odd groups whereas the second pair of brackets
contains the even groups. Observe that the summation in each

pair of brackets is the sum of independent and identically dis-
tributed terms. For instance, if we consider (61) for and

, we obtain

(62)

Note that, within each pair of brackets in (62), there is no sample
that contributes to more than one term in the summation. This
characteristic can also be found if we apply different values of
and to (61). As a result, we can also exploit the central

limit theorem as long as is sufficiently large. When
this is the case, we have the summation of two terms, each of
which has a Gaussian distribution. As a result, can again be
approximated by a Gaussian distribution for large .
By covering all cases, we can conclude that the Gaussian ap-

proximation is applicable for the distribution of

as long as is sufficiently large. From (11), we know

that has a support limited to . As

a result, the Gaussian assumption for is valid if
. By taking (11) and (40) into account, we can find that

the distribution of each element of for the case of circular
complex zero-mean Gaussian i.i.d. noise , is asymptotically
Gaussian for a large .

APPENDIX C
EVALUATION OF THE STATISTICAL DISTRIBUTION OF FOR

CIRCULAR COMPLEX ZERO-MEAN GAUSSIAN I.I.D. NOISE
(ALTERNATIVE TIME-DOMAIN APPROACH)

We investigate the statistical distribution of under the alter-
native time-domain approach by first considering the statistics
of in (47). Recall that the elements of are ,
which are given by (59) with :

(63)

We only pay attention to the most inner summation in (63).
When only contains circular complex zero-mean Gaussian
i.i.d. noise, we can observe that
is the sum of i.i.d. random variables for both and

. As a result, for sufficiently large , we are again
able to exploit the central limit theorem to assume that has
a Gaussian distribution. By combining (47)–(50) and (63), we
can conclude that for the case of circular complex zero-mean
Gaussian i.i.d. noise , each element of is asymptotically
Gaussian distributed for a large under the alternative time-do-
main approach.
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