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Abstract—In this paper, we evaluate a new second-order
statistics based direction of arrival (DOA) estimation method
for possibly coherent sources by considering a uniform linear
array (ULA) as the underlying array, and a periodic scanning
where a single scanning period consists of several time slots and
in different time slots, different sets of antennas in the ULA
are activated leading to a dynamic array having possibly less
active sensors per time slot than correlated sources. The spatial
correlation matrices of the output of the antenna arrays for all
time slots are collected and they can be presented as a linear
function of the correlation matrix of the incoming signal at the
investigated angles. Depending on the number of investigated
angles, the number of time slots per scanning period, and the
number of active antennas per time slot, it is possible to present
our system of linear equations as an over-determined system. As
long as the rank condition of the system matrix is satisfied, it is
possible to first reconstruct the spatial correlation matrix of the
outputs of the underlying array using LS. Given this spatial
correlation matrix, we offer three alternatives. First, we can
estimate the correlation matrix of the incoming signal at the
investigated angles using LS. However, this option is vulnerable
to a so-called grid mismatch effect. In order to mitigate this
effect, we also propose structured total least-squares (S-TLS) as
a second option in order to reconstruct the correlation matrix
of the incoming signal at the perturbed investigated angles given
the reconstructed spatial correlation matrix of the outputs of the
underlying array. As a third option, we can also apply spatial
smoothing and multiple signal classification (MUSIC) on the
reconstructed spatial correlation matrix of the underlying array
to directly obtain the DOA estimates.

I. INTRODUCTION

We first consider a uniform linear array (ULA) having N
antennas that are used to receive narrowband signals produced

by K possibly correlated sources. In addition, we also assume

that the wave incident on the ULA is plannar and the delay

introduced between the antennas can be defined as a phase

shift (due to the narrowband assumption on the incoming

signals). Based on this assumption, we can write the output

of the ULA at time index t as:

x(t) =
K
∑

k=1

a(θk)sk(t) + n(t) = As(t) + n(t) (1)

where x(t) is the N × 1 output vector containing the received

signal at the N antennas of the ULA, n(t) is the N × 1
additive noise vector, s(t) = [s1(t), s2(t), . . . , sK(t)]

T
is the

K × 1 source vector with sk(t) the incoming signal from

direction θk, and A = [a(θ1),a(θ2), . . . ,a(θK)] is the N×K

array manifold matrix with a(θk) the N × 1 array response

vector containing the phase shifts experienced by sk(t) at each

element of the array. Using the first element of the ULA as

a reference point, we can express the array response vector

a(θk) as

a(θk) =
[

1, a(θk)
d, a(θk)

2d, . . . , a(θk)
(N−1)d

]T

(2)

where a(θk) = exp (j2πsin(θk)) and d is the distance in

wavelengths between two consecutive antennas. In order to

prevent spatial aliasing, we set d to d ≤ 0.5. It is generally

assumed that n(t) and s(t) are uncorrelated and that the impact

of the wireless channel has been taken into account in s(t). By

denoting the source correlation matrix by Rs = E[s(t)sH(t)]
and assuming that the noises at different antennas are mutu-

ally uncorrelated with variance σ2
n, we can write the spatial

correlation matrix Rx = E[x(t)xH(t)] as

Rx = ARsA
H + σ2

nIN (3)

where IN is an N ×N identity matrix.

Let us now introduce an antenna selection model to simulate

a more general non-uniform linear array (NULA) case by

activating only M ≤ N antennas from the discussed ULA.

Starting from this point, we now refer to the considered ULA

as the underlying array. By introducing y(t) as the M × 1
output vector containing the output signal at the NULA of M
active antennas, we can then write

y(t) = Cx(t) = CAs(t) +Cn(t) = Bs(t) +Cn(t) (4)

where B = [b(θ1),b(θ2), . . . ,b(θK)] and b(θk) = Ca(θk)
are the M × K array manifold matrix and the M × 1
array response vector, respectively, that correspond to the

M activated antennas. Next, we can also write the spatial

correlation matrix Ry = E[y(t)yH(t)] as

Ry = BRsB
H + σ2

nIM . (5)

Based on the NULA of M active antennas given by (4) and (5),

we now introduce a number of existing DOA estimation

methods.

The statistics of the incoming signals s(t) and the number

of sources K relative to the total number of active antennas M
play a major role when we review existing DOA estimation

approaches. Observe that Rs in (5) is clearly diagonal for

uncorrelated sources, is nondiagonal and full rank for partially

correlated sources, and is nondiagonal and rank deficient for
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fully correlated sources [1]. For uncorrelated or moderately

correlated sources, it is very common to use a popular sub-

space based approach called MUSIC in [2] (or root-MUSIC

in [3]), which exploits the eigenvalue decomposition of the

spatial correlation matrix Ry in (5) to determine the basis for

the signal and noise subspaces. Due to the full rank condition

of Rs, the noise subspace of dimension M −K can be easily

distinguished from the signal subspace of dimension K and

hence MUSIC performs very well. Note that it is clear from the

dimensions of the noise and signal subspaces that MUSIC can

only estimate the DOAs of up to K = M−1 sources. For fully

or even highly correlated signals, however, Rs in (5) is exactly

or close to singular and theoretically, the MUSIC performance

deteriorates since the dimension of the signal subspace now

drops below K. This might lead to very inaccurate DOA

estimates. This problem can be addressed by applying the

so-called spatial smoothing preprocessing scheme discussed

in [1] to Ry in (5) leading to a spatially smoothed covariance

matrix Ry that can be expressed in terms of a full rank matrix

Rs, which is a modified version of Rs in (5). The MUSIC

algorithm can now be applied to Ry instead of Ry . However,

as mentioned in [4], the spatial smoothing scheme requires the

linear array of M active antennas to have a special structure.

Furthermore, the number of sources that can be detected using

MUSIC after the spatial smoothing scheme usually drops to

well below K = M − 1.

A particular class of approaches, such as the ones introduced

in [5] and [6], define a fine grid of investigated angles in the

angular domain and then assume that the DOAs of the sources

are lying at or nearby the grid points. In this case, the output

of the linear array y(t) in (4) can be represented as

y(t) =

Q
∑

q=1

b(θ̃q)sθ̃q (t) +Cn(t) = B̃s̃(t) +Cn(t)

where s̃(t) = [sθ̃1(t), sθ̃2(t), . . . , sθ̃Q(t)]
T with sθ̃q (t) the

unknown incident signal at the investigated angle θ̃q , and

B̃ is the M × Q array manifold matrix at the investigated

angles {θ̃q}
Q
q=1 given by B̃ = [b(θ̃1),b(θ̃2), . . . ,b(θ̃Q)]. Note

that {θ̃q}
Q
q=1 is not necessarily the same as the set of actual

angles of arrival {θk}
K

k=1 contained in B in (4), which is

not known by the receiver. Both [5] and [6] assume that

Q ≫ M leading to B̃ having more columns than rows. As a

result, the columns of B̃ can be regarded as an overcomplete

basis for y(t). Under the assumption that the DOAs are

constant within a certain period of time, [5] and [6] exploit

multiple measurement vectors (MMVs) by collecting samples

at different time indices. Hence, their data model can now

be expressed as Y = B̃S̃ + CN, where Y, S̃, and N

cascade y(t), s̃(t), and n(t), respectively, over different time

indices in a row-wise fashion. By assuming that the coefficient

vectors with respect to the overcomplete basis provided by

the columns of B̃ are sparse, [5] and [6] employ the so-

called ℓ1 singular value decomposition (ℓ1-SVD) and joint ℓ0
approximation (JLZA) algorithm, respectively, to exploit the

group sparsity of the columns of S̃ in order to identify which

investigated angles are occupied by the sources.

The grid based method proposed in [7] defines the correla-

tion matrix of the unknown incident signals at the investigated

angles as Rs̃ = E[s̃(t)s̃H(t)] and expresses Ry in (5) as

Ry = B̃Rs̃B̃
H + σ2

nIM . (6)

Here, it is again assumed that Q ≫ M , which means that

the columns of B̃ now play the role of an overcomplete

basis for each column of Ry . By again assuming that the

coefficient vectors with respect to this overcomplete basis

are sparse, [7] employs the ℓ1 sparse representation of array

covariance vectors (ℓ1-SRACV) algorithm to exploit the group

sparsity in the columns of Rs̃B̃
H in order to locate the

investigated angles occupied by the sources. It is important

to note that the ℓ1-SRACV as well as the aforementioned ℓ1-

SVD and JLZA algorithms are clearly robust to the correlation

of the sources.

While the aforementioned grid-based methods and MUSIC

algorithms (with spatial smoothing) can generally handle

highly correlated sources, they usually require the number of

active sensors M to be larger than the number of sources K.

For uncorrelated sources, however, some methods have been

proposed to handle more sources than physical sensors. One

possible way is to exploit the fact that Rs in (5) is a diagonal

matrix for uncorrelated sources and to express (5) as

vec(Ry) = (B∗ ⊙B)diag(Rs) + σ2
nvec(IM ) (7)

where vec(.) is the operator that stacks all column of a matrix

into a large column vector and ⊙ represents the Khatri-Rao

product operation. The Nv distinct rows of B∗ ⊙B represent

the array manifold matrix of a virtual array receiving K
virtual sources at K different angles. Note that the length

of the virtual array, which is Nv , is generally longer than

that of the original array, which is M , and it can go up to

Nv = M2−M+1. In [8], the sources are assumed to be quasi-

stationary and thus diag(Rs) in (7) is generally time-varying

and it only remains static over short periods of time. Due to

this fact, [8] can create independent MMVs from the values of

vec(Ry) in (7) obtained at different time indices, extract the

basis for the noise subspace from these measurements, and

estimate the DOAs using MUSIC. The exact procedure can

be found in [8]. Unfortunately, when the signal is stationary,

it is obvious that (7) yields a virtual array receiving a fully

coherent signal since diag(Rs) is generally constant. Possible

solutions are the gridding approaches of [12] and [13], or

spatial smoothing and MUSIC [9], [10], [11]. Note that the

latter requires a uniform virtual array, which can be obtained

by introducing a special array design of M antennas such as

a two-level nested array [9], a coprime array [10], [11] or a

sparse ruler array [12].

All the aforementioned methods either focus on correlated

sources or on more sources than sensors but not on both of

them. There is actually an approach that tried to tackle more

correlated sources than sensors, i.e., the one proposed in [14].

However, this approach involves the computation of fourth-

order statistics leading to a higher level of computational

complexity. Therefore, our focus in this paper is on how to

design a DOA estimation method that is able to handle more
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highly correlated sources than active sensors and that involves

the computation of at most second-order statistics.

II. DYNAMIC LINEAR ARRAY VIA PERIODIC SCANNING

In order to estimate the DOAs of possibly correlated or even

fully coherent sources using less active antennas than sources,

we propose a novel dynamic linear array, which also uses the

ULA of N antennas introduced in (1) as the underlying array.

In general, we activate only M out of N available antennas

in the ULA within a specific time slot where the set of M
activated antennas in different time slots can be different.

While the number of required physical antennas is still equal to

N , the number of hardware receiver branches can be reduced

from N to M leading to a smaller power consumption while

maintaining the ability to locate the DOAs of the incoming

correlated signals. It is also possible to employ only M < N
movable physical antennas to construct a dynamic linear array.

In this case, it is assumed that the position of each antenna in

different time slots can be altered.

1st scanning period

1st time slots

x[2] x[3] x[4] x[5]

y1[0]

y2[0]

y0[0] y0[1]

x[0] x[1]

C0x[0] C0x[1] C1x[2]

y1[1]

C1x[3]

C2x[4]

y2[1]

C2x[5]

x[8] x[9] x[10] x[11]

y1[2]

y2[2]

y0[2] y0[3]

x[6] x[7]

C0x[6] C0x[7] C1x[8]

y1[3]

C1x[9]

C2x[10]

y2[3]

C2x[11]

2nd scanning period

2nd time slots

3rd time slots

Fig. 1. Illustration of the periodic scanning process where a single scanning
period consists of L time slots. In this example, L = 3 and the number of
samples per slot in every antenna is equal to S = 2

Let us first consider the ULA model provided by (1) and

recall that x(t) is the output vector of the N antennas in

the ULA. We introduce x[n] as a digital representation of

x(t), i.e., x[n] = x(nT ) where T is the sampling time at

every analog-to-digital converter (ADC) associated with each

antenna. For simplicity, we assume that the sampling rate 1/T
is the same for all ADCs. Next, let us focus on the periodic

scanning described in Fig. 1 using the considered ULA model

where a single scanning period consists of L time slots. In

different time slots of a certain scanning period, different sets

of M antennas are activated out of N available antennas while

the set of M active antennas in the l-th time slot of different

scanning periods is the same. Denote the number of received

samples per antenna within one time slot by S and the total

number of scanning periods by P . We then introduce yl[m]
as the M × 1 vector representing the outputs of the M active

antennas in the array in the l-th time slot, which is given by:

yl[pS + s] = Clx[(pL+ l)S + s] for l = 0, 1, . . . , L− 1,

where the M ×N matrix Cl is formed by selecting M out of

N rows from the identity matrix IN , s = 0, 1, . . . , S − 1, and

p = 0, 1, . . . , P − 1. Note that the indices of the M selected

rows represent the indices of the M active antennas in the

l-th time slot selected from N available antennas in the ULA.

By taking into account the fact that Cl is a real matrix, the

M ×M spatial correlation matrix of yl[m] is then given by

Ryl
= E

[

yl[m]yl[m]H
]

= ClRxC
T
l

= ClARsA
HCT

l + σ2
nIM . (8)

In practice, the expectation operation in (8) can be estimated

by taking an average over PS time samples. After stacking

all columns of Ryl
into the M2 × 1 vector vec(Ryl

), we can

then express vec(Ryl
) using (8) as

ryl
= vec(Ryl

) = (Cl ⊗Cl)vec(Rx) (9)

where ⊗ denotes the Kronecker product operation. We can

eventually combine ryl
in (9) for all time slots into a single

vector ry given by ry =
[

rTy0
, rTy1

, . . . , rTyL−1

]T

. The relation-

ship between ry and Rx in (9) is then written as

ry = Ψvec(Rx) (10)

where the M2L×N2 matrix Ψ is given by

Ψ =
[

(C0 ⊗C0)
T , (C1 ⊗C1)

T , . . . , (CL−1 ⊗CL−1)
T
]T

.
(11)

Our first step is to reconstruct vec(Rx) from ry in (10) using

least squares (LS), which is only possible if M2L ≥ N2 and

Ψ in (11) has full column rank. Recall that M < N , which

means that M2L ≥ N2 only if L ≥ 2. This is equal to saying

that a dynamic linear array via periodic scanning is necessary

to recover vec(Rx) from ry . When Ψ in (11) has full column

rank, we obtain

vec(R̂x) = (ΨTΨ)−1ΨT ry. (12)

Let us now consider the following lemma.

Lemma 1: Cl⊗Cl will have a one in the [(i− 1)N + j]-th
and [(j − 1)N + i]-th columns if and only if Cl contains the

i-th and j-th rows of the identity matrix IN .

The following corollary directly follows from Lemma 1.

Corollary 1: If we select M different rows of IN to form

Cl, the rows of Cl ⊗ Cl have a single one at exactly M2

different positions. Out of the M2 rows of Cl⊗Cl, M rows are

produced by the self-Kronecker product of every row of Cl. In

addition, every pair of two different rows of Cl contributes to

two different rows of Cl⊗Cl, each of which has a single one at

a different position. Since we have
(

M
2

)

possible combinations

of two different rows, all Kronecker products between any two

different rows of Cl lead to M(M − 1) rows of Cl ⊗Cl, all

of which have a single one at a different position.

We define Γl as the set of M indices selected from

{1, 2, . . . , N} representing the rows of IN that we use to

construct Cl. The indices of the columns of Cl ⊗ Cl that

contain a one are then provided by Ωl, which is the set given

by:

Ωl = {(i− 1)N + j|∀i, j ∈ Γl} . (13)

From (11) and the fact that each row of Cl ⊗Cl has only a

single one, it is obvious that every row of Ψ also has only a

single one. Therefore, the full column rank condition of Ψ is

achieved if each of its columns has at least a single one. Our

task now is to construct {Cl}
L−1
l=0 subject to the full column
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rank condition of Ψ in (10). From (11) and (13), it is clear

that this can be achieved if and only if

L−1
⋃

l=0

Ωl =
{

1, 2, . . . , N2
}

. (14)

Our aim is to achieve (14) in order to ensure the full column

rank condition of Ψ while keeping the number of active

antennas and hardware receiver branches M small, the number

of antenna reconfigurations per scanning period L minimal,

and the computational complexity low. Unfortunately, it is

not possible to simultaneously minimize the aforementioned

variables. For example, let us focus on the system matrix

Ψ in (11). Since Corrolary 1 indicates that, for a given

l ∈ {0, 1, . . . , L−1}, only M2 out of N2 columns of Cl⊗Cl

have at least a single one, minimizing M results in a smaller

number of columns of Cl⊗Cl having a one. Consequently, we

need a larger L to ensure that every column of Ψ has at least

a single one. In other words, it is impossible to simultaneously

minimize L and M . Also, observe that the number of rows of

Ψ in (10) to be inverted, which determines the computational

complexity, depends quadratically on M and linearly on L.

TABLE I
ALGORITHM 1: A GREEDY ALGORITHM TO FIND A SUB-OPTIMAL

SOLUTION FOR L AND {Γl}
L−1
l=0 GIVEN M SUBJECT TO (14).

Algorithm 1

1: Introduce Z(f) as an N × N indicator matrix at the f -th
iteration and denote its element at the i-th row and the j-th
column by

[

Z(f)
]

i,j
.

2: Initialize f = 0 and Z(0) = IN .

3: While Z(f) has at least one zero entry do

4: Set f = f + 1 and Z(f) = Z(f−1).
5: Randomly select i, j ∈ {1, 2, . . . , N} for which

[

Z(f)
]

i,j
= 0 and set Γf−1 = {i, j}. Then also

set both
[

Z(f)
]

i,j
and

[

Z(f)
]

j,i
to 1.

6: for κ = 1 to M − 2 do
7: Define a set Ξ = {1, 2, . . . , N} \Γf−1.
8: Search in Ξ for the element g that satisfies:

g = argming′∈Ξ

∑

i′∈Γf−1

[

Z(f)
]

i′,g′
.

9: For all i′ ∈ Γf−1 set
[

Z(f)
]

i′,g
and

[

Z(f)
]

g,i′
to 1.

10: Update Γf−1 to Γf−1 = Γf−1
⋃

{g}.
11: end for
12: end while
13: The value of L is given by L = f and the output of this

algorithm is {Γl}
L−1
l=0 .

It is obvious from Corollary 1 and Lemma 1 that two con-

ditions have to be satisfied in order to ensure the full column

rank condition of Ψ. First of all, each row of IN should

be used to construct at least one of the L possible matrices

{Cl}
L−1
l=0 . According to Lemma 1 and Corollary 1, this will

ensure that the (i−1)N+i-th column of Ψ has at least a single

one for all i ∈ {1, . . . , N}. This first condition also implies

that every antenna out of N available antennas provided by

the ULA in (1) should be active in at least one time slot

within every scanning period. Secondly, every possible pair

of two different rows of IN should be used in at least one of

the L possible matrices {Cl}
L−1
l=0 in order to ensure that the

(i− 1)N + j-th and the (j − 1)N + i-th columns of Ψ have

at least a single one for all i 6= j and i, j ∈ {1, . . . , N}. As

a consequence, each possible combination of two antennas in

the ULA should be active in at least one of the L possible time

slots within a single scanning period, which also means that

M ≥ 2 is automatically required. Since the second condition

requires every antenna in the ULA to be active in at least

one time slot, satisfying the second condition automatically

guarantees the first condition.

TABLE II
ALGORITHM 2: A GREEDY ALGORITHM TO FIND A SUB-OPTIMAL

SOLUTION FOR M AND {Γl}
L−1
l=0 GIVEN L SUBJECT TO (14)

Algorithm 2

1: Introduce Z(f) as an N × N indicator matrix at the f -th
iteration and denote its element at the i-th row and the j-th
column by

[

Z(f)
]

i,j
.

2: Initialize f = 0 and Z(0) = IN .

3: Set f = f + 1 and Z(f) = Z(f−1).
4: for l = 0 to L− 1 do
5: Randomly select i, j ∈ {1, 2, . . . , N} for which

[

Z(f)
]

i,j
= 0 and set Γl = {i, j}.

6: Set both
[

Z(f)
]

i,j
and

[

Z(f)
]

j,i
to 1.

7: end for

8: While Z(f) has at least one zero entry do

9: Set f = f + 1 and then set Z(f) = Z(f−1).
10: for κ = 0 to L− 1 do
11: Define a set Ξ = {1, 2, . . . , N} \Γκ.
12: Search in Ξ for the element g that satisfies:

g = argming′∈Ξ

∑

i′∈Γκ

[

Z(f)
]

i′,g′
.

13: For all i′ ∈ Γκ set
[

Z(f)
]

i′,g
and

[

Z(f)
]

g,i′
to 1.

14: Update Γκ to Γκ = Γκ

⋃

{g}.
15: end for
16: end while
17: The value of M is given by M = f + 1 and the output of

this algorithm is {Γl}
L−1
l=0 .

Subject to (14), we now try to minimize L given M . Let us

first introduce Λ as Λ = {(i, j)|i, j ∈ {1, 2, . . . , N} , i < j}
and Λl as the set of all possible combinations of two row

indices of IN that are used to construct Cl, that is Λl =
{(i, j)|i, j ∈ Γl, i < j}. We can then write the problem of

minimizing L given M ≥ 2 subject to (14) as

min
{Γl}

L−1

l=0

L subject to

L−1
⋃

l=0

Λl = Λ and |Γl| = M, ∀l (15)

where |Γl| denotes the cardinality of the set Γl. While the

minimization problem in (15) is generally a non-trivial com-

binatorial problem, a lower bound for L can be found. Due to

the fact that |Λ| = N(N − 1)/2 and |Λl| = M(M − 1)/2, L
is lower bounded by

L ≥

⌈

|Λ|

|Λl|

⌉

=

⌈

N(N − 1)

M(M − 1)

⌉

(16)

where ⌈x⌉ represents the smallest integer not smaller than

x. Since it is not trivial to find a closed-form solution for

the problem in (15), we propose a greedy algorithm to find

a sub-optimal solution for L and {Γl}
L−1
l=0 given M subject

to (14). This algorithm is described in Table I. The indicator

matrix Z(f) in Table I is used to indicate whether a particular

combination of two antennas has been used in the first f time

slots. For example, if a combination of the i-th and the j-th

antennas has never been simultaneously used in the first f
time slots, then [Z(f)]i,j = 0. On the other hand, [Z(f)]i,j = 1
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implies that the combination of the i-th and the j-th antennas

has been simultaneously used at least once in the first f time

slots. It is also clear that Z(f) is a symmetric matrix. Recall

that our goal is to ensure that each possible combination of

two antennas in the ULA is active in at least one of the L
possible time slots within a scanning period. As a result, we

initialize Z(f) with Z(0) = IN since we are only interested in

the off-diagonal components of Z(f). The goal of the while

loop in Table I is to select M antennas for every time slot.

First, we randomly select a combination of two antennas that

has not been used in the previous time slot. This is indicated

by step 5 in Table I. The inner for loop in Table I aims to

select the remaining M − 2 antennas for the considered time

slot. Here, for every antenna selection, the goal is to maximize

the number of conversion of zeros in Z(f) to ones. In other

words, we want to ensure that every antenna selection results

in a maximum number of new combinations of two active

antennas that have not been simultaneously activated in the

previous time slots.

Similarly, we can also express the minimization of M
subject to (14) given L as

min
{Γl}

L−1

l=0

M subject to

L−1
⋃

l=0

Λl = Λ and |Γl| = M, ∀l.

The lower bound for M is then given by

M2 −M

2
≥

⌈

|Λ|

L

⌉

=

⌈

N(N − 1)

2L

⌉

. (17)

Table II illustrates the proposed greedy algorithm to find a sub-

optimal solution for M and {Γl}
L−1
l=0 given L subject to (14).

The notation used by Algorithm 2 in Table II is similar to the

one used by Algorithm 1. However, we now consider all time

slots simultaneously and thus Z(f) is now used to indicate

whether a particular combination of two antennas has been

used in the first f + 1 antennas in any time slot. The first for

loop in Algorithm 2 is used to select the first two antennas

in every time slot. Next, every iteration of the while loop

(see steps 8-16) selects one additional antenna for all time

slots. Similar to Algorithm 1, every antenna selection aims to

maximize the number of conversion of zeros in Z(f) to ones.

III. SIGNAL CORRELATION RECOVERY AND DIRECTION

OF ARRIVAL ESTIMATION

A. Least Squares Approach

Once Rx is reconstructed from (10) using LS, we can then

proceed to DOA estimation. One possible way is to define

a fine grid of investigated angles in the angular domain, and

use a model similar to (6), but now applied to the underlying

ULA. In other words, based also on (3), we can write Rx as

vec (Rx) = (Ã∗ ⊗ Ã)vec (Rs̃) + σ2
nvec (IN ) (18)

where Ã is the N × Q array response matrix of the un-

derlying ULA at the investigated angles {θ̃q}
Q
q=1 given by

Ã = [a(θ̃1),a(θ̃2), . . . ,a(θ̃Q)]. Based on (18), vec (Rs̃) can

be reconstructed from vec(Rx) using LS as long as Ã has full

column rank, which is only possible if Q ≤ N . In this case,

we can solve (18) as

vec(R̂s̃) = ((Ã∗ ⊗ Ã)H(Ã∗ ⊗ Ã))−1(Ã∗ ⊗ Ã)Hvec (Rx) .

Since the full column rank condition of Ã has to be guar-

anteed, the selection of the investigated angles θ̃q is not

arbitrary although we can generally compute R̂s̃ for up to

N investigated angles θ̃q. One easy option is to use a half

wavelength spacing in the underlying ULA by setting d in (2)

to d = 0.5 and use an inverse sinusoidal grid for {θ̃q}
Q
q=1, i.e.,

θ̃q = sin−1

(

2

Q

(

q − 1−

⌈

Q− 1

2

⌉))

(19)

for q = 1, 2, . . . , Q. When we set d = 0.5, Q = N and

{θ̃q}
Q
q=1 according to (19), we can easily find that Ã is a

permuted version of the inverse discrete Fourier transform

(IDFT) matrix, which means that applying the inverse of

Ã∗ ⊗ Ã to vec(Rx) in (18) can easily be performed using

the fast Fourier transform (FFT).

Once R̂s̃ is computed, we can find that its diagonal com-

ponents contain the received power at the investigated angles

{θ̃q}
Q
q=1, and thus we can consider diag(R̂s̃) as an angular

spectrum. Next, we can find the estimates of the actual DOAs

by locating the peaks of this spectrum. Meanwhile, the off-

diagonal components of R̂s̃ contain the correlation between

the signals received at the different investigated angles. If we

want to estimate the angles at a larger resolution we have to

take Q > N and adopt a sparsity constraint (possibly assisted

by a positivity constraint) as done in [13]. However, for non-

sparse angular spectra, this approach is not viable.

B. Structured Total Least Squares

When the DOA of a particular source k is not exactly the

same as any of the defined investigated angles, i.e., θk 6= θ̃q
for q = 1, 2, . . . , Q, a so-called grid mismatch effect is intro-

duced. If the error introduced by the grid mismatch effect is

significant, the performance of the LS estimate in Section III-A

deteriorates. Let us now take into account this grid mismatch

effect by introducing a kind of unknown additive error or

perturbation δq on the investigated angle θ̃q . Consequently, the

corresponding array response vector is given by a(θ̃q + δq) =
[1, a(θ̃q + δq)

d, a(θ̃q + δq)
2d, . . . , a(θ̃q + δq)

(N−1)d]T . Under

the assumption that the perturbation δq is sufficiently small,

a(θ̃q + δq)
nd can be interpolated using a first-order Taylor

series around θ̃q as:

a(θ̃q + δq)
nd ≈ a(θ̃q)

nd +
(

∂(a(θ̃)nd)/∂θ̃
)∣

∣

∣

θ̃=θ̃q

δq, (20)

for n = 0, 1, . . . , N − 1 and q = 1, 2, . . . , Q. Next, let us

collect the right-hand side values of the approximation in (20)

for all n and q, and stack them in the matrix

Ǎ = Ã+ Ã′diag(δ) (21)

where δ = [δ1, δ2, . . . , δQ]
T and Ã′ is given by Ã′ =

[a′(θ̃1),a
′(θ̃2), . . . ,a

′(θ̃Q)] with a′(θ̃q) provided by

a′(θ̃q) =



0,
∂(a(θ̃)d)

∂θ̃

∣

∣

∣

∣

∣

θ̃=θ̃q

, . . . ,
∂(a(θ̃)(N−1)d)

∂θ̃

∣

∣

∣

∣

∣

θ̃=θ̃q





T

.
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As a result, we can rewrite our problem (18) as

vec (Rx) = (Ǎ∗ ⊗ Ǎ)vec (Rš) + σ2
nvec (IN ) (22)

where Rš is the correlation matrix of the unknown incident

signals at the perturbed investigated angles {θ̃q + δq}
Q
q=1.

Using (21) and the fact that diag(δ) is a real matrix, we can

rewrite (22) as

vec (Rx) = [Ã∗ ⊗ Ã+ (Ã′∗ ⊗ Ã)(diag(δ)⊗ IQ)

+ (Ã∗ ⊗ Ã′)(IQ ⊗ diag(δ)) + (Ã′∗ ⊗ Ã′)×

(diag(δ)⊗ diag(δ))]vec (Rš) + σ2
nvec (IN )

≈ [Ã∗ ⊗ Ã+ (Ã′∗ ⊗ Ã)(diag(δ)⊗ IQ)

+ (Ã∗ ⊗ Ã′)(IQ ⊗ diag(δ))]vec (Rš) + σ2
nvec (IN )

= (Ã∗ ⊗ Ã+E(δ))vec (Rš) + σ2
nvec (IN ) (23)

where E(δ) = (Ã′∗ ⊗ Ã)(diag(δ) ⊗ IQ) + (Ã∗ ⊗ Ã′)(IQ ⊗
diag(δ)) is introduced to simplify the writing and the approx-

imation is based on the assumption that diag(δ)⊗ diag(δ) is

negligible, which is due to the assumption that δq is sufficiently

small. Comparing (23) with (18), we can view (23) as a

structured total least squares (S-TLS) problem where E(δ) is

perceived as a perturbation matrix for Ã∗⊗Ã and σ2
nvec (IN )

is regarded as a deterministic error on vec (Rx).
Based on (23), our goal is to solve the following minimiza-

tion problem

min
δ,vec(Rš)

‖δ‖
2
2 + ‖vec (Rx)− (Ã∗ ⊗ Ã+E(δ))vec (Rš) ‖

2
2.

(24)

One easy way to solve (24) is to use an alternating descent

algorithm. When δ is available, the minimization problem

in (24) is reduced to an ordinary LS problem and we can solve

vec (Rš) directly from (23) using LS. Next, let us introduce

1Q×Q as a Q × Q matrix with all entries equal to one.

When vec(Rš) is available, we can use diag(diag(δ)⊗ IQ) =
(IQ ⊙ 1Q×Q)δ and diag(IQ ⊗ diag(δ)) = (1Q×Q ⊙ IQ)δ to

rewrite (23) as

vec (Rx)− σ2
nvec (IN ) = (Ã∗ ⊗ Ã)vec (Rš)

+
(

(Ã′∗ ⊗ Ã)diag(vec (Rš))(IQ ⊙ 1Q×Q)

+ (Ã∗ ⊗ Ã′)diag(vec (Rš))(1Q×Q ⊙ IQ)
)

δ

= w +Φδ (25)

where Φ = (Ã′∗ ⊗ Ã)diag(vec (Rš))(IQ ⊙ 1Q×Q) + (Ã∗ ⊗
Ã′)diag(vec (Rš))(1Q×Q ⊙ IQ) and w = (Ã∗ ⊗ Ã)vec (Rš)
are introduced to simplify the writing. The minimization

problem in (24) when vec(Rš) is available can then be written

as:

min
δ

‖δ‖
2
2 + ‖vec (Rx)−w −Φδ‖22 (26)

which is quadratic in δ. The solution for (26) can be straight-

forwardly derived and it is given by

δ̂ = (IQ + Re(ΦHΦ))−1Re(ΦH(vec(Rx)−w)) (27)

where Re(.) returns the real part of a complex number. The

alternating descent algorithm basically performs iterations that

TABLE III
THE ALTERNATING DESCENT ALGORITHM USED TO SOLVE THE S-TLS

MINIMIZATION PROBLEM GIVEN BY (24).

0: Notation: δ(i) and vec(Rš)(i) represent the values of δ and
vec(Rš) at the i-th iteration, respectively.

1: Inputs: Ã, Ã′,Rx, ǫ, maxiteration.
2: Initialize δ(0) = 0.
3: Solve vec(Rš)(0) from (23) using LS with E(δ(0)) = 0

due to step 2.
4: for i = 1 to maxiteration do
5: For given vec(Rš)(i− 1), compute δ(i) using (27).
6: For given δ(i), compute E(δ(i)) and solve vec(Rš)(i)

from (23) using LS.
7: if ‖vec(Rš)(i)− vec(Rš)(i− 1)‖2 < ǫ then break.
8: end for

9: Outputs: δ̂,vec(R̂š).

includes solving vec (Rš) from (23) using LS and solving (26)

using (27). This algorithm is summarized in Table III.

Similar to Section III-A, the diagonal components of the

resulting R̂š contain the received power at the perturbed

investigated angles {θ̃q + δ̂q}
Q
q=1. The estimates of the actual

DOAs can be found by locating the peaks of the angular

spectrum provided by diag(R̂š). The off-diagonal components

of R̂š again contain the correlation between the signals

received at the different angles {θ̃q + δ̂q}
Q
q=1. Note that for

this algorithm to work, we need an overdetermined system,

and as such we require Q < N . If we want to estimate the

angles at a larger resolution, we can take Q > N and rely

on a sparsity constraint, leading to a sparse version of our S-

TLS method. Deriving such an approach would follow similar

steps as [15], but it goes beyond the scope of this paper. Again,

such an approach would not work for estimating a non-sparse

spectrum.

C. MUSIC and Spatial Smoothing

The fact that we use a ULA of N antennas as our underlying

array also allows us to apply the spatial smoothing prepro-

cessing scheme of [1] to the recovered R̂x in (12) leading

to a spatially smoothed correlation matrix ˆ̄Rx. The MUSIC

algorithm in [2] can then be applied to the resulting ˆ̄Rx leading

to high resolution DOA estimates. In our case, the underlying

ULA can be divided into Ns overlapping subarrays, each of

which has Na physical antennas. Observe that having a larger

Ns implies having a smaller Na and vise versa. Also notice

that the maximum number of sources that can be detected

by MUSIC after the spatial smoothing process is equal to

min(Ns, Na − 1) [1]. As a result, it is important to find the

optimum values for Ns and Na, i.e., the ones that lead to the

largest possible number of sources that can be detected. In the

case of our underlying ULA, it can be shown that the optimum

value for Ns is given by Ns =
⌈

N
2

⌉

.

IV. NUMERICAL STUDY

In this section, the proposed approaches are evaluated with

some numerical study where we consider a ULA having N =
40 antennas with half wavelength spacing as our underlying

array. The sources are generally considered to be correlated
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while spatially and temporally white noise is assumed with

a signal to noise ratio (SNR) of 0 dB. Note that each signal

coming from different sources is assumed to have equal power

and the SNR is defined with respect to the power of each

signal.
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Fig. 2. Normalized spectrum (in dB) of both LS and MUSIC approaches
versus DOA (degree) for the first experiment with K = 12 correlated sources,
SNR = 0 dB, Q = N = 40, L = 28 and M = 10.
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Fig. 3. The magnitude of the elements of the estimated correlation matrix

R̂s̃ computed using LS for the first experiment. Here K = 12, SNR = 0 dB,
Q = N = 40, L = 28 and M = 10.

In the first experiment, we set the number of time slots

per scanning period L to L = 28. Ideally, the selection

of the activated antennas in all time slots should minimize

the number of active antennas per time slot M . According

to (17), the lower bound for M in this scenario is given by

M ≥ 8. However, we employ the proposed algorithm provided

in Table II in order to obtain a sub-optimal solution for M and

{Γl}
27
l=0, which contain the active antenna indices for each

time slot. Running the algorithm in Table II for N = 40 and

L = 28 results in M = 10 (which is larger than the lower

bound) and produces the indices of the 10 antennas to be

activated in each of the 28 time slots. This antenna array setup

produces a full column rank 2800 × 1600 matrix Ψ in (11).

In order to simulate the case where the number of sources is

more than the number of active antennas per time slot M , we

generate K = 12 sources with 9 degrees of separation, i.e.,

{θk}
12
k=1 =

{

−540,−450, . . . , 450
}

. In addition, we also set

the signal that comes from angle θk to be exactly the same as

the one coming from direction θk+6 in order to investigate

the performance of the proposed approaches for correlated

sources. This leads to six pairs of fully correlated sources. The

total number of time samples per time slot and the total number

of scanning periods are set to S = 1 and P = 57, respectively,

leading to a total number of time samples per active antenna of

PSL = 1596. In this first experiment, both the LS approach

of Section III-A and the MUSIC approach of Section III-C are

examined. For the LS approach, the full column rank condition

of Ã (and thus Ã∗ ⊗ Ã) in (18) is satisfied by setting the set

of investigated angles {θ̃q}
40
q=1 according to (19) with Q = 40.

Here, the diagonal of R̂s̃ in (18) recovered using LS gives the

received power at {θ̃q}
40
q=1 and is illustrated in Fig. 2. Note

that the actual angles of arrival are also plotted as vertical

lines for simplicity. It is clearly shown that the 12 correlated

sources can be detected using LS although the DOA estimates

produced by LS do not exactly coincide with the actual DOAs.

For the MUSIC approach, the spatial smoothing process is

performed by setting the number of overlapping subarrays Ns

to Ns = 20 and the number of antennas per subarray Na to

Na = 21. The resulting MUSIC estimate is also plotted in

Fig. 2 and it generally outperforms the LS estimate. However,

it should be noted that the LS method does not require spatial

smoothing. Fig. 3 illustrates the LS estimate of the magnitude

of the correlation between the incident signals at different

investigated angles θ̃q for this first scenario. Observe how both

the power of the 12 sources (indicated by the diagonal of R̂s̃)

and the magnitude of the cross-correlation between the sources

are well-identified.
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Fig. 4. Normalized spectrum (in normal scale) of LS, S-TLS and MUSIC
approaches versus DOA (degree) for the second experiment with K = 12
correlated sources, SNR = 0 dB, Q = 37, N = 40, L = 28 and M = 10.

In the second experiment, we examine the impact of a

grid mismatch on the performance of the LS approach by

setting the actual angles of arrival {θk}
12
k=1 to directions

that are sufficiently different from the defined grid points,

that is {θk}
12
k=1 = {−51.90,−42.70,−34.80,−23.90,−14.10,

−4.70, 4.70, 14.10, 240, 34.70, 42.70, 51.80}. Here, we use the

same dynamic array configuration as the one used in the first

experiment (i.e., N = 40, M = 10, L = 28, P = 57
and S = 1). We also investigate the performance of the

S-TLS approach of Section III-B and the MUSIC approach

of Section III-C. The number of investigated angles that are
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defined for the LS approach is Q = 37 where {θ̃q}
37
q=1 is

defined according to (19). The performance of the S-TLS

approach is evaluated by executing the algorithm given by

Table III and using the initial investigated angles {θ̃q}
37
q=1 that

are used by the LS approach. Here, the maximum number of

iterations in Table III is set to 110 while ǫ is equal to 10−3.

Fig. 4 provides the normalized spectrum (in linear scale) for

the second experiment. Again, the actual angles of arrival are

also plotted as vertical lines and they are given a normalized

spectrum of 1 for simplicity. We can see from Fig. 4 that the

quality of the LS estimate slightly deteriorates whereas that of

the MUSIC estimate remains acceptable. As we can also see

here, the corrected grid of the S-TLS approach can generally

match the actual angles of arrival and the 12 correlated sources

can generally be detected by the S-TLS approach. Meanwhile,

Fig. 5 illustrates the LS estimate (top part) and the S-TLS

estimate (bottom part) of the magnitude of the correlation

between the incident signals at different investigated angles

for the second experiment. While the power of the 12 sources

(given by the diagonal of R̂s̃) and the magnitude of the cross-

correlation between the sources can be identified by the LS

approach, the peak values are not as clear as the ones found for

the first experiment. On the other hand, clear peak values that

indicate both the power of the 12 sources and the magnitude

of the cross-correlation between the sources are found in the

S-TLS estimate.
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Fig. 5. The magnitude of the elements of the estimated correlation matrices

R̂s̃ computed using LS (top part) and R̂š computed using S-TLS (bottom
part) for the second experiment. Here K = 12, SNR = 0 dB, Q = 37,
N = 40, L = 28 and M = 10.

V. CONCLUSION

In this paper, a new second-order statistics based DOA

estimation approach for possibly coherent sources is proposed

by adopting a dynamic linear array, which is developed by

performing a periodic scanning of an underlying ULA having

N antennas. In different time slots of a scanning period,

we activate a different set of M antennas. We collect the

spatial correlation matrices of the output of the arrays of active

antennas for all time slots and present them as a linear function

of the correlation matrix of the incident signals at the pre-

defined angular grid of investigated angles. We also present

the theoretical condition that needs to be satisfied in order

to ensure the full-rank condition of the system matrix. This

allows us to first reconstruct the spatial correlation matrix

Rx using LS. Next, we can estimate the correlation matrix

of the incident signals at the investigated angles using LS as

well. However, since the latter LS DOA estimation approach

is vulnerable to the so-called grid mismatch effect, we also

propose S-TLS to reconstruct the correlation matrix of the

incident signals at an optimally perturbed angular grid of

investigated angles from the reconstructed Rx. Another pos-

sible option is to apply spatial smoothing and MUSIC on the

reconstructed Rx. The simulation study has indicated how our

dynamic array approach provides many possible alternatives

for different scenarios and it generally performs satisfactory

even when the number of correlated sources is larger than

the number of active antennas at each time slot. Hence, the

proposed method can be considered as one possible candidate

for DOA estimation in case of more correlated sources than

active sensors.
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