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Abstract—Compressive sampling is a popular approach to
relax the rate requirement on the analog-to-digital converters
and to perfectly reconstruct wideband sparse signals sampled
below the Nyquist rate. However, there are some applications,
such as spectrum sensing for cognitive radio, that demand only
power spectrum recovery. For wide-sense stationary signals,
power spectrum reconstruction based on samples produced by
a sub-Nyquist rate sampling device is possible even without
any sparsity constraints on the power spectrum. In this paper,
we examine an extension of our proposed power spectrum
reconstruction approach to the case when multiple sensors
cooperatively sense the power spectrum of the received signals.
In cognitive radio networks, this cooperation is advantageous
in terms of the channel diversity gain as well as a possible
sampling rate reduction per receiver. In this work, we mainly
focus on how far this cooperative scheme promotes the sampling
rate reduction at each sensor and assume that the channel state
information is available. We concentrate on a centralized network
where each sensor forwards the collected measurements to a
fusion centre, which then computes the cross-spectra between
the measurements obtained by different sensors. We can express
these cross-spectra of the measurements as a linear function of
the power spectrum of the original signal and attempt to solve
it using a least-squares algorithm.

I. INTRODUCTION

In the last few years, signal processing researchers have

investigated the best possible way to conduct spectrum sens-

ing in the wideband regime. An important application is a

cognitive radio (CR) network where unlicensed users have

to perform spectrum sensing over a wide frequency band in

order to locate free licensed bands that can be exploited to

set up secondary communication links. The conventional way

is to divide the wide frequency band into several narrowband

channels followed by channel-by-channel sequential sensing,

which might introduce a significant amount of delay during

the sensing process in a CR network. Another proposal yields

a filter bank based multi-channel spectrum sensing, which

is inefficient due to the large number of required bandpass

filters. A third option consists of a direct wideband spectrum

scanning using a high-rate analog-to-digital converter (ADC),

which is, unfortunately, power hungry [1]. The sparsity in

the spectrum of the licensed users (or their edge spectrum),

however, can be exploited to alleviate the requirements on the

ADC [2], [3], [4]. This allows for a sampling rate reduction

below the Nyquist rate, while maintaining perfect signal

reconstruction in a noiseless scenario. Several spectrum blind

sampling (SBS) strategies are proposed to gain this sampling

rate reduction. These methods aim to sample the received

signal with unknown frequency support below the Nyquist

rate and to perfectly reconstruct the spectrum of the original

signal from the obtained sub-Nyquist samples. Such samplers

include multi-coset sampling (see [3], [4]) and modulated

wideband converters (MWCs) [5], which consist of paralel

channels, each of which employs a different periodic mixing

function followed by integrate-and-dump sampling. However,

some applications such as spectrum sensing for CR, are only

required to perfecty reconstruct the power spectrum, instead

of the signal itself.

In [6], the fact that the covariance matrix of the frequency

domain representation of a wide-sense stationary (WSS) signal

is a diagonal matrix is exploited to reconstruct the power spec-

trum based on the obtained sub-Nyquist samples. A closely

related approach is presented in [7], which reconstructs the

auto-correlation sequence of the received WSS signal based on

the correlation matrix of the compressive measurements. The

major innovation in this work is the possibility to formulate the

auto-correlation (or equivalently the power spectrum) recovery

problem as an over-determined system, which can be solved

using least-squares without putting any sparsity constraints on

the power spectrum. The approach in [7] has been labeled

as power spectrum blind sampling (PSBS) and extensions

have been discussed in [8], [9], which take a further step by

computing the correlation matrix of the compressive measure-

ments for different lags and representing the linear relationship

between these correlation values and all significant lags of the

auto-correlation sequence of the original signal as an over-

determined system. If the rank condition of the system matrix

is satisfied, it is possible to reconstruct the auto-correlation or

equivalently the power spectrum using least-squares.

Multiple sensors could cooperatively estimate the power

spectrum of the received signal when the performance of

a single sensor is not acceptable due to the existence of

hidden terminals, shadowing, or fading. Note that, in addition

to the resulting channel diversity gain, a cooperative power

spectrum sensing scheme also offers a possible sampling

rate reduction per individual sensor, which is critical in the

context of wideband power spectrum sensing. In [10], two

cooperative wideband spectrum sensing approaches for a CR

network are proposed. The first approach jointly estimates the

spectrum of the licensed users (LUs) based on the compressive

measurements obtained by the individual CRs where channel

state information (CSI) is assumed to be available. In the
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second method, each CR user individually recovers the spec-

trum of the received faded signal without the availability of

CSI and makes a local decision on the frequency occupancy

of the LU signal based on this spectrum estimate. Next,

all CR users collaboratively make a global decision on the

frequency occupancy by using a consensus algorithm based

on one-hop communication. Some extensions of the methods

in [10] are proposed in [11]. One notable extension is a joint

estimation of the spectrum occupancy in the absence of CSI

by exploiting the fact that the faded LU signals received by

different CR users share the same non-zero support in the

frequency domain. All CR users exploit this phenomenon and

try to retrieve the joint sparse structure present in the different

LU spectra.

Note that the aforementioned cooperative schemes focus

on spectrum instead of power spectrum reconstruction and

thus a sparsity constraint on the spectrum of the original

signal is again required. This motivates us to extend the PSBS

approach of [8], [9] into a cooperative power spectrum esti-

mation scheme where multiple sensors collect the compressive

measurements by sampling the received signals below the

Nyquist rate. For simplicity, the CSI is assumed to be available

and the whole scenario is discussed in the context of a CR

network where the LU signals are assumed to be WSS. We

focus on a centralized network where a fusion centre collects

the measurements from all sensors and then computes the

cross-spectra between the measurements collected by different

sensors. Next, the computed cross-spectra are presented as a

linear function of the power spectrum of the original signal.

The power spectrum estimate can be reconstructed using least-

squares (LS) if the rank condition of the system matrix is

satisfied.
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Fig. 1. Illustration of the sampling scheme at each CR, where the received
analog signal is modulated with M different periodic waveforms followed by
an integrate-and-dump process.

II. SYSTEM MODEL

Consider a power spectrum sensing module at the j-th CR

user that is receiving a complex wide-sense stationary signal

xj(t). Let us assume that xj(t) is bandlimited with bandwidth

1/T and that the CR user employs a periodic sampling device

as illustrated in Fig. 1. In general, the sampling device has

M branches where the i-th branch modulates xj(t) with a

periodic waveform pj,i(t) having a period of NT and then

samples the output using an integrate-and-dump device with

period NT . The output of the i-th branch at the k-th sampling

index is then given by

yj,i[k] =
1

NT

∫ (k+1)NT

kNT

pj,i(t)xj(t)dt

=
1

T

∫ (k+1)NT

kNT

cj,i(t− kNT )xj(t)dt (1)

where cj,i(t) denotes a single period of 1
N
pj,i(t) i.e., cj,i(t) =

1
N
pj,i(t) for 0 ≤ t < NT and cj,i(t) = 0 elsewhere. Let us

assume that cj,i(t) is a piecewise constant function, which has

a constant value in each interval of length T , i.e., cj,i(t) =
cj,i[−n] for nT ≤ t < (n+ 1)T , where n = 0, 1, . . . , N − 1.

This allows us to rewrite (1) as

yj,i[k] =

N−1∑
n=0

cj,i[−n]
1

T

∫ (kN+n+1)T

(kN+n)T

xj(t)dt =

N−1∑
n=0

cj,i[−n]xj [kN + n] =

0∑
n=1−N

cj,i[n]xj [kN − n]. (2)

Here, xj [n] can be perceived as the output of a virtual

integrate-and-dump process operating at period T . It is clear

from (1) and (2) that the sampling rate of this sampling device

is equal to M/NT , where 1/T indicates the Nyquist rate.

Note that we can also consider yj,i[k] in (2) as an N -fold

downsampled version of zj,i[n], i.e., yj,i[k] = zj,i[kN ] where

zj,i[n] is given by the following digital filtering operation

zj,i[n] = cj,i[n] ⋆ xj [n] =

0∑
m=1−N

cj,i[m]xj [n−m] (3)

with ⋆ representing the convolution operator.

Denote the total number of CR users by J and assume that

each of them has the same number of branches M in their

periodic samplers. Let us then compute the cross-correlation

function of yj,i[k] with yj′,i′ [k] for all i, i′ = 0, 1, . . . ,M − 1
and j, j′ = 0, 1, . . . , J − 1. First, it is clear from (3) that

rzj,i,zj′,i′ [n] = E
(
zj,i[m]z∗j′,i′ [m− n]

)
= rcj,i,cj′,i′ [n] ⋆ rxj ,xj′

[n]

=
N−1∑

m=−N+1

rcj,i,cj′,i′ [m]rxj ,xj′
[n−m] (4)

where rcj,i,cj′,i′ [n] is the deterministic correlation

function of cj,i[n] with cj′,i′ [n], i.e., rcj,i,cj′,i′ [n] =∑0
m=1−N cj,i[m]c∗j′,i′ [m − n] and rxj ,xj′

[n] is the cross-

correlation function of the Nyquist-rate samples received

by the j-th CR user with that received by the j′-th CR

user, i.e., rxj ,xj′
[n] = E

(
xj [m]x∗

j′ [m− n]
)
. As a result,

the cross-correlation function between yj,i[k] and yj′,i′ [k] is

given by

ryj,i,yj′,i′
[k] = E

(
yj,i[l]y

∗

j′,i′ [l − k]
)
= rzj,i,zj′,i′ [kN ]

=

N−1∑
m=−N+1

rcj,i,cj′,i′ [m]rxj ,xj′
[kN −m]. (5)

We can also apply the Fourier transform on (4) in order to

express the cross-spectrum of zj,i[n] with zj′,i′ [n] as

Pzj,i,zj′,i′
(ω) = Pcj,i,cj′,i′

(ω)Pxj ,xj′
(ω), 0 ≤ ω < 2π
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where Pcj,i,cj′,i′
(ω) is the deterministic cross-spectrum of

cj,i[n] with cj′,i′ [n], i.e., Pcj,i,cj′,i′
(ω) = Cj,i(ω)C

∗

j′,i′(ω),
and Pxj ,xj′

(ω) is the cross-spectrum between xj [n] with

xj′ [n], i.e. Pxj ,xj′
(ω) =

∑
∞

n=−∞
rxj ,xj′

[n]e−jnω . Corre-

spondingly, the cross-spectrum between yj,i[n] and yj′,i′ [n]
can be written as an N -fold aliased version of Pzj,i,zj′,i′

(ω):

Pyj,i,yj′,i′
(ω) =

1

N

N−1∑
n=0

Pzj,i,zj′,i′
( ω
N

+ 2π n
N
)

=
1

N

N−1∑
n=0

Pcj,i,cj′,i′
( ω
N

+ 2π n
N
)Pxj ,xj′

( ω
N

+ 2π n
N
)

= pT
cj,i,cj′,i′

(ω)pxj ,xj′
(ω), 0 ≤ ω < 2π (6)

where pxj ,xj′
(ω) = [Pxj ,xj′

( ω
N
), . . . , Pxj ,xj′

( ω
N

+2πN−1
N

)]T

and pcj,i,cj′,i′
(ω) = 1

N
[Pcj,i,cj′,i′

( ω
N
), . . . , Pcj,i,cj′,i′

( ω
N

+

2πN−1
N

)]T . For given values of j and j′, we stack M2 different

cross-spectra Pyj,i,yj′,i′
(ω) in the M2×1 vector pyj ,yj′

(ω) =

[. . . , Pyj,i,yj′,i′
(ω), . . . ]T , for i, i′ = 0, 1 . . . ,M − 1 in order

to obtain

pyj ,yj′
(ω) = Pcj ,cj′

(ω)pxj ,xj′
(ω), 0 ≤ ω < 2π (7)

where Pcj ,cj′
(ω) is the M2×N matrix given by Pcj ,cj′

(ω) =

[. . . ,pcj,i,cj′,i′
(ω), . . . ]T , for i, i′ = 0, 1, . . . ,M − 1.

III. COOPERATIVE POWER SPECTRUM RECONSTRUCTION

Consider P active LUs whose signal is assumed to be a zero

mean wide-sense stationary process. The discrete representa-

tion of the signal received by the j-th CR user corresponding

to these P LUs can then be written as

xj [n] =

P−1∑
p=0

hp,j [n] ⋆ sp[n] + nj [n] (8)

where sp[n] is the discrete representation of the actual signal

transmitted by the p-th LU, hp,j [n] is the impulse response

of the wireless channel between the p-th LU and the j-th

CR user, and nj [n] is the additive white Gaussian noise at

the j-th CR receiver having a zero mean and variance of σ2
n.

We assume that the signals coming from different LUs are

uncorrelated to each other and they are also uncorrelated to the

noise nj [n]. In the next analysis, we consider the noiseless case

in order to simplify the writing. Denote the power spectrum

of the LU signal sp[n] by Psp(ω) and the frequency domain

representation for hp,j [n] by Hp,j(ω). Based on (8) and the

assumption that signals from different LUs are uncorrelated to

each other, it is straightforward to write the cross-spectrum of

xj [n] with xj′ [n] in (6) as

Pxj ,xj′
(ω) =

P−1∑
p=0

Hp,j(ω)H
∗

p,j′(ω)Psp(ω)

= h̃′T
j,j′(ω)p̃

′

s(ω), 0 ≤ ω < 2π (9)

where p̃′

s(ω) =
[
Ps0(ω), Ps1(ω), . . . , PsP−1

(ω)
]T

and

h̃′

j,j′(ω) =
[
H0,j(ω)H

∗

0,j′(ω), . . . , HP−1,j(ω)H
∗

P−1,j′(ω)
]T

.

By using (9), we can now express pyj ,yj′
(ω) in (7) as a func-

tion of the power spectrum of the LU signals
{
Psp(ω)

}P−1

p=0
:

pyj ,yj′
(ω) = Pcj ,cj′

(ω)H̃j,j′(ω)p̃s(ω), 0 ≤ ω < 2π (10)

where the PN × 1 vector p̃s(ω) and the N × PN block

diagonal matrix H̃j,j′(ω) are given by

p̃s(ω) =
[
p̃′T
s ( ω

N
), p̃′T

s ( ω
N

+ 2π 1
N
), . . . ,

p̃′T
s ( ω

N
+ 2πN−1

N
)
]T

H̃j,j′(ω) = diag
{
h̃′T
j,j′(

ω
N
), h̃′T

j,j′(
ω
N

+ 2π 1
N
), . . . ,

h̃′T
j,j′(

ω
N

+ 2πN−1
N

)
}
.

Now, let us consider pyj ,yj′
(ω) in (10) only for a finite

number of frequency bins ω by taking into account that

ryj,i,yj′,i′
[k] in (5) has only a limited support −L ≤ k ≤ L.

Note that in practice, this simplification has to be considered

since it is not possible to collect ryj,i,yj′,i′
[k] for infinite

support k. If we also collect all M2 different cross-correlation

functions ryj,i,yj′,i′
[k] in the M2 × 1 vector ryj ,yj′

[k] =

[. . . , ryj,i,yj′,i′
[k], . . . ]T for i, i′ = 0, 1 . . . ,M − 1, we can re-

late {ryj ,yj′
[k]}Lk=−L and pyj ,yj′

(ω), for ω = 0, ϕ, . . . , 2Lϕ,

and ϕ = 2π
2L+1 , using a simple discrete Fourier transform

(DFT) operation:

pyj ,yj′
= (F2L+1 ⊗ IM2)ryj ,yj′

(11)

where ⊗ represents the Kronecker product operation, IM2

is an M2 × M2 identity matrix, F2L+1 is the (2L +
1) × (2L + 1) DFT matrix, and the (2L + 1)M2 ×
1 vectors pyj ,yj′

and ryj ,yj′
are given by pyj ,yj′

=

[pT
yj ,yj′

(0),pT
yj ,yj′

(ϕ), . . . ,pT
yj ,yj′

(2Lϕ)]T and ryj ,yj′
=

[rTyj ,yj′
[0], . . . , rTyj ,yj′

[L], rTyj ,yj′
[−L], . . . , rTyj ,yj′

[−1]]T , res-

pectively. It is now possible to rewrite (10) using 2L+1 matrix

equations:

pyj ,yj′
(ϕl) = Pcj ,cj′

(ϕl)H̃j,j′(ϕl)p̃s(ϕl), l = 0, 1, . . . , 2L.
(12)

Let us make a further simplification by assuming that

the frequency bands licensed by the different LUs are non-

overlapping and thus at most, only one LU can be active in a

particular frequency bin. This assumption simplifies (12) into

pyj ,yj′
(ϕl) = Pcj ,cj′

(ϕl)Hj,j′(ϕl)ps(ϕl), l = 0, 1, . . . , 2L
(13)

where ps(ϕl) is the N × 1 vector given by

ps(ϕl) = [Ps(
ϕl
N
), Ps(

ϕl
N

+ 2π 1
N
), . . . , Ps(

ϕl
N

+ 2πN−1
N

)]T

(14)

with Ps(
ϕl
N

+ 2π n
N
) =

∑P−1
p=0 Psp(

ϕl
N

+ 2π n
N
) for n =

0, 1, . . . , N − 1 and Hj,j′(ϕl) is an N × N diagonal matrix

given by

Hj,j′(ϕl) = diag
{
H(l,0),j(

ϕl
N
)H∗

(l,0),j′(
ϕl
N
),

H(l,1),j(
ϕl
N

+ 2π 1
N
)H∗

(l,1),j′(
ϕl
N

+ 2π 1
N
), . . . ,

H(l,N−1),j(
ϕl
N

+ 2πN−1
N

)H∗

(l,N−1),j′(
ϕl
N

+ 2πN−1
N

)
}

(15)

with H(l,n),j(ω) representing the frequency response at fre-

quency ω of the channel between the j-th CR user and the

LU who has a license for the frequency bin ϕl
N

+2π n
N

. Based

on (13) and (14), our goal is to reconstruct the power spectrum
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Ps(ω) at (2L + 1)N frequency bins ω. Note also that a

particular LU might have a license over multiple frequency

bins ω.

Next, we can finally stack pyj ,yj′
(ϕl) in (13) for all

j, j′ = 0, 1, . . . , J−1 into a J2M2×1 vector py(ϕl) given by

py(ϕl) =
[
pT
y0,y0

(ϕl),pT
y0,y1

(ϕl), . . . ,pT
yJ−1,yJ−1

(ϕl)
]T

and

write py(ϕl) as

py(ϕl) = Φ(ϕl)ps(ϕl), l = 0, 1, . . . , 2L (16)

where the J2M2 ×N matrix Φ(ϕl) is given by

Φ(ϕl) =
[
(Pc0,c0(ϕl)H0,0(ϕl))

T
, (Pc0,c1(ϕl)H0,1(ϕl))

T
,

. . . ,
(
PcJ−1,cJ−1

(ϕl)HJ−1,J−1(ϕl)
)T ]T

(17)

for l = 0, 1, . . . , 2L. Note that if J2M2 ≥ N and all

matrices {Φ(ϕl)}
2L
l=0 in (16) have full column rank, we can

solve (16) for l = 0, 1, . . . , 2L using LS. Once we reconstruct

{ps(ϕl)}
2L
l=0 in (16), we can organize the resulting Ps(ω) for

ω = 0, ϕ
N
, 2ϕ
N
, . . . , 2π − ϕ

N
into a (2L + 1)N × 1 vector

ss =
[
Ps(0), Ps(

ϕ
N
), Ps(

2ϕ
N
), . . . , Ps(2π − ϕ

N
)
]T

, which is

given by

ss = Γ(2L+1)Nps (18)

where ps =
[
pT
s (0),p

T
s (ϕ),p

T
s (2ϕ), . . . ,p

T
s (2Lϕ)

]T
and

Γ(2L+1)N is a (2L+1)N×(2L+1)N permutation matrix that

performs a (2L+ 1)×N interleaving process (read column-

wise and write row-wise).

There are many possible implementations for the sampler

coefficients cj,i[n] in (2) such as binary, complex Gaussian,

or multi-coset sampling. Our interest is to select {cj,i[n]}
M−1
i=0

for all j = 0, 1, . . . , J − 1 to ensure the full column

rank condition of {Φ(ϕl)}
2L
l=0 in (16). First, we consider

the case when there is no fading, which means that the

matrices {Hj,j′(ϕl)}
J−1
j,j′=0 in (17) are identity matrices and

the matrices {Φ(ϕl)}
2L
l=0 in (16) are given by Φ(ϕl) =[

PT
c0,c0

(ϕl),PT
c0,c1

(ϕl), . . . ,PT
cJ−1,cJ−1

(ϕl)
]T

. In this case,

one possible option is to implement multi-coset sampling

where the sampler coefficients {cj,i[n]}
M−1
i=0 for all j =

0, 1, . . . , J − 1 are constructed by selecting JM rows of the

N ×N identity matrix IN . Here, we have two possible cases

depending on the value of M and J . When JM ≤ N , we

select JM rows of IN based on the procedure discussed

in [9], which can be explained as follows. First, we select

K rows of IN , where the value of K and the rows to be

selected are governed by the so-called minimal length-⌊N/2⌋
sparse ruler problem. Next, we randomly select the additional

JM − K rows from the remaining N − K rows of IN . If⌊
JM
N

⌋
= b > 0, the JM sampler coefficients cj,i[n] are given

by all rows of b identity matrices IN plus JM−bN additional

randomly selected rows from a (b+ 1)-th identity matrix IN .

For both cases, we can then exploit the derivation in [9] to

show that the generated sampler coefficients {cj,i[n]}
M−1
i=0

for all j = 0, 1, . . . , J − 1 will lead to full column rank

matrices {Φ(ϕl)}
2L
l=0, i.e., Φ(ϕl) is a product of a matrix

having Vandermonde structure and two diagonal matrices.

When wireless fading exists, however, the condition that

ensures the full column rank of {Φ(ϕl)}
2L
l=0 becomes unclear

due to the existence of {Hj,j′(ϕl)}
J−1
j,j′=0 in (17). However,

these diagonal matrices are generally random because the

channel taps hp,j [n] in (8) are also random (e.g., having a

complex Gaussian distribution for a Rayleigh fading channel).

Therefore, constructing multi-coset sampler coefficients cj,i[n]
based on the procedure elaborated in the previous paragraph

still leads to full column rank matrices {Φ(ϕl)}
2L
l=0 with a

very high probability.

Note that in our scenario, the j-th CR user forwards the CSI,

the sampler coefficients {cj,i[n]}
M−1
i=0 , and the measurements

{yj,i[k]}
M−1
i=0 to the fusion centre, which then calculates the

cross-spectra vectors {py(ϕl)}
2L
l=0 and the system matrices

{Φ(ϕl)}
2L
l=0 in (16). Eventually, the fusion centre recovers the

power spectrum vector ss by using (16) and (18).

IV. SIMULATION STUDY

In this section, some numerical results from a simulation

study are presented. Let us consider two LUs that are active in

the frequency bands [0.4π, 0.5π] and [0.5π, 0.6π], respectively.

We generate the complex baseband signals corresponding to

these two LUs by filtering a circular complex zero-mean

Gaussian i.i.d. signal with variance σ2, which defines the

signal power in the active band. Rayleigh fading channels

are assumed by generating the channel taps according to a

complex zero-mean Gaussian distribution having unit variance

normalized by the channel length. We set the number of fading

channel taps, L, and N to 11, L = 1, and N = 80, respectively

and employ a multi-coset sampling implementation for the

sampler cofficients {cj,i[n]}
M−1
i=0 for all j = 0, . . . , J − 1.

The selection of the JM rows of the identity matrix I80
to construct the JM sampler cofficients cj,i[n] follows the

procedure presented in Section III.

In the first scenario, we keep the number of CR users fixed

to J = 3 while varying the compression rate (M/N ) at each

CR user from 0.125 to 0.4. The signal-to-noise ratio (SNR)

is measured as the ratio between the received signal power

and the noise power only at the occupied bands. Here, the

SNR is varied from 0 dB to 5 dB. The detection threshold

is varied manually while the resulting detection events are

evaluated in the occupied bands. The false alarm events are

examined in a frequency band that is significantly far from

the occupied bands, i.e., at [−0.6π,−0.4π]. It is important

to note that the shape of the active bands is not perfectly

rectangular due to the existence of two transition bands at

the edges of the occupied bands. Therefore, we decide to

leave guard bands at the edges of each occupied band and

examine the detection probability at the frequency bands

[0.41π, 0.49π] and [0.51π, 0.59π]. Fig. 2.a shows the receiver

operating characteristic (ROC) for this first scenario. Observe

how the performance of the proposed approach is acceptable

for reasonable SNR and how it improves as M/N is getting

larger, which is to be expected. Also observe that for SNR

= 5 dB, a compression rate of 0.125 per CR still results in

a satisfactory performance. However, the performance of the
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Fig. 2. The detection performance of the proposed approach for 150000

received Nyquist-rate samples; (a) The number of CRs is fixed to J = 3; (b)
The SNR is set to 2 dB.

proposed cooperative spectrum sensing approach for SNR = 0
dB is unacceptable for CR applications.

In the second scenario, the SNR is fixed to 2 dB while

the number of cooperating CR users is varied from J = 2 to

J = 4. In addition, we vary the compression rate M/N be-

tween 0.125 and 0.3 and evaluate the detection and false alarm

probability in the same bands as in the first scenario. Fig. 2.b

illustrates the ROC for this second scenario and shows how

the performance improves as we have more cooperating CR

users and the M/N per CR user increases. This observation

is to be expected. It is interesting, however, to compare the

performance between the case when J = 4 and M/N = 0.2,

which leads to a matrix Φ(ϕl) in (16) of size 4096×80, to the

case when J = 3 and M/N = 0.3, which leads to a matrix

Φ(ϕl) of size 5184 × 80. Observe how the first case offers

a better performance although it results in a matrix Φ(ϕl)
having less rows compared to the second case. This might be

because the condition number of the matrix Φ(ϕl) for J = 4
and M/N = 0.2 is more likely to be better than the one for

J = 3 and M/N = 0.3 due to the fact that the matrix Φ(ϕl)
for J = 4 and M/N = 0.2 contains contributions from more

fading channels.

V. CONCLUSION

In this paper, an extension of our proposed compressive

power spectrum estimation approach into a cooperative sce-

nario is investigated by assuming the primary user signals

are WSS processes. Since we mainly concentrate on how this

cooperative scheme might lead to a possible reduction of the

sampling cost at each cooperating sensor, CSI is assumed to

be present. Our focus is on the centralized approach where

each sensor collects sub-Nyquist rate samples and forwards

them to a fusion centre together with the CSI and the sampler

coefficients. Then, the cross-spectra between all measuremens

are calculated by the fusion centre, who later recovers the

power spectrum of the received signals by exploiting the WSS

property of the primary user signals. The simulation study

shows how the proposed approach performs satisfactory for

a reasonable SNR and a sufficient number of cooperating

sensors. Future research will focus on how to extend the

proposed approach to the unknown CSI case.
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