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Abstract

Compressive sampling is a well-known approach to reconstruct sparse signals
based on a limited number of measurements. In spectrum sensing applications for
cognitive radio though, only reconstruction of the power spectrum of the signal
is required, instead of the signal itself. In this paper, we present a new method
for power spectrum reconstruction based on samples produced by a sub-Nyquist
rate sampling device. The stationary assumption on the received analog signal
causes the measurements at the output of the compressive sampling block to be
cyclo-stationary, or the measurement vectors to be stationary. We investigate the
relationship between the autocorrelation matrix of the measurement vectors and
that of the received analog signal, which we represent by its Nyquist rate sampled
version. Based on this relationship, we are able to express the autocorrelation
sequence of the received wide sense stationary signal as a linear function of the
vectorized autocorrelation matrix of the measurement vectors. Depending on
the compression rate, we can present the problem as either over-determined or
under-determined. Our focus will be mainly on the over-determined case, in
which the reconstruction does not require any additional constraints. Two types
of sampling matrices are examined, namely complex Gaussian and multi-coset
sampling matrices. For both of them, we can derive conditions under which the
over-determined system will result in a unique solution for the power spectrum
by adopting a simple least squares (LS) algorithm. In the case of multi-coset
sampling, further improvement on the quality of the power spectrum estimates
can be attained by optimizing the condition of the sampling matrix.

1 Introduction

In cognitive radio networks, the so-called secondary users are allowed to opportunis-
tically rent licensed frequency bands when the licensed users are inactive. In such
networks, wideband spectrum sensing is a crucial task for the secondary users that are
required to sense the wireless environment over a wide frequency band and to detect
the spectrum occupancy. Based on the result of spectrum sensing, the secondary users
can subsequently exploit the available frequency holes to set up a communication link.
The fact that a broad spectral range has to be sensed in cognitive radio environments
has put an additional burden on the existing analog-to-digital converters (ADCs) since
the ADCs will need to sample a very large bandwidth signal at the Nyquist rate, which
yields a high power consumption [1]. Several works on sub-Nyquist sampling have
been conducted in order to alleviate the requirements of the ADCs. Sub-Nyquist sam-
pling based on multi-coset sampling has been evaluated in [2] for the case of multiband
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signals. Furthermore, [2] has also derived the condition that allows perfect signal recon-
struction from the obtained sub-Nyquist samples. In addition, sub-Nyquist sampling
for sparse multiband analog signals using a so-called modulated wideband converter
(MWC) is introduced in [3]. The MWC basically consists of multiple channels, each
of which applies a different mixing function followed by low-pass filtering and low-rate
uniform sampling. Similar to [2], [3] also provides the conditions for perfect reconstruc-
tion of the original signal based on the output of the MWC.

Note that all the above works focus on perfect reconstruction of the original signal
while spectrum sensing applications only require perfect reconstruction of the power
spectrum or equivalently the autocorrelation sequence. In [4, 5], power spectrum re-
construction methods based on compressive sampling have been proposed by focusing
on the autocorrelation sequence instead of the signal itself. In general, both approaches
exploit the sparsity feature of the edge spectrum. The method in [4], however, com-
presses the autocorrelation function of the Nyquist rate samples, and thus actually
still requires Nyquist rate sampling. Hence, [5] attempts to directly perform com-
pressive sampling on the received signal by exploiting the relationship between the
autocorrelation sequence of the measurements and the one of the Nyquist rate sam-
ples. However, [5] assumes stationarity of the measurements, which is not correct for
most compressive sampling matrices.

In this paper, we introduce a new sub-Nyquist sampling based approach for power
spectrum reconstruction. Our approach exploits the stationarity of the measurement
vectors (or cyclo-stationarity of the measurements) and may not even require the spar-
sity assumption, which is usually needed for perfect reconstruction of the original signal.
We first discuss how to exploit the relationship between the autocorrelation sequence of
the Nyquist rate samples and the autocorrelation matrix of the measurement vectors.
We subsequently attempt to reformulate the problem by considering the elements of
the measurement vector as the outputs of different filters having coefficients given by
the rows of the sampling matrix. We then focus on the reconstruction of the power
spectrum for over-determined systems by considering two choices for the compressive
sampling matrix, namely a complex Gaussian matrix and a multi-coset matrix.

2 Problem Formulation

Consider the received wide sense stationary analog signal x(t) that is sampled using an
analog to information converter (AIC) resulting in a sequence of measurement vectors
y[k]. As discussed in [4, 5], the AIC can be interpreted (but not implemented) as
a block consisting of a basic Nyquist rate ADC followed by a multiplexing operation
collecting N consecutive Nyquist rate samples, and concluded by a multiplication with
a compressive sampling matrix, which compresses the number of samples from N to
M . Based on the above point of view, we denote the output of the Nyquist rate ADC
by x[n] and the output of the multiplexer by the N × 1 vector sequence x[k] given by:

x[k] =
[

x[kN ] x[kN + 1] .... x[kN +N − 1]
]T

. (1)

Then, each N×1 vector x[k] is compressed by theM ×N compressive sampling matrix
Φ leading to the M × 1 vector sequence y[k]:

y[k] = Φx[k]. (2)

We denote the autocorrelation sequence of the Nyquist rate samples x[n] by rx[l] =
E [x[n]x∗[n− l]], where (.)∗ represents the complex conjugate operation. The N ×
N autocorrelation matrix of x[k] in (1) can subsequently be constructed as Rx =
E
[

x[k]xH [k]
]

, whose elements are given by:

[Rx]ij = rx[i− j] = r∗x[j − i], (3)



while the M ×M autocorrelation matrix of y[k] in (2) can be written as:

Ry = E[y[k]yH [k]] = ΦRxΦ
H . (4)

Note that the elements of the measurement vectors y[k] are generally not wide sense
stationary because of the nature of the compressive sampling matrix Φ. Consequently,
it is generally not possible to express the elements of Ry in a similar form as (3).
This fact, however, allows us to exploit all columns of Ry for estimating one of the
columns of Rx since, unlike the columns of Rx, every column of Ry contains different
information. We first stack all columns of Ry into the M2 × 1 vector vec(Ry), where
vec(.) is the operator stacking all columns of a matrix in a large column vector. It is
then obvious from (4) that we can write vec(Ry) as:

vec(Ry) = (Φ∗ ⊗Φ)vec(Rx), (5)

where ⊗ represents the Kronecker product operation. As mentioned earlier, all columns
of Rx contain the same information, which can be condensed into the 2N − 1 vector
rx = [rx(1−N), · · · , rx(−1), rx(0), rx(1), · · · , rx(N − 1)]T . We can then express the
relationship between vec(Rx) and rx as:

vec(Rx) = Trx, (6)

where T is a special N2 × (2N − 1) repetition matrix. By combining (5) and (6), we
obtain:

vec(Ry) = (Φ∗ ⊗Φ)Trx. (7)

We introduce the M2 × (2N − 1) matrix Θ = (Φ∗ ⊗Φ)T to simplify the analysis, and
rewrite (7) as:

vec(Ry) = Θrx. (8)

Given (8), we aim to reconstruct the autocorrelation sequence rx from vec(Ry) and to
use it for calculating the (2N − 1)× 1 power spectrum vector px according to:

px = Frx (9)

where F is a (2N − 1) × (2N − 1) column-permuted version of the discrete Fourier
transform (DFT) matrix.

3 Problem Reformulation

Each row of Φ in (7) can also be considered as a unique discrete waveform or filter and
we can thus express Φ in terms of its row vectors:

Φ =
[

ϕ0 ϕ1 ϕ2 . . . ϕM−1

]T
, (10)

with ϕi = [ϕi[0], ϕi[−1], . . . , ϕi[1−N ]]T . If the vector sequence y[k] in (2) is defined as

a collection of M parallel scalar sequences yi[k], i.e., y[k] = [y0[k], y1[k], . . . , yM−1[k]]
T ,

we can consider yi[k] as the N -fold decimated version of the sequence obtained by
filtering x[n] with ϕi[n], yi[k] =

∑0
n=1−N ϕi[n]x[kN − n]. In this case, we can express

the auto- and cross-correlations between the elements of the measurement vector y[k]
in vec(Ry) in terms of the auto- and cross-correlation sequences between the different
sequences yi[k] evaluated at lag zero. By denoting the correlation sequence between



yi[k] and yj[k] at lag l by ryi,yj [l] and taking the deterministic nature of the filter
coefficients into account, ryi,yj [l] can be written as:

ryi,yj [l] = E
{

yi[k]y
∗

j [k − l]
}

=
0

∑

n=1−N

ϕi[n]
0

∑

p=1−N

ϕ∗

j [p]rx[lN + p− n]. (11)

By using variable substitution, (11) can be rewritten as:

ryi,yj [l] =
N−1
∑

s=1−N

rϕi,ϕj
[s]rx[lN − s], (12)

where rϕi,ϕj
[l] =

∑0
n=1−N ϕi[n]ϕ

∗

j [n − l] is the deterministic correlation sequence be-
tween ϕi[n] and ϕj[n]. By taking (12) into account, we can express vec(Ry) in (8)
as:

vec(Ry) =
[

rTy0 [0], r
T
y1
[0], . . . , rTyM−1

[0]
]T

, (13)

where ryi [0] =
[

ry0,yi [0], ry1,yi [0], . . . , ryM−1,yi [0]
]T
. From some elementary mathematical

computations on (7) and (8) as well as from (12), we can observe that Θ in (8) is
composed of the auto- and cross-correlations between the rows of Φ. By specifying

rϕi,ϕj
as rϕi,ϕj

=
[

rϕi,ϕj
[N − 1], · · · , rϕi,ϕj

[0], · · · , rϕi,ϕj
[1−N ]

]T
, Θ can be written as:

Θ =
[

rϕ0,ϕ0 , . . . , rϕM−1,ϕ0 , . . . , rϕ0,ϕM−1
, . . . , rϕM−1,ϕM−1

]T
. (14)

From (13) and (14), we can find that vec(Ry) is obtained by simply multiplying the
autocorrelation sequence rx with Θ, whose elements are given by the deterministic
auto- and cross-correlations between the rows of Φ.

4 Reconstruction

We try to recover the power spectrum by first reconstructing the autocorrelation se-
quence rx from (8) for Θ given by (14). The reconstruction problem can be classified
into two different cases, the under- and over-determined cases (the determined case is
viewed as part of the over-determined case). It is important to note how our method
may boil down to an over-determined system (even with significant compression, i.e.,
M ≪ N) while common compressive sampling problems generally result in an under-
determined system. This is due to the fact that we concentrate on reconstructing
statistical parameters (namely auto- and cross-correlation sequences), which enables
us to gain much more system equations. While additional constraints (such as sparsity
assumptions, as discussed in [6]) are obviously required in the under-determined case,
this is not the case for the over-determined case which will be the focus of this paper.
More details on the under-determined case can be found in [4, 5, 6].

In general, the system will be over-determined when M2 ≥ 2N − 1. If Θ has full
column rank, we can calculate the autocorrelation vector rx from (8) as the LS solution
of (8):

r̂x = (ΘHΘ)−1ΘHvec(Ry). (15)

The power spectrum estimate p̂x can subsequently be calculated from (9). It is in-
teresting to note that we can reconstruct the statistics of the signal without requiring
any sparsity assumptions. This is in contrast with the general compressive sampling
framework where signal sparsity is required to ensure perfect reconstruction. In the
following two sub-sections, we discuss the design of the sampling matrix in order to
guarantee the uniqueness of the LS solution (Θ having full column rank). We consider
the complex Gaussian matrix and multi-coset matrix cases.



4.1 Complex Gaussian Sampling Matrix

When every element of Φ is randomly generated following a Gaussian distribution, the
probability that Θ will have full column rank is very high once M2 ≥ (2N − 1) and
this can happen for M ≪ N . Hence, we propose to use a complex Gaussian matrix as
a possible realization of the sampling matrix Φ to ensure the full column rank property
of Θ.

4.2 Multi-Coset Sampling Matrix

Multi-coset sampling can also be tailored to fit into our framework. From (10), a
multi-coset sampling matrix can be constructed by selecting M different rows from the
identity matrix IN leading to an M ×N multi-coset sampling matrix Φ. Note that we
cannot choose the rows of IN in a random way for a given M since some conditions
have to be fulfilled to guarantee the full column rank property of Θ in (14). When
we employ a multi-coset sampling matrix, each row of Θ will only contain a single one
and will have zeros elsewhere. Therefore, to obtain a full column rank Θ, we must
select a proper combination of rows of IN that leads to Θ having at least a single one
in every column. Moreover, our aim is to keep the number of selected rows minimal in
order to minimize the compression rate M/N . By assuming that ϕj[n] = δ[−n − nj ]
for j = 0, 1, 2, . . . , N−1, it is obvious from (12) that the correlation rϕi,ϕj

[l] is given by
rϕi,ϕj

[l] = δ[l−ni+nj]. The next step is to form Φ by selecting M out of N rows of IN
subject to the constraints on Θ stated earlier. By introducing S as a set of M indices
chosen from {0, 1, . . . , N − 1}, which represents the rows from IN that are going to be
selected and Ω as a set given by:

Ω = {|ni − nj| : ∀ni, nj ∈ S} , (16)

we can express the multi-coset sampling matrix construction problem as:

min
S

|S| s.t. Ω = {0, 1, . . . , N − 1} , (17)

where |S| represents the cardinality of the set S. In fact, this problem is a so-called
minimal (N − 1)-length sparse ruler problem. An (N − 1)-length sparse ruler can be
considered as a ruler having k < N distance marks 0 = n0 < n1 < . . . < nk−1 = N − 1
and that is still able to measure all integer distances from 0 up to N−1. Observe that Ω
in (17) is the set of integer distances that can be measured by the (N−1)-length sparse
ruler with all marks ni ∈ S. The (N − 1)-length sparse ruler with k distance marks is
called minimal if there is no (N − 1)-length sparse ruler with k− 1 marks. Solving this
minimal sparse ruler problem basically means minimizing the compression rate M/N ,
while maintaining uniqueness of the solution of the LS reconstruction problem. The
minimal sparse ruler problem has for instance been studied in [7].

Note that in practice, the received signal x(t) will be of finite length. Consequently,
Rx in (3) will not be a perfect Toeplitz matrix and this contributes to additional errors
in the LS estimate r̂x in (15). In order to get a better error averaging, it is desirable to
have a sufficient number of ones in each column of Θ. Given M , the best way to get the
optimum error averaging is by ensuring that the number of ones in each column of Θ is
as equal as possible. With respect to this issue, we propose two possible approaches for
the construction of a multi-coset sampling matrix. In scheme I, we start by generating
a multi-coset sampling matrix based on a minimal sparse ruler leading to minimum
M/N . The larger M/N cases are then realized by selecting additional rows of IN that
minimize Var[

∑

ni∈S

∑

nj∈S
rϕi,ϕj

[l]], namely the variance of the multiplicity of ones in

the columns of Θ. In scheme II, we do not start from a minimal sparse ruler. Instead,
we directly minimize Var[

∑

ni∈S

∑

nj∈S
rϕi,ϕj

[l]] while minimizing M/N . Note that our



second approach might not be able to reach the smallest possible value of M/N as
provided by a minimal sparse ruler design. The procedures for scheme I and II are
described below.

1. Denote S(k) as the set of indices selected from {0, 1, . . . , N − 1} after the k-th
iteration and Ω(k) =

{

|ni − nj| : ∀ni, nj ∈ S(k)
}

. Initialize S(0) = {0, N − 1} for

scheme II. For scheme I, the initial value for S(0) is obtained by solving the
minimal (N − 1)-length sparse ruler problem.

2. Denote Ξ(k) = {0, 1, . . . , N − 1} \S(k−1). For each nq′ ∈ Ξ(k) define the set Cq′ =
(
⋃

ni∈S(k−1) {|nq′ − ni|}) ∪ Ω(k−1).

3. Define the set Γ(k) = {nq′′ |nq′′ = arg max
nq′∈Ξ

(k)
|Cq′ |}, where |Cq′ | denotes the cardi-

nality of set Cq′ .

4. Search among the candidate set Γ(k) for the item nq that satisfies:

nq = arg min
nq′′∈Γ

(k)
Var







∑

ni∈S(k−1)∪{nq′′}

∑

nj∈S(k−1)∪{nq′′}

rϕi,ϕj
[l]







5. We set S(k) = S(k−1) ∪ {nq} and Ω(k) = (
⋃

ni∈S(k−1) {|nq − ni|}) ∪Ω(k−1). As long

as |S(k)| is less than the desired M (or |Ω(k)| < N for scheme II), go to step 2.

6. Construct Φ by selecting M out of N rows of IN where the M indices are given
by S(k) with k = M − 2 for scheme II and k = M − |S(0)| for scheme I.
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Figure 1: The MSE between the estimated power spectrum and the theoretical one for
a noiseless signal.



5 Simulation Study

In this section, the numerical results from a simulation study for both multi-coset
and complex Gaussian sampling are presented. Consider a complex baseband rep-
resentation of an OFDM signal having 8192 sub-carriers spanning a frequency band
from −π to π, 16 QAM data symbols and a cyclic prefix length of 1024. We ac-
tivate 3072 sub-carriers in the bands [−π,−0.875π], [−0.5π,−0.375π], [0, 0.25π] and
[0.5π, 0.75π]. The power of the transmitted signal x(t) is set to 10dB. The value of
N is fixed to N = 128 and the compression rate M/N is varied while ensuring the
full column rank property of Θ. We randomly generate the entries of the complex
Gaussian sampling matrix with zero mean and variance 1/M and we keep it fixed over
the different simulation runs. Fig. 1a depicts the mean squared error (MSE) between
the estimated power spectrum and the theoretical one when a complex Gaussian sam-
pling matrix is used. No noise is assumed in this figure. The MSE is computed based
on MSE = E

{

(‖p̂x − px‖
2
2)/‖px‖

2
2

}

where px denotes the theoretical power spectrum
vector. In order to simulate different sensing times, we calculate the MSE for different
numbers of collected measurement vectors (MVs) y[k] in (2). The MSE between the
estimated power spectrum produced by Nyquist rate sampling and the theoretical one
is also plotted as a line for the sake of reference. From the figure, it is obvious that
the quality of the estimation produced by complex Gaussian sampling improves with
M/N , although its performance converges very slowly towards that of Nyquist rate
sampling. We can also observe that the MSE improves as the sensing time increases
due to the fact that our estimated autocorrelation value ryi,yj [0] in (13) approaches the
actual value. Fig. 2a describes the estimated power spectrum together with the theo-
retical one for M/N = 0.5 and different sensing times. A complex Gaussian sampling
matrix is also considered here. Observe that for longer sensing times, the presence of
the active bands can be better located.
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(b) Multi-coset sampling case

Figure 2: Estimated power spectrum for M/N = 0.5 together with the theoretical one;
top: noise-free; bottom: noisy.

We investigate three different schemes for the construction of the multi-coset sam-
pling matrix. For scheme I, it turns out that the minimum number of distance marks
for a 127-length sparse ruler is 20 and thus we choose the corresponding 20 rows from
the 128 rows of the identity matrix I128 to construct a 20× 128 matrix Φ. The larger
M/N cases are then realized by selecting additional rows of IN that minimize the vari-
ance of the multiplicity of ones in the columns of Θ (as mentioned in Section 4.2). In
scheme II, the sampling matrix for every M/N case is constructed according to the



procedures explained in Section 4.2. However, the minimum M/N achievable by this
scheme is higher than that by scheme I, namely 24/128 instead of 20/128. Similar to
scheme I, scheme III also starts from the sampling matrix generated based on the min-
imal 127-length sparse ruler. However, instead of focusing on the multiplicity of ones
in the columns of Θ, the larger M/N cases are realized by randomly adding additional
rows of I128 into the already selected 20 rows. From Fig. 1b, it is clear that schemes
I and II have outperformed scheme III, meaning that ensuring the number of ones in
each column of Θ to be as equal as possible leads to better error averaging. A similar
trend is also found in Fig. 2b. Note that from Figs. 1 and 2, multi-coset sampling
appears to offer a better performance than complex Gaussian sampling.

6 Conclusion

In this work, a new method for power spectrum estimation based on samples pro-
duced by a sub-Nyquist rate sampling device has been proposed. In general, the cyclo-
stationarity of the measurements is exploited to obtain more linear equations for the
reconstruction problem. We concentrate on the over-determined case and investigate
the full column rank property of the reconstruction matrix Θ such that a simple LS
algorithm can be employed to recover the power spectrum of stationary signals even
without any sparsity assumption. We investigate two realizations of the sampling ma-
trix, namely a multi-coset and a complex Gaussian sampling matrix. For the case of
multi-coset sampling, we introduce new methods to optimize the performance by min-
imizing the variance of the multiplicity of ones in each column of Θ. The simulation
study for both sampling matrix realizations has indicated the satisfactory performance
of our method, which is able to correctly locate the occupied bands, thus making it a
suitable candidate for power spectrum sensing in a cognitive radio network.
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