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Preface

Complex function theory and linear algebra provide much of the basic mathematics
needed by engineers engaged in numerical computations, signal processing or control.
Thetransfer function of alinear timeinvariant systemisafunction of the complex vari-
ablesor zanditisanayticin alargepart of the complex plane. Many important prop-
erties of the system for which it is atransfer function are related to its analytic prop-
erties. On the other hand, engineers often encounter small and large matrices which
describe (linear) maps between physically important quantities. In both cases similar
mathematical and computational problemsoccur: operators, be they transfer functions
or matrices, haveto be simplified, approximated, decomposed and realized. Eachfield
has devel oped theory and techniquesto solve the main common problemsencountered.

Yet, thereisalarge, mysteriousgap between complex function theory and numerical
linear algebra. For example, complex function theory has solved the problem to find
analytic functions of minimal complexity and minimal supremum norm that approxi-
mate given values at strategic pointsin the complex plane. They servee.g., asoptimal
approximants for a desired behavior of a system to be designed. No similar approxi-
mation theory for matrices existed until recently, except for the case where the matrix
is (very) close to singular. The relevant approximation theory in the complex plane
is spectacular and has found a manifold of applications such as broadband matching,
minimal sensitivity control, and the solution of differential game problems. A similar
“linear algebra’ result would without doubt be very desirable. Over the years we have
discovered that a strong link between the two theories can indeed be devel oped.

To establish this link, one has to move away from the classical idiosyncrasies of
the two basic theories, and develop a new and somewhat unusual paradigm, which,
however, turns out to be quite natural and practical once one gets used to it. Classical
matrix theory and linear algebra act on vectors and matrices. Very early in the devel-
opment of these theoriesit was found beneficial to move from single scalar quantities
and variables to vector representations. This has been an important lift in the level of
abstraction, with great importance for physics and engineering, and also largely moti-
vated by them. It has allowed for compact, insightful algebraic notations which have
been adopted by a large variety of fields in which multidimensional objects interact
with each other. Mechanics, electromagnetism, quantum mechanics, operations re-
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X TIME-VARYING SYSTEMS AND COMPUTATIONS

search, electrical network theory and signal processing al are fields which have been
deeply influenced by vector and matrix calculus.

With the advent of powerful electronic computing, global vector or matrix-vector
operations may even be viewed as atomic numerical operations. A vector computer
can be programmed to executethem in parallel by asingleinstruction. A matrix-vector
or matrix-matrix multiplication, a matrix inversion, and more complicated operations
such as the calculation of matrix eigenvalues, can easily be conceived as simple se-
guences of such massive vector operations. In this book we will add another basic,
vector-like quantity to the arsenal of objects handled by linear algebra. The new ob-
ject representsadiagonal of amatrix or an operator. Thus, in addition to matrix opera-
tionsacting on rowsor columns, we shall consider el ementary operationson diagonals.
These, in fact, can be handled with the same ease by avector or parallel computer, but
they will have avery different algebraic interpretation.

What isto be gained by such an approach? In the course of the book, we develop a
forceful argument that indeed, it allows us to solve several problemsin linear algebra
whose solutions were either unknown, or obscured by the traditional approach. In ad-
dition, the theory aso creates its own class of new problems. The missing theoretical
link isprovided by system theory, in our casethetheory of linear, timediscreteandtime
varying dynamical systems. For example, we look at the meaning of “computational
complexity” from a system theoretical point of view. Up to now, classical linear alge-
brahad only alimited notion of complexity, restricted to either matricesthat are sparse
(most entries equal to zero), or matricesthat are close to singular. The sparse structure
is easily destroyed by algebraic operations: even the inverse of such a matrix is not
sparse, and as aresult, it seems that multiplication by thisinverseis a full-complexity
operation. This doesnot happen with asystem theoretic “realization”: it is straightfor-
ward to show that a minimal realization of the inverse has the same complexity asone
for the original. In addition, system theory will allow usto derive a powerful approxi-
mation theory that mapsagiven matrix to amatrix of lowest computational complexity
(in the system theoretical sense), given a certain tolerance.

System theory has already had a significant impact on linear algebra, mostly in the
study of Toeplitz matricesand similar structured matrix problems. Theseareconnected
to time-invariant systems. Our approach in this book is complementary: we general-
ize to time-varying systems, which allowsto describe any matrix. The structurein the
matrix we are looking for is now less obvious, it is connected to the rank of certain
strategic submatrices. In the course of the book, several classical results in the theory
of time-varying systems are recovered: e.g., we hit on the all-pervasive time-varying
Riccati equation, the bounded real lemmaand the rel ated Kal man-Yakubovitch-Popov
lemma. Still, we believe that we are placing the theory in the context of anew “para-
digm”,i.e., arealm of problemsand solutionswith their own dynamics. Indeed, several
results in time-varying system theory that were only known as abstract theory (such
as proofs by Arveson of the existence of inner-outer factorizations) have now become
explicit “ constructive operator theory”. Significant new resultsin this context are the
time-varying Hankel-norm approximation theory, as well as the solution of several in-
terpolation problems, leading to a generalization of the minimal sensitivity problem
and optimal control theory.
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An added value of the book isthe very explicit link which it lays between numerical
linear algebra and generalizations of analytic function theory on the open unit disc, as
traditionally applied to transfer function calculus. The reader will discover the alge-
braic generalizationsof ahost of classical interpolation problems: Schur, Nevanlinna-
Pick, Caratheodory-Fejer, Nehari, Schur-Takagi. These provide natural solutions to
nice problemsin algebra. Conversely, elementary methodsin numerical analysis have
interesting counterpartsin system theory wheretheir interpretationis non-trivial. E.g.,
we show that inner-outer factorization can be viewed as a generalization of QR factor-
ization, and Hankel-norm model reduction can be used for efficient subspace estima-
tion and tracking.

We do not limit ourselves to finite matrices. The connection to system theory al-
lowsto derive meaningful resultsalso for “infinite’ matrices, or operatorson a Hilbert
space. From alinear algebra point of view, the results are perhaps uncanny: e.g., the
inverse of an upper triangular infinite matrix need not be upper triangular! The con-
nection to time-varying systems gives insight into the mechanics of this: the inverse
of an upper operator is upper if and only if the original system has a property whichis
called “outer”. Evenfor linear algebra, infinitelinear systemsare useful: such systems
occur e.g., in the discretization of differential equationswhere the boundary condition
is conveniently placed at infinity. Because the matrix entries become constant as we
move away from the center of the matrix, it can still be described by afinite number of
parameters. It hasbeen amply demonstrated that such aproceduremay |ead to more ac-
curateoverall results. Thedownsideof thisgenerality is perhapsthat, in order to obtain
precise results, Hilbert space theory playsamajor but sometimes also ameretechnical
role. (We summarize some basic notions of Hilbert space theory in an appendix.)

For whom isthis book intended? We suggest the following.

m |t can beused asagraduate coursein linear time-varying systemtheory: all themain
concepts and problems are there, and they are treated in a direct and streamlined
manner. For this purpose we have been somewhat lengthy in developing the basic
framework in thefirst chapters— our excuses to interested mathemati cians!

m |t can be used as a source of new problemsin numerical linear algebra, with a con-
current new methodology to solve them. Several theories in the book scream for
in-depth analysis, in particular the theory of optimal sensitivity reduction, the in-
version theory for infinite systems of equationsand the optimal matrix-operator ap-
proximation theory.

m |t can aso be used as an introductory course in a new topic: “theory of computa-
tional systems’. Although the material presented here falls short of a comprehen-
sive theory — the subject matter presently does not go far beyond linear problems
and computations— we do think that thereis already sufficient information to jus-
tify independent interest.

It is our hope that the algebraic system’s community will find inspiration and mo-
tivation in the theory presented here. Although it has definite affinities to Arveson’s
“Nested Algebras’ and Saeks and Feintuch’s “ Resol ution Spaces’, it does have a new
flavor, mainly because of its direct link to numerical procedures via the treatment of
diagonals as the new vectorial object.
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]. INTRODUCTION

Two disciplines play amajor role in this book. Thefirst is linear algebra, which pro-
vides the setting for the derivation of efficient algorithmsto do basic matrix calcula-
tions. The secondislinear time-varying system theory, whose conceptswe use to treat
and analyzealargeclass of basic algorithmsin amore general setting. Inthisintroduc-
tion we explore important links between the two theories and show how linear time-
varying system theory can be used to solve problemsin linear algebra

1.1 COMPUTATIONAL LINEAR ALGEBRA AND TIME-VARYING
SYSTEMS

Concepts

As has been known for long, linear system theory and matrix algebra have a common
footage. Indeed, if we represent a sampled signal by a vector, then alinear system—
mapping an input signal to an output signal — has to be representable by amatrix. Of
coursg, if the signals run fromt = —o tot = +oo, then the matrix becomes infinite-
dimensional and we rather speak of linear (Hilbert-space) operatorsinstead. The con-
nection between systems and matrices provesto be extremely fruitful.

Our first and foremost purpose in this book will be the “system”atic derivation of
efficient algorithmsfor basic operationsin linear algebrasuch as matrix multiplication,
inversion and approximation, and their extension to operators which act on vectors of
infinite dimensions yet have a finite numerical description. This endeavor will natu-
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2 TIME-VARYING SYSTEMS AND COMPUTATIONS

raly lay in the intersection of linear algebra and system theory, a field that has been
called computational linear algebra.

In most algorithms, the global, desired operation is decomposed into a sequence of
local operations, each of which acts on alimited number of quantities (ultimately two).
Intermediate variables are needed to connect the operations. The collection of these
intermediate quantitiesat some point in the algorithmic sequencecan be called the state
of thealgorithm at that point: it iswhat the algorithmic sequencehasto remember from
its past.

This point of view leads to the construction of a dynamical system that represents
the algorithm and whose state equals the state of the computation at each point in the
algorithmic sequence. In the case of the basic matrix operations mentioned above, the
dynamical system will belinear. Although many matrix operations can be represented
by somelinear dynamical system, our interest isin matricesthat possessagenera kind
of structure which results in alow dimensional state vector, and hence leads to effi-
cient (“fast”) algorithms: algorithms that exploit the structure. Structure in a matrix
often has its origin in the physical map that it represents. Many problemsin signal
processing, finite element modeling, computational algebra and |east-squares estima-
tion produce structured matrices that can indeed be modeled by dynamical systems of
low complexity. There are other very fruitful ways to represent and exploit structure
in matrices. However, the time-varying system point of view producesso many results
that it warrants an independent treatment.

Let uslook in moredetail at alinear transformation T which acts on some vector u,

Uu=[up Uz Uz -+ Up

and yields an output vector y = uT. Thevector u can just aswell be viewed asan input
sequenceto alinear system which then producesthe output sequencey. To thisvector-
matrix multiplication we can associate a network of computationsthat takesu and com-
putesy. Intermediate quantities, states, are found asvalues on theinternal edges of the
network. Matrices with a sparse state structure have a computational network of low
complexity so that using the network to computey is more efficient than computing uT
directly.
Consider e.g., an upper triangular matrix T along with itsinverse,

1 1/2 1/6 1/24 1 -1/2
1 1/3 1/12 g 1 -1/3
T= 1 ya | 7= 1 | @D
1 1

The inverse of T is sparse, which is an indication of a sparse state structure. A
computational network that models multiplication by T is depicted in figure 1.1(a).
The reader can readily verify that this network doesindeed compute [y1 Y2 Y3 Ya] =
[u1 Uy Uz ug]T by trying the scheme on vectorsof theform[1 0 0 Oj upto [0 0 O 1].
The computationsin the network are split into sections, whichwewill call stages, where
the k-th stage consumes uy and produces y. At each point k the processor in the stage
active at that point takesits input data uy from the input sequence u and computes new
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Uy U2 uz Ug
X4 1
« 1 \pm
1 1 3 14
=zl [z}
Xo p— U3 112
=zl 2] [z]+]
12 1/6 124
Y1 Y2 Y3 Ya
(a)
Up Uo us Ug
1 12 1[N\ 23 1N\ V4 1
X2 X3 X4
| =" AR [z}
1 1 1
Y1 Y2 Y3 Ya

(b)

Figure 1.1. Computational networks corresponding to T. (&) Direct (trivial) realization,
(b) minimal realization.

output data y, which is part of the output sequencey generated by the system. The de-
pendenceof yi onu; (i < k) introducesintermediate quantitiesx, which we havecalled
states, and which subsume the past history of the system as needed in future calcula-
tions. This state x, is temporarily stored in registersindicated by the symbol zin the
figure.! Thecomplexity of the computational network is highly dependent on the num-
ber of states at each point. A non-trivial computational network to computey = uT
which requires less states is shown in figure 1.1(b). The total number of (non trivial)
multiplicationsin this network is 5, as compared to 6 in adirect computationusing T.
Although we have gained only one multiplication here, for aless moderate example,
say an (nx n) upper triangular matrix with n = 10000 and d < n states at each point,
the number of multiplicationsin the network can be as low as 8dn, instead of roughly
%nz for adirect computationusing T.

1Thisisarelic of an age-old tradition in signal processing which has little meaning in the present figure.
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The (linear) computations in the network can be summarized by the following re-
cursion, fork =1ton:

Xer1 = XAk + UkBy
y Yk = XkCx+ uxDyg (12)
or
M1 W = wd T, Tk= [ Bk: Dk: }

in which xi is the state vector at time k (taken to have di entries), Ax is adg x dg,1
(possibly non-sguare) matrix, By isa 1 x dy, 1 vector, Cx isady x 1 vector, and Dy is
ascalar. More general computational networks may have any number of inputs and
outputs, possibly also varying from stage to stage. In the example, we have a sequence
of realization matrices

. 1/3 1 1/4 1 -1
R ER N Y R Y B B |
wherethe ‘" indicates entries that actually have dimension O (i.e. disappear) because
the corresponding states do not exist. Therecursionin equation (1.2) showsthat itisa
recursionfor increasing values of k: the order of computationsin the network is strictly
from left to right, and we cannot compute yj unless we know X, i.e., until we have
processed Uy, - -+, Uk-1. Notethat yx does not depend on Uy, 1, -+, Un. Thiscausality is

adirect consequence of the fact that T has been chosen upper triangular, so that such
an ordering of computationsis indeed possible.

Time-varying systems

We obtain an obvious link with system theory when we regard T as the input-output
map, alias the transfer operator, of a non-stationary causal linear system with input
u and output y = uT. Thei-th row of T then corresponds to the impulse response of
the system when excited by an impulse at time instant i, that is, the output y caused
by an input u with uy = &j—x, where &y isthe Kronecker delta. The casewhere T hasa
Toeplitz structure then correspondsto atime-invariant system for which theresponseto
animpulseat timei + 1isjust the same asthe response to an impulse at timeii, shifted
over one position. The computational network is called a state realization of T, and
the number of states at each point in time is called the system order of the realization
at that point. For time-invariant systems, the state realization can be chosen constant
intime. For atime-varying system, the number of state variablesneed not be constant:
it can increase and shrink. In this respect the time-varying realization theory is much
richer, and we shall seein alater chapter that atime-varying number of stateswill en-
able the accuracy of some approximating computational network of T to be varied in
timeat will. If the network isregarded as the model of aphysical time-varying system
rather than a computational network, then the interpretation of atime-varying number
of statesisthat the network contains switchesthat can switch on or off acertain part of
the system and thus can make some states inaccessible for inputs or outputs at certain
pointsin time.
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Sparse computational models

If the number of state variables is relatively small, then the computation of the out-
put sequence is efficient in comparison with a straight computation of y = uT. One
example of an operator with a small number of statesisthe case where T is an upper
triangular band matrix: Tij = O for j—i > p. The state dimension is then equal to or
smaller than p—1, since only p— 1 of the previousinput values haveto be remembered
at any point in the multiplication. However, the state model can be much more general,
e.g., if abanded matrix has aninverse, then thisinverseis not bounded but is known to
have a sparse state realization (of the same complexity) too, as we had in the example
above. Moreover, thisinversion can be easily carried out by local computationson the
realization of T:2 if T™2 = S then u = yScan be computed via

{xk+1 = XActuBc {xkﬂ = %(A—CDBi) + YkDi B
Y = %Gt uDi w = GOt + YDt

hence Shas a computational model given by

_c.p-1 —c.p-l
Observe that the model for S= T is obtained in alocal way from the model of T: S,
dependsonly on Ty. Sums and products of matrices with sparse state structures have
again sparse state structures with number of states at each point not larger than the sum
of the number of states of its component systems, and computational networks built
with these compositions (but not necessarily minimal ones) can easily be derived from
those of its components.

In addition, a matrix T’ that is not upper triangular can be split (or factored) into
an upper triangular and a strictly lower triangular part, each of which can be separately
model ed by acomputational network. The computational model of thelower triangular
part has a recursion that runs backward:

X1 = XA WB

Yk = Xi(C{( + UkDf(
The model of the lower triangular part can be used to determine a model of a unitary
upper matrix U which is such that UST is upper and has a sparse state structure. Thus,
computational methods derived for upper matrices, such as the above inversion for-
mula, can be generalized to matrices of mixed type [vdV95].

Besides matrix inversion, other matrix operationsthat can be computed efficiently
using sparse computational models are for example the QR factorization (chapter 6)
and the Cholesky factorization (chapter 13).

At this point, the reader may wonder for which class of matrices T there exists a
sparse computational network (or state realization) that realizes the same multiplica-
tion operator. A general criterion will be derived in chapter 5, along with arecursive

2This applies to finite matrices only, for which the inverse of the matrix is automatically upper triangular
again and Dy is square and invertible for all k. For infinite matrices (operators) and block matrices with
non-uniform dimensions, the requirement is that T must be outer. See chapters 6 and 7.
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Figure 1.2.  Hankel matrices are (mirrored) submatrices of T.

algorithm to determine such anetwork for agiven matrix T. The criterion itself is not
very complicated, but in order to specify it, we have to introduce an additional con-
cept. For an upper triangular (nx n) matrix T, define matricesH; (1<i <n), (which are
mirrored submatrices of T), as

Ti-ri Ti-givr - Ticin -‘
H = T2 Ti-2ji+1 :
. T27n
Ty a Tint Tain

(seefigure 1.2). TheH; arecalled (time-varying) Hankel matrices, asthey haveaHan-
kel structure (constant along anti-diagonals) if T has a Toeplitz structure.® In terms of
the Hankel matrices, the criterion by which matrices with a sparse state structure can
be detected is given by the following theorem, proven in chapter 5.

Theorem 1.1 The number of states that are required at stagek in a minimal compu-
tational network of an upper triangular matrix T is equal to the rank of itsk-th Hankel
matrix Hy.

Let's verify this statement for our example matrix (1.1). The Hankel matrices are

Hi=[ -], Hp=[1/2 1/6 1/24],
1/4
e[ ) e[ i)

SWarning: in the current context (arbitrary upper triangular matrices) the H; do not have a Hankel struc-
ture and the predicate ‘Hankel matrix’ could lead to misinterpretations. The motivation for the use of this
terminology can be found in system theory, where the H; are related to an abstract operator Hr which is
commonly called the Hankel operator. For time-invariant systems, Hy reduces to an operator with a matrix
representation that has indeed atraditiona Hankel structure.
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Since rank(H1) = 0, no states x; are necessary. One state is required for X, and one
for x4, because rank(H,) = rank(H4) = 1. Finaly, also only one state is required for
x3, because rank(Hs) = 1. In fact, thisis (for this example) the only non-trivial rank
condition: if one of the entriesin H3 would have been different, then two states would
have been necessary. In general, rank(H;) <min(i—1,n-i+ 1), and for ageneral upper
triangular matrix T without state structure, a computational model indeed requires at
most min(i—1,n—i+ 1) statesfor x;. The statement isalso readily verified for matrices
with aband structure: if the band width of the matrix isequal to d, thentherank of each
Hankel matrix is at most equal to d. Aswe have seen previoudly, the inverse of such
aband matrix (if it exists) has again alow state structure, i.e., the rank of the Hankel
matrices of the inverseis again at most equal to d. For d = 1, such matrices have the
form (after scaling of each row so that the main diagonal entries are equal to 1)

1 a4 1 a3 aap ajapas
T= 1 —ap 7 T_1 _ 1 az arag
1 -a3 1 ag
1 1

and it is seen that H3 of T1 isindeed of rank 1.

1.2 OBJECTIVES OF COMPUTATIONAL MODELING

Operations

With the preceding section as background material, we are now in a position to iden-
tify in more detail some of the objectives of computational modeling, as covered by
this book. Many of the basic operationswill assume that the given operators or matri-
ces are upper triangular. Applications which involve other types of matrices will of-
ten require a transformation which converts the problem to a composition of upper (or
lower) triangular matrices. For example, avector-matrix multiplication with a general
matrix can be written as the sum of two terms. the multiplication of the vector by the
lower triangular part of the matrix, and the multiplication by the upper-triangular part.
Efficient realizations for each will yield an efficient overall realization. In the case of
matrix inversion, we would rather factor the matrix into a product of a lower and an
upper triangular matrix, and treat the factors independently.

We will look at the class of matrices or operatorsfor which the concept of a* sparse
state structure” is meaningful, such that the typical matrix considered has a sequence
of Hankel matricesthat all have low rank (relative to the size of the matrix), or can be
well approximated by amatrix that has that property.

Realization and cascade factorization. A central question treated in this
book is given a matrix (or operator), find a computational model { Ty}" of minimal
complexity. Such amodel could then e.g., be used to efficiently compute multiplica-
tions of vectors by T. Often we want additional propertiesto be fulfilled, in particular
we wish the computationsto be numerically stable. One important strategy is derived
from classicdl filter theory. It starts out by assuming T to be contractive(i.e., || T|| < 1;
if thisis not the case, a normalization would pull the trick). Next, it subdivides the
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Realization Embedding Factorization
Transfer- State space Lossless Lossless
operator realization embedding cascade
realization
T T-|AC b2
~ |BD

L

Approximation

Figure 1.3.  Objectives of computational modeling for matrix multiplication.

U2 0 g Us 0
up 0 o uy uzy O

=1 |— US O

0 | a O |
Y1 Y2 y3
O g |
Ya Y5
Ye Y7 Y8

Figure 1.4. Cascade realization of a contractive 8 X 8 matrix T, with a maximum of 3
states at each point. The number of algebraic operations is minimal.

guestion in four subproblems, connected schematically asinfigure 1.3: (1) realization
of T by asuitable computational model, (2) embedding of thisrealization into alarger
model that consists entirely of unitary (lossless) stages, (3) factorization of the stages
of the embedding into a cascade of elementary (degree-1) lossless sectionsin an al-
gebraically minimal fashion. One can show that this gives an algebraically minimal
schemeto compute multiplicationsby T. At the sametime, it is numerically stable be-
cause al elementary operations are bounded and cannot magnify intermediate errors
due to noise or quantizations.

A possible minimal computational model for an example matrix T that corresponds
to such a cascade redlization isdrawnin figure 1.4. In thisfigure, each circleindicates
an elementary rotation of the form

cos(B) -sin(B)

2 bl ghie)  cos(d)

=lay by.

The preciseform of the realization depends on whether the state dimension is constant,
shrinks or grows. The realization can be divided into elementary sections, where each
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section describeshow asingle state entry of x ismapped to an entry of the “ next state”
VECLOr Xy 1.

The cascade realization in figure 1.4 has a number of additional interesting proper-
ties. First, the number of operationsto computethe next state and output islinear inthe
number of states at that point, rather than quadratic as would be the case for a general
(non-factored) realization. Another is that the network is pipelinable, meaning that as
S00N as an operation has terminated it is ready to receive new data. Thisisinteresting
if the operation ‘muiltiplication by T’ isto be carried out on a collection of vectors u
onaparallel computer or on a hardwareimplementation of the computational network.
The property is a consequence of the fact that the signal flow in the network is strictly
uni-directional: from top left to bottom right. Computations on anew vector u (a new
ux and anew x) can commencein the top-left part of the network, while computations
on the previousu are till being carried out in the bottom-right part.

Approximation. It could very well be that the matrix that was originaly given
is known viaa computational model of a very high order, e.g., via a series expansion.
Then intermediate in the above sequence of stepsis (4) the approximation of a given
realization of T by onethat hasthelowest possible complexity given an acceptabletol-
erance. For example, it could happen that the given matrix T isnot of low complexity
because numerical inaccuracies of the entries of T haveincreased the rank of the Han-
kel matricesof T, sincetherank of amatrix isavery sensitive (ill-conditioned) parame-
ter. But evenif thegiven matrix T isknown to be exact, an approximation by areduced-
order model could be appropriate, for example for design purposesin engineering, to
capture the essential behavior of the model. With such a reduced-complexity model,
the designer can more easily detect that certain features are not desired and can possi-
bly predict the effects of certain changesin the design; an overly detailed model would
rather mask these features.

Whileit isfairly well known in linear algebra how to obtain a (low-rank) approxi-
mant for certain normsto a matrix close to singular (e.g., by use of the singular value
decomposition (SV D)), such approximations are not necessarily appropriate for our
purposes, because the approximant should be upper triangular again and have alower
system order than before. Moreover, the original operator may be far from singular.
Because the minimal system order at each point is given by the rank of the Hankel ma-
trix at that point, a possi ble approximation schemeisto approximateeach Hankel oper-
ator by onethat isof lower rank (this could be done using the SV D). The approximation
error could then very well be defined in terms of the individual Hankel matrix approx-
imations as the supremum over these approximations. Because the Hankel matrices
have many entriesin common, it is not immediately clear whether such an approxima-
tion schemeisfeasible: replacing one Hankel matrix by one of lower rank in acertain
norm might makeit impossiblefor the other Hankel matricesto find an optimal approx-
imant such that the part that they have in common with the original Hankel matrix will
coincide with the original approximation. In other words. each individual local opti-
mization might prevent a global optimum. The severity of this dilemmais mitigated
by a proper choice of the error criterion. It istruly remarkable that this dilemma has
aneat solution, and that this solution can be obtained in a closed form. The error for
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which a solution is obtained is measured in Hankel norm: it is the supremum over the
spectral norm (the matrix 2-norm) of each individual Hankel matrix,

ITllH = sup [[Hill,
|

and a generalization of the Hankel norm for time-invariant systems. In terms of the
Hankel norm, the following theorem holds true and generalizes the model reduction
techniques based on the Adamjan-Arov-Krein paper [AAK71] to time-varying sys-
tems:

Theorem 1.2 ([DvdV93]) LetT beastrictly uppertriangular matrix andletT” = diag(y;)
be a diagonal Hermitian matrix which parametrizes the acceptable approximation tol-
erance (i > 0). Let Hy be the Hankel matrix of T 1T at stagek, and suppose that, for
each k, none of the singular values of Hy are equal to 1. Then there exists astrictly up-
per triangular matrix T, whose system order at stagek is equal to the number of singular
values of Hy that are larger than 1, such that

ITHT-Ta)|In < 1.

Infact, thereisan algorithmthat determinesa state model for T, directly from amodel
of T. ' can be used to influence the local approximation error. For a uniform approx-
imation, I = yl, and hence || T - Ta||n <y : the approximant is y-close to T in Hankel
norm, which impliesin particular that the approximation error in each row or column
of T islessthany. If one of they; is made larger than vy, then the error at the i-th row
of T can become larger also, which might result in an approximant T, that has fewer
states. Hencel™ can be chosen to yield an approximant that is accurate at certain points
but lesstight at others, and whose complexity is minimal.

Therealization problemistreated in chapter 5, the embedding problemisthe subject
of chapter 12, while the cascade factorization algorithm appears in chapter 14. The
Hankel-norm approximation problem is solved in chapter 10.

QR factorization and matrix inversion. Direct methodsto invert large ma-
trices may give undesired “unstable” results. For example, suppose we try to invert
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The inverse obtained by truncating the matrix to a large but finite size and inverting
this part using standard linear algebra techniques produces

2
1

0

T12

LIS
PN -

Clearly, thisinverseis not bounded as we let the size of the submatrix grow. Thetrue
inverseisgiven by

=12 @ 0
-1/4 -1/2 0
-1/8 -1/4 -1/2 0
.-1/16 -1/8 -1/4 -1/2

T1=

Note that it is lower triangular, whereas the original is upper triangular. How could
this have happened? We can obtain valuabl e insightsin the mechanics of this effect by
representing the matrix as alinear system for which it is the transfer operator:

1 { 1422+ 42+ -+

T2=1-2z O T‘l(z)zl_zzz

11 12,
5Z =32

Among other things, thiswill allow usto handletheinstability by trandating “ unstable’
into “anti-causal” yet bounded. In the above case, we see that T™1(z) hasapoleinside
the unit circle: it is not minimum phase and hence the causality reverses.

With time-varying systems, much moreis possible. Ingeneral, we can conceptually
haveatime-varying number of zerosinside and outside the unit circle, —conceptualy,
becausethe notion of polesand zerosisnot very well defined for time-varying systems.
We can also have zeros that move from inside the circle to outside, or the other way
around. This meansthat the inversion of infinite matrices is much more difficult, but
also more interesting, than in the finite case.

The key to solving such inversion problemsis to first compute a QR factorization,
or “inner-outer factorization” in the system theoretical framework. This can be done
using the realization of T as obtained earlier, hence can be done efficiently even on
infinite-size matrices, and not surprisingly givesriseto time-varying Riccati equations.
The inversion then reducesto inversion of each of the factors.

We derive the time-varying equivalent of the above example in chapter 7. Other
factorizations, such as the Cholesky factorization, are discussed in chapter 13.

Interpolation and matrix completion. Severa other topics are of interest
aswell. Animportant part of classical functional analysis and operator theory centers
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around solving constrained interpolation problems: e.g., given “points’ in the com-
plex plane and “values’ that a matrix-valued function should take in these points, con-
struct an function that is constrained in horm and interpolates these values. In our
present context, the functions are smply block-matrices or operators, the points are
block diagonals, and the values are block diagonals as well. In chapter 9, we derive
algebraic equivaentsfor very classical interpolation problemssuch asthe Nevanlinna-
Pick, Schur, Hermite-Fejer and Nudel’ man problems. These problemsare tightly con-
nected to the optimal approximation problem discussed above. Lossless J-unitary ma-
trices play acentral role, and are discussed in chapter 8.

In linear system theory, interpolation problems have found application in the solu-
tion of robust control problems, as well as the minimal sensitivity problem: design a
feedback such that a given system becomes stable and the worst-case energy amplifi-
cation of acertaininput to acertain output is smaller than agiven bound. Wetreat only
asingle example of this: the solution of the four-block problem (section 9.7).

Finally, we consider the Nehari extension problem: for agiven upper triangular ma-
trix, try to find a lower-triangular extension such that the overall matrix has a norm
bounded by a prescribed value (section 10.6). Again, the solution is governed by J-
lossless matrices.

Operands

In the preceding section, the types of operations(realization, embedding, factorization,
approximation, interpolation) that are considered in this book were introduced. Wein-
troduce now the types of operands to which these operationsare applied. In principle,
we work with bounded linear operators on Hilbert spaces of (vector) sequences. From
an engineering point of view, such operators can be regarded as infinite-size matrices.
Theentriesin turn can be block matrices. In general, they could even be operators, but
we do not consider that case. There is no need for the block entries to have the same
size: the only requirement is that all entries on arow of the operator have an equal
number of rows, and all entries on a column of the operator have an equal number of
columns, to ensure that all vector-matrix products are well defined. Consequently, the
upper triangular matrices can have an “appearance” that is not upper triangular. For
example, consider

| e
HH © uem

where in this case each box represents a complex number. The main diagonal is dis-
tinguished here by filled boxes.

We say that such an operator describes the input-output behavior of alinear time-
varying system. The system istime invariant if the matrix representation of the opera-
tor is (block) Toeplitz: constant along diagonals. In general, we allow the upper trian-
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gular part to have an arbitrary structure, or even no structure at all. Special cases are
periodically varying systems, which give block-Toeplitz operators, and systems that
are time-invariant outside a finite interval in time, which give operators that are con-
stant at the borders. A sequence on which the operator can be applied (the input of the
system) isrepresented by arow vector whose entries are again finite-size vectors con-
forming to the block entries of the operator. This correspondsto a system with block
inputs and block outputs. If the size of the block entries is not constant, then the sys-
tem has atime-varying number of inputs and outputs, which corresponds physically to
a system with switches that are used to switch on or off certain inputs and outputs at
certaintimes. Itispossibleto model finite matricesthisway, aswas shownin theintro-
duction. For finite matrices, there are no inputs and outputs before and after a certain
interval intime.

A causal system corresponds to an operator whose matrix representation is upper
triangular. We areinterested in such systemsbecause causality impliesacomputational
direction: usually we can start calculations at the top-left end of the matrix and work
towards the bottom-right end. Causality also introduces the notion of state. We allow
the number of statesto be time varying as well. This can be realized, for example, by
switchesthat connect or disconnect parts of the system. The concept of atime-varying
number of states allows the incorporation of afiner level of detail at certain intervals
intime.

1.3 CONNECTIONS AND ALTERNATIVE APPROACHES

Low displacement rank

In recent times there has been quite an effort to study “structured matrices’ in various
guises. Besides sparse matrices (matriceswith many zero entries) which fall withinthe
context of our theory, two classical examplesof structured matricesarethe Toeplitzand
Hankel matrices (matrices that are constant along diagonals or anti-diagonals). They
represent the transfer operator of linear time-invariant (LT1) systems. The associated
computational algorithmsarewell known. For example, for Toeplitz systems we have

— Schur recursions for LU and Cholesky factorization [Sch17, Kai86],
— Levinson recursions for the factorization of the inverse [Lev47],

— Gohberg/Semencul recursions for computing the inverse [GS72],

— Recursions for QR factorization [CKL87].

These algorithms have computational complexity of order O(n?) for matrices of size
(nxn), as compared to O(n%) for algorithms that do not take the Toeplitz structureinto
account. Generalizationsof the Toeplitz structure are obtained by considering matrices
which have a displacement structure [KKM79, LK84, LK86, LK91]: matrices G for
which there are (simple) matrices F1, F» such that

G-F[GR, (1.4)

isof low rank, a say. Thistype of matrices occurs, e.g., in stochastic adaptive predic-
tion problemssuch asthe covariance matrix of thereceived stochastic signal; the matrix
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iscalled of low displacement rank or a-stationary. Toeplitz matrices are a special case
for which F; = F, are shift matricesZ and a = 2. Related examples are block-Toeplitz
and Toeplitz-block matrices, and, e.g., the inverse of a Toeplitz matrix, which isitself
not Toeplitz yet has a displacement rank of o = 2. An overview of inversion and fac-
torization algorithms for such matrices can be found in [Chu89]. Engineering appli-
cations are many, notably adaptive filtering [SK94]. In this book we do not consider
low displacement matrices further (except sporadically in chapter 3, see section 3.6)
and refer the reader to the extensive literature. Low displacement rank presupposes a
structure that brings the operator under consideration “close to time-invariant”. If an
operator has that property, then it is very important to recognize and utilize it since it
leads to efficient algorithms for almost any operation related to the operator. In addi-
tion, matrix-vector multiplication and inversion of a system of equations can then be
done using an adaptation of the fast Fourier transform (FFT). It is possible to combine
the properties of low-displacement matrices with atime-varying system theoretic ap-
proach, an account can be found in [Dew97].

Stability and control

Thetraditional focusof time-varying system theory hasbeen control system designand
related problems such as the stability of the system, optimal control, identification and
modeling. On these topics there are quite a number of attractive textbooks and treat-
ments, we mention [FS82, Kam79, Rug93]. Although someof theissueswill appear in
this book, they will not be our focus, which is essentially computational. We do give
an extensive treatment of system identification—a central piece of theory—with the
purpose of finding useful realizations for alinear operation. Reachability and observ-
ability spaces of asystem will be omnipresent in many of our topics, such asin system
approximation, algebrai c operationson systems, embedding, and parametrization. The
theory that we develop parallelsthe classical identification theory for time-varying sys-
tems, possibly in a more concrete way.

The notion of “uniform exponential stability” plays a central role in our theory as
well. A linear computational scheme will have to be stable or it will not be usable.
Many theoremsare only valid under the condition of stability. However, conditionson
stability of a system is not a great point of interest in the book, and we shall mostly
assume them as amatter of course.

While this book was under redaction, Halanay and lonescu published a book on
linear time-varying discrete systems [HI94], using a framework very much like ours
(and in fact partly inspired by it via publications in the mathematical literature). The
contents of that book is very relevant to the work presented here, although the type
of problems and their approach is often quite different. In the book of Halanay and
lonescu, basic concepts such as external factorization, inner-outer factorization, and
J-inner embedding are related to the solution of specific types of (time varying) Ric-
cati equations. We provide the derivation of therelevant Riccati equationsaswell, but
systematically put them into a geometric context—the context provided by the reach-
ability and observability operators of the system under consideration. On a number
of other issues, the two books are unrelated. Halanay and lonescu give an extensive
treatment of optimal control and the related game theory. Although we treat some as-
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pects of the former, e.g., the four block problem, we do not consider the latter topic.
On the other hand, since our focus is computational, we provide attractive algorithms
such as“squareroot algorithms’, parametrizations, and give an extensive treatment on
model reduction and approximation. We have aimed at atextbook which could be used
by engineering students with a good knowledge of linear algebra, but only a rudimen-
tary knowledge of Hilbert space theory. We thought it remarkable that most essential
properties could be approached from arelatively elementary point of view based onthe
geometry of reachability and observability spaces.

On the origin of this work

The ansatz for the computational modeling as studied in this book was a generaliza-
tion of the Schur interpolation method to provide approximations of matrices to ma-
trices with banded inverses, by Dewilde and Deprettere [DD87, DD88]. The moti-
vation driving this research was the need to invert large matrices that occur in the fi-
nite element modeling of VLSI circuits [JD89, Nel89]. Subsequent research by Al-
pay, Dewilde, and Dym introduced an elegant diagonal notation by which the Schur
interpolation method and similar such generalized, time-varying interpolation prob-
lems could be described [ADD9Q]. In these days, it became clear that the solution
of many (time-invariant) interpolation problems can effectively be formulated in state
space terms [BGR90]. The new diagonal notation was thus adopted and applied to
the description of time-varying state space systems, resulting in a realization theory
[vdvD91], orthogonal embedding theory with application to structural factorization
[vdVD94a, vdvD93], and later an optima Hankel-norm model reduction theory as
well [DvdV 93], and culminated in a workshop on the topic [DKV92], and the thesis
of Van der Veen [vdV93b]. Subsequent work was on widening the algebraic aspects of
the new theory [vdV 96, GvdV 96, vdV 95], aswell as H., control aspects[Yu96, SV 95,
Y Svdv D96, SV96).

The above providesthe background for thisbook. In the mean time, there are many
connectionsto parallel work by the“ Amsterdam group” (Kaashoek, Gohberg, and co-
workers) tointerpol ation and operator extension [ GKW89, Woe89, GKW91, BGK 924],
and to realization of time-varying systems [GKL92, BAGK94].
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2 NOTATION AND PROPERTIES OF
NON-UNIFORM SPACES

Time-varying linear systems can be compactly described by a recently devel oped no-
tation in which the most important objects under consideration, sequences of vectors
and the basic operators on them, are represented by simple symbols. Traditional time-
varying system theory requiresaclutter of indicesto describethe preciseinteraction be-
tween signalsand systems. Thenew notation hel psto keep the number of indicesinfor-
mulas at aminimum. Sincein our case sequences of vectors may be of infinite length,
we have to put them in a setting that can handle vectors of infinite dimensions. “En-
ergy” aso plays an important role, and since energy is measured by quadratic norms,
we are naturally led to a Hilbert space setting, namely to Hilbert spaces of sequences
of the ¢,-type. This should not be too big a step for engineers versed in finite vector
space theory since most notions of Euclidean vector space theory carry over to Hilbert
spaces. Additional care hasto be exercised, however, with convergence of series and
with properties of operators. The benefit of the approach isthat matrix theory and sys-
tem theory mesh in a natural way. To achieve that we must introduce a specia addi-
tional flavor, namely that the dimensions of the entries of the vectors considered are
not necessarily al equal.

The material covered in this chapter provides a minimal “working basis’ for sub-
sequent chapters. Additional properties and more advanced operator theoretic results
are coveredin chapter 4. A brief review of Hilbert space definitions and resultswhich
arerelevant to later chapters can be found in Appendix A. In this work, we only need
the space /5 of bounded sequences, subspaces thereof, and bounded operators on these
spaces.

19
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2.1 SPACES OF NON-UNIFORM DIMENSIONS

Non-uniform sequences

Let us consider (possibly infinite) sequences whose entries u; are finite dimensional

vectors:
u=[- ug Up Uz -]. (2.1

Typically, we write such sequences out as rows of (row) vectors. We say that u rep-
resents a signal, where each component u; is the value of the signal at time instant i.
The square surrounding up identifiesit asthe entry with index zero. If theu; arescalar,
then u isaone-channel signal. A more general situation is obtained by taking the u; to
be (row) vectorsthemselves, which makesu amulti-channel signal. It isnot necessary
that al u; have equal dimensions: we allow for atime-varying number of channels, or
equivalently, for non-uniform sequences. (Physically, such signals could be obtained
by switches.) In order to specify such objects more precisely, we introduce the notion
of index sequences.

Let{N; ON, i 07} beanindexed collection of natural numberst, suchthat u; O CN
N; isthe dimension of the vector u;. The sequence N,

N=[NJ% = [ N Ny, N -] O N

iscalled theindex sequence of u. (The symbol IV indicatesthe set (Cartesian product)
of copies of N indexed by elements of 7Z.) If we define N; = CN, then signals (2.1)
livein the space of non-uniform sequences which is the Cartesian product of the V;:

N = ---xN_lxlexNzx--- = (CN7
Conversdly, if N = CN, then to retrieve the index sequence N from A we write
N = #N).

A signal in N can beviewed as aninfinite sequencethat hasapartitioninginto finite di-
mensional components. Some of these components may have zero dimension (N; = 0)
to reflect the fact that no input signal is present at that point in time. In that case, we
writey; = -, where* -’ isamarker or placeholder. Mathematically, -’ can be viewed
astheneutral (and only) element of the Hilbert space C°, the vector space of dimension
zero. Formally, we must define some cal cul ation rules with sequences or matrices that
haveblockswith dimension zero. Asidefrom obviousrules, the product of an “empty”
matrix of dimension mx 0 and an empty matrix of dimension0xnisamatrix of dimen-
sionmxnwith all elementsequal to 0. All further rules of block matrix multiplication
remain consistent. Using zero dimension indices, finite dimensional vectorsare incor-
porated in the space of non-uniform sequences, by putting N; = O for i outside afinite
interval. We usually do not write these trailing markersif their presenceis clear from
the context or otherwise not relevant: thisis consistent with the fact that for any set A,

17, denotes the set of integers, N the non-negative integers {0,1, -}, and C the complex numbers.
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Ax (P = A. With abuse of notation, we will also usually identify C° with the empty
set .
We say that asignal u asin (2.1) hasfinite energy if the sum

- 2
S w3

j=—0co

isfinite. Inthat case we say that u belongsto éﬁf , the space of (non-uniform) sequences
in A with finite £, norm. éﬁf isa’Hilbert space’, it is even a separable Hilbert space,
which means that it has a countable basis. A Hilbert space of non-uniform sequences
is of courseisomorphicto astandard ¢, Hilbert space, the non-uniformity providesan
additional structure which has only system theoretical implications.

The inner product of two congruent (non-uniform) sequences f,g in NV is defined
in terms of the usual inner product of (row)-vectorsin N as

(f.9) = (fi,g)

where ( fi, gi) = figisequal to 0if N; = 0, by definition.? The corresponding norm
iss defined by

u=[ul% : ulB=uuw =Y lul}
|=—00
sothat || u||3 representsthe energy of the signal. Eé‘/ can thus be viewed as an ordinary
separable Hilbert space of sequences on which a certain regrouping (of scalarsinto fi-
nite dimensional vectors) has been superimposed. Consequently, properties of Hilbert
spaces carry over to the present context when this grouping is suppressed.

To illustrate some of the above, lete N = [--- 0 0 3200 -]. The vector
u= [@, [321], [42]] is an element of the non-uniform sequence space N = CN,
suppressing entries with zero dimensions. The norm of u is given by ||ul|z = [6? +
(324 22+ 12) + (4% + 22))/2. We see that classical Euclidean vector space theory fits
in easily.

Operators on non-uniform spaces

Let M and NV be spaces of sequences corresponding to index sequences M, N. When

we consider sequencesin these spaces as signals, then a system that mapsingoing sig-

nalsin M to outgoing signalsin A\ is described by an operator from M to \V:
T:M> N, y=uT.

Following [ADD90, DD92], we adopt a convention of writing operators at the right
of input sequences: y = uT. If for some reason there is confusion, we use brackets:

2 U denotes the complex conjugate transpose of vectors or matrices, or the adjoint of operators.
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“T(u)’. Thisunconventional notation is perhaps unnatura at first, but it does have ad-
vantages. signals correspond to row sequences, circuit diagrams read like the formu-
las, and the inverse scattering problem, which we shall treat extensively, appears more
natural. Continuous applications of mapssuch as“STU ---” associate from left to right
(uSTU := ((uS)T)U) and can often beinterpreted as matrix products. Thingsget more
complicated when Sor T are maps defined on more complex objects than sequences.
Notable examples are projection operators defined on spaces of operators, and the so-
called Hankel operator which isintroduced in the next chapter.

We denote by X' (M, ') the space of bounded linear operators Eé"’ - Efz‘/ : an oper-
ator T isin X(M, ') if and only if for each u 0 £}, theresulty = uT isin £}, and so
that -

udr! u£0 [ull2

isbounded. || T || iscalled theinduced operator normof T. A bounded operator defined
everywhere on separable Hilbert spaces admitsamatrix representation which uniquely
determines the operator [AG81]:

Ta-1 Tapo T

T=[Tjlijc=| == To-1 Tor - (2.2

Ti-i T Tn

(where the square identifies the 00-entry), so that it fits the usual vector-matrix multi-
plication rules. The block entry Tj; isan Mj x Nj matrix.

To identify the block-entries, rows and columns of T, it is convenient to have spe-
cific operators which construct a sequence from its entries. Following [ADD90], we
define for a given space sequence V', the operator Ty, as

Ti: Ne-N: am=a[---0 Iy 0 -]. (2.3)

Thus, T, constructs a sequence out of an element of N, by embedding it into a se-
guence which is otherwise zero (or empty, depending on the context). We define an

“adjoint” to Ty as
T[E| N—»Nki UKZUT[E.

Thus, T[E retrieves the k-th (block) entry of a sequence.® We often implicitly use the
factsthat iy = I, and 3 T T = | v, whichisa*resolution of theidentity”. Clearly,
both 1 and 1t have matrix representations. If an operator T with a congruent matrix
representation is positioned to the right of 1y, then the (matrix or operator) product 1, T
makes sense and correspondsto taking the k-th row out of T. Similarly, TT[E selectsits
k-th column.

3Properly speaking, the definition of an adjoint necessitates a Hilbert space context, but the operators do
make obvious sense in alarger context as well.
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Theblock entry Tjj of T isgivenby Tjj = an‘j]. With regard to (2.2), the operator
Ti = 15T can be called thei-th (block) row of T, whiIeTn‘jj isthe j-th columnof T.
In X (M, N), we define the space of bounded upper operators

UMN)={TOXMN):T;=0 (i>]},
the space of bounded lower operators
LIMN)={TOXM,N):Tjj=0 (i<j)}
and the space of bounded diagonal operators
D=UnL.

Asamatter of notational convenience, we often just write X', i/, £, D when the under-
lying spaces are clear from the context or are of no particular relevance. For A0 D,
“A" serves as shorthand for the entry Ajj, and we write

A= diag--- A4 Ay -] = diag[A].
U, L and D satisfy the following elementary properties[ADD90]:

u-u 0 u £H U
0 ut = r (2.4)
0

L-L L
D-D D.

A link with classical linear time invariant (LTI) is established easily. In the time-
invariant context, the sequences M and A are uniform, and the transfer operator be-
haves identically at each point in time: a shift of the input sequence over afew time
dots produces till the same output sequence, but translated over the same shift. This
translatesto T having a Toeplitz structure: for al integersi, j and k, T j = Tiyk j4k, O,
equivalently, all block entries on the same diagonal are equal. Toeplitz operators are
often represented by their z-transform, which we define as follows. Denote by Ty the
entry on the k-th diagonal (i.e., Ty = T; i1« for any i), and let

+00
T@= Y T,

j=—0c0

then T(2) is called the matrix-valued transfer function associated to T. Note that this
definition is purely formal, there is no guarantee that the series converges at any point
of the complex plane. Occasionally, wewill use a“meta-operator” 7 which associates
a Toeplitz representation to a transfer function:

T To T T, T3¢
T(T(2) = T, T4 1T T

T3 T2 T4 To T
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Harmonic analysis on LTI systems will often provide interesting examples and coun-
terexamples.

If D 0D and invertible, then D™ 0 D, and (D™1); = (Dj)~* [ADD90]. However,
unlike the situation for finite-size matrices on uniform sequences, the spaces/ and £
arenot closed under inversion: if an upper operator T [/ isboundedly invertible, then
the inverse is not necessarily upper. A ssimple example of thisis given by the pair of
Toeplitz operators

T 1 -2 T1_ -1/2 0

. ~1/4 -1/2 0
0 Lo ~1/8 -1/4 -1/2 0

But also for finite-size matrices based on non-uniform space sequences, the same can
happen. For example, let T : C2 xC! . CxCxC,

cC C C C? C
e [lE o o c[C1 0] 0
T= { /2 2 0! Tl=Cc| /4 12 o0 (2.5)
C [OﬁlJ (CL]JlG -1/8 1J
(the underscore identifies the position of the O-th diagonal). When viewed as matrices
without considering their structure, Tt is of coursejust the matrix inverseof T. Mixed
caseswheretheinversehasalower and an upper part can also occur, and theseinverses
are not trivially computed, as they require a“dichotomy”: a splitting of spacesinto a
part that determines the upper part and a part that gives the lower part. The topic will
beinvestigated in chapter 7.
An important special case of upper operators with upper inversesis the following.
An operator of the form (I —X), where X is a bounded operator, has an inverse that is
given by the series expansion (Neumann expansion)

(I=X) =1 XX (2.6)

when the series convergesin norm. It is known in operator theory that thiswill be the
case when the geometric series 1+ || X || + || X2 || + -- - converges, which occurs when
the spectral radiusr(X) of X issmaller than 1:*

r(X) := lim |X"|¥" < 1.
n- oo
4For readers not familiar with the concept of spectral radius, we mention that for afinite matrix X, r(X) is

equd to thelargest eigenvalue of X. Inthe context of operators, however, the spectrum is more complicated.
See[AG81].
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Proposition 2.1 If X O andr(X) < 1, then (1 -X) L isgiven by (2.6) and isalso in
U.

Itisknown that the sequence || X" ||*/™ convergeswhen n goesto infinity (for an ele-
mentary proof, see [Yos71, p.212]). Also, r(X) < || X|| because || X"||/™ < (|| X ||")¥/".

Hilbert-Schmidt operators
The Hilbert-Schmidt normfor objectsin X' (M, N) is defined as

IAlEs= 3 IAjllds  (ADX(M,N)),
L]

where ||Aj||2s s, inturn, equal to the sum of the squared norms of the entries of Ajj.
For finitematrices, the Hilbert-Schmidt normisusually called the Frobeniusnorm. The
spacein X (M, N') of operatorswhich are bounded in Hilbert-Schmidt normis given
by

Xo(M,N) = {AOX(M,N): ||Allfs < e} -

On X,(M, N'), the corresponding Hilbert-Schmidt inner product is
[A, Bljs = trace(ABY)

wherethetrace operator isasummation of thediagonal entriesalong the (block-)diagonal
of AB". TheHilbert Schmidt normsatisfies|| A ||Zg = [A, Aljs = trace(AA"). Xo(M,N)
isaHilbert spacefor the Hilbert-Schmidt inner product (it becomesan ordinary Hilbert
space of sequencesif theentries Ajj are scalar and written as one sequence). Subspaces
of Xo(M,N) are the spaces of upper, lower and diagonal Hilbert-Schmidt operators,
respectively given by

Uz = Xz nU
Ly = AonLl (27)
D, = AonD.

We write P4 for the orthogonal projection operator of X, onto some subspace H of
X>. We use an abbreviated notation for the following special projections:

P : the orthogonal projection of x> onto 4>
P’ : the orthogonal projection of X5 onto [X> Uy P'=1-P (2.8)
Po : the orthogonal projection of X onto Ds.

Theabove projectionsare bounded operators on Hilbert-Schmidt spacesin theinduced
Hilbert-Schmidt operator norm. They can be generalized to operatorson X' on which
P, however, is not bounded (thisis one of the reasons for introducing Hilbert-Schmidt

5If A=[Ajj] isadoubly indexed collection of operators and is Hilbert-Schmidt summable: Sii llA [? < oo,
then A corresponds to a bounded operator in X automatically, since 3 |5 UA; P < 5[5 ui? - 3i 1A 1% <
SiluiP -3 A1 < o.
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spaces). Thissituation generalizeswhat aready happenswith Toeplitz operators; afew
examples are given at the end of the section.
Elementary properties of Py are

PO(D1XD2) =D PO(X) D, (D172 OD,XxO X)
[Po(X)]”= Po(XD).

Operatorsin X> satisfy the “two-sided ideal” properties: if A X», and B O X with
dimensions such that the product AB is well defined, then AB 00 X,. A similar result
holdsfor BA if this product is well defined. A consequenceis that operatorsin X' can
be thought of as maps from a Hilbert-Schmidt space X» of the correct dimensionsto
another such space. We will use such spaces as generalized signal spaces /5.

3

2.2 SHIFTS AND DIAGONAL REPRESENTATIONS

Shift operators

For anindex sequenceN = [--- N N; ---], we denotethe sequence right-shifted
over kpositionsby NK =[-- N3 N_i,1 ---]. Thecorrespondingright-shifted

space sequenceis denoted A0 = CNY . The right bilateral shift operator Z = Zy on
sequences u O N is defined by (UZ)i = uj-1, i.e.,

[ Uy UZ]Z:[ Uo ul...]_

Zy isan operator £ . (" . Itis readily checked from its definition that

L it =i+,
Zij =z = { 0, otherwise,

so that Z O U and Z has a matrix representation

O |NTLE>([|\]_1 O
| NOXNO
Z= 0 INg <Ny
0 0

Zisunitary on £)/: 2Z0=1,7"Z = |, so that Z™* = Z". The operator ZIX denotes the
k-times repeated application of Z:

ZzIK — ZNZyin) - Zyken) -

Notethat formally Z¥ is not well defined because the dimensionsin the multiplications
do not match. Nonetheless, as arelaxation of notation we will in future sections often
suppress dimension information in formulas and just write Z¥ instead of Z[K.
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Since Z O U, the propertiesin equation (2.4) specializeto [ADD90]

zZ O U
uz 0O U LnZU=0
Zlr 0O ¢ LZ1nU=0
£zl 0 ¢

Similar properties hold for U/, and £».
It is a fundamental fact (easy and proven in [ADD90]) that U, 0 £2Z7 and U, O
Z71£5, and that X, admits an orthogonal decomposition

Xy = L2727 0y = L2770 0D,0UsZ.

Previoudly (in equation (2.8)), we defined P’ to be the orthogonal projection onto [, &
Uo]. Hence P’ =Py 1.

Diagonal shifts

Operatorsin X' do not commute simply with the shift operator: let T 0 X' (M, N), and
define T by
ZuTY = T2y,

that is, T = ZMTZ, then T is the operator T whose representation is shifted one
positioninto the South-East direction: (T™); ; = Ti- j-1. If T commuteswith the shift
operator, T® =T, then T j = Ti—1 j—1 and T isa Toeplitz operator. More generally, the
k-th diagonal shift of T O X' (M, N) into the southeast direction along the diagonals
of T isdefined by

TR — (ZK)PrzIK
whichisin X (M®, A ®). Equivalently, (T®);i; = T j«. The diagonal shift takes

each of the spaces £, U and D into themselves (albeit with shifted index sequences);
itisreadily verified that if ST O X such that the product ST iswell defined, and

(STY® = 00 plkEm _ (Tly(m

Wewill often run across products (AZ)", where A0 X' (N, V7). Theseare evaluated
as

(AZ)" = (AZ)(AZ) ---(AZ)
—  ZInaMaM-1) .. A1)

where Al s defined as

Al —

A = AMAITY = AMAMD . AWD (29)
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zI2 Ty

Figure 2.1.  Diagonal decomposition of an operator T O /.

Diagonal representation

For T O X (M, N), let Tyg O D(M®, N) denote the k-th subdiagonal above the cen-
tral (0-th) diagonal of T, defined as:

Ty = Po(Z7*T),

o that (Ty)i = Ti«i- Tk is abounded operator because its entries are bounded by
[ T|l and [[uTyl| = sup;||ui Ti—i|l < [[ul[[|T||. Based on arecursive use of the property
U=D+2ZUU, weseethat, for T O U,

n
T-Y ZMTY 0 ZM iy
k=0

sothat T hasadecompositioninto asum of shifted diagonals, at least formally (seefig-
ure 2.1). Although the collection{Tj,g}y uniquely specifies T, the sum does not neces-
sarily convergeto T for n — oo inauniform sense[ADD90]. However, for operatorsin
U> the sum does convergein the Hilbert-Schmidt norm, which provides another reason
for the use of Hilbert-Schmidt spaces:

udaz: U =75 ZNuy, Uy=PoZ™U).

Projections of operators onto U or L

Theprojection of abounded operator in X ontooneini/ or £ may not lead to abounded
operator. Thisaready happensfor time-invariant systems, whereit is known that pro-
jections of Lo-functionsof the unit circle onto their causal or anticausal partsmay pro-
duce similar kinds of problems. The classical example (see appendix A) is the ideal
low pass filter. Assume that T(€®) isreal and specified by T(€%) = 1for-J<6<7T
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Table 2.1.  Glossary of notation.

X bounded operators Po proj. onto D T[k% =Po(Z7*T)
U,LD b. upper, lower, diag. | P proj. onto 4, TK) = ZIKOr Z[K
M=#M ON.  dimensionsequence | P' proj. onto £,Z71 | TR =T ...T(1)
M=cM sequence space TK =7...T7(D)

and zero for other values of 8. We have To = % andfork#0

ik@@_/n/ze—ike@:i iKY

Tt
_ CAP
Tie= /_HT(e' e 2n  Jow2 2m TK

Written out in matrix form, the corresponding transfer operator is given by

.0 1 T 1 0 -fo t o
-0 1 7 1 o -:o0 1}
T-2 0o -3 0 1 |31 0 -30
M 3 2 3
i o o 1 % 1 o0 -}
.0 ¢t o (o0 1 I 1 o0
The projection P(T) is given by the series
PM(2) = %+%(z—%z3+%z5—---)
= i+iactnz

122. It has an essential singularity at the points z = =i

since §(z-32+ 22+ ) = 1z
on the unit circle (i = v/-1), and hence neither belongsto L., nor to He, athoughit is
analyticintheunit disc. Hencewe seethat P(T)(z) isunboundedin the operator norm,
while T(2) is perfectly bounded (the operator norm is equal to the L, (T)-norm.)

We may expect similar problemswith projection theory to upper and lower partsin
time varying system theory also. In fact, we can construct simple examples from our
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knowledge of LTI theory. For example, the operator

ok, O | O FNig
Wl

Wi
Wl

Wl
Wi

T =

=R
=

O | O kNI
wl

| O kN - O

Wl

O RN = O |

RpgER O | O
N O | Oualr

RO | OuirO

is bounded as a sub-operator of T, but its projection to upper,

(

NIe

1
3

Nig =
Nig P O
Wl

Nig = O |
NP O | O
Wik
RO | Qui-O

Wl

N O | Oui-

0

|

produces an unbounded operator. This can be shown directly from the properties of

theseries[1,-3, £, -], but the calcul ation would lead ustoo far astray here. The*log-

arithmicseries” [1, 1, 1, 7, -] anditssubseriesprovideawealth of additional examples

well documented in the literature on harmonic analysis. We have reached the conclu-
sion that it is not true that the boundedness of T implies the boundedness of P(T).

2.3 NOTES

Thediagonal notationusedinthisbook wasoriginally introduced by Alpay and Dewilde
in[AD90] (and subsequently in Alpay, Dewildeand Dym [ADD90]), who developed a
generalization of the ztransform for upper non-commutative operators, called the W-

transform, and investigated the interpolating properties of losdess time-varying sys-

tems represented by these operators. It has been refined a number of times to alow

for sequences with non-uniform dimensions [vdvV D91, DvdV93, vdv93b]. A time-

continuous version was defined by Ball e.a. [BGK92b]. The basic mathematical prop-

erties were proven in [ADD90] and additional properties later in Dewilde and Dym

[DD92].

There are anumber of other approachesto describe time-varying systems. Starting
in the 1950s [Zad50] (or even earlier), time-varying network theory and extensions of
important system theoretic notions to the time-varying case have been discussed by
many authors. While most of the early work is on continuous-timelinear systems and
differential equationswith time-varying coefficients (see, e.g., [Zad61] for a 1960 sur-
vey), discrete-time systems have gradually come into favor. There are some more re-
cent approaches which are important, running in parallel with the time-varying state-
space realization theory discussed later in chapters 3 and 5. These are presented in
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the monograph by Feintuch and Saeks [FS82], in which a Hilbert resolution space set-
ting istaken, and in work by Kamen, Poolla and Khargonekar [KK P85, KP86, PK87],
where time-varying systems are put into an algebraic framework of polynomial non-
commutativerings. Inthelatter approach, adifferent kind of generalized z-transformis
introduced. However, many of theseresults, in particular on controllability, detectabil -
ity, stabilizability etc., have been discussed by many authors without using these spe-
cialized mathematical means, but rather by simply time indexing the state-space matri-
ces{A,B,C,D} and deriving expressions (iterations) in terms of these matrices. There
isusually aone-to-one correspondence between these expressionsand their equivalent
in our notation.






3 TIME-VARYING STATE SPACE
REALIZATIONS

Time-varying systems provide an especially fruitful point of view for the study of the
properties of linear maps and operators acting on sequences of data vectors. The no-
tation and preliminary results given in chapter 2 prepared the groundsfor arealization
theory of such systems. A linear operator may often be decomposedinto acomposition
of local linear transformations in which intermediate data called states are generated
for use in subsequent stages. This brings the theory of such transformationsinto the
realm of linear dymamic system theory for discrete-time signals. The global transfor-
mation plays the role of input-output operator or transfer operator, while the decom-
position can beinterpreted as the realization of acomputational schemeinwhich small
local transformations are executed. Hence, methods from system theory can be used
to yield schemes of minimal complexity, optimal approximationsto systems of lower
complexity, and so on.

Thefact that there is a strong connection between system theory and linear algebra
has long been known and exploited. For matrices with a Toeplitz or Hankel structure,
this hasresulted in fast matrix multiplications (viafast Fourier transforms), and Schur
recursions for Cholesky factorizations. For the more general case of upper triangular
matrices without such Toeplitz structure, the connection with systems theory becomes
fruitful if we consider time-varying state realizations, and if we assume that the number
of statesin therealization is small compared to the size of the matrix.

Theimportant first step in setting up acomputational scheme for general upper ma-
tricesis to make the connection with system theory explicit, and in particular, to solve
the realization problem. It is the problem of finding a decomposition of the original

33
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operator into asequence of operations, each of which utilizesonly partial dataof thein-
put sequence, generatesintermediate quantities called states, and producesa part of the
output. In doing so, we have made theimplicit assumption in our computational model
that theinput data becomes available sequentially, and that the output datais generated
sequentially as well. Since the original operator is assumed to be linear, the problem
reducesto find, for agiven upper triangular matrix T, arealization { A, B, Cx, Dy} that
has the given matrix as its input-output operator, i.e., such that

Xe+1 = XAk + UBy
Y = XCi+uDy

In the present chapter, we restrict the discussion to finite matrices and investigate state
realizations and their relation with the matrices that they realize. We will discover
how finite matrices are embedded in the more general framework of operators, con-
sider some prime examples of finite matrices with alow number of states, and derive
an algorithm for minimal state space realization of finite matrices. The more general
case, the realization problem for operators on non-finite sequences of data, is deferred
to chapter 5.

(Y1 Y2 ¥n]=[ur U--un]T & {

3.1 REALIZATIONS OF A TRANSFER OPERATOR

Transfer operator

Let éé” and 5/2\/ be two (non-uniform) spaces as defined in the previous chapter, and
let the input-output behaviour of alinear time-varying and discrete time system be de-
scribed by itstransfer operator (input-output operator), which is an operator T which
maps signalsin 3" to signalsin ¢ :

Tt e y=uT.

We call M the input space of the system, and A/ the output space.

We assume for the time being that T is bounded: it maps signals of bounded en-
ergy to other signals of bounded energy, with a uniform upper bound. Other spaces,
such as /., could have been considered as signal spaces [Mur84], but £, is mathemat-
ically more attractive. Many facts in operator theory are smplest for Hilbert spaces,
and somefacts, such asthe existence of an adjoint operator, are dependent on the avail-
ability of an inner product. One could restrict the attention further and consider only
input/output sequences with compact support: signals which are non-zero only on a
finite number of time points. The argument for doing so isthat most of the mathemati-
cal complications of the Hilbert Space context disappear, and since such sequencesare
densein /5, the resulting system theory (save for the mathematical details) is closely
related to the Hilbert space realization theory. Thisis the approach taken in the paral-
lel time-varying system theory of [GKL92], and in asense, the results are the samefor
finite matrices. In our case, however, we are interested mainly in problems of system
approximation and numerical realization in which the £, norm plays an essential role,
so we keep to the Hilbert space setting.

At this point, let us introduce an important generalization of the ¢»-setting, which
will beheavily used in subsequent chapters. Sincetime-varying systemsmay changeat
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each pointintime, wewish to consider collections of inputsand corresponding outputs
which reveal characteristic properties of the system at each point in time, rather than
just asingleinput and its corresponding output. Therefore, we wish to consider atype
of input or output space more general than ¢4, We define this more general space so
that it providesuswith a collection of input and corresponding output time-sequences.
An infinite collection of input sequences would fit in a (doubly infinite) matrix, with
onerow for each sequence, and each sequence with dimensionsgiven by M. Thetotal
matrix is formally a mapping from C% :=[---xCxCxC x---] to M. Here, C” isjust
a sequence of copies of C; the set Z contains the indices of the rows.
In the notation of section 2.1, we then define the Hilbert space

XM= Xp(CTE M)

An element of this space can thusbeviewed asan infinite collection of signal sequences
from éé"’, stacked on top of each other, and such that the grand total energy of the col-
lection is bounded.

Having collections of signalsin one object allows usto apply anumber of relevant
input sequencesto asystem all at once, and collect the resultsin asimilar collection of
output sequences. There is no advantage in doing this with XZM itself, but it is quite
useful to act on certain subspaces of XZM , IikeUé” (the space of “upper” signal collec-
tions). An element of 43" issuch that itsi-th row isasignal in 21 whichisidentically
zero beforepoint i intime, for eachi. The support of the signal on row i is completely
in “the future”, with respect to time point i. Since the systems we consider are time-
varying, any analysiswill haveto take all time pointsi equally and separately into ac-
count, and thisis precisely why it isuseful to have the complete collection availablein
one object in 2/3".

In asimilar vein, elements of DQ/‘ aresignalsthat only have support at the “ current
point in time”, for every point i, i.e., it contains al impulses. Finally, Z‘lﬁé"’ is the
collection of all signalswith support “in the strict past”.

A first use of the new notation for collections of signalsis the following definition.

Definition 3.1 A transfer operator T is causal if
U OUs O Y=UTOUs,.
Proposition 3.2 T iscausdl if and only if it is an upper operator: T O U.

An expression of causality in terms of /»-sequencesis more elaborate, asit hasto state
that for all k and for all signalsthat are zero before point k, the corresponding response
is also zero before point k.

Therowsof T can be viewed astheimpulse responses of the system. Indeed, inthe
single-input single-output case, and if T isacausal transfer operator, theresponseto the
unitimpulseat timei, u = [&]%,, isy=uT =[--- 0 Tij Tij+1 Tijy2 ---], precisely the
i-th row of T. An obvious extension holds for general multi-dimensional sequences.

Realizations

Supposethat atransfer operator T isgiven. Animportant question isto know whether
the corresponding system admits a dynamical realization in the form of arecursion on
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U-2 U-1 Up Uq
1 g I TN - N - T ) T
X2 X-1 X0 Do %
Co
X1
y-2 y-1 Yo Y1
Figure 3.1,  Time-varying state realization.
a sequence of states:
Xk+1 = XkAk+UkBk k:"'7_170717"' (31)
Yo = XCi+uDg. '

The expression states that the computation of y is performed as a sequence of stages,
which are connected by intermediate quantities { xc}, the states. The state at point k
is data extracted from the input sequence u up to that point, such that knowledge of
the state is sufficient to be able to compute future outputs without reference to the old
input data. {Ax, Bx,Ck, Dk} are called the state realization matrices. We require them
to be uniformly bounded and to have finite dimensions, possibly varying with k. The
state equationsrepresent the structure of the computations as a sequence of operations,
which is depicted in figure 3.1. In thisfigure, the symbols “Z’ stand for registers that
storethevaluesof the state variabl eswhen the computation goesfromonepointintime
to the next. We often collect the matrices Ay, By, Cy, Dk into asingle transition matrix,
denoted by a boldface symboal, e.g.,

A G
TK[BK Dk:|’

which allowsto rewrite the state equations (3.1) as
Xerr W = e ud T

The realization automatically represents a causal operator: if ux = O for all k lessthan
some point kg intime, then y, = 0 (k < ko).
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Readlizationsof thetype (3.1) can berewrittenin global operator form by assembling
thematrices{ Ac}, { Bk} etc. asdiagonal operatorson spaces of sequences of appropri-
ate dimensions:

A= .Ak C= 'ck (3.2)

Let éé‘/l be the space of input sequences, éﬁf the space of output sequences, and let us
define B = ---[0 Bg 0 By 0 -+ as the sequence of spaces to which the state belongs.

Then
u =— [ Uy u2...] O [évl
X = [ X1 X2"'] O B

xz1t = [ X2 Xzg---] O BD

The shift-operator Z was defined in section 2.1. Itsinverse Z™* shifts a sequence over
one position to the left; by B(~Y we denote the corresponding shifted space sequence.
A discrete-time causal time-varying linear realization T consists of the set of four maps

c_[AC A 0O D®B,BY), C O DBN), (33)
| B D |’ B O DM,B™), D O DWM,N), '
which together represent the dynamical state equations
xZt = xA+uB
y = xC+uD. (34)

This definition congtitutes the same set of time-varying state equations asin (3.1), but
now written in an index-free form and acting on sequences. The state equations (3.1)
arerecovered by taking thek-th entry of each sequenceand the correspondingk-th entry
along the diagonal of each realization matrix. A difference between the equations(3.1)
and (3.4) is that the former equations suggest a recursion which can be carried out to
obtain the next state x, 1 and current output yi from the current state x, and input uy,
whereas the equations (3.4) are implicit conditions which some sequences u, x and y
haveto satisfy:

x(I-AZ) = uBZ. (3.5
If (1 -AZ) is boundedly invertible on the space ¢5 to which the state x belongs, then
(3.5) hasasolution

x=uBZ(I-A2)™t.

1\We shall discuss the precise structure of 5 |ater on.
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Substitution into the second equation of (3.4) leadsto
y=u|D+Bz(I-A2)*C| ,
so that the transfer operator corresponding to the state equations (3.4) is
T=D+Bz(I-A2)"C.

Notethe similarity of thisexpressionfor thetransfer operator T and thefamiliar expres-
sion of thetransfer function T(z) = d + bz(1-az) ¢ for time-invariant systemswith a
time-invariant realization{ a, b, c,d}, where a, b, ¢, d are matrices rather than diagonal
operators with matrix entries.

However, even if the state sequences are Hilbert-Schmidt bounded (i.e., they live
in ¢5), (1-Az)~t is not necessarily causal, as we showed by some examplesin section
2.1. Onlyif (1-AZ)™* O U will thetransfer u — x be causal. In contrast, the recursion
(3.1) when started at some point in time, leads to a map which is aways causal, but
might be unbounded. In that case, (3.5) is not equivalent to (3.1).

According to proposition 2.1, (I - AZ) has an inverse which is upper and given by
the converging series

(I1-AZ) ™ =1+AZ+ (AZ)%+ -
if the spectral radius /a :=r(AZ) < 1. Sincer(AZ) = limp_, »(AZ)", and
(AZ)” = AZAZ---AZ = ZINAM A=) [ A(L) — ZIn aln}

we find that
(o = lim || A YK,

where Al := A ... AL and AW := Z"AZ" is a version of A, shifted downwards
aong the diagonal over n positions?. Note that /4 < 1 does not mean that ||A| < 1.
For example, the diagonal operator

NI
NI

A= 1000

NIl
NI

has norm 1000 but ¢ = 3.

2Thereis adua quantity to a, namely the spectral radius of AZ", which equals limp_ AAL ... A1) =
limn_, . A" Its valueis not necessarily equal to £4. We shall not encounter it furtheron in this book.
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Definition 3.3 A redlization{A,B,C, D} is called uniformly exponentialy stable(u.e.
Stable) if {p < 1.

If the transfer operator is a matrix of finite dimensions so that B has finite support,
then the realization will always be u.e. stable. There are many definitions of stability
in the control literature (cf. [SA68, AM69, AM81, AM92, Rug93]). Our definition is
the only notion of stability that we use in the sequel.

If £a < 1, then xisgiven by the series

uBZ(l1-Az)™?
= UBZ+UBZ(AZ) + UBZ(AZ)?+ - (3.6)

which is convergent for any u O ¢3*. Clearly x O ¢5, since the operator BZ(I -AZ) ™!
is bounded. Hence, if £a < 1, theformal solution of the realization equations (3.4) for
agiven u equals the solution generated by the recursion (3.1), and

y uD + uBZC + UBZAZC + UBZ(AZ)’C + - -
= uD+uzBYC+uz?BPANC+uz*BOAIRC ...

If o = 1, then (3.6) may or may not converge to a sequence x with bounded entries,
depending on u and B. Although the analysis of realizations for which £ = 1 is cer-
tainly possible under suitable conditions, we shall usually limit our attention to the u.e.
stable case. The analysis of /a to characterize u.e. stable (¢4 < 1), marginaly stable
(fa = 1) and unsgtable (£a > 1) systems replaces the notion in LTI systems theory of
poles (eigenvalues of A) that lie in, on, or outside the unit circle.

For the general case we can state the following definition (cf. equation (3.7)).

X

(3.7)

Definition 3.4 A 2x2 matrix of block diagonalsT issaid to bearealization of atrans-
fer operator T U U if the diagonals Ty = Po(Z7T) of T equal the diagonal expansion

(3.7):
0, k<0,

BWAlkKLC, k>o0.

Equivalently, the entries Ty; of T are given by

0, i> ]
Tij = ¢ Di, =] (3.9
BiAi+1--Aj-1Cj, <],

andit followsthat thetransfer operator which correspondstotheredization{ A,B,C,D}
has the matrix representation

D1 B-1Cp B-1AC: B-1AAIC,

T BoCr  BoACy . (310

D1 B;LCZ
0 D,
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Definition 3.5 LetT OU. Anoperator T OU issaidto belocaly finite if it has a state
realization whose state space sequence B is such that each By hasfinitedimension. The
order of the realization is the index sequence#(B) of B.

The concept of locally finite operatorsis a generalization of rational transfer functions
to the context of time-varying systems.

Realizations on Xo

We can extend the realization (3.4) further by considering generalized inputsU in XZM
and outputs Y in Ay

Xzl = XA+UB

Y XC+UD. (311)

If o < 1,then X =UBZ(1-AZ)™%, sothat X 0 X¥. Theclassical realization (3.4) may
be recovered by selecting corresponding rowsinU, Y and X. Indeed, we can interpret
the rows of U 0 X3 asa collection of input sequencesu 0 ¢4, applied simultaneous
to the system. Likewise, Y O 2/2‘/ contains the corresponding output sequencesy O 2/2\/ .
Thisinterpretation will be pursued at length in the following chapters.

A recursive description for the realization (3.11) is ageneralization of (3.1), and is
obtained by selecting the k-th diagonal of U, Y, and X in (3.11):

1) _
Xiry = XwA+UgB

(3.12)
Y = XwC+UgD.

Notethat the k-th diagonal of XZ 1 is X[(k_+l)1] , which containsadiagonal shift. Thesame
remarks on the relation between this recursive realization and the equations (3.11) as
made earlier on the />-realizations are in order here. Starting with chapter 5, we will
heavily usethistype of realizations, wherewe act on sequencesof diagonalsrather than

scalars.

State transformations

Tworealizations{A,B,C.D} and{A',B',C’,D'} arecalled equivalent if they realizethe
same transfer operator T,

D = D

BWAKDC — BWAKLC  (alk=0). (313)
Given arealization of anoperator T O U, it is straightforward to generate other realiza-
tionsthat are equivalent to it. For a boundedly invertible diagonal operator R (some-
times called aLyapunov transformation), inserting x = X' Rin the state equations (3.11)
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leads to
XRZl1 = XRA + uB
y = XRC + uD
XZR = XRA + uB
y = XRC + uD
XZ1 = XRAR(D 4 uBrR (Y
y = XRC+uD
XZ1 = XA + uB
y = XC + uD'.

Proposition 3.6 Let RO D(B,B) be boundedly invertiblein D. If {A B,C,D} isa
redlization of a system with transfer operator T, then an equivalent realization is given
by {A',B,C',D'}, where®

3 5)-[" e )

In addition, the spectral radii of AZ and A'Z are the same: {a = (.

[R“”]_l | ] . (3.14)

PrRoOOF We haveadready D =D’, and

B/(k) AI{ k-1} c
= BWR (k1) . Rk-D AL R (k-2) . Rk Alk-Z R-(k-3) ... RUDADRL.RC

=BWAlkLC.
Stability is preserved under the transformation:

lepes = limy_ || (RARTDZ) /0
= limy . || (RAZRY)" /0
litn .o | R(AZ)"RCY [/
litn o | RIY7- || (AZ)" [ RSN = 4

(3.15)

N

since ||R[|%" - 1and||[R7Y||Y/" - 1. Because (a < fpyq-(-1) Can be proveninthe same
way, it followsthat /a = {par--1)- O

If therealizations{ A,B,C,D} and{A',B',C’, D'} arerelated by (3.14) using bounded
R with bounded R™1, then we call them Lyapunov equivalent.

3.2 SPECIAL CLASSES OF TIME-VARYING SYSTEMS

In this section, we examine the behavior of certain interesting subclasses of systems.
Since it takes an infinite amount of data and time to describe a general time-varying

3In future equations, we write, for shorthand, R (-1 := [RCD] ™2,
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system, it paysto consider specia classes of operatorsin which computations can be
carried out in finite time. Interesting classes are (1) finite matrices, (2) periodically
varying systems, (3) systems which are initially time-invariant or periodic, then start
to change, and become again time-invariant or periodic after some finite period (time-
invariant or periodic at the borders), (4) systems that are quasi-periodic with a given
law of quasi-periodicity, and (5) systemswith low displacement rank [KKM 79]. Some-
times we can even treat the general case with finite computations, especially when we
areinterested only in the behavior of the system in afinite window of time.

Finite matrices

Matrices of finite size can be embedded in the general framework in several ways. For
example, if the input space sequence M = ---OM_1 O MoO M10---hasM; =0
fori outside afiniteinterval, [1,n] say, and if the output space sequence A" has \j = ()
asofori outside[1,n], then T O/ (M, N') isan upper triangular nx n (block) matrix:

Ty Tz -+ Tgp - - T T2 -+ T

T22 . T2n P T22 s T2n
T = . = i
Tnn ) ) anl

where*.” standsfor an entry in which one or both dimensionsare zero. We can choose
the sequence of state spaces BB to have zero dimensions outside theindex interval [2, |
in this case, so that computations start and end with zero dimensiona state vectors.
Doing so yields computational networks in the form described in chapter 1. The fi-
nite matrices form an important subclass of the bounded operators, because (i) initial
conditions are known precisely (a vanishing state vector) (ii) computations are finite,
so that boundedness and convergence are not an issue (these issues become important
again, of course, for very large matrices). In particular, £ = 0 always.

By taking the dimensions of the non-empty M; non-uniform, block-matrices are
special cases of finite matrices, and sometimes, matrices that are not upper triangular
in the ordinary sense, are block-upper, i.e., in (M, N'), where M and N are chosen
appropriately. An exampleis given in figure 3.2(a). An extreme representative of a
block-upper matrix is obtained by taking

M = - 00 0 M
N = - 00 0 0

s0 that amatrix T O U/ hasthe form

T:{ © T j|smz],

o ¢ O ¢
O N, O 0-
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I

%
%
— (2]

(a) N\ (b) Y2

Figure 3.2. (@) A block-upper matrix; (D) a state realization of a special case of a block-
upper matrix, T = [Tq2].

that is, T = T2 isjust any matrix of any size. Figure 3.2(b) depicts the time-varying
state realization of such a system. Inputs are only present at time 1, and outputs are
only generated at time 2. The number of statesthat are needed in going fromtime 1 to
time 2 is, for aminimal realization, equal to the rank of T, aswewill seein the next
section. There are applicationsin low-rank matrix approximation theory that use this
degenerate view of amatrix [vdV96].

Time-invariant on the borders

A second important subclass of time-varying systems are systems for which the state
realization matrices{ Ay, B, Cx, Dk} aretime-invariant for k outside afinite timeinter-
val, again say [1,n]. This class properly contains the finite matrix case. The structure
resulting from such realizations is depicted in figure 3.3. Computations on such sys-
tems can typically be split in atime-invariant part, for which methods of classical sys-
tem theory can be used, and atime-varying part, whichwill typically involverecursions
starting frominitial values provided by the time-invariant part. Boundedness often re-
ducesto atime-invariantissue. For example, £a isequal to max(r(Ag),r(An+1)), solely
governed by the stability of the time-invariant parts.

Periodic systems

A third subclass is the class of periodically varying systems. If a system has a period
n, then it can be viewed as atime-invariant system T with block entries Tij = Ti—; of
sizenxn: T isablock Toeplitz operator. The realization matrices{ A, B,C,D} of this
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Figure 3.3. Transfer operator of a system that is time-invariant on the borders. Only the
shaded areas are non-Toeplitz.

block operator are given in terms of the time-varying { A, Bk, Cx, Dk} as

A= AAy---Ay, C=[C AC AAC - Ar---AiGh]
[BlAzA? - 'An-‘ [Dl B1C; BiAC3 - BiAr-- 'An—lcn-‘
B _ BoAz -+ An B D> BoC3 BoAz -+ -An-1Cq
Bn Dn

Computationsinvolving such operators can often be done by taking it as a block time-
invariant system, which will provide exact initial conditions at the beginning of each
period. These time-invariant solutions can be computed in classical ways. However,
if the period is large, this may not be attractive, in which case the general methods
may be more appealing. The classical Floquet theorem for time continuous systems
which states that there is a periodic state transformation which transforms a periodic
state transition matrix A(t) into atime invariant one does not have asimple time dis-
crete counterpart. A generic counterexampleis a system with period 2 and A matrices

given by
0 1 10

and suppose that there would exist state transformation matrices R; and R, such that
RiAIR = RyAR; ! =: 0, thenwe should have (Ri*aiR;)? = [ 5] whichisimpossible
since this latter matrix has no square root.

Systems of low displacement rank

An important class of structured matricesisformed by matrices of low “ displacement
rank”, and was extensively studied by Kailath and his many students and co-workers
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[KKM79, KS95] (seein particular the theses of Lev-Ari [Lev83] and Sayed [Say92]).
Although the brunch of this book is devoted to another kind of structure, namely low-
dimensional state realizations, we give here a short introduction to low displacement
matrices, and at the end of this chapter, we give atheory which combinesresults of the
two theories, namely low complexity parametrizationsfor systemsthat are at the same
time of low displacement type and of low systems rank.

Let R be an nx n positive definite matrix, and let us define the nx n “ displacement
matrix”, alias restricted shift operator

0 0
1

o=
0 1 0

This matrix is similar to the reverse shift operator Z°, but unlike Z", it truncates the
shifted sequence and introduces a zero, so that it is not an invertible operator. The dis-
placement of Risdefined asR-oRa”[KKM79]. We assumethat it hasinertia(p, 0,q),
which meansthat there exist matrices

|
G=[g 01 - G, ‘]:{ " —Iq}
of dimensions (p+q) xnand (p+ ) x (p+ q) respectively, such that

gy
o7
R-0Ro” = GG = | . |Jgo - Gnal,
On1
in which G has full row rank. It is convenient to split each entry gx according to the
inertiaformula:

_p | O«
%=, [gkz}'

o := p+qiscalledthedisplacement rank. If a issmall comparedto n, then Rissaid to
be of low displacement rank. Clearly, Ris parametrized by the entries of G. Important
calculations on R such as the determination of its Cholesky factorization R = L L or
that of its inverse can be done efficiently on G rather than on Ritself. In fact, thisis
not limited to positive definite matrices R, but can be generalized to any matrix T with
(block matrix) entries. In the sequel we shall just look at additive and multiplicative
decompositionsof apositivedefinitematrix R= L"L = J(F + F"), becausethat covers
the most important applications.

Thetwo notions, low displacement rank and low system order are not related to each
other. We know of systems that score high for one and low for the other. The proto-
type example of alow displacement rank matrix is a Toeplitz matrix, which has dis-
placement rank one or two. Such amatrix may not have auseful low dimensiona state
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space redlization. For example, the LTI transfer function T(2) = z+ 322+ 128+ ---is
of course of low displacement rank but no finite dimensional state space realizationis
capable of reproducing the decay % characteristic of atransfer function of logarithmic

type.

Uniformly exponentially stable systems

Finally, alarge class of systems for which precise and finite calculations are possible
is the class of u.e. stable systems. systems that have a realization for which /5 < 1.
Recursionson such systemsaretypically convergent, that is, independent of the precise
initial value at point k ask — —o. This meansthat it is possible to limit attention to a
finite time-interval, and to obtain arbitrarily accurate initial valuesfor thisinterval by
performing afiniterecursion on dataoutside theinterval, starting withinitial values set
to 0.

For example, if in a computation for k > 1, an initial state x; is required, then this
latter value can be approximated to arbitrary precision using a finite sequence of past
input samples and system matrices, since

B-nA-ni1A-nyo-Ag -I

B-ni1A-ni2---Ao
X1 = X-nA-n--+Ag + [U-n U-ny1 -+ Ug] .- (316

Bo
If the systemisu.e. stable, then || A - - - Ag|| can be made arbitrarily small by choosing
nlargeenough. Neglect of thefirst termin (3.16) then givesan accurate approximation

for x;. The same approximation would of course be obtained by choosing x-p = 0 if
that were possible, and computing x; viathe state recursion.

3.3 EXAMPLES AND EXTENSIONS

Using the connection of a matrix or operator in { and its realization as visualized in
equation (3.10), we study some simple classes of matrices and their corresponding re-
alizations, as well as some simple operations on matrices such as sums and products,
a specia case of matrix inversion, and extensions to more general realization frame-
works.

Banded matrices

One of the easiest examples of a matrix for which it is possible to write down areal-
ization directly is the case of abanded matrix. Thuslet T O 4/ be given by

Tiu Tz Tig 0 0
T Tog Toa41 O

Tn—d+1,n
To-1n-1 Th-in

O Tn,n
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Thewidth of the band isin this case equal to d. A trivial realization for T requires up
to d -1 states per stage:

( 0 Tiedr1k |
| 1 . 0 Tk-d+2,k
T1=[71 T ] Tk = :
| T 0 1 0| Tk
L o - 0 1| Tkk
( 0 Tn—d,n—l T
1 0 | Tio 1 O Tn—d+17n—1
T T - f
| 2 O 1 O Tn—27n—1
L 0 « 0 1| Toina |
Tn—d+17n
1 0 O‘Tlg .
{0 1 0Tz - :
T3 - _ Tn Tn—l.n
0 0 1|Tas |7T
: n,n

Thisisnot necessarily aminimal realization: theremight exist realizationswith asmaller
number of states, depending on the precise values of Tij. Even for general banded ma-
trices, the number of statesin thelast d stages can be made smaller than presented here,
although thiswill introduce some irregularitiesin the structure of these sections.

Other matrices for which one can obtain realizations directly are matrices with a
staircase band structure, and band matrices with some spurious entries in the upper
right hand corner. The latter type of matrix arisesin finite difference modeling of one
dimensional differential equations with periodic boundary conditions (figure 3.4). In
simple cases, the non-zero entries of the matrix are just +1 and -1 (for a first-order
differential equation), and the matrix has a Toeplitz structure (constant along the di-
agonals). A three-diagonal matrix occurs with simple discretizations of second-order
ODEs. Nonuniform spacing of the discretization points|eadsto banded matriceswith-
out the Toeplitz structure.

Sum of two realizations

LetT;, T, OU(M,N) betwo transfer operators, with realizations{ A1, B;1,C;,D4} and
{Az,B2,Cs,D5}, respectively. Then the sum of thesetwo operators, T = T; + Ty, hasa
realization given directly in terms of these two realizations as
At O C

0 A G

B1 B | D1+D;

AlC
B|D
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Figure 3.4. A block-upper matrix with a maximal state dimension of 2. The main diagonal
is shaded; N3 = () and M1 = 0. This type of matrix arises after discretization in certain
1-D finite difference modeling problems with periodic boundary conditions.

The state dimension sequence of this realization is equal to the sum of the state di-
mension sequences of Ty and T,. Note, however, that thisrealization is not necessarily
minimal: theremight exist arealization of T whose state dimension sequenceissmaller
(for reduction of the state space to minimal dimensions, see the next section).

Product of two realizations
Theproduct of T; DU (M, N1) and T, OU(N1,N>) canalso beobtained using realiza-

tions: if T; hasaredlization { A1,B1,Cy1,D1} and T, hasaredization { Az, B2,Cy, Do},
then T = Ty T, hasaredlization given by

A| C Al Cl | 0 A1 Cle C1D2
_ | O AlC | _| 0 A | C
B|D
| By 0| D; 0 By |D: By DiB | DiD;

17)
Again, the state dimensions sequences of T; and T, add up to the state dimension se-
guence of T, and again, this realization is not necessarily minimal: there might exist
realizations of T that have smaller state dimension sequences.

Realization of an upper inverse

Let T 02 beaninvertibleoperator or matrix, and supposethat it isknown that T~ 02/
is also upper, then it is straightforward to derive arealization for T™1. From T™1T = |
and TT! = |, we obtain that D = T, must beinvertible, and

xZt = xA+uB xZ1 = x(A-CcD™'B) + yD™'B
y = xC+uD u = -xCDh1 + yD1l.

Hence, S= T! hasarealization

— -1 —-cp-1
S:{A Ccb™B -CD }

D-lg Dl | = { A 0 } + { < } DB 1] (3.18)
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Uk Yk
By —Cx
Xk A Xe+1 Xk A Xe+1
Dy D1
Ck Bk
Yk Uk
Figure 3.5.  Simple local computational scheme for inverting a system
u =0 T1 y
+
T2

Figure 3.6.  Feedback configuration.

Asshowninfigure 3.5, thelatter factorization allowsto apply theinversein an efficient
manner: only D, has to be computed.

A-CD™B hasthe same dimensions as A, so that the state dimension of the realiza-
tion of the inverseis at each point equal to the state dimension of T at that point. We
will seein section 13.2 (proposition 13.2) that, under some assumptionson therealiza-
tionof T, la <1 = £y cp-1p < 1, SO that for u.e. stable redizations, the realization
of theinverseis u.e. stable, too.

The aboveisonly valid if T~ is upper. Not every operator inZ{ isinvertiblein/;
the condition isthat T must be outer, a notion that we will define in chapter 6. Some
examples of matrices that are not outer have been given in chapter 2; in particular,
block-upper matrices of which the entries on the main diagona are not square give
rise to inverses that need not be upper, but have alower triangular part, too. General
matrix/operator inversionis studied in chapter 7.
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T1 Z"T,
y Tt u
T=
n 7",
(a) (b)
Figure 3.7. (@) Multiband matrix, (b) feedback structure that models T2,
Feedback

Supposethat two systemsT; [0/ and T, [ U/ are connected in afeedback configuration
(figure 3.6). If the resulting transfer operator T = Ty (I - T,Ty) ! is bounded, then a
realization of T can directly bewritten downintermsof realizationsof T, and T, using
X = [X1 Xp| asthe state vector:

Al C]_Bz 0 C1D2
T=| 0 A | |+| C |(1-DiD)"B; DiB, Di.
0 |0 l

Feedback configurationsarise in the inversion of a sum of two operators. An example
isgiven in the following subsection.

Extension to multi-band matrices

LetT =Ty +Z"T,, whereT; and T, areband matricesand n > 0. Then T isamulti-band
matrix (figure 3.7(a)). A realization of T has the following structure:

A2 C2

B, D,

T= In-1 0
0 A |G

1 B |Dy

(If Ty and T, are not SISO, then the identity matrices must have sufficiently large di-
mensions.) If nislarge, then the state dimension of T is not small, but it has a sparse
structure, so that multiplicationsare still efficient. It is sometimes possible to keep this
sparse structure during operationson T. Consider e.g. theinverse of a multi-band ma-
trix, which (if it exists as a bounded upper matrix) isfull: S=T 1 = (T, +Z"T;) 1 =
(1 +T71Z2"T,) 17,1 Scan beinterpreted as afeedback model (figure 3.7(b)). Itsreal-
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ization still has a sparse structure with complexity essentially independent of n:

[ Ay —CzDil —ClelBl —Clel
B, —D2D11 —DzDilBl —D2D11
S = In-1 0
—C]_Dil Al - C]_DIlBl —C]_DIl
I Dy DB | DT
Ay -,
B, -D,
- In-1 +] 0 |Dff0 0 1 By 1.
0 A < Pl 1 1]
I |0 !

Using the latter factorization, multiplication by T~ can be performed just asefficiently
asmultiplication by T. Other operations such as QR-factorization lead to acomplexity
that is essentially linear in n.

Systems of mixed causality; general matrices

Throughout this book, many basic propertiesassume that the transfer operator T isup-
per triangular, so that the corresponding forward state recursionsare stable. This, how-
ever, does not mean that al results are limited to this case: it is possible to fit general
matricesor operatorsin X’ into thetime-varying systemsframework. Viewing such op-
erators as the sum or product of an upper and alower triangular matrix (provided each
of these partson its own is bounded), it is possible to determinerealizationsof T O X
as the sum or product of aforward-running and a backward-running set of state equa-
tions. The computation of a factorization of such operatorsinto a product of alower
triangular unitary matrix and an upper triangular matrix is in fact a (partial) QR fac-
torization. We will see in chapter 6 that, given realizations of the upper and the lower
triangular part, it can be computed using state space matrices only.

To extend our framework to thismore general situation, let { Ty}, { T\ } | beaseries
of matrices with block entries

A & A G _
Tk|:Bk Dk:|7 Tk|:Bi( O:|7 k*17"':n:

and consider the time-varying forward and backward state recursions, fork =1,---,n,

X1 = XAx+ WBy , X, = XA +uB|
(" { Yk XkCic + U Dy (T) { Y, = XC (3.19)

using the initial values
Xl:[']: X’n:[']v
and let the output of the system be the sum of the forward and backward recursions:

Zo = Yk + Y-
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The intermediate quantitiesin the recursion are X, the forward state, and x,, the back-
ward state. Therelation betweenu = [ug, Up, ---, U] andz=[z1, 2, -+ -, Zy], @S gener-
ated by the given state recursions, is

D4 B1Co B1ACs  B1AA3C,
BLC; Do  BC:  BoAC _
_ B/?:AIZCS. B/?’CIZ D3 B3C4 .
BANC BAC BC D SU- Y.t

: . Bn-
BA _.C B.C nchn
nAn—l n-2 n~n-1 n

As shown in the next section, any finite matrix can be written in thisform. The recur-
sions (3.19) can be used to compute a vector-matrix multiplication z = uT efficiently,
provided the matrix T is specified in terms of its realization and the state dimensions
arerelatively small in comparison with the size of the matrix. Accordingly, we say that
matrices{ T}, { T} } form atime-varying realization of mixed causality for amatrix
T O X, if theblock entriesof T are given by

i, i=],
Tij=4q BiAp-AC, i<,
B{A{_l---A’jHC}, i>].

3.4 REALIZATION THEORY FOR FINITE MATRICES

Animportant part of chapter 5 is concerned with the realization problem: the problem
to determine arealization { A, B,C, D} for agiven operator T O . In this chapter, we
give asolution for the case where T is afinite (block)-upper triangular matrix, rather
than amore general operator acting on infinite sequences. The proof becomes simple
and direct since difficultieswith convergenceand boundednessare avoided. For clarity
of exposition, we use expressions with indices rather than diagonals.

Realization algorithm for upper triangular matrices

L et usassume that we are given afinite upper triangular matrix T, asaspecial case of a
bounded operator. Assume that { Ak, Bk, Cy, D¢} defines anot yet known time-varying
state realization for T, which specifies T viathe time-varying state equations (3.1):

XAy + UkBy
XkCic + U Dy

Xk+1
Yk

We look for properties of thisrealization that enable usto deriveit from T, i.e, tofind
arealization given the transfer specification. According to definition 3.4, the entries
Tij of T can be expressed in terms of { Ay, Bk, Cy, D} as (see (3.9))

0, i> ]
Tij = ¢ Di, i=j (3.20)

BiAi 1 -Aj-1Cj, i<j.
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Figure 3.8.  Hankel matrices are submatrices of T. Hy is shaded.

We assume the Tj; are known; the problemisto find { Ax, By, Cc, Dy} . Thereisno am-
biguity about Dy: Dy = Tgx. The main realization problem is to determine suitable
{ A, Bk, Cy} . Because state transformations are allowed, these matrices are not unique.

The key to the solution of the realization problem is the analysis of certain subma-
tricesHy of T. Define

Te-1k Tk-1k+1 Tk-pks2
Te-2k  Tk-2k+1

He= | Tiax

(3.21)

We call this matrix atime-varying Hankel operator, at point k, since it would have the
special structure known as* Hankel matrix” in the time-invariant case, namely that the
elements on the antidiagonalsare equal: (Hk)ij = (Hk)mif i + j = £+ m. Inthetime-
varying case the collection of matrices {Hy} till has a special structure, as we will
see soon. The entries of Hy are taken from the submatrix of the matrix T above and
to the right of entry Ty, as depicted in figure 3.8. For finite matrices T, Hy is afinite
(k=1) x (n—k) matrix. We have (traditionally) reversed the ordering of rows of Hi in
comparison to the ordering of rowsof T, becausewewill allow for operators (“infinite
matrices’) later on, and we wish to have the infinite sides of semi-infinite matrices at
the bottom and right. If { A, Bk, Cx, Di} isarealization of T then substitution of (3.20)
into (3.21) produces

By-1C« Br-1ACicr 1 Bi-1AkAK+1Ck4-2
Br—2Ak-1Ck Br-2Ak-1ACK+1
He=| By aAroA1Ck
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A first observationisthat Hy hasafactorization dueto theregular structureof itsentries,
as

By-1

By-2Ak-1
Hk = Bk—BAk—ZAk—l [Ck Aka+l AkAk+1Ck+2 o ] = CkOk: (322)

where we have defined

By-1

By—2A,-
Ce= Bllz—zAk—;Ak—l ) Ok=[C ACx1 AAG1CG2 ). (323

Ckiscalledthereachability matrix at point k, while Oy iscalled the observability matrix
at point k. We explain the reason for this terminology later.

If Ax hassize di x dy, 1, then from the factorization (3.22) it follows that the rank of
Hy islessthan or equal to dy, the number of columnsof Cy and rowsof Oy. A redlization
will beminimal if therank of Hy isequal to dy, for all k. Obviously, no realizationsexist
for which the state dimension is smaller.

A second observation that follows from the factorization is a shift-invariance prop-
erty. Let H; be the matrix defined by removing the first column from Hy (which also
can be viewed as Hy shifted one notch to the left with the first column chopped off),
then we obtain the factorization

Bk-1

_ Bi-2Ak-1
He = | BicsAoA | A Gt AriCGiriz Act1Akt2Cira 0] = CkPkOkra -

The underlying property is O = AcOyy1. Shifting upward in a dual way, we have
Hii1 = CkAOkq1, and C , = CkAx. The shift-invariance properties allow us to de-
termine the Ay from the Oy or the Cx. If the factorization (3.22) is minimal, then the
columns of Cy are linearly independent as well as the rows of O, so that CkDCk >0

and Ok(’)E > 0. These matrices are of full rank, Cy has a left inverse given by Clz =
(Ckt)tewhile Oy hasaright inversegiven by O = O(OxOP) ™, and we can solve
for Ax:

Ac=OF 01 = CClia. (3.24)
From the definitions of Cx and Oy, we aso have
Bx = [firstrow of Cxi1],
Cy = [firstcolumnof Oy]. (3.25)

Hence, once all Hy have been factored into Hy = CxO, the congtituting { A, Bk, Ck}
can be derived from the structure in Cx and Ok.
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Theorem 3.7 Let T be an upper triangular matrix, and let dx be the rank of its Han-
kel matricesHy. For each k, let Hy = C Oy, where Cy, O are rank-dy factors. Then
{Ax,Bk,Cx, Dy} isaminimal realization for T, where Ay, By, Cx are given by (3.24)
and (3.25), and Dy = Tk,k-

Thistheorem parallel sthefamousK ronecker realizationtheorem [Kro90] in the present
setting.
PrOOF Fork =1,---,n, let Hx = CxOk be aminimal factorization of Hy, and let us
chooseAy = O OLl and By, Gy asin (3.25). Wemust show that Tj = BiAi;1 - --Aj-1C;j
(i < J). Asall these elements are entries of some Hy, thisis equivalent to showing that
Ck and Oy are given by equation (3.23).

We will first provethat O = A1, where A, = O O, . Note that

Hipr = Hi (3.26)

i.e., He isobtained by removing the top row of Hy,1. Hence, the row span of H,™ is
containedinthat of Hy. ;. BecausethefactorizationsHy = CxOk and Hyx, 1 = Cky10ks1
are minimal, these row spans are equal to the row spans of O and Ok.1. It follows
that there exist matrices A, such that O = AcOyy1. Onesolutionis Ay = O, OEH.

Substituting the given factorizationsinto (3.26) yieldsC}, +10k+1=COy. = CAOky 1,
so that, as Oy,.1 isright-invertible, C;, ; = CiAx.

We will now derive the expression for O. By the definition of Cy, and because
Oy = AOk41, Wwe have

Ok = & O]
= [Ck Ak0k+1]-

Recursion on k now givesthe required expression (3.23) for Ok. Theexpressionfor Cx
issimilarly derived from the definition of By and CQH = CxAx, whichyields

(3.27)

Bk
Ckr1 = { }
! Ciya
_ Bx
L GA )
Expanding Ok, 1 and Ci recursively produces (3.23), and thus by definition of Hy the
required values of Tjj. O

Therealization algorithmisshowninfigure3.9. Itisnatural thatd; = Oand d, 1 =
0, so that aminimal realization starts and ends with a zero number of states. The algo-
rithmis reminiscent of the principal component i dentification method of system theory
[Kun78]. Some humerical issues are discussed later in this section.

Corollary 3.8 If, for somek, Cili = | and C, 11 = |, then AN+ BB = I. If,
for somek, OO =1 and 0.1 0L, ; = |, thenCCl+ AN = 1.

PrROOF The second claim followsfrom thefirst equationin (3.27) by taking the square
of thisexpression, and using thefact that O, = AcOx.1. Thefirst claimfollowsdually.
|
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In: T (an upper triangular nx n matrix)
Out:  {Ty} (aminimal realization)
C1=[],01=]
fork=1,---,n
( O = rank(Hgpa)
Hiki1 =! Cky10ki1  (takeany minimal factorization)
Ac = [0 ¢k
Bk = [first row of Cyyq]
Cx = [first column of O]
L Dk = Tkk
end

Figure 3.9. The realization algorithm. The factorization Hy = CxOk can be obtained
from a QR-factorization or an SVD.

Realizationsfor which C%k = forall karesaid to beininput normal form, whereas
realizations for which OO’ = | for all k are in output normal form. E.g., the trivial
realization for banded matrices, discussed in section 3.3, hasCy = |, and gives areal-
ization in input normal form, although not necessarily minimal.

Numerical example

Asan exampleof therealization theorem and thealgorithminfigure 3.9, let thetransfer
matrix be given by

.800 .200 | .050 .013 .003
.900 .600 | .240 .096 .038
0 .800|.500 .250 .125
0 0 .700 .400 .240
0 0 0 .600 .300
0 0 0 0 .500

(3.28)

[cNeoNeoNoNel

The position of the Hankel matrix Hy isindicated (recall that this submatrix must be
mirroredto obtain Hy). A stablenumerical way to obtain theminimal rank factorization
of Hy as Hx = CxOx is by computing its singular value decomposition (SVD) [GV89].
The SVDs of the Hankel matrices are computed as H, = Uy 2 Vi, where

Hi = []

H, = [ .800 .200 .050 .013 .003 ] =1-0.826-[.968 .242 .061 .015 .004]
.600 .240 .096 .038

Hy =

.200 .050 .013 .003
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[ 955 .298 .685 0 922 .356 .139 .055
N .298 —-.955 0 .033 -.374 729 511 .259

.500 .250 .125 "
Hy = .240 .096 .038
.050 .013 .003 J

.908 .405 .112 -I [ .631 0 0 -I [ .882 .424 205 -I
= 412 -.808 -.420 0 .029 0 —-.448 .622 .642
.080 -.428 .901 J [ 0 0 .001 J [ 145 -.658 .739 J

etcetera. In the above, columnsand rows that correspond to zero singular values have
been omitted. The non-zero singular values of the Hankel operatorsof T are

Hi Hx Hs Hs Hs He

01 .826 .685 .631 .553 .406
02 .033 .029 .023
03 .001

Hence T has a state-space realization which grows from zero states (k = 1) to a max-
imum of 3 states (k = 4), and then shrinks back to O states (k > 6). Small singular
valuesrepresent states that are not very important. We apply the realization algorithm,
using the factorizations Hy = CkOk = (Uy)(5V). Thisyields as time-varying state
redlization for T the collection { T} $,

536 -810| 557
; S ; 045 308 | -.013
1= | To00| 2000 4=| -000 040 000
843 498| 700
_ 671 481
[ 78 .955|.soo] o _051‘__012
| 955 208 900 | 60
417 -899 -133| 632 | a0
To— | 047 167 -.985| 012 TG:[ ' ]
908 405 112| 800 | 500

Asisseen fromthetable of singular values, Hy iscloseto asingular matrix, and hence
oneexpectsthat T can be approximated by amatrix closeto it such that only two states
are needed. That thisisindeed possible will be shown in chapter 10.

System-theoretic interpretation

In the previous section, we have noted two properties of the Hankel matrices. their
ranks are equal to the minimal system order at each point in time, and they satisfy a
shift-invariance property. These properties have afundamental system-theoretical na-
ture, which we briefly explain now. We go into more details in chapter 5.
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[Z]
S s R e Rl e
2 X0
=z}
Co 2 X1 \Cy
Yo Y1

Figure 3.10. Principle of the identification of a time-varying state-space model. In this
diagram, the current time is K= 0. All possible inputs with non-zero values up to time
Kk = —1 (the past) are applied, and the corresponding output sequences are recorded from
time K= 0 on (the future). Thus, only part of T is used: Hp, the Hankel operator at instant
k= 0. The rank of the Hankel operator determines the state dimension at that point.

Let T be a given input-output operator. Denote a certain time instant as “current
time”, say pointi. Apply an input sequence u [ ¢, to the system which is arbitrary up
tok=i-1andegual to 0 fromk =i on. We say that such an input has supportin “the
past”, with respect to time k = i. The corresponding output sequencey = uT istaken
into consideration only from timek =i on, i.e., we record only the “future” part of y.
See figure 3.10. The following two observations form the cornerstone of realization
theory. Let yy ;) denotethe half-sided sequenceyy iy = [Vi Yiv1 -] O 3, and likewise

defineup ;) = [Ui-1 Uiz ---] O ¢;. Thefuture output sequenceis dependent only on x;:
Yigy = [Yi Yier ] = %[C AGi1 AACh2 -]
= x0;.

Hence upon applying al possibleinputsthat are zero from k = i on, the corresponding
possible outputsyy ;) are restricted by the finite dimension of x; to a subspace of small
dimensionsin ¢ (intheexample: two dimensions). This subspaceiscalled the natural
output state space, or space of natural responses, at timek = i. Of course, if we select
another point in time as current time, then a similar property holds, mutatis mutandis.

A second observationisalmost trivial. If westop theinput at k =i — 1, but now only
record the output from k = i + 1 on, then we reach a subset of the subspace {yy 1)}
This subset is again a subspace, now of the form

{XiAi [Cii1 Ar1CGii2 ApiALCiys 0] o x O on } (3.29)
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A refinement of this observation |eads to the mathematical concept of shift invariance:
the subspace (3.29) is equal to the output state space at time i after the application of
ashift, and this subspace is contained in the next output state space, at timei + 1. The
appearance of A in this expression enables us to identify it.

Write Up(iy = [Ui-1 Ui—2 Uiz ---]. Thenfromtherelationy = uT foIIowsyf(i) =
Up(i)Hia where
Ti-ti Ti-vier Ticvis2
Ti2i  Ti-2i41
Hi=| Tisp

Repeating the same exercise for all the signal pairs up k), Y k), We obtain a sequence
of operatorsHy, which are precisely the Hankel matricesdefinedin (3.21). Inthetime-
invariant case, where T hasa Toeplitz structure, the constructionyieldsHy which areall
the same and do indeed possess aHankel structure (constant along anti-diagonals). Al-
though we have lost the traditional anti-diagonal Hankel structurein the time-varying
case, we haveretained two important properties: therank property and ashift-invariance
property.

With regard to the rank property: suppose that we have afactorization of Hy: Hy =
CkOk. Then the multiplication yt ) = UpyHk can be split into two stages using an
intermediate quantity x, which is precisely the state at time k:

X< = UpwCk

Yiw = *Ok.
This factorization is typical of any state redlization: the future output ys y is not di-
rectly computed, but uses an intermediate quantity x. From the decomposition Hy =
CkOk, itisdirectly inferred that the rank of Hy determines the minimal dimensions of
Ck and O. If the decomposition is minimal, that is, if Cx and O are full-rank factors
(CCx > 0, OO > 0), then the dimension of the state space of the realization corre-
sponding to Cx and Ok is equal to rank(Hy). If al Cx satisfy CkDCk > 0, then we call
the resulting realization reachable, and if al Oy satisfy OKOE > 0, then we call the
realization observable. Hence, if the realization is both reachable and observable, it is
minimal. The reason for thisnomenclatureisthat if arealization isreachable $at point
K), any state X, can be reached using some u,i: it sufficesto take uyy = XCy , where
¢l = (cle ey Similarly, if aredlization is observable, then from an observed out-
put y ), and assuming Uy = O, the state X can be retrieved as x, = yf(k)Of(r, where
O} = OJOOP ™.

In chapter 5, we elaborate on the concepts of reachability, observability, and in-
put/output state spaces. This playsafundamental role throughout the remainder of this
book. It is possible to define them in an index-free notation using diagonal operators,
and thiswill prove valuablein derivations|ater on.

Numerical issues

The key part of the realization algorithm is to obtain bases Cx and O for the column
space and row space of each Hankel matrix Hy of T. Thesingular value decomposition
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(SVD) [GV89] isarobust tool for doingthis. Itisadecomposition of Hy into factorsUy,
>, Vi, where Uy and V are unitary matrices whose columns contain the left and right
singular vectors of Hy, and Xy is a diagonal matrix with positive entries (the singular
values of Hy) on the diagona. The integer d is set equal to the number of non-zero
singular values of Hy, and thefirst dx columns of Uy and Vi constitute basis vectorsfor
the column spans of Hy and HZ.

Figure 3.9 only gives an algorithmic outline of the realization procedure. Because
Hk.1 hasalarge overlap with Hy, an efficient SVD updating algorithm can be devised
that takes this structure into account. Other decompositions from linear algebra that
identify subspaces can be used instead. In theory a QR factorization of the Hy should
work, although thisis not advisable in practice because a QR factorization is not rank
revealing: the addition of a small amount of noise on the entries of T will make al
Hankel matrices have full rank, thus producing a realization of high order. Decompo-
sitions that can be used instead of QR are rank revealing QR [Fos86, Cha87, BS92],
and the URV decomposition [Ste92], which is equivalent to SV D but computationally
less demanding.

Note that, based on the singular values of Hy, a reduced order model can be ob-
tained by omitting some vectors in Cx and O, in particular those that correspond to
small singular values. For time-invariant systems, this technique leads to a so-called
balanced model reduction. Althoughwidely used for time-invariant systems, thisisfor
time-varying systemsin fact a“heuristic’ model reduction theory, because the model -
ing error norm is not known. (For LTI systems, a potentially large upper bound on the
modeling error is given by the sum of the truncated singular values [Glo84].) A pre-
cise approximation theory results if the tolerance on the error is given in terms of the
Hankel norm, which is the subject of chapter 10. The approximation algorithmin that
chapter isin fact a competitor for the rank revealing QR method.

Computational issues

We mention some other issues related to theorem 3.7 and the corresponding realiza-
tion algorithm, which are of some importance for a practical implementation of the
algorithm.

Let T be agiven upper triangular matrix, and consider its sequence of Hankel ma-
trices{ Hy}, where Hy has rank dy. If for each Hy a submatrix F|k is known such that
rank(Hy) = dy also, then it is possible to determine a realization of T based on fac-
torizations of the Hy rather than factorizations of Hy. This generalization of the time-
invariant analog [Kal65] isuseful sinceit can yield considerable computational savings
if the Hy have small dimensionsin comparison with Hx. A remaining practical prob-
lem ishow to obtain the Hy in an efficient way, because, unlikethetime-invariant case,
T need not be diagonally dominant even if its Hankel matrices have low rank, so that
the Hy can still be matrices of large size. A trivial example of the latter is provided by
taking T to be an nxn matrix consisting of zeros, except for the (1, n)-entry.

In this section, we use the matrix 1, :=[I; 0 O ---] to select the first r rows of
amatrix at its right. We use, as before, the notation H,~ to denote Hy with its first
column deleted, and let T denote the generalized (Ieft or right) inverse of amatrix. The
following result (and proof) can be found in [GKL92].
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Hy Hike1| |

\ |'A|k+1

AN

Figure 3.11.  Relation between I:lk and Hk+1-

Theorem 3.9 Let T be an upper triangular matrix with Hankel matrices Hy having
rank dy. For each k, suppose that the numbersr (k) and c(k) are such that the subma-
trices Hy = 4 1o HiTG) have rank di. Let Hy = CkOy be a factorization of Hy into
minimal rank factors. Then aredlization of T is given by

Ao = haeidl, & - Ot
B« = ml, Dk = Tk,

where Hk7k+1 = T[r(k)Hkh T[‘C](kJrl).

PROOF A diagram of the relations between Hy, Hi;1 and Fi ;1 is providedin figure
3.11. The proof consists of two parts. We first verify that the full size Hankel matrix
Hy has a minimal factorization into rank dy factors Cx and Oy such that

Ck=ThwCk,  Ok= Oy, (3.30)

i.e., , certain extensionsof Cy and Ox. Indeed, let Hy = CxOy be any minimal factoriza-
tion, then Hy = Trr(k)HkT;CD(k) = (T[r(k)Ck)(OkT[CD(k)). Because rank(Hy) = dy aso, it fol-
lows that 1%,y C and @leCD(k) arefull rank factors of Hy, so that these are related to the
given factorization Hy = CxOx as Cy = (Th g C)Re and Oy = R;l(f’)knc‘](k)), where R
isan invertible state transformation. Putting Cx = CxRy and Ok = R:Ox gives (3.30).

The second step is to verify that { Ag, Bx,Ck, Dy} isaredlization of T. Thisisdone
by proving that it is precisely equal to the realization based on the full-size factors Cy
and O. The main issue is to show that A, = CH,~ (’)Ll isequal to Ay. Expressions
for these generalized inverses are

CiCk = CimgoC
oye) Okt o)
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tr _y _pth 5t ; ; t
because C, Ck = lg, = C, Ck = C T Ck, and likewise for O, . Hence

Ac = CIOAOG10L,,
= CThiCAOki1Tges 1) Ok
= éJ"r(k)H("‘cj(kH)@EH
= A0, = Ac

With less effort, it followsthat B = TuCx = Ta Ttk Ck = TuCk = By, and likewise G =
C. O

The theorem shows that even for Hankel matrices with infinite dimensions we can
find areadlization, aslong as we are sure that the finite Hankel matrices have their rank
equal to the actual system order at that point. Unlike for time-invariant systems, we
can never be surethat afinite size Hankel matrix hasindeed the maximal rank without
making further assumptionson the matrix. Hence, without making assumptions on the
matrix, itisnot really possibleto work with finite size Hankel matrices and obtain exact
state space models. An approximate realization algorithm is discussed in chapter 10.

3.5 IDENTIFICATION FROM INPUT-OUTPUT DATA

Theorem 3.7 and the realization algorithm assume knowledge of the input-output op-
erator T. Thisis equivalent to assuming that the time-varying impul se response of the
system is known. Many applications, however, provide only input-output data, i.e.,
pairs of input sequencesu [ éé‘/l with corresponding outputsy [ 5/2\/ . We will need sev-
eral such pairs. In that case, these rows can be stacked into matricesU and Y. Since
we have

Y=UT

it followsthat if U has aleft inverse U such that UTU = I, then T can be computed
asT = UMY, and from T we can obtain the realization asin theorem 3.7 or 3.9. Thus,
system identification from input-output data is, at this level, not much different from
the realization problem with known impulse response data.

In the time-invariant case, it suffices to have a single input-output pair (u,y), since
other independent pairs can be found simply by time-shifting the sequences, exploiting
the time-invariance of the system. For time-invariant systems, the condition on u so
that U hasaleft inverseis called persistently exciting.

For time-varying systems, of course, we cannot generate multipleinput-output pairs
from asingle one, and we really need a collection of input-output pairs. Whether this
can be realized in practice depends on the application: e.g., we might have multiple
copies of the system to obtain input-output pairs that span the same period in time.
Even so, we have the problem that with afinite collection of input-output pairs we can
only estimate the part of the system that has actually been excited.

Let’sagain consider the finite matrix case, with atime window running from 1 to n.
There are two possihilities. If the system starts and stops with zero state dimensions,
then T is an nxn matrix, and we need at least n independent input-output pairs (u,y),
stacked into nxn matricesU and Y, to proceed as indicated above. However, a more
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general case occursif the input-output pairs have been observed over afinite timein-
terval of length n, but in actuality span a much larger period. In that case, theinitial
state x; need not be zero, so that we obtain

y=x101+UuT.

Here, T is afinite nx n matrix which is a submatrix of the actual much larger input-
output operator, spanning only the window of interest. The above equation can be de-
rived in several ways, e.g., by using linearity: the output y is the sum of the effect of
theinput with zero initial state, and of theinitial state with zero input. With a stack of
inputs and outputs collected asrowsinU and Y, we obtain

Y = X%,0, +UT,

where X; isacolumn vector containing the initial states. Let’s assume that we have N
such finite input-output pairs, and no knowledge of X;. Our objectiveisto construct a
system T of minimal complexity that is consistent with the given data. The main idea
for doing thisisto get rid of the influence of the term X101 by using the causality of
T.

The first step is to employ a QR factorization to reduce the data matrices, i.e., to
compute a unitary N x N matrix Q such that

. [Rll R12-|
Q[U Y]:[ 8 RézJ—Z[U, Y,].

Sincethesystemislinear, the premultiplication by Q" can beviewed assimply generat-
ing new input-output pairs, consisting of linear combinationsof the old pairs. Thus, we
havenew pairs[U’,Y'] for whichY’ = X 01 +U’T. We can go further and premultiply
the top block row by Rﬁ (assuming the inputs were chosen such that it isinvertible),
which producesanew pair [U",Y"] whereU” = | (')] . Dropping the quotesfor readabil-
ity, we can say that after these steps we have a data matrix Y such that

Y1
Y=| | =%0:1+ { g } (3:31)
YN

whereT is upper triangular.
The second term on the right has only n nonzero rows. Thus,

Yoi1 (Xt)nt1
L= o
Y (Xu)n
Thisallowsusto identify abasisfor O;: it isthe row span of this part of the data. The

initial state dimension d; follows as well, as the rank of this submatrix. We need at
least n+ d; independent input sequences u to do this.
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Thefirst part of the data specifies

T T B
Yi1 - Yin (X1)1 Lt T, o Ti:
: A | |
Yn,l - Yn7n (X]_)n O ' Tn N

With ©O; known, the next objective isto estimate the abovefirst part of Xy, so that this
term can be subtracted. Here, we haveto usethefact that T is upper triangular: we can
select submatriceswhere T is zero. Thus

Yir - Ykkl = Xo)k[(O1)1 -+ (O1)u], (k=2,---,n). (3:32)

Thelast factor on theright hasd; rows. Thus, only for k= d; can (X1)k be consistently
estimated as

Xk = [Yer - Yl [(O1)1 - (00T, (k=dg,---,n). (3:33)

Thefirst d; states cannot be recovered, but we can choose something reasonabl e so that
(3.32) holds, e.g., by using the same equation (3.33). Thiswill providearealization that
is consistent with the given data, although theinitial [By,Dy] (fork=1,---,d; — 1) will
be some arbitrary fit.

At this point, we have recovered the initial state X;. Thus, the term X;O; can be
subtracted from Y, which leaves an estimate for T. The realization of T can now be
obtained as before using the realization procedure in theorem 3.7.

The above procedureis only intended as aframework. There are several pointsfor
improvement:

1. O isestimated fromthezeroblock in (3.31). However, also the zero submatricesin
thelower triangular part of T should beused for this, aswell asthenonzero (Hankel)
submatrices of the upper triangular part of T.

2. Thepseudo-inversesin (3.33) are nested and of increasing dimensions. This could
be exploited in a computationally efficient implementation.

3. Inpractical situations, Y is perturbed by noise. A major point of interest isto devise
an identification procedurethat is asymptotically consistent even in this case.

Similar algorithmsfor identification of time-varying systems from input-output en-
sembles have been proposedin [VY 95, Yu96]. Those algorithmsdiffer in thelast step,
wherethey try to removetheinfluence of X; by projection onto the complement of 01,
and shifts thereof. Thiswas inspired by recent subspace-based identification schemes
inthetime-invariantdomain[MMVV 89, VD92a, VD92b, Vero4, Oveds, Vibh94]. Some
applications to actual time-varying systems (the dynamics of a human joint) can be
found in [KH90, KKMH91, YV93].
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3.6 REALIZATION THEORY FOR MATRICES OF LOW
DISPLACEMENT RANK

In section 3.2 we discussed systems of low displacement rank: matricesRfor whichthe
displacement R—oRao" has low rank. We continue the discussion on systems with low
displacement rank by deriving arealization theory for such systems, in case they also
havealow state dimension. We consider thefinite-size matrix case, which necessarily
leadsto time-varying realizations. The objectiveisto use the structure provided by the
low displacement rank to derivearecursiverulefor computing the state space matrices
of the next timeinstant in terms of the current one.

Thuslet R be a positive definite matrix of size nxn, possibly with block matrix en-
trieswhich we take square of fixed dimensions. Let uswrite R= [rjj] as

R=LAL = %(F+FD)

inwhich L and F are upper triangular matrices. Hence,

{ oo 2ror -+ 2Zron-1 w
1 . .
F= . .
" 221
[ 0 M-1n-1 J
Recall the definition of the restricted backward shift operator
0 0
1
o=
0 1 0

We will assume that R has a displacement structure:
9%
R-oRo"=GUG=| : |Jgo - On1l-
0
On-1

where J has p positive and g negative signature entries, and G has p+ q rows.

Realization of the additive component F

Let uswritefor simplicity R—oRo™=: X, thenit is easy to seethat R can be recovered
from X viathe formula

R=X+0Xa"+ ---+ o™X (g9 L.

The contribution of each term to the Hankel operatorsfor F is straightforward to eval-
uate. Indeed, consider the Hankel operator Hy(F) for F (k= 1,---,n-1). The contri-
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butions of the individua termsto Hy(F) are

I
Ok-1
He(X) = oI ok v Ona ]

Hi(oXa") = I Ger o On2 |

Hi(0* X (0D Y) = : I - Ok |-
0

Putting these termstogether and using the outer product representation of amatrix, we
obtain

0 o071 '~ o0 :
g 99 -+ Oggd G 92 - Ok
R I R
Lo gl O - - O
0 603 n

which is of the form Toeplitz matrix times Hankel matrix. From (3.34) we conclude
that

G %2 - Ok
rank(Hy(F)) < rank g_z. . g“__kffl )
% - - O

where the latter matrix is a submatrix of the semi-infinite Hankel operator for the LTI
system
Qo+ QiZ+ GoZ +GsZ + -

A (standard) realization for this LTI system can be used as a starting point for the re-
alization of F. Assuming that the rank of the global Hankel operator is 8, so that we
need astate space of dimension &, wefind matricesa, 3,y of dimensions8x 8, (p+ q) x
0,0 x 1 such that

gi = Ba'ly. (3.35)
The k-th Hankel matrix for the series{g;} as needed in (3.34) isthen
@ o ae] [ 8
: Lol =] |y ay ey

g - On1 Bk
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Thus, the k-th Hankel matrix for F is

g 9 - glyd B
Ba

He(F) =2 9oV _ Iy ay - a"k1ly.  (3.36)
o gy k1

Clearly, thisis afactorization of the form Hy(F) = CxOy, and aredization for F can
have atime-invariant Ax = a and C, = y. The{By, Dy} -part of the realization will be
time-varying. By-1 is found from thefirst row of the first factor,

By-1

2(g5IB+ 9B + -+ g, Ipak )
20598 + 2y BB + -+ + (aD)k2REIRak Y.

Let usdefine
A= BIB+ -+ (a1 BRIBa

then A\ satisfies the recursive Lyapunov equation®
A= BIB+a N,
and By can easily be computed from Ay via
Bk = 2(goIB+ Y Aka) .

Similarly,
Dk = giJgk + -+ g5Jdo

which satisfies the recursion

Do = 9gJdo; Dk = 0iJgk + Dy-1,  (k=1).

Thiscongtitutesalow rank recursiverealizationfor F. Thealgorithmissummarized
in figure 3.12. Theredlization is not necessarily (locally) minimal: for this, it should
at least start and end with zero state dimensions. |f the dimension n of R grows while
R stays bounded, then |a| < 1 and the scheme converges gradually to atime invariant
realization, since A\, By, Dk convergeask — oo.

A realization for the multiplicative Cholesky factor L

We had before 1
R= E(F—}-FD) =L

4Such equations are discussed in extenso |ater in section 5.3.
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In: A generator G and signature J such that R-oRo"” = GMJG
Out: A realization for F O/ such that R= 3(F +F").

Find aredization {a,3,y} fromthe LTI system (3.35)

Ag=- (size0x9)

Co=- (size0Ox1)

No=0 (sizedx9)

Do = 9530

fork=1,---,n-1
Ac=0a,C=y
N = BRIB+ aNa
Bi-1 = 2(gpIB+ Y N\k-10)
Dy = giJdk + Di-1

end

Figure 3.12. Realization algorithm for the additive component F of a positive definite

matrix R of low displacement rank.

We will try to find arealization for L of the form (in diagonal notation)
L=D_+B.Z(I-A2)"C, (3.37)

where we keep A, = a and C, = y from before, and compute new By i, Dk from the
realization { A, B, Ck, Di} of F of the preceding section. We should then have

L = DD + CHI-Z"AY)1Z5B{D. + DB Z(1-AZ)IC
+ CHI-ZPAD)"1zMBB Z(1-AZ)™1C.

The last term in this expression is quadratic. It can be subjected to a partial fraction
expansion, which in this generalized context leads to

(1-Z"AD1BB)M(1-AZ2)T = (1-Z"ADIM+M(1-AZ)-M
= M+MAZ(1-AZ)™1 + (1-Z"A9)1Z5Am

where the block diagonal matrix M satisfies the equation
MY = BIB_ + ATMA. (3.38)

This equation in diagonals is actually again a recursive Lyapunov-Stein equation,
and it hasindeed a (unique) solution which can be computed recursively, provided that
at each step BY, By x is known. Indeed, with initial point Mo = O, the expansion of
(3.38) into its diagonal entriesleadsto

Mis1 = BIiBLk+ AMAc (k=0,1,--).

When we introduce the partial fraction decomposition in the equation for L™L above,
and identify the strictly upper triangular, diagonal and strictly lower triangular parts,
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In: A generator G and signature J such that R- oRo"” = GPJG
Out: A realization for L 02/ such that R= L"L.

a,y fromthelLTl system (3.35).

Bo,Dg fromthe algorithmin figure 3.12
Do = [3(Do + D§)]*/2

BLo= %D[%BO

MlzBEoBL,O
fori=1,---,n-1
A=aGCG=y

Bj,D; fromthealgorithmin figure 3.12
D, = [3(D; + DP) -Chvi;C]Y/2
BLi = D{{[3Bi—~C"M|A]
Mit1 =By BLi + AM/A
end

Figure 3.13.  Realization of a Cholesky factor L of R

Viz.

Lo = DD +C"™MC + (D[B_ +CMA)(1-AZ)™C + [
IF+FY 3(D + DY + 3BZ(1-AZ)"XC + [T,

then we seethat the block diagonal matrices B and D, must satisfy the set of equations

1(b+DY = DD_+CMC
iB = DB +CMA (3.39)
MDD = BB +ATMA.

This set of equations clearly leadsto arecursive algorithm, at least if they are consis-
tently solvable (which we have to show) — see the algorithm in figure 3.13.

One may think that a solution must exist, almost by construction (since the starting
point of the recursion is well known — Mg = 0), but there is reasonable doubt that at
some point k, the equation for Dy ,

DkDLk = 3(Dy + D) ~CiMyCic

cannot be satisfied because the second member is possibly not positive definite. It is
instructive to show that this cannot happen. We construct the proof by looking at the
Cholesky factorization of Rin a“Crout-Doalittle” fashion — the classical “LU factor-
ization” or Gauss elimination method to solve asystem of linear equations, see[ Ste77].
The general Crout-Doolittle method (without pivoting) consists in the recursive con-
struction of atableau for the lower/upper factorization of ageneral matrix T, but it ap-
pliesamost without madification to the Chol esky decomposition of a(strictly) positive



70 TIME-VARYING SYSTEMS AND COMPUTATIONS

matrix R. In this case, we recursively construct the factorization

foo for fo2 -+ |§o 0 loo lor lo2
ro fu rfip - g 13 l11 12
ro ro1 I =g o 1% |22
. T 0
by pedling off thefirst row and column of R:
|g|0 O 0 -
_ |J 0
= o1
R ) oo lox -]+ _ R
Itisclear that
_q/z
loo lox “]=rgy [roo rox -7

In this way, the first column and row of LY and L are computed; the procedureis then
repeated on the smaller matrix R’ to find the next columns and rows, etcetera. The en-
tries of L are thus recursively determined by

m Step0: lgg = ré/z
IOj = |_0&'0j (J:1,2,)7
m Stepis i = (ri—Yilolgla)Y?

ij = LHnj=3idolgld)  (i=i+1i+2,).

A standard proof (see e.g., lemma12.2 later in the book) shows that, for finite ma-

trices
ro > O
R>0 - {R/ > 0.

This can be used to derive the central property in the algorithm: the pivot is strictly
positive definitewhenever Ris, so that its square root can betaken, in the case of scalar
aswell asmatrix block entries.

In our case we have, thanksto the realization for F,

3[Do + DY) $Boy iBoay  3Boa?y
yBy  iD.+DY 1By B0y

R=| vy ~3yB 30,+DJ 3By

We now show that the recursionsthat solve (3.39) in effect generatethe Crout-Dooalittle
recursion.

m Step 0: Mo = -, 3[Do + Df] = DYoDL0, 3Bo = D[ BL 0 are of course solvable for
Dy o and By g, and produce the first row of L as

loo lo ]=[DLo BLoy BLooy Boa?y--.
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m Stepi: let usassumethat thefirsti rows(i.e., withindicesO, - --,i—1) of L areknown
and satisfy _
i = BL7kC(k_I_1V (k < I)

We have to show for the i-th row that DEi Dy iswell defined (i.e., the expression
for it is positive definite), and aso that the rest of the row with index i is correct.
The Crout-Dooalittle scheme applies and, thanks to the induction hypothesis, it says

that
i-1

rii — %@ki = 3[Di+ D - 5oy la 1 +BE, BLra ™y
k=

is positive definite. The recursion for M on the other hand gives an expression for

the sum:
i-1

M = [a] BBk
=0

>

so that the formulaisin fact
i-1
rii_%l%lki = 1[Di + DT -y My,
k=

which is hence positive-definite and can be factored as DEiDL,i. This also gives
DL = lii. A further identification with the Crout-Doolittle scheme produces, for
j >,

lij = DIy iBial i ly- ZL__:lo(BL,kGi_l_kV) N(BLkal T y)}
D[E[%Bi —yEMiO(]aJ"‘ly.

Since we defined By ; to satisfy

3Bi = D'iBLi + Y Mia

wefindlij = B jo'I+1y, whichisthe posed realization for L. Wemay concludethat
the scheme given by (3.38) always produces a strictly positive-definite expression

for
3Di + D] -y Miy,
when the origina Ris strictly positive definite.

This concludes the proof of the existence of the realization for L as given by the
algorithm.

Discussion

A legitimate questionis of course, “what do we gain in complexity reduction of calcu-
lations when we apply the realization theory to a system of low displacement rank?’
A meaningful answer to such a question requires an understanding of what we mean
by ‘calculations' . We consider two cases: calculations aiming at the construction of a
model for the system or itsinverse, and calculationsthat aim at applying the model to
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aninput. Both the low displacement rank and the low Hankel degreewill contributein
both cases — and in the expected manner. Thelow displacement rank allowsfor real-
izations of F and L in which only the matrices Bk and Dy vary from one point to next
using simple update equations, depending only on the actual g, which is itself only
dependent on time-invariant data. If the Hankel rank is & and the original system has
scalar inputs and outputs, then the complexity of therealization{a, 3,y} isof the order
of (p+ q)d (see chapter 14 for further discussions on complexity of the time varying
state space model). Hence we end up with a parameter update scheme which can be
very efficient, depending on the precise values of the three parameters. The compu-
tational efficiency of avector-matrix products realized by a state space computational
schemeis directly proportional to the size of the state 6. Asfor theinverse (say of L),
we also face two types of computations. updates and the application of the comput-
ing schemeto inputs. Again, the update of the realization matricesfor theinverseisa
purely local matter dependent only onthe actual gi or their realization, viatheformulas
given by (3.18). The computations can be restricted to the computation of D;l only.

Of course, the usage of atime varying systems model for computation precludes
the utilization of the FFT as complexity reducing engine. An FFT scheme, however,
requires a complete shuffle of the data, either at the input side, or in the course of the
computations. It is (in some variations) the computational scheme that uses the small-
est number of multiplications and additions possible, but at the cost of maximal shuf-
fling of data. It also does not utilize the fact that rel evant impul se responses can havea
lot of structure or can be approximated with very little data. In selective applications,
accuracy will suffer. Thisisthereason why in many signal processing applications, fil-
tering al gorithmsarethe preferred mode of implementation, although they coexist with
the FFT. Even intermediate forms are possible, utilized in subband or multiresolution
coding schemes, in which some shuffling of data takes place, combined with classi-
cal filtering. Therefore, a clear-cut statement concerning the advantage of one or the
other ishard to make outside aspecific application domain. Thisholdstrue evenfor the
Toeplitz case. Here, Hankel realization theory reducesto the classical LTI realization
theory, and the displacement rank may be just 1, so that vector-matrix multiplication
reducesto asingle FFT. Therelative computational efficiency then pitchesthe system’s
degree 6 against the logarithm of the time sequence — Inn, which might appear to be
to the advantage of thelatter. But then, not all itemsin the complexity calculation have
been included! E.g., the ‘pipeline’ complexity of the FFT isagain n against o, which
may be very disadvantageousin concrete cases. And if selective accuracy isincluded
in the considerations, then the length of the FFT and the wordlength to be used may
just beimpractical.



4 DIAGONAL ALGEBRA

In the theory of discrete time systems, there are two classes of “most elementary” op-
erators, namely instantaneous or non-dynamic operators which affect only the current
input and leave the state undisturbed, and “ simple shifts’ (unit delays). In our notation,
thefirst class correspondsto diagonal transfer operators (block diagonal matrices, ele-
ments of D or matricesfor which only the main diagonal is non-zero), whereas simple
shifts are represented by Z: a matrix whose only non zero block-entries are identity
matrices on the first off-diagonal. With these two basic components, we can set up
a “diagonal algebra’ which yields expressions that look like those of classical time-
invariant system theory. Many results from that theory carry over straightforwardly as
well: the notation is not just cosmetically interesting.

In chapter 3, we havelooked at systems T that map input sequencesin Eé‘/l to output
sequencesin ¢4, and we have briefly considered the use of stackingsof such sequences
into stacked spaces XZM = X(C”, M). Interestingly, such a generalized input se-
guence can be brought into the elementary scheme of algebraof diagonals, by viewing
an element of X>(C”, M) simply asa(row) sequenceof diagonals. Based on thisidea,
we set up a non-commutative algebra in which diagonals play the role of scalars and
the Hilbert space of £,-sequences becomes a Hilbert space module of sequences of di-
agonals(cf. [GH77]). Inthe sameway, the scalar Hilbert space inner product translates
to adiagonal inner product in the Hilbert space module. Theidea of using such adiag-
onal algebraoriginated in the papers of Alpay, Dewilde and Dym [ADD90]. We omit
the (standard) proof that an algebra is obtained, and confine ourselvesto proving the
properties that we actually need.

73
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In this chapter, we introduce the necessary algebraic background and concepts, so
that we can focus on the system theoretical consequencesin chapter 5 and further.

4.1 SEQUENCES OF DIAGONALS

Collections of signals

Let C* denote a doubly infinite sequence of one dimensional copies of the complex
plane C, and let us consider X, (C%, M) for some input space sequence M. If U O
Xo(C%, M), then each row in U is asequencein ¢4, An operator T mapping ¢ to
£/ can easily be extended to an operator mapping X(C”, M) to Xo(C%, N'): justlet T
act onindividual rowsof U, in agreement with the matrix representationof UT. Inthis
way, T isupgraded to an operator which maps one Hilbert-Schmidt space to another,
with the same norm || T||. Notethat T is quite a special operator on X>-spaces. it is
described by amatrix representation with only two indices.
For simplicity of notation, we will write from now on

B = (T M),
Eé\/l = EZ(CZ ) M) ) (41)
Ut = U(CEM).

Also, we will often simply write A7 instead of X3! if the precise structure of M isnot
particularly relevant to the argument.
A second way to represent an element of x> wasindicated in section 2.1:

Ui, U= z Z[k]U[k]a U[k] = PO(Z[_k]U).

Thus, U can also be viewed as asequence of diagonals. ApplyingU to T, itisseen that
T actsonU asit would act on an ¢,-sequence;

Y=UT = (-+ZUy + U + ZUpy + 22U + )T
If weintroduce adiagona expansion for T aswell, we can work out the expression for
adiagonal Y, of the result:
Yoy = Po(ZMUT)
= Po (Z[_"] k(@MU 3 Z[I]T[i]))
= Zkz[k_niu[k]z[n_k]-r[n—k]
= ZkU[(kr]1 ey

This expression playstherole of convolutionin the present diagonal setting. If T O/,
then it isacausal transfer operator, and the summation runsfromk = —co tok = n.

D-invariance and snapshots

Since elements of an x> space have natural matrix representations, general operators
mapping an X, spaceto an X, spacerequireatensor representationwith four indices. It
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turns out that most operatorsthat we use throughout this book have a special structure,
called left D-invariance, which alows them to be specified by at most three indices.
Singling out one of theseindices as a parameter (often theindex correspondingto time
evolution), we obtain a representation of the operator as a sequence of matriceswhich
we can aptly name a sequence of “snapshots’. We say that an operator T : X, - Xs is
left D-invariant if forall D 0D, U O &>,

D(UT) = (DU)T.

An operator which isleft D-invariant mapsthe rows of U independently of each other:
thek-throw of Y = UT dependsonly onthek-throw of U. To seethis, it sufficesto take
for U an operator in X> which has zero rows except possibly for the k-th row. Let D
be adiagonal operator which is zero except for the k-th diagonal entry, which istaken
equal tol. Then DY = D(UT) = (DU)T =UT =, which impliesthat Y has zero
rows except for the k-th row. This can also be checked in the more formal Ti-notation
of chapter 2, equation (2.3), in which TRU = uy, the k-th row of U; T(TiU) = U, and

D = M.

Definition 4.1 LetT : X» » X, bealeft D-invariant operator. Then Ty,

Ta: -l U U= Ti([MU]T).
iscalled a sngpshot of T at point k.

Note that T is an operator U in X, whose k-th row is equal to u, and which is zero
otherwise. Hence, this operator hasthe correct dimensions as |l eft argument for T. Be-
cause T is left D-invariant, the resulting operator Y = UT also has zero rows except
for the k-th row. Denotethisrow by y O /5, then applying the definition, we obtain that
Y=UT =« y=uTy.

Morein general, wecantakeany U [0 X,, break it apart intoitsrowsuy = T U 0 /5,
apply Ty to u, for each k, and assemble the resulting rows yi = ugTc into Y = 5 T[Eyk.
By D-invariance, theresultisequal toY = UT. Thisprovesthe following proposition.

Proposition 4.2 LetT : X> — X, bealeft D-invariant operator. Then, for allU 00 X5,
Y=UT < Yk = U Tk (aII k).

Hence, the collection of snapshots{ T} formsa complete description of T.

Examples

As an example, consider the projection operator P, which projects x> onto Uy. It is
easily verified that P is a left D-invariant operator: P(DU) = DP(U) for dl D O D.
Hence P has a collection of snapshots {Px}. Applying the definition, we obtain that
the snapshots Py are

P=| 0 (4.2)

Ol O
o



76 TIME-VARYING SYSTEMS AND COMPUTATIONS

where the underlined entry of Py isat the (k, k)-th position. For asequence u O /5, all
entriesin uPy with index smaller than k are zero, whilethe other entriesremain equal to
the originalsin the sequence u. The collection of operators{ Py} is nested: Py, 1 < Pk
for an obvious definition of the ordering relation “<". This property can be used to
describe time-varying systems [FS82].

A second, trivial exampleisformed by thetransfer operatorsT : éé‘/l - 5/2\/ upgraded
to T : Ap(C%, M) - Xp(C%,N). All its snapshots are the same, and equal to T.

A more elaborate exampleisthefollowing. Let M =N=--- 0 1110--]and
T: 6" - ¢} begivenby

tor toz tos

T- 1 tiz tg
1 tx3

1

T is an operator X, — X> as well. Consider the operator Hy : X> —» A : Hy =
P(P'(-)T), i.e, an argument to Hr is first projected onto £,Z2, subsequently mul-
tiplied by T, then projected onto U/». Ht isleft D-invariant. 1ts non-zero snapshots are
given by

I @ tor to2 to3 @ 0 toz tos
0 0 O 0 tio ti3
H e H -
1 0 0 ’ 2 0 0
! 0 0 (4.3)
@ 0 O tgs
0 0 ti3
H =
3 0 tyx
i 0

4.2 THE DIAGONAL ALGEBRA OF X,

Diagonal inner product

An operator U [0 3™ consists of rows U = iU O ¢3! suchthat U = 5; HU;. A4
isthe direct orthogonal sum of its subspaces T[,Dm XM, each of which isisomorphic to
£ 1f T isan operator £3" — ¢4, extendedto X3! — X3V, then T isleft D-invariant,
and the rows of U act asindependent input sequencesto T. Consequently, the norm of
an operator T on /¢ isaso equal to

[UT |lus

ITI =
UDXéM ”U”HS

In the space XM, we define the diagonal inner product as[ADD90]

{AB} := Po(ABY)  (ABOXM). (4.4)
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This inner product takes diagonal values and plays a similar role as the scalar inner
product in Hilbert spaces.! Some propertiesare { A, B} 0 Do(M, M), and [A, Bls =
trace{ A, B}. Thei-thentry of { A, B} onthediagonal isequal to the ordinary inner prod-
uct of />-sequences (A, Bj):

{A.B} =diag[(A,Bi)]%

where Aj = T4A and B; = 1B are the i-th rows of A and B, respectively. In particular,
we have that

A=0 - RAAFs=0 = {AA =0, (4.5)
DABHs=0 (adlDOD) - {AB}=0. (4.6)

Positive and contractive operators
A Hermitian operator Ain X' (M, M) ispositive, A= 0, if for all ud ¢,
(UA,u) = 0.

We say that A is strictly positive,? notation A >> 0, if thereisan € > 0 such that, for all
uin ),

(UAJu) = €(u,u).
Itisknown that apositive operator A X isdtrictly positiveif and only if Aisbound-
edly invertiblein X'. The above definitions can be formulated in terms of the diagonal
inner product, as follows.

Proposition 4.3 Let A0 X (M, M) be abounded Hermitian operator.

A=0 - foralu0xM: {UAU} =0,
A>0 - DOe>0: foralUOXM :{UAU} = e{U,U}.

PROOF A Hermitian diagonal operator is positiveif and only if al itsdiagonal entries
are positive. Since the diagonal inner product is adiagonal of ordinary inner products:
{UA U} =diag[ (UiA,U;)]%,, whereU; = 15U isthei-th row of U, we havethat for all
U oM,

{UAU}20 = (UAU)=0 (ali)
~ foral VOXM: VAVHis=T5; (VA V) =0.

A similar reasoning applies to the second part of the proposition. m|

Let T be an operator in X (M, N). T issaid to be contractiveif y=uT O |y|/ <
|| ul], that is, if (uT,uT) < (u,u) forall ud 3", T isstrictly contractiveif thereise > 0
such that (uT,uT) < (1-¢)(u,u) for all u0 ¢4". Hence T is contractive, respectively
strictly contractive, if

I-TT20, resp. [-TT">0.

1The diagonal inner product does not evaluate to a scalar and hence it is not an inner product in the usual
Hilbert space theory, but rather in a Hilbert space module sense.
2More precisely, uniformly strictly positive.
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Left D-invariant subspaces

Consider subspaces (i.€., closed linear manifolds) of the Hilbert space X3! with the
standard Hilbert-Schmidt inner product and which satisfy the additional property of
left D-invariance: # in A3"! is said to be left D-invariantif F 04 O DF O for
any diagonal D 0 D(C*,C%), i.e,

DH OH.
A left D-invariant subspace has the property that it falls apart naturally into a stack of
independent slices: just as X3! = ---£3" x 3" x - earlier, we can write
H = XHgXH X 4.7)

where each H; = T4H is asubspacein éé”. Indeed, if F O H, then DF O H, and by
taking D equal to [Dj = 1, Dy =0 (k #i)], thatis, D = 1-rg O D, it followsthat T F =
TR OH, hence (- xHoxHyx--) OHandF OH O F OH,. Conversdy, F O
XM,F OH; O FOH by definition of the #;’s. The D-invariance property implies
that the #; are “uncoupled”: the fact that an element F of H has a component F in
‘H; does not pose conditions on other rows of F. A closely related aternative to the
description (4.7) is provided by the following lemma:

Lemma4.4 LetH O3 bealeft D-invariant subspace, andlet H; = TvH O ¢51. The
spacesTi-H; are subspaces of H which are pairwise orthogonal and together span H.:

H:---DTI(E)'HODT[E'?-QD---.

PrROOF An eement of T[P?-[i has all its rows equal to zero, except possibly the i-th
row. T, is asubspace of H because TrH; = A = DH O H, where D = ¢ O
D. TH; is orthogonal to njDHj if i # j because, for F O #;,Fj O H;, we have that
(-, TG Qs = trace T (R, Fj ) Tyj and trace Ti'Ay; = 0 (i # ) for all A of appropriate
dimensions. The collection { Tt/H;} spans# because 3; Tt = . i

Let H bealeft D invariant subspacein 3" Each of itsslices #; isasubspacein the
Hilbert space ¢3". Let Ni be the dimension of the subspace ;. If each of these dimen-
sionsisfinitethen we say that H isof locally finite dimension. Note that the dimension
of H isequal to thesum of al N;, and H can beafinite or infinite dimensional subspace
in XZM. Theindex sequence N = [Ni]%, is called the (left) dimension sequence of the
left D-invariant subspace , and we write

N = sdim (H).
The orthogonal complement of a subspace  in XZM is
HY = {FOX,: [F,Glis=0, al GOH} .
Since A3 isaHilbert space, H" is asubspace, and H O H" = XM,

Proposition 4.5 If # isaleft D invariant subspacein X3"!, then H" isalso left D in-
variant, and
HY = {(FOXM:{F,G} =0, al GOH}.
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PROOF A straightforward proof uses (4.6) twice. Let F 0 #Y, G O #, then the D-
invariance property of # implies

F,DGHs=0 @I DOD) - {FG =0 - DFGHs=0 (adlDID)

sothat DF O #HE. O

Consequently, H" also falls apart into subspaces (#£");, and it is easy to show that
(HP)i = (H;)", so that the orthogonal complement of a left D-invariant subspace H
consists of the complement of its dlices #;.

We list some more straightforward properties of D-invariant subspaces.

m If A and B areleft D-invariant subspaces, then so are P 4(B) and P 40(B), the pro-
jections of B onto A and A", respectively.

m |f AorBislocaly finite, then soisP4(B).

= |f two linearly independent subspaces A and B of XZM arelocally finite, thensois
their direct sum A+B.

m If Aisaleft D-invariant subspaceand B 0 X is abounded linear operator, then .AB
is also aleft D-invariant subspace, with

sdim (AB) < sdim (A). (4.8)

(The overbar denotes closure.)

4.3 SLICED BASES AND PROJECTIONS IN X>

Sliced bases of locally finite subspaces

Let 7 be aleft D-invariant subspace of X3, Since X3\ is separable in the Hilbert-
Schmidt metric, H hasan orthonormal basis. We have seenthat H fallsapartinto slices
H; = T5H, which are subspacesin Zé”. If each of these subspaces hasfinite dimension
(N;, say), then H isby definitionlocally finite. Inthissection, we consider special basis
representations for such subspaces which are consistent with the sliced structure.

Let #; have an orthonormal basis { (qj)1, -+, (gi)n}, with each (gi); O ¢!, Be-
cause of lemma4.4, an orthonormal basis of # istheset {m(q);} (j =1,---,N;, i =
—oo, -+, 00). |tisnotationally convenient to collect the set of (q;); into one operator Q.
Thisisdonein two steps.

m Stack {(q)j}j=1.n asoneoperator Q; O [CN - #)!]. Notethat Aj = QiQF iswell
defined, it isthe Gram matrix of the basis of #;. In the current situation, the basis
is orthonormal and A = |. The subspace H; is generated by the basis operator Q;
in the sense that #; = CN Q;: it consists of all linear combinations of the (Gi)j-

m Stack the Q; further as one operator

Q=Y nQi (4.9)
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Figure 4.1. Basis representation Q of some subspace in A5.

withrowsT;Q = Q;. Seefigure4.1. Usually, wehave H Oy or 1 O £Z71, which
issignified by the diagonal staircaselinein thefigure (for these subspaces, the basis
vectors are zero at the left, resp. right of the line).

Wecall Q an (orthonormal) sliced basisrepresentation of the given basisof H. A num-
ber of properties of such abasis operator are listed below.

Proposition 4.6 LetH bealocally finiteD-invariant subspacein X3, withsdim (H) =
N, and let Q be an orthonormal sliced basis representation for H. Let N' = CN. Then
any F O H can be uniquely written as

F = DFQ7
for acertain Dg 0 D) . In particular, Q is bounded on D and generates H via

H = DYQ.
PROOF Let usstart fromthe orthonormal basis{(qi)1, -+, (0i)n} of each #;. Because
{mia);} (j=1,--,Ni, i = —0,---,00) isabasisof 7, any F 0 H can be written as
the linear combination of the basis sequences

F=Y (a);-ma);. (4.10)
1]

wherethe coefficients (a;) j are uniquely determined by F and ¥ |(ai) i[> = || F |35 <
0. Using Qj, equation (4.10) becomes

F=Y o, (4.11)
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where o = [(0ti)1, -+, (0i)n] O CPN satisfies 3 || a1 [|3 < co. Interms of Q, equation
(4.11) in turn becomes

F=DrQ, Dg=diagloj]®, 0D}, (4.12)
sothat H = D) Q. Theexpression H = D} Q showsthat Q isboundedasa[D; — ;]
operator. O
Example
LeeM=N=[--0[1]1110--]and T: " - ¢ begivenby

01 102 Q10203
1 (00] Oo03

1 Qa3

1

Consider H = P(£,Z71T). (Thistype of subspace will be frequently used in the fol-
lowing chapters.) #H isaleft D-invariant subspace. To obtain abasis representation for
H, wefirst look at its slices ;. Note that, by D-invariance, T-H; = P(T5 £2Z271T),
and that T5.£,Z 71 is the subspace in éé” consisting of sequencesthat are zero from en-
try i on. After multiplying with T, the resulting sequences are acted upon by P(1t-),
whose action can aso be described as setting a entries before point i equal to zero,
and embedding the result in XZN. Itisclear that only #1,---,H3 are nonzero. These
subspaces are given by

Hy= I'OW(H]_), Hy = [ 01 102 Q10203 ]
a0 100
Ho = row(Hy), Hy = 10(; 10(20(2
[ 10203
Hz = I'OW(Hg) , Hs = Q203
[ a3 J

Theconnectionwith the snapshotsof Hr in (4.3) isnot coincidental, and will beworked
out in chapter 5. Assuming a; # 0, wethushavesdim (#) = [@ 1110--],and
an unnormalized basis for # is given by

[]
1 ay oy03
Q=
1 a3
1

suppressing the remaining empty dimensions.



82 TIME-VARYING SYSTEMS AND COMPUTATIONS

Boundedness and computing rules for a sliced basis representation

Q can be viewed as an operator from (adomainin) X3’ to X3, but it isnot necessarily
abounded operator. A simple example of an unbounded Q is obtained by taking Q; =

[--0[1] 0--] (@l i), so that
uQ — [...u_l U U ] 0 1 0 — [O iui O],

which can be infinite since an £»-sequence need not be summable (as is demonstrated
by the sequence (1, 3,2, -+ ]). Althoughit isusually enoughto consider Q with domain
restricted to D, sometimes we need properties which seem to involve a more general
domain, and we derive such properties below. (A reader not interested in these details
can continue with proposition 4.7.)

To start, note that along with Q, operators DQ and QX (D O D, X 00 X) are also
bounded [D, - A5] operatorssince DD, [0 Dy, A>X O X,. The domain of definition
of Q can be extended: for example, the application of Q on elements of the type D,Z
is consistently defined via

D(zQ) =z(d"Q), (4.13)

and can be consistently extended Q (though not necessarily in a bounded fashion), to
all finite sums of terms of the type DZMQ. Hence Q is densely defined on A3 by
extension.

Wehave defined, see (2.8), the operator Pg on A astheprojectiononto Dy. We have
already extended Py to operatorsin X': Po(X) = diag[Xi] O D, where Xj = T{XTt i's
bounded for eachi. Py can aso be extended to unbounded operators that are bounded
as D, — X, operators: because 115 0 D, and hence TiiQ 0 A, Qji = QM =
5 (i Q) 1 is uniformly bounded over i. ThusPo(Q) = diag(Qii) iswell defined and
bounded: Pp(Q) O D. The extension satisfies the usual homogeneity rule for Py: if
D12 0D, then Po(D1QD2) = D1Po(Q)D».

Asabounded operator Q : D) — X3, Q hasabounded adjoint: Q*: A3\ — DY,
But also as a (possibly unbounded) operator [Xé\/ > XZM], Q has an (unbounded) ad-
joint QU: XM . XV, see [AGBL, 844]. It is defined asfollows: let dom(Q) be the
domain of Q in A3, The domain of Q" consists of all elements G 0 X3 for which
thereisaF' O XZNZ such that for every F 00 dom(Q),

FQ,Glpis = IF, F'liss, (4.14)

and we write F' = GQ". The existence of Q" implies symmetrically: if F 0 dom(Q)
thenfor all G 0 dom(Q") and F' = GQ"0 A" we havethat (FQ, Gls = [F, FQs.
Restricting F to D, 0 dom(Q) on which it is a bounded operator, and since then it is
true (for any F') that

[F,F'lhs = [F, Po(F') s,

wehave [FQ, Glis = [F, Po(GQP) s, and hence Py ( - Q") isthe adjoint operator of [Q
restricted to sz\/ ]. Sincethe latter operator isbounded, its adjoint isabounded [XZM -
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D)/] operator. The Q2 alluded to earlier isin fact given by Q& = Po(-QD), so that Q"
can be viewed as a natural extension of Q2.
Asacorollary, Po(-QQ") isabounded [P} - DJ| operator, hence

Aq :=Po(QQ") OD(N,N)

iswell defined by the extension of the domain of Py discussed earlier. The operator
Aq isthe Gram operator of the basis { (Tqui) j} of H. Itisadiagonal operator whose
entries/\j = QiQF contain the Gram matrices of the bases of the subspaces H; of H.
Because these bases have been chosen orthonormal, Aq = I.

Finally, using the definition (4.13), the adjoint of - (ZQ) restricted to D, isformally
equal to Po(Z71 - QY (-1): let D O D5, X O A>, then

{DZQ,x} = {zDWQ.X} (4.15)
= {DWQ,zx}!™
= {DW,Po(Z7*xQ")} ™
{D,Po(Z*XQ")™}.
The computing rules on unbounded basis operators introduced so far are sufficient

for our purposes. The importance of such basis representationsis illustrated by the
following proposition.

Proposition 4.7 Let#H bealocally finite D-invariant subspacein X3, andlet Q bea
diced basis representation of H. Let F O H, then

F=Po(FQY)Q={F,Q} Q.

PrROOF Let N = sdim # and A = CN. Accordingto (4.12), any element F of # hasa
representation F = Dg Q intermsof Q, where Dg [ Dé‘/ . Thediagonal of coefficients
Dr isobtained as

De = Po(FQY).

Since F 0 A3, we haveindeed that De [0 D5’ m

Non-orthogonal bases of locally finite subspaces

The preceding discussion can be generalized to non-orthonormal bases. Again, let H
bealocaly finite left D-invariant subspacein XZM. ‘H falls apart into subspaces H; =
T+ with finite dimensions N;. For eachi, let {( fi)1,---, ( fi)n} be acomplete system
of vectorswhose Grammatrix A = [ (( fi)j, ( fi)k) ]'J-\'_‘k:1 isbounded and boundedly in-
vertible. Thetotal collection{ T{( fi);} (j =1,---,N;, al i) iscalled aRieszbasisof 1.
The condition on A is equivalent to demanding that it be strictly positive: A > 0. We
call such abasisastrong sliced basis. For such a strong diced basis, we can construct
operators F; and stack them in an operator F in the same way as before. We obtain
similar results: F generates H via

H = DYF,
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it may be an unbounded operator, densely defined on XZN , butitisbounded asa[DN -
M) operator, and its adjoint FY exists in A3, which in general may be unbounded
aswell. The operator Po(-F7) : A3 - D) iswell defined and bounded, and is the
adjoint of F with domain restricted to sz\/ . Consequently, the operator Ag = Po(FF")
isin D(NV,N), and is equal to the Gram operator A of the chosen basis:

Ag = Po(FFY) = diag[A].

If Q isan orthonormal sliced basis representation of 7, then F can be expressed in
terms of Q:
F=RQ, RODW,N),
where Ris given explicitly as R = Po(FQ).
If Fisagiven strong sliced basis representation, then it can be orthonormalized by
factoring Ar into invertible factors R as

Ar = Po(FFY) =: RR".

Since Ar > 0, thisis aways possible. The orthonormal dliced basis representation Q
isgiven by Q = RIF; indeed

Nq = Po(RIFFR™) = R*Po(FFY)R " =1.

Orthogonal projection onto subspaces

Using the dliced representation for left D-invariant subspaces, we now turn our atten-
tion to the projection onto subspaces. We shall need the following proposition.

Proposition 4.8 Let # be alocally finite left D-invariant subspacein X3, and let Q
be an orthonormal sliced basis representation of 7, then (for X 0 X31),

X OH o Po(XQY =0.

PROOF Any Y in # can be written asY = DQ, for some D O D,. Then X OY «
{X,Y} = Po(XYS) =0, and Po( XYY) = Po( XQ"DD) = Po(XQU) DV. Letting Y range
over 7, thisexpressionis zerofor all D in D,, and it followsthat Po( XQUY) = 0. O

Let H be asubspace in X3, Then A3 = H O H", so that every X O A" can
be written (uniquely) as X = X; + X, where X; O H and X O H". The operator of
(orthogonal) projection onto # is defined as Py (X) = X;.

Theorem 4.9 Let H be alocally finite left D-invariant subspace in XZM, and let Q
be a dliced orthonormal basis representation of H. The orthogonal projection of any
X 0 X3 ontoH is given by

Py(X) = Po(XQH)Q. (4.16)
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PROOF Let X = X1 + X, where X; = Py (X) O H and X, O H". Then

Po(XQ9)Q = Po((X1+X%2)QY)Q
= Po(X1QYQ + Po(XQY)Q
= Po(XQYQ [prop. 4.8]
= X1 [prop. 4.7]
Hence Py (X) = P(XQY Q. |

Corollary 4.10 Let# bealocally finite left D-invariant subspace in X3, and let F
be a strong sliced basis representation of H. The orthogonal projection of X 0 XZM
ontoH is given by

Py (X) = Po(XFO)AFLF. (4.17)

PROOF If F isastrong sliced basis representation generating 4, then F = RQ, where
Q isan orthonormal basis representation and R0 D is any boundedly invertible factor
of Ar = RRY Inserting Q = R™1F in (4.16), the result is obtained. ]

Equation (4.17) generalizesthe classical projection formulato the present diagonal
algebracontext. Asin the classical use, an operator P defined everywhereon X, isan
orthogonal projector if and only if it isidempotent and Hermitian: PP = P, PY = P.
These properties are readily verified for the definition in (4.16):

P4 isidempotent since

Py (P1(X)) = Po(Po(XQ"Y-QQY) -Q =
Po(XQY Po(QQY) :Q = Po(XQY) -Q = Py(X).

Py, isHermitian if { Py (A),B} = {A,P#(B)} for al A B0 X,. Expanding thefirst
termyields

{Px(A),B} = Po(Po(AQ")-QB") = Po(AQ™) Po(QB").
The second termis equal to

{APy(B)} = Po(A[Py(BQY-QI")
Po (AQ"Po(QBY)
Po(AQP) Po(QBD).

Hence Py, is Hermitian.






5 OPERATOR REALIZATION THEORY

Therealization problem for time-varying systemsisto find a(minimal) state space de-
scription for the input-output operator of atime-varying system, solely based on the
collection of time-varyingimpul seresponses. Animportantroleinitssolutionisplayed
by the Hankel operator, which is arestriction or suboperator of the input-output oper-
ator. It maps input signals with support in the “past” to output signalsrestricted to the
future. Itsrelevanceto therealization theory of time-invariant systemshasbeen known
since the early 1960s and resulted in Ho and Kalman’s canonical realization algorithm
in 1966 [HK66]. The fundamental properties that enable one to derive a realization
arenot thelinearity or timeinvariance of the system (although these properties greatly
simplify the problem), but rather its causality and the existence of afactorization of the
Hankel operator into a surjective and an injective part [KFA70]. Thus, the problem of
realization was brought into the algebraic context of the characterization of the Han-
kel operator. The algorithm derived by Ho and Kalman does not require knowledge of
theseinvariant factors but uses the underlying structure to find the state representation
of the system.

In section 3.4 we studied realization theory for the finite matrix case, and we intro-
duced the Hankel operator as a sequence of matrices {Hy}. A direct extension of this
approachto operators(“infinite matrices’) is grosso modo possible but faces additional
difficultieswith boundednessand convergence. The operator case is nonethel essinter-
esting: it allows us to treat large classes of matrices and operators which correspond
e.g., to systemsthat areinitially time-invariant (matricesthat are partially Toeplitz) or
are periodically varying, and allows us also to analyze very large matrices for which

87
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only the behavior on afinite submatrix is of interest (viz. section 3.2). The purpose of
thischapter isto extend thefinite matrix approach of section 3.4 to an operator-theoretic
setting. To this end we introduce concepts such as input and output state spaces, and
basi s representationsfor these spaces. These are fundamental ingredientsfor our real-
ization theory and are used throughout the remaining chapters of the book. In addition,
we formulate the reachability and observability operator as single (diagonal) opera-
torsrather than asan indexed collection of matrices, and connect these operatorsto the
basis representations of the input/output state spaces. The index-free notation proves
to be extremely valuable in subsequent chapters: it enables short proofs of theorems
that would be burdensome otherwise. In fact, many proofsare almost carbon copies of
those for the time-invariant case, with the difference that the shift-operator Z does not
commute with most other operators. AZ +# ZA.

5.1 THE HANKEL OPERATOR

In section 3.4, we have introduced sequences of Hankel matrices { Hy} as submatri-
ces of a given upper triangular matrix T. We move now to a more formal approach,
which allows us to represent this sequence by a single operator Hy, which we will call
the Hankel operator. It is now necessary to work not on single input sequences, but
on collections of them, namely one for each point in time. In chapter 2 we have intro-
duced the spaces XZM as generalized input space and XZN as generalized output space,
and have indicated how the transfer operator acts between them. We define the Hankel
operator as acting between subspaces of these spaces.

Definition of the Hankel operator

Using the projection operators P and P’ defined in (2.8) in chapter 2, define the past
part of a signal U 0 X> asits projection onto £,Z71: Up = P'(U), and its future part
asitsprojectionontolfs: Us = P(U), sothat U = Up+U¢. The same definitionsapply
to the past and future part of an output Y. For an operator T O ¢/, mapping XZM into
XZN ,theactionof T ontoU O XZM can then be split into three parts:

_ Yo = UpKt
Y=Ut { Yi = UpHt + UsEr (5.1)
where
Kr: L7 771 UpKr = P/(UpT)
Hr: L7272y UpHr = P(U,T) (5.2)
Ev: U > Us: UfET = P(UfT) = UfT.

Note that there is no transfer from Uy to Yy, due to causality. Since T is a bounded
operator and the projections are contractions on X3, these operators are also bounded.
The operator Hy = P(-T) |£22_1 is called the Hankel operator of T: it is the map of

inputsin £,Z7* to the part in 4, of the corresponding outputs. See figure 5.1(b). The

operatorsKt and Et do not have special namesattached to them; they will occasionally
be used in later chapters.
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Figure 5.1. (@) realization T of T, (b) splitting into past and future signals, (C) repre-
sentation by Tp and T¢, using the factorization of Hr in (5.17).

Definition of state spaces

In the study of the Hankel operator, the range and kernel of Hy and its adjoint - HTEI =
P(-TH |u2 play amajor role. Neither ran(Hr) nor ran(HY) haveto be closed. We will
use these subspacesthroughout the remainder of the book, and therefore we attach spe-
cific symbolsto them. Some preliminary properties are derived at this point.

Let the subspaces 7 and K in £,Z71 be defined as

input null space: K =ker(-Hr) ={U 0 L,Z1:P(UT) =0}
input state space: H = ran(-HY) = P'(U,TH).

K, asakernel, isalwaysaclosed subspace. Itisreadily verified that these subspacesare
left D-invariant; e.g., K isleft D-invariant sincefor DO D, P(UT) =0 O P(DUT) =
DP(UT) = 0. Thekernel of alinear operator defines equival ence classes. we say that
aninput Uy 0 £,Z71 in the past is Nerode equivalent to U, 0 £,Z71 if and only if they
have the same future outputs: P(U1T) = P(U,T). Consequently, P[(U;-U,)T] =0,
hence U, is Nerode equivalent to U, if U3 —U, O K. This means that, as far as the
future part of the output signal is concerned, there is no distinction between U; and
U,: for the purpose of computing Yz, a collection of Nerode-equivalent signals may be
represented by a single one of them. The idea underlying state realizations is that the
selected signal, in turn, will be represented by a state variablein D,. Signals that are
Nerode-equivalent are mapped to the same state.

Thekernel of an operator and the closure of the range of its adjoint span the whole
spaceonwhichthey aredefined (cf. (A.7)). Hence, we havethat ker(-Hr) isorthogonal
totan(-Hx) and ker(Hy) Otan(HY) = £,Z27, or

HOK = L2772, (5.4)

(5.3)
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In adual way, we define the

output state space:  Ho = ran(-Hr) = P(L£Z71T)

Hr (5.5)
output null space: Ko = ker(-HY) ={Y Ol : P/(YT) = 0}. '

‘Ho, astherange of Hr, istheleft D-invariant manifol d containing the projections onto
U, of all outputs of the system that can be generated from inputsin £,Z71. K, isits
complement in Uy:

Ho O Ko = Us. (5.6)

Theinput and output null and state spaces satisfy the following relations:

P(KT) =0, Ho=HHr =P(HT)

P (KoTH =0, H=HoH{ =P (ToTY). 7

(Thetwo eguationsontheright follow frominserting (5.4) and (5.6) into the definitions
of H and H,, and using the two equations on the |eft.) These relations ensure that
and H, have the same dimension sequences:

Proposition 5.1 If H and H, arelocally finite subspaces, then

sdim (H) = sdim (Ho) .

PROOF Apply equation (4.8) to (5.7): Ho = HHr and H = H,oHY. Thisyields that
sdim (o) < sdim () and sdim () < sdim (Ho). O

We will seelater in this chapter that the sequence of dimensions of the state spaces
isequal to the minimal system order of T.

Connection of Ht with { Hc}

A consequence of the fact that Hy is a left D-invariant operator is that the spaces H,
K, Ho, and Ky are left D-invariant; e.qg.,

Y; =UpHr =P(Up,T) O DY; = DP(U,T) = P(DU,T) = (DUp)Hr .

Asindicated in section 4.1, the operator Ht (and likewise, Kt and Ey, which are also
left D-invariant operators) can be viewed as an indexed sequence of snapshots. Ac-
cording to definition 4.1, the snapshot Hy is obtained via

OUOLZY:  (MUHT = T{(UkHy) (5.8)

whereUy = U isthek-th row of U. (Theoperator Ty was defined in (2.3) and projects
elements of x> onto rowsin ¢».) Hence Hy is an operator such that

Y=UHr = Ye=UdHyx (@@lK).

SinceU O £,Z71, Uy is asequence which has zero entries from its k-th entry on. Like-
wise, Y = UHt O U>, hasrows Yy which have zero entries beforetime k. Thus, Hy has
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the matrix representation

Ti-3k .
He—= | O T2k Tke2kst . (5.9)
Te-1k Tkl Teepke2
0 0 _

This yields the definition of Hy of the previous section, equation (3.21), save for an
(isomorphic) mirroring operation.

If we write Hy = TuH as the k-th dice of the D-invariant subspace H (as we have
donein section 4.2), and similarly for 7o, then

Hy =ran(-HY), (Ho)k = ran(-Hy) . (5.10)

5.2 REACHABILITY AND OBSERVABILITY OPERATORS

Factorization of Ht

If au.e. stable redization {A,B,C,D} of T is given, then from (3.23) it follows that
each Hy can be factored as Hy = CxOk. An obvious question that emerges at this point
iswhether the operator Hr admits a similar factorization. The answer should be affir-
mative, of course, in view of the close connection between Hr and its snapshots Hy.
The key isthe identification of the state as an intermediate quantity through which the
input-output map factors.

Recall from equation (3.11) the state equations that describe the mappingY = UT
based on input and output spaces of X>-type:

Xzt = XA+UB
{ Y = XC+UD (5-11)
The state X can be written in terms of its diagonals as
X=Y Z%%, X =PoZ*X),
k=—00
and likewise for U and Y. Therecursive description of (5.11) is (viz. (3.12))
-n  _
RKipy = XwA+UkB (5.12)
Yig = XwC+UgD

If lta<landU O XZM, then (5.11) can be solved for X which leads to

X =UBZ(1-AZ)™.
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Specializing to the 0-th diagonal (considering all the “presents’ at once) produces
X = Po(UpBZ(1-AZ)™"). (5.13)
Note that U¢ does not play arole because BZ(1 —AZ)™ 0 #/Z. Now assumeU = U,

(i.e., Ut = 0). Equation (5.11) then implies P(XZ™1) = P(X)A; Yf = P(X)C, o that
the “future state” X¢ = P(X) satisfies

P(X;ZY) = X;A.
Since P(X{Z1) = X:Z ™1 - XqZ 7!, we have X; = X + XtAZ, or
Xf = Xg(l-AZ)™
Yi = X;C=Xg(l-AZ)"C.
Equations (5.13) and (5.14) represent a factorization of the Hankel operator. It isil-
lustrated in figure 5.1(a) and (b): Hr isthe transfer of Up to Y; for Us = 0. The past
input Uy, determinesthe state X(q;, which then determinesthe future output Y, provided

Us = 0. Wereserve specia symbolsfor the main operatorsin this development. Let F
and F, be defined by

(5.14)

FJ = BzZ(1-A2)™' = BZ+BZAZ+BZ(AZ)*+ - (5.15)
Fo = (I-AZ)")C = C+AZC+(AZ)C+---. '
Fisdrictly lower, Fq is upper, and they satisfy the equations
o _ g
FU = Fbaz+BZ (5.16)

FO - AZFO+C

The abovederivationisvalid for a < 1. If £ isnot strictly lessthan 1, then F and F,
are not necessarily bounded and have to be used with care. We restrict our attention to
theu.e. stable case (¢ < 1) at this point, although generalizationswill be needed |ater
on.

The following theorem summarizes the previous development. Y = UpHt can be
computed as Ys = Po(UpFD) Fo, so that Ht has a factorization into a product of two
operators: Y; = X Fo, Where Xy = Po(UpF-).

Theorem 5.2 LetT OU, andlet{A,B,C,D} beau.e. stablelocally finite realization
of T. LetF andF, beasgivenin (5.15). Then Ht has a factorization

Hr = Po(-FY) Fo. (5.17)

The factorization of Ht is equivalent to the factorization Hy = CxOx in (3.23). In-
deed, taking snapshots of Py( -F") and F, producesCy and Ok. Inview of (5.1) and the
factorization of the Hankel operator, the computation of Y =UT can be written asthe
composition of two operators T, and Ty, using an intermediate quantity Xg, the state.

To = [Po(-F?) Kr]
(X0 Yp] = UpTp P
{Yfz[x{q Uy where g = {H (5.18)
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Weinterpret T, asthe“past” input-output operator and Ty asthe “future” input-output
operator. Past and future are only connected via X . See figure 5.1(c).

Definitions of reachability and observability

An important property that the factorization Hr = Pg(-F) F, can possess is (local)
minimality, since that impliesthe minimality of the dimension sequence#53 of X;g and
thus the minimality of the realization. Let {A,B,C,D} be au.e. stable locally finite
realization of T where ALl D(B, BY). With F and F, asin equation (5.15), we define
the

reachability operator: ~ Po(-FU)| £,7°1

observability operator: - Fo| D8

Reachability, observability and minimality are defined as properties of the ranges of
these operators, asfollows.

Definition 5.3 A redlization is reachable if Po( L2Z F") is dense in D5, and uni-
formly reachable if Po(L,Z 1 FY) = D5,

A redlization is observable if Po(UoF5) is densein D5, and uniformly observable
if Po(UsF35) = D5.

A redlization is said to be minimal if it is both reachable and observable.

Using thefact that the closure of the range of an operator and the kernel of itsadjoint
are complementary subspaces, we immediately obtain the following proposition.

Proposition 5.4 A redlization is reachableif and only if the operator - F|D is one-to-
onee DF=00 D=0 (alDUODy). If therealization is uniformly reachable then
D,F is a closed subspace.

A redlization is observable if and only if the operator - FO\DZ is one-to-one: DFy =
0 O D=0l DUODy). If the redlization is uniformly observable, then D;yF, is
closed.

PROOF If Po(-FY) isregarded asan operator from £,Z™1 — D5, thenits adjoint oper-
ator is -F with domainrestricted to Dg . Inview of (A.7), we obtain the decomposition
DY = ranPy(-FY) O ker(-F|D2). The range of Po(-FY) is densein D, if and only if
ker(-F|D2) =0,i.e, -F|D2 is one-to-one. Finally, the range of an operator is closed if
and only if the range of its adjoint is closed. O

Let usnow recall the definitions of theinput and output state spaces (equations(5.3)
and (5.5)):
H=ran(-HY),  Ho=ran(-Hr).

Using thefact that Hy hasafactorization Hr = Py( - FD) Fo, we can provethefollowing
relations between these spaces and F, Fo.

Proposition 5 5 Let {A B,C,D} beau.e stablelocally finite realization of T, with
AOD(B,BY), andlet F and Fo be the associated reachability and observability op-
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erators. ThenHo 0 D5F, andH O DSF, and we have the following implications:

reachability 0 Ho = DEF
uniform reachability [ Ho = DEFy

observability 00 H = DSF
uniform observability [ H = D5F.

PROOF Since Hy = Po(-FY)F,, it follows that #, = ranHt = Po(£2Z *FY)F, O
DEF,. If the redization is uniformly reachable, then Po(£,Z 1 FY) = DS, so that, in-
deed, Ho = D5F,. We aso have Ko = kerHY = ker Po( -FE’)F\MZ. If the realization
is reachable, then F is one-to-one and Ko = kerPo(-Fp)| 1y With complement Ho =

ran( - FO\DZ) = D5 Fo. Theremaining statements are proven in the same manner.
O

Proposition 5.6 If aredlization of T is both uniformly reachable and uniformly ob-
servable, thentherangeof Hy : Ho = DEFo, andtherangeof HY: H = DSF, areclosed
subspaces.

Conversely, let Ho and ‘H be closed subspaces. If the redlization is reachable and
uniformly observable, then it is uniformly reachable. Likewise, if the realization is
observable and uniformly reachable, then it is uniformly observable.

PROOF The first part of the proposition follows immediately from proposition 5.5:
since the realization is uniformly reachable, #, = D5F,. Because the realization is
uniformly observable, proposition 5.4 assertsthat D5 F, isacl osed subspace, and hence
Ho = ranHy isaclosed subspace.

We now provethe second part. Accordingto proposition 5.5, uniform observability
implies H = D5F is closed, so that the range of the adjoint of -F\Dz is closed, too:

Po(L2Z71FD) is closed. Reachability means, by definition, Po(£,Z71FY) = D,, hence
Po(£2ZYFY) = Dy: theredization is uniformly reachable. O
Propositions 5.4 and 5.5 have a direct corollary, which is part of a Kronecker-type

theoremfor time-varying systems. The second part appearsastheorem 5.19in the next
section.

Corollary 5.7 (Kronecker-typethm, 1) Let T OU be alocally finite transfer opera-
tor which has a u.e. stable realization with state dimension sequence BB. If the realiza-
tionisminimal, then#B = sdim H = sdim H,.

PROOF The given realization defines F and F, by equations (5.15). Reachability im-
pliesH, = D?Fo. Observability implies that F, is one-to-one, hence sdingFo =
sdim D5 = #8. 0

The corollary can be stated at the local level as well: if the realization is minimal
and thek-th sice TkHo = (Ho)k Of Ho hasadimension dy, then dy isequal to the state
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dimension of the realization at point k. Hence, we recover part of the realization theo-
rem for finite matrices (theorem 3.7). It isaso true that (H,)k is equal to the range of
Hy, the k-th snapshot of the Hankel operator, as we have seen in (5.10), and that dk is
equal to the rank of Hy.

Most of the remainder of this chapter is concerned with a proof of the converse of
thecorollary,i.e, toshowthat if sdimH =sdimHo =[--- dp di dy ---]isauniformly
bounded sequence of dimensions, where dy = rank Hy, then there exist realizations of
T with dx equal to the system order at point k. We call the sequence the minimal sys-
temorder of T. The actua construction of such minimal realizations is the subject of
section 5.4, where the converse of corollary 5.7 appears as theorem 5.19.

Computation rules for F and Fq

Equations (5.16) will often be used in the following form.

Po(zt-F9™ = Py(-[FA+B))
FO = C+AZFO
Po(-FY) = Po(zt FY)HATL Py(-CH) (5.20)
T = D+FC
T = D+BZF,. (5.21)

5.3 REACHABILITY AND OBSERVABILITY GRAMIANS

Whether a given realization is reachable and observable is important: it determines
whether the realization is minimal. Some state space operations to be dealt with in
following chapters can only be carried out on realizationsthat are reachable and/or ob-
servable. However, the form in which reachability and observability properties have
been presented so far (as range conditions) does not give a straightforward method to
determine these properties for a given realization. The purpose of this section is to
make these properties more concrete.

Proposition 5.5 states that if arealization is reachable and observable, then the in-
put and output state spaces are given by H = DaoF, Ho = DoFo. Hence F and F, can
be viewed as basis representations that generate these subspaces. In view of this, we
define the Gramians of these bases as

reachability Gramian: Ag = Po(FFY)
observability Gramian:  Ag, = Po(FoF).

Ar and Ag, are bounded diagonal operators, see section 4.3.

Proposition 5.8 A redlizationisreachableif and only if Ag > 0, and uniformly reach-
ableif and only if Ag > 0.

A redlization is observableif and only if Ag, > 0, and uniformly observable if and
only if Ng, > 0.
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PrRoOOF Intermsof diagonal inner products, DF =0 = {DF,DF} =0,and{DF,DF} =
Po(DFF'DY) = DPo(FF®)DF. With proposition 5.4, thisimpliesthat the realization is
reachable if and only if the Gram operator Ar = Po(FFY) > 0. Proof of the propo-
sition on uniformity also works by transforming to the local level. If Ag > 0 then
A1 exists and is bounded. In that case, let D, be a sequencein D, such that Uy, :=
DnF - U for some U O £,Z 1. Then Po(DnFFY) = Po(UnFY) so that the sequence
Dn = Po(UnFY)AF! isbounded and convergesto adiagonal D for whichU = DF. This
shows closure. Conversely, if the map is closed, then by standard Hilbert space argu-
ments Ag must be boundedly invertible and sinceit is positive already, it then must be
gtrictly positive definite as well .t O

The reachability and observability Gramians will play an important role in many
of the topics of the remaining chapters, because it is often possible to compute them
recursively.

Lyapunov equations

Proposition 5.9 Let{A,B,C,D} beau.e. stablerealization, and let the operator F be
given by equation (5.15), with Gramian Ag = Po(FFD).
Mg satisfies the equation

ATV = BB+ ANeA. (5.22)

PrRoOOF Using equation (5.19),
ASY

Po(Z7HZF]FT) Y

Po([B"+ ATF] [B+ FLA))

Po(BB) + Po(AFFYA) + Po(BFIA) + Po(A“FB)
= BB+ APy(FFA+ 0+ 0.

Equations of the type
MY = AAMA+B"B, M OD(B,B) (5.23)

areknown as Lyapunov or Lyapunov-Steinequations. If £4 < 1, thenitiseasy to verify
by substitution that the equation has a solution given by

M = % (A HBB) DA (5.24)
K=
where Al = AW ...AD for k> 1 and A% = |. If /5 < 1, then the summation con-
verges and the solution is unique: if A isanother solution, then
M=-AND = AIM-A)A
0 M-A = (AlIM-A)WAK

1Thisis acorollary to the closed graph theorem, see [Rud66] p. 122.
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and /5 < 1implies Al _, 0sothat A = M. If ¢a = 1, then the Lyapunov equation
does not necessarily have a unique solution. For example, if A= 1 and B = 0, then the
resulting equation is M(~) = M so that any M which is Toeplitz and diagonal will do,
whereas Ar = Po(FFY) = 0 in this example.

We obtain the dual to proposition 5.9 in asimilar way.

Proposition 5.10 Let{A,B,C,D} beau.e. stable realization, and let the operator F
be given by equation (5.15), with Gramian Ag, = Po(FoF5). Then Ag, satisfies the
(dual) Lyapunov equation

Ak, = CCT4+ ANE DA™ (5.25)

Again, if £ < 1, then the solution to the equation Q = CC”+ AQ("Y Alis unique and
equal to Ar,.

For a given realization, the Lyapunov equation is computable: by taking the k-th
entry of every diagonal in this equation, we obtain the recursion

Mk+1 = AkqvlkAkJrBlEBk, k= "':_1:O: 1:"': (526)

and My can be computed, fork =---,-1,0, 1, - - -, provided we have an appropriateini-
tial point for therecursion. Exact initial pointscan beobtainedin most cases of interest,
asfollows.

« If theredlizationisarealization for afinite nxn matrix, then we can assume that
the realization { Ax, Bk, Cx, Di} starts with a zero number of states at time 1, say. An
exact initia valueisthen M; = [ -], amatrix with zero dimensions.

 For systems which are time invariant before some point in time (k = 1, say), an
exact initial value can be computed analytically fromthetime-invariant algebrai c equa-
tion that holds beforetime k = 1:

Mo = AgMoAg + B5Bo.

Thesolutionto thisequation followsfrom an eigenval ue decomposition (Schur decom-
position) of Ag, or by using Kronecker products, see [HJ39].

* If thesystemisperiodically time-varying, thenit can beviewed asatime-invariant
system T with block entries Tij = Ti-j of sizenxn: T isablock Toeplitz operator. As
discussed in section 3.2, we can assume that the realization is periodical, too, in which
case we can replace it by a block realization { A,B,C,D} that is time-invariant. The
Lyapunov equation can be solved for this time-invariant system, although this is not
really attractiveif the period islarge.

* Finaly, if we have atime-varying realization for which /4 < 1, then, as we have
shown before, the Lyapunov recursion is strongly convergent. In that case, My at some
point kisindependent of the preciseinitialization of therecursionat k= —, say. Hence
it is possible to limit attention to afinite time-interval, and to obtain arbitrarily accu-
rate initial valuesfor thisinterval by performing a finite recursion on data outside the
interval, starting with initial values set to 0. For the Lyapunov recursion example, M4
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can be determined as

M, = AgMvo—l-BgBo
AGAZ, M1 A_1Aq + ByBo + ASBE B_1Ag
= AY-AD Mg A Ag +

n
+ {BEBO+AODB915_1AO+ ;AE- A5, BIBLA - -Ao} .
i=

If the systemisu.e. stable, then || A - - - Ag|| can be made arbitrarily small by choosing
n large enough. Neglecting for this n the first term gives an approximation of My. The
same approximation would have been obtained by choosing M-, = 0, and computing
Mj viatherecursion (5.26).

Normalized realizations

Lyapunov equations arise in the normalization of agiven realization. Suppose that we
are given a u.e. stable minimal realization { A, B,C, D} of some locally finite operator
T OU. The objectiveisto find a similar realization { A',B',C',D} which isin input
normal form, i.e., for which A = . In view of (5.22), such a redlization satisfies
ATA + B™ = 1. Let F and F, be the reachability and observability operators of T
asin (5.15), and define F' and F}, likewise for T'. If Ris a state transformation that
brings T into T’ according to (3.14), then F = R°F’ and RF, = F., and the correspond-
ing Gram operators satisfy

Ae = RARR
A = RAR,R. (5.27)
Thefirst equation gives
Ar =RR,

so that the required state transformation R is a factor of Ar. R is boundedly invert-
ibleif and only if Ag isuniformly positive, that is, if the given realization is uniformly
reachable. If /5 < 1, then Risobtained by solving the Lyapunov equation (5.23) for M,
followed by solving the factorization M = R-R. Another way to arrive at the Lyapunov
equation directly is by inserting therelations A’ = RAR (™Y and B' = BR™(™Y into the
normalization condition APA’ + B'™B’ =, and putting M = R'R. Likewise, arediza-
tion in output normal form (for which Ag, = 1 sothat AA'™+C'C'=1) is obtained by
factoring Ar, = R™IR™Y, and we see that the given redization must be uniformly ob-
servable. Again, if /a < 1, then R can be obtained by solving the Lyapunov equation
Q = CC "+ AQ™YA for Q after which Ris obtained asafactor of Q1. The Lyapunov
equationis directly obtained by inserting therelations A’ = RAR (Y and C' = RC into
the condition AAP+ C'CP=1.

Equivalent minimal realizations

Reachability and observability Gramians can also be used to compute equivalent min-
imal realizations from realizations that are not reachable and/or not observable. Sup-
pose that we are given a u.e. stable realization { A,B,C,D} of alocaly finite operator
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T OU, and let usassumethat it is not in reachableform. To transform it into acanon-
ical form, let Ap O D be the reachability Gramian of the given realization of T. Since
NAg 20, it has afactorization

0 /\11 Rl
NAe=R [ O}R’ R{Rz}’ (5.28)
where/\11 > 0and Risaninvertibleoperatorin D (e.g., R can be chosen unitary). Note
that the range of A11 is not necessarily closed: it need not be uniformly positive. In
case Risunitary and hastheindicated block decomposition, thenran( -Rp) = ker(-Ag),
ran(-Ry) = fan(-Ag). Applying R as state transformation to T leads to a realization
T ={A,B,C',D} given by

A C] [R A C|[RM

B D | I B D I |-
A o= [P ol is the reachability Gramian of T', and satisfies the Lyapunov equation
A,(;l) =APARA + BB Partition A, B',C' conformably to the partitioning of R. Then
A, O
An Ay
becauise the Lyapunov equation leads, in particular, to 0 = B} B}, + AZA11A),, so that
B, = 0and Az = 0since Ay > 0. It follows that { A;,B},C;, D} isa(smaller) real-
ization of T which isreachable, with reachability Gramian equal to Ay;.

Similarly, arealization which is not observable can be transformed into the canon-
ical form

G

r_
A‘[ c,

}, B =[B, 0], cz[ }, D'=D, (5.29)

C

/ /
(%] v e[S

, D'=D,
A |

by computing a factorization of the observability Gramian Ag, as
/\Fo — R—l |: (AO)ll :| R—El7
0
and now {Aj;,B},C}, D} form an equivalent realization with observable states.
Realizationsthat are neither reachablenor observabl e can betransformed into amin-

imal realization by applying both transformationsin succession, asfollows. In thefirst
step the reduction of the reachability Gramian yields

A0 C
A A B A
Reducing the systems{ A7, B}, C1} and {A;, 0, C,} separately produces state transfor-
mations R, and R, such that

(-1 (-1 A/I AH CH
(RAR R YRy = { | g 4 | e G
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Xaj0) X2[0] | X3[0] | X4[0)

Uy —— Yo
1) | (1) (1) b (D)
Xigy oy Py PRary
(-1) 1 (1)
Uy — T = iy

Figure 5.2. Splitting of the state space into four parts. Only state X1 is useful, i.€., both
reachable and observable.

and

p [ , __ , 1 AH CH
{R,ZAZR,Z(J-):BZNZ( 1)7R,2C2}:{|: AS?, A’?;4 :|/[0 0]/|: 02
44

2

If we now apply the transformation [Rll Fé] to the primed system, we obtain

!

U U
All A12

0 o |c

o 0 ALl o0 o ‘ 0

= [ é” g” } = An Ap|Ap Ay |G
Ap Ap| 0 ALl 0

B/ By 0 0D

The structure of thisrealization is shown in figure 5.2. The state spaceis split into
four subspaces. Only state X; is useful. States X, and X4 are not observable, states
Xz and X4 get no excitation and hence remain zero if they were initially zero (X3 is
observableif some “deus ex machina’ has put a non-zero value there). Non-minimal
realizations should be avoided from numerical and computational points of view: they
lead to extra, unnecessary operationson the data. Physically, the spurious states can be
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In: T=(AB,C,D) (alocally finite realization)
Out: T =(A,B,C,D) (a) an equivalent reachable realization
(b) an equivalent observable realization
(a) Initialize O,
fork:1,2,--A-
Compute Q1 from an LQ factorization: A
A A 0
Qv | GG __lA'k 0|c 1| %
B« | D B, 0| Dj o |1
end
(b) Initiaize Qns1
fork:n,n—},---
Compute Q from a QR factorization:
: ; A G
Aka+1|Ck . Qk D|O] O‘ 0
BQw+1 | Dk 0 Ol B, | Dj
end

Figure 5.3.  Algorithm to bring a realization into (@) reachable form, (b) observable form.

asource of noise and instability, and hence we usually wish to retain only the minimal

part:
R Al 1/
el o)

A practical algorithm to bring arealization into reachable form uses the observation
that in (5.29) we are only interested in A/, By, C}, D, and want to reject the remaining
blocks. Thus, if R= [E;] andRt=[(R1); (R?)], thenweonly need Ry and (R™1);.
It is convenient to use a unitary state transformation Q = [8;] in place of R, because

Q1= Q"= Q] Q5]. Hence, we need only retain Q; and do not havetoinvert any ma-
trix. Theresulting algorithmissummarizedin figure5.3(a), where Q1 iscalled O. The
algorithm can often be combined with other forward recursions, to ensure reachability
“on the fly”. Since the state transformation matrices are not inverted, the algorithm
could in principle be applied to a realization for which the reachability operator does
not have closed range, provided that the QR factorization algorithm used is reliable
for nearly singular matrices. In that case, the resulting realization isreachable, but not
uniformly reachable.

Theinitialization of the algorithm depends on the situation at hand. For afinite ma-
trix T, Ay startswith O states, so that Q; = [-]. For systemsthat aretime-invariant be-
foretimek =1, O; = Qg is derived from the solution of the time-invariant Lyapunov
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equation

N
Ao = ASAoAo +BiBo, Ao =: QE{ 1

0 } Qo = QoAuQo.
The solution of the Lyapunov equation for other cases of interest is discussed in the
beginning of this section.

5.4 ABSTRACT REALIZATION THEORY

Inthe preceding section, we assumed knowledgeof au.e. stablerealization{ A, B,C, D}

of anoperator T. Wewill now investigate how such realizations can bederived. Thisis
doneby the analysisof Hr andits characteristic subspaces, # and #H,. We show how a
shift-invariance property of these spaces, along with the choice of abasisin either one
of them, produces minimal realizationswhich are either in “input normal form” (or in
“canonical controller form™) or in“output normal form” (canonical observer form). In
al four cases, redlizations with ¢4 < 1 are obtained.

Shift-invariance properties

Recall the definitions of the input state space H and theinput null space K in equation
(5.3):

H = ran(-HY) = PUTYH

K = ker(-Hr) = {UDLyZ1:PUT)=0}.

K satisfies the shift-invariance property
Zlkok. (5.30)

Indeed, if U O K, then P(UT) = 0, henceUT O £,Z ! and thus Z7*UT O £,Z71, too.
But thismeansthat P(Z"*UT) = 0 so that Z"*U O K.

The shift-invariance property of X implies a shift-invariance property of its com-
plement 7. We will use it in the following form.

Lemma5.11 LetA(-):=Py(Z ). Then
(@) A(Pc(U)) =0foralU O Xs.
(b) On£,Z7Y, A"(-) = Py(Z ™), forn> 0.

PROOF (a) isaconsequenceof 7 0K and Z™*K 0K, sothat H O Z 7K.
(b) Forany U O £,Z71,

Pu[Z'Py(ZU)] = Pu[Z7'Py(Z7'U) +Z7Px(Z7'V))]
— Py(Z ).

The result for n > 2 follows by induction. |
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Canonical controller operator realizations

Let T beagiven bounded linear causal time-varying system transfer operatorini/, and
let H,Ho, K and Ko beits input-output state and null spaces, respectively. Then,

forUOL,Zt: P(UT) = P[Py (U)T].

This property isrelated to Nerode equivalence: asfar asthe “future output” P(UT) of
T isconcerned, inputsU O £,Z7! are equivalent to their projection Py (U) onto AH. It
followsimmediately that the Hankel operator Hr = P(-T)| £,7-1 Can be factored:

‘Hr = P[Py (-)T]. (5.31)
Introducing the “state” Xo, this becomes more clearly visible: for U, 0 £,Z71,

_ Xo = Py(Up)
Yo =Uphr - {Yf = P(XoT).

Morein general, forU O X, and any k U Z, and with Uy = Po(Z7™U) equal to thek-th
diagonal of U,

Xk = Py(zU)

5.32
Yig = Po(XkT)+UyTg (5:32)

Y=UT = {

where we have introduced a state Xy, and used (i) (ZKU)T = Z7XY, (ii) by causality,
Yy does not depend on Uy;; for j > k.

The shift-invariance property in lemma5.11 directly givesarecursion for Xy. To-
gether, these lead to an operator state space model in aform that is already familiar in
anumber of other contexts (see e.g., [KFA70, Fuh76, Hel 74, FS82, You86]).

Theorem5.12 Let T OU(M,N) beagiven transfer operator with input state space
‘H. Define bounded operatorsA,B,C,D by

Py(Z)  Po(

o(-T)
Pu(Zt) Pof

)

Then, (1) the (uniformly bounded) sequence{ X} defined by Xy = Pg(Z‘kU ) forU O
M satisfies

A H-H C: H-DY {A c}

T
B: D' - FH D: DYDY B D T

Xyl = XkA+U[k]B (5.33)
(2 IfY =UT andU O XM, then'Yy, satisfies
Y[k] = XkC+ U[k]D.

(3) The spectral radiusr(A) satisfiesr(A) < 1. Ifr(A) < 1, then{X,} OH istheonly
uniformly bounded sequence in H which satisfies the recursion (5.33).

PROOF The proof goesin three steps.
(1) Xk = P(Z7*U) satisfies (5.33):
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Pu(Z*W) = Py(Z(ZH))
Pu(Z Py (ZMU) + Px(ZU) + P(Z)))
Pu(ZXk) + 0 + Py (Z7Po(Z74U))

XKA + U[k]B

xk+1

(2) The output equationisalso satisfied: with Xy = Py, (ZKU), equation (5.32) ensures
that

Y=UT = Y[k] =Po(XkT) + Po(U[k]T) = XkC + U[k]D (al k).

(3) If r(A) < 1, then { Xy} isunique: suppose there is another sequence { X'k} which
satisfies 5.33, then for X|/ := X — X'y and n > 0 we have

[(I = Pﬁ(z_nxﬁ—n) = [(I—nAn-

Hence, || X{|| < [IX{_l/[|A"]|. Let M bean upper bound on { || X"}, andr(A) < p <1,
then for n large enough we have (by definition of the spectral radius) that ||A"]| < p".
Hence,

X < Mp"

for large enough n. Since n can be arbitrarily large, it follows that || X{|| = O, and Xy
must be unique. O

Without the uniform bound on the sequence {||Xk||}, uniqueness of the sequence
cannot be assured. Thisalready occursinthe LTI context, and exampleof thisisgiven
at the end of the chapter.

The realization which we have obtained has its state in 7, and may therefore be
called a canonical controller state realization. Alternatively, we can choose the state
operator in the output state space, in which case we obtain a canonical observer real-
ization. Thiswill be derived in a subsequent section.

Canonical controller realization

Although the state-space description in the form of operator recursions as in theorem
5.12 is the core of any state realization, it is not very useful for our purposes yet. If
we assume the state space to be of locally finite dimension, then by choosing a dliced
orthonormal basis representation Q in 7 such that 7 = D,Q (viz section 4.3), we can
derive concrete matrix representations for the abstract operators A, B in terms of Q,
and produce state space descriptions based on diagonal operators A,B,C,D. Thuslet

Xk =XKQ, Xiq UDs.

Using the projection formula, Py () = Po(-Q)Q (thm. 4.9), gives Xy = Py (ZKU) =
Po(Z*UQP)Q, so that

X = Po(ZUQY).
Also, P(XT) = XygP(QT). The factorization of the Hankel operator in (5.31) thus

becomes
Hr = Po(-Q") P(QT). (5.34)
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Comparing (5.34) with the factorization of Hy obtained in section 5.1, we see that the
reachability operator of arealization based on this factorizationis Po(-QY). AsAq =
Po(QQ") =1, such arealization will be uniformly reachable, and even bein input nor-
mal form. The operator F, := P(QT) is the observability operator. F, is one-to-one,
because
DF,=0 o P(DQT)=0
o DQLOK
O D=0,

since Q formsadliced basis of the orthogonal complement of K. Hence arealization
based on this factorization is observable and minimal.

Thefollowing theorem is the main theorem of this section: it givesan explicit real-
ization { A,B,C, D} intermsof the basis Q of theinput state space.

Theorem 5.13 (canonical controller realization) LetT OU(M,N) beagiventrans-
fer operator with input state space H of locally finite dimensions, Let Q be a diced
orthonormal basis representation of H: H = D5Q, Aq = |, where B is defined by
sdim H = #B. Define

AODB,BY)  CcODB,N)
BODWM,BY) DODM,N)

_ [Po(z_lQQD)(_l) Po(QT)
T [Po(Z71QPHY Py(T)

Then, forU O XM, Y 0 X3, thereexistsauniformly bounded sequence of states Xy [
Dy, k= —00, - oo such that

A C
B D

- _
Y=UT O Xiryy = XwA+UyB (5.35)
Y[k] = X[k]C+ U[k]D (aII k) .

Thisrealization is observable and uniformly reachable (hence minimal), in input nor-
mal form, and ¢p < 1.
Iffa < 1, then thereis a unique uniformly bounded solution{ Xy} . In that case, the

operator X given by X = 5, Z¥X isin X%, and (5.35) is equivalent to

Xzl = XA+UB
Y = XC+UD.

(At the end of this chapter we give an example to show that the qualification “uni-
formly bounded” in the uniqueness assertion is needed.)
PrROOF Starting fromtheoperator realizationin theorem5.12, define X := Po(XxQP),
S0 that Xk = X[k]Q Then

Xir1 = XpryQ = XA
= Py(ZXy)
= Po(ZXQ9)Q Po(Z WU Q)Q  [thm. 4.9]
= Po(ZXxQQ9Q Po(ZU Q9 Q
= XJPo(Z1QQIQ + LRz,

+
+ Py (Z_]‘U[k])
+
+

that is, X[(k_+1)1] = XPo(Z2QQOY + UyPo(Z71QD)Y.
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In the same way,

Y[k] = XkC+U[k]D
= Po(XkT)+Po(UyT)
= XyPo(QT) +UyPo(T).

The definition of A is connected to the definition of A viathe chosen basisQ as
(DQ)A = DWAWQ  (any DO DE).

Recursive application gives
(DQ)A" = DWAIMQ  (anyD O D), (5.36)

where Al = AM...AM) Hence | Al || = ||A"|| = || Px(Z™"-) ||, sothat a = r(A) <
1. O

Equation (5.36) showsthat Q and A areclosely connected. In particular, since (5.36)
isvalid for any D 0 D5, we can derive

Po(z"QQ") = Al (5.37)
Similarly, we can show that
Po(z QM) = BWAITH (5.38)

In view of theserelations, it comes as no surprise that we can relate the stability prop-
erties of A to the boundednessof Q, asis shown in the following proposition.

Proposition 5.14 Let Q beasdliced orthonormal basis representation of H, and let the
operatorsA and A be as given in theorems 5.12 and 5.13. Then Q is bounded on X, if
andonly if {p < 1.

PrRoOOF The proof istechnical and relegated to an appendix at the end of the chapter.
O

Theformulationin theorem 5.13 has carefully avoided to state that X [ X». Clearly
Xk = XgQ = Px(Z7™U) producesan X = ¥ Z¥Xq which satisfies XZ™* = XA+ UB.
However, X isnot guaranteedto be HS-bounded, unless/a < 1, sincethen X =UBZ(I -
AZ)"t withU O X, and BZ(1 -AZ)™1 O X. An dternative expression for X follows
from

X = Po(Z*UQ").

Hence we can write X = UQY. Again this does not guarantee that X O X>, since -Q"
is not necessarily abounded operator on 45, although the expression iswell defined as
acollection of inner products. (See section 4.3 for adiscussion on this.)

If £a = 1, then an equation like XZ™1 = XA may have non-zero solutions with uni-
formly bounded norms { || Xy [|}. E.g. if A=1, it will suffice to take for al {i, j},
Xi,j = Xi j+1. A solution with uniformly bounded {|| X[} will not be unique!
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Related realizations can be derivedif adifferent, possibly non-orthogonal basisin A
ischosen. For canonical results, we haveto requirethat thisalternative basisisastrong
(diced) basis, i.e., hasauniformly positive Gramian (viz. the definitionsin section 4.3).
Theredlization that is obtained in this case is linked to the realization based on Q via
an invertible state transformation.

Theorem5.15 Let T OU(M,N) beagiven transfer operator with input state space
‘H of locally finite dimensions.
IfF isastrong sliced basis representation of 1, H = D5F, such that \e is bounded
and \r = Po(FFP) > 0, then T has a state realization
A CT [ ARPo(ZIFFD) D AZP(FT)
[ B D } a { Po(Z7tFH) Po(T)

AOD(B,BY COD(B,N)
BODM,BY)  DODM,N).

Thisrealization is uniformly reachable, observable, and hasia < 1.

PrROOF The realization follows from theorem 5.12 in the same way as the redlization
in theorem 5.13 was derived, but now with the projector onto  written in terms of F:
P () = Po(-FI) AZF (viz equation (4.17)), and the choice of Xy = Po(XF") sothat
Xk = X /\;1F. (Therest of the proof is straightforward and omitted.) |

When F iswritten in terms of a sliced orthonormal basis representation Q of H,

F=RQ
Ae = Po(FFY) = R'R

(where RO D(B, B) isaboundedly invertible factor of Ag), then the aboverealization
based on F can be “normalized” to obtain the realization based on Q via a state trans-
formation X - X'R, where X' is a state in the realization based on Q. This provides
another way to derive theorem 5.15 from theorem 5.13.
The realization based on the basis representation F of 7 provides afactorization of
Ht into
‘Hr = Po(-F9) AFP(FT). (5.39)

Therealizationisuniformly reachableby construction: thereachability operatorisgiven
by Po( -FY), with Gramian Ar > 0. The observability operator isFo = AF'P(FT). The
fact that F, isone-to-oneon Dg is proven in the same way as done for the realization
based on Q, and hence the realization is observable and minimal.

Numerical example

To illustrate some of the above with a numerical example, consider again the transfer
matrix T givenin eguation (3.28). Therange of the Hankel operator Hr isgivenlocally
by the row spaces of the Hankel matrices{ Hy} , and likewisefor therangeof Hr. Basis
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vectorsfor these rangesare given in turn by the V- and U-matrices of the SVDs of the
{Hy} that have already been computed in section 3.4. Hence, for example,

€1 = []
C = [1]
0. — |-955 .28
3 = .298 —-.955

etcetera. The operator F = Q as used in the present section is obtained by stacking
these matrices into one upper operator. This gives

]
1 0 0
298  .955 0
F=1] .. . -955 208 0 (5.40)

0.080 0.412 0.908
-0.428 -0.808 0.405
0.901 -0.420 0.112

[cNeoNolNeoNol o]

Infact, thei-th row of F isgiven by the entries of C (after permutation of the rows of
Ci since the definitions of Hy in chapter 3 and this chapter differ in that respect). Itis
readily verified that F satisfies Po(FFY) = 1. It can also be shown that theorem 5.13
applied to F = Q givesthe same realization as the realization algorithm in chapter 3.

Canonical observer realizations

In the previous section, we have defined the state Xy at point k to be the projection of
the “past input” with respect to point k, Uy = P'(Z7%U), onto the input state space
H. If we select adliced orthonormal basis or another sliced strong basis of #, we ob-
tain a canonical realization which we called a controller realization because the state
is defined via an orthogonal projection of the input data. Dually, we can derive real-
izations based on a definition of state at the output side of the system. In that case, we
obtain canonical realizationsin observer form (the state is observed at the output). To
this end, we define the operator state Xy to be the projection of the past input, after
transformation by T, onto the output state space Ho:

Xk =PUpiT) O Ho. (5.41)

The procedure givesrise to an almost trivial factorization of the Hankel operator: for
Up O [,22_1,

X P(UpT
vimupr - {0 Z RO 542)
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which generalizesto

Xk = PUpywT)
b (5.43)

Y=UT -
{Ym =

The shift-invariance property from which the state recursions are derived is a conse-
quence of the identity P(Z™XP(-)) = P(Z1.), from which it follows that

[PZ*)" = PZ") (5.44)

and also that the output state space Ho = P(£2Z71T) isrestricted shift-invariant: with
UDOL,zt O P(ZPUT)) =P(ZUT), and hence

P(Z o) O Ho. (5.45)

Theorem5.16 Let T OU(M,N) beagiven transfer operator with output state space
‘Ho. Define bounded operatorsA,B,C,D as

B: DM -H, D: DDy B D| | PZT) Po(T)

Then, forU O XZM, YO XZN , the sequence { Xy = P(Upy T)} is uniformly bounded,
and satisfies
{ Xkrr = XA -l—U[k]B

A has spectral radiusr(A) < 1. If r(A) < 1, then there there is only one uniformly
bounded solution for (5.46) and it is given by { X} .

PROOF We first show that, for -A = P(Z1-), -B = P(Z™1-T), it follows that X =
Xir1 = XA + U[k]B.

From (5.44), we havethat -A" = P(Z ™), and -BA"™1 = P(Z™" - T). Also, with Xy =
P(UpT), equation (5.43) directly gives

Yig = Po(Xk) +UpTjg) = XkC +UyD,

for C=Pg(-) andD = Pg(-T). Uniquenessisshowninasimilar fashion asintheorem
5.12. O

Notethat, if Xy 0 7o, then X A = P(Z"1Xy) O H,, asrequired, because of the shift-
invariance property of 7, (equation 5.45)).

A redlizationis obtained by chosing astrong sliced basisin H,. Assumethe system
tobelocally finite, and let G be an orthonormal sliced basisrepresentation: o, = D>G,
Ag = 1. Then

Xie=XyG, Xy =Po(XkGH).
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Inparticular, Xo = P(UpT) = Py, (UpT) = Po((UpT)GH) G, sothat X = Po(UpTGH).
Hence, the factorization of Hr in equation (5.42) becomes

Hr = Po(-TGY) G.

A realization based on this factorization has observability operator G, with observ-
ability Gramian Ag = |, and reachability operator Po(-TG") =: Po(-FY), where F =
P'(GTY). Itskernel ker(-F) |D2: 0, because, for any D 0 D5,

DF=0 = P([DGTH=0
0O D=0.

Hence, the realization is reachable, but not necessarily uniformly.

Theorem 5.17 (canonical observer realization) LetT OU(M,N) beagiventrans-
fer operator with output state spaceH,, of locally finite dimensions. Let G be an ortho-
normal sliced basis representation of Ho: Ho = D5G, Ag = 1.

AOD(B,BY COD(B,N) [A c} _ [Po(z-leGDﬂ-D Po(G)
B D

BODM,B5Y)  DODM,N) T Po(ZATGH Y Py(T)

Then, forU O XM, Y 0 X, thereexistsauniformly bounded sequence of states Xyq [
Dy, k= —00, -+ oo such that

() _
Y=UT O Xy = XuA+UyB (5.47)
Y[k] = X{k]C-}- U[k]D (al'k).

The redlization is reachable and uniformly observable (hence minimal), in output nor-
mal form, and hasla < 1. If {5 < 1, then (5.47) has a unique uniformly bounded solu-
tion for whichX = 3 ZXq isin X5 .

PROOF For agiven Xy in Ho, put Xy = X G, with X 0 D5. Then

Xir1 =X yG = P(Z™X) + P(Z U T)
= P, (Z_lxk) + P, (Z_1U[k]T)
= Py (™G  + P (Z U T)
= Po(z_]'X[k]GGD)G + PO(Z_lu[k]TGEDG
x[(k}) Po(Zl1GGYG  + u[(k}) Po(Z1TGD)G.

Hence A = Po(Z1GGY) (™Y and B = Po(Z TG (Y. In the same way,
Po(Xk) = Po(XG) = X Po(G),

henceC = Py(G). Thefact that therealizationis minimal followsfrom the minimality
of the corresponding factorization of Hy. The state variables are uniformly bounded:

Xl = VI
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Finally, uniguenessis proven in the same way asin theorem 5.13. |

We can generalize the canonical observer realization if we allow anon-orthonormal
diced basis Fq for Ho.

Theorem 5.18 Let T OU(M,N) beagiven transfer operator with output state space
‘H,, of locally finite dimensions.

If Fo is a strong sliced basis representation of Ho: Ho = D5Fo, such that Ag, is
bounded and Ag, = Po(FoF5) > 0, then T has a state redlization

Po(Z7HFoF5) VALY Po(Fo)

{ A C } _ .

B D Po(Z TR IAL™Y  Po(T)
AOD(B,BY) COD(B,N)
BODM,BY)  DODM,N).

Thisrealization is reachable, uniformly observable, and hasia < 1.

ProoF Theproof followsfromtheorem 5.17 and can bederived by taking astatetrans-
formation X = X'R, such that F, = RG for adiced orthogonal basis G.
O

The factorization of Hy corresponding to this realizationis
Hr = Po(-TFg) AR Fo. (5.48)

The realization is uniformly observable by construction: the observability Gramianis
Ar, > 0. The reachability operator is given by -F” = Pz, (- T Fg) Agk; the fact that F
is one-to-oneon D is proven in the same way as before, and hence the redlization is
reachable and minimal.

Realization theorem for operators

The preceding theorems, along with proposition 5.6, amount to aconverse of corollary
5.7

Theorem 5.19 (Kronecker-typethm, I1) Let T OU bealocally finite operator, and
let H and H be respectively the corange and range of its Hankel operator -Ht. Then
there exist minimal realizations{A,B,C,D} for T for which ¢x < 1 and for which the
State is observable and uniformly reachable.

Dually, there exist minimal realizations for which 5 < 1 and for which the state is
reachable and uniformly observable. Uniformly minimal realizationswith fa < 1 exist
if and only if the range of Ht is closed.

As mentioned before, we are primarily interested in cases where /p < 1. u.e. sta
blerealizations. Such areadlization occursif the basis for the subspaces # or #, from
which therealization is constructed generates a bounded operator Q or G. It is possi-
blethat agiven T O ¢/ has subspaces # and H, that do not have such bounded basis
operators, so that it does not have a u.e. stable realization. An exampleis given later
in this section.
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Because the canonical controller and observer realizations both provide afactoriza-
tion of the Hankel operator Hr, there is a connection between the two representations.

Theorem 5.20 Given a bounded system transfer operator T O U with locally finite
dimensional state spacesH andH,, let F be the representation of a strong sliced basis
inH. Put

Fo = AFP(FT)

and suppose that Fq represents a strong siced basis (Ag, > 0). Then the canonical
redlization based on F (theorem 5.15) isidentical to the canonical realization based on
Fo (theorem 5.18).

PrROOF The factorizations of Hr in equations (5.39) and (5.48) are
Hr = Po(-FI)AFP(FT) = Po(- TFg) AR Fo.

The realization corresponding to the first factorization has Py ( -FU) as its reachability
operator and /\glP(FT) as its observability operator; the realization corresponding to
the second factorization has Po( - TF5)Ag, asits reachability operator and F, asits ob-
servability operator. If we take Fo = AFP(FT), then the two realizations have the
same observability operator. As the readlizations are observable, we must have that
Po(-FY) = Po(-TFL)Ar,, so that they aso have the same reachability operator. The
result follows by noting that two realizations that have the same reachability operator
must have the same { A, B} -pair, and two realizations that have the same observability
operator must have the same { A, C} -pair. O

SVD-based realizations and balanced realizations

We obtain bases Q and G in a generic way viaasingular value decomposition of the
snapshots of Hy. Let T 002/ belocally finite. Then thereexist Q, G, 2 such that

) DyQ = A, Ao =
‘Hr =Po(-QYEG  with DIG = o, Ne =] (5.49)
> O DB,B), =%,

in which, moreover, each £ is diagonal and has non-negative entries in decreasing or-
der. We produce this factorization of Hr by computing the singular value decompo-
sition of its snapshots Hy (as in section 3.4), putting the singular vectors whose span
is the range of HkD and Hy into Qk and Gy, and putting the non-zero singular values
into 2. Then Q, G are obtained by stacking the Q; and G; (like was donein equations
(4.9)), and setting & = diag[>,],.. Since || Hk|| = || 2k, dso || Hr || = || £ ||. Theensu-
ing factorizations corresponding to the canonical realizationswe derived earlier in this
section are

Hr = [Po(-QY][£G] = Po(-F) Fo, (F=Q, Fo=3G)
= [Po(-Q9)%] G = Po(-F") Fy, (F=5Q,Fy=G).
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The factorization of Ht on thefirst line correspondsto a canonical controller realiza-
tion on Q for which Ag, = $2, while the second factorization corresponds to a canon-
ical observer realization based on G and has Ap» = 22. The actual construction of the
realization based on G, according to theorem 5.17, can be done along the lines of al-
gorithm 3.9 in section 3.4.

A redlization is said to be balanced if its reachability Gramian is equal to its ob-
servability Gramian, and if all diagonal entries of Ap = Ag, are diagonal matrices. A
realization based on the SV D factorization

Hr = [Po(-QDEY? [£%2G]
isbalanced: Ar = $%2 and Ap, = 51/2.

Proposition 5.21 LetT OU bealocally finite operator, and let its Hankel operator Hrt
have an SV D-based factorization given by (5.49). H and H, are closed subspaces if
and only if % is boundedl! y invertible, and arealization of T which is uniformly reach-
able and uniformly observable exists if and only if this condition holds.

PrRoOOF Consider the SVD-based factorization of Hy in terms of (5.49). A realization
based on Q is uniformly reachable, and because Fo = ZG, the observability Gramian
iISAfr, = 52, Hencethe redlization is observable. It is uniformly observable, 320,
if and only if £ is bounded. According to proposition 5.6, this occurs if and only if
‘H and H, are both closed subspaces. Proposition 5.6 aready implied that any other
realization can be both uniformly reachable and uniformly observable if and only if
these subspaces are closed. |

Anomalies

Some anomalies noted in the previous sections are

1. the basis representations Q, G of H and #, can be unbounded operators, which
occursif and only if £ = 1 (proposition 5.14),

2. Hr, HTEI can have ranges H,, H which are not closed, which occursif £ in proposi-
tion 5.21 is not boundedly invertible.

We show by some examples that these phenomena are unconnected. An example that
showsthat it is not true that Q and G bounded impliesthat > is bounded, is provided

b
Y 0 1/2 0

[o] 1/4

T= 0 1/8

Q, G and £ aregiven by

1[o] O 0 0
10 1 . 1/4
Q=10 10 » G=1 0 1 2= 0 1/8
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Q and G are bounded, but £~ is unbounded. A realization based on Q yields Ay = 0,
By =1,C=2%"1 D, =0(k=0). Indeed, therealization is not uniformly observable.

It is also not true that =~ bounded impliesthat Q, G are bounded. An exampleis
obtained by consideringinner operators(operators T which areboth unitary and upper).
As shown in chapter 6, such operators have Hankel matrices Hy that are isometries, so
that ¥ = | 3. We also show in that chapter that a unitary realization T = {A,B,C, D}
realizesaunitary operator T. It is, however, possibleto construct asequence of unitary
matrices Ty such that /4 = 1, atrivial example being

we[3 2] die

wherecy —» 1fork - o, With £p =1, Q and G are unbounded.

Hencethereis no connection between the properties/a < 1 (Q and G bounded) and
the fact that 7 and H,, are closed subspaces (5 boundedly invertible).

As a pathological example in which some of the above-mentioned aspects occur,
consider the operator

[0] 1

0

O NN
+ 00l=00l 00l

(@ NNV NI

T is abounded operator: it is equal to a diagonal scaling of the bounded LTI system
z(1- %z)‘l. One possible (SV D-based) factorization of its Hankel operators Hy is

1
LY
1 1 1 1
0
where oy = %_ilk and pis equal to the norm of the vector [1 § % ---]. Each Hankel

matrix Hy has only one singular value unequal to 0, and oy — 0iif k — o, hence % is
not boundedly invertible. Q and G follow from the above decomposition as

O )
1 0 ]
1 1 9 T132_1p4i8_19
I G— R
R v R v = PR
1 L 1 1 9 P 2p
Vi Vi Vi Va .




OPERATOR REALIZATION THEORY 115

G isbounded, but Q isunbounded, which can be seen, e.g., fromthefact that the norms
of its columns are unbounded. A realization based on G has

so that {p = % but By = 5% - 0(k - o) and the realization is not uniformly reach-
able. A redlizationbased on Q is

_ 1k Jk
0

5 (5.51)
K = el -

and indeed /5 = 1, which was to be expected as Q is unbounded.

On the uniqueness of the solution of canonical state equations

Asindicated in theorem 5.12, the state sequence { Xy} hasto be uniformly bounded or
else it cannot be assured to be unique. Some insight in this point might be gained by
looking at atime-invariant example, for whichwe can easily exhibit the non-uniqueness
aludedto. Let ustakethesimple casefor whichthetransfer functionisgivenby 1/(1-
az), with 0 < [a] < 1. We study it inthe LTI domain and then translate to our LTV for-
malism. With scalar inputs and outputs, the input and output x> spaces are analogous
to L, of the unit circle T of the complex plane, which we indicate by L»(T). “Future”
inputs and outputsarein Hx(T), the subspace of L,(T) of functionswhose Fourier co-
efficients are zero for strictly negative indices, while inputs and outputs that belong to
the strict past are in HZD, the orthogonal complement of H, in Ly(T). In our example,
the relevant state spaces and null spaces are known to be?

H = {1%;1 : dD(C}

~ ~1_

K= H; | &3] (5.52)
flo = (g d0c)

Ro - FoT23].

The"hatted” spacesindicate the anal ogs of the spaces defined earlier, but now inthe
time-invariant Fourier transform context. (A formal correspondence of spaces can be
set up, but herewejust presentitintuitively.) Translated to our time-varyingformalism,
thefunctionsof zbecome Toeplitz operators. Thiscan beviewed asreplacingthe scalar
zin the series expansion of the function by the shift operator Z. For brevity, recall the
transformation operator 7:

f( =z g+ fot+zf1+ = TH@)=Z g+ fo+Zf+-.

2For example, u(z) O u(2) - (1/(1-az)) O HZ, which is the case if and only if u(z) can be written as

o
uy(2) - Z4 with uy(z) 0 HY. This follows directly from the fact that Z-3 - (1, = ;2.
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We find that
H = {DT(& ) D O Dy}
K= L7 T{Zaf (5.53)
Ho = {DT(%;) : DODy}
Ko = Z/{ZT[l—az]

The orthogonal space decompositionsHS' = K 0 and Hy = #, 00 K, carry over
to £,Z71 = KOH and Us = Ho O Ko — the proofsfor the time-invariant case can be
deduced from those for the LTV case. Let

and let us define
Xy = aE. (5.54)

) _ ~1_-1 _
Sncez‘lakl_za—lfl :ak((z A2 | 9. L ) and & " 0%, wehave

Hence,
Py(Z1aE) = Py(Z° 1a"7'(
= Py(aT ({5
= aT (P (5
_ ak+1E:

50 that
XA = Py (a¥Z72E) = Xyy1.- (5.55)

The sequence X is unbounded for k — —oo, but it does satisfy X A = Xy, 1. When
r(A) = 1, obvioudly no uniqueness statement can be made, e.g., when a = 1, the se-
guencejust exhibited would be a (uniformly) bounded solution of the autonomous sys-
tem.

5.5 NOTES

The concept of state originated as an abstraction of computer memory in automaton
theory [Ner58]. It entered system theory in the late 1950s when the connection with
first-order differential equations became clear. During the 1960s, much effort was put
into the construction of state models for continuous-time LTI and LTV systems spec-
ified by their impulse response H(t, 1), such that y(t) = [H(t,T)u(t)dt. Among the
initial results was the proof that realizability is equivalent to the separability of theim-
pulse response matrix into H(t, t) = W(t)©(1). However, the effective construction of
thisfactorization wasdifficult, and even not ways possible, and the direct realizations
that were produced were not always asymptotically stable [Kam79]. For LTI systems,
state-space realization synthesis began with the work of Kalman and his co-workers
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[Kal63, HK66, KFA70], Gilbert [Gil63] and Youla[ You66]. Theuse of the Hankel ma-
trix, which does not require a separable form of the impul se response matrix, resulted
in the Ho-Kalman algorithm [HK 66], which was independently obtained by Youlaand
Tissi [YT66]. Inthe1970s, anew tool carried over from linear algebrainto theworld of
system theory: the singular value decomposition. With thistool, anumerically robust
way becameavailableto computethefactorization of the Hankel matrix. The SVD was
incorporated into the realization algorithm by Moore in 1978 (see [M0079, M0o081])
in the context of continuous-time systems for the purpose of balancing the realization.
There are closely related papers by Zeiger and McEwen [ZM74] and by Pernebo and
Silverman [PS79]. It was redlized at that time that a balanced realization can be ap-
proximated very straightforwardly, and the resulting combination (reported by Kung
in 1978 [Kun78] for discrete-time systems) gave rise to aclass of robust identification
algorithms, called Principal Component identification techniques.

For continuous-time time-varying systems with a constant system order, a realiza-
tion theory was developed by Silverman and Meadows[SM 66, SA68, SM69]. Reach-
ability and stability issuesweretreated also in[AM69]. Kamen extended Kalman'sal-
gebraic module theory to incorporate a continuous-time pure delay operator [Kam75,
Kam76a], and considered the realization by state-space models of systems Ay(t) =
Bu(t), where A and B are matrix polynomialsin the differentia operator p and unit
delay operator d. For time-varying systems, these results could be extended by using
anon-commutative ring of polynomials[Kam76b].

The development of discrete-timerealization theory for LTV systems started in the
1970swith the work of Weiss [Wei72] and Evans[Evar2]. The concepts of reachabil-
ity, observability and minimality were defined (see also [AM81]), but the realization
theory was limited to state dimensions of constant rank. An algebraic approach was
followed by Kamen, Khargonekar, and Poolla [KH79, KKP85, PK87], who defined
time-varying systems viamodules of non-commutativerings of polynomialsacting on
signalsin £w(7). Many definitions and results in [KKP85] can be trandated directly
into thediagonal algebraconsideredin thisbook: instead of Z, two operatorszand o are
used, where o isatime-shift operator on sequences, and zis an algebraic symbol. The
description of objects using zand o is eguivalent to our description of diagonals and
polynomials(in Z) of diagonals. The aspect of varying state dimensionswas first pub-
lished in Van der Veen and Dewilde [vdVD91]. A similar realization theory for lower
triangular block matrices was presented by Gohberg, Kaashoek and Lerer [GKL92],
in which operators on /«(Z) were considered. Many ingredients (e.g., the definition
of the Hankel operator and its factorization) can also befound in Halanay and lonescu
[H194].

Inaparallel development, mathematiciansand “fundamental” engineersconsidered
state-spacetheory for operatorson aHilbert space. Besidesthe mathematical el egance,
Hilbert spaces seemed necessary to incorporateinfinite dimensional systemsin a state
space theory. Such systems arise in a natural way in the time-continuous context of
systems which contain “pure delays’, e.g., networks with lossless transmission lines.
Scattering theory for such networks was developed by Phillips and Lax [LP67], but
without using state-space theory. Connections between the fields of Hilbert space op-
erator theory (in particular the work of Sz.-Nagy and Foias[ SNF70]) and network syn-
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thesis were made by Livsic in 1965 in Russia and with other viewpoints by Dewilde
[Dew76], Helton [Hel 72, Hel 74, Hel 76] and Fuhrmann [Fuh74, Fuh75, Fuh76, Fuh81]
intheWest. These effortsput the algebraic realization theory of Kalman into the Hardy
space context of shift-invariant subspacesalaHelson [Hel64], Beurling-Lax represen-
tations of such subspaces by inner functions [Beu49, Lax59], and coprime factoriza-
tions. Morerecently, additional results on thistype of realization theory (the existence
of balanced realizationsfor infinite-dimensional discrete-time systems) have been ob-
tained by Young [You86]. These ideas and results on infinite-dimensional realization
theory of operators in Hilbert space are fundamental to the time-varying realization
theory as treated in this chapter, and to a number of resultsin the chaptersto come.

Finally, one different but related approach to the time-varying realizations of oper-
atorsin Hilbert spaceisthe work of Feintuch and Saeks [FS82]. Their theory is based
on aHilbert space resolution of theidentity in termsof anested seriesof projectorsthat
endow the abstract Hilbert space with a time structure. The projectors are projectors
of sequences onto the past, with respect to each point k in time. With the projectors,
one can define varioustypes of causality, and thetheory provides operatorswith a state
structure via a factorization of the Hankel operator, which is also defined in terms of
the projections. Many of theissues mentioned in the present chapter are al so discussed
in the book [FS82], but in a different language.

Appendix 5.A: Proof of proposition 5.14

PROOF of proposition 5.14. Because we know already that /4 < 1, the proof that Q is
bounded if and only if /4 < 1 can consist of the two steps,

1. ta=1 0 theoperator [l + AZ+ (AZ)?+ -] isunbounded on D5 ,
2. Qbounded O the operator [| +AZ + (AZ)? + ---] is bounded on D5 .
Proof of step 1. By definition, /a = r(AZ) = lim | (AZ)™[|*/". We already know

that || AZ|| < 1. Suppose that for some finite n we have || (AZ)"||¥/" < 1. Then also
| (AZ)"|| < 1, sothat || (AZ)*"|| < || (AZ)"[|* < Land || (AZ)*" | V/* < || (AZ)"||¥/" < 1.
It follows that

h=1 O | (AZ)"|| = 1 (foraln)
0 sup  ||ID(AZ)"[lus = 1 (foraln). (5.A.1)
Di||D|jys=1

Because | AZ|| < 1 implies || D(AZ)"||ys 2 || D(AZ)"||ys for any D O Dy, we have
from (5.A.1) that

n
sup ID(AZ)"|lBs = sup  n[|D(AZ)"[|Es = n. (5A.2)
D:[IDllus=1 K= D:[Dflus=1
Thisfollowsfrom thefollowing reasoning: for any 0 < € < 1 and any n, choose D such
that ||D||us = 1 and || D(AZ)"||2s= 1-¢/n, then for al k< nwe have | D(AZ)¥||35 2
1-¢/n, and hence

n
wp Y DA n-¢.
Di||D[hs=1k=1
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Since € was arbitrary, (5.A.2) follows.
Now since, for any n,

n
sp [[D[1+AZ+ (A2 4| [Rs 2 sp Y DA,
D:||D[|ns=1 D:||Dllns=1 k=0

it follows from (5.A.2) by taking the limit for n - oo, that the left-hand side of this
expression is equal to infinity. This provesthat [I + AZ+ (AZ)2+ -] is unbounded
on Do.

Proof of step 2. We first remark that equation (5.36), along with A" = P (Z™")
(lemma5.11) and Py () = Po(-QM)Q (theorem 4.9), resultsin the expression

AlY = Py(z"QQY  (n=20). (5.A.3)

If Q is abounded operator, then the operator P(-QQP) acting on D 0 D5 is bounded
and in i,. But, using (5.A.3), P(DQQP) can be evaluated as

P(DQQY = 5% Z"Po(Z"DQQY)
= 35 Z'DWPy(z"QQY)

X3 zp(m afn

= D35 (AZ)"

= D[I+AZ+(AZ)%2+].

Hence Q bounded impliesthat [I + AZ + (AZ)?+ -] is bounded on D,. 0






6 ISOMETRIC AND INNER
OPERATORS

L ossless systems play an important role in the class of linear systems. They are causal
systems which “conserve energy”. If energy is measured as the square of a quadratic
norm || - ||, alosdess system transformsan input signal uwith bounded energy ||u| to an
output signal y = uT which containsthe sametotal energy: ||ul| = ||y||. Infilter theory,
scalar lossless systems are a so known as all passfilters, with aflat amplitude spectrum
but a variable phase. They have many interesting properties. One isthat any passive
rational filter may berealized as the partial response of alosslessfilter. Another prop-
erty isthat lossless systems may be implemented in alocally lossless way as well, by
using a state space realization in which every section is itself lossless. Such redliza-
tions do not amplify noise introduced at any point in the system, and they can be made
robust with respect to parameter deviations as well.

Themost elementary al gebraic expression of losslessnessisthe orthogonal or Jacobi
rotation (in which @is an angle):

cos® -shn@
sng  cos@

It plays a central role in many algorithms for linear algebra, e.g., for computing QR
factorizations and the singular value decomposition. The Jacobi rotation is a building
block for more general classes of matrices or operators called isometric, unitary and
inner. We study their main system theoretic propertiesin thisand thefollowing chapter.
The embedding of passive systemsinto lossless systemsis the topic of chapter 12, and
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the implementation of a pointwise lossless realization by a cascade of Jacobi rotations
isin chapter 14.

Conservation of energy between input and output (J|u|| = ||y||) requiresonly that the
corresponding operator V : y = uV isisometric (VV"= 1). V does not haveto be causal
tobeisometric. Theclassof causal isometric operatorscharacterizesDZ-invariant sub-
spacesinidy: subspacesthat are both left D-invariant and invariant under shifts. Thisis
the content of ageneral version of the Beurling-Lax theorem, possibly dueto Arveson
[Arv75], which will play a central role in this chapter. We rederive it in our context
(the proof is illuminating and parallels the classical proof), and use it to characterize
the main system theoretical input and output spaces. It is a non-trivial question, and
one of fierce controversy in the literature, to identify the class of causal, isometric op-
erators that can be embedded into a causal unitary operator. A useful characterization
is given in this chapter.

Wesay that atransfer operator V isinner if V 0 U/ satisfiesbothVVP =1 andVHV = 1.
Wefirst show that if an operator isinner and locally finite, then it admits arealization
[& 5] which is unitary. Conversely, if arealization is unitary and has (4 < 1, then the
corresponding transfer operator isinner. With thisbackground, welook at certain stan-
dard factorizations of transfer operators T. The first factorization that we consider is
what we call the external factorization: afactorization of the type

T =AY

whereV isinner and A O 2. (In the literature the term inner-coprime is often used,
which we shall reserve for the case where the factorization is minimal.) Such afac-
torization exists if the output nullspace XCo(T) of T can be represented as Ko(T) =
UV, whereV isan inner function, which will imply that Ho(V) = Ho(T). Because of
this property, inner operators play an important rolein the derivation of reduced-order
models discussed in chapter 10. The factorization can be derived in two ways. viaa
constructive proof using realizations, but also viathe generalized Beurling-Lax theo-
rem. Finally, we utilize the external factorization to give ageneral embedding theorem
which characterizesthe set of causal operatorsthat have a (minimal) unitary extension.
A similar factorization, the inner-outer factorization, is treated in chapter 7.

6.1 REALIZATION OF INNER OPERATORS

Definitions

An operator V O X iscaled an isometry if VVE = [, a (co-)isometry if VAV = I, and
unitary if both VV® =1 and V'V =1, or V™1 = V. Equivalently, an operator is an
isometry if its domain and range are closed subspaces in > and if inner products are
conserved: for F,G O Ay, (FV,GV ks = [F,Gls, or {FV,GV} = {F,G} in the diag-
onal inner product notation. We shall say that an operator isinner if it is unitary and
upper. Systems described by isometric or inner operators satisfy an energy conserva-
tion property: letU,Y O X5,

ifvwO=1then Y=UV O |Y|us=|Ulns
ifvilv=1then Y=UVY O |[Y|us=|U|ns.
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Another elementary property is that they leave orthogonality intact:

ifVVE=1 then XOY « XvOyvw
ifViv =1 then Xay - xXvioyvh,

If V is an isometry, then it maps closed sets into closed sets: since distances between
elements of the set are preserved, X, - X0 xpV - XV.

For finite matrices (operatorsin i/ (M, ') with index sequencesthat vanish outside
afiniteinterval), the notion of inner is particularly tied to how the index sequences of
M and AV run. If they are dll pointwise scalar and equal, then an inner matrix will triv-
ially be adiagonal: non-trivial inner matrices are possible only when the dimensions
of M and \ arevarying. Thisisbecause an upper triangular and unitary matrix with
scalar entriesis necessarily diagonal. However, many more types of matrices qualify
as upper in our formalism. E.g., with the proper choice of input and output sequences,
aunitary matrix of the form

o o o[*]*
C ol * %
Ol * * *
e % ok ok ok
* ok kA %

may be considered upper and thus inner.
LetV = [Q 8] be arealization operator. Therealizationiscalled unitary if VV =

and VRV =1.

Thepurposeof thissectionisto show that if V isalocally finiteinner operator, thenit
hasareadlizationthatisunitary. Conversely, au.e. stableunitary realization corresponds
to an inner operator. There are various ways to prove these properties. For example,
we can start with arealization of V in input normal form, i.e., AJA+ BB =I. To have
aunitary realization V, it sufficesto show that VV"= V5 = | impliesthat there exist
C and D such that A"C + B™D = 0, C"C+ DD = |. However, adirect proof of thisis
not so easy. We propose a more elegant indirect proof, which gives valuable insight
into the geometrical properties of the underlying state spaces as well.

State-space properties of inner operators

For atransfer operator T I/, we have defined the input/output state and null spacesin
chapter 5 in terms of the ranges and kernels of the Hankel operator Hy and its adjoint
(equations (5.3), (5.5)):

K(T) = ker(Hr) = {UOLZ1:PUT)=0}
H(T) = ran(Hp) = PUeT)
Ho(T) = ran(Hy) = P(LZ7'T)
Ko(T) = ker(HP) = {YOU:P(YT)=0}.

These subspaces provide decompositions of £,Z™1 and ¢4, as

HT) O K(T) = L£2°
To(T) O Ko(T) = .
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For inner operatorsV, the null spaces take on a more specific structure.

Proposition 6.1 LetV OU be an inner operator. Then

K(V) L2775, HN) = L2t L271VD
}Co(v) = Z/{ZV, Ho(v) = Z/{Z S) Z/{ZV

H and H, are closed subspaces. In addition, Ho = HV , H = HoV".

PROOF Since AoV O X, and VWP =1, X, 0 VPO A, and hence Xy = ALV =
(L2271 0U)VE Because VRV =1, £,27VPOUVE, so that

Xo = L2700 upvE. (6.1)

Both £,Z Y and 14,V are closed subspaces, and becauseV 0 U/, £, 2P0 £,771,
Projecting equation (6.1) onto £,Z produces

H=P UV = L7275 £,77VE.
As an orthogonal complement, thisis a closed subspace, so that # is closed. Hence
L7270 = £o77WP 0 H, (6.2)
so that K = £,Z7V". From (6.2), it also follows immediately that
LZYOHV = L7V,

Hence HV O Uy, and HV = P(£2Z7V) = H,. The remaining results are obtained by
dual arguments. O

For general transfer operators T, we had aready that Ho = P(HT). Thus, inner op-
eratorsare special in the sensethat they map their input state space fully into the output
state space, without the intervention of a projection. Likewise, the Hankel operator of
V, Hy, satisfies -Hy = -V on . Since-Hy = 0 on K, we see that Hy isanisometry. In
the locally finite case, the non-zero singular values of its snapshots are al equal to 1:
in the SV D-based factorization Hy = Po(-Q) G of equation (5.49), we have s = 1.

Unitary realizations

We now show that (i) if alocally finite operator V isinner, thenit hasaunitary realiza-
tionV (which is obtained by a canonical realization based on Q or G); and conversely,
(i) if V isaunitary realization with /4 < 1, then the corresponding operator V isinner.
The case /4 = 1 ismuch more complicated and deferred to sections 6.3 and especially
6.4.

We start with alemmawhich is actually a corollary of proposition 6.1.

Lemma6.2 LetV OU bealocaly finite inner operator. If Q is a sliced orthonormal
basis representation of the input state space H of V, then G = QV is a diced ortho-
normal basis representation of its output state space Ho, and the canonical controller
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realization based on Q (theorem 5.13) is equal to the canonical observer redlization
based on G (theorem 5.17).

PrROOF According to theorem 5.20, a sliced basis of #, is obtained as Fo = P(QV).
Because H, = HV, it followsthat Fo = P(QV) = QV = G. G isan orthonormal basis
of Ho, because Ag = Po(QVVQY) = Ag = I. Thecanonical realizations are obtained
from theorems 5.13 and 5.17, respectively, as

v = [ Po(ZTQQY Po(QV) T\ [ Po(ZGGH)Y Po(G)
T Po(ZIQDY Py(V) | Po(ZVGHD py(V)
(6.3)
Thefact that both realizations are equal followsdirectly by inserting G = QV. |

Theorem 6.3 LetV OU bealocally finiteinner operator. ThenV hasaredlizationV
which is unitary and both uniformly reachable and uniformly observable.

PROOF Let Q be an orthonormal basis representation for #(V), and let V be given
by the canonical controller realization (6.3). This realization satisfies the properties
(5.19)—(5.21):

ZQ = AQ+B”, VvV =D+0Q'C. (6.4)
We set out to provethat VAV =1, i.e,
A'A+BB=I, Ccc+D'D=1, ATC+BD=0.

A"A+ BB = | follows from the fact that Q is an orthonormal basis: Aq = I, which
satisfies the Lyapunov equation (5.22). To show that C-C + D™D = |, use equation
(6.4) and the fact that Q is strictly lower:

Po(VIV) =1 0 Po([D"+ CHQ]|D + QC))
= DED+CEP0(QQE5C+ DEPo(QEﬁC-l-CEPo(Q)D
= D'D+CC+0+0 =1.

AC+ B™D = 0 follows from lemma6.2: G = QV spans Ho(V), hence G 0 U/ o that
Po(ZQV) = Pp(ZG) = 0. With equation (6.4), we obtain

Po(ZQV) =0 U Po([B"+ A"Q][D + Q'C])
= B'D+AP(QQYC
= BD+AC =0.

Hence VIV = I. Dually, we find in the same way that V' in (6.3) satisfies V'V'P = I.
SinceV = V' if G = QV (lemma6.2), it followsthat V is unitary. O

The converse of thistheorem isin general true only if, in addition, £a < 1: in that
case, a unitary realization correspondsto an inner operator. If /5 = 1, then additional
assumptions on the reachability and observability of the realization must be made. The
latter case is deferred to theorem 6.12 in the next section.
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Theorem 6.4 LetV = [Q 8] be a state realization of alocally finite operatorV O U. If
Ip < 1, thenV unitary impliesthatV isinner.

PROOF If /4 < 1, then (I - AZ)™ is bounded, so that we can write

| -vhiy

| -[D +BZ(I-AZ)"'C]VID + BZ(1-AZ)"C]

= 1-D'D - CY1-Z"AD)~1Z"B™D - D'BZ(1-AZ)"IC
-CH1-ZAD)1ZzBMBZ(1-AZ)"IC

= 1-D'D 4 CH1-Z"A)1zEAC + CPAZ(1-AZ)IC +
-CHI-Z"AD1ZH 1 -APA Z(1 -AZ)1C

= CIC + CHI-Z"A) Y ZPAT+ AZ -1 -Z"APAZ} (1 - AZ)IC

since B'D = -ATC, B'B = | -APA and | -D™D = CC, and hence
-V = cHI-ZFANH(1-Z"AD(1-AZ) +

+ Z°AP+ AZ -1 -ZPAPAZ ) (1 - AZ)TIC
= 0.

I -V = 0is verified by an analogous procedure. |

A dlightly more general version of this, not using normalized reglizations, is given
by the following corollary, where M is the reachability Gramian of the given realiza-
tion, and Q its observability Gramian. (A comparable result can be found in [H194,
82.5].)

Corollary 6.5 LetT OU bealocally finite input-output operator with u.e. stable state
redlization T. Then

(1)
MOD: TD{M [T= M | 0 TOT = |

mOD: T{Q(_l) I}TD:[Q l} 0 TTO0=1,

Conversely, if T'T =1 and TTY = |, and the realization is uniformly reachable or ob-
servable, then the left-hand sides are satisfied withM = Q2.

6.2 EXTERNAL FACTORIZATION

Definition

Let T O U be some transfer operator. We call an external factorization a factorization
of theform
T =AY,

where A = VTP O U and V O U is an inner operator. If the factorization is such that
V isan inner transfer operator of smallest possible local degree such that A = VT is
upper, then we call the factorization inner coprime. We show that if T has alocally
finite state space and a uniformly observable realization for which £ < 1, then such
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factorizations exist. They can readily be computed from a state realization. If V has
the same output state space as T, then the factorization isminimal. The minimal inner
factor will be unique except for aleft unitary diagonal factor.

To obtain a better understanding of the external (inner-coprime) factorization, con-
sider the scalar time-invariant case. Let

z-aV
= o 1.
g b
Then T has an inner-coprime factorization as
_q0 ,—pO _ _Q0
T:Ai\/zi.ﬁ7 :1_0(27 :ﬁ_
z-BY 1-Bz 1-Bz 1-Bz

Hence the poles of T are collected in the inner factor V. These poles also appear as
poles of A, unlessthey are matched by complementary zerosof T.

The existence of external and inner-coprime factorizations has great system theo-
retical importance. Aside from the fact that it plays a key role in important practical
questions such as the design of low-sensitivity controllers, it is directly related to the
existence of a meaningful state-space representation. Sinceit is also a matter of con-
troversy intheliterature, we devote afew wordsto introducethe question; for thetime-
invariant case deeper treatments can be found in [Dew76] and [Fuh81].

In the case of a single-input, single-output time-invariant system, the existence of
inner-coprime factorizationsis equivalent to the existence of non-trivial system null-
spacesC(T) and Ko(T). TheFourier transform of /Co(T) isasubspace of Hy, the space
of Fourier transforms of one-sided /»-sequences whose support isthe non-negativein-
tegers. Ko(T) hasaspecia property: itiszinvariant: z-Ko(T) O Ko(T). Dualy, K(T)
isa z L-invariant subspace of the orthogonal complement H2D of Hy which represents
past inputs.

Beurling's cel ebrated theorem [Hel 64, Hof62] states that Ko(T) iseither trivial (=
{0}) or there exists an inner function @ (2) such that o(T) = @(2)H2 (in thissm-
ple context, “inner” meansthat @,(2) is analytic in the open unit disc of the complex
plane, and that |q(€°®)] = 1 amost everywhere on the unit circle; in other words, @
isapure phase function). Dually, either (T) = {0} or there existsan inner ¢(z) such
that C(T) = ¢-(2)H5. Inthefirst case, the null-spaceistrivial and the system remem-
bersits full past. In that case there is no meaningful state space description: the state
is equivalent to the whole input sequence, and the state space description is nothing
but the input-output description. In the second case, the null-space is very large, and
each state standsfor an input collection isomorphicto H,. One can say that the system
forgetsalmost everything fromits past. Thereisno in-between: once a system forgets
oneinput, it will forget an infinity of them.

In [Dew76] such systems have been called “roomy”. Their transfer functions can
be characterized by an analytical property, they are* pseudo-meromorphically continu-
able”, see the work of Helton [Hel74]. It turns out that roominessis a necessary and
sufficient condition for the lossless (inner) embedding of a causal contractive transfer
function. Thisfact was discovered independently by Arov and Dewilde around 1971.
For multi-dimensional systems the situation is more complex, but the property that a
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lossless embedding existsif and only if the causal contractive systemisroomy still ap-
plies. We shall find many of these properties back in the time-varying case. Again,
external and coprime factorization play a major role. Similar time-varying coprime
factorizations have also been reported in [PK87, DS92, RPK92].

Derivation

The following simple observation is crucia in the computation of the inner factor of
an external factorization.

Proposition 6.6 Let be given operatorsT OU andV OU. ThenA :=VTisupper if
and only if UV O ICo(T).

PROOF AOU  P'(UA) = 0. Substitution of A = VT produces, if 24,V O Ko(T),

P (Uo)) P (UNTD)
P (Ko(T)TH

0.

ol

This produces the “if” statement. The converse follows from the property Ko(T) =
{udUp : P'(uTY) =0}, hence P'[(uV)TH = P'(uA) = 0, and uV 0 Ko(T). O

Ko(T) is the largest subspace in > which remains upper under mapping by T It
followsthat asystemV with lowest state dimensionssuch that A = VTP #/ isobtained
if UV = Ko(T), since the larger the nullspace, the smaller the state dimension. We
shall make this observation more precise soon.

If V isinner, then from proposition 6.1, we havethat o (V) = UV, which provides
the following additional result.

Corollary 6.7 IfV isinner, then A = VT isupper if and only if Ho(T) O Ho(V).

The next step in the construction of the external factorization is the calculation of
an operator V such that Hq(V) = Ho(T). This can be done in a state-space context,
directly on aredization of T. Let T be alocally finite operator in /. We start from a
realization of T in output normal form, i.e., such that

AAT+cCl=1, (6.5)

which means that at each point k in time the equation AkAE+ CkCE = | is satisfied.
Such arealization isobtained from acanonical observer realization (viz. theorem5.17),
or by normalizing any uniformly observable realization (section 5.3). We assume that
T OU(M,N), with state-space sequence B, so that A 0 D(B,B8). For each time
instant k, we augment the state transition matrices[Ay Ci] of T with asmany extrarows
as needed to yield a unitary (hence square) matrix Vy:

Bryr Nk

By A Cx
Vic = My {(Bwk (DV)J' (66)
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Theadded rowsintroduce aspace (My )k with dimensions satisfying #58y + #(My )k =
#Byy1 + #Ni. Since [Ax C¢] must have full row rank to enable AA+ CC) = 1, it
followsthat #By 1 + #Nk = #By, hence #( My )k = 0. Assembletheindividual matrices
{Ax, (Bv)k,Ck, (Dv)} into diagonal operators{A,By,C,Dy}, and defineV by taking
the corresponding operator V as a state-space readlization for V. By theorem 6.4,V is
inner if also ¢a < 1, and because T and V have the same (A,C)-matrices, Ho(V) =
Ho(T), asrequired to make A O .

Although the construction is the same whether /4 < 1 or £5 = 1, the proof that it
yields an external factorization isless elementary (and only conditionally true) for the
case /a = 1, so thelatter case is omitted in the following theorem.

Theorem 6.8 Let T be alocally finite operator inid. If T has arealization which is
uniformly observable and for which ¢a < 1, then there exists an inner operatorV such
that

T=2Y

whereA =VTUO U.

PrROOF Under the present conditionson T, it has a minimal realization T which is
in output normal form and has /5 < 1. Then the above construction gives a unitary
realizationV. Sincethisrealization has/a < 1, theorem 6.4 ensuresthat VV isaminimal
realization and that the corresponding operator V isinner. By construction Ho(V) =
Ho(T), so that application of corollary 6.7 showsthat A := VT is upper. BecauseV
isinner, thisimpliesthat T = A™U. ]

The fact that A = VT is upper can also be verified by a direct computation of A.
Let'sassumefor generality that therealization for T has observablllty Gramian Q> 0.
Thenthe correspondingunnormalizedrealizationV = [Bv by | setisfiesin particular the

relations AQUV AP+ ccP= Q, ByQU"Y A"+ DyC” = 0, and it follows that

A=VTY = [Dy+ByvZ(I-AZ)"'C] [D"+CHI-Z"A")1Z"BY
= [Dv+BvZ(I-Az)*C| D" + DyCH(1-Z"AD)"1ZzB" +
+ BvZ(I -Az)"*cCH(I —zDAD)-lzDBD
= [Dv+BvZ(I-Az)7'C] D" - ByQU VA1 -Z"AD)1ZB +
+ BvZ(1-AZ)1(Q-AQDAY (I —zDAD) -1zBH,

Now, we make use of the relation

Z(l —AZ)‘l(Q—AQ(‘l)AD)(I —zDAD)—lzD
:(I—ZA)‘lz(Q AQ‘ AD) Z-AD1
= (1-zA)™Q™ + Q VAN Z-A9

= QY +Z(1-AZ)AQY + QUHAY(I -ZTAY 1Z"

where the second step is easily verified by pre- and postmultiplying with (I —ZA) and

(Z-A"), respectively. Plugging this relation into the expression for 4, it is seen that
the anti-causal parts of the expression cancel, and we obtain

A = DyD"+ByQUYBY + ByZ(1-AZ) 1 (AQYB "+ D).
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] 1 _— _ 1 — ] 1 —
—— —=
_ 2 —_— _ 2 — — 2 —
) 3 | ] 3 3 |
— 4 F——= — 4 4 ——~
T AP \Y

(a) (b) (c)

Figure 6.1. External factorization: () The structure of a state realization for an example
T, (b) the structure of the corresponding A7 and (C) inner factor V such that T = ARV,

In summary, if £a < 1, AQTYAP+CC”= Q> 0, then T has an external factorization
T = ASV with realizations of the form

_|AC _|A C _[A AQ(—l)BD+CDD
= {B D} S V= {Bv Dv} A= {Bv BvQ B+ DVDD} G

Thisrealization is not necessarily minimal: if, for example, T isitself inner, then B =
By and D = Dy, so that C, = 0, and therealization for A is not observable.
A dual result is afactorization T = UAP with realizations of the form

A C A Cy A Cu
T= [B D} 0 U= {B DU} , A= {CEMAJrDEB cEMoUJrDibu} 68

whichisvalid for /s < 1, AMA+ BB =M > 0.

Because the A¢ are not necessarily square matrices, the dimension of the state space
may vary intime. A consequence of thisisthat the number of inputsof V variesintime
for aninner V with minimal state dimension. The varying number of inputs of V are of
course matched by avarying number of outputsof A”. Figure 6.1 illustrates this point.

Algorithm

If we do not assume that the realization for T isin output normal form, then the recur-
siontonormalize T and the complementation to computeV and A can conveniently be
combinedinto asingle “QR iteration”:
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Proposition 6.9 Under conditions of theorem 6.8, let (A,B,C,D) be any uniformly
observablerealization of T. Denoterealizations of V and A by

A G A Ca
V{Bv Dv}’ A= Ba DA}-

ThenV and A such that T = A™V follow (backward) recursively from the L Q factor-
izations

ARG G R¢ O
| 0o | = Vi, k=--,nn-1,n-2,-- (6.9
BRei1 D A

whereV is unitary and Ry : dy x dy is arecursively determined square matrix.
Dually, let (A,B,C,D) be any uniformly reachable realization of T. RealizationsV
and A such that T = VA" follow recursively from the QR factorizations

RAC| I RG] _.y, [ Rent
B« |0 D¢ | K|l o0
PROOF Postmultiplying (6.9) with itstranspose removesVy and producesthe equation

Ax(Rer 1R 1)AL+CIC = (RRD).-

Hence R is the sguare root of the solution of the Lyapunov equation associated to
(A,C) (viz. (5.25)), and a state transformation by R will bring T into output normal
form, as discussed in section 5.3. Working out (6.9) gives the equations

Ay }, k=--,nn+1n+2---.

-1 Ap(-1) —1 A\Sl B\; —
[RIAR RC]{CE Dﬂ[l 0]
AD_ I 0 A\El B\; — A’E B\Sl
=lers 0] @ 00 )=| Erumeoey Erhong |

After taking the state transformation by Rinto account, these are precisely the defining
equations (6.6) for V and (6.7) for A. O

Both recursions require an initial R,, (for some adequate n). Since Ris the square
root of the solution of aLyapunov equation, it may beinitialized in asimilar way asin
section 5.3. In particular,

1. if T isafinite nxnmatrix, we can start with R, =[],

2. if T is Toeplitz starting from some point n in time, then we can initialize (6.9) by
taking R, to be the solution of the time-invariant Lyapunov equation

AQAT+CCI=Q, Q= RR..

3. We already had to assume /5 < 1 to guarantee the existence of the externa fac-
torization. The Lyapunov equation is strongly convergent for /a4 < 1, hence even
if we start with an imprecise initial R,, it will converge towards the true solution
(Rq - Ry). Thus, we may start with any invertible Ry, 9., R, = I. Here, n should
be sufficiently far away from the interval in which the external factorization is of
interest.
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Remarks

Oneremaining issue with the external factorizationisto explain why (and when) it can
be called inner coprime. Two upper operators T; and T, are called (left inner) coprime
if they do not have a common, non-trivial left inner factor [Dew76], i.e., if

T o= WT
T, = W

(whereT; , OU andW isinner) impliesW O D. With this definition of inner coprime-
ness, itis possj bleto show that A and V in the factorization T = A"V areinner coprime
if Ko(T) =UV = Ko(V). Indeed, suppose that they have acommon left inner factor
W, then T = A7y, where

A = WRA OU

Vi = W Ou.
Ontheone hand, iV = UsWV, O UsV,. Ontheother, Ay OU O oA = Z/{z[\/lTEﬂ =
[I/{2V1]TD O Uy, hence UoV1 O UV, since UV = Ko(T) isthe largest subspace in Us
that is mapped by T to ¢4,. Combining both observations gives/,Vy = UV, so that
Vj isequal toV, up to aleft diagonal unitary factor.

6.3 STATE-SPACE PROPERTIES OF ISOMETRIC SYSTEMS

In section 6.1, wederived anumber of state space propertiesof inner systems. |nprepa-
ration of a treatment on inner-outer factorizationsin chapter 7, it is necessary to con-
sider also the state space propertiesof isometric operators. 1t will turn out that aninner-
outer factorization with aninner operator as defined earlier isnot alwayspossible, even
inthelocaly finite case.

The equivalent of proposition 6.1 for isometric operatorsis more complicated:

Proposition 6.10 LetV OU. Then

(Ko = uzvmker(-vﬂ|u2),
o_ H = ﬁovD
Wi=1 o UND = U, OH
ker(-VD|X2):{O} O Visinner
(K = L,z7WHPDO ker(-V\Lzz_l).
Ho == ﬁV

VV=L D N 5ZN - Lzto7,

ker(-V\Xz):{O} O Visinner

PROOF LetVVP=1. BecauseV isanisometry, the subspace A,V = ran(V) is closed.
Because YoV = £,Z7V O UV, both UV and £,Z71V are closed subspaces.

UV 0 K, because P'( [UZV]VEb = 0. The remaining subspace K, © U5V consists
of elements

Ko © UV

{(XOUy: P'(XVD) =0 OPXVD =0}
{XOUs: XVP=0}
ker(-VD\Mz).
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Hence Ko = UV O ker(-VY )"

To show that # = HoV", takeU O £,Z1. ThenUV =U; +Y, whereU; 0 £,Z71
andY = P(UV) O Ho O Uy. All of H, can be reached by Y if U ranges over £,Z71.
Multiplication by V" givesU = UV 4+ YVE, and since VP O £, it follows that YVE O
L5271, and thisistruefor al Y O H,. Hence HoVE O £2Z71 and d'so

HVE O £,27T.

Since’H = P/ (UVP) = P/ (HoVY), we obtain H = HoV . Thirdly, the expressions for
Ho and Ko combined give

Up = Ho O UpV O ker(-VY,)

hencelloVE = HoV 4. Because HoV = H O £,Z72, the two componentsare actu-
ally orthogonal. Finally, sinceV isanisometry, itsrangeisclosed, andif ker( -VD|X2) =
{0} then that rangeis actually X». HenceV has al€ft inverse, which must be equal to
theright inverseVE, VBV =1 and V isinner.

Dual resultsholdin case VRV = 1. ]

The spaces ker( -VD\MZ) and ker( -V x,) are fundamentally different: because the
inputs are restricted to U5, thefirst can be the zero space while the other contains non-
zero elements — this fact will be of great importance for the inversion theory of the
next chapter. A dual remark holdsfor -V.

Isometric realizations

Theorems 6.3 and 6.4 on the realizations of inner operators have specializationsto iso-
metric operators and realizations. For later use, we now consider the case /p = 1 as
well, which complicates the proof of theorem 6.12.

Theorem 6.11 LetV OU bealocally finite operator. Then

Vi = 0 The canonical controller redlizationV of V satisfies\VV = |
and is observable and uniformly reachable.
VVH= | O The canonical observer realizationV of V satisfies\VVE = |

and is reachable and uniformly observable.
PROOF The proof is the same as the proof of theorem 6.3. i
Theorem 6.12 LetV = [ 5] beastate redlization of alocally finite operatorV OU.

Let Ag and \g, be the reachability and the observability Gramians of the given real-
ization. If fp < 1, then

Vi =| i VRV =1, Ag=1,

VVvE=| i WH=1, Ag =1I. (6.10)
Iflpn< 1, then

VIV =1, Ag=I 0 VH/ =1,

VWH=1, Ag =1 0 vwh=1.
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PROOF If /s < 1, then VBV = | impliesa.o. A"A+ B™B = |. This expression can be
compared with the Lyapunov equation for F: APAFA+ BB = A,(:_l). Since/a < 1,the
equation has a unique solution, which must be Ag = I. A dual result holdsfor Ag, in
caseVVP=1. Incontrast, if £ = 1, then Ar cannot be uniquely determined: we cannot
conclude uniform reachability from AYA+ BB = |. Hence, in that case we have to put
thisasarequirement.

Assume VRV = | and Ag = |. Sinceit is an orthonormal basis, we write Q for F

from now on. Equations (6.4) hold:
Po(\V) = Po(:[D+QC])
vt = DU+CHQ.
To show VV = |, we show that Po(Z"VHV) is=1 for n = 0, and = 0 otherwise. For
n=0:
Po(VV) = Po(|D"+CQJ[D+QC])
Po(D"D) + Po(D"QC) + Po(C'QD) + Po(C"QQC)
DID+CC=1.

Forn> 0,
Po(Z"VH)
= Po(Z"[D"+CQ] D + QC])
=Po(Z"D™D) + Po(Z"D"QC) + Po(Z"CHQD) + Po(Z"CFQQC).
Using equations (5.37) and (5.38), vi
Po(z"QQY = A (n=0)
Po(z"QY) = BMATL (n>0)

Z

gives
0+ 0+ DHVBMAIIC 4 CHMAINC
[D'B+CFA(WAIT-TIC
= 0.

Taking adjoints shows that Po(Z"V"V) = 0 for n < 0, too. Hence V'V = 1.
Thefact VVP=1, Ag, =1] O VV"=1 can be shown in adua way. O

Theorem 6.12 hasan interpretationintermsof conservation of energy. LetV beare-
aization for some bounded operator, suchthat VVP= 1. With [X[(I<_+1)1] Yl = X UV,
this property ensures that, for each k,

Po(Z"VH)

-1
11Xy, i lEs = 11X Ul liss: (6.12)

Summing this equation over all k yields
1Y 1Es+ I1XIEs = 1V IEs+ X IIfis-

If £a < 1,then X 0 X, sothat || X |35 < o, andit followsthat || Y ||us = ||U ||ns, So that
VVH=1. Inthecasewhere (s = 1, || X ||45 can be unbounded: energy canremaininthe
state X fork — oo, sothat thesystemisnot lossless. If therealization hasobservability
Gramian equal to |, this can in fact not occur, but observability cannot be determined
from AAZ+CCU = | if fp = 1.
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d
Uo on Yo
X1
Y1
d
uz b22 Y2
X3
y3
Figure 6.2. A simple isometric system.
Example
Asan example, letV OU(M,N') begiven by
( [do] o 0 0 0 0 -]
9 4 b 0 O .. #M = [101010-]
0O O d b, O O -
v=| 0 2T T AV = [111111 -]

|

where dﬁ + b2 = 1 (the underlined entries form the main diagonal, the ‘- denotes an
entry with zero dimensions). V isanisometry: VVP=1. It hasan isometric realization,
VVP=1, given by

. | 1

Seefigure6.2. Letby — O, fori — o. Thenthe output state space Ho (V) = P(£2Z71V)
isnot aclosed subspace: it istherange of the Hankel operator Hy of V, with snapshots

Vik=|—"| (evenk),  Vi=
[ b | di

b1 O
0

(H)k=0 (evenk),  (Hv)k= 0 (odd k).
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The row range of (Hy)k determines the k-th slice of #H,(V). For odd k, the Hankel
matrix has rank 1, but the range of the whole collection is not closed because by — 0
but never becomes equal to 0.

In this example, V can be extended to an inner operator W, by adding extra inputs.
This is straightforwardly done by completing each realization matrix Vi to a unitary
matrix Wy, which yields

| ' 1
Wi=1 p | dg (evenk), Wy = l:—] (odd k),

=i | b
do| bp 0O 0 O i
bo|-do O O O
— #Mw = [202020-]
W=|0 0 d b 0 By = (111111 -
0 0O by, -dp 0O - #w = [010101--1.

W satisfiesWW" = 1, and W-W = 1. Its output state spaceis closed, and it isthe
closure of the output state space of V: Ho(W) = Ho(V). Indeed, the snapshots of the
Hankel operator of W are given by

b1 O
—de-;1 O
(Hwk =0 (evenk),  (Hw)k= 0 o0 (odd k),

and each odd Hankel operator snapshot has one nonzero singular value, equal to 1.

Not every isometric transfer operator can be embedded in an inner one, although
every isometric realization can be completed to a unitary one. A counterexampleis
given in the next section.

6.4 BEURLING-LAX LIKE THEOREM

The existence of the external factorization was shown to depend on the construction
of an inner operator V such that I,V is equal to some specified subspace Ko(T), the
output null space of thesystem T. Thereis, however, agenera result, which states that
any subspace! Ko whichisleft D-invariant and Z-invariant (i.e., such that ZKo 0 Ko) is
of theformi4,V, for someisometric operator V. Such atheoremisknowninthe Hardy
space setting as a Beurling-Lax theorem [Beu49, Lax59, Hel64]. It not only provides
the external factorizationinthelocally finite case, but other factorizationsaswell, such
as the inner-outer factorization in section 7.2.

1Theindex 0in Ko will get meaning later in this section, when we consider a nested sequence of spaces K,
constructed from Kg.
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From the next theorem, it follows that the input space M of V O U(M,N) satisfy-
ing Ko = U3V is of locally finite dimension only if Ko & ZK isalocally finite sub-
space. Although M will belocally finitein the application to inner-outer factorization,
we will prove theorem 6.13 for the more general situation. This callsfor an extension
of some of the definitionsin chapter 2, to include operatorswith matrix representations
whose entries are again operators. The extensions are straightforward (see [DD92]).

Theorem 6.13 (BeurlingL ax-like) All DZ-invariant subspacesKy inué‘/ havetheform
Ko =U3"V, whereV OU(M,N) isanisometry (WWP=1). V isuniquely defined ex-
cept for aright diagonal unitary factor.

PROOF Let Ro = Koo ZKp. Thisis aD-invariant subspacein ué‘/. We can assume
that it isnon-empty, for else Ko = ZKo = Z"Ko for dl n= 0. Inthat case, notethat X O
Uy O limp_, P(Z7"X) = 0, sothat in particular, for X 0 Ko O U, wehaveZ™"X 0 Ko,
and limp_, 0 P(Z7"X) = limy_ » Z"X = 0. Thisimpliesthat Ko = {0}, so that thereis
nothing to provewhen Rg is empty.

Now defi neRnp= Zn/Co@Zn+1/Co. Thean = ZnRo, and KoORoORL1OR,O -+
Infact Ko =RoOR10R,0 -+, for supposethat f O Xgand f OReOR,0 -+, then
it followsthat f O Z"Ko O Z"Us for all n>1, and hence f = 0.

Supposesdim Rg = M, and definethe sequence of Hilbert spaces M to haveentries
My = CM (M = £ if Mg = ®).2 Then there exist isometries Vi : My — (Ro)k
such that (Ro)k = MyVk. Let V be the operator whose k-th block-row is equal to V.
Stacking the Vi into one operator V, we obtain an orthonormal basis representation of
Ro, asin chapter 4, such that

Ro=Dy'V,  Po(WH=1.

It followsthat Ry, = DZ"V, and because Ri O R (i # j), that D1Z"V ODyV (n=1)
for all D172 O Do, i.e.,

Po(Z'VWWO) = 0

Po(WHZ™ = 0

so0 that VV = I: V isan isometry. The orthogonal collection { D>Z"V} o 0 Ko, and
together spans the space U,V. Hence Ko = { D22V} 5 = UoV.
The uniqueness follows easily by retracing the steps and showing that any charac-
teristic V actually defines an orthonormal basis for the “wandering subspace” Ro.
O

Theabove proof isinthestyleof Helson[Hel64, 8V1.3] for thetime-invariant Hardy
space setting. This proof wasin turn based on Beurling’s work [Beu49] for the scalar
(SISO) case and Lax [Lax59] for the extension to vector valued functions.

2Let N be the index sequence corresponding to A, with entries Ni. It follows that the dimension sequence
M has entries M; < N 4+ Ni;1 + -~ Although M; can beinfinite, an orthonorma basis for (Rg); = Tt R is
still countable, and the construction of an orthonormal basis representation of R can be done as explained
in the proof of the theorem.
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Doubly shift-invariant subspaces

Theorem 6.13isinstrumental in compl eting the description of isometric operatorsgiven
in proposition 6.10. In that proposition, it was found that V is inner if VVY = | and
ker( -VD\ Xz) ={0}. A remaining issueisto give conditionsin state space terms under
whichV isactually inner, or can be extended/embedded into an inner transfer operator.
Aswe aready know, a sufficient conditionisthat /4 < 1. A precise condition involves
the notion of “doubly shift-invariant subspaces”.

For time-invariant systems, V will be inner if and only if the corresponding output
null space Ko(V) is “full range” [Hel64].2 Systems T for which Ko(T) is full range
arecaled “roomy” in [Dew76]. Time invariant systems of finite degree are roomy: if
Ho(T) isfinite dimensional, then its complement ICo(T) isautomatically full range. In
the time-varying setting this turns out not to be true. To show this, we start out with a
study of the geometry of the state spaces of an isometry.

If Visinner, then KCo(V) = UV and Ho(V) = U SULV. If V isan isometry, then
the structure of the orthogonal complement of H (V) ismoreinvolved. Let Ko = UV
and K, = ker( -VD\MZ) = {X OU, : XV = 0}, then, by proposition 6.10,

U = Ho(V) O K, O Ko. (6.12)

However, the condition K, = {0} does not entail {X 0 &, : XYY = 0} = {0}, so that
K = {0} doesnot imply that V is inner (an elementary example is given in chapter
7). The space Ky, if non-empty, can be absorbed in an isometric embedding of V, with
output state space (V) and output null spacel/,V O Kf,. Theresultisnot necessarily
an inner operator, but one which has a unitary realization, which makes it “amost”
inner but not quite. Indeed, there might be elementsin ker( -VD| Xz) that are not in X,
and hence cannot be absorbed. This “defect space” will be shown to satisfy a double
shift invariance property.

Let Ko = Ko = UV and K,y = P(Z"Kp). Define Ho = Uz & Ko, and, for n > 0,
Hn = P(Z_nHO).

Proposition 6.14 With the definitions given above and forn = 0,

Kn O Knpa
Ky = Up o USKn.

PROOF Because ZKo O K, it follows that Ko = P(Z1ZKo) O P(Z1Ko) = K1. Re-
peating the argument gives KCn 0 Kn11. Let X O Uz. Then, and because Ko = UV,

XOK, < XvP=0
= Po(XVHZ") =0 (dlnO2z)
= X OP(Z"Ko) (adln=0)
- XOUsP(Z"Ke) (aln=0).

3The notion of full range refers to the space spanned by ztransforms of functions of K, at each point of the
unit circle in the complex plane (aso-called “anaytic range function”).
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This property can also be given in terms of Hp:

Coroallary 6.15 With the definitions given above and forn = 0,

Hn = U 6 Ky,
Hn+1 O Hn:
PROOF
XOU 5 Ky = XOUy, XOK,

- XOU, Z'X0OKo
o XOUp, Z'XOHo
o XOU, XOZ™Ho
= XOP@Z™o) = Hn.

Hence Hn = U> S Kn. Theremaining issues are acorollary of proposition 6.14. |

Proposition 6.16 K isadoubly shift-invariant subspaceinity: ZK5 0 KL, P(Z1KL) O
Kp.

ProOOF ZK{ O K}, because

ZKL = {ZX:XDOKL}
= {ZX:XOU, OXVE=0}
= {ZX:XOU, 0ZXV=0}
= {YDOZU:YW"=0}
O K.

ButalsoP(Z 1K) O K, becauseP(Z 1 Hn) = Hny1 O Hn, and Hp = Ni_o Hn. Hence
P(ZT Moo Hk) = Hnr1 O NioHx. Lettingn - oo yields P(Z71KCL) O kL. O

An important corollary of the preceding discussion is that an isometric transfer op-
erator V O U for which K,(V) # {0} admitsacompletion by another isometricU into
alarger isometric operator W = [3] for which K4, (W) = {0} and which has a unitary
redization. W is“amogt” inner, since from theorem 6.4 we know it has to be inner if
{p < 1. The existence of U follows from the fact that the kernel K = ker( 'VD|u2) is
shift-invariant (proposition 6.16), so that, according to theorem 6.13, it can be written
as Ky = UpU:

Proposition 6.17 IfV OU(M,N) isalocaly finite isometry (VWP = 1), then there
exists anisometry U OU(My, N') such that ker( 'VD‘u-z\") = U3"VU. The operator

o[y

isagain isometric, now with K, (W) = {0}, andit hasaunitary realization. Conversely,
ifV isisometric and has a unitary realization, then the corresponding K, = { 0} .
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PrROOF If V isan isometry, then (proposition 6.10)

Uy = Ho(V) O ker(-VD|Mé\f) 0 u3'v, (6.13)

where K[, := ker( -VE'| Uz) isleft DZ-invariant. According to theorem 6.13 there exists

an isometry U O U(My, ) such that K} = 24,""U. To conclude that W™ = 1, it
remainsto show that UV = 0, whichistruebecausel/,V 04U . HencellW = UoU O
UV, and since Ho(W) O Ho(V), we must have (from equation (6.13)) that Ho (W) =
Ho(V) and KL(W) = ker( -WE'|M2) ={0}.

By theorem 6.11, V has a canonical observer realization

_ | Av By
V‘{CV Dv}

which has observability Gramian Ag, = | and satisfies VV" = 1. SinceU and W con-
structed above are isometric as well, and have the same output state space asV, their
canonical observer realizations U and W have the same Ay, Gy and are also isometric.
Hence, we must have that

&

W= G Dy |. (6.14)
Y

By theorem 6.12, it then follows that W is the realization of an operator W such that

WWH = |, If at thispoint W would not be unitary then this can only be becauseitslocal

realizations W would not be square matrices (since they havefinitesize). Inthat case,
W can be extended to a unitary matrix, but after application of theorem 6.12, it would
follow that W is not yet an isometry, because its extension is. From this contradiction,
it followsthat W must be unitary.

The same argument also proves the converse statement in the theorem. O

It is relatively easy to construct an isometric transfer function V for which K :=
ker( -VD\MZ) = {0} but not K2 := ker( -VD\XZ) = {0}, and we do so in chapter 7. This
shows that W in the last proposition is not necessarily inner. We already know from
proposition 6.10 that W will be inner if ker( -WD\XZ) ={0}. Inaddition, from theorem
6.12, wecan concludethat Wisinner if therealizationof V has/a < 1,0rincase/a =1,
if therealization of W isboth uniformly observableand uniformly controllable. For this
it is necessary that the input and output state space of W are closed. Problems can be
expected if this does not hold for V.

K2 is doubly shift invariant on al of A (ZK2 O K4 and Z7 1K) O K4). Thisfactis
very important and characterizes this subspace. We explore the matter alittle further
in the following proposition; additional results will be provenin section 7.5.

Proposition 6.18 AssumethatV is an isometry for which K := ker( 'VD|u2) = {0},
but K := ker( -VE'|X2) #{0}. ThenP(K}) O Ho(V). Moreover, let A be defined by
the canonical observer redlization of V. Then/a = 1.

PrROOF By assumption, K contains non-zero members, and clearly, it forms a left
D,Z,Z! (i.e., doubly shift invariant) subspace of X». Lety, 0 K2 andy = P(Yo), and
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consider the diagonal inner product {y, uv} for an arbitrary u 0 U>:

{y7 UV} = PO(WEUEb
Po([Yo = (Yo—y)]V"U)
~Po ((Yo—y)VUH) = 0,

since (Yo—y) 0 £2Z71. Hencey O Ho (V) = Ua SULV.

Furthermore, an output normal realization based on an orthonormal basis represen-
tation G of o will produce an A-matrix for which yAW = P(Z~1y), or more gener-
aly, yAl"t = P(Z™y), see section 5.4. To show that /4 = 1, we have to show that
limn .« ||A{ |7 = 1. Thiswe do by showing that for all n > 0, || Al || = 1. Pick an
n>1and an arbitrary € < 1. If yo 0 K%, then it is also true for any k that ZKy, O K2,
due to double shift invariance. By taking Y, to be a unit-norm member of K} shifted
far enough to the right, we can guarantee that the corresponding y = Py, as well as
P(Z™"y,) havetheir norm ascloseto 1 aswewish. Thus, given € chooseay, U Kj and
y=P(¥o) suchthat (1) [lyl| = 1, (2) [IYo=YIl < &/3and (3) |Z"Yo = P(Z "Yo)I| < &/3.
It follows that

IP(Z"y) =2 < [IP(Z"(y=Yo)) I + [P(Z"0) =Z 0|l + 1Z7"Yo=Z"Y]|
< &,

andsince | Z7y| = [lyl| = 1,
IPEZ"y) | > 1-e.
Since Al mapsy on P(Z™My), it must bethat || Al || > 1-¢, and since € was arbitrary

to start with, || Al || = 1and ¢p = 1. O

The second part of this theorem should not come as a surprisein view of the inner
redlization theorem 6.4, for if £ had been lessthan one, thenV would have beeninner,
and K = {0} (this observation amountsto an indirect proof of the property).

Embedding through external factorization
Supposethat an isometric transfer operator V 0 U/ (withVV = I) isgiven, and assume
that it has aright coprime factorization

V=AU

with A O andU inner. We show that A isactually diagonal, and there exists a unitary
diagonal Ug such that

A"=1]l 0]Ug, V=] 0](Ugu).

The latter expression is an alternative right coprime factorization for V.

The property is easy to prove from the previous theory, in particular proposition
6.18. An alternative proof follows from an adaptation of the LTI theory in [Dew76],
and we give a sketch of how it would work in the present context.
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If AandU formaright coprime pair, then there exist sequencesof transfer operators
Mn O U and N, O U such that

lim (UMp +AN,) = |

n- oo
(only awesk limit is needed, the sequences of operators do not necessarily converge
individually). Now, VV5 = | impliesA"A = |, and hence
r!im(AEUMmL Nn) = A",

It follows that
AD:Aim(VMn+Nn) ou,

and hence A must be diagonal, and isometric. A further reduction bringsit to the form
[I OJUg. The embedding theory will be given afurther extensive treatment in chapter
12.

6.5 EXAMPLE

As an example of the use of inner-coprime factorizations, consider a mixed-causality
operator T 0 X with adecomposition T = T, + T,y where T, 00 £ and T, O Zi4. Our
objectiveisto compute a QR factorization of T,

QT=R, Qunitay, ROU.
Note that QT + T;y) = QT + Q"T;,. Suppose that we compute an inner-coprime
factorization of T

TP=A%, AOu, vVOUu,inner.

ThenVT, =A0U, and aso VT, O U since both factors are upper. The QR factoriza-
tion isthus given by

Q=V’0L, R=A+VT,OU.
Inview of theorem 6.8, the factorizationispossibleif TE hasalocaly finiterealization
that is uniformly observable and u.e. stable.

Thefactorization can be computed by theal gorithmin proposition 6.9; thisisworked

out in detail in chapter 7. For asimple numerical example, which isamenableto direct
calculations, take

1 0
1
-
= 172 1
1/4 1/2 1

O |18 1/4 172 1




The inner-coprimefactorization T = Q"Ris

( .

ISOMETRIC AND INNER OPERATORS

1 0
1
(10
[0 3vV3 1/2
[03V3 -3/4 1/2
O |[[0iv3 -3/8 -3/4 1/2
1 0
1
1 0 0 0
el 34l 17l 14
o -1 -} —%--
o -1 -1
0 0 -1..

143

It is not hard to verify this by direct multiplications: Q is unitary and T = Q'R, but
obvioudly, this factorization is not trivially obtained. It has been computed by Matlab
using the state space algorithm in proposition 6.9. Note that the number of inputsof Q
and Ris not constant: it isequal to 2 at timek = 0.






7 INNER-OUTER FACTORIZATION
AND OPERATOR INVERSION

Direct methodsto invert large matrices may give undesired “ unstable” results. We can
obtain valuable insights into the mechanics of this effect by representing the matrix as
atime-varying system for which it is the transfer operator. Among other things, this
will allow usto handle the instability by trandating “unstable” into “anti-causal” yet
bounded.

A central role in doing that is played by inner-outer factorizations of the relevant
transfer operator: yet another consequence of the Beurling-Lax like theory of the pre-
viouschapter. Theinner partsof the operator capturethe part of the operator that causes
theinstability intheinverse, whilethe outer part can be straightforwardly inverted. The
theory of inner-outer factorization may appear to be complex at first, but numerically
it smply amounts to the computation of a sequence of QR factorization steps on the
state space description of the original transfer operator, much like the computation of
the external factorization of chapter 6. In fact, the inner-outer factorization providesa
QR factorization of an upper operator, which is interesting only for infinite operators
or finite matricesthat are singular or have nonsquare blocks.

This chapter will be mostly motivated by the inversion problem, but we also cover
important theoretical groundsoninner-outer factorization, sincethisformsthebasisfor
theinversion algorithms. The chapter is concluded by abrief investigation of the“ zero
structure” of atransfer operator. For this we could analyze the pole structure of the
inverse operator, but only if it exists. The inner-outer factorization provides precisely
the same information without this complication, and we study its limit behavior in a
specific case.

145
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7.1 INTRODUCTION

The inversion of large structured matrices is a delicate problem which often arisesin
finite element modeling applications, or (implicitly) in non-stationary inversefiltering
problems in signal processing. To stress the fact that these matrices might be fairly
large and even so large that ordinary linear algebra techniques might fail, we alow
them to have infinite size, i.e., they are operators on the space of /,-sequences. To set
the scene, consider the infinite Toeplitz matrix

-1/2 0

T= 1 -1/2 . (7.1)
1 -1/2

0 1

Theinverseof T isgiven by

| 1/2 1/4 1}8
1

T1_ 1/2 1/4 7
1 1/2
L 0 1

asis readily verified: TT™1 =1, T"1T = I. One way to guess T in this case is to
restrict T to a (sufficiently large) finite matrix and invert that matrix. For example,

1 -12 0 1% [1 1/2 1/4
0 1 -12| =|0 1 1/2
o 0 1 0o 0 1

already gives an indication. In general, however, this method will not give correct re-
sults. Another way to obtain T™1, perhaps more appealing to engineers, goes via the
z-transform:

T2 = 1-3z
1
0 TY2 = —=1+iz+12+--.

_1
1-5z

The expansionisvalid for |7 < 2.
What happens if we now take

T= 1 -2 (7.2)
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and treat it in the same way? The method “restricting to finite” would yield

1

[I-o

=N A
=N B~ oo

L 0
In transfer function parlance, that would correspond to writing

TY2 =1+2z+42+--.

Thus, T~ isunbounded, and the seriesexpansionfor T~%(z) isnot evenvalidfor |7 < 1.
The correct, bounded inverseis e.g. obtained via

Tig= = - i
T 1-2z 1—%2‘1
e T
12 [0 0
o Ti-| Y4 -2 0 (7.3)

-1/8 -1/4 -1/2 0
=1/16 -1/8 -1/4 -1/2

Again, it isreadily verified that TT™1 =1, T"1T = |. Thisinverseis bounded but not
causal. We see that the inverse of an upper operator need not be upper. In the light
of finite dimensional linear algebra, this seemsto be a strange result. An intuitive ex-
planation is that, because the matrix is so large, the location of the main diagonal is
not clear: a shift of the whole matrix over one (or afew) positions should be allowed
and should only give asimilar (reverse) shift in the inverse. For example, T~ can be
guessed from finite matrix calculusif one shifts the origin over one position:

2 0 01t [-12 o0 o
1 -2 0| =
0 1 -2

-1/4 -1/2 0
-1/8 -1/4 -1/2
A better explanationisto say that T(z) isnot an outer function, that isto say it isnon-
minimum phase, and hence T™1(2) is not causal, which trandates to a lower triangular
matrix representation (we shall make this more precise soon).
The above example gives a very elementary insight in how system theory (in this
case the z-transform) can help with the bounded inversion of large matrices. The ex-
amples so far were cast in atime-invariant framework: all matrices were Toeplitz. We
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now go beyond thisand consider general matricesand their connectionto time-varying
systems.
A simpleillustrative exampleisprovided by the combination of the abovetwo cases:

1 -1/2 0
1 |-1/2
T= (1] -2 : (7.4)
1 —
1 -2
0 1

Is T~ upper? But then it would be unbounded:

1 1/2|1/4 172

112 1
T2 2
1

=N A N -

Something similar happens if we opt for a lower triangular matrix representation. A
bounded T~ (if it exists!) will most likely be acombination of upper (the top-left cor-
ner) and lower (the bottom-right corner), and some unknown interaction in the center:
something like

000000 o o -
00000 ¢ - -
0000 - ¢
0000 - -
0000 - -

- 0000

- 000

. AN X J

T_l_’? I N ¥ )
— - s e 00000

- e 0000
c e o0 0

s e e

(7.5)

c e e|le o . .
.

c e e

c o 00000000 o o
c o 00000090 o o -
c o 00000 ¢ o 00 - .
- e 00000 -
e 00000
ceoco000
c000
[ X X J
[ X )
[ ]

The purpose of this chapter is to give precise answers to such questions. We shall see
that, infact, T isnot directly invertible, althoughit hasaclosed range. Theform given
in the figure is a M oore-Penrose pseudoinverse.
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There are several potential applications of the theory in this chapter:

1. Time-varyingfilter inversion: T in(7.4) could represent an adaptive FIR filter, witha
zero that movesfromz=2to z=1/2. Think e.g., of an adaptive channel estimate
that has to be inverted to retrieve the input signal from an observed output signal
[TD95]. Asthe example shows, adirect inversion might lead to unstable results.

2. Finite element matrix inversion: Finite element matrices are often very large, and
hencethe effectsobserved abovemight play arole. Presently, stability of theinverse
is ensured by careful selection of boundary conditions: the borders of the matrix
are chosen such that its inverse (as determined by finite linear algebra) is well be-
haved. Time-varying techniques might give additional insight. Under stability as-
sumptions, it iseven envisioned that one might do without explicit boundary condi-
tions: extend T to an infinite matrix, which is constant (Toeplitz) towards (—co, —o0)
and (4o, +0). LTI systemstheory givesexplicit starting pointsfor inversion recur-
sions. Itiseven possibleto “zoomin” on aselected part of T~2, without computing
al of it.

3. System inversion also plays arole in control, e.g., the manipulation of a flexible
robot-arm [BL93].

4, Matricesand operatorsfor whichwealready haveastaterealizationwith alow num-
ber of states can be inverted efficiently in thisway. Thisis the topic of section 7.3.
A prime example of such operators is the band matrix: this correspondsto atime-
varying FIR filter. See chapter 3 for more examples.

7.2 INNER-OUTER FACTORIZATIONS

For rational time-invariant single-input single-output systems, the inner-outer factor-
izationisafactorization of an analytical (causal) transfer function T (z) into the product
of aninner and an outer transfer function: T(2) =V (2)To(2). Theinner factor V(z) has
its poles outside the unit disc and has modulus 1 on the unit circle, whereas the outer
factor To(z) anditsinverseareanalytical intheopen unitdisc. Suchfunctionsarecalled
minimum phase in engineering. For example, (with [a|, |B| < 1)

z-a” z-a” 1-az

z =z . .

1-Bz l-az 1-PBz
The resulting outer factor is such that its inverse is again a stable system, provided it
has no zeros on the unit circle. For multi-input multi-output systems, the definition
of the outer factor is more complicated (see e.g., Halmos [Hel64]) and takes the form
of arange condition: To(2) is outer if To(2)H2 = H2, where H2 is the Hardy space
of analytical mdimensional vector-valued functions. Because matrix multiplicationis
not commutative, there is now a distinction between left and right outer factors. We
shall see that generalizations of these definitionsto the time-varying context are fairly
straightforward.

An operator T, O U/ is said to be left outer if

LT, = Us. (7.6)
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Other definitions are possible;! this definition is such that Tan(-T;) = A>T, = A>, SO
that ker( -Tﬂ = {0} and T, has an algebraic left inverse (which can be unbounded if
X5y isnot closed).

A factorization of an operator T O/ into

T=TV, T, left outer, VV =1

(V inner if possible) is called an outer-inner factorization. This factorization can be
obtained from the Beurling-Lax type theorem 6.13 by taking a different definition of
Ko thanwasthe casein the external factorization (wherewetook Kq equal to the output
null space Ko(T)). Notethat the closurein (7.6) is necessary: for example, the system
T =1 -Zhasinner factor V = | and of necessity an outer factor T, = 1 -Z. T, isnot
boundedly invertible, and U/>T; is only dense in U». This happens when the range of
T is not a closed subspace. The time-invariant equivalent of this exampleis T(z) =
1-2z, which hasazero on the unit circle. Herealso, V(z) = 1, and T;(z) = T(2) isnot
boundedly invertible. Also note that if T is not an invertible operator, then it is not
possible to obtain an inner factor: V can only be isometric since we have chosen T, to
be (left) invertible.
Dually, we define T, O U/ to beright outer if

L2710 = £,771. (7.7)
The corresponding inner-outer factorizationis
T=VT,, VW =I, T rightouter. (7.8)
The two factorizations can be combined to obtain
T=URv, UU=1, wU=1, RIleftandrightouter.

Thisis similar to a complete orthogonal decomposition in linear algebra[GV89]. R
is algebraically invertiblein 24, and R™! is bounded if the range of T isclosed. TT :=
VERIUP will be a Moore-Penrose pseudo-inversefor T and it will be bounded if R
is. If U and V are both inner, then TT will be theinverse of T. If T has a state space
redlization then there will be state space realizationsfor U, V, Rand R aswell, but
the last one may be unbounded.

Theorem 7.1 (inner-outer factorization) Let T OU(M,N). ThenT has a factor-
ization (outer-inner factorization)

T=TV,
whereV O U(My,N) isanisometry WP = 1), T, O UM, My) is left outer, and
#(My) <#(M). V isinner if and only if ker(-T5) = {0}.

1see eg., Arveson [Arv75], who, translated to our notation, requires that 14, T, is densein P(X,T,) and that
the projection operator onto the range of Ty is diagonal.
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Dually, T has afactorization (inner-outer factorization)
T=VT

whereV O U(M,Ny) is acoisometry V&V = 1), T, OU(Ny,N) isright outer, and
Ny ON. Visinnerif andonly if ker(-T) = {0}.

PROOF Let Ko =UoT. Then Ko is a D-invariant subspace which is shift-invariant:
ZKo O Ko. According to theorem 6.13, thereis a space sequence My and anisometric
operator V O U (My, '), VW5 = I, such that LT = 1y ™V

DefineT, = TVE. Then T, DU(M, My) andUs' T, = U TVE =1L TVE =1V =
Z/{ZMV, so that T; isleft outer. It remainsto provethat T = T,V, i.e., T = TVH/. Thisis
immediateif V isinner. If V isnot inner, then it follows from the fact that -V5V isan
orthogonal projectionontotherangeof V. Indeed, sincella T =V, a0 XoT = AoV:
the closure of the range of T is equal to the range of V, and T is not changed by the
projection. Sincetan(-T) O ker(-TY) = A», we must have ker(-T5) = ker(-V"). By
proposition 6.10, V isinner if and only if the |atter space is empty.

By construction, u%‘/‘T = Dé”‘/v O ZuéMVV with My of minimal dimensions. Hence,
Po(U3TVD) = Po(U'Ty) = DY'Po(Ty) = Dﬁ”" and it follows that #(My) < #(M)
(since the dimension of the range of a matrix cannot exceed the dimension of the do-
main).

O

Thus, the isometric factor V of the outer-inner factorization is defined by the prop-
erty UoT =UoV. If TanT isnot all of XZM, thenV is not full range either, so that it is
not inner. One can define afactorization based on the extension of V to an inner opera-
torW = [3 ], if such an embedding exists; see proposition 6.17 in the previous chapter.
Thisthen gives afactorization T = T,W for which

UPT, = UpTWE
= UVWO
U0 1] O Uy,

so that T, is upper but not precisely outer:? it reaches only a subset of u;”W. Thisis
the best we can hopefor, in view of the fact that T is not “full range”.

2T, is outer according to Arveson’s definition [Arv75].
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Example
Let
1 -1/2 0
1 |-1/2
_ -2
T= 1 -2 . (7.9)
0 1 -2

T is a prototype time-varying system: for negative timesit coincides with a minimal
phasetimeinvariant system, whilefor positivetimes, the system has switched to atime
invariant behavior which now has a zero at z= 1/2 and has thus become “ maximum
phase’.

T has aright inverse obtained from the time-invariant behavior and given by

1 1/2 1/4
0 1 1/2 0
1
T = . (7.10)
-1/2 0 0
L 0 -1/4 -1/2 0

HenceT itself isright outer: theinner-outer factorizationisT =1 -T,. Sincetherightin-
verseT; isabounded operator, therange of T isclosed aswell .2 Itisnot hard to seethat
Tx=0forx=[---% 3 |1] § % --]7. Hencethecolumnsof T arenot linearly indepen-
dent (although looking at T onewould have guessed differently!): ker(- T x) 710}
Thus, T is not invertible, and theright inverseis not aleft inverse. In addition, thein-
verse displayed in (7.10) is not the Moore-Penrose inverse, see further in this chapter.

We can try to construct the outer-inner factorization for T from the property that
Ko(V) =UV = U,T. Asexplored later in this chapter, for thiswe should look for the
largest sliced upper basisF, satisfying P(FoT") = 0, which will then be abasisfor the
output state space Ho(V), the orthogonal complement of Ko (V). By inspection, we

3Suppose that in the range of T, there is a sequence y, — Y, then there is a sequence up, in the domain of T
such that y, = upT. Since TT; = | we have that up = U, TT, = Y5 Ti — YT, isaconvergent series. It follows
that y=uT sinceinturny = limp_ . U, T = uT.
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obtain

1}8 1}4 1}2 1 1}2 1}4 1}8
1/4 1/2| 1 1/2 1/4 1/8
1/2| 1 1/2 1/4 1/8

Fo= 1/2 1/4 1/8 - |- (7.11)
1 12 1/4 .

0 1 1/2

1

(Notethat the basis is not a bounded operator in X', but DoFo 0 U4s.) Based on Fo, we
can construct arealization for V by normalizing F, to an orthonormal basis represen-
tation G, defining Ay = Po(Z1GG)(Y), Gy = Po(G), asin the canonical observer
realization in chapter 5, theorem 5.17, followed by pointwise completion of (Ay,Cy)
to a square unitary realization. The result is shown in (7.34) at the end of the chapter,
where the outer-inner factorization will be obtained in a more structured way.
Asremarked above, ker( -TD| Xz) # {0}. Hence, by theorem 7.1, the VV-operator in
the outer-inner factorization which we just constructed cannot be inner and isonly iso-
metric. Thisistightly connected to the existence of a doubly shift invariant subspace,
and thisillustrates the discussion of section 6.4. The space K := ker( -VD\XZ) as used

in that section is equal to ker( -TD\XZ), and clearly it is aleft D-invariant and doubly
shift invariant subspace. An (unnormalized) sliced basis for this subspaceis

14 12 1 1/2 1/4

1/4 1/2 1/2 1/4
1/4 1/2 1 1/2 1/4

Thefact that the dices consist of look-alike basis vectorsis characteristic for the (left)
double shift invariance of Kj: obviously, shifting the rows up or down givesthe same
result. Asannounced in the proof of proposition 6.18, the projection of K ontoZ4, will
beinD,F,; inthe present caseweobtain evenall of DyF, inthisway. Thederivationin
section 7.4 (equation (7.34)) will show that althoughV has a unitary realization, it has
{p = landitisnot aninner operator, in accordanceto proposition 6.18. This matches
with the fact that ker(-VY) = K/ isnot zero and ran( -V) is not the whole output space.
Finally, it is not hard to see by direct calculation that K}, := ker(-V" lt,) = {O}.

Computation of the inner-outer factorization T = V'T;

In this section, we choose to work with the inner-outer factorization of T, asin (7.8):
T =VT, whereT; isright outer: £,Z1TH= £,Z71, and theleft inner (isometric) factor




154 TIME-VARYING SYSTEMS AND COMPUTATIONS

V satisfiesVRV = | andisobtained by setting K (V) := £,Z v equal to £,Z-1TE. For
this factorization,
K' = kex( -V|E22_1) = ker( 'T|azz-1) :

On the one hand,
L2776 L,z WVP=H(V) O K,

and on the other (for K1 = P'( -T\Lzz_l)),
L5771 = ker(-Ky)OTan(-KY) = {u0 £,Z27:uT O} O £,Z717F,
so that, with £,Z V0= £,7-1T0,
HNV)OK = {udLZt:uT DUy} .

Thus we see that 7 (V) is the largest subspace in £,Z7* for which 7(V)Kr = {0}
and which is orthogonal to K'. This property provides a way to compute the inner-
outer factorization. Note that if (V) is too small, then £,Z"VP 0O £,271TY e,
L£oZ73T0 0 £,271TH O £,Z72. In that case, VET is not outer, athough the range
might haveimprovedon T itself. Thisdefinesahierarchy of partial solutions. Interms
of subspaces, the maximal solution is unique.

Let Q beasliced orthonormal basisrepresentation of 7 (V): H (V) = D,Q 0 £,Z71,
and let Fo, be adiced basis representation of Ho(T), or more generally, for a subspace
inU, containing Ho(T). Thefact that 7(V)Kr = Otrandatesto thecondition QT O .
Because H(V)T O Ho(T), we must have that QT = YF, for some bounded diagonal
operator Y, which will play an instrumental role in the derivation of a state realization
for V. It remainsto implement the condition 7 (V) O K'. Suppose that Q has a com-
ponentin X', so that DQ O K', for some D O D,. Then, since K’ = ker( -T\Lzz_l),

DQUK' < DQT=DYF,=0 < DOker(-Y) (7.12)

(sinceF, isassumed to represent abasis). Hence#H (V) = D,Q can be described asthe
largest subspace of type D,Q for which QT =Y F, with ker(-Y) = {0}.

If B isthe space sequence of the state of the given realization for T, and By isthe
space sequence of the state of theredlization for V, then'Y 0 D(By, B). The condition
ker(-Y) = {0} implies that By O B (pointwise), so that the state dimension of V is
at each point in time less than or equal to the state dimension of T at that point (the
condition forces each diagonal component Y, of Y to be a square or “wide’ matrix,
the number of columnsis equal to or larger than the number of rows).

In the following theorems, we shall say that (A, B) isarealization for some diced
basisQ in Z1L5, if Q"= BZ(1 -Az)™1, provided ¢4 < 1. If £ = 1, then we have to
be more prudent and say that the k-th diagonal Po(Z*Q") of Q" matches B Alk-1}
for each k> 0. Dualy, if G isadliced basisin U>, then we shall say that (A, C) isa
redization for it, if G = (I —AZ)™1C (for /A < 1), and in general if the k-th diagonal
Po(Z*G) of G matches Atk 1}C,
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Lemma 7.2 LetT OU bealocaly finite input-output operator, and supposethat T =
{A,B,C,D} isan observable and u.e. stable redlization of T. Also let (Ay,By) be a
realization for some orthonormal basisQ in £L,Z™1. Then

(@) AJYA+B/B = YOI
D,QTOU, = OYOD(By,B): {(b) AJYC+B/D = O
(c) ker(-Y) = {0}.

Y isunique, and bounded: YBY < Ag, where Ag is the reachability Gramian of T.

PROOF Let FP=BZ(I-AZ)"* and F, = (I -AZ)~C. Weusein thisproof therelations
(cf. (5.19)~(5.21))

T=D+FLC, zZF = AF + B”, ZQ = AJQ + BY.

Wefirst show that Y: P(QT) =YF, O (a). Recall that the Hankel operator associated
toTisHr =P(-T) |c2z—1: Po(-F)Fo (cf. theorem 5.2). Hence P(QT) = Po(QFY)Fo,
and if the realization is observable, thisimpliesthat Y is unique and given by

Y = Po(QFY) = Po [ (Z-A)) *ByB(Z"-A) 7] . (7.13)

Y iswell defined because £a < 1 so that the summation is convergentin norm. Further-
more,

Y=Y Po(ZQF™ZH)
= Po([AJQ+By][F"A+B)
AJYA + ByB,

hence (a) holds. Next we show that (a) 0 Y = Pg(QF,). Since /4 < 1, this equation
has a unique and bounded solution, which is seen from an expansion of the equation
into asummation similar asin (5.24). Necessarily, the solution satisfies P(QT) = YF.
Hencedso (a) 0 P(QT) =YF,.

LetY bethesolutionof (a). Now, to derivethe equivalenceof (b) withD,QT Oy,
we use the fact that D,QT O U, = Po(Z"QT) = 0for al n> 0. Recurring:

n=1: Py(ZQT) = Py([AJQ+BY[D+F<T)
AJPo(QFYC + BJD + 0+0
AYC + B;D.

HencePo(ZQT) =0 < AJYC+ByD = 0. Forn > 1, assumePo(Z"1QT) = 0. Then

Po(Z'QT) = Po(Z™*ZQT))

= Po(Z"AJQIT) + Po(Z'B/T)

= APo(zQT) + BV Po(z )
0+ 0.

Hence (b) isboth necessary and sufficient for the condition D,QT [ U> to be satisfied.
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The bound on Y5Y follows from the observation that

Yoy Po(FQM)Po(QFY)
= POEPO(FQ%QFED
(

Po(Px(F)FY),  Pu(:) =Po(-Q")Q
Po(FFY = Ar

In I

wherewe have used the fact that Py (-) isan orthogonal projector (onto D»Q, i.e., the
input state space of V), viz. theorem 4.9. ]

The computation of Y amountsto a generalized partial fraction splitting of expres-
sion (7.13). The quadratic term can in this case be split in linear terms because thereis
an automatic “dichotomy”: half of the expression laysin (an extension of) £ and the
other half inZ/. Theuniquenessof Y is of course dependent on the choice of Q — any
diced DZ-invariant subspace of D»Q would provide a solution for Y as well, but one
that has smaller dimensions.

Proposition 7.3 Let T OU be alocally finite input-output operator, and suppose that
T ={A,B,C,D} isan observable and u.e. stable realization of T.

AlsoletW = [U V] OU be isometric \WW"W = |) and have a unitary realization
W =[5 ¥ 8] with state dimension By.

Let T, O U have a (not necessarily minimal) redlization (A, Br,,C,Dr,). Then the
following statements are equivalent:

1. VET =T, isright outer andU"T = 0,
2. (W,Y,By,,Dy,) isasolution of

YU o
wo[ ¥ el [ o]

Br Dr (7.14)
ker(-Y) ={0}
ker(-Dr,) = {0}

whereW is unitary and the state dimension#3y is maximal among all possible so-
lutions.

The “maximal solution” Y is bounded and unique up to a left diagonal unitary factor.
PROOF Equation (7.14), written out in full, reads

(@ AJYA+BB = YU (¢ C/YC+DyD = D,
(b) AJYC+B/D = 0 (f) C/YA+DyB = By,
(c) Egg ker(-Y) = {0}
(

ker(:Dp) = {0}.

CJYA+DJB = 0 (7.19)

d) CjYC+DjD = 0

(O) Supposethat W = [U V] isisometric with a unitary realization W and such that
VT isright outer, and URT = 0. Let Q bethe sliced orthonormal basis of # (W) corre-
sponding to the realization W. WET O U, so that, by lemma 7.2, thereisY O D, given
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by (a), (b), such that QT = YF,. Also, since T = D + BZF,,

utT D +CHQIT

DT +CJQT

= Dg[D+BZFq+CJYF,

[DGD +C{YC] + [DgB+ CHYAIZF,.

(7.16)

Hence

UT=0 o {CLDJYA+DEB = (7.17)

CyYC+DyD
which proves (c) and (d). Much asin (7.16),

o o

T =V = [CYC+DyD] + [C/YA+ DyB|ZF,.

A redlization of T, isthusgivenby (A, Br.,C,Dr, ), with Br,, D7, givenby (e), (f). The
condition that T, = VT is right outer implies that ker( 'V|Lzz-1) =ker(-T|, ;1) S0
that by (7.12), ker(-Y) = {0}. Finaly, (h) holds, for else T; cannot be right outer.

(O) Suppose we have a solution of (7.15). Let Q be the orthonormal diced basis
generated by (Av,By). By lemma?7.2, (a) and (b) imply that QT OU. W isaunitary
completion of [Ay By] and H(W) = D,Q. Hence H(W)T O Uy, i.e, H(W) O{uD
L£Z71:uT O Up}. Condition (g) implies that H (W) O ker( -T\Lzz_l). Since (Av, By)
are of largest possible dimension, it follows that

HW) ={ul L2271 uT O} © ker( 'T‘LZZ‘l)

(The existence of aW such that equality is obtained follows from the existence of the
inner-outer factorization for the locally finite case.) Since W has a unitary realization,
we have

L7 =H(W) O L2 WH

We dlso have, for Ky = P'(-T| . 1), that
L2771 = ker(-Kr) OTan(-Ky) = {u0 L2271 uT D} O L2710

Hence £oZ*W" = ker(-T|, ) 0 £2Z2TH,

We now look at the decompositionW = [U V]. From (c), (d) and equation (7.17) it
follows that UNT = 0, and from (h) that U is the largest operator with H(U) = H (W)
to do so. Hence £,Z U = ker( -T\Lzz_l), so that £, VU= £,7-1TU, Thisimplies
that T is outer.

The bound on Y follows from lemma 7.2 (YBY < Ag), and its uniqueness from the

fact that the basis Q of H (W) is unique up to aunitary diagonal state transformation.
O

Proposition 7.3 directly leads to an algorithm to compute the inner-outer factoriza-
tionrecursively (seefigure7.1). Themain stepinthealgorithmisaQL (unitary-lower)
factorization. Given Yy, this producesall necessary state space matrices at point k, and
Yi+1 for the next step. Because both Y, 1 and D, i havefull row rank, the dimensions
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In: {Ty} (an observablerealization of T)
Out:  {Vi}.{(Tr)k} (realizations of the isometric and right outer factor)
InitializeY;
fork=1,2,--
( Compute a QL factorization: W' unitary such that
0 0
[ YA YkCx } WL | Vg O -‘ ker(-Yer1) =0,
B D o ker(-D =0
k _k [ Brk Dtk (-Dri
W= Cux  Avk C\/,k}
K | Duk Bvk Dvk
[ Avk  Cuk }
Y = : :
k | Bvk Dvk
Ao G
L Tk = | Brx Dmk }
end

Figure 7.1.  Inner-outer factorization algorithm for T =VT,

of the QL factorization are unique, and the factorization itself is unique up to block-
diagonal unitary factors acting on columns of W and rows of Y1 and [Br, x Dr; k],
corresponding to unitary state space transformations on W and unitary left diagonal
factorson T, and V". Both transformations are admissible.

The main issue left to be discussed concernsthe initialization of Y. Note that once
Y; isfixed, the remainder of the recursion is determined. Hence, the choice of Y; hasto
ensurethat we end up with the maximal solution that isrequired to obtain outer factors.

Inthisrespect, notethat if D isinvertible, thenY = [ -] isalwaysasolution, but perhaps
not the maximal solution.
Nonetheless, for finite nx n block matrices, we may simply set Y; = [ -], assuming

T isarealization that startswith zero states. Interesting situations can in this case only
occur if D does not have full row rank.

For systemswhich aretime-invariant before k = 1, the recursion becomes an equa-
tion, infact leading to an eigenvalue problem. Intermsof Y (or rather, YSY), thisequa-
tion is an algebraic Riccati equation, and its solution will be discussed in the next sub-
section.

For systems which are periodic, the corresponding LTI Riccati equation of the en-
closing LTI system has to be solved as well, which is not attractive if the period is
large. In terms of Riccati equations, an alternative solution for periodical systemswas
proposed in [HL94], in which an iteration over a chain of QZ decompositionsis com-
puted. This has numerical advantages, as only orthogonal transformations are used,
and no products of A-matrices have to be evaluated. The method also allowsto do a
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preprocessing with state transformations on the realization, in particular to transform
all A-matricesinto upper Hessenberg form, and thus have faster convergenceof the QZ
steps.

Alternatively (and in fact not much differently), we can act as in the unstructured
casewith /p < 1: start with arandomYY; of full rank d1, whered; isthestate dimension
of T at timek = 1. For example, set Y, = (/\,1:/2)1: the reachability Gramian of the
realization of T. We have to show that the resulting sequence { Y}, k = 1,2, --- will
convergedown to the true maximal-size solution Yy. The analysisof thisis deferred to
section 13.4, where asimilar Riccati equation isinvestigated. (Note that if the rank of
theinitial Y; istoo small, it will usually converge towards a non-maximal solution of
the equations. T, will not be outer.) The speed of convergenceis only linear.

Riccati equation

In the time-invariant setting, it iswell known that the outer factor T, of T can be writ-
ten in closed form in terms of the original state matrices {A,B,C,D} of T and only
one unknown intermediate quantity, M say, which is the solution of aRiccati equation
with {A,B,C,D} as parameters. One way to obtain the Riccati equation is by look-
ing at a spectral factorization of the squared relation TZT = T,°T;. Riccati equations
can be solved recursively; efficient solution methods for the recursive version are the
square-root algorithms, in which extraintermediate quantities are introduced to avoid
the computation of inverses and square roots. In fact, algorithm (7.1) to compute the
realization for T, is precisely the square-root algorithm. We show in this section how
the corresponding Riccati equation is derived.

Theorem 7.4 Let T OU be alocaly finite transfer operator, let T = { A B,C,D} be
an observablerealization of T, and assume {a < 1. Then the Riccati equation

MY = ARVIA+ BB - [A'MC+B™D] (D'D+CMC)" [D'B+CMA]  (7.18)

has a solution M O D, M = 0 of (pointwise) maximal rank.* The maximal solution is
unique and bounded: M < Ag.

Define D+, to beaminima full range factor (ker(-D,) = {0} ) of D% Dr. =D'D+
CPMC. Then aredlization of theright outer factor T, of T sothat T, = VT isgiven by

_— A C
"~ | pc™MA+DB) Dy, |

PrROOF We start from proposition 7.3, in particular equation (7.14). Premultiplying

this equation with its Hermitian transpose, using W"W = I, and denoting M := Y5

4(-)" denotes the operator pseudo-inverse [BR76]. Although it is non-unique, the definition of M=% is. In
practice, it is advantageous to choose the unique least-squares pseudo-inverse for (+)T.
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produces
MY = ATMA+BB-BT By,
DEDy, = CMC+D'D
DiBr = C™MA+DB

Dt Q(C™MC+D™D)¥2, (Q O D isometric, st. ker(-Dt.) ={0})
DIIC'MA+ D'B]

{M(‘l) = A'MA+B"B-[A"MC+B™D] (DD +C"MC)' [D"B + C"'MA]

B,

T

(Theright inverse D% need not be bounded, which happensif the range of D, is not

closed. However, the product DI-{C"MA + D'B] is bounded, which can be motivated
fromthefact that Bt, isthe sameasin proposition 7.3, but can also proven directly. We
omit the details.) m|

Equation (7.18) is a time-varying Riccati equation. It is a (generalized) quadratic
equation which often arisesin problemsinvolving spectral factorizations, or Cholesky
factorizations, once the state equations are substituted for the operator. We will en-
counter it several moretimes, e.g., in the solution of the time-varying lossless embed-
ding problem (chapter 12), and in the spectral factorization problem discussed in chap-
ter 13. The algebraic Riccati equation has a rich history; alist of contributions and
contributors can be found in [Nic92, BLW91, LR95].

Necessary and sufficient conditions for the existence of positive semidefinite, and
“stabilizing” (or outer) solutions for the LTI Riccati equation were proven by Won-
ham [Won68], Kucera[Kuc72], and Molinari [Mol 75], but under the assumption that
DfDy, >0.

By taking the k-th entry of each diagonal in equation (7.18), we obtain therecursion

M1 = AMA+BB-
- [AMCi + B{Dy] (DiDk + CMCi) T [DiBx + CMIAK] -

Initial conditionsfor the recursion can be obtained for our usual list of special cases.

(7.19)

1. When T startswith zero states at some point ko intime, then My, = -] . If T istime
invariant before ko, then My is given by atime-invariant Riccati equation.

2. The exact solution of (7.19) for the LTI case can be computed in several ways. In
comparison with standard solutions based on connections with the linear-quadratic
optimal control problem, complicationsarise becausein our problemwe can neither
assume D™D nor A to be invertible. In that case, the solution is not given directly
in terms of the eigenvalues and eigenvectors of a Hamiltonian matrix, but of a ma-
trix pencil. Pencil techniqueswere perhapsfirst introducedin [PL S80], to avoid the
inversion of A. To avoid inversion of D'D as well, the pencil matrices have to be
extended, e.g., asdonein [LR95, §15.2], which we follow here. Suppose A: dxd
and D : mxn. Therealization is assumed to be observable. Define

[ A 0 C '|

-BB Iy -BD

[ lg O 0]
Fe=] 0 A” 0!, Ge = .
[ DB 0 D'D J

o < o]
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Compute the solutions of the pencil AFe— Ge, preferably viathe QZ decomposition
[GV89]: find matrices Q,Z (unitary), Rr, Rg (upper triangular), and V (the gener-
alized eigenvectors) such that

QFZ = Re
QGeZ = RG

FeV diag(Rg) = GeV diag(Rr) .

Let V' contain the columns of V for which |(Rg)ii| < |(Rg)ii| (i.e., the eigenvectors
of the eigenvaluesinside the unit circle), and partition V' into

vt vl
0 Vs

It is shown in [LR95] for the case where D™D is invertible and where there are no
zeros on the unit circle (the pencil is regular), that V' has d columns, that V; isin-
vertible, and that V,V; ! is Hermitian, positive semidefinite, and in fact the maximal
solution to the LTI Riccati equation. Thus, M = V,V; ! is the solution of the LTI
Riccati equation that gives the outer factor. It seems possible to extend the method
to the more general case where D™D isnot invertible, and to allow zeros on the unit
circle. Thisisstill an openresearch area, and additional conditions (on reachability)
seem to bein order.

. Periodic Riccati equations were studied in [KN79, BCN88, dS91, Nic92, BGD92,
HL94]. Necessary and sufficient conditionsfor convergence of the periodic Riccati
recursion to the maximal solution from any initial point Mo which satisfies Mg = €l g
or Mg = M were established in [dS91] (assuming D™D > 0). Aninteresting method
tofind the periodic solutionisdescribedin[HL94]. Instead of directly followingthe
Riccati recursion, the method is based on acyclic (period p) QZ factorization of the
pencil

_ A 0 _[ 1 G(Dbey
= | BD(D™D)IDB-BB, 0 } o R { o
AL := A= Ci(DED) ™ DiBx.,

(again assuming DD to be invertible) into achain

QEiZ = Re, QF1Zzs = Ry
QEEZZ?’ = REz= QEFZZZ

|
S

QpEpZpi1 = Re.  QpFpZp
Z1=2Zp1

Re

where Qy, Z areall unitary, and Rg, , R, areall upper triangular. The periodic con-
dition isthat Z; = Z, 1. The decomposition is basically obtained by first reduc-
ing all Ex and F to triangular or Hessenberg forms, and following the suggested
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iteration a number of times, starting with some Z;. In general, convergenceislin-
ear. Once the decomposition is found, the generalized eigenvalues are given by
the product A = diag(Re, )diag(Rr,) - -diag(Re, ) diag(Re,1) ™, provided the in-
versesexist, or else by amore complicated expression (see [HL94]). The decompo-
sition can be made sorted in such away that thefirst d “eigenvalues’ A are smaller
than 1, in which case the solution of the periodic Riccati equation is obtained as
Mk = Zo1 kZqi ., Where

Z = [ Zuk Zik } .
ok Zok

Computation of the outer-inner factorization T = T)V

For completenessand futurereference, we present at thispoint al so thederivation of the
outer-inner factorization T = T,V in which T, is left outer and V is isometric, VV" =
I. It is of course completely analogous to that of the inner-outer factorization in the
preceding section. Thistime, V is defined viathe property

UN =T (7.20)

in accordance to the generalized Beurling-Lax theory of chapter 6. The further elabo-
ration given there shows that we have the decomposition

Up = Ho(V) O UV O ker(-V],)) (7.22)

Z/{

in which it also holds that ker( -VD\MZ) = ker( -TD\UZ). This space is a defect space

or kernel for TY which we characterize here as a causal sliced space® annihilated by
T, However, the kernel or defect space of T” may be larger, it isindeed possible that
TD\M isstrictly smaller than - TD|X In that case, there is a component in the defect
spacewh|ch isintrinsically non- causal andV isisometric but not inner. Thisaspectis
investigated later in section 7.5.
Let usdefine G to beasliced orthonormal basisfor #,(V), and et the corresponding
realization be given by the observability pair (Av,Cy). G is not necessarily bounded
in operator norm, and we only assume /5, < 1. We have, by definition, that

G=C/+AZG
and that a causal, again not necessarily bounded realization for V is given by

V =Dy + ByZG

5In classical analytical function theory, valid when T is LTI, it would correspond to an “analytical range
space’ in the sense of Helson [Hel64], i.e., arange space with a basis consisting of functions which are uni-
formly bounded and analytic in the unit disc of the complex plane, corresponding to causal and bounded
transfer functions. He also shows that the (Ieft or right) nullspace of arational transfer matrix is an analytic
range space. The property does not hold in general for non-rational transfer functions.
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in which an additional pair (By, Dy ) makes
& o]
By Dv
isometric and of the appropriate dimensions (see further).
Let Fr beaminimal basisfor theinput state space of T, and Fqr the corresponding
basis of the output state space, satisfying the realization equations (5.19)—(5.21), viz.
For = AZFsr+C FPz0 = FPA+B
T BZFor + D T FYC+D.

The main property that follows from (7.20) and the orthogonal decomposition (7.21)
isthat

GTY=YFy (7.22)
for some bounded diagonal operator Y with ker(-Y) = {0}. In particular, GT is an-
ticausal, and since the adjoint Hankel operator for T can be expressed in terms of Fr
and Fot as

‘Hf = Po(-For)Fr
wefind
Y = Po(GF5p) (7.23)
which proves in particular its boundedness, and the fact that its sequence of row di-

mensions are pointwise less than that of FET. Inserting the expressionsfor G and Fgr
givesarecursion for Y in terms of the state space matricesfor T and V:

Y Po{[Cv + AvZG][C”+ FL ZEAM}
GyCo+ A YDAT,

The definition of all the quantitiesinvolved is found by working out the two relations

TP = V1o
YFr = GTO.

In detail,
Ty = VTY=[Dy+ByZG]T"
= DyT"+BvZGTY=DyT"+ByZYFr
= Dy[D"+C"Fr]+ByY Y zZFr,
and since ZFt = BY+ A, wefind

TV Dy[D"+ C™Fr] + ByY (™Y [BU+ AlF]
[DyD"+ ByY(UBY + [DyC™+ By YDA Fr
= DE-{- C/;FT ,
which shows that T; inherits A, B from T, and has C;, D, as shown. From GT”= YFy
we obtain

GTY = [Cv+AZG|TP =Gy TP+ A/ ZGTY

= GyTU+ANYIZF
Gv[D+ CFr] + Ay YD [BP+ ATy
GvD"+ AyYDBI4 [GyCH+ AYY Y AT Fr
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showing that Gy D"+ AyY("YB"= 0 in addition to the recursion for Y which we know
already.

Finally, the space ker( -TD\MZ) is also characterized by a causal isometry U such
that its closure equals U, for which UTY = 0 (and UV = 0 as well). Working out
the relation UT" = 0 as before for VT  leads to Dy D"+ By Y("YB” = 0 and DyC”+
BuY("UAY = 0, while U inherits the observality space #,(V). Putting it all together
givestherecursion

Ay Gy _ _ Y O

YAl y(1)RE
Bv Dv {CD Do }— C;/ D7 |. (7.24)
By Dy 0 0

wherethe matrix on thefar left isunitary. Theserelations, together with the additional
properties

ker(-Y) {0}
ker(-Dp) {0}

fully characterizethe unknown quantities, up to orthogonal equivalences. Thesearethe
sguare root equations for the outer-inner factorization. As before, the corresponding
Riccati equation can be obtained by eliminating the leftmost unitary matrix in (7.24)
via premultiplication with the complex conjugates.

Geometric “innovation” interpretation

Outer-inner factorization hinges on the determination of an orthonormal basis of maxi-
mal dimensionsfor thespace Rg := Ko S ZKo With Ko =T — seetheBeurling-Lax
type theorem 6.13. Such a basis admits a geometric interpretation as an “innovations’
sequenceand can — in principle— be calculated using alevinson or Schur algorithm,
as sketched below.

By theorem 6.13, thereexistsaV O/, VVU= 1, such that Rg = D,V (indeed, V is
the right inner factor of T). Since Rg O Ko there must be diagonal operators G; O D
such that

v—iei-ziT.

Formally, wecanwriteG =57 ;G Z' (athoughthe sum need not convergeto abounded
operator), sothat V = GT. Infact, if T = T,V isan outer-inner factorization in which
T, isboundedly invertible, then G = T; L. Let us assume that thisis the case.

The orthogonality conditionV 0 ZK can bewritten as OF 0 Kg : Po(VF"Z™1) =
0. In particular, foral n=1: Po(VT"Z™) =0, i.e, Po(GTTZ™) = 0. If wedo a
diagonal expansion of this, we obtain with C, = Po(TTZ™),

Co Cf CF
c, ¢ cp

[Go G1 -] _ ,
c ¢ c?

=G" 0 -] (7.25)
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Here, al equations but the first express the orthogonalities. The first equation is ob-
tained fromthe fact that T, X(TTOT,"=1 = G(TTY =G YO L, specialized to the
main diagonal. The fact that T, is outer also impliesthat (G™)p = (Gp) ™.

V can beinterpreted asthe normalizedinnovationsof T with respectto ZT, Z2T, etc.
As a consequence, G can be found through a limiting procedure based on successive
partial (normalized) innovations. In particular, if Gy, is the n-th innovation, we could
expect that G, will convergeto G whenn — «. Gy in turn can be found through a
recursive algorithm known as Schur’s algorithm. We do not pursue the matter further.

7.3 OPERATOR INVERSION

The strategy for the inversion of an operator T 0 X isto determine the following fac-
torizations:

T = QR [Inner-coprime]: Q inner
R = UR [Inner-outer]: Utu =1,
R right outer
R = RyV  [Outer-inner]:  VVvP=1,
Ry left outer
(al factorsinif), (7.26)

sothat T = QUR,, V. Thefind factor, Ry, isupper and both left and right outer, hence
invertible in &/, and its inverse is easily obtained. T is not necessarily invertible: U
and V are isometries, and might not be unitary. In any case, T has a Moore-Penrose

(pseudo-)inverse
T =VvRMTQ,

and T isinvertiblewith T2 = TT if U andV are both unitary. Theinverseisthus spec-
ified as alower-upper-lower-upper factorization. The factors may be multiplied to ob-
tain an explicit matrix representation of T, but because each of them will be known
by its state representation, it is computationally efficient to keep it in factored form. In
this section we consider the connection of matrix inversion with state representations
in detail.

Time-varying state realizations of mixed causality

Let{Ty},{T,} be series of matrices with block entries

A G r A G
we[8 &) w4

and consider the time-varying forward and backward state recursions,

™ {Xk+1 = XA+ UBy
Yk XkCic + uDg

) e T AT
Y% = %&



166 TIME-VARYING SYSTEMS AND COMPUTATIONS

Uo up Uz uz

AN
X1 Ds X2 X3

— Y1 ] |
Lo 3]s | s

Vi

4] 4] 4] Z3
Figure 7.2.  State realization which models the multiplication Z=uT.

Zo = Yi+ Yk-

Seefigure 7.2. The recursion maps input sequences [uy] to output sequences [yk], [Yi]
and finally [z]. The intermediate quantities in the recursion are i, the forward state,
and X, the backward state. The matrices { A, By, Cy, D, A, By,C} must have com-
patible dimensionsin order for the multiplicationsto make sense, but they need not be
square or have constant dimensions. Zero dimensions are also allowed. The relation

between inputu=[--- u; Uz --J] and output z=[--- zz 2z, ---], as generated by the
above state recursions, is

D1 B1Cy B1AC3 B1AXA3Cs: -

| BCG D BC:  BoAC
z=ult T=| gAC BC, D; B

B,A.C, B,C, D4

so that the state recursions can be used to compute a vector-matrix multiplication z=
uT, wherethe matrix T is of the above form. Accordingly, we will say that amatrix T

has a (time-varying) state realization if there exist matrices { Ty}, { T} } such that the
block entriesof T = [Tij] are given by

Di, =],
B{A{_l---A’jHC}, i>j.



INNER-OUTER FACTORIZATION AND OPERATOR INVERSION 167

11,12(13,14 15 H,
' 22| 23124125 Ha
T | BB | H
””:”"”; 44145
s
oW T

Figure 7.3.  Hankel matrices are submatrices of T. Hgz is shaded.

The upper triangular part of T is generated by the forward state recursions { Ty}, the
lower triangular part by the backward state recursions{ T, } . To havenicely converging
expressionsin (7.27), we always require realizations to be exponentially stable, in the
sense that

(a=1imn_osupy || Ay Anlln <1,
Ly =limp_osup; [[A_ A0 < 1.

The computation of a vector-matrix product using the state equationsis more efficient
than adirect multiplicationif, for all k, the dimensionsof x, and x, arerelatively small
compared to the matrix size. If thisdimension s, on average, equal tod, and T isan
nxn matrix, then a vector-matrix multiplication has complexity O(d?n) (this can be
reduced further to O(dn) by considering minimal parametrizations of the realization,
viz. [vdv D93, Dew95]) and chapter 14), and amatrix inversion has complexity O(d?n)
rather than O(n®).

Computation of a state realization

Computation of a minimal state realization for a given matrix or operator T was the
topic of chapters3 and 5. We summarize the main points, and generalize to the opera-
tors of mixed causality that we have here.

Minimal realizations are connected to time-varying Hankel matrices, in the present
case

Ttk Teeiker oo Tkk-1 Tkk-2
He= | T2k Tke2kt1 Hy= | Terik1 Trik-2 . (7.28)
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See figure 7.3. When we substitute the reali zation equations (7.27) into (7.28), we ob-
tain that Hy (and also Hy) have structured factorizations of the form

[Bi-1Ck Br-1ACis1 -
Bi2Ak-1Ck  Bi2Ak-1ACi1
He = | BeaAc2AaCu -
[By-1
By-2Ak-1
= | BeaAroArg| [Ck ACirr APki1Ciiz ] = CkOk.

Therank of thefactorization of Hy is (at most) equal to the state dimension d at timek,
and similarly for Hy and d;. Conversely, the structure of this factorization can be used
to derive redlizations fromit.

Theorem 7.5 Let T O X, and define di = rank(Hy), dy = rank(Hy). If al dy, d, are
finite, then there are (marginally) exponentially stable time-varying state realizations
that realizeT. Theminimal dimension of x, andx, of any staterealization of T isequal
tody and d;,, respectively.

Hence, the state dimensions of the realization (which determines the computational
complexity of multiplications and inversions using state realizations) are equal to the
ranks of the Hankel matrices. Theseranksare not necessarily the samefor all k, so that
the number of states may be time-varying.

Minimal state realizations are obtained from minimal factorizations of the Hy and
H,. In principle, the following agorithm from section 3.4 is suitable. Let Hy = QR
be a QR factorization of Hy, where Qy isan isometry (QEQK = lg,), and R¢ hasfull row
rank dy. Likewise, let H, = QR.. Then arealization of T is given by

T: Ac = [0 QlQun T: A= [0 Qg
By = (Qk+l)(17:) B{( = Q{((lv)
Ck = Rk(:,l) C{( = I%<+1(:=1)
Dk = Tkk D, = 0.

(For amatrix X, the notation X(1,:) denotes the first row of X, and X(:,1) the first
column.) Important refinements are possible. For example, it is not necessary to act
on theinfinite size matrix Hy: it is sufficient to consider a principal submatrix that has
rank dy (theorem 3.9). Also notethat H, and Hy 1 havemany entriesin common, which
can be exploited by considering updating algorithmsfor the QR factorizations.

State complexity of the inverse

Supposethat T is an invertible matrix or operator with a state realization of low com-
plexity. Under someregularity conditions, it isstraightforwardto provethat theinverse
has a state realization of the same compl exity.
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Proposition 7.6 Let T O X be an invertible operator with finite dimensional Hankel
matrices(Hr )y and (Ht )k, defined by (7.28). Putdy := rank (Hr)y andd; := rank(H7 ).
If, for eachk, at least one of the submatrices|[T;;] i‘f}i_m or[Tij[7*j—x isinvertible, then

S= T* hasHankel matriceswith the sameranks: rank (Hs)x = dyx andrank(H5)x = d;.

ProoF We will use Schur’sinversion lemma. In general, let A, B,C, D be matrices or
operatorssuch that A and D are square, and A isinvertible, then

ol lear 110 ooowiel o 7

If in addition theinverse of this block matrix exists, then D* := D-CA 1Bisinvertible
and the inverse of the block matrix is given by

[5 g/’}_{é _Al_lB} {A;(D%-l} [—clA‘l ﬂ
_ ) -A7B(D*)™
~|-(Dcat (Dt } '

In particular, D’ isinvertible, rank B' = rank B, rankC' = rankC. The proposition fol-
lowsif [é 8] istaken to be apartioning of T, such that B= (Ht)y and C = (H7 ).
O

Outer inversion

If amatrix or operator isblock upper and hasan inversewhichisagain block upper (i.e.,
the corresponding time-varying system is both left and right outer), then it is straight-
forward to derive a state realization of theinverse.

Proposition 7.7 LetT OU beinvertibleand left and right outer, sothat S:= T X O U.

If T hasa state redlization T = { Ay, B, Ck, Dk}, then arealization of Sis given by
s = [ A-GDB GO
D 1Bk D!

PrROOF From T 1T =1and TT™1 =1, and thefact that T~ is upper, we obtain that all
Dy = Tk must be invertible. Using this, we rewrite the state equations:

xZ1 = xA+uB
{y = xC+uD
xZ1 = x(A-CDB) + yD'B
- {u = -xCD! + yDL.

The second set of state equations generatesthe inverse mappingy — u, so that it must
bearealization of T~X. The remaining part of the proof isto show that { A, —CyD; 1By}
isastablestate operator. The proof of thisisomitted, but it isessentially aconsequence
of thefact that T is outer invertible and hence has a bounded upper inverse. See also
proposition 13.2. ]
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Note that the realization of the inverse is obtained locally: it is, at point k, only de-
pendent on the realization of the given matrix at point k. Hence, it is quite easy to com-
pute the inverse of an operator once we know that it isleft and right outer.

Inner-coprime factorization

In order to use the aboveinversion proposition on amatrix T which is not block upper,
we compute akind of QR factorization of T as T = QA, where Q is block lower and
unitary, and A is block upper. Since Q is unitary, itsinverseis equal to its Hermitian
transpose and can trivially be obtained. We first consider the special case where T is
lower triangular. This caseisrelated to the inner-coprime factorization in section 6.2.

Proposition 7.8 (a) Supposethat T O £ hasan exponentially stablefinite dimensional
state realization T' = { A, B,,G, D}, with A, = d; xd,_,. ThenT has a factorization
T=QR whereQO U isinnerand RO U.

(b) Denote redlizations of Q and R by

_ [ (Ak  (Co)k _ | ARk (Cr)k
Qk__(BQ)k (DQ)k}’ Rk_{ R }

Then Qy and Ry follow recursively from the QR factorization

YA | T MG } —QE[ -
/ /! -

Rk } (7.29)

whereY, : d, xd, isasquare matrix.

The state operators of Q and R are the same: (Ag)k = (Ar)k, and they are related to
A((Dviaastatetransformation. The resulting number of inputs of Q and R may betime-
varying. In particular, Q can be a block matrix whose entries are matrices, even if T
itself has scalar entries.

Equation (7.29) isarecursion: for agiven initial matrix Yy, we can compute Qy,,
Ry,, and Yi,-1. Hence we obtain the state realization matrices for Q and Rin turn for
k=ko—1, ko—2, ---. Allweneedisacorrectinitial valuefor therecursion. Exactinitial
values can be computed in the case of systemsthat are LTI for large k (YkDono satisfies
a Lyapunov equation), or periodically varying, or that have zero state dimensions for
k > ko. However, evenif thisis not the case, we can obtain Q and R to any precision
welike by starting the recursionwith any (invertible) initial value, such a§\7ko =1.The
assumption that T has an exponentially stable realization implies that Y - Yi (k —
—o0), the correct valuefor Y. Convergenceis monotonic, and the speed of convergence
is depending on the “amount of stability” of the A,.

The more general case (T O X) isacorollary of the above proposition. Split T =
Tr + Ty, With T, O £ and Ty, O ZU (strictly upper). Theaboveinner-coprimefactoriza-
tion, applied to T, gives T, = Q"R. Then T hasafactorization T = QYR+ QTy) =:
Q"A, where A O U. The realization for Q is only dependent on T, and follows from
the recursion (7.29). A realization for A is obtained by multiplying Q with T, and
adding R. These operations can be done in state space. Using the fact that Aq = Ar
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and Bg = B, we obtain

(AQ)k (CQ)kBk | (Cr)k
A-| O Ck

Ay
(Bo)k (D@)kBx | (DRr)k

Inner-outer factorization

Let T OU, withexponentialy stablefinitedimensional realization T = { Ay, Bk, Ck, Dk},
where A : di X dit1, A ¢ di xdi_;. The inner-outer factorization T = UT,, where
U™U =1 and T isright outer, can be computed recursively, as follows. Suppose that,
at point k, we know the matrix Yy. Compute the following QR factorization:

M ot N Oy 1
n D B i[O (Bry]
=W 0 VY 7.30

where Wy is unitary, and the partitioning of the factors at the right hand side of (7.30)
issuch that (Dy)k and Yk, 1 both have full row rank. This also defines the dimensions
(my)k and (dy)1. Since the factorization produces Yy 1, we can perform the QR fac-
torization (7.30) inturn for k+ 1, k+ 2, ---

Theorem 7.1 in section 7.2 claimed that this recursion determines the inner-outer
factorization. Wy has a partitioning as

(Mk (Oy)ksa

“m [Duk (B O
W= o [ @) (Ao) O
)

It turnsout that U = { (Au)k, (Bu)k, (Cu)k, (Du)k} isaredization of U, and
Tr ={A, (Br)k, C«, (Dr)k} isaredization of T;.

In [vdV93al, the inner-outer factorization was solved using atime-varying Riccati
equation (seeaso[Nic92]). Theaboverecursive QR factorizationisasquare-root vari-
ant of it. Correct initial points for the recursion can be obtained in a similar way as
for the inner-coprime factorization. If T is Toeplitz for k < ko, then Yy, can be com-
puted from the underlying time-invariant Riccati equation (viz. section 7.2) which is
retrieved upon squaring of (7.30), thus eiminating Wy. Asiswell known, this cals
for the solution of an eigenvalue problem. Similar results hold for the case where T
is periodically varying before k < kg, or has zero state dimensions (dx = 0,k < ko).
But, as for the inner-coprime factorization, we can in fact take any invertible starting
value, such as\?ko = |, and perform the recursion: because of the assumed stability of
A, Y« - Y. Inasense, we are using the familiar QR-iteration [GV89] for computing
eigenvalues! (Open question is how the shifted QR iteration fitsin this framework.)

Theouter-inner factorization T = T)V (VVP= 1, T, left outer) iscomputed similarly,
now by the backward recursive LQ factorization

N (dy)k (M) (dy)k-1

m [Dk BYk] _mc[(Dk O O
. {Ck AKYJ ~d [(Cz)k Yeer O Wi (7.31)
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The partitioning is such that (D;)x and Y1 have full column rank. Wy is unitary and
has a partitioning as
dy

(Dv)k  (Bv)k
(Gv)k (Av)k] :
O O

-

3
=

Realizations of the factors are given by

V= {(AV)k;(Bv)k: (Cv)k, (Dv)i}
Te = {ABk (Crx, (Do)kt -

An example of the outer-inner factorization is givenin section 7.4.

Inversion

At this point, we have obtained state space versions of all operatorsin the factoriza-
tion T = QUR,,V of equation (7.26): Q is obtained by the backward inner-coprime
factorization of section 7.3, U by the forward inner-outer QR recursion in equation
(7.30), and V by the backward outer-inner LQ recursion in equation (7.31). We also
have obtained a state space expression for the inverse of the outer factor Ry, viz. sec-
tion 7.3. The realizations of the (pseudo-)inverses of the inner (isometric) factors are
obtained simply viatransposition: e.g., therealizationfor V" isanti-causal and given by
{(AV)i: (C)i: (Bv), (Dv)i} . The pseudo-inverseof T isgivenby Tt = VIR IURQ.

It is possible to obtain a single set of state matrices for TT, by using formulas for
the multiplication and addition of realizations. Thisis complicated to some extent be-
cause of the alternating upper-lower nature of the factors. Moreover, it is often not nec-
essary to obtain a single realization: matrix-vector multiplication is carried out more
efficiently on a factored representation than on a closed-form realization. Thisis be-
cause for a closed-form representation, the number of multiplications per point in time
isroughly equal to the square of the sum of the state dimensionsof all factors, whereas
in the factored form it is equal to the sum of the square of these dimensions. See also
section 14.

7.4 EXAMPLES

We illustrate the preceding sections with some examples of the inner-outer factoriza-
tion algorithm on finite (4 x 4) matrices and on a simple infinite matrix. In the finite
matrix case, interesting things can occur only when T is singular or when the dimen-
sionsof T are not uniform.

Finite size matrices

1. Usingalgorithm 7.1 0on

—
[eNeoNolle]
[Nl
oloN b
o wu o
[
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(the underlined entries form the 0-th diagonal) yieldsan almost trivial |eft isometric
factor V or left inner factor W:

- 100 -1 000 M = 1111
010 0100

V= W= #\Vw = [0112
0 01 0010 #B = [0117]
000 0001 W=

It isseen that V is not inner, because T is singular. W is the inner extension of V.
The only effect of W is a redefinition of time intervals: W acts as a shift operator.
T =W-Tis

0146 B

WT=|00 25 zﬁﬂjﬁﬂﬂ
000 3 W= '
0000

The multiplication by W™ has shifted the rows of T downwards. Thisis possible:
the result T, is still upper. VET isequal to W-T with its last row removed.

. Take
o M = 1111
LS I BN = 1114
l0001| ™ =121

Hence T is again singular, but now a simple shift will not suffice. The agorithm
computesW as

-0.707 0577 0367 0.180

w_ | - 0707 -0577 -0367 -0180 zﬂf/’w - % 1 1 g
0 0577 -0.733 -0.359 #BW — o111
0 0 -0440 0.898 W
0 -1414 -4243 -7.778

T W= 0 0 1732 2309 = Eiiﬂ
0 0 0 -2.273 = '
0 0 0 0

V isequal toW with itslast column removed, so that T, = VET isequal to the above
T with itslast row removed.

. Inthe previous examples, we considered only systems T with a constant number of
inputs and outputs (equal to 1), for whichV # | only if T issingular. However, a
non-identical V can also occur if the number of inputs and outputs of T variesin
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time. Thus consider

1.000
1.000
0
0

0.500
0.300
1.000

0

0.250
0.100
0.500
1.000

T:

-0.707
-0.707
0
0

0.099
-0.099
0.990
0

0.025
-0.025
-0.005

0.999

V =

TIME-VARYING SYSTEMS AND COMPUTATIONS

0.125
0.027 #M =
0.250 N =
0.300 #8 =
-0.699
0.699 #My
0.139 H#NY
#By

0.035

Inthiscase, V isitself inner. The outer factor T; follows as

1414 -0565 -0.247 -0.107

o 0 1010 0509 0257 | #My

Tr=ViT = 0 0 1001 0301 | #\;
0 0 0 -0.023

Infinite-size matrices

A simple doubly infinite example which can be computed by hand is

or'N
=
N P

or'N
=
=

1 0
1
1|11
T=
[0] 1
01
0 0 1
In this example, T does not have full row span: [--- 0 0 00
init, and ker(-TY) # {0}. The outer-inner factorization is
T=T\V
1 o || 0
1 1
1|
_ v2 V2 | s
1 0 1
1 0 1
0 1 L 0 0

[EEEN
B
s

==

P, RO

P, RO

(7.32)

--+] isnot contained
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T, obviously hasaleftinverse T, whichisupper (itisevendiagonal and arightinverse

inthiscase). V isonly anisometry: VV =1, but V*V # |, consistent with theorem 7.1.
The inner-outer factorizationis

T=UT oo _
1 : 0 ('1

o P

U hasacolumnwith zero horizontal dimension (signified by ‘'), but U™U = | nonethe-
less. T; hasaright inverse T, which is upper,

but T,XT; #1: itisnot aleftinverse. If our purposeistheinversionof T, thenitisclear
in this case that T only has aright inverse. The outer-inner factorization is useful for
computing thisinverse: it isequal to VET, ™.

An interesting observation from these examplesis that the inner-outer factorization
of finitematrices T is equal to the QR factorization of T when it isconsidered asan or-
dinary matrix without block entries. In combinationwith theexternal factorization, this
observation can be used to efficiently compute the QR factorization of a general block
matrix (mixed upper-lower) if both its upper and itslower parts have state realizations
of low dimensions. Let X be such amatrix, then first computeU suchthat T = UX is
upper (U follows from an external factorization of P(X") =: A"U), and subsequently
computetheinner-outer factorizationof T asT = VT,. Then the QR factorization of X
followsas X = (USV)T;. Notethat if the square-root algorithm is used, then the global
QR factorization of X isreplaced by local QR factorizations of state-space matrices.
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Matrix inversion example

Asalast examplefor this section, consider again T from equation (7.4). A redlization
for T is straightforward to obtain, sinceit is a banded matrix:

0|-1/2
k:—oo:...=o: Tk= |————
1] 1
0|-2
K=1,-- 00 Te= .
1] 1

T isaready upper, so an inner-coprime factorization is not necessary. We pointed out
before that the inner-outer factorization of T isT =1 -T. Thisis because the initial
point of the recursion (7.30), given by the LTI solution of the inner-outer factorization
of the top-left block of T, produces (dy)o = 0, and hence all subsequent Yi's have zero
dimensions. Consequently, T isimmediately seen to be right outer by itself.

Thenext step isto computethe outer-inner factorization of theright outer factor, i.e.,
of T. Aninitial point for therecursion (7.31) is obtained as Yy = /3, k= 1. It requires
the solution of an LTI Riccati equation to find it (this equation is the dua of (7.19)
specialized to LTI, and its solution can be found using the pencil technique described
below that equation), but it is easy to verify that it is a stationary solution of (7.31) for
k= 1: it satisfies the equation

EREEE R E S
D BY Dzvoo Wi
[c AY} [C/,YO}

(where ‘- denotes zero dimensions). Alternatively, we can start the recursion with
Yoo = 1, say, and obtain Yo = 1.7321--- = /3. Equation (7.33) also shows that the
realization of the outer factor has (D;)x = 2 and (C;)x = —1, for k= 0. Continuing with
the recursion gives us

0]-1]7 [ 05| -0.866 ]
(To)1= : Vi=|————
1] 2| | 0.866| 05 |
Yo=1732,
0]-0.25] [ 05 -0.866 ]
To=|——""1| - Vo= |—7—
1] 2] | 0866 05 |
Y. = 0.433,
[ 0] -0.459 | [ 0.918 | -0.397 |
(To)a=|—————|, Vo= |l—————7—
| 1] 1.090 | | 0.397 | 0.918 |
Y., = 0.199,
[ 0] -0.490 ] [ 0.981 | -0.195 |
Moo= |—————|, Vo= |——
| 1] 1.020 | | 0.195| 0.981 |
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Y3 = 0.097,
[0 -0498 ] [ 0.995 | -0.097 ]
T)a= || Vo= |
| 1] 1.005 | 0.097 | 0.995
Y4 = 0.049,
[ 0] -0.499 | [ 0.999 | -0.048 |
()= || . V= |
| 1] 1001 | 0.048| 0.999
Y5 = 0.024,
[ 0] -0.500 ] [ 1.000 | -0.024 |
(T)-s=|——|, Vog=|—-——
| 1] 1.000 | 0.024| 1.000
Y6 = 0.012.

Thus, Y, tends towards zero as k — —o0, and at the same time, V| tends towards the
identity matrix. For thisreason, /4 = 1, and V isnot uniformly reachable. Thelatter is
seen from the definition of the snapshots of the reachability operator Cy in (3.23), viz

By-1

Bi_oAe
G= | BoAaAL |+ Ok=1C ACw AdiCuz .

Since Ci only looks at A, for adecreasing sequencen =k k-1 k-2, -+, and B, - O,
we can make ||Ck||ns arbitrarily small for k sufficiently close to —co. The implication
isthat, although all V are unitary, the corresponding operator V isnot inner, and T is
not right invertible. Note that we do have that V isisometric: VVP = I, because V is
uniformly observable (O looks at A, for increasing values of n). All thisis consistent
with theorem 7.1: since ker(-T5) # {0}, V cannot be inner. The fact that /s = 1 is
consistent with proposition 6.18.

We could continuewith V as defined above, but in practice, we settle for an approx-
imation. At acertain point, (say around k = —10, but actually depending on the desired
accuracy),® we will decide on dy k-1 = O, after which the number of statesin Vy will
be reduced to zero as well:

[ 1.000 | -0.000
Vg = |—
=o.ooo‘ 1.000
Voo = | ———————
| 0.000 | 1.000
Vau = |———| -
| - | 1.000

6A decent approximation theory isfound in chapter 10. The convergence of Y and its decomposition into a
full-rank and asingular part is studied in section 7.5.
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This brings us back to the LTI solution for thispart of T. ItisseenfromV_jg that itis
not unitary at this point in time: only V_10VZ,, = I holds, but V=,V 19 # I. Conse-
quently, VV"= I but V5V # |, aswe had without the approximation. Now it isclear that
V isnot unitary but only isometric, and hence T isonly left invertible. The situation is
not unlike T in (7.32), but less pronounced.

The outer-inner factorization of T isthus

1 -05 0
1 -05
1 -049
1 -0.46
Te= 109 | -0.25 (7.34)
2 -1
2 -1
0 2
1 -000 -000 -0.00 -001|-002 -0.01 -0.00
1 -000 -001 -002|-004 -0.02 -001
1 -002 -004|-008 -0.04 -0.02
Vo 098 -0.08|-015 -0.08 -0.04
- 092 | -0.34 -0.17 -0.09
05 -075 -0.37
05 -0.75
0 05
The (left) inverseof T is
.- 1.00 0.49 0.24 0.1 0.01 0.01 0.00 0.0
-0.01 0.99 0.48 0.2 0.03 0.01 0.01 0.00
-0.01-0.02 0.95 0.40 0.05 0.03 0.01 0.01
-0.02-0.05-0.10 0.80 0.10 0.05 0.03 0.01
ThH=VPr, =
-0.05-0.10-0.20-0.40 0.20 0.10 0.05 0.03
-0.02-0.05-0.10-0.20 -0.40 0.05 0.03 0.01
-0.01-0.02-0.05-0.10 —0.20-0.47 0.01 0.01
L- ..-0.01-0.01-0.02-0.05 —0.10-0.24-0.49 0.00- -

It hasindeed the structure which we announcedin equation (7.5): it is Toeplitz towards

(=00, —0) and (+o0, +0), and equal to the solution of the LTI subsystemsof T in those
regions. In addition, thereis somelimited interaction in the center which gluesthe two
solutions together. All entries are nicely bounded.
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7.5 ZERO STRUCTURE AND ITS LIMITING BEHAVIOR

In this section we study the zero-structure of a transfer operator further for as far as
it is relevant to system inversion. Here, the term “zero-structure” relates to the sys-
tem dynamics of the inverse system. The latter is often captured through aleft or right
external factorization. In particular, we know from chapter 6 that alocaly finite, uni-
formly exponentially stable system has aleft and aright external factorization with in-
ner functionsthat characterize (share) the system dynamics of the original system and
are obtained through unitary completions, respectively of a coisometric pair [’Q] ina
canonical input normal form or an isometric pair [A C] in acanonical output normal
form of the original system. If the system T has acausal and uniformly exponentially
stable inverse T™1, then external factorizations on T~ would provide similar kind of
information on T~1, and it would be logical to call that the “ zero structure” of T. For
more general T we cannot work on T2, since it does not exist, but inner-outer type
factorizations come to the rescue. The structural description, however, turns out to be
considerably more complicated, and interestingly so, not in the least because certain
effects occur in the time-varying case that have no equivalent in the LTI case. In par-
ticular we can expect to encounter quite simple isometric transfer functions with uni-
tary realizations and which are not inner, while studying the inner-outer factorization
of even quite simpleisometric transfer functions. We shall see that such transfer func-
tionshave anon-trivial kernel or defect space which playsanimportant rolein the zero
structure of T.

The theory presented in this section allows us to make statements on the inversion
of upper transfer operatorswhich are uniformly locally finite, and very precise oneson
systemswhich have an LTI realization for very small (toward —«) and very largetime
indices (toward o), while changing in between.

The exploration of the zero-structure of a transfer operator T starts out viaan in-
vestigation of its outer-inner factorization T = T,V in which T, is left outer and V is
isometric, VVP = 1, see the end of section 7.2. V is defined viathe property

and we have the decomposition
U = Ho(V) O UV O ker(-Vy,) (7.36)

where also ker( -VE'|u2) = ker( -TE'|u2). Itisasliced upper space, characterized viathe
extended Beurling-L ax theorem by acausal isometric operator U suchthat ker( -V ) =
Uls.

However, the nullspace of T” may be larger: it is indeed possible that 'TD|u2 is
strictly smaller than -TD\ 2 In that case, there is a component in the nullspace which
isintrinsically non-causal, and which could be termed a (right-) “ defect” spacefor T.
Itsinvestigation is the topic of this section, and it is connected to the doubly invariant
subspaces mentioned in section 6.4. It may even be larger than (with *\/’ indicating a
sum of subspaces)

\/ Z%er(-VY),, ,

n=0
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which may be zero while ker(-TH) |X2 is not.
Let us define’

Ko =ker(-TH)|, &\ Zker(-VI)],, . (7.37)
n=0

From proposition 6.18 applied to the extensionW = [X] weknow that P(KC3) O Ho (V).
Our first theorem asserts that this space hasfinite dimensional slices when the original
system T is uniformly locally finite. Since Ky is doubly Z-invariant (ZKy O K and
ZUKy O KL), thek-th dlice TiCy will havethe same basisfor each integer k. We denote
by g” this common basis of each K. TK] is a subspace of T X2, which is itself
isomorphicto £2((—co, 00)) — for ease of discussion and notation wejust identify these
two spaces.

Let P be the k-th snapshot of the projection operator P, i.e., adiagonal matrix with
[Plii =0fori < kandl fori =k, asdefined in equation (4.2). We know already that
for all k, the rows of g"Py are contained in T#,(V). This observation leads to the
following theorem.

Theorem 7.9 Supposethat T is uniformly locally finite with the upper bound on the
dimension given by some integer &, then g is finite dimensional.

PrROOF From proposition 6.18, we have that for all k
9"Px = (TkKg)Px O TiHo.

For the purpose of establishing a contradiction, suppose now that T would not be
of finite dimension. Let, for £ > §, { f1,--, f;} be orthonormal basis vectors of Tk,
(they are basis vectors of any dlice of Kj, since al the dlices are equal). Let € bea
positive number much smaller than 1, and choose k close enough to —co so that

Dan{fl7"'7fl}: ||fnPk_fn||<8-

Then { fnPx} aso form abasis, which for small € is almost orthonormal, and they are
contained in T«H,o. This contradicts the assumption that the dimension of T, isless
than 6. Hence, Ty Ky cannot have more than  basis vectors. O

Locally finite systems with compact support

In the remainder of this section we specialize to the case where

(A) thesystem T hasau.e. stable realization and becomesan LTI system represented
by T-. when thetimeindex k - —co. We assume moreover that we know an initial
point Y, of the backward recursion (7.24) which governs the computation of the
outer-inner factorization (this would e.g., be the case if the system would aso be
LTI fork - +);

"Note: this definition is a generalization of our earlier use of K in proposition 6.18, since now we do not
assume that ker(-VD) ‘Mz: {0}. The extension W = [ )] absorbs this subspace.
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(B) ker(-T9),,={0};

(C) ker(-T%,)|,, = {0}, too.

e

(The more general case can be done just as well but leads to a considerably more de-
tailed and technical development which we wish to avoid here).

Let T, = [T ]¢V- be the outer-inner factorization of T-. and let H,(V-«) be the
corresponding observability space. We try to find the relation between 70 (V) and
T4 Ho(V-o) When k » —oo. Let G be an orthonormal dliced basis representation of
Ho(V). The defining propertiesfor f O Ty #Ho(V) can be formulated as

(1) f = fPx— causdlity;
(2) 0O ran(-PgT).

(2) is adirect consequence of the relation GT" 0 £,Z", and sufficient as defining
relation for G because of hypothesis (B). Likewise, we have that f' O THo(V-w) if
andonly if f' = f'Px and f' O span(PxT-«), thistime because of hypothesis (C).

Because of proposition 6.18, we know that the space

HZk = Tl'kP(/Cg)

iscontained in TR Ho (V). We aso know from theorem 7.9 that the space Ty K5 isfinite
dimensional and independent of k. Hence, inthelimit for very small k, the space TR.K})
itself is contained in T Ho(V). The question is: what elseisin TeHo(V)? A strong
candidateis T Ho (V- ), O &t least a space closeto it, since for small k, T is behaving
like T—w. We claim that the space T4 (V-0) isin fact nearly orthogonal to the set of
row vectors{ PT}. The near orthogonality will become better for smaller k.

Based onthat fact it seemshbut asmall stepto ook for asubspace closeto Ty Ho (V- )
as orthogona complement for TR P(KCy) in TiHo(V) for k — —oo. Let € be a positive
number much smaller than 1. We say that two subspaces S; and S, are e-close to each
other (and we write 1 £ S») if, for the respective orthonormal projectors Ps, and Pg,,
|Ps, = Ps,|| < €. In particular, S; and S must then necessarily have the same dimen-
sions, and the maximum angle between them must be of the order of .

The near orthogonality of T4 #,(V-») on the vectors which define the orthogonal
complement of T Ho(V) does not guarantee the existence of a subspace in THo(V)
that is actually orthogonal to the space defined by those vectors, namely ran(-PyT).
For example, in three dimensional space, [0, 0, 1] will become nearly orthogonal on the
collection [1,0,0], [0,1,0], [0,0,€] whene — 0, but the span of the latter three vectors
remains the whole space. It turnsout that T Ho(V) may contain a subspace, which we
will call Hay,

Hik = TkHo(V) © TWP(Ks),

that ise-closeto T Ho (V- ), and orthogonal to Ti Xy . H1x may haveany dimension be-
tween zero and the dimension of T (V- ), depending on the actual data, but cannot
belarger. In the following theorem we show that there can be nothing elsein T Ho(V),
and this fact will allow us to study the convergence of the recursion for Y in equation
(7.24).
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Figure 7.4.  The evolution of the left zero structure when K — —co.

Figure 7.4 depicts the situation. In our standard example T, equation (7.9), we see
that 1 isactually empty (as expected since Ho(V-«) = {0}), while abasis vector for
«P(Ky) isgiven by

[+ 00 2¢ .3 11

We give another, opposite example at the end of this section in which both # 1 and
Hox aretrivial, while uHo(V-w) is Not.

Theorem 7.10 Let T be a transfer operator satisfying the hypotheses (A)—C) above
and € a positive number much smaller than 1. Then there exists an integer ky which is
such that for all k < ki, TkHo(V) = Hax 0 Hok, where Hk () Tk Ho(V-w) and Hox :=
wP(K}) £ WKy. Inparticular,

dim(tiHo(V)) < dim(TiHo(V~)) + dim(TicKg),

for all k. Hay is dependent onk only in the sense that all HyZ™* are e-close to each
other, while alle Hy aree-close to each other.

PrROOF The proof isbased on the construction of theindex k; inthe —co LTI zone cho-
sen small enough so that thereexistsaspace H 1k 0 Ho (V) nearly containedin Ho(V-«)
and orthogonal to H = TKP(K}), and such that Ho (V) = H 1k O Hok. For that purpose
we select a collection of four integersk; < --- < kg asfollows (see figure 7.5).

1. letkq besuchthat T hasan LTI redlization for all k < ky;

2. chooseks < kg such that for al k < ks, T is essentially equa to T, meaning that
ITT — T T || < €, and K§ is essentially concentrated on [k, ), meaning that for
al f O/, || f—fPy,]|| < €. Suchaks canalwaysbefound, because of proposition
6.18 and the assumption that T hasau.e. stable realization;

3. choosenext aninterval-size K which essentially supports (that iswithin €) the func-
tionsin ThH (V- ). We have, under the assumption of local finiteness, that for any
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Rowsof T
T isesseqtialy LTI
an
l3(P12) is essenti generdied by

kg ko ks kg
T, Ho (V)0 this rowspan 3

|
g is concentrated here

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
|

k3 ”””””””””””””””” l‘ ””””””

LTI

Figure 7.5. The definition of the various indices relevant to the proof of theorem 7.10.

5.

k, the T Ho(V-«) are finite dimensional subspaces of ¢5([k,)), which are, more-
over, shifted versions of each other in the sense that

TUHo(Vee) = TiHo(Voe)ZI! .

We pick K large enough to insurethat the constituent functions of THH (V- ) €Ssen-
tially vanish outsidetheinterval [0, K). Because of time-invariance such aninterval
can be used at other time points than 0 aswell.

Then choosek; < k3 —K suchthat £3([ky,))(Pk, =P, +)) (Whichisisomorphicto
5([k1, k1 +K))) is essentially generated by ran( - (Py, —Pk;) T-) 0 Ho(V-w). Such
aK can be found because of the hypothesisthat ker(-TX)) fb{z: {0} sothat actualy

la([k1, ) = T Ho(V-w) DTaN( - (P T-w0)) , (7.38)

itself aspecialization of therelation Uy = Ho(V-o) O (UoT). If wetake the spanin
the second member of (7.38) large enough, we can nearly generate any given finite
dimensional subspace of /([ky,)), and in particular £([ky, %)) (P, —Pig+k)-

Put ko = k1 + K.

The proof now runsin steps.
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= We start out by remarking that T, #o(V-«) is nearly orthogonal to the vectorsin
{P,T}. Thereasonisthat if f O 14, Ho(V-00) With || f|| = 1, then because of the
choice of k; and kp, f isessentialy (i.e., within norm €) supported on the interval

€
[k, kz). Since now { Py, T-wP12} = { Py, TP12}, we havethat f O{Py, T}.

= Now we show that thereis nothing morein g, (V) than the orthogonal sum of a
space® 11, which is essentially contained in T, Ho(V-w) and hence essentially sup-
ported on the interval [ky, kz), and the space H» = T, P(Kg) = (T4, Kg) Py, which
is e-close to g, Ky and whose functions are (uniformly) essentially supported on
the interval [ks, ). We know already that # is €-orthogonal to the row vectors
in {TPy,}, by definition of K7 and k3. A converse statement is true as well: if
f O />([kz,)) issuchthat || f|| =1and Og:gOran(-TPy,) with||g|| = 1,|(f,g)| <
€, then f is e-close to Ty Kg, for the extension [--- O f] of f from /5([kz,)) to
l5((=00,00)) will benearly orthogonal toran( - T), and hence bee-closeto K, which
is by definition the orthogonal complement of ran(-T), under the assumption that
ker(-TH) |u2: {0}.

Supposenow that f O 15, Ho(V), || f|| = 1andthat f isnearly orthogonal onHo(V-c).
We show that f isthen nearly containedin 7. Thiswe do by showing that f ises
sentially supported on theinterval [kp, ) (i.e,, || f - fPy,|| < €), since we have just
shown that it will then nearly belong to 2. But £2([k1,)) (Py, —Px,) ise-closeto
T, Ho(V-w) O ran( - (P, —Py,) T-w) by construction, and since ran( - (Py, —Pk;) T-x)
ise-closetoran( - (Py, —Py,)T), also by construction, we havethat f ise-orthogonal
to £>([ky,)) (P, —Px,). It followsthat the support of f isessentially on [kp, ) and
hencethat f isnearly in #H,. It followsthat any f [0 H(V) can be decomposed as

f = fy + fo with f; f Ho(V-oo) and fp O H,, and we have that

T[klr}‘lo(V) i' T[klr}‘lo(V—oo) + HZ,

inwhich the two spaces on theright hand side are nearly orthogonal. Let now H1 =
i, Ho(V) © Ha, then it follows that 7; must be nearly contained in 15, (V-) as
claimed. The considerations so far are equally valid if ky isreplaced by any k < kg
and k; by k+ K, leading to the definition of spaces # 1k and ok which are such that
the support of functionsin thefirst isessentially on theinterval [k, k+ K) and of the
second on [ks, ©).

= Finaly, the statement that for k < ki, 1k is dependent on k only in the sense that
all HyZ™* are e-close to each other follows from the fact that if f O £,([k,)) is
suchthat || || = 1, f Oran(-PT) and support(f) {1 [k, k+ K), then there exists an
f1 O TkHo(V-) such that || f — f1]| < €, which in turn entails that for al integers
(=1, 177 will be nearly orthogonal on ran( - Py, T) so that H1(k-¢y Will be nearly
equal to HZ*, by an argument akin to the one used in the proof of theorem 7.9.

The stability statement for o follows directly from the fact that # £ Ky for
al k<kj. O

8We drop the index k; in the definition of the spaces #1 and #, for temporary convenience.
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From theorem 7.10 it follows (at |east under the hypotheses (A)—C) stated) that the
operator Y which playsacentral rolein therecursion (7.24) issuch that for k — —oo, Y
can beforced to have alimit, and that thislimit has aform which characterizesthe two
important spaces H 1k and Hok. Therecursionin (7.24) determinesthe Y, only up to left
unitary equivalence. On the other hand, we know from the definition of Y in equation
(7.23) that Y = Po(GFL;), where G isthe orthonormal dliced basisof Ho(V) and For is
thedliced basisfor the output state space of T. Thisspecializesto Yy = (TG ) (TiFo1)".
Hence, if therecursion is arranged in such away that for very small k,

1. mFor isessentialy LTI, while

2. thebasisin TG decomposesinto TG, whichisessentially LTI and generates 1k,
and TG, which is essentially constant and generates T Cj; — seefigure 7.4,

then we see that Y decomposesin Yix and Yo so that

1. Yy = (T4G1) (TFor) " which becomes essentially LTI and convergesto a constant
matrix with zero (left) kernel, and

2. Yo = (TkG2) (TiFor) P which convergesto zero, since the support of TgFor, which
isLTI, shifts out of the support of 1G>, which is constant.

The phenomenom is easily observed in our standard examples. For T asin (7.4),
(7.33) wehadfork>1, Yx = v/3whilefork — —oo, Yy — 0. Hence, for small k, H1x =
{0} and Hz is one-dimensional and generated by [+ % 3 3 3 -]. Dualy,
suppose that we had tried to find an outer-inner factorization of

1 -2 0
1]|-2
_ -1/2
T= 1 12 . (7.39)
0 1 -1/2
1
We would havefound Yy = [ -] for al k, even for k — —oo. Inthiscase, T itself isleft-

outer, it has abounded |eft-inverse. Although Ho(V-») isnontrivia, we see that #1x
actually is, showing by example that although 7, (V- ) is€-orthogonal on span(PyT),
the latter just generates the whole space /2 ([k, )) for al k.

To conclude this section, we make somewhat more general statements on the exis-
tence of non-trivial defect spaces such as K. Let uslook at the case where the state
dimension of the system isthe samefor all k, al Dy in the state representationfor T are
square and invertible, and the system is LTI for both k — o0 and k - —oo. Let us call
thesetwo LTI systems T_., and T, respectively. Generalizing what was said in the pre-
ceeding paragraph, we can state (and proveeasily fromtherecursionfor Y) that if Te, is
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minimal phase, then for al k, Yy = [ -], so that the system is | eft-outer independently of
T-w. If T isnOt minimal phase, then the system is certainly not left-outer and Y, will
be non-trivial, and its behaviour for k — oo will be more interesting. If, in that case,
T- isminimal phase, then there will be a defect space K} of dimension equa to the
degree of non-minimality of T.. Let the degrees of non-minimality of Tie be 04 re-
spectively, then, if 8-, < 8, there will be adefect space of dimension at least 8 — -
and at most d.,. We believe that there are examplesfor any intermediate case. Further
classifications and the relation between the right and the left inner-outer factorization
of agiven operator T merits further study!

7.6 NOTES

Theinversion of an operator is of course a central problemin functional analysis, and
much theory has been developedfor it. Particularly relevant to our caseisthe formula-
tion in terms of anest algebra, for which factorization and inversion results have been
derived a.0. by Arveson [Arv75], The key ingredient is the inner-outer factorization,
alsotreated in Arveson’spaper. However, amore elementary and concretetreatment is
based on the classical Beurling-Lax theory, asseenin chapters6 and 7. Inthe LTI case,
the connection of the inner-outer factorization to the Riccati equation is well known.
A parallel treatment of the LTV case can be found in chapter 3 of the book of Halanay
and lonescu [HI94], where the inner-outer factorization istreated as an application of
Kalman-Szego-Popov-Yakubovich systems.

The time-varying inner-outer factorization also provides for a splitting into causal
(upper) and anti-causal (lower) parts. a dichotomy. This point has been investigated
by Gohberg and co-workers [ GKvS84, BAGK 94].
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8 J-UNITARY OPERATORS

J-unitary operators and their siblings, symplectic operators, play an important rolein
physics and mathematics. Aside from the fact that they describe a physically interest-
ing situation, they are instrumental in interpolation and approximation theory as well.
Thephysical motivationisfound in lossless scattering theory, which gives an operator
description of wave propagation and reflection. Anintroductionto thisis givenin sec-
tion 8.1. We saw in the previous chaptersthat reachability and observability spacesare
instrumental in the realization theory of operatorsin general. In the case of J-unitary
operators these spaces turn out to be rather special, with interesting geometrical prop-
erties (sections 8.2 and 8.4).

Animportant special case of J-unitary or J-isometric operatorsarethose which give
achain description of alossless scattering operator. We give characterizations of such
operators, also for the case where they are of mixed causality. Such operators have
been extensively utilized in the He, control literature.

The chapter formsan introduction to chapter 9 in which anumber of classical inter-
polation problems are brought into the general context of time varying systems, and to
chapter 10 on optimal approximation of transfer operators and model reduction.

8.1 SCATTERING OPERATORS

Passive media

Let us consider a set of waves impinging onto a physical medium. In general, the
medium scatters the waves and even refl ects part of the energy back towardsthe source

191
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incident waves a -
reflected waves b -

Linear medium

Figure 8.1.  Scattering at a linear passive (physical) medium.

aswell. We shall restrict our interest to mediathat are linear, and connected to the out-
sideworld with just afinite set of ports (figure 8.1).

Linearity implies, among others, that there is no “harmonic distortion” in the scat-
tering process (no transfer of energy between frequencies), while the assumption of
afinite set of ports means that the interaction of the medium with the outside world
happens through a finite set of input signals, which are scattered by the medium and
transferred to afinite set of output signals. The first set we call incident waves while
the scattered set consists of the reflected waves. We areinterested in the energy that the
input signals have introduced into the medium at some point in time, and the energy of
the signals that flow out of the medium.

With reference to figure 8.1, let the incident wave consist of a sequence a = [ay].
We define the energy brought into the medium from k = —co up to and including time

tas
t

t
@t = Y aal= > lal*

Similarly, the energy taken out from the medium from k = —co up to and including t is

t

t
Ebt) = 5 b= bl

k=—0c0 k=—00

The net balance of energy the medium has absorbed from the outside world from cre-
ation to timet then becomes

t

EM) = Y (aal-bby),

k=—-00

i.e., the difference between incident and reflected energy.

The incident vector ax belongs, at each point k, to a finite vector space My while
the reflected vector belongsto a (possibly different) space V. It is standard practice,
usually not limiting, to restrict incident and reflected wavesto spaces Eé"’ and 4/2\/ . We
shall do so, unlessindicated otherwise.
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A medium is called passive if it does not contain a source of energy. As stated,
the notion is imprecise (for just the physical existence of the medium makes it con-
tain energy). We replace the definition by amore precise, instrumental one which only
holdsfor thelinear case. We say that alinear mediumis passiveif for all t and all inci-
dent waves with finite energy, the overall reflected energy up tot is smaller than or at
most equal to the overall incident energy up to that pointintime: £(b,t) <£(a,t). The
medium is said to be losslessif it is passive and, in addition, for al a0 ¢, £(b, ) =
E(a, ). Inthat case, all incident energy eventually gets reflected (presuming it is fi-
nite).

We can alway's characterize a passive medium by a scattering operator which maps
the incident wave a to the reflected wave b, and which has the additional property of
causality. With the basic assumptions of the previous paragraph, this operator must
always exist, because

1. ifax =0for—o < k<t, thenb, = 0for —o < k<t aswell, since at any point in
time the net absorbed energy £(t) must be non-negative. Thisdefines causality, viz
definition 3.1.

2. Therelation (a, b) between incident and refl ected waves must be univocal: suppose
(a,b) and (a,b’) are two compatible input-output wave pairs, then by linearity also
(0,b-b") must be compatible, and by the passivity assumptions, necessarily for all
k, by = by, i.e, b=Db'". Hencethe relation (a,b) is an operator well defined on an
acceptable input space of incident waves.

An additional assumption allows the whole of ¢4 as space of incident waves: we
say that any a éé‘/l is alowable as incident wave (solvability assumption). From the
preceding discussion, we derive the scattering operator S as

S: #' - b=8(a).

The solvability assumption is merely technical: it makes the mathematics work and
is reasonably harmless since it could have been obtained by closure on finite input
sequences—a tedious procedure which brings no new insights.
The matrix calculus which we described in the earlier chapters allows us now to
write
b=aS

where passivity impliesthat Sis abounded operator; SO X, and causality even gives
SOU. The passivity assumption also providesthe inequality

I-s87>0, (8.1)
whereasif Sislossess,
|-SS'=0, (8.2)
i.e., Sisisometric. If, in addition, S” (which is an anticausal operator) is isometric as
well, we have
ss’=1, Ss=| (8.3)

and Sis unitary. We have seen in section 6.4 that alocally finite isometric operator S
can often be compl eted to aunitary one by the addition of awell chosen set of outputs.
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Port 1 Port 2

incident waves a;

reflected waves by

Figure 8.2.  Scattering at a layered physical medium.

Layered physical media

Next, consider a layered physical medium for which the inputs and outputs are each
partitioned into two sets. Thefirst set we call, for convenience, port 1, and the second
set port 2— seefigure 8.2. We split theincident waves accordingly into two sets: a3 O
Zg/” toport 1 and b, O sz‘/‘ to port 2, and the reflected waves by 0 £5"~ and a O Ejz\/*.
(The “+" subscript goes with the energy transport from left to right, while “ =" goes
with energy from right to left.) Thetotal energy absorbed up to and including timet

by the medium at port 1 is now given by

t
&1(t) = Z (a]_.’ka%k_bLkbEk)

=—00

andatt = oo by
| ay
€1() =[ag bl]{ M “Ip b?
At port 2, we have
t
LU =Y (b2 kb3 k — a2 k85 k)
L e b3
Ex(w) = [by &) Ay ag]

E1(o0) and &> (o) are expressed in terms of a non-definite inner product characterized
by the signature matrices

=l L ] e L]
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We saw in the previous section that a passive layered medium possesses a causal and
contractive scattering operator < [ U,

.M N N M- .
Tl )byl XA

@ bi=[a by { ol } (84)

It may also happenthat themap [a; bi] — [ap bp] fromwavesat port 1 to waves at
port 2 exists. Inthat case we say that the medium possesses achain scattering operator.
It is commonly denoted with the symbol ©:

.M M- Ni o gN- .
C RN A A L

(a2 bo]=[aq by] [ gz gz } : ®5)

Since (8.4) and (8.5) describe the same linear relations between ay, ay, by, by, they are
connected. In particular, if Xy is boundedly invertible, then © exists as a bounded
operator and is given by

o [ z11—2%225%221 ‘21255% } .
22221 222

Conversely, if @ isknown and @5% isameaningful operator, then X is given by

s O1-0120;3021 —012073 } .

02,021 0%

Definition 8.1 A bounded operator© 0 X isa
m (Ju, Jy)-isometry if @30 = Jy,,
m (Jy,Ju)-coisometry if ©F1, 0 = Jy,
m (Jy, Jv)-unitary if both@Jy 0" = J,, and @10 = Jy.
If © isbounded and (Ja¢, Jy)-unitary, then @1 is bounded as well and given by
01 =30 y.
m Y jscaledinner if it is causal and unitary,!
m 3 islossless if it is causal and isometric, 339 =1.
1See the extensive discussion on inner operators in the previous chapter. The definition isin line with the
notion of “inner” in the theory of matrix analytic functions as given by [Hel64], and does not follow e.g.,
[FM96a] which does not reguire unitarity, only isometry. The two definitions cannot be reconciled, because

acausal and isometric operator does not necessarily have acausal unitary extension, as shown by the coun-
terexamples in the previous chapter.
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Suppose that the scattering operator X of alayered medium is inner, and that the cor-
responding chain scattering operator © exists. Thiswill bethe caseif ;3 exists, let us
say, as a bounded operator.

m O jsJ-inner [J-lossless] if it isJ-unitary [J-isometric], and the corresponding X ex-
istsand iscausal.

A J-inner © need not be causal, but it will be J-unitary. Itiscausal only if 253 iscausal.
Similarly, it may be that © is J-unitary and that the corresponding X exists (which
isthe case when ©53 exists), but such that the corresponding £ is not causal. © isthen
merely J-unitary, but not J-inner, and it does not correspond to a*“physical” scattering
system. We will see later that the various cases on Z and © all are of interest.
Thefollowing theorem gives a number of properties of the connections between ©
and X, where it is only assumed that © is J-unitary (not necessarily J-inner).

Theorem 8.2 Let© O X (M, N) bea(In, Iy )-unitary operator with partitioning (8.5).
Then

1. O3} exists and is boundex,
2. |033] =1, 103021 < 1, | 01205 || < 1.
3. The corresponding scattering operator 2 exists, is unitary, and given by
[ ©11-012053021 -012053 }
033021 02

O 0103
| OO0 O3

?111D _@11_ N 51 } ]
L 02,021 02

> =

(8.6)

PrROOF The proofs are elementary and well known; see e.g., [ADD90, lemma5.2],
[BGK924].

1. ©JO"=Jand ©"JO = J give therelations
0205 =1+02103, 020, =I|+050mn.

Hence ©,, and @5‘2 both have closed range and empty kernel. By the closed graph
theorem, O, is boundedly invertible and both ©,1055 > 0 and ©,5053 > 0.

2. Applying ©3} and ©,5'to the left and right, respectively, of above two expressions
yields

| = 055055+ (033021) (053021, | = 05505 + (01207)(01203) -

Hence ©,20,5'< | and also 055051 <1, i.e, @3] < 1. Because 02055 > 0 and
055051 > 0it followsthat | 033021 || < 1and || ©1,053 || < 1.
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Q1 %u a a1 Zu a
O
S> 212 Iz S
O
by b, by 07}
O 22
o b3

(@) (b)

Figure 8.3. The connection between @ and the corresponding scattering operator 2.

3. Writing out theexpression [a;  b1]© =[az by] infull gives

{ aOn+bi@On=a; { a1(O11 ~ ©12033021) + 0051021 =a
1012+ 0102 = by -2101,053 +b0;  =by

as@y; isinvertible. The second set of equationsis[a; by]X = [ap by]. Thefact that
Y isunitary can be verified by computing 2= and =" in terms of its block entries.

4. Finally, the equalitiesin (8.6) follow directly from the J-unitarity, in particular the
partial equations

0107 -01,05, =1, 0,0 = 0,0},
and
Op01-050, =1, Of 01 =0x05%,
from which it follows e.g., that ©F is boundedly invertible. O

A signal flow interpretation for the connection between © and X is given in figure
8.3. We see that the “bottom arrow” is reversed. Because O, isinvertible, all signals
b, are admissible (i.e., ©,, has full range), and b, can act as an independent input. If
we try to reverse the argument and construct © from X, we must exercise some care,
as 2y, isguaranteed to be contractivewhen X is unitary, but Zg% need not be upper nor
bounded even when X is.

Example

Take
My =[] 0.0,0] m- = [[c].c.c.q
Ny = el A = o],

A signa in the M. space will have the form
a; = [a107':'7'] O M+
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k=0
a

a0 { + + Yo
b1o =

1 k=1 R B
b1y = }ax

- k=2 | 1
b1o ﬁ Yoo

"l k=3 — =1 b
b13 }bo3

€]

Figure 8.4. Example of non-uniform input and output spaces of a J-unitary operator ©.

where a;g has dimension 4, while

b1 = [bi, by, b1, bis] O M-
a = [ap,axn, -, -] O N
by = [ -, -,bxbx] O A

in which the entries ayg, a1, byo, byz have dimension 2, and by, bi1, b1, b1z have
dimension 1. Theother entriesare“empty” or non-existent. One possibleform © could
take (seefigure 8.4) is

©O= | ... ...
L IR
0 :\:: 1 }M-
-
2| o]0 @
na a

The diagonals in the subblocks of © have a somewhat erratic behavior, and some di-
agonal entries vanish. Such a ® may occur in practical approximation situations, as
is seen from examplesin chapter 10. A signal flow diagram for © is drawn in figure
8.4. Since © isupper, it will be causal. Thesignal flow for © isfrom left-to-right. Itis
customary to also indicate the signature of ©, or the energy flow that goeswith asignal
(i.e., thesignal flow of %). Thisisshowninthefigureby ‘+' and ‘—'-signs.
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Fractional transformations

Given alayered medium characterized by either a scattering operator X of a chain scat-
tering operator ©, we can produce a variety of scattering maps between the waves a;
and b; at port 1, by loading port 2 with ascatterer S_ which realizesthemap by, = axS.
(asin figure 8.3(b)). In that case, and provided the inverse of (I - S %) exists, we
have b, = a;Swith

S = Zp+In(l-S%n)1S%n
S = (Ou+ V) O+ V) (8.7)
S = (012-01S)(021S -02)t = Te[S].

The third equation above follows from the second after chasing the denominator and
solving for S. Therelations between the port quantities can conveniently be expressed,
With A= O + 9,4, as

I 90 =Al S]. (8.8
We shall see that (8.8) is closely related to the interpolation properties of a scattering
medium. If ud é;\“ isan input to the layered system, loaded by S, and y = uSisthe
corresponding output, then we can view the operator [| S whichmapsu - [u, y] asa
so-called angle operator. In passive scattering situations, S_ is contractive and © will
be J-unitary. Asaresult, Sis automatically contractive as well, since

l-ss7 = |1 sqal[s'u}

L s;eazeﬂ[ slﬂ}
= Al S‘_]Jz{sl?}AD
= A(I-SS)AY =o0.

The existence of Scan sometimesbe asserted eventhough | —S 2, isnotinvertible. It
sufficesthat X correspondsto alossless system and § to alossy load (i.e., causal and
contractive). Under these two hypotheses it will be true that a;a'~b;bf'> 0, and the
map a; — by iswell defined. There may be a*defect” at the output port of © in the
sense that all the possible physical by’s need not span the whole space. Hence it may
happen that the domain for (1 -5 ;) 7! is restricted (it is the range of Z11). On the
other hand, if © exists, then the third expression for Sin (8.7) is aways well defined
forany ||S|| <1 (0218 - O) ! = (0530215 -1) 1053, Fromtheorem 8.2 weknow
that @53 is bounded, as well as (0,3021S —1)71, because || @302 || < 1.

In aphysical context, S describes the reflectivity of the layered medium at port 1.
The“thicker” themediumis, thelessinfluenceaload S_ will have upon theinput scat-
tering function, and the more it will be determined by the intermediate layers. For ex-
ample, if an incident wave at port 1 needs n sample time sots to travel to port 2 and
back, then thefirst n samples of the reflected wave will not be dependent on the load.
Then, writing

S = TolS]
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a R

b]_ b2

Figure 8.5.  Cascade of O-sections.

for the input scattering operator at port 1 when port 2 isloaded in § , if
S =TelS,] and S =Te[S,]

we shall have that S, has the same first n diagonals as S, or, dternatively, $-$ is
causally divisible by Z" — S; and S; interpolate the same n diagonal “values’. In the
next chapter we shall see that chain scattering operators can be used to describe many
more general instances of interpolation.

One of the main reasons for introducing the chain scattering matrix isthe simplicity
by which the overall scattering situation of a layerered medium can be expressed in
terms of the individual layers. With reference to figure 8.5, we find that the overall
chain scattering matrix of the cascade is

O = ©,0,:--6y.
The corresponding operation on the Z matricesis complicated and known asthe “ Red-

heffer product”, after the author who introduced it in the physicsliterature [Red62].

8.2 GEOMETRY OF DIAGONAL J-INNER PRODUCT SPACES

J-inner products

Inthe sequel, the* geometry” of the reachability and observability spacesof aJ-unitary
transformation will play amajor role. Theimportant metric, often imposed or induced
by the situation, turns out to beindefinite. In this section we collect the main properties
of such spaces as we need them. Keeping in line with the policy of working on diago-
nals asif they were scalars, we define diagonal J-inner products. Let x = [x; xp] and
y = [y1 Y2| belong to a space of type

XM x Y

and let Py denote, as usual, the projection onto the 0-th diagonal, then the diagonal J-
inner product of x with y is given by

{XY}s = Po(xaxD) — Po(xX5) -



J-UNITARY OPERATORS 201

The scalar J-inner product X, y[J is the trace of {x,y} ;. Itiseasy to verify that it isan
ordinary, although indefinite inner product.
Let H be some subspace of X3 x X3, We say that

m 7 isJ-pogtiveif, for al x O H, {x,x} =2 0 (i.e., entry-wise positive),

m 7 isuniformly J-positive if there exists an € > 0 such that for all x O H, {x,x}; =
e{x.x,

m 7 isJ-neutral if, for all xOH, {x,x} 3 =0,
m 7 isJ-negativeif, foral x O H, {x,x}3 <0,

= 7{ isuniformly J-negativeif there existsan € > O such that for all x O H, —{x,x} 3=
e{x,x},

In many cases H will have no definite sign, and we call it indefinite. In particular, if
H=XM[I S, Swill becontractive, isometric or expansive(i.e.,, SS'-1 = 0) if and only
if H is J-positive, J-neutral, or J-negative respectively. Notice that if H is J-neutral,
thenfor all x,y O H itistruethat {x,y} ; = 0. Thisfollowsfrom the trapezium identity
whichis generally valid for inner product spaces (whether definite or not):

{x,y} = %({x+y,x+y} = {x=y,x=y} + i{x+iy,x+iy} = i{x=-iy,x—=iy}).

Indefinite spaces

Now we move to some basic properties of spaces on which an indefiniteinner product
isdefined, mostly for usein subsequent chapters. Extensivetreatments can befoundin
[Bog74, Kre70, AY 89]. Consider the indefinite diagonal inner product { -, -} ; defined
on X3 x X3V, Notethat itisalwaystruethat [{ x, X} 3| < {x,x}, sothat all x 0 A3 x X3
havefinite{x,x} ;. We say that avector x isisotropicif {x,X} 3 = 0. The span of aset of
isotropic vectors is not necessarily J-neutral as can be seen from span{[1 1],[1 —1]}
in C2, endowed with the inner product { X, y} 3 = X1y1 — XoY>.

Let 1 be asubspace of X3! x X} asbefore. We denoteits orthogonal complement
with respect to the indefinite inner product by #!".. It is defined by the rule

HT = {(xOxMxx) :OyOH, {xy};=0}.

It followsimmediately that (7 = 7/2J for the orthogonal complement %" intheusual,
definiteinner product. Hence, H!”! isaclosed subspace (with respect to the natural in-
ner product), and (H[7)[X = 7£. If # is D-invariant, then sois (™.

On uniformly J-positive (or J-negative) definite subspaces, the J-inner product is
equivalent to the usual inner product: €{x,x} <{x,x}j| <{x,x}, which ensures that
important properties such as completeness and closedness carry over: auniformly J-
definite subspace is aHilbert space. We are, however, interested in more general cases
than just uniformly definite subspaces, namely in cases where subspaces #H can be split
into H = H BH_, where H.. and H- are uniformly J-positive and J-negative sub-
spaces respectively, and “H” denotes the J-orthogonal direct sum:

H=ABB - H=A+B, A[]B.
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Such spacesare called Krein spaces. Theindefinitedirect sumistheanalog of O, butin
using H, anumber of propertiesthat are amatter of coursein Hilbert spaces no longer
hold. For example, for orthogona complementation in the usual (definite) inner prod-
uct, weadwayshavethat % n " = 0and H O H" = A,. With an indefinitemetric, the
anal ogous equations do not hold in general. Theintersection of 7£ and #("! is not nec-
essarily empty: for example, if { isaneutral subspace, then 74 0 #H!"!. One can dso
show that a subspace and its J-complement do not necessarily span the whole space.
E.g., the J-orthogonal complement of span([1 1]) in C? isspan([1 1]) aswell.

The algebraic sum #+H!" needs no longer be a direct sum: if x 0 H-+#Y then
the decomposition x = X1 + Xo With x; 0 and x, 0 ™ need not be unique.

A subspace # of X; is said to be projectively complete if H+#!P = X». Inthis
case, each x [0 &> has at least one decomposition into X = X1 + X with x; 0 # and
xo OH!M. A vector x 0 # is called a J-orthogonal projection of avector y 0 X» if (i)
xOH and (ii) (y—x) [O] H.

Let Ho=H n H!". Thenisautomatically neutral. A iscalled anon-degenerate
subspace if Ho = {0}. It isstraightforward to show that

[H—II-’H[D]][D] =y B0 =069y = Ho

S0 that .
Xo = (H4+H) OHI. (8.9)

It followsthat 7 can be projectively completeonly if it isnon-degenerate: H n H!Y =
{0}. Inthat case, decompositionsare unique, so that if # is projectively complete, then
X, =HEHD,

Indefinite Gramians

The situation in which we are interested is as follows: let H be alocally finite D-
invariant subspacein somegiven*base space” 3", and let B bethe non-uniformspace
sequence whose dimension #B is the sequence of dimensions of the subspace #, as
defined in section 4.3. ‘H has some strong basis representation F such that H = DgF
(cf. proposition 4.6). Let J 0 D(M, M) be some given signature operator on the base
space M — it isadiagonal of signature matrices, one for each entry in M:

_ | (Umak
e = ' (=Im-)k

(the exact form of J is not really important here, the decomposition of M usually cor-
respondsto adivision of ports according to incoming and reflected waves). In analogy
to the definition of the Gram operator Ar = {F,F} in chapter 4, we define the J-Gram
operator of this basis as the diagonal operator

AL = [F,F] = Po(FIFY) O D(B,B). (8.10)

F is caled a Jz-orthonormal basis representation when /\‘,]: = Jg, where Jz is some
signature operator on 5. The dimensions of F are Bx M. We call H regular if the J-
Gram operator of somestrong basisin the normal metricisboundedly invertible. Since
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strong bases are related by invertible diagonal transformationsR: F' = RF, the invert-
ibility propertiesof the Gram operatorsof all these basesarethe same, so that regularity
is a property of the subspace. Note that Ag > 0 does not imply that /\~,’: is boundedly
invertible. Thereverseimplication istruewith some caution: /\~,’: boundedly invertible
does not necessarily imply that Ar is bounded, but if it is, then Ag > 0.2

If AL is boundedly invertible, then it has afactorization into A = RIzR", where R
and Jg are diagonalsin D(B3,B), Risinvertible and Jz is the signature matrix of A}:
it isadiagonal of matrices

| (e

(JB)k = [ (_I—)k :|

and definesapartitioning of B into 5 = B xB_. Jz isagain independent of the choice
of basisin H. We call Jz the inertia signature matrix of the subspace 7, and the se-
quences#(B..) and #(5-) corresponding to the number of positive and negative entries
of Jg a each pointiscalled theinertiaof H. More general (non regular) subspaces can
aso have a zero-inertia, corresponding to singularities of AL, but if  is regular, then
it hasno zero-inertia. (Thezero-inertiaisonly well definedif the range of /\,J: isclosed,
or equivalently, if any of its eigenvaluesis either equal to zero or uniformly bounded
away from zero.)

Canonical subspace decomposition

Thefollowingtheoremisprovedin [AY 89, thm. 1.7.16] for classical Krein spaces, and
holds in the present context as well. It isafairly straightforward consequence of the
closed graph theorem of functional analysis[DS63]. We refer the reader to the original
paper and standard textbooksif he wishes to explore the matter further.

Theorem 8.3 Let H bealocdly finite left D-invariant subspace in X, and let J be a
Signature matrix associated to it. The following are equivalent:

1. ‘H isprojectively complete: HBH = x5,
2. Hisregular,

3. H isaKrein space: H = H B H-, whereH and H- are uniformly J-positive
(resp. J-negative) subspaces,
4. Any element in X, has at least one J-orthogonal projection onto H.

2Counterexample: TakeJ = [é _01], €n aseries of positive numbersforn=0,1,--- such that &, - 0, and

1+ 1/¢en v/1/¢€n
/1/en V1+1/¢, ] '

We see that A = J, so that A} is boundedly invertible, but F, does not have finite regular norm itself, and

] :[ 1+2/¢n 2\/1/€2+1/¢en ]:[ 2/en  2/en }
"l 2V + e 142/ 2/en 2/en |

Hence it is not true that Ag >> 0, not even on its domain.

F =diag
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Corollary 8.4 LetH bealocaly finite regular left D-invariant subspace in XJ with
dimension sequence BB, and let Jp be the inertia signature matrix of H. Then H has
a canonica decomposition H = H .. B H- into uniformly definite subspaces, where
sdim Hy =#B. =#,.(Ig) andsdim H_ =#B_=#_(Jp).

8.3 STATE SPACE PROPERTIES OF J-UNITARY OPERATORS

Block-upper, localy finite, bounded J-unitary operators have remarkable state space
properties. If © is such an operator, then its canonical input and output state spaces
H(O®) and Ho(©) are closed, regular subspaces. From the theory of the previous sec-
tion it then follows that the decomposition 1 (©) = H B H- exists, with H_ and #-
uniformly definite. We explorethis and other state space propertiesin the present sec-
tion.

Proposition 8.5 Let® OX (M, N) bealocally finite(Ixq, Iy ) -unitary operator. Then
H(O) and Ho(O) are closed subspaces,

K©) = L2709, H(O) = LZ7'c K(O) (8.11)
Ko(©) = U0y, Ho(@) = Uz © Ko(O). '
Furthermore,
Ho(®) = H(O)IuO
HO) = Ho(®) IO, (8.12)

PROOF L7710, is contained in the null space of the Hankel operator Hg since
ﬁzz_lem\JM@ = ﬁzz_lJN = ﬁzz_l. DefineH = ﬁzz_l S £ZZ‘1ODJM andletH' go=
Pr,z-1(-0 . Forany xOH, y = xJy@Jy is such that x = yO", and for al z 0
LoZ7Vitistrue that {y, 7} = {x,JvzO"I\} = O, by the definition of x. Hencey O
Uy and H isin the range of H'gp, i.e., H = H(©). In addition, # is automatically
closed because it is the complement of a subspace, and K(©) = £,Z710",,. A dual
reasoning produces Ko (©) and Ho(©). Equations (8.12) follow in the same vein: let
xOH(©), then

{xJO, L,Z7Y} = {x, £,Z710} = {x,K(©)} = 0.
|

Proposition 8.5 has great consequences for interpolation theory, as we shall seein
chapter 9. Combination with the theory of the previous section producesthe following
proposition.

Proposition 8.6 H(©) andH(©) as defined in proposition 8.5 are regular;

L2 = H B L271e8
Uy = Ho B U0.

PrROOF ’HED] =HJ = KoJ = U»0 by proposition 8.5. To provethat i, = Ho B ’HLD],
we show that every y (0 U» has a J-orthogonal projection onto H,. Let'y 00 Uy, and
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defineyo™ = uy 4 y1, with uy O £,Z71 and y; O Us. Furthermore, define uy = uyJ O
L2771, Then up O H because Uz = Py 7-1(yO™)J = P, 71 ((yJ) ©F). It follows by

proposition 8.5 that y = u,JO +y10, whereup,JO O Ho andy;© O ’HLD] = U»0. Hence
every y 0 U, hasaJ-projection onto H,, so that according to theorem 8.3 H, isregular.
A dual proof holdsfor . ]

Corollary 8.7 Let®@0OU(M,N') bealocaly finite bounded J-unitary operator. IfF is
aJp-orthonormal basis representation of H(©), thenF, = JgFJp\© isaJd-orthonormal
basisrepresentation of Ho(®), andinthis case the canonical controller realization based
onF (theorem 5.15) and canonical observer realization based onF, (theorem 5.18) are
equal.

PROOF Because 7{(©) isregular (proposition 8.6), thereis a J-orthonormal basis rep-
resentation F of 7: AL = Po(FJFY) = Jg. ThisF definesafactorization of the Hankel
operator of © asHe = Po(-F") Fo where Fo = AZL P(FO) isabasis of the output state
space H,, of © (theorem 5.20). On the other hand, the relation o = HJO ensures that
Fa, defined as F; = FJ\©, is upper and also a J-orthonormal basis representation of
Ho. The connection between F, and Fq isFa = FI© = FJyHe = Po(FI\F™) Fo =
JsFo, sothat Fo = JgFa = JgFJI\©. Itisreadily verified that F, isalso J-orthonormal.
Theorem 5.20 claims that the canonical observer realization based on this F is equal
to the canonical controller realization of F. |

J-Unitary realizations

A redlization matrix © 0 D(B x M, BT x /) with signature matrices J1, Jo,

A C [ 3 [y
o-[4S]. wme[¥ ] w %] ew

issaid to be J-unitary if
01,0=J,, ©J,0"=J;.

We call Jg the state signature matrix of ©. With “#” indicating the sequence of di-
mensions of a space sequence, we have that the total number of positive entries of the
signatures at the left-hand side of each equation, for each time instant k, is equal to
the total positive signature at the right-hand side, and similarly for the total negative
signature (the inertia theorem):

#B, +#M, = #BUY +an,

8.14
BB+ #M_- = #BUY 4 #N. (8.14)

Asfor inner systems, J-unitary systems and J-unitary realizations go together. Proofs
of thisare similar to the unitary case (theorems 6.3 and 6.4). In particular, the follow-
ing theorem claims that if © is alocally finite bounded J-unitary upper operator, then
one can find aminimal realization for © which is J-unitary, for an appropriate J-metric
defined on the input (or output) canonical state space.
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Theorem 8.8 Let® OU(M,N) beabounded locally finite (Jr¢, Iy ) -unitary opera
tor. Let Jg be the inertia signature matrix of H(©), and let F be aJ-orthonormal basis
representation for H(O).

Then the canonical controller realization © based onF isJ-unitary, and identical to
the canonical observer realization based on Fo = JgFJ\©.

PrROOF Let © be given by the canonical controller realization (theorem 5.15). This
realization satisfies the properties (5.19)—(5.21):

ZF = AF+BY
{Po(Z‘l-FD)(‘” = Po(-[F"A+B])

{Po(-e) = Po(:[D+FC]),
o” = DU4+CF.

(8.15)

To verify that ©3,0 = J,, we have to show that

] O
ODJMO — JN ADJBA_FB[]JMB B
Po(FILFY) = 35 O CJC+DIuD = Iy
AJzC+BIyD = 0.
Indeed,
PoFIMFI =3z O ISP = Po(zL(zF)IpFHD

Po(Z 1 [(A"F + BY)Jp ] FH Y
= Po([AF+BY Iy [F"A+B))
= AUgA+ BB,

Po(@3,0) = Iy 0 Po([DY+ C™F] I [D + FHC))
= DD +C™Po(FIn FY)C
= DY,D+CYC = Jy.

Note further that Po(ZFJO) = Po(ZJF,) = 0, hence

Po(ZFJ®)=0 O Po([B"+ ATF]J D + FC))
= By D+ APy (FIyFDC
= By D+AYUC = 0.

Hence ©"J,0 = J,. Therelation ©J,0" = J; can be derived in the same (dual) way
as above. The equality of both realizations has been proven in corollary 8.7. |

Aswas the case with inner operators (viz. theorem 6.12), the converse of this theo-
remisingeneral trueonly if, inaddition, £a < 1. If £ = 1, then additional assumptions
on the reachability and observability of the realization must be made.

Theorem 8.9 Let © = [4 5] be a state redlization of a locally finite bounded trans-

fer operator © O U, with (s < 1, and denote by N} and AL the reachability and the
observability J-Gramians of the given realization respectively. Then

01,0=3, O 0Yuo=Jd, A=,

OJZGD: Jl O @JN@D: M7 /\.lJ:O _ JB ) (816)
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PROOF Since /s < 1, aclosed form expressionfor © is
©=D+Bz(I-AZ2)*C
and direct computations give

Jv-0",0 = Jy-[D+Bz(1-AZ)"1C]"[D + BZ(1-AZ)1C]
CJgC + CH(I -ZFAD)1ZEAR5C + CHIgAZ(1-AZ)IC
- C(1-Z"A0) 2z 35 - AT3AL Z(1 - AZ)IC

since BY,D = -A%C, BUyB = 35 - A%J3A and Jy - D3, D = CH35C, and
hence
Jv-0",0 = CHI-Z"AD) ™ (1-ZFADIs(1 - AZ) + ZPAS0E(1 - AZ)
+ (1=-Z"ADIgAZ - 35 + ZASIgAZ} (1 -AZ)7IC
= 0.

The second equality follows by an analogous procedure. O

More general versions of these theorems for J-isometric operators are easily de-
duced and given at the end of the section.

Unitary state representation for 2 in terms of ©

Let © be a J-unitary redlization of a bounded J-unitary operator © [ U/, with state
signature matrix Jz. We have seen (in proposition 8.6) that the input and output state
spaces H(O) and Ho(O) areregular: there exist definite spaces 74 and #- such that
‘H = H BH-. This partitioning induces a partitioning of the state space sequence B
into B = B, x B- conformably to Js. Because the bases chosen for the state spaces are
J-orthonormal (© is J-unitary), the basi srepresentation F can be partitioned into two J-
orthonormal basesF, andF-, suchthat H | = Df *F; andH- = D5 F-. Henceastate
x 0 X% ispartitioned into x = [x;  x-] O Xf* x X;~, where x, and x- are the parts
of the state that correspond to the positive and negative subspacesin the state space H:
X+ F4+ OH, and x-F- 00 H_. The decomposition of the state defines a partitioning of
© according to the equation

X, x a b]O@ =[x, Z' xZ?! a by (8.17)

into
X+Z_1 x.Z1 ao by
X+ [ An A Cu Ci2
X | An Ax Ca Cx
a Bu B1o ‘ Dy D12
by B21 B2 D21 D2
We have shown, in theorem 8.2, that associated to © is a unitary operator 2 such that

= (8.18)

[a1 bz]z = [az bl] e [a1 bl]@ = [az bz]
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The question we adress now ishow agivenrealization © of © givesrisetoarealization
2 of Z.

A reordering of rowsand columnsin (8.18) with respect to their signatures converts
© into a genuine square-block J-unitary operator, i.e., each matrix

A
Bu

Ax
Ba1

Cu
Du

Ca
D21

A
B>

Ax
B2

Cr
D1

Co
D2

k

is asquare and J-unitary matrix with respect to the signature

LB, )x(M )i
By (Mo

L(Bo) s XNk

} _ {'(Bnmank
In particular, each submatrix
[Azz Cx2

Bz D2 } K

of O issquare and invertible, and because © is J-unitary, the block-diagonal operator
constructed from these submatrices is boundedly invertible aswell. It followsthat the
following block-diagonal operators are well defined (cf. equation (8.6)):

and we obtain the relation

where

X, xZz?

Fiu Hu ~ [Ax Cu } : { A Cp } [ Ax Cyx } ! { Ay Cy }
| Gu Ku | | Bu Dn Biz D1z || Bz D2 Bx1 D2z
Fio Hip | _ _[ Ap Cp } { Ay Cp } !
| G2 Kz | Bz D12 B D22
[ Fx1 Ha | [ Ax Cx } 1[ A1 Cp |
| Ga1 Ko | | B2 D2 B2 D2 |
Fo Ha | [ Ax Cx } !
| G2 Kz | | B2 D2

(8.19)
ap bZ =[xZ! x a by (8.20)
X+Z_1 X ao by
Xy Fn Fo2 Hip Hi
_ xZ1 | Fa  Fz Hz1  Ha (8.21)
a Gu Gop ‘ Ki K2
b, Gy Gx Ko Kz

See figure 8.6. Animportant point which can be readily derived from the J-unitarity
of @ isthe fact that £ is unitary:

zz

O_|-

SOy — .
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(By)k (B-)k (By)k  (B-)k
|| | 1
Mik—=+ =Wk Mo = Wk
M-) e (A-) (M) > (A-)
( k-, == (N e=—1_-, I .
o ]
(B4 )k+1(B-)kt1 (B4 )k+1(B-)k+1

(@) (b)

Figure 8.6. (@) The spaces connected with a realization for a J-unitary block-upper op-

erator © which transfers ﬂﬁ/l* Xﬂéw' to £j2\/+ Xﬂjz\/_. The state transition operator is marked
as ©. (b) The corresponding scattering situation.

Becausein (8.20) state quantitieswith and without the factor Z™* appear in the same ar-
gument at the left- and right-hand sides, Z is possibly akind of generalized or implicit
realization for atransfer operator %, but isnot computablein thisform. X isguaranteed
to exist (because G)g% exists—see theorem 8.2) and can be obtained from Z by elimi-
nation of x- and x,.. X can beinterpreted as arealization having an upward-going state
x- and adownward state X, , asdepicted in figure 8.6. Recall that although X is unitary,
it is not necessarily upper. The upward-going state x- isinstrumental in generating the
lower triangular (anti-causal) part of . The precise details will be investigated later
(proposition 8.14), but a preliminary result is straightforward to derive.

Proposition 8.10 Let®© bea(J1,J2)-unitary redlization for aJ-unitary operator ©. If
Js =1, then©3} DU, that is, @y, is outer, © isJ-inner, and the corresponding unitary
operator . is upper and hence inner.

ProoOF If Jg = |, then the dimension of x- iszero, so that the implicit staterelations X
for X in (8.20) are reduced to ordinary state equations [x, Z ™% ap by] = [x; a1 by]Z,
which define an upper (causal) operator 2. O

O©-matriceswith arealization ©@ whichis J-unitary with state signature Jg = | corre-
spond to inner scattering operators>. They will play acentral rolein theinterpolation
theory of the next chapter.

J-isometric operators

If we only know that © is J-isometric (©"JO = J) then anumber of propertieschange.
Most importantly, we cannot deduce that the input and output state spaces of © are
regular. Consequently, we might not be able to find astrong basis that has aboundedly
invertible J-Gramian A’, thus precluding a J-isometric realization. Nonetheless, we
can find unnormalized realizations that show us whether the corresponding operator is
J-isometric. Thefact that the J-Gramianisnot invertibleal so impliesthat the signature
(inertia) Jz of A’ cannot be very well determined: components might be e-close to



210 TIME-VARYING SYSTEMS AND COMPUTATIONS

zero. An important implication will be that it is not always possible to extend a given
J-isometric operator to a J-unitary operator.
The following theorem is a more general version of theorems 8.8 and 8.9.

TAhgora”n 8.11 Let® OU bealocally finite operator with au.e. stablerealization© =
[gpl- Then

AIMA+BYIB = M
oo =1 - MOD: A'MC+BYID = 0
C'MC+DYD = J
AMYAHLcIc? = M
[CA[CRE] - MOD: {AM<-1>BD+CJDD =0
BMCUBY+DJDY = J

PROOF (@)@ =J0 ---) DefineF = (BZ(I-AZ)™1)". Since/a < 1, properties(8.15)

hold. Define M = Po(FJFY). Therest of the proof is similar to that of theorem (8.8),
replacing Jg by M.
(©"JO=J0 ---) Direct computation asin theorem 8.9.

The other relationsfollow in a dual way. |

8.4 PAST AND FUTURE SCATTERING OPERATORS

This section dives deeper into the properties of the state space of a general causal J-
unitary matrix: one that does not necessarily correspond to a causal (and hence inner)
scattering matrix. These properties will appear to be of crucial importance to model
reduction theory as treated in chapter 10. We give them here because they form anice
application of Krein space theory and have independent interest.

In section 5.1, we introduced the decomposition u = up + us for asignal u O A5,
where up = PLzz—l(U) 0 £,Z71 isthe “past” part of the signal (with reference to its
0-th diagonal), and us = P(u) O U, isits “future” part. We aso showed how a causal
operator T with state realization T could be split into apast operator T, which mapsup
to [Xj Yp| and afutureoperator Tr whichmaps [x(g Uf] toys. Inthe present context, let
thesignalsay, by, ap, by and the state sequencesx, , x- bein X and berelated by © asin
(8.17). With the partitioning of the signals ay, etc., into a past and a future part, © can
be split into operators (+)@p : Z1L4" - [P Z1cY]and ()O; 1 [D5 UM - Uy
via

[aap b1p]@p = [Xy0 Xjo ap bz (8.22)
Xig Xqo @ bif]Of = [axr boyl.

Op and O are determined once basis representations for the input and output state
spaces of © have been chosen. Thefollowing procedureisasin section 5.1. The split-
ting of signalsinto past and future parts associates to © an “expanded” version ©, de-

fined such that (up + Uf)® = (Yp+Ys) = [Up Us]® = [yp yil:
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~ [Ke H Ko = Pr,za(-0)[z 2
o=| "7 Eg where Ho = P(-0)[,,;1 (8.23)
Eo = P( @) ‘z,{z

Let F be a J-orthonormal basis for #(©), and let F, = JFJO be the corresponding
left DZ-invariant J-orthonormal basis for Ho(©). Then ©, and O« are given by (cf.
equation (5.18))
F
Op=[Po(-F) Ke], ©Of= { E; } . (8.24)
We first show that ©, and © are J-unitary operators. Then, as a consegquence of the
theory inthe previoussection (in particular proposition 8.10) thereexist operators(-) Zp,
()Zf:
go ap baplZp = [y @p by
(8.25)
X auf ba]Zf = [xqq @t b
which are scattering operators corresponding to ©, and O, respectively (see figure

8.7(b)). The J-unitarity of ©, and O, and hence the existence and unitarity of >, and
3¢, isasserted in the next proposition.

Proposition 8.12 Let® OU(M,N) be alocdly finite J-unitary operator, and let ©
be aJ-unitary redlization for ©. Then ©p and O are J-unitary operators, and %, 3
are well-defined unitary operators.

PROOF Let © be given asin equation (8.23). O is, except for ordering of elements,
the same operator as ©. Hence, for appropriate J's it is J-unitary as well, so that

EoJEg = J, KZJIKo - 7,
HoJEX ) HE Ko - 0, (826
HoJHS +KeJKE = J, HSJHe +EJJEe = J.

Let F be a J-orthonormal basis for #(©), and let F, = JFJO be the corresponding
J-orthonormal basis for He(©). Note that F, is also given by Fo = JFJHg, so that
FoJEg = JFIHeJES = 0. With the chosen basis, the Hankel operator has afactoriza-
tion asHe = Po(-FY)Fo and Hg = Po(-F5) F, so that

HgJHo = Po(-F5)Po(FIFD)Fo = Po(-F5)JFs. (8.27)
O of equation (8.24) hasthe adjoint ©f = [Po(-F5) Eg), so that (with (8.26))

01JO7 = Eg } J[Po(-F5) Eg]
[ Po(FoJF5) FoJES }

| Po(EedFo) EoJEg

[Js O }

| 0 Iy
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(2) I )] | |
[ Z L]
72 @ o%72 P
bl[—Z]% z <—— b2[—2] 1 1
(1) 6 ap, —= —= a
X+[—l] X—[—l] 1p 2p
i O S
J (1) )
bl[—l]% z < b2[—1] blp = — b2p
X4[0] Xo] X4[0] Xo]
i) — —— 220 af —= —= s
byo = z <—byg R
X Xy by = =— by
(-1) (-1) : :
bl[O]) B Z(_l) <—— b2[1]) ' '
L= |
(a) (b)

Figure 8.7. (@) The state transition scheme for Z, (D) The decomposition of X into a
past operator 2 and a future operator X linked by the state [X, o) X-[g)]. This summarizes
the figure on the left for all time.
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and with (8.27), s

©7J0¢ = [Po(-F5) EglJ [ E; } = Po(-Fg)JFo+EgJEe = J.

Hence Oy is J-unitary. The J-unitarity of ©p followsin adua way. © and ©, may
be considered “normal” J-unitary operators with inputs as given in equations (8.22).
Proposition 8.10 then applies and from it follows the existence of unitary scattering
matrices X+ and X, given by the 1/O relations (8.25). m|

State space structure of 299 = @5%

Proposition 8.10 shows that if the state signature sequence Jg = I, then 29, = Og% is
upper and © is J-inner. In chapter 10 on optimal approximations, an important role
is played by J-unitary operators with non-trivial state signature, in which case @5% is
generally not upper. In particular, we will be interested in the dimension of the state
space sequence 1 (©,5) of @3, determined by the lower (anti-causal) part of ©33: we
shall seethat thisquantity will be characteristic of the complexity of the approximation.
To this end, we use in this section a“ conjugate-Hankel” operator, defined as

H' = Hgy = P/( 022)y, - (8.28)
The definition is such that H(©55) = ran(H’).

Because @5% = Xy, the conjugate-Hankel operator H' defined in (8.28) isarestric-
tion of the partial map 22 : by - by. Indeed, H' : byt - by is such that by and by
satisfy the input-output relations defined by 3 under the conditionsa; = O and by = 0
(see dso figure 8.7(b)). H', as a Hankel operator, can be factored as H' = ot, where
the operators

O. b2f — X_[o]
T: X—[O] - blp

can be derived from X and >, by elimination of X4[0]s taking a; = 0 and bpp = 0. We
show, in proposition 8.13, that the operator g is* onto” while T is* one-to-one”, so that
the factorization of H' into these operatorsis minimal. It is even uniformly minimal:
the state x_(g) is uniformly reachable by by (i.e., the range of o spans Dy), and X-|g as
input of T is uniformly observable. It follows, in proposition 8.14, that the dimension
of X (g @t each point in time determines the local dimension of the subspace # (©5;)
at that point.

Proposition 8.13 Let © O U bealocally finite J-unitary operator, with J-unitary re-
dization © suchthat fa < 1. Letx,,x-,a1,by1,ap, b, satisfy (8.22) and (8.25).

1. Ifa;p=0andby, = 0, thenthe map T : X[q] - b1p is one-to-one and boundedly
invertible on its range, i.e.,

De>0: bl = gl x . (8.29)
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2. Themapo : byt 1 X-|g) isonto, and moreover, there existsM < o such that for any
X(g thereis abyt in its pre-image such that

b2t || < M| x g |-

PROOF

1. Themapt: X g '~ bypisone-to-one. SinceZ, isawell-defined bounded operator

on the whole space XZM”' x XZJ\/Z", we can put a;p = 0 and by, = 0, and specialize
equation (8.25) to [x_g 0 O]Zp = [X; (g @zp bap], that is, we have for some x, (g
and azp

[O blp] @p = [XHO] X0 azp 0] . (830)

Since Op, is bounded, thereisan M such that ||byp|| < 1 O |[[x g < M and
hence, withe =1/M: ||x g [|21 O |[[byp|l = €. Itfollowsthat X g i~ byp isOne-
to-one as claimed, and that (8.29) holds.

2. Themap o : byf - X (g isonto. Let be givenany x_q). We have to show that there
isabys which generates this state via Z¢. First, with a;p = 0and byp =0, 2 as-
sociates a unique byp and X, g to X_[g). Put also a;s = byt = O, then © generates
a corresponding by as by = b1©2,. Because 2 is well defined, application of
21 10 [Xy[q O b2f] gives again a state x_ o’ but this must be equal to x_(g because
they both generate the same by, and the map X - byp is one-to-one. Hence this
b2¢ generates the given state X_(g. In addition, we have from || byp || < || X(q | and
O £M < oo that

[bat || < [[©2]l[bpl|
< M|xqll-
This meansthat the state x_g) is uniformly reachable by byt aswell. m|

Proposition 8.13 isinstrumental in proving that the sequence of the number of states
x of theanti-causal part of @3] isequal to the sequence of ranksof the Hankel operator
H'.

Proposition 8.14 Let® OU bealocally finite J-unitary operator, with state signature
operator Jg. Thes-dimension of 1(©55) isequal to#-(Jg) = #(B-), i.e., the sequence
of the number of negative entriesin Jg.

PrROOF . .
H(GZ% = szz—l (Uz@zz)
= {PLZZ‘l(be 95%) D bps OULY.

Put & = 0 and bpp = 0 s0 that byp = P/ 5-1(byr 033). The space H(055) = {b1p :
b, O U} is generated by the map H' : byt 1 byp. But this map can be split into o :
D2f 1 X oy @nd T: X g - byp. Because [x g O 0]Zp = [Xyo] @zp bip), the signal
X_{o) determinesb;, completely. In proposition 8.13 we showed that X (g - byp isone-
to-one and that by - X_[g is onto. Hence, the state x_g) is both uniformly observable
in byp and uniformly reachable by by, i.e., its state dimension sequence for the map
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b2t - b1p isminimal at each pointin time. Since the number of state variablesin x g
isgivenby #_(Jg) = #(B-), it follows that

sdim H(055) = #(B-).

8.5 J-UNITARY EXTERNAL FACTORIZATION

In this section we investigate external (or J-inner-coprime) factorizations, similar asin
chapter 6 for inner factors, but now so that, given T 02/ (M,N') and asignature J,

T = A, (8.31)

where © O U/ is J-unitary and A is upper. Notice that (8.31) isin adual form to that
used in section 6.2, where we were working with T = A%V, or VT = A. Thisis of
course not essential, and a dual form of proposition 6.6 holds.

Proposition 8.15 Let begiven operatorsT O and® OU. ThenA = THO isupper if
and only if £,Z7*@ 0 K(T). If © is, in addition, J-unitary, then £,Z 10" = K(O),
and A is upper if and only if © satisfies

H(JIT) O H(O).

The construction of such a © is comparableto the construction for inner operators.
Assumethat T islocally finite, that { A, B,C, D} isaredlizationfor T whichisuniformly
reachable and that /s < 1, then F = (BZ(1-AZ)™) "is a strong basis representation
such that H(T) O D,F (the latter being necessarily closed). An operator © such that
A O U isobtained by taking H(®) = D,FJ, and a J-orthonormal redlization of © is
obtained by making FJ J-orthonormal, which ispossibleif and only if AL = Po(FJFD)
is boundedly invertible, i.e., if DoF isaregular (Krein) space. Let Jz bethe signature
of AL, then Al = R-JgR for someinvertible state transformation R, and hence Ag and
Bp of aJ-unitary redlization are given by

Ao —rqd{ﬁ}mﬂ. (8.32)

Bo
It remains to complete this realization such that

Ao Co
Bo Do

O:

is (J1,J2)-unitary. This step is less obvious than for inner systems, so we first prove
an additional lemma before stating the main theorem.

Lemma 8.16 Let begiven finite matricesa, 3, and signature matrices j1, j2, j3 such
that

ajia+ BB = js.
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Thenthereexist matricesy, d and asignature matrix j4 such that & = [g g’] isaJ-unitary
matrix, in the sense
3 }eD— {jl | }
Ja J2

95[11_}9_{13_}
I2 Ja |7

PROOF Suppose that a is an (Mg X Ng)-dimensional matrix, and B : (Mg X ngy). Itis
clear that if an extension exists, then j4 is specified by the inertiarelations:

#.(ja) = #:(j1) + #:(j2) —#:(J3)
#-(ja) = #(j1) +#-(j2) —#-(j3)-

Since the first block column of 6 is already J-isometric,
0 j1 a .
a . = |3,

it remains to show that it can be completed to a J-unitary matrix. Because j3 is non-
singular, the ng columns of [§] are linearly independent. Choose a matrix [] with
My + Mg —Ng independent columns such that

ol B[ﬂ[h JZHH ~0 (8.33)

and such that the columns of [ ;] form a basis for the orthogonal complement of the
column span of [};g]. We claim that the square matrix [ 4] isinvertible. To prove
this, it is enough to show that its null spaceis zero. Suppose that

then ) i
w5 Sl ]=[%]=[8]

Hence x; = 0 and [ ]2 = 0. But the columns of ] are linearly independent, so that
X = 0. Thus

a c| | js

B d|~ N

whereN isasquareinvertiblematrix. By the usual inertiaargument, the signature of N
isequal to j4, and hence N has afactorization N = RUj4R, where Ris invertible. Thus
c a y }

putting
y =
o d B o

ensuresthat 0 is j-unitary as required (we are indepted to H. Dym for this elegant ar-
gument).

2

a” BD}{J& ;
2

ct d-

}R‘l, 0=

O
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Theorem 8.17 Let begivenasubspaceH = D5FJinZ 1L, specified by abounded
basis representation F = (BZ(1-AZ)™)", (ta < 1), which is such that AL is bound-
edly invertible. Then there exists a bounded J-unitary operator © 0 U (M, Ng) such
that H = H(O). © isunique up to aright diagonal J-unitary factor. Its output space
sequence, No has dimension sequences given by

#No)y = #B, -#B7Y +#M, 20

8.34
#No)- = #B--#BUY +#M_ 20. (639

PROOF Since /\,J: isboundedly invertible, thereisasignature operator Jsz and abound-
edly invertible operator R0 D such that AL = R“JzR. Thesignature Jz impliesaspace
sequence decomposition B = B, x B, and since /\,J: satisfies the Lyapunov equation

AALA + BB = (AT
Ao, Bo, given by
Ao

_[R [ A g
Bo _[ |_{JB}R

form a J-isometric block column with diagonal entries. We proceed with the construc-
tion of arealization © of the form

Ao Co] _[R J[A C
- | || 9B Do

Bo Do
which is a square matrix at each point k, and where Cg (or C') and Dg are yet to be
determined. © isto satisfy ©°J,0 = J,, ©J,0" = J4, for

‘]B J(_l) :|
Ji= , Jo:=| "B
e B T R

where Jy, isstill to be determined, and with it the dimensionality of the output space
sequence No. However, since dl other signatures are known at this point, these fol-
low from the inertia property (equation (8.14)) as the space sequence with dimensions
given by (8.34). To obtain ©, it remains to show that [Qg] can be completed to form
© in (8.35), in such away that the whole operator is J-unitary. This completion can
be achieved for each point k individually with local computations, and exists as was
shown in lemma8.16. Since © is J-unitary and /4 < 1, theorem 8.9 implies that the
corresponding operator © is J-unitary. Finally, H(©) = ‘H by construction.

Theuniquenessof ©, upto aleft diagonal J-unitary factor, isprovenin the sameway
asfor inner operatorsin the Beurling-Lax like theorem 6.13. Indeed, let ©, be another
J-unitary operator suchthat % = H(©1), then K = L,Z o H = £,2710 = £,2716],
so that

(-1
o= R | (8.35)

EZZ‘lG)DJG)l = 522‘1

£z7'efe = Lzt
which implies @J©; 0 D, say ©~J0; = JD, where D 0 D. Then ©; = @D, and D
must be J-unitary. |
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Corollary 8.18 Let T OU(M,N) bealocaly finite operator with uniformly reach-
ableredlization { A,B,C,D} such that {a < 1, and let be given a signature matrix J.
If the solution N\ of the J-Lyapunov equation

AAA 4+ BB = ACY (8.36)

is such that \ is boundedly invertible, then there exists a bounded J-unitary operator
© 0U(M,Np) such that
TTo=a0uU.

The state signature Js equal to theinertiaof \. No and its signature are determined by
equation (8.34). In particular, if A > 0 then © isJ-inner.

PROOF The conditions imply that the subspace # = D,FJ = D, (BZ(I -AZ)™?) "3

has /\,J: = A\ boundedly invertible. Hence theorem 8.17 asserts that thereis a J-unitary
operator © such that H(©) = H. Notethat a necessary condition for A to beinvertible
is that the given realization be uniformly reachable, so that

HIT) = H(T)I O DFI = H = H(O).

Thisin turnimpliesthat A = THO is upper. |

For later use, weevaluate A = THO. Instead of Co, weuseC' = R™1Cq (seeequation
(8.35)), asAp will becomeequal totheoriginal Ainthiscase. Wealso apply therelation
Jp(FJ) IO = Fo, whichin case £a < 1 reads

(1-Z2°A3) 128530 = Js(1-Ac2) 1Co.

Thus
A=T® = [DP+CHI-Z"AD1ZzIBYe
= DYDo+BoZ(l-AsZ)'Ce] + CTRY1-Z"A5)1Z'B5J0
= D'Dg + D"BoZ(I -AgZ)1Co + CTRIz(1-AgZ)'Co
= D'Dg + D"IBZ(I-AZ)™C’' + C"AY(1-AZ)71C'.
Consequently,
A=T®@ = {D'De+CAC'} + {DHIB+CNA} Z(1-AZ)7IC',  (8.37)

where AY = A is given by (8.36) and C' by (8.35).

8.6 J-LOSSLESS AND J-INNER CHAIN SCATTERING OPERATORS

Asdefined before, aunitary scattering operator X iscalledinner if itisalso causal. Sim-
ilarly, an isometric scattering operator which can be embedded into a unitary operator
is called lossless if it is also causal .. The corresponding chain scattering operator ©

3Just “isometric” is not good enough: we can easily realize aresistor of 1 ohm with an infinite, seemingly
lossless transmission line!
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is called J-inner respectively J-lossess. Even though we have only considered causal
O©'ssofar, itisimportant to notethat in general it may be causal, anticausal or of mixed
causality, even whenthe corresponding Z isinner. Thetopic of this section and the next
isto study conditions under which ageneral © 0 X' correspondsto alossless system.
As done so far, we assume that the chain scattering operators under consideration are
bounded and have u.e. stable realizations.

Causal J-lossless and J-inner operators

Proposition 8.19 Suppose that © O U is a locally finite causal J-isometric operator
with a canonical realization which is u.e. stable ((a < 1). If the output state space Ho
of ® isuniformly J-positive, then there exists an extension @' of © which isJ-inner.

PROOF Since it is assumed uniformly J-positive, the output state space #H, has a J-
orthonormal basis F, whose J-Gramian is /\~,’:O = lg. By lemma 8.16 and the actual

construction therein, the corresponding J-isometric realization © = [’Q 8] can becom-
pleted to aJ-unitary realization ©' by the adjunction of an appropriate number of rows:

[ & C]
e’:[BB, [L)),J. (8.38)

Since @' is J-unitary, it is arealization of a J-unitary chain scattering operator @', and
by proposition 8.10 the corresponding 2’ isinner. |

Anticausal J-inner chain scattering operators

We now consider the case where © is J-unitary and anticausal. When does © corre-
spond to an inner scattering operator X, in other words, when is © J-inner? Clearly, ©-
is causal and the previoustheory appliesto it in a dual sense.

Proposition 8.20 Supposethat © O L is an anticausal, J-unitary operator, and that it
hasaminimal realization

o- { gi }zDu—AzD)‘l[c1 C2+D

with £p < 1. The corresponding scattering operator % is causal (hence inner) if and
only if the Lyapunov-Stein equation

-APYA+ BB, -B5B, = -P (8.39)
has a strictly positive definite solution P.

PrROOF Theredlization for © can be written as

1) [ A G & -|
[X+ X- ap bz] = [X 4 X(__l) ar bl]O, 0= B1 Dn Do .
[ B> D21 D2 J
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The corresponding scattering operator Z is defined by rearranging state, input and out-
put variablesto

e XY ap by = (XY

X- a1 bz] z.

This redlization is unitary, and defines a causal operator if and only if the anticausal
state dimension is empty: #54 = 0 — dual to proposition 8.14. Thisis equivalent to
requiring that the J-Gramians of the chosen basis representations are uniformly nega-
tive, which leadsto (8.39) if we do not insist on the realization to be J-unitary.

|

Conjugation

A causal, J-inner operator can betransformed into an anticausal one under abroad gen-
eral condition of “regularity”. This operation, which we introduce in this section, isa
form of duality, called conjugation here. It has nice applicationsin signal processing
and in interpolation theory, considered in the next chapter. The standard external fac-
torization introduced in chapter 6 does not pull the trick: suppose that © = UA” with
U inner, then the conjugate factor A will usually not be J-unitary. However, if we do
the external factorization in a block-row fashion, then interesting results appear. Let
us assume that external factorizations of the block rows of © exist:

0, =[0un Op] = UG} ©f) (8.40)
O-= [921 922] = W[951 952] .
whereU, W are inner and G)icj 0 £, so that
of o5 ]_[Uu" ©un Op
{ o5, o |~ Wo [ | @ O (8.41)

isin £. Now, much moreistrue: in the next proposition we show that @° isin fact J-
inner. To ensure the existence of the factorizations (8.40), we will need the following
technical condition

(TC) thepart of thereachability Gramian of © corresponding to the subsystem ©_ has
aclosed range.

Proposition 8.21 Let © O U be a causal J-inner operator with aJ-unitary realization
for which the transition operator afor has(y < 1 and for which condition (TC) above
is satisfied. Then the conjugate operator given by (8.41) is anticausal and J-inner, and
has a state transition operator which is a suboperator of a".

PROOF Let the J-unitary realization for the J-inner operator © be given by

[ a vi Yo -‘
©=| B1 &1 012
[ B2 0 O J
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such that /4 < 1. (We use greek symbols here to distinguish the canonical J-unitary
realizations.) Since © is J-inner, we have, by corollary 8.18, that

oo+ BR1-B5R2 =1 (8.42)

L et the positivediagonal operatorsMy and Myy be defined by the Lyapunov-Steinequa-
tions:

aMya+pB; = MY (8.43)
aMwa+B5B, = MEY. (8.44)

Subtracting (8.43) from (8.42) and adding (8.44) produces
a (1 =My +Mw)a = (I =My + My) Y

and hence
[-My +Mw = 0. (8.45)

Clearly My > 0, since My = | + My and My = 0. However, Myy may be singular,
which happens if not al states are reachable from the “negative” inputs. Let's first
prove the proposition for the case where My > 0. Subsequently we will demonstrate
how (under conditions of regularity) the more general situation can be reduced to this
case.

 Thus suppose that My > 0. We proceed by computing external factorizations of
[@11 O12] and [©y1 O]. Since ¢y < 1 and the redlizations are uniformly reachable
(My > 0, My > 0), application of theorem 6.8 produces (unnormalized) realizations
for the respectiveinner factors of the form

a Cu a GCw
= W= , 4
v B1 Du } ’ B2 Dw } ’ (8.46)
where, in particular
= Mal

aMy Vat+caCl = Myl
Reslizationsfor the corresponding external factorsare obtained fromtheresultin equa-

tion (6.8). For [0, ©f,] = UYOu 01, wefind that it is anticausal with anticausal
realization

a”  aMyy1+BPn  aMyy.+Bow (8.49)
Cj CiMuyi+Dgdin CMuY+Dgdiz |- '
Likewise, [@5, ©5,] =WHO2 O] isanticausal with realization
o a"Mwyr + BB atMwyz + B5dz (8.49)
Cv CwMwyr+Dyd1 CyMwyz+Dydz | '
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Thekey isnow to show that the two anticausal realizations have equal (1,1), (1,2) and
(1,3) entries, so that they can be combined into a single realization with the state di-
mensions of a”. This follows directly from My = | + My and the J-unitarity of the
original realization:

atyr + Bd11 —B5621 = 0, a2 + Br812— B5622 = 0.

Hence we find as anticausal and unnormalized realization for ¢

[ a” o Mwyr + B5B21 o Mwys + B5822 -|
=1 C Cyl+Mwyi+D{dun Cj(I+Mw)y2+Dd12 | . (8.50)
Cwv CwMwyi+D{dx CwMwyY2 + D22 J

We know already that @€ is J-unitary (by construction). It remainsto show that itisac-
tually J-inner. By proposition 8.20, thiswill bethe caseif thereexistsastrictly positive
solution to the Lyapunov-Stein equation

-aP a4+ ,C -cwaly = -P. (8.51)
Using (8.47), it follows that the solution of this equation is
P =Mu(l +Mw)™?t
which isindeed strictly positive definite. This provesthe proposition for My > 0.

» We now investigate the general case where My in (8.45) may be singular. Let
RO D be aunitary operator such that

o0l My O
MW—R{OOR

where My, O D is of minimal dimensions. Under condition (TC), My, > 0, because
My isthe reachability Gramian of therealization of ©-. (See also section 5.3 for this.)
If we apply the state transformation R, we obtain a new, equival ent state realization for
O given by

an 0 |yn ve
O21 O22 | Y1 Y2
o- ,
Buu B2 |01 O
Bor O | O O

which is till J-unitary, but now exhibits a part of the state space connected to the pair
[a, B2] whichisunreachableby the“negative” inputs. Hence, this part must be purely
inner, and can be factored out as follows. Clearly, [gij] isisometric and can be com-
pleted to the realization of an inner operator U1 with unitary realization

Uy =

o Cy, }
B2 Dy, |’
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Since the second block column of © is orthogonal to the others, it follows that

| O 0 |vyu v O O|vya v
oz | BL Gz1 O |V Y | | O 1[0 0O
Cy, | By, Bu B2 |du O i O ‘ &, &, |’
[ Br 0 | &1 O Bor 0| &1 o2

for certain B3;, 8},, 8}, defined by the equation. Thus we have constructed the factor-
ization (cf. equation (3.17))

0= [ U1 | }e’ (8.52)
where @' 00 U hasthe J-unitary realization

011 | Yii Y2

/ J—
o= u|% & |- (859)
Ba1 | 821 O22
Itiseasy to verify that ©' isJ-inner, and it hasM{;, > 0, My, > 0 by construction. This
brings us back to the case considered before. |

O° may be called aconjugateof ©@'. Theinner operatorsU and W which enter inits
construction provide external factorizationsfor each of its block entries.

8.7 THE MIXED CAUSALITY CASE

We now consider J-isometric and J-unitary chain scattering operators © of mixed type,
having both a causal and an anticausal part, and give specia attention to the J-lossless
and J-inner cases. Werestrict ourselvesto bounded, locally finite operatorswhich have
abounded partitioning into upper and lower triangular parts and have u.e. stable real-
izations:

0 =B1Z(1 -A1Z)IC; + D+ BZY(1 - AZD) I, (8.54)

inwhich £a, < 1and ¢a, < 1. Clearly, B1Z(1 —A1Z)~Cy and B,ZH(1 - AZH)1C, are
the strictly causal and anticausal parts of © respectively.

A state space description with transfer operator given by (8.54) and corresponding
to figure 8.8(a) is given by

k

Ci ]
X lyl=p x| u [

A Gy (8.55)
Bi B| D J

-1
Y

Because J-isometric properties are hard to test on a sum of two realizations, we will
beinterested in expressing the given realization as the product of a causal and an anti-
causal factor. Oncewehaveafactorization, itisimmediately clear that © isJ-isometric
if itsfactorsare J-isometric, i.e., if therealizationsof each of thefactorsare J-isometric.
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X1 X2 X’l X’2
+|- +|- +|-
+H A C |+ H ACG |2+ AC
u -1 B, D |- y U 4o 180D [~
e Rl e -
+|1 A2 G |+
=1 By0 [ (D NI
+ p—
(-1) (-1)
X X
(@ 1 2 (b)

Figure 8.8. (@) A mixed causal/anticausal computational scheme for ©, (D) an equivalent
factored realization, obtained after a state transformation.

Minimal causal-anticausal factorizations

Theorem 8.22 Let® O X bel-isometric (93,0 = J;), withalocally finite, minimal,
u.e. stable redlization (8.55) for which (Az,Cy) is uniformly observable. Define the
spaces

H1 = P (U009

Ho = P (Uz@)

and suppose that H, is a regular space (aKrein space). Then © has a factorization as
0 =0,06, o, 00U, 0L,
in which ©, isJ-isometric, ©; isJ-unitary, and

Hi = P U0P (the input state space of ©;)
Hy, = P(U6y) (the anti-causal output state space of ©y).

PrROOF H, isa(locdly finite) regular space with astrong basis generated by (Az,Cp).
Hence, this basis has a non-singular J-Gramian, so that the J-unitary external factor-
ization in corollary 8.18, applied to the lower triangular part of © (call it TH) produces
aJ-unitary ©; 0 £ such that A = T"O-' 0 /. Since the upper triangular part of O is
kept upper, thisimplies that there exists a factorization © = ©,0, where ©, 0 I/ and
O O L isJ-unitary. Moreover, by construction, H, = P'(U20y). Sinceitimmediately
followsthat ©, is J-isometric, we only have to show that H; is egual to

H' =P U207) = P (10,305 (8.56)

Since ©; isJ-unitary, we havefrom proposition 8.5 applied to ©Fthat 14, = H,JOFH
U,OF, which implies that 24 is formed by the span of these two components: U, =
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H2JOP+14,0F. Using OF = JO71), it follows that 14,0, = Ho+Uy. (These spaces are
actually orthogonal: 1,0, = H, [0 U».) Substitution into (8.56) gives

H' =P (H2J0)+P (1308 (8.57)
The definition of 7, and the J-isometry of © ensure that P'(H,JOY) O P/ (14,J0):
P (H230Y) = P/ (P (120)30Y) 0P ((tp0+U2)I0") = P (130M).

It followsthat H' = H1. |

Since ©, can be extended to a J-unitary operator if its input state space is regular,
we also have the following result.

Corollary 8.23 Let© O X beJ-isometric. Under the hypothesesof theorem 8.22, and
in addition assuming that 1 is regular, © has a J-unitary extension of the same state
complexity.

Thefactorization of © into ©,0, can be called minimal (in astate complexity sense)
since the state complexity of each of the factors add up to the state complexity of ©
itself. ©, has arealization given by ©, = D; + B1Z(l - A1Z)~1C, for certain D, C;,
and O, hasarealization ©, = D; + B,ZY(1 - AyZ")~1C,, for certain Dy, By. Since ©; is
J-unitary, the extension of [A; Cy] to aJ-unitary realization is more or less unique, so
[Br Dy] candirectly be computed. In contrast, B, and D, cannot be found by extension,
but haveto be computed such that the factorization holds. Thiscan be doneasfollows.

Let

O, = Dj+ B]_Z(| —A]_Z)_l(:g
O = Dr+BZHI-AZYC,.

In general, the product of two operators of thisform (one upper, one lower) isgiven by

0,0 = (D;Dy 4 ByYUCy) + B1Z(1 -A1Z) H{C,Dy + A YCUCy}
+{D¢B; + BrY A} ZH(1 - AxZ5)1C,

whereY isthe solution of Y = AjYCU A, + C,B;. Thuswe have

(Y = AYYA+CB
_ D = BY™C+DD,
©=04Cr - Gt = AYYC+CD,
B = By YA +DB, (8.58)

Y C| _[A G [YD A G

- B D| |B1 Dy ] 1B D)~

) S—— S——

o, O,

Theunderlined variables are unknown and to be computed. Let’sassumefor simplicity
that [A, Cy] has been chosen a J-orthonormal basis: AxJAS'+ C,JC5 = J; the existence
of such abasisfollowsfromtheregularity assumptionon#,. By theorem 8.17, thereis
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anextension|B; Dy] suchthat ©; isaJ-unitary realization. Chooseany such extension.
Upon inverting ©; (using ©; = JO), it follows that

N VET Y C || Ay
GRSl i

If we now also assume, for simplicity, that (A1, B;) was chosen to be an orthonormal
basis, AfA; + BB1 = I, then

Y C J A

o 1 2

[Ar Bﬂi B, D M J C,ELD (8.60)
= AUYIAS + (AICLICT+ BIBLJAS + BIDICS).

This defines a recursive Lyapunov-type equation for Y, with a unique bounded solu-
tion (since /5, < 1 and /a, < 1). With Y known, C,; and D, follow from the second
equationin (8.59). Morein general, aboundedY can be computed similarly whenever
(A1,B1) is uniformly reachable and (A2,C,) is uniformly observable with a nonsin-
gular J-Gramian. Minimality of the anticausal component of the given realization is
important, otherwise the state dimension of ®; might become too large, requiring ad-
ditional statesin ©, to compensate so that the given structure of the realization of ©,
isno longer valid.

The connection between the realization of © in summation form (fig. 8.8(a)) and the
factored realization (fig. 8.8(b)) isviaa state transformation in terms of Y. Indeed, let

\VAON!

M X=X [ é T } e o ox]=[X X [ g _|Y } (8.61)

be a state transformation. Upon rearranging (8.55), we obtain

X1 X2 U [ 2)1 5 Cgl } = [X;(L_l) X:(L_l) y] [ Ig —ZAZ —(l()jz } .
1 2
The state transformation then produces
(-1) -1
X, % uﬂ’?i —Y| %q:pdl(‘l) %, y]H) Y—AZA ’ Y—c:zC ZW
[Bl B, DJ [0 0 | J

Rearranging back, we obtain

ALY G T YDA, vEbc,] 7t
X ooy = o™ U 0 A CZ] 0 I 0 ]
| Bi B, D | |0 0 |
[ AL Y-AYEDA, G -AYEDG, W
= [X’l sz(—l) U] Ay C2
| By By-BY(UA, D-BY(UC, J
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Supposewe have foundY, Dy, Dy, By, C; satisfying (8.58), then the realization factors
into

Ay C
B; By-BiY(VA, D-BYUC,
A C |

A C
o ]| 8 o]

A G
B]_ D[Br D[Dr

[ A1 Y-AYDA, C-AYEYC, ]

A CB C{’,Dr]

S0 that

s5] e-lv 8]
r r

Thus, the realization resulting after state transformation factorsinto the product of two
realizations (one causal, the other anticausal), corresponding to a factorization of ©
into © = ©,0.

Condition for J-isometry

We wish to answer the following questions:

1. Under which conditions does the realization (8.55) correspond to a J-isometric or
J-unitary transfer operator ©?

2. Under which conditionsis © aso J-losdess or J-inner?

Because of the expression of the realization as a sum of a causal and an anticausal
part, the conditionsturn out to be moreinvolvedthanin the previouscases, but asimple
physical reasoning quickly provides sufficient insight which can then be verified under
appropriate conditions. Hence, we start the discussion informally and then give a set
of propertieswith proofs.

The guiding physical principleis that (8.55) will correspond to a J-isometric real-
ization when there is a signed hermitian energy metric Q on the states [x; Xp] which,
together with the energy metrics J; and J, on the inputs and outputs, gets preserved
for al compatible input, output and state sequences. Counting the energy carried by
[x1 Xo] as algebraically positive (i.e., a positive sign is considered as energy flowing
into the circuit shown in figure 8.8(a)), then we obtain the energy balance

Qi QY | o] [ Qu Qu| 0] X
b6 Q) Q| O ™ | = relu |9 Q2 OF .

0 0 |% e 0 0 |& ul
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In this equation, the variables x, x5V and u are independent (since © was assumed
bounded). Substituting the dependent variables x| ™, x, and y using (8.55), we obtain

AL O ‘ a1/ QP ol A2 o ‘ BY| [ X

o] ]G | o o |o| (@ 1 1'S) |
5 010 || oo 3| lo oo [
| 0]0][Qu Qu|O0][t 0|0 X
=[x X(z_l) | O A2|0 | |Qu Qx| 0|0 AS| BY xg_l)D '
0 B2[1 ][0 o |Xjo o I[]]uw

Since this must hold for any combination of independent variables, we obtain that the
system preserves (Q, J1, J)-energy, if and only if

Aol ][ QR QYo Ay o8y

0 1% |y &'lo |0 110 |-

B 0| D 0 o0 |%|lcf c|p” (8.62)
I 010 Qu Q|0 ][Il 0]O0

_ |0 A0 Qu Q2|0 0 A| B
0 B! 0 0 |Jdh ][O Of1

If the operator © is J-isometric, we may expect that there is a (unique) diagonal
hermitian operator Q which satisfies (8.62). In case Q is (strictly) positive definite, we
expect that © will correspond to a J-lossless system, since in that case it has a corre-
sponding lossless and causal scattering system. There are, however, additional diffi-
culties. For example, if we look at the (2,2) entriesin (8.62), it follows that

Q% +CodaCh = ApQeoAS. (8.63)

When we require Q and hence Qy; to be strictly positive definite, it follows that the
space P (U20) = D,Z5(1 - A,ZP)1C, hasto be aregular space (aKrein space). But it
isquite conceivablethat there are operators © that are J-lossless without this condition
being satisfied: thepartitioning of the operator into upper and lower triangular partsand
forcing a regular state space structure on each part might be too restrictive. We take
exemption from such anomalous cases for the sake of simplicity. In the case where Q
is not positive definite, we require Q. to beinvertible, by posing regularity conditions
on certain state spaces related to ©.

Theorem 8.24 Let® O X havealocally finite, minimal, u.e. stable realization (8.55),
for which (A1, B1) is uniformly reachable and (Ay,C,) is uniformly observable. Sup-
posethat Hy := P (Up©) = DoZ5(1 - AxZP)~1C; isaregular spacein thed metric. Then
@ isJ-isometric if and only if there exists an operator Q 00 D which satisfies (8.62).

PROOF
Sufficiency
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Supposethat Q satisfies (8.62), then wehaveto show that © isJ-isometric. A direct,
bruteforce calculation to verify that ©J,0 isequal to J; ispossible[Yu96, pp. 74-75].
In particular, equation (8.62) specifies

1. AQYAT+ ClICP= QuA 4. BQYAI-B,Qu + DI,CP=0
-1 -1
2. AQLY +C13CT = QAT 5. B1QL,Y + DLCI-ByQAT =0
-1 -1
3. QLY = AQuAT-CaCY 6. B1Q\;”BY+ DLDI-B,QuBY =3

By writing out ©J,0"and using the aboverel ations, astraightforward but tediousderiva-
tion shows that

010" = [D+BiZ(I-A1Z)1C; + BozH(1 - AZH)1Cy] - -
DY+ C(1 -Z°AD) 1ZzB] + C5(1 - ZA5) 1BS)
= .=}

and thus that © is J-isometric.
Necessity

Now we suppose that © is J-isometric (0J,0" = J;) and show that (8.62) holdsfor
asuitable Q. By theorem 8.22, © has a minimal factorization into © = ©,0,, where
O, O U isJ-isometric, and ©, [0 £ is J-unitary, with realizations

X = e o, - { AL G } o - [ A G }
X,y =Y 40, ' Bi Dy |~ ' Br Dr |’

seealso figure8.8. The J-isometric propertiesof thesefactorstrandateto the existence
of M OD and P O D such that

A C M(-D) Al C 5 _ M

[Bl Dg:||: J:||:Bl Dg _[ J:|
A G -P A C _ —P(_l)
sl TullEs] -7

and the connection of these state space operatorsto the given redlization of © is pro-
vided by (8.58), viz

(8.64)

Y = AYYA+CB
D = BYYUC,+D,D,
C = AlY(_l)Cz-‘rC[Dr
B, = BiYVA+D,B;

These equationsare sufficient to derive (8.62). Indeed, since © = ©,0;, an alternative
realization for © is given by the product realization [x’l(_l) Xy Y] =[x x’z(_l) (4
where

o - Aq | Cg-‘ I -‘_{Al C/Br C[Dr-‘

[ A G | = A C
By D[J [ B, DrJ [Bl D/B, D,D; J
Al Y-AYDA, C-AYEDG ]
= 0 Ao G
B: By-ByY(™YA, D-ByYUC, J




230 TIME-VARYING SYSTEMS AND COMPUTATIONS
The J-isometric properties (8.64) result in asimilar property for ©':
M1 M
o { -p -I o= [ -p(-1) -‘ '
[ o v

Rearranging the center terms gives the equality

A Ci-AYTYUG, M1
| C p(-1) [a-
B; D-BYUC, J
I Y=-AYDA, M (8.65)
= Ao P -
B,—-BY(VA, | J
Note that
M AYCY T TAL cl—A1Y<—1>c2W (A Ci] P Y1) W
I I Co = I G I )
| BYY 1 By D—BlY(‘l)CZJ D1 D | [ IJ
M AYCY T Y=-AYEDA, ] I 'I'I Y W
| Ay - Ao | .
| BiYCD 1] | Bp-ByY(YA, |J | B2 IJ i IJ

Thus, premultiplying (8.65) by thefirst factor and postmultiplying by its conjugate pro-
duces

[Al | gﬂ P Y(I‘l) HM(—1>P(_1) T [y(—ll)D | HAl | gﬂu

e, ol

| |y M T 10 .
— Ay | P Yoo A
By | | Il | I By |
Hence, we showed that (8.62) holds with
Y M | ]
Q—{ 'H PHYD|_' (8.66)

O

Clearly, the above factorization of Q induces the same state transformation as used
in (8.61) to transform the given realization into a factored realization. This connects
the condition on Q for J-isometry to conditionson M and P for J-isometry of each of
the factors.

It is straightforward to verify that © is J-losdessif both its factors ©, and O, are
J-losdess, i.e, if both M and P are strictly positive definite. With equation (8.66) in
mind, it immediately followsthat © is J-losdessif Q is strictly positive definite.
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Proposition 8.25 Under the hypotheses of theorem 8.24, the transfer operator © O X
isJ-lossless if and only if the Q satisfying (8.62) is strictly positive definite.

The various properties of J-lossless scattering operators form the major ingredients
of an approachto H., control based on J-external and J-inner-outer factorizations. This
approach was pioneered by Kimurain the time-invariant case, see his recent book on
the topic [Kim97], and extended to the LTV case in [Yu96]. Since a detailed account
of thistopic would lead ustoo far astray, we induce the interested reader to consult the
cited literature.






9 ALGEBRAIC INTERPOLATION

Inthischapter, we use our knowledgeof Hankel operatorsand chain scattering matrices
to solve a set of constrained interpolation problems. These are problemsin which one
looksfor an operator that meets a collection of specifications of the following type: (1)
the operator takes specific “values’ at specific “points’ (we shall make the notion more
precise) (2) it isconstrained in norm, and (3) it is causal and has minimal state dimen-
sions. We haveto limit ourselves to specifications that satisfy a precise structure, but
the classislarge enough for interesting applications, namely time-varying equivalents
of the celebrated “H., optimal control” problem or control for minimal sensitivity. Al-
gebraicinterpolationisan extension of the notion of interpolationin complex function
theory, and we derive algebraic equivalents for very classical interpolation problems
such as the Nevanlinna-Pick, Schur, Hermite-Fejer and Nudel’ man problems.

The simplest possible formulation of an algebraic interpolation problem in the di-
agonal taste would be: find an operator for which certain linear combinations of its
diagonals have specific values, and which meets additional causality and norm con-
straints. Even in the case where only a set of diagonals are specified, we do not solve
the general constrained interpolation problem in closed form: the specified diagonals
are not chosen randomly, they must form aband. Thissituation resemblesthe complex
function case, and we shall recognize the limitations of the classical theory.

Lossless J-unitary matrices play a central rolein the solution of interpolation prob-
lems. This can be motivated as follows. Consider the input scattering operator of a
time-invariant lossless system with transfer operator X(w) whose output is loaded by
the passive scattering operator S (figure 9.1). Therelation between S and Sis given

233
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a 2n 2
S> Zip X1 S
by b2
22
2
Figure 9.1.  Lossless scattering operator loaded by a passive scattering § .

by
S=3%1+ (1 -S.Zx1) 1S 5.

>y, istheinput reflection operator, 11 istheinput transmission operator. Suppose now
that for some vector & and some complex frequency w we have that the transmission
scattering function satisfies £311(w) = 0, then

ES(w) =&Zp(w) =:n,

independently of § . If n isspecified (itisacharacteristic of thelossless system and not
of theload), then we seethat £ () interpolatesn at the frequency w. At the sametime,
Sisacausal, contractive operator, for physical reasons. Inthischapter we shall seehow
this situation generalizesto the time-varying situation. The frequency wisknownasa
transmission zero of the lossess medium, and will be replaced by a diagonal operator
inthe new theory. Just asin the time-invariant theory (which is subsumed by the more
general theory), it will be advantageousto work with chain scattering matrices rather
than scattering matrices, because cascading the former gives much simpler expression.

Connectionsbetween circuit and system theory problemsand the mathematical tech-
niques around interpolation, reproducing kernels and the lifting of a contractive op-
erator had been obtained a decade earlier by Helton [Hel 78] in the pursuit of a solu-
tion to the broadband matching problem (see also [e.a87]). The connection with the
global and recursive solution to the L ossless | nverse Scattering problemwas studied in
[DVK78, DD81b, DD81a, DD84], and collected in the monograph [Dym89] by Dym.
The recursive solution of the Schur-Takagi problem by Limebeer and Green [LG90]
can be viewed as an extension of such results to meromorphic (indefinite) interpola-
tion problems. In a parallel development, the state space theory for the interpolation
problem was extensively studied in the book [BGR90] by Ball, Gohberg and Rodman.
Thewideinterest in thistype of problemswaskindled by one of its many applications:
therobust (or H,-) control problem formulated by Zamesin [Zam81] and brought into
the context of scattering and interpolation theory by Helton [Hel82].

The general strategy of the interpolation problems studied in this chapter isto con-
nect each interpolation problem to a partially specified realization of an appropriate
J-lossless operator (i.€., the chain scattering matrix of alossless —inner and causal —
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system, seedefinition 8.1). Theapproachisnot unliketheonefollowed by Ball-Gohberg-
Rodmanfor theclassical case[BGR9I0], but wetake asystem theoretic tack throughout,
which in our view is both more general and numerically more appealing. It isreminis-
cent of the method adopted by Dym [Dym89], but we do not use reproducing kernel
theory since the case of locally finite dimensions can be handled in more elementary
ways.

In its simplest, complex-analytic form, the Nevanlinna-Pick interpolation problem
can be stated as follows:

Let{vi}i—1,...n beanindexed set of n pointsin the open unit disc D of the complex plane
Candlet{s}i—1,..nbeasetof nvauesinC,

find afunction S(z) which isanalytic and contractivein D (i.e.,, 0zO D : [§z)| < 1), such
that S(vi) =s.

Totrangdlatethe classical problemin an algebraic setting, thereisone hurdlewe must
take at the start, since we lack the notion of “ point evaluation” in the algebraic setting.
What does it mean for a matrix or operator T to “take a value” at a“point”, in anal-
ogy to theevaluation S(v;)? Keeping in line with our diagonal based methodol ogy, the
analogsof v; and s should be diagonalsof matricesor operators. Evaluation of an oper-
ator on adiagonal wasfirst introduced in [AD90], and studied extensively in[ADD90].
The diagonal version of the Nevanlinna-Pick problem was first solved in [Dew91] in
a somewhat restricted setting, and further generalized in [DD92] and a slew of subse-
quent publications, see e.g., [BGK923].

9.1 DIAGONAL EVALUATIONS OR THE W-TRANSFORM

Supposethat T 02/ (M, \) isabounded and upper operator, and that vV 0 D(M, M(1)
is adiagonal operator for which the spectral radius fy = p(VZ") < 1. We search for a
diagonal TH(V) O D(M,N') which is such that

T=TV)+Z-VT

for some T’ 0. It turnsout that under the conditionsstated, T™(V) existsand isgiven
by a nice series expression which is the equivalent of a Maclaurin series expansion at
agivenpoint z: |7 < 1 in the complex plane.

Theorem 9.1 Let T OU(M,N) beabounded, upper operator with diagonal expan-
sion

T— 52T, , (9.1)
i; i
letV 0 D(M, MD) beadiagonal operator for which ty < 1, and define forn=0
Vil =@ ...vD withvIl0 = | (9.2)

then the sum

0

THV) = _Z}V“]Tm 9.3)
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convergesin the operator norm, and
T=TYV)+(Z-V)T' (9.4)
foraT' OU. Moreover, operatorsTH(V) 0D and T' O U satisfying (9.3) are unique.

PrRoOOF A complete analytic proof for the theoremis givenin [ADD90]; aswe do not
need the property directly in the sequel, we suffice with a sketch of the main ingredi-
ents. The convergence of the sum (9.3) in operator norm follows from the fact that the
diagonals Tj;) are uniformly bounded by || T ||, and £y = limy e || VIV |¥/" < 1 s that
the series is majorized in norm by a convergent geometric series. If we now calculate
(using again convergent series arguments)

T = Z91-vZ57?T - 250 -vZS1Tth V),
we find that the diagonal coefficients of Zll vanish for negativei’s, showing that T’ is
indeed upper. ]
In analogy to the complex function case, we say that TP(V) isthe “ diagonal value’
which T takes at the “diagonal point” V.

Definition 9.2 Given an upper operator T OU (M, N), thenits W-transform W (T) is
the map

Wi (VODM,MD) by <1} - DIMN): W(T;V) = _iv“]Tm. (9.5)

W assigns to each diagonal operator VV of the proper type the diagona operator
TH(V). If T isaToeplitz operator, then its z-transform convergesin the open unit disc
of the complex plane, and its evaluation at the point z: |7 < 1 isgiven by T(z) =
to+ 21 + 72> + - - exactly the same as the W-transform T2(21).

The W-transform has interesting properties (again see [ADD90]), in particular:

1. Chainrule: (TiT)2(V) = (TP(V)T2)R(V).
Remark that the chain ruleisnot as strong asin the Toeplitz case, whereit holds that
(TiT2)(2) = T (2 T2(2).

2. THV) =Po ((1-VZDTT).

This useful formula provides a good link with interpolation theory. A direct proof

isasfollows. For A,B 0 U, we have

Po(AB) = Po(S (Am)Z"B)
S (An) Po(Z"B)
= > (An) By
TakingA= (I-2v9) ™1 =1+ 2vP42vHzvP+ - .., we have that the n-th diagonal of

Aisgiven by Ay = (VD)8 (v E/E hence putting (Apy)” = VI and By =
Tin and comparing with (9.5) we obtain the result.
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3 TV)=0 - T':=(Z-V)ITOU.
This property follows directly from 2.

The interpolation property in 3. is, more generally, characterized by the following
proposition which is, in fact, the same as theorem 9.1.

Proposition 9.3 ForSOU,V,nOD andfy < 1,

SV=n - (@-V)s-nou
- P(Dyz-V)Ys-n) =0.

PrROOF
sv)=n - S(v)-n=0
-  gwv)-nv)=0
-~ (S-m)7(v)=0

9.2 THE ALGEBRAIC NEVANLINNA-PICK PROBLEM

Atthispoint, we assumethat we are given aset of diagonals{Vvi}i1. .., 0 D(M, M 1)
and a set of diagonal values{s}i-1..n 0 D(M,N), and are asked for a contractive,
upper transfer function SO U/ (M, N') such that

slv) =s. (9.6)

Thisis a straightforward generalization of the classical Nevanlinna-Pick problem to
our algebraic context, since (9.6) reduces to the classical case when all the operators
are Toeplitz.

It is useful to collect the n data points {v;}] into a single diagonal operator. Let
V OD(M", (M"Y beadiagonal operator whose k-th block entry along the diagonal
is given by the k-th entry along the diagonal of every v, i.e.,

(V1)k
(V2)k
Vk = . ) (k:_oooo) (97)
(Vn)k

Similarly, define diagonal operators & 0 D(M", M) and n O D(M", ') whose k-th
entries along the diagonal are given by

=111, Nk = : : (9.8
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Then the set of n interpolation conditions (9.6) becomes a single condition and the
time-varying Nevanlinna-Pick interpolation problem can be stated compactly as fol-
lows [AD9(].
Basic interpolation problem#1: given operators&, n, V O D, with 4, < 1, find astrictly
contractive operator SO ¢/ such that

(z-V)™}Es-n) O U. (9.9)

Thisway of writing the Nevanlinna-Pick problem suggests many generalizations,
becauseV, & and n may be replaced by more general structuresthan (9.7)-(9.8). Some
generalizations are considered further on in this chapter. Here we proceed with the
solution using the rather general formalism of (9.9).

LetA:=V0,B:=[£],J=[} ], and define F by

Fr = (Z2-V)&
F2 = (Z-V)™n (9.10)
F = [F1 F] = (Z-V)YE n] = (I-AZ)"Z"B".

The space # = D4""FJ 0 £,Z* generated by FJ is left D-invariant as well as left
invariant for therestricted shift P'(Z -): it istheinput state space of adynamical system
partially described by A and B. The following proposition shows that there is, indeed,
an intimate connection between the interpol ation problem and the input state space of
dynamical systems.

Proposition 9.4 LetF bedefined by (9.10), then SO U is asolution to the basic inter-
polation problem #1 if it is strictly contractive and if

P/ (DsF { _‘ﬂ )=0. (9.11)

PROOF Inview of the definition of F, equation (9.11) is nothing but arewrite of (9.9).
|

Let Al bethe J-Gramian associated to F, i.e.,
AL = Po(FIFD).

To proceed with comfort, we impose one more condition on the Nevanlinna-Pick data.
Let Ar, = Po(F1F9 be the Gramian of F;. We will assume from now on that Ag, is
bounded and non-singular, i.e., strictly positive: Ag, > 0. This condition enforces a
“well posedness’ of the problem. It also precludesthat data points{ vy} coincide. The
moregeneral case of interpolation pointswith multiplicity larger than oneis considered
in section 9.4.

Proposition 9.5 Suppose that the given interpolation data is such that A,:ﬁ > 0, and
that the interpolation problem #1 has a strictly contractive solution, then Ag. > 0.
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PrROOF Let SO U bethe strictly contractive solution. By (9.11), we have
P/ (F1S-F,) = 0.
On the other hand, since F, 0 ZP2,,
P(F1S-F2) = P(F19).
Summing up the two equations, we find F1S—-F, = P(F1S), or
Fo=P/(F19).
Thisimplies, in particular, that Po(F1SSF}) = Po(F2F5), so that

N} = Po(F1FT-F2F5) = Po (F1(1-SS)FY) .

Since Sisassumed to bestrictly contractive, therewill bean & > O suchthat | -SS”>l,
and A} = /g, > 0. m

It should be clear that the converse property
AE>0 O Ag >0

holdsaswell so that the condition of proposition 9.5 is necessary. Now assume that AJF
is boundedly invertible. Then H := D,FJ isaclosed (regular) subspace, and SO U is
an interpolant if it is contractive and if

}) = 0. (9.12)

Since /\~,’: is boundedly invertible, thereis, by theorem 8.17, a bounded J-unitary op-
erator © such that H = He, the input state space of ©. The following theorem shows
that the solution of theinterpolation problem reducesto the construction of ©. Thises-
tablishes a link between interpolation problems and J-unitary operators, just asin the
classical case[Dym89] for interpolation by complex functions. The Gramian /\~,’: plays
acentra rolein interpolation theory and has been dignified with the name Pick matrix;
inour caseit isaPick operator of arather general kind.

Theorem 9.6 Let be given the interpolation data (9.7)-(9.8), defineF asin (9.9). As-
sume furthermore that

Ag, =Py ((z—V)—lazD(zD—vD)—l) > 0.

Then the basic interpolation problem #1 has a strictly contractive solution SO U if and
only if

Nt =Po((Z-V)EE"-nn(Z"-vH™) > o.
In this case, there is a J-inner operator © with Heo = D,FJ. The complete collection
of solutionsis parametrized by
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whereTo|'] is defined in (8.7).

ProoOF The“only if” part of the proof is the subject of proposition 9.5. Sufficiency
goes asfollows. If /\;l > 0, then it is boundedly invertible and we can construct a J-
unitary operator © such that 4 = He (theorem 8.17). Because /\‘,]: > 0, we have that
the corresponding ©2 0 2/ (proposition 8.10). To make the proof complete, we show
that (2) if /\‘,’: > 0and S O U issome strictly contractive operator, then S= T[S ] is
asolution of theinterpolation problem, and (2) if Sisasolution, it must havethe form
To[S.] for some strictly contractive S O U.

1. Al>0,S0U ||S| <10 S=Te[S]isasolution
The connection between S_ and Sis given by equation (8.7):

S=(011-0125)(0xnS -02) !

= {j}ze{i}q’?; Dy =02-028 .

(9.13)

Recall fromtheorem 8.2 that ©3 isupper, and || ©530,1 || < 1. If S O/ issuchthat

| S|l <1, then®, = ©23(1 -0530 ) isinvertibleinl/: ®3l = (1-0330,15 ) 1053 0
U. Alsorecall therelation between theinput state space H (©) and output state space
Ho(O) (proposition 8.5): Ho, = HJO. We obtain that S= Te[S_] implies

S
-1

S
-

S

H(©)J [ i

} :H(G)JG{ } ®5' = Ho(O) { } o' 0U,

s0 that

By proposition 9.4, Sis an interpolant.

2. If Sisasolution, then S= Tp[S ], where §_isacontractionin /.

If Sis an interpolant, then P'(H(©)J[ 3]) = 0, and we have to show that there is
some contractive operator S 0 ¢/ such that S= Tg[S]. The proof consists of four

steps.

Step1: G:= @‘1[ _SI’ } is upper.

Puee) - Paeot| § )

P’(P’[U29q|3[ _Sl }) [since SO U]

ZCCH I

= 0.



Step 2:

Step 3:

Step 4:
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Let G be decomposed in two operators G; and G, such that
S G
S]-eld]  eucow (0.14)

then G, isboundedly invertible, and §_ := Gngl iswell defined and contrac-
tive. Inaddition, S= (011§ —012) (O - @215_)_1 = Tp[S.], asrequired.

© isboundedly invertible because @! = JOJ so that || @71 | = ||©||. Hence
©0"> ¢l for somee > 0and

G?Gl + G%GZ

[sﬂueeﬂ[ >
g(S7s+1)

el.

(9.15)

v v

From the J-unitarity of ©, and the contractivity of Swe also have that
G?Gl < GEGz.

Together, this shows that GEGZ > %sl, and hence G; is boundedly invertible
(but we have not shown yet that G5 isin /). Postmultiplying equation (9.14)
with G;* gives

Gl = 0x-025
G = 0uS -0

and hence S= (011§ ~012) (022 -0215) ™.

Let X O X bea strictly contractive operator. Then (I-X)1 0 - X OU.

O isclear. O: letY =2(1-X)1=1 = (1+X)(I1-X)™. ThenY is strictly
positivereal, i.e., Y + Y>> 0, since

Y+YP=2(1-XH1-XX)(1-X)L,

andY OU by hypothesis. It followsthat (1+Y)™ O, for themap | +Y isone
to one and onto 4»1, and the open mapping theorem applies [Rud66]. Since
X =2(1+G)™-1,wehavein turnthat X 0.

S isupper

From equation (9.15), we havethat G0z, = (I -05302:5 )2, and itisknown
that the left hand side is upper. Hence, by step 3, @5%6213_ is upper and since
O O U, ©2S is upper, and G, = O — 025 is upper too, so that § =
GGt OU. m

1The classical argument runs asfollows. | +Y is one-to-one since

OuO Uz : Po(u(l +Y) (1 +YE)U) = Po(uu®) + Po(u(Y + YE)UD) 4 Po(uyYHP) = Po(uu)

and hence u(l +Y) =00 u=0. | +Y isonto since (1) by asimilar argument, (I + YD) is one-to-one,
so that the range of (1 +Y) is densein i/; and (2) that range must also be closed, because if the sequence
{va OR(1+Y)} converges to v, then v O R (I +Y), since the corresponding un : Vnh = un(l +Y) formsa
Cauchy series.
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9.3 THE TANGENTIAL NEVANLINNA-PICK PROBLEM

An immediate extension of the standard Nevanlinna-Pick problem occurs when inter-
polationisonly requested in certain directions. We replacethe identity operatorsin the
&k compositesin equation (9.8) by moregeneral blocks, or possibly simplevectors, and
the values that have to be matched are conformal block-rectangular quantities:

(E1)k (N1)k
&k = o Nk= (k:_oov"'voo)' (916)
(&n)k (Nn)k

The corresponding tangential interpolation problem has the same formulation as basic
interpolation problem #1 in the previous section:
Basic interpolation problem #2: given operators &,1,V O D with 4, < 1, find astrictly
contractive Ssuch that
(z-Vv)Es-n) OU.

Sincetheformulationisthe same, propositions9.4, 9.5 arevalid a so for the more gen-
era interpolation data (9.16) replacing (9.8). Also theorem 9.6 isvalid as stated: the
directional interpolation problem hasastrictly contractive solution if and only if A} is
strictly positive definite.

9.4 THE HERMITE-FEJER INTERPOLATION PROBLEM

TheHermite-Fejer interpolation problem deal swith interpol ation points of higher mul-
tiplicity. We can easily work this problem into the framework of the previous sections
provided that certain non-singularity conditions are satisfied. Thereis asmall hurdle
that we must take at the start, namely how to define higher order multiplicity in the
present context. We find a hint by looking at Z¥. Because Z: M - MW, amore
correct reading of this expression is ZK = zz(® ...z&1): dimensions change in the
product. Extending this observation to (Z-V), whereV is adiagona operator of di-
mensions M x M (1) conformal to Z, we see that we must consider products of thetype

(z-V)M = (z-v).(z-V)V...(z-v)KD
A special role will be played by its inverse, which we shall denote by?
(z-v) M= (z-v)kD..(z-v)™.

Similarly as before, in atangential Hermite-Fejer problem a directional operator & [
D(M", N) is defined, and we have to consider the operator (Z-V) K€ as a general-
ization of (Z—V)™& which occursin the tangential Nevanlinna-Pick problem.

An interpolation property which puts multiple conditions on the same point VV can
be formulated, in analogy to the classical case, as

£s- {no+ (Z-V)ni+ -+ <Z—V)[k‘”nk—1} =(z-V)Ks. (9.17)

2Recall the shorthand notation X~ := (XK )1 = (x~1)(K),
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where S issome upper operator. By rearrangingterms, it isdirectly seenthat thisequa-
tion can bevalid only if anumber of lower-order interpolation conditions are satisfied
aswell, viz.

&S- {r]0+ (Z-V)ni+ -+ (Z—V)[k—Z]nk_z} — (Z_V)[k—l]su
: (9.18)

&€S—-no

(Z-V)S"

inwhichthe S’, --- 8" are upper triangular remainders. At this point, the objective
is to make the old strategy work in the present context again, i.e., to construct a ba-
sis representation F from the interpolation data such that Sis a solution if and only if
P'(D2F[5]) = 0, or F[ 5] O, and such that F generatesthe input state space of some
J-lossless system ©.

To thisend, define A, By, B, as

Bi=[¢" 00, Ba=-[n§ - ni4l.

Note that, for convenience, we have written A as a matrix of diagonals, whereas we
used to have A adiagonal of matrices. The two representations are of course isomor-
phic and have the same meaning.2

Also let
Fi = ZH1-AZD1BY
Fo = -ZH1-AZ")™Bj
F o= [F Rl =(-AZ)7 B Bl

To verify that F doesindeed satisfy the interpolation condition F| _SI], it hasto be eval-
uatedintermsof V, & and {n;}. Thus

zZ-V 0
-l (z-v)®

- ..
0 -1 (Z-V)&D

Z-A=

3The construction of A, B; and B, may appear artificial as given here. However, if follows in alogical way
from a study of the ‘restricted shift’ operator P'(Z-) applied to (Z-V)7&. When applying the restricted
ship repeatedly, one generates new elements of a subspace, for which abasis consists of al elements of the
tyge (z-v)g, 1< £ < k. A matrix representation of the restricted shift in that basis is given by the matrix
A-
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(z-v)™ 0
zpr_ | EVE @V
(Z:—V)‘[k] (Z-V) Tk (Z-V)~(kD
and hence 2ovyis
Fi=(z-A)'B]= (Z:_V)_[Z]E (9.19)
(z-V) Mg

(Z—V)‘[lz(]ES—r]o) "

— - S_ —_ _ -

Fﬂ: (z \:/) (€S-no) = (Z2-V) " Yn, o
(Z—V)‘[k] (ES—no) - (Z-V) KUV, — .= (Z=V) kD,

Let uscall thelast entry of the vector S, then
g5~ {no+Z-V)ni+ -+ (@Z-V)knea | = Z-v)Ks.

Comparing with (9.17), we obtain that the interpolation condition is satisfied if and
only if S O U. It isnot hard to see that the derived additional interpolation conditions
in (9.18) are satisfied if the other entries of the vector in (9.20) are upper. Hence, the
interpolation conditions are equivalent to P’(DZF[_SI]) =0.

At this point, we are back on familiar grounds. Again, we can find a (strictly) con-
tractive solution Sif

H 1= DFI=Do(Z-A)YBY Bj

is an input state space of a J-lossess operator ©. That will be the case if and only if
the Pick matrix

AL =Py ((Z—AD)‘l[BEBl‘BEBﬂ(ZD_A)_l) >0

because the same chain of argumentswhich led to theorem 9.6 again applies.

Theinterpolation problemswhich we have considered so far can be bootstrapped to
an even moregeneral statement, containinginterpolation problems#1 and #2 as special
Cases:

Basic Interpolation Problem #3: Given n diagonal operators{Vi}i— ...n Withall 4 < 1,
and for each V; anindex k; O N and interpolation data (diagonals) (&, Nio, -*+, Nik-1)-

Find a (strictly) contractive Ssuch that, fori=1,---,n,
080U &S—{Mo+(Z-V)ia+ -+ (Z=W0) iy} = (2-w) g

With this data, the above derivations easily |eads to the theorem:
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Theorem 9.7 Define

V]_ O Vn O
(1) (1)
[Y/ [ Y/
AD:d|ag .1 . [ "
0 v 0 vy
BL = [ 0 - 0 -~ & 0 - 0]
B = _[(n?o fl?l r]Ekl—l) (an]IO ﬂﬁl ﬂﬁkn_l)]-,
and assume that

Ae, = Po ((Z-A0)BiB(Z7-A) ) >0,

then there exists astrictly contractive SO U satisfying the interpolation conditions#3,
if and only if

N 1=Po ((Z-A) (8181~ BB,) (2-A) ) 0.

If thisis the case, then there s alossless chain scattering matrix © which has (A, | E; D
as reachability pair. All solutions are given as

PrROOF The proof isthe same as that of theorem 9.6. |

In chapter 8 we have studied how © can actually be computed. A final observation
is that in our general notation, even the large, multiple point Hermite-Fejer problem
can be formulated as a simple one-point “tangential” Nevanlinna-Pick problem, be it
with avery complex single diagonal point given by A =V, and “tangential” interpo-
lation datagiven by By = £~ and B, = —n". Itisthisfact that reducesall our one sided
interpolation problemsto asingle, smple, general formalism.

9.5 CONJUGATION OF A LEFT INTERPOLATION PROBLEM

For given &, n andV with ¢y < 1, let uscall aleft interpolation problem, LIP(V,&,n),
the problem to find S such that

(z-V)YEs-n)Ou, sou, |9/<1. (9.21)

This covers al the basic interpolation problems considered before, and more. Simi-
larly, aright interpolation problem, RIP(V, {,1), isto find Ssuch that

(X-0y@Z-v)?*ou, sou, |9<1. (9.22)

The right interpolation problem is adual to the left interpolation problem, and all the
‘right’ results can be obtained fromthe*left’ resultsin astraightforward fashion. How-
ever, moreis possible. Under certain conditions, aleft problem can be converted into
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aright problem with the same basic operator V, in such away that a solution for one
will exist if and only if a solution for the other exists. The construction is closaly re-
lated to the conjugation theory of the previous chapter. It turns out that the original
problem must satisfy a condition of non-degeneracy to be convertible. Degeneracy
of an interpolation problem is in itself an interesting property since it leads to (par-
tially) unique solutions given by an inner factor, and a (possibly substantial) reduction
of the interpolation problem. We study it in this section together with its connection
to conjugation. In afurther section we shall use the knowledge obtained to convert a
double-sided problem to asingle-sided one, after reduction of an eventual degeneracy.
To avoid technicalities, we work under certain regularity conditions, which can almost
always be assumed in practical problems.
To thisend, define

(1) AVRES PO[(Z_V)_]'EED(ZD_VD)_]'] (9 23)
(2) Az2:=Po[(Z-V) "z -V '
We shall say that the LIP is hon-degenerateif A1 > 0and Az > 0, i.e., Az has empty
kernel. We say that it isregular if

(1) Ai>0

(2) Az hasclosed range. (9.24)

Hence a non-degenerateregular LIP has both A; > 0 and A, > 0. A degenerate LIP
with Az > 0 can be converted to a non-degenerate one, as shown in the next propo-
sition. Handling the non-regular case is much harder, since the conjugation theory for
J-unitary operators of the previous chapter then breaks down. We do not have good
results for that case which as far as we know is till open.

Proposition 9.8 Consider the LIPV,&,n), and let the corresponding A1 > 0. Then
all solutions of the LIP are of theformS=US whereU O U isinner,and S O U isthe
solution of anon-degenerate LIP (V' &'.n’), inwhichV' isa suboperator of V, and &',
n’ are of comparatively smaller dimensionsthan&, n, respectively. If the original LIP
is regular, then so is the deflated LIP,

PROOF The property isadirect consequenceof the conjugation theory for J-inner ma-
trices of section 8.6. Suppose that the interpolation problem has solutions (otherwise
there is nothing to prove). Let © be the causal J-inner matrix which defines the solu-
tions, i.e, al solutions Sare given by S= T[S ] where S _is causal and strictly con-
tractive. The reachability pair (A, B) for © isgiven by

0
v £ } .
w5

Let Ay and A\, be as defined above. Concentrating on A, let R be a unitary transfor-

mation such that
A, O
_pd 2
N=R { o 0 } R
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inwhich A5 hastrivial kernel (A5 > 0), and let us define a further partitioning of the
data, after state transformation by R, as

vp 0 (1)
VL Vi ﬂ
g || ERO
1 2 _ (-1)
-y 0 "R
Just asin the proof of proposition 8.21 of section 8.6, we see that © factorsas
o— { U | }@’ (9.25)
inwhich U isinner and has arealization of the form
U= V2E2| CE
& Dy

for appropriate Cy and Dy, and whereby ©' 0 ¢/ is J-inner and has a realization with
reachability pair
Vit
Cu/A12Vyp + Dugy
-ny
where/\ isthe uniquebounded sol ution of the Lyapunov equationVap/A12Vy) + €285 =

ALY, Hence, with V' = Vi1, & = VioA12C5 + &1DY, 0’ = N, the interpolation prob-
lem isreduced to: find S such that

(z-vhYYEs-n)ou, (9.26)

S OU, ||S]| < 1. Thisinterpolation problem has A} > 0: it is non-degenerate. All
solutions to the original interpolation problem are described by S= Tg[S ]. Thefac-
torization of © in (9.25) forcesS=US, where S = Tg/[S ]. (See also figure 9.2.)

O

It should beclear that if the original LIPisregular, then so isthe derived problem —
the Gramiansinvolved are equivalent under unitary similarity. Proposition 9.8 allowsa
simplereduction of a partially degenerate L1P (or dually RIP) to a nondegenerate one.
We restrict the conjugation theory to purely non-degenerate problems since conjuga-
tion doesnot work onthe purely degenerate part: in general, thereisno (fixed) diagonal
n such that for each Ssatisfying P/ (Z-V) 1€S= 0 there exists aconjugate S such that
P'Sn(z-v)?tl=o.

Proposition 9.9 Let (V,&,n) describe a non-degenerate, regular LIP with Gramians
A1, \; asdefinedin (9.23). Thenthereexist diagonal operatorsCy, , Dy, ,Cu,, Du, such

that v oo v oo
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 9.2. The extraction of the degeneracy from an interpolation problem yields an
inner factor U and a remainder S

areredlizations of inner operatorsU; andU,, and the LIPis equivalent to aright inter-
polation problem given by

(Cy, -SCy,)(2-V)'0uU, sou, |[s|I<1, (9.28)

inthe sensethat if S is asolution to the RIP, then S= ulsuzﬂ isasolutiontotheLIP
and vice-versa.

PROOF Let © be the causa J-inner matrix that solves the LIP problem in equatimon
(9.21) according to theorem 9.6. © has reachability pair givenby A:=VY B:= [_EHD].
By assumption, the Lyapunov-Krein equations VA VE + EEH = /\(1_1) and VAVE+
nn"= /\(2_1) have boundedly invertible solutions, so that by theorem 6.3 the reacha-
bility pairs (VZ,&5), (VE,nD) can be completed to realizations of inner operators with

realizations of the form (9.27). By the conjugation proposition 8.21 of chapter 8 there
exists an anticausal, J-inner operator ©',

,_[uf
o= { uy e0cL,
where @' has reachability pair given by
V
V.| gL

Let us completetherealization of @' in aminimal way with operatorsB’, D’ (they will
not play arole), so that

1)

=D+ [ —OUCJZ } (z-v)'B'.

We show now that if @' isloaded in acausal, contractiveload S_, then the resulting
S = UESUZ satisfies the interpolation problem given by (9.28) — seefigure 9.3. The
relation between S and S is summarized by the equation

I S| = S
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 9.3. The transformation of © to ©®' and the resulting transformation of Sto S.
The picture is “unphysical” as a signal flow diagram, but both @ and @' are J-inner.

inwhich .

O’ = O (1-50), O) T =Ty (1-S2)
Since @' is J-inner, the corresponding =’ isinner, £}, = O Zis strictly contractive as
well as %5, and @] is bounded and upper (its physical meaning should be clear from
figure 9.3). Hence we find after substituting @’

[Cu, —SCy,)(z-V) B = &I §]-[I S|D’
and
P'(Cy, -SCy,)(Z-V)™B = 0.

Thisisalmost the desired interpolation expression: we still haveto cancel out B'. That
isthe subject of the following proposition, which we state as a separate |lemmabecause
of itsindependent interest.

Lemma 9.10 Supposethat (p < 1, (A,B) form areachable pair, X O U and
B(z-A)X Ou, (9.29)

then (Z-A)IX O U.

PrROOF of the lemma. By definition of evaluation at a diagona A we have that X =
XB(A) + (Z-A)Xy with X; O U, hence by equation (9.29), B(Z-A)"1XJ(A) O U so that
B(Z-A)"1XY(A) = 0. Evaluating this equality term by term we find BCUXE(A) = 0,
B(-2 ACUXE(A) = 0, etc., or in matrix notation:

B(-1)
B(-2A(-D)
B-3A2ACD | XH(A) =0. (9.30)

In (9.30) we recognize the reachability operator, which is assumed one-to-one. Hence
X5(A)=0,and (Z-A)"IX =X, OU. O

The lemma has to be applied here in its dual (observability) form and yields (9.28).
The property issymmetric: if S solvesthe RIP interpolation problem (9.28), then, by a
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theory dual to that given by theorems 9.5 and 9.6, there will be a corresponding lower
J-inner @'-matrix and aload §_ such that S = Te[S]. This ©'-matrix will be non-
degenerate and regular (dueto the symmetrical structure of U1 and U»), and will yield,
after conjugation, a© which solvesthe original LIP interpolation problem. Hencethe
RIP and LIP are equivalent in the sense that a solution for oneyields a solution for the
other and vice versa o

9.6 TWO SIDED INTERPOLATION

An interesting (and practical) case occurs when doubled sided interpolation data are
given and a constrained solution is asked. We shall see that this more general prob-
lem has some unique characteristics which make a further generalization of the theory
necessary. Inthe literatureit is sometimes referred to as the Nudel’ man interpolation
problem [Dyma89].

L et be given two sets of diagonal operators,

(V,&n) and (W,C,1), (9.31)
with &y < 1, fw < 1, asked isastrictly contractive SO U/ which satisfies
1. aleft interpolation property,
(z-V)Es-nj0u (9.32)

2. and aright interpolation property,

[-1(z-w)™ou. (9.33)

In other words, we wish to solve aleft and aright interpolation problemjointly. As
before, the above description of the problemis such that it fits several types of interpo-
lation problems, such as the tangential Nevanlinna-Pick and Hermite-Fejer problems
of the previous sections. Again equations (9.32) and (9.33) can be manipulated in at-
tractive alternative forms.* Define

Hy = (Z2-V)7%, Gi1=(Z-V)™n
Go = (1I-WZ2) 172, H,p= (1-Wiz)40

then Hy,G; 0 Z71£ and Gy, H, O 4. The interpolation conditions (9.32)—9.33) can
now be written as

P(Do[HiS-Gy]) = O (9.34)
P(D2[G2S™-Hp]) = 0. (9.35)

4We are indebted to H. Dym for informal information on this matter and providing us with a nice survey of
ideas [DF97].
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Translation to conditions on ©

Solutions of the above two-sided interpolation problem turn out to be given in terms of
a J-inner chain scattering operator © as before, although thistime it will be of mixed
causality. There are additional complications: it may happen that the complete solu-
tion set is not defined in terms of a single operator ©. We shall explore a more restric-
tive condition on the interpolation data where the © obtained isindeed uniquely deter-
mined. A description of the complete set of solutionsfor the general case can befound
in the recent literature, see [DF97]. Thisis a generalization of what already happens
in the linear timeinvariant case [KKY 87].

Proposition 9.11 Let® O X be aJ-inner operator such that

o = [ —lZ } (Z-W)YC, G+ { gﬁ } (9.36)
ot = | & |@viE me| R (937)
inwhichRj OU, fori, j=1,2, and{W, {—IZ} , [C1 Cz]}, {V, {gj , 1€ n]} aremin-

imal realizations of the respectiveanticausal parts, Let S= Tg[S ] for astrictly contrac-
tiveS OU. Then(Z-V)™(§S-n) OU and (SL-1)(Z-W) L1 O U.

PrROOF The proposition is derived by using standard properties of a J-lossless © and
the corresponding | ossl ess scattering operator 2, viz. theorem 8.2. Notethat, by defini-
tion of lossessness, X iscausal. Suppose S= To[S ], i.e, (by itsdefinition in equation
(8.7),

S T+ IS (1-S20) 1
(012-01S ) (018 -02)*

oo

then
I I

where @y = O — 021§ . From equation (8.6) we have

D, = Op(1-0,0x49)
= 531-3x19).

Since || 221 ]| < 1, it followsthat @, isinvertibleonce § is contractive, with
ol = (1-219) 5.

Since 3 is a causal operator, and dso S O U, it follows that both ;1 0/ and S=
T10+ 311§ DGt O U. Subsequently postmultiplying (9.37) with (9.38) produces

{_ﬂ ' = [gﬂ (Z=V)H (=29 +Re2~RaS
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with Ry and Ry; in{. Becausetheleft hand sideisalso upper, aninvocation of lemma
9.10 together with minimality provesthe first interpolation property,

(z-V)y*ES-n) O U.

To show the second interpolation property, recall that S= Tg[S ] aso implies(by equa-
tion (8.7))

S = (011 +S01) 1 (O12 + O2)
or, using @1 = JO,

I SO = & g]
= [I -§ = @ -g]e"
where
& = O;(l-565e)™

Tu(l-S35xn)t

using again the connectionsof © with Z in equation (8.6). For similar reasonsasbefore,
it followsfrom the fact that 2 is upper and §_ is upper and contractivethat @; [0/ and
SOU. Premultiplying (9.36) with [| S = ;I S ]O™ gives

Ol §] = (1-(Z-W)C1 Co] +Ru+ SRz,

withthe R;j in/, and because @I S ] O, aso (1-L)(Z-W)71Cy Cp] O U. An
invocation of the dual form of lemma 9.10, using minimality of the realization, pro-
duces

(-(Z-W)tou.
O

Equations (9.36) and (9.37) completely specify the dynamics of ©. Since @71 =
JOM, we can write

o= {' } (Z-W)[C1 G + D+ [ED} (Z7-vO7cy -cf  (939)
Z 1 G o G -G :

in which D and the C;’s are diagonal operators. We explore this form in more detail
NOw.

Lemma9.12 © O X in equations (9.36) and (9.37) (i.e., © in (9.39)) has a mixed
causality type realization of the form

Vi
[X(_l) X- ap bz] = [ X(__l) al bl] W Cl C2 (9 40)
" &- Di1 D12

l
-n~ = ‘ D21 D2
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X4 X- X4 x-
| -
+ - + -
ay ——=|+ +F——a a; —=|+ +F——a
© = z
blﬁ_+ - %bg ble_+ _‘ebz
XS}Ll) X(ﬁl) X(il) X(_L')
(a) (b)

Figure 9.4. (&) The realization for © has mixed causality; (D) the realization of the
corresponding 2 is causal.

PROOF Thefirst termin (9.39) is generated by the anticausal state equations

X XCUW + [ag ba][ ]
y- = xV[C ¢

whereasthe last term is generated by

{X(Jl) = x V4 [y bl][_EnDD]
yr = x[C5 -CJ

Construction of a J-inner ©

The central question that has to be resolved now is how and under which conditions
suitable Gi’s and Dj;’s can be found such that the candidate realization © in (9.40) in-
deed correspondsto a J-unitary, even J-inner scattering operator. Thelatter means that
the corresponding | ossless scattering operator 2 is causal, hencehasacausal realization
2. Thesituationisdrawn in figure 9.4.

Our strategy is as follows and uses the knowledge we have of J-inner operators of
mixed type. Suppose that we have found matching G’sand Djj’sto make © J-lossless,
and that we have computed the corresponding realization . We aim at constructing an
inner ¥ with astate redlization £’ that is unitary. It need not be equal to Z, but at least
there must be aninvertible state transformation R connecting £ to X'. Wewill work out
how Rtransforms @ into @' (thisis not obvious because © is not a causal realization).
A second observationisthat if £’ is unitary, its corresponding @' is a J-unitary map.

That isto say, if we denote @ = [4 5], then we must have, among others,

AIA + B 3B = 357, (9.41)
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for signature matrices J whose partitioningJ = | (') f’l | followsthe partitioning of ©. We
will show that A’ and B’ are determined only by the known dataV, W, 1, n, &, ¢, and
the unknown R (i.e., theunknown G;’s and D;;’s do not enter into A’ and B'). It follows
that (9.41) gives sufficient conditionsto compute a diagonal operator P := R"R, which
specifies Rasits Cholesky factor. Once Risknown, we know A’ and B', and it suffices
to complete [Q:] to a square J-unitary operator to find ©'. Thislast step isthe same as
in section 8.5.

We now work out the details. First, we consider how R transforms @ into ©'. De-
note the transformed state vector by [, x_], and define R by

e x] =B x| o RE (0.42)

where R1, Ry, are square. We have set Ry1 = 0 because in the end R will only be de-
fined as afactor of R“R. Substituting (9.42) into the state equations (9.40), we obtain

R X Riz + X Rea] =

VD
L ~ W
= Ry XTVRGY+XCURGY a by RS
_r]EI _Z

andasimilar expressionintermsof theC;’sand D;j’swhichisnot of interest. Rearrang-
ing the terms of this equation to recover the mapping [xfl) X]i- X, XY ay by,
we obtain

-1 -1 ] -
/(-1) X,_] |:R:(I-l ) _R:(|.2 )W:| _ [X, X’_(_l)] |:R11V Ri2

g
[X+ O R22 —+ 0 Rg_zl)w +[a‘1 bl] [_E g _lZ:| s

n

that i, the leading block column of @' is
[ RuVY  —Rp '|

Al | 0 Rpw [ REY —RPw }‘
B ED | ‘ 0 Ry
_r]EI _Z

The condition (9.41) that this block column is J-isometric now reads

R 0 3 RuV” R L& g &
N NI = L S

-1)0 - _
SR o]o[re w
-WR,7 RS 0 Ro2
which after some rearrangements becomes
-1)0 -1 -1
R ()—1 0 0( ite R _Ré%)w
—W[R12 W 0 Ry, "W

- R HR“V ]+ 16 3o 4
Ry Ry R = =40
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With

R, O Ru R }
P:=RR=
{ RE REz } { 0 R

we find that P satisfies

L B T L e

P playstherole of “Pick matrix” in the mixed interpolation problem.

Theorem 9.13 The mixed (Nudel’ man) interpolation problem in (9.32)—«9.33) has a
strictly contractive solution S if and only if there exists a boundedly invertible, strictly
positive, diagonal operator P satisfying (9.43).

If thisisthe case, then there exists aJ-lossless operator © [0 X’ with mixed-causality
reglization of the form (9.40). All S of the form

S=TelS], S OU.|Sl<1
are solutions to the problem.

Equation (9.43) may have more than one solution which satisfies the positivity condi-
tion. In that case there is also more than one ® which provides solutions to the inter-
polation problem.

PROOF

Step 1: If P existsand P >> O then there are solutions S These are givenin terms of a
losslesschain scattering matrix © as T[S ], inwhich §_rangesover causal, strictly
contractive operators.

Once P is known, a factorization P = R“R with R upper triangular gives the state

transformation that makes [Q,] J-isometric. By theorem 8.17 there exist a comple-
tion by matricesC’ and D’ so that

A C

-5 o (0.4

isaJ-unitary statetransition matrix mapping [x, , X3, ay, k] to[X( Y, X, ap, by

As a consequence the map
X, X ag by - XY XY ap by

isnot only well-defined but unitary aswell, and hence correspondsto acausal loss-
less system (theorem 6.4). Under the present conditions on the interpolation data,
the redizations for £', @' and © are al minimal. By proposition 9.11, each S=
To[S.] with S upper and strictly contractiveis an interpolant satisfying the interpo-
lation condition (9.32)-(9.33).

Step 2: If thereis a strictly contractive solution S, then equation (9.43) has a strictly
positive definite solution P.
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Suppose that we have a strictly contractive S satisfying equations (9.32)-(9.33), or
alternatively (9.34)-(9.35), whose notation we use further on. We claim, following
the Dym-theory asin [DF97], that the matrix

B Hi G | =S][H{ HS
(i 2]l Tl g]) oo
satisfies (9.43). The proof for the entries Py and P, parallels the earlier develop-
ments and follows from the observation that

P11 = Po(HiH[ = G1SH—H1SG + G1Gy) = Po(G1G1 —HiH1)
because H1S= G; + R; for some R; 0/ so that Po(RyGY) = 0. Likewise,
P22 = —Po(GG5 - HaHY).
Theinteresting calculation ison Py, (or its adjoint Poy):
P12 = Po(HiH5— G1S HS'-H1SG, + G1Gy) = —Po(H1SG3) (9.46)
sinceall theother entriesareeither in 22/ orinZ X £. Elaborating on (9.46) produces
P12 = ~Po(Z(1 -VZD) & (1-ZW) ™)

and
PUY = zP,z0 = —Py((1 -VZY e (1 - 25 W) 2.

It follows that
VPL-PGYW = —Po ((1-VZ) Y vz -ELZ W (1 -2 W) )
= —Po(EK(1-Z'W) - (1-VZ) ).
But because of (9.34)-(9.35),
Po(S (1 =Z'W)™) = Po((1 -WZ) ") "= 1

and
Po((1-VZ5)™€S) = Po((1-VZ)™n) =n
the expression simplifiesto

VP, -PUYW = —&1+ng (9.47)
whichisprecisely the“ 12" termin (9.43). m|

We proceed by showing that the collection of solutions Te[S_] to the mixed interpo-
lation problem is completeif the linear map X - Y on D defined by

VX-XDw =Y (9.48)
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isboundedly invertible. Inthe LTI casethelatter would happen (only) when the spectra
of V andW aredigjoint. Inthetimevarying case, V and W may be non-square, so there
ismore chancefor irregular behavior. ConditionsonV and W for bounded invertibility
of the fundamental equation (9.48) in the LTV case have not been investigated to our
knowledge.

An interesting way of proving uniquenessis by converting the mixed interpolation
problem to an equivalent one-sided problem, using the conjugation ideas of the previ-
ous chapter.

Conjugation of the mixed interpolation problem

In this subsection we shall convert the two sided interpolation problem to a one-sided
problem of the same total size, under the additional conditions

(1) (V,&,n) definesaregular LIP,
(2) thelinear map (9.48),i.e., X - Y : VX-XUW =Y, hasabounded inverse.

These conditions are also sufficient to assure uniqueness of the solution provided by
theorem 9.13.

If theoriginal LIP problemwith (V,&,n) isdegenerate, then by proposition 9.8, any
solution must be of the form S=US whereU is an inner function defined by the un-
reachable partin [XS], while S is the solution of the deflated problem given by (9.26).
If (V,&,n) isregular, then soisthe deflated interpolation problemwith data (V', &', n’).
Moreover, the derived map

V'X-XDw =Y
isalso boundedly invertible if the original map is (the verification is straightforward).
Hence we may just as well assume that the original interpolation problem was non-
degenerate to start with. Now, let U; and U, beinner operators with realizations

Vi cf Vi cf
U1_|:ED D6I11:| U2_|:r]D D6|22:|7

which define as beforethe conjugate of the LIP(V, &, n) asaright interpol ation problem
(Cu, —~SCu,)(Z-V) OU. (9.49)

By proposition 9.9, we know that Sisasolutionto LIP(V,§,n) if and only if
S =uf, (9.50)

is a solution to (9.49). Propagation of S to the second interpolation condition (1 -
) (Z-W)t O U produces

(1-U1SUS0)(Zz-W)t 00U (9.51)

This problem does not quite look like an interpolation problem, but it turns out that
(9.51) can be converted to anormal (right-) interpolation condition, if the boundedin-
vertibility of (9.48) holds. Theremainder of thissectionisdevoted to proving that there
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e>_<i_sts interpolation data (W, 1’,{’) so that (9.51) is equivalent to the interpolation con-

ftion ('-ST)(z-Ww)tou (9.52)

on the transformed scattering function S.

Lemma 9.14 If the linear map (9.48) is boundedly invertible, then the equations
U’ -yZz-wy?t o u (9.53)
(U'-0)(Z-W)™" O U (9.59)

have unique diagonal solutions\’ and .

PROOF Let's concentrate on (9.53) — the proof for the second one will be similar.
Premultiplying it with UE we obtain the condition for 1’;

V(z-w)t-ufi(z-w)t=ufy (9.55)

for someY O U. Sincethe left hand side of this equation isin ZP£, we have that the
right hand sideis actually of theform Gy (Z—V) ™D for some diagonal D (it is obtained
by projecting it on Z°£.) Now,

UR(Z-W)™ = Dy (Z-W) ™ +Cy, (Z-V) & (z-w)
[Dy,t =Cu, X|(Z=W) 2+ Cy, (Z-V) XY

in which X is the unique solution of
VX=-XDw =&
Hence, (9.53) will be satisfied if and only if
(1" =Dy, +Cy, X)(Z-W) 1+ Cy, (2-V) XV -D) = 0.
We find a solution if we choose D = X~ and
t" = Dy, -Cy, X.

We now have to show that the solution found is unique. Thiswe do by an invocation
of lemma 9.10. Equation (9.4) hasthe form

a(Z-wW)t+cy,(z-v) =0

for some diagonalsa and 3 which we must show to be necessarily zero. Postmultiply-
ing with (Z-W) yields

a+Cy,(Z-V)B(Zz-W) =0

whichis of theform required by the lemma (the pair (V,Cy, ) is reachable by construc-
tion). We conclude that
(Z-V)B(z-W) OU
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but it cannot beanything el sethan adiagonal, say a1, dueto theform of theleft member
of theinclusion. Hence
B(Z-W) = (Z-V)az

from which it followsimmediately that a; = B, and
VRW -pwW = 0.

This equation is now of the form (9.48) which we assumed to have a unique solution,
B = 0inthiscase. Hencealso a; = 0 and following also o = Gy, o = 0. Thisshows
uniqueness.

Likewise, the second equation will be solved by {' = Dy,{ -Cy,Y in which VY —
Y=DW = ng, which, again, has a unique solution by assumption. O

Based on the lemma we can now show that (9.51) is equivalent to the interpolation
condition (9.52). The easiest way to see thisis via an adaptation of the properties of
the W-transform to its dual. Mutatis mutandis, we write the right version of the W-
transform as -” so that we can write (9.53) as

{(Ull’)D(W) = 1
(Ua2) (W) 4

while the interpolation problem to be shown is expressed by
(ST) (w) =1".

Using the chainrule, which in thiscasereads (AB) (W) = (A(B)"(W))"(W), the equa-
tion U;S¢' = 95’ and the lemma, we obtain the following chain of equivalences:

(SHPwW) =1 - (Ul(SZ)( NEW) =1
(Us SZ) (W) =1
ESU21) (W )Zl
(X

8

t

¢

S(Uz¢) (W )) (W) =1
)W) =

which is the equivalence to be proven. We have established the following theorem:

8

Theorem 9.15 Consider the two-sided interpolation problem: find SO U, || < 1,

such that
(z-v)gs-n) O u
(Z-0)(z-wW)™ O U.

Supposethat (V,&,n) defines a non-degenerate and regular Ieft interpolation problem,
and that the linear map given by (9.48),i.e., X 1= Y : VX =X"UW =Y, is boundedly
invertible.

Then the interpolation problem is equivalent to a one-sided interpolation problem
given by the interpolation conditions (9.49)—(9.52), viz.

(Cu,-SCy,)(Z-V)* O u
(I'-8T)(z-w)? O u
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in the sense that the solution of one produces a solution of the other and vice-versa,
the relation being given by (9.50). In particular, the ©-matrix defined in theorem 9.13
is unique except for a diagonal J-unitary right factor, and provides a complete set of
solutions,

Theorem 9.15 settles the uniqueness question for the case that the double-sided in-
terpolation problem has a non-degenerate LIP part, and the linear map (9.48) is non-
singular. It is easy to relax the condition of non-degeneracy. Indeed, if the LIP under
consideration isregular but degenerate, then we know, by proposition 9.9, that we can
handle the degenerate part of the interpolation problem separately, whose solution is
essentially unique and described by a single inner function U. The overall solution
will then be characterized by the cascade

o[ Jo

inwhich @' solvesareduced, but now non-degenerate(mixed-mode) interpol ation prob-
lem. If the other condition, namely the non-singularity of equation (9.48), is satisfied,
then uniquenessis again assured. In practice, it will always pay to take the degener-
ate part of an interpolation problem out, since its solution is so much simpler than the
general solution.

9.7 THE FOUR BLOCK PROBLEM

An important application and illustration of interpolation theory is the solution of con-
trol problemsfor optimal sensitivity. Let usassumethat wearegivenablock-partitioned,
strictly anticausal transfer operator

T T } 0
T= Oz-rL. 9.56
[ Ta Tz (9:56)

The questionisto find R 0 ¢/ such that

Tu+R Tpo
<1, 9.57
[an o7

and to describe all possible solutions.

This problem is known as the “four block problem”, and it is a prototype problem
for a variety of questionsin optimal control and game theory. It has received quite
some attention in the literature, seee.g., [GL95, CSK 94, 1096]. In our present formal-
ism it has a simple and straightforward solution. We follow roughly the treatment of
[CSK94] adapted to the powerful interpolation results described earlier in this chap-
ter. The problem is amenable to various interesting extensions, but we limit ourselves
to the standard, basic case. It is an extension of the Nehari problemin section 10.6 to
block-partitioned matrices for which only the (1,1) block is allowed to be modified.
Our treatment here uses an ancillary result from the orthogonal embedding theory of
chapter 12, but we giveit here nonethel essbecause of its strong connection to classical
interpolation theory. Thereis also aconnection to the Schur-Takagi type interpolation
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theory, and we give a discussion of that connection and a resulting algorithm for the
one-block casein section 10.6.
Wewill assumethat T islocally finite, and that it hasaleft inner coprime factoriza-
tion (cf. theorem 6.8):
T:=B(z-V)c=U"A (9.58)

with A 0/ and U inner, UY = Dy + B(Z-V)™*Cy for some Dy, Gy which make U
inner. Inserting (9.57) and (9.58) in (9.56) after premultiplication with U, we find that
(9.57) isequivaent to

A +UnR A
<1 9.59
H D1 +UnR A } H (959)
A necessary condition is certainly ||[ﬁ;§]|| < 1. Let uswrite
X { A; +UnR } H o [ Agp }
Ay +UxR | JAYY)

and define G to be the | eft outer factor in U/ satisfying the “embedding” relation
GG”=1-HH".

(Orthogonal embeddingistreatedin detail in chapter 12, viz. theorem 12.14.) Equation
(9.59) transformsto | —HH"— XX" = GG"-XX">> 0 and hence we must have

XX« GG-.
Thisinequality impliesthat thereexists SO U, ||S| < 1, such that
X =GS (9.60)

(see e.g., theorem 12.6 due to Douglas [Dou66]). In particular, since G isleft outer, it
will have aleft pseudoinverse G on adense subset of U, and wecantake S:= GTx.
Premultiplying (9.60) with U” we find

[ %1 } + { '(ﬂ =u'Gs (9.61)

inwhich RO ¢/ isunknown. A necessary condition for (9.61) to be satisfied is
B(z-V)lc, =P (USGS), (9.62)

in which C is decomposed as C = [C; Cy] conformal to the block structure of T. This
condition is also sufficient. Indeed, if it issatisfied and X := GS, then R follows from
R=[l QUYGS-Ty O, and [0 1JU™X = T,; automatically. It turns out that (9.62)
actually defines a left interpolation problem. To see this we evaluate the right hand
side:

P(UGS)

P'[B(Z-V)1CyGS
= BP[(Zz-V)CyGS (9.63)
= B(Z-V)H{CuGY"(V).
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From the chain rule for the W-transform of section 9.1, we have
(QGY(V) = ((CuG) (V)9 (V),
hencewriting n := C; and & = (CuG)"(V), wefind that
P (UGS = (Z-V) Y n-¢g0U. (9.64)

Hence a necessary and sufficient condition for the solution of the (suboptimal) four
block problemisthat SO U, ||S| < 1 and S satisfies the left interpolation condition
(9.64), inwhich the“data’ (V,&,n) comesfrom the origina problem. A necessary and
sufficient condition for the existence of a solution is then that the Gramian

Po((Z-V)™[€€"-nn"(z7-v5™) > 0.

The reachability pair (V°, [_EHDD]) definesaJ-inner ©-matrix, and all possible solutions
for Saregiven by S= Te[S_] with S O ¢/ and strictly contractive. With alittle more
effort one shows that all solutions of the non-strict problem are given by the same ho-
mographic transformation, but now with the condition ||S || < 1.



]. O HANKEL-NORM MODEL
REDUCTION

In the previous chapters, we assumed that a given upper operator or matrix T has a
computational model of a sufficiently low order to warrant the (possibly expensive)
step of deriving its state realization. Once a state model is known, we showed how
multiplication by T or itsinverse can be done efficiently, using the model rather than
the entries of T. We also derived some useful factorizations, such as the external and
inner-outer (OQR) factorization. A spectral factorization/Cholesky factorization result
isgivenin chapter 13.

However, if the ranks of the sequence of Hankel matrices of T are not sufficiently
low, then the system order of the computational model will be large. This can already
happen if T is modified only dlightly, e.g., caused by numerical imprecisions, as the
rank of a matrix is a very sensitive (ill-conditioned) parameter. Hence one wonders
whether, for agiven T O U, thereis an approximating system T, closeto it such that T,
hasalow system order. Such an approximationisuseful also when T isknown exactly,
but if for analysis purposes one would like to work with alow complexity, yet accurate
approximating model.

Inthischapter, wederiveasuitable model approximationtheory, usinganormwhich
generalizesthe Hankel norm of classical LTI systems. We obtain a parametrization of
all solutions of the model order reduction problem in terms of a fractional represen-
tation based on a non-stationary J-unitary operator constructed from the data. In the
stationary case, the problem was solved by Adamyan, Arov and Krein in their paper
on Schur-Takagi interpolation [AAK71]. Our approach extends that theory to cover
general, non-Toeplitz upper operators or matrices.

263
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10.1 INTRODUCTION

Onestandard way to find an approximant of amatrix (A, say) goesviathesingular value
decomposition (SVD). Thisdecompositionyields adiagona matrix of singular values.
Setting those singular values that are smaller than some tolerance level € equal to zero
producesan approximant Asuchthat || A-A|| < € and rank(A) isequal to theremaining
number of non-zero singular values. One can show that the approximant thus obtained
isoptimal in the operator norm (matrix 2-norm), and a so in the Hilbert-Schmidt norm
(matrix Frobenius norm). Since the state complexity of the operator/matrix T isgiven
by the rank sequence of Hr rather than the rank of T itself (corollary 5.7), it seems
logical to approximate each Hy by some Hy of lower rank. However, the Hankel ma-
trices have many entriesin common, and approximating one of them by amatrix of low
rank might make it impossible for all other Hy to acquirealow rank: alocal optimum
might prevent aglobal one. In this respect, the approximation error norm used is also
of importance: the Hilbert-Schmidt (Frobenius) norm is rather strong;:

min ||A-A|us
rank A<d

has only one (unique) solution A, obtained by setting all but the first d singular values
equal to zero, and keeping the first d untouched. The operator norm approximation
problem
min ||A-A]
rank A<d

has many solutions, since only the largest singular value of the difference E = A-Ais
minimized, and d — 1 others are free, aslong as they remain smaller. For sequences of
Hankel matrices, the extrafreedom in each of the Hy can be used to reduce the rank of
the other Hy. The problem can be described in two ways. by

min  ||H-Hg||,  (foralKk),
rankiflksdk

which isthe model error reduction problemfor given target ranks di, and by
min{rankHy : ||H-HFi|[ <&},  (foral k), (10.2)

the model order reduction problem for given tolerance levels g¢. The latter problem
description is the one which we take up in this chapter. Theerror criterion (10.1) leads
to the definition of the Hankel norm, which is a generalization of the Hankel norm for
time-invariant systems:

1Tl = IIHr|. (10.2)

|| T |l isthe supremum over the operator norm of each individual Hankel matrix Hy. It
isareasonably strong norm: if T isastrictly upper triangular matrix and || T ||n < 1, then
each row and column of T has vector norm smaller than 1. The main approximation
theorem that we derive can be stated as follows.

Theorem 10.1 Let T O U, andletT = diag(yi) O D be a Hermitian operator. Let Hy
be the Hankel operator of T T at stagek, and suppose that an € > 0 exists such that,
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for eachk, none of the singular values of Hy areintheinterval [1—¢€,1+ €]|. Then there
existsastrictly upper triangular operator Ty with system order at stagek at most equal
to the number of singular values of Hy that are larger than 1, such that

ITHT=Ta) |l < 1. (10.3)

Theerror tolerancediagonal I parametrizesthe problem. Asein (10.1), it can be used
toinfluencethelocal approximationerror: if I = yl, then || T—T;||n < yand the approx-
imation error isuniformly distributed over T. If one of they; ismadelarger thany, then
theerror at thei-th row of T can becomelarger also, which might result in an approxi-
mant T, of lower system order. Hence " can be chosen to yield an approximant that is
accurate at certain points but less tight at others, and whose complexity is minimal.

Although we have seen that, given the same tolerance level, the operator norm al-
lows more freedom than the Hilbert-Schmidt norm, the computational task still seems
formidable: thereisan infinity of minimization problems, all coupled to each other. It
isremarkablethat the problem allows aclean and straightforward solution (aswe show
in this chapter), which can even be obtained in a non-iterative way. The clueisin the
fact that the condition (10.3) trang ates to the computation of contractive operatorsE,
which, as we saw in chapter 8, are linked to the computation of a J-unitary operator
O, “loaded” by a contractive operator S . Thisisthe way that J-unitary systems enter
into the picture. The general solution using this approach was originally published in
[DvdV 93], and specializations to finite matrices were made in [vdV D94b].

Hankel norm approximationtheory originatesasaspecial case of the solutionto the
Schur-Takagi interpolation problem in the context of complex function theory. Sup-
pose that a number of complex values are given at a set of pointsin the interior of the
unit disc of the complex plane, then this problem consists in finding a complex func-
tion (a) whichinterpolatesthese values at the given points (multiplicities counted), (b)
which is meromorphic with at most k polesinside the unit disc, and (c) whose restric-
tion to the unit circle (if necessary via alimiting procedure from inside the unit disc)
belongsto L. with minimal norm. The Schur-Takagi problem can be seen as an ex-
tension problem whereby the “conjugate-analytic” or anti-causal part of afunctionis
given, and it is desired to extend it to a function which is meromorphic with at most k
polesinside the unit disc, and belongsto L., with minimal norm. (Translated into our
context, the objectivewould beto determinean extension of an operator T 0 £Z  toan
operator T' O X, such that T’ is contractive and has an upper part with state dimension
sequence smaller than a given sequence.) The L. problem was studied by Adamjan,
Arov and Krein (AAK)[AAKT71], based on properties of the SVD of infinite dimen-
sional Hankel matriceswith Hankel structure, and associated approximation problems
of bounded analytical functions by rational functions. (See e.g., [CC92] for a more
recent introduction to this class of problems.)

It was remarked by Bultheel and Dewilde [BD80] and subsequently worked out by
a number of authors (Kung-Lin [KL81], Genin-Kung [GK814], Ball-Helton [BH83],
Glover [Glo84]) that the procedure of AAK could be utilized to solve the problem of
optimal model-order reduction of a dynamical time-invariant system. The computa-
tional problem with the general theory is that it involves an operator which maps a
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Hilbert space of input sequences to a Hilbert space of output sequences, and which
is thus intrinsically non-finite. In [BD80Q] it was shown that the computations are fi-
nite if one assumes the context of a system of finite (but possibly large) degree, i.e.,
an approximant to the original system of high order. The resulting computations in-
volve only the realization matrices { A, B,C, D} of the approximating system and can
be done using classical matrix calculus. They can also be done in a recursive fash-
ion, see Limebeer-Green [LG90] as a pioneering paper in this respect. The recursive
method is based on the interpolation theory of the Schur-Takagi type.

For time-invariant systems, the Hankel-norm model reduction method may be com-
pared with another popular method for model reduction, known as the balanced model
reduction method. In this method, a reduced-order model is obtained by setting al
small singular values of the Hankel matrix equal to zero, and using the resulting trun-
cated column space and row spaceinthe construction of astate model [KL81]. Alterna-
tively, one may start from a high-order balanced model (onefor which the reachability
and observability Gramians are diagonal and equal to each other), and delete all states
variablesthat correspondto small entriesin the Gramians[PS82, M0o81]. These meth-
ods also give good approximation results, although no tight upper bounds on the mod-
eling error have been derived. An extensive study on error boundswas made by Glover
[Glo84], and by Glover-Curtain-Partington [ GCP88] for theinfinite-dimensional time-
invariant case.

Numerical example

As an example of the use of theorem 10.1, we consider a matrix T and determine an
approximant T,. Let the matrix to be approximated be

0 .800 .200|.050 .013 .003
0 0 .600|.240 .096 .038
T- 0 0 0|.500 .250 .125
0 0 0 0 .400 .240
0 0 0 0 0 .300
0 0 0 0 0 0

The position of the Hankel matrix Hy isindicated. Taking I = 0.11, the non-zero sin-
gular values of the Hankel operatorsof 1T are

Hi Hy Hy Hy Hs He

826 685 6.31 553 4.06
033 029 0.23
0.01

Hence T has a state-space realization which grows from zero states (i = 1) to a maxi-
mum of 3 states (i = 4), and then shrinksback to O states (i > 6). Thenumber of Hankel
singular valuesof I 1T that arelarger than oneis 1 (i = 2, ---,6). Thisisto correspond
to the number of states of the approximant at each point. Using the technique detailed
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The number of non-zero singular values indeed corresponds to the number of Hankel
singular values of 1T that are larger than 1. The modeling error is

.010
0

0
0
0
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.017
.006
0
0
0
0

-.016
.025
.001

0
0
0

-.017 -.013
-.002 -.014
.023 .004
-.002 .026
0 .013

0 0

and indeed, the Hankel norm of (T - Ty) isless than 1:
T YT -Ta) |ln = sup{0.334, 0.328, 0.338, 0.351, 0.347} = 0.351
Theredlization algorithm (algorithm 3.9) yields as realization for T

T1=

| -.826| 0 ]
[ .397 -.044 .000 | -.917
910 140 .040| .388
| -573 .00 .00| O
[ -.515 | -.858
858 | -.515
| 30| O

To=

246 -.041| -.968
-654 -00| O
487 037 | -.873
853 -.237 | .465
189 971 147
| -466 00| O

7o)

A realization of the approximant is determined via algorithm 10.5 in section 10.3 as

Ta,l =

Ta,3 =

Ta,5 =

410

| 901
[ -.651

729 |

| -.993 ‘

;l

-.629
0

-.480 ]

0

Ta,2 =

Ta,4 =

Ta,G =

-.837 |

[ 293 | -.795
| -.946

0
.525

-.554 ]

0
| 393 ]

. | 0
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Uy —41 uy Y1

U — Y2 U — Y2

U3 Y3 uz Y3
|

Ug — VY4 Ug — Y4

Us Y5 Us Y5

Ug — Y6 Ug — —Ye

(@ (b)
Figure 10.1.  Computational scheme (&) of T and (b) of Ta.

The corresponding computational schemes are depicted in figure 10.1, to show the ef-
fect that asmall changein T can lead to a significant reduction in the complexity of the
computations.

Hankel norm

As mentioned in the introduction, we compute approximants which are optimal in the
Hankel norm, defined as
[Tl = [IHr .

It isanormon Y, asemi-norm on X. Since thisis not such a familiar norm as, for
example, theoperator normof T, wefirst determineitsrelationto thelatter. The Hankel
norm can also be compared to another norm, which we call for simplicity the diagonal
2-norm. Let T; bethei-th row of ablock matrix representation of T O X, then

DOD: ||D||2D2:||D||:SUpi||Di||-, .
TOX: [T, =Po(TTY) [lp2 = sup; | T
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For diagonals, it is equal to the operator norm, but for more general operators, it isthe
supremum over the ¢,-norms of each row of T.

Proposition 10.2 The Hankel norm satisfies the following ordering:
TOX: ITIh < ITl (10.4)
TOzu: ITloz < [T lH- (10.5)
PROOF Thefirst norm inequality is proven by

T {H SUPyoL,z L ufusst I P(UT) [lHs
SUPyOIL,z1 fufjsst I UT lIHs

SUPy Ly, s [uTlhs = [IT].

NN

For thesecond norminequality, wefirst prove || T [1,, < Supprp, | pject [|DTTD ls.
Indeed,
ITI5, = 1IPo(TTT) (15,
= SUPprip,, [Dfpst | DPo(TTH)D 1p2
= SUPpip,, |Djusst  |DPo(TTYD s
S SUPpop,,||D st IDTTD us.

Then (10.5) follows, with use of thefact that T O Zi4, by

1T, < SUPbrp, Dyt IIDTTD lus
= SUPpp, |pysst  |IDZTTTZD||ns
= SPpop, Dt | P(DZTT) [P(DZT)]7|us
< SUpugLZZ‘l, s 1PUT)[PWT)] [lns

T3
O

We see that the Hankel norm is not as strong as the operator norm, but is stronger
than the row-wise uniform least square norm.

10.2 APPROXIMATION VIA INDEFINITE INTERPOLATION

Approximation recipe

In the present section we outline a procedure to obtain a reduced-order approximant,
and put the variousrelevant factsin perspective. Details are proven in subsequent sec-
tions.

Let T O U be agiven bounded, locally finite, strictly upper operator. The decision
to assumethat T is strictly upper is made for convenience and is without serious con-
sequences. D = Py(T) has no influence on the Hankel (semi-)norm, so that there are
no conditionson the D operator of the approximant. Let I 0 D be adiagonal and Her-
mitian operator. As discussed in the introduction, the objectiveis to determine an op-
erator T, 02 such that ||F~3(T - T,) ||n < 1. Instead of working with T, directly, we
look for abounded operator T' O & such that

I HT-T) < 1, (10.6)
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and such that the strictly upper part of T’ has state-space dimensions of low order —
as low as possiblefor agivenI'. Let T, bethe strictly causal part of T'. Proposition
10.2 showed that

IT4(T = Ta) [Im T4 T =T m

< FHT-T)) s 1, (107
so that Ty is a Hankel-norm approximant of T (parametrized by I') whenever T' isan
operator-norm approximant. T’ can be viewed as an extension of T, whichis such that
IT7HT-Ta) |l < ||T"HT-T')|. A generalization of Nehari’s theorem to the present
setting would state that inf || E || over all possible extensionsE O X of agiven part E; [
U actually equals || E4 |1 (see section 10.6).

The construction of an operator T’ satisfying (10.6) consists of three steps, speci-
fied in the following lemma. (The definitions and notation in this lemmawill be kept
throughout the rest of the section.)

Lemma 10.3 (recipefor a hankel-norm approximant) LetT OU (M, N') bestrictly
upper, andletT 0 D(M, M) beagiven diagonal Hermitian operator. Then, provided
the indicated factorizations exist, an operator T' 0 X such that |T1(T-T')|| < 1is
obtained by performing the following steps:

1. anexternal factorization (inner-coprime factorization; theorem 6.8):

T=AU (U,A0U .U unitary), (10.8)

2. alJ-inner coprime factorization (corollary 8.18):

[UD —TDF‘l]@ _ [A/ _B/] 0 [Z/{ [/{] (@DL{, J-unitary), (109)

3. with a block-decomposition of © asin (8.5),

TH=BoAr. (10.10)

PROOF If thefactorizationsexist, then ©2; isboundedly invertiblesothat > 1, = —61265%
existsandiscontractive(theorem8.2). From (10.9) wehaveB' = U@+ T 10,,.
Substitution of (10.10) leadsto

T = Tor1l-ute,e;l
= ThH1-utsy,

and it followsthat (TP-T")r~1 = —~Us,,. Because Z1, is contractiveand U unitary,

|(TO-T9r 1 | -US ||

|| z12” = 17
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sothat T' = (B'@23T) "isindeed an approximant with an admissible modeling error.
0

In anticipation of a proof of theorem 10.1, it remainsto show that the strictly upper
part T, of T' has at most the specified number of states, and to verify the relation with
the Hankel singular values of 1T, Thisis donein the remaining part of this section.
The definition of T’ in (10.10) can be generalized by the introduction of a contractive
operator S_ that parametrizesthe possible approximants, whichisthe subject of section
10.4. Thecrucia step in the procedureis step 2. The computation of © can be viewed
as the solution of an interpolation problem

uql e odu u, S=-UTT1=-aAr?, (10.12)

where the interpolation subspace is determined by U. If @5% O U, then an exact repre-
sentation of Sin © isobtained as S= -01,03}. In this case, theinterpolation problem
isdefinite: therelevant J-Gramianis positive definite, which happensif 1T isstrictly
contractive. In addition, T'"= B’OE%F is upper, and the approximant T, is zero, which
matches one's expectationin view of || T~2T || < 1. If 1T isnot contractive then ©53
is not upper, and thisis the situation which leads to approximations and which is con-
sidered in this chapter.

Construction of ©

We now determine sufficient conditions on a state-space redlization { A,B,C,0} of T
for the existence of the two factorizations in the above lemma. Assuming /a < 1, the
external factorization in the first step can be computed from the given realization if
it is uniformly observable (theorem 6.8). Without loss of generality, we can (and do)
assume that such a realization has been normalized, so that AAP+CCP = |. Then, a
realization for the inner factor U of the external factorizationis given by
A C
o=la o

where By and Dy are obtained by locally completing [Ax Cy] to asquare and unitary
matrix.

The second step isto derive expressionsfor © to satisfy the interpolation condition
(210.9). U -Tr 1Y has aredlization

{ _l_LflT = [ Dy } + { _BU }Z(I—AZ)*C,

0 e
sothat, accordingto corollary 8.18, thereisaJ-unitary operator © mapping [U” -TH 1]
to upper if the relevant J-Gramian A := A? (as defined in (8.10)) is boundedly invert-
ible. With the above realization of [U” -TH ~115, A satisfies the J-Lyapunov equation
(cf. equation (8.36))

AD = APAA+ BBy -BT2B.

Substituting the relation A“A + BBy = | yields | -A™) = AN -A)A+ BT 2B.
With the additional definition of M = | = A, it is seen that M satisfies

MY = Abva+ BT 2B
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o that M is the reachability Gramian of the given realization of 2T It follows that
the J-inner coprime factorization existsif | —M is boundedly invertible, that is, if 1is
aregular point for the operator M [AG81]. With M known (and hence A), © is deter-
mined along the lines of the proof of theorem 8.17. In particular, the input state space
of © isdefined by

H(O) = D (I —zDAD)‘lzD[BE BDr‘l} . (10.12)

Let A = RUzR be afactorization of A, then

B IR I o pit

Ll

is J-isometric, and a J-unitary realization for © is of the form

Ao

Bo

o [P ol [F Nla & &, |
Bo Do [ |Hr—1|3 D21 DZZJ[ |J

(10.13)
and is obtained by completing Ag and Bg with certain diagonal operatorsCg and Dg
to a sguare J-unitary matrix. Corollary 8.18 claims that thisis aways possible under
the present conditions (A boundedly invertible), and the procedureto do soisgivenin
lemma8.16. Since the realization © is J-unitary, the corresponding transfer operator
@ isaso J-unitary and hasthe specified input state space. Thethird stepinlemma10.3
isaways possible (cf. theorem 8.2).

We have proven the following lemma:

Lemma10.4 LetT OU(M,N) bea strictly upper locally finite operator, with out-
put normal realization{ A,B,C,0} suchthat /a < 1, andletT” be a Hermitian diagonal
operator. If the solution M of the Lyapunov equation

MY = APMA+BT2B (10.14)

issuchthat A = | =M is boundedly invertible, then the conditions mentioned in lemma
10.3 are satisfied: there exists an external factorization T = AU, a J-unitary block
upper operator © such that

uw" -t Yeou u,

and an operator T' 0 X suchthat ||T~2(T-T') || < 1, according to the recipein lemma
10.3.

Let M, N and B be the input, output and state space sequences of T and its real-
ization, and let My be the input space sequencefor U: itsindex sequenceis specified
by

#My = #BUY —#B 4+ #N .
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In: T (model in output normal form for a strictly
upper matrix T)
r (approximation parameters)
Out: © (redlization for © satisfying (10.9))

My = []
Ri = []
JBl = [ ]
fork=1,---,n
[ M1 = AMA+ BT 2By
RE+1'JBK+1RK+1 = l_Mk+l
[Buk Duxl = [Ac G
ReAx
al| _ |[—=|pt
B |~ Bu k Re1
i FElBk
[c] [ o
L d | [ B

r_Der_:: [(f d]D[ 5, 5 } { g }

Y| _| C|,a
O = EH

Figure 10.2.  Indefinite interpolation: step 1 and 2 of lemma 10.3.

Thesignature Jz of A determinesadecompositionof Binto B = B, xB-. Let@"3,0 =
Jo, ©3,08 = J;, where J; and J, are shorthand for J; = I and Jp = Jy,. The space
sequence Mg isequal to Mg = My x M, and the corresponding signature operator
J; follows this partitioning. The dimensions of the positive and negative parts of the

output sequence space of ©, and hencethe signature J, are then given by inertiarules
as (cf. corollary 8.18)

#(No)+ #B, —#BUY +#My
#(No)- = #B-—#BCY +#M

Algorithm 10.2 summarizesthe construction in lemma10.4 and can be used to com-
pute © satisfying equation (10.9). The inner factor U of T is computed en passant.
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Connection to the Hankel operator

We continue by establishing the link between the Lyapunov equation (10.14) and the
Hankel operator of 1T

Lemma10.5 LetT OU bealocaly finite strictly upper operator, with u.e. stable re-
alization { A,B,C,0} in output normal form. Let Hy be the Hankel operator of I 1T
at stagek, and suppose that an € > 0 exists such that, for each k, none of the singular
vauesof Hy areintheinterval [1-¢€,1+ €]. Let Ny be equal to the number of singular
values of Hy that are larger than 1. Then the solution M of the Lyapunov equation

MY = ATMA + BT 2B (10.15)

issuch that A = | =M is boundedly invertible and has a signature operator Jg with N
negative entries at point k.

PrROOF The solutions of the two Lyapunov equations associated to the realization of
1T (corresponding to the reachability and observability Gramians),

MY = ARMA+BT2B
Q = AQU YA+ ccH

may be expressed in terms of the reachability and observability operators of 1T,

)

rig)+2
( -1 ) ) A+D) O = |c AcY aAACLC2) L.

Al +1
C:.= (r B)(+3)A(+2

asM=C"C, Q= 00O". TheHankel operator H, of I 1T at timeinstant k satisfies the
decomposition H, = CxOk . Hence

HHy' = COKOC -

Thestaterealization of T isassumed to bein output normal form, sothat Qy = OKOE =
I. With the current locally finiteness assumption, the non-zero eigenval ues of HH,

CkaD are the same as those of CKDCk = M. In particular, the number of singular values
of Hy that are larger than 1 is equal to the number of eigenvalues of My that are larger
than 1. Writing Ax = | — M, thisisin turn equal to the number of negative eigenvalues
of Ag. O

Figure 10.3 shows a simple instance of the application of the theory developed in
this section, emphasizing the dimensionsof theinput, output and state space sequences
related to the © operator. We assumein thefigurethat one singular value of the Hankel
operator of I 1T at time 1 is larger than 1, so that the state signature Jz of © has one
negative entry in total. We know from equation (8.20) that the negative entries of Jg
determine the number of upward arrows in the diagram of the unitary scattering op-
erator £. We show, in the following subsection, that this number also determines the
number of states of the Hankel-norm approximant T, of T.
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(@) (b) (©) (d)

Figure 10.3. (@) State-space realization scheme for T and (b) for U. (C) State-space
realization scheme for a possible @, where it is assumed that one singular value of the
Hankel operator of T 1T at time 1 is larger than 1, and (d) for the corresponding scattering
operator 2.

Complexity of the approximant

At this point we have proven the first part of theorem 10.1: we have constructed a J-
unitary operator © and from it an operator T’ with strictly upper part T; which is a
Hankel-norm approximant of T. It remains to verify the complexity assertion, which
stated that the sequence of dimensions of the state space of T, is at most equal to the
sequence N: the number of Hankel singular values of 1T that are larger than 1. In
view of lemmas 10.4 and 10.5, N is equal to the number of negative entriesin the state
signature Jz of ©. We now show that the state dimension sequenceof T, issmaller than
or equal to N. (Later, wewill show that equality holds.) The proof is, again, based on
the determination of the natural input state space for T,, which can be derived in terms
of the realization of the scattering operator X that is connected to ©.
Suppose that the conditions of lemma 10.3 are fulfilled so that © satisfies

U -ThYe =[x -B]

with A, B' OU. Let T = B'©} asin lemma 10.3. The approximating transfer
function Ty is, inprinciple, given by thestrictly upper part of T' (seelemma10.3for the
summary of the procedure). It might not be a bounded operator, since operatorsin X
do not necessarily have a decomposition into an upper and lower partin X'. However,
its extension T’ is bounded, and hence its Hankel operator Hr, = Hy is well defined
and bounded. We have the following lemma.

Lemma 10.6 Under the conditionsof lemma10.4, the natural input state space of I 1T,
satisfies
HM ) O H(0). (10.16)
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PrRooF From the definition of 7 in equation (5.3) and the operators we have
HMTa) = Pl ™)
= PTH™
P'(U,B'©%)
P'(Up053) [since B' O U]
= H(0).

O

O

Hencethe sequence of dimensionsof the subspace H (GJEZD) isof interest. According
to proposition 8.14, this dimension sequence is equa to N = #(5-), i.e., the number
of negative entriesin the state signature sequence Jz of ©. Combining thisresult with
thelemmasin this section provesthe model reduction theorem, theorem 10.1, repeated
below:

Theorem 10.7 Let T OU be alocally finite strictly upper operator with a uniformly
observable u.e. stable redlization, and let ' = diag(y;) O D be a Hermitian operator.
L et H, bethe Hankel operator of T 1T at stagek, and supposethat ane > 0 exists such
that, for eachk, none of the singular values of Hy arein theinterval [1-¢€,1+€]. Then
there exists a strictly upper triangular operator T, with system order at stagek at most
equal to the number of singular values of Hy that are larger than 1, such that

ITHT-Ta) |In < 1.

PROOF Under the present conditionson T, lemma 10.3 can be applied. Indeed, lemma
10.5 claims that the reachability Gramian M of the realization (normalized to output
normal form) issuch that A = 1 =M isboundedly invertible, where A satisfies the same
J-Lyapunov equation asin lemma 10.4. Thislemma showed that the necessary condi-
tionsto apply the procedurein lemma10.3 are satisfied. Thusconstruct T’ and T, using
lemma10.3, sothat || (T -T,) ||n < 1. Accordingtolemma10.6, the state dimension
sequence of T, isless than or equal to the state dimension sequence of the causal part
of @55, which is equal to the number of negative entries of the state signature sequence
Js (proposition 8.14), inturn equal to N (lemma 10.5). Hence T, has the claimed state
complexity, so that it is a Hankel norm approximant of T for thegivenT . |

10.3 STATE REALIZATION OF THE APPROXIMANT

Theorem 10.7 showsthe existence of aHankel norm approximant T, under certain con-
ditions. The proof uses a construction of this approximant (lemma 10.3), but this con-
structionisat theoperator level. However, itisalso possibleto obtainastaterealization
for T, directly. We will derivethis result in the present section.
Throughout this section, we take signals a;, az, by, by to be elements of >, gener-
ically related by
[al bl] O = [az bz]

where © is as constructed in the previous section. In particular, © is a bounded oper-
ator, and ©2 exists and is bounded. In section 10.2 we constructed © viaa J-unitary
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realization ©, with state signature matrix Jz. © isbounded by construction (because of
the assumption that none of the Hankel singular values of T are equal or “asymp-
totically close” to 1), and is u.e. stable because T is assumed to be so. As before, the
part of an operator u 0 X that isin £,Z™* isdenoted by up = P'(u), and the partin ¢4,
isus = P(u). Associated to the transfer operator © is the scattering operator Z which
relates

[a1 bl] O = [az bz] e [a1 bz] 2 = [az bl] .

We have derived in theorem 8.2 arepresentation £ = {F,G,H,K} in terms of entries
{Ao,Bo,Co,De} in ©, according to the relation

[Xi x a b0 = [xZT xZT & b
Xi xZF & BT = [Z x & b

The above realizations act on operatorsin X,. Taking the k-th diagonal of each oper-
ator yields the following state recursions on diagonals, which we use throughout the
section:

DD
Xipg Xpg g bwl® = Xy Xy @k Pl

(1) _
X Xy g PawlZ = DXply Xk g bl

In order to compute a realization of T,, we first determine a model for the strictly
upper part of @525 from themodel Z. Itisgiven in terms of operators Sand R defined

X_[O]S = X4 when Ap = 0, bzp =0

10.17
X+[0]R = X—[O] whena s = 0, byt = 0, ( )

which can be obtained from X in terms of two recursive equations. Sis, for example,
obtained asthe input scattering matrix of aladder network consisting of asemi-infinite
chain of contractive (i.e., lossy) scattering matrices Fj.

Lemma 10.8 Thereations

CoR = X whnmi—oby—0. (101

define bounded maps which are strictly contractive: || S| < 1, || R|| < 1.

PROOF Sexists asa partial map of =, taking a;p = 0, bpp = 0. Inthis situation,
[0 bip|@p = [X40 Xjqo a2p O,

and we have
%0 1% = X407 17+ Il brpl® + || @zpl|®.

According to proposition 8.13, thereisane, 0 < < 1, such that || byp||2 = €2 || x g [|%,
and hence
%0 1% = 1 X410 112+ €2 X1 I

IHere, Sisnot the same as Sin (10.11), and no connection is intended.
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alp:OH

X4[0] X[0]
0 = P2
Fiu Z R
Fa1 by = O
P
a

Figure 10.4.
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Consequently, thereisa constant 1 (0 < p < 1) such that || x (g |2 < p? || g || (take
M =+v1-€2). Thisshowsthat || S|| < 1. A similar argument holdsfor R. O

Proposition 10.9 The operatorsS and R defined in (10.18) are determined in terms of
X (with block entriesasin (8.21)) by the following recursions:

S = (Fau+Foall - SFip) tery) Y (10.19)
R = Fp+Fu(l- RY le)_lR(_l) Fa2.

A state-space model { Ag,Ba, C;} of the strictly upper part of 62 is given in terms of
S Rby

Aa = (Fall-SFi2)t)" .
Ba = ( Hoo + Foo (I - 3:12)_19412) - (10.20)
G = (I-SR)™ [Gzz + Go1(1 -RVF) TRV Ry

Thismodel isuniformly minimal, with contractivereachability and observability Grami-
ans.

PROOF The existence and contractivity of SO D and RO D has already been deter-
mined (lemma10.8). First observethat although Ssatisfies by definition X5 S= X (g
(alp = b2p = 0), it also satisfies X_[l]S: X+[1] (a]_p = b2p =0and al[o] = bz[o] =
etc. Thisisreadily obtained by applying inputs Z 1ay, etc., so that we get states Z1x,
and Z71x_. If (Z_lal)P - Z‘1a1p+Z‘ a]_[ 0 = =0, then (Z_]'X )[O]S_ ( _1X+)[0]. But
(Z X- )[ 0] = X-[1 and likewise (Z X+)[0] = X4 Hencex_[l]S X+[1]

To determine a state realization for the strictly upper part of 35, = 055, we start
from the definition of Z (8.20), and specialize to the 0-th diagonal to obtain

-1 -1
X X awo baolZ = K X0 @0 byl

Taking a; = 0 throughout this proof, inserting the partitioning of X in (8.21) gives

Xsr_[ll)] - X+[0] Fu + X(—Ili]) Fa1 + bp0Ga1
X0 = XyoFwe + X [1]) Fz2 + bygG22 (10.22)
byg = XygHz + X [1])H22 + by Ka1

With b, = 0 and byg = 0, these equationsyield an expression for S

-1 _ _
X+[1] = _[1] S( n = X_[O]S:n + X F21
X-[0] = XqoSF12 + X Fzz

(-1) -1
X = X | -SF
{ [0] ) Fa2(l = SF12) (10.22)

[1] Vg1 — X(_Ell]) {Foo(l =SF12) 1 SF11 + For }
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(note that (I - SF1») ™t is bounded because || S|| < 1 and || Fi2 || < 1), and hence S sat-
isfies the indicated recursive relations (see also figure 10.4). The recursion for R is
determined likewise.

In view of proposition 8.13, we can take x- as the state of aminimal realization of
the strictly upper part of @525. Let { Ay, Ba,Cr} be acorresponding state realization, so
that the strictly lower part of ©3 has an anti-causal state realization

{ Xo] 1%
bl[O] == _[1] BE .

The unknowns Ay, B, and C; can be expressed in terms of F, G, H by substitution in
equations (10.21), and using Sand R as intermediate quantities. Doing so with b, =
0, the first equation in (10.22) yields the expression for A in (10.20) and B, can be
determinedin termsof Sfromthelast equationin (10.21). C/isobtained asthe transfer

-1 -1) (-
b2[0] ) fora;=0andhy, = b2[0] 0Dy, sothat X_[O]S: X4[0] and X(—[l]) = XS»[l)] RD,

Inserting the latter expression into the first equation of (10.21) twiceyields

| Il
X
L
e

_|._

o

N

=)

0
[}

X(‘Ell]) = X, o Fu(l =RTYF) R 4 by Gar (1 -RTVFa) 'R,

Inserting thisin the second equation of (10.21), and using X, g = X-jgSresultsin

X0 = XqoSF12 + X o SFull -RF) IREDFy,
+ b Gau(l ROV IROVR, + b2j0)G22

X0/ (1=SR) = by (G2 + Ga1(1 ~-R™VF21) T RTVR)

which gives the expression for C;.
We havedefined, in equation (8.28), the conjugate-Hankel operator H' = P'(-©3]) | "

In proposition 8.13 we showed that H' has a factorization H' = a1, where the maps
0 bt - X gy and T : X g i~ byp are onto and one-to-one, respectively, and both con-
tractive. In particular, wecanwriteH’ = Po(-F!) Fo, wheret = Fa = [BaZ(1 ~AsZ)
(if La, < 1) and 0 = Po(-FF) with Fy = (1 -AsZ)™XC; (if £a, < 1). The properties of o
and Tt imply that the derived model { Ag, Ba,C;} isuniformly minimal, with contractive
reachability/observability Gramians. o

The second step in the construction of arealization for T, is to determine a state
realization for B'. Thisis done by evaluating [U” -T'T 1@ = [A' -B']. Thishas
already been done in equation (8.37), which gives, with the state model for © written

A C C _
o Ao Col R| | 1 2 R—(1)|
- Bo Do - || %ij ‘Dll D1 || ’
B

D21 D2
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UY -ThYe = {[DJ O0De+CA[C: C]} +
+{][DE 01[ F@B}+CD/\A}Z(I—AZ)‘1[C1 c
{[D} 0P +CNC Col} +
+CA-DAZ(1-AZ) G, G

(in which we used C"A+ DBy = 0). Since this expression is equal to [A' —B'] and
M = | = A, we obtain a state-space model for B’ as

B' = {-DyD12-CY1-M)C;} + C'MAZ(1 -AZ)™!C;. (10.23)

We are now in a position to determine a state realization for T,.

Theorem 10.10 Let T, T, U and © be as in lemma 10.3, so that [U” -Tr 10 =
[N -B]. Let{A B,C,0} bean output normal u.e. stable state realization for T, let
M satisfy the Lyapunov equation (10.14), and let { A,By,C,Dy} be a realization for
U. Denote the block entries of © asin (10.13), and let £ corresponding to © have a
partitioning (8.21).

Then the approximant T, defined as the strictly upper part of T' = T ©,58' Y hasa
state realization { Aq, T By, Cq, 0}, where Aq, Ba O D are defined by (10.20), and C, is
given by

Ca =G [-D%Dy -C3(1 -M)C] + AYYAMC, (10.24)

whereC; isdefinedin (10.20), andY O D satisfies therecursionY = AsY YA+ C.CJ!
PrROOF The state redlization for T, is obtained by multiplying the model for B' in

(10.23) by themodel { Ag, Ba, C;} of thestrictly upper part of egzt'asobtai nedin propo-
sition 10.9. From this proposition, we have a state model of ©53 as

O%% = [upper] + C-Fa.

Fa is the selected basis representation of 1 (©55), satisfying Fa = (1 -AsZ) ™28, 0
L£Z* when £p, < 1, and more in general the recursive equation

Fa = Z'BJ+ Z°AF,.
The model of B' isgivenin (10.23) asB' = D' + CPMAZF,, where

D' = -DEDy-CH(I-MC.
Fo = (I—AZ)_1C27 Fo=Co+AZF,.

Hence T, is given by

T = P(Be)
D'CPFa + CHMAP (ZF,033).
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It remains to evaluate P'(ZF,053). Because P'(D,F,033) O H(O55), we can write
P'(Fo®53) = Y-, for someY O D. Consequently,

P'(ZY'Fy) YHDP (ZF,)
YDA,

Because also P'(ZY'F,) = P/(ZP/(Y'F,)) = P/(ZFo053), we obtain
T = {D’CP+ CDI\/IAYEH)AE} Fa,

which givesthe expression for C, in (10.24). Finally, theindicated recursionfor Y fol-
lowsvia
AP'(ZFo@33) = P(AZF,0%3)
P'(Fo®23) - P'(C203))
- AYTUAF, = YOF,-C,CF,
- AYTDAD = YB-CCP,

whereinthelast step we used that F5 isastrong basisrepresentation (proposition 10.9).
O

A check on the dimensions of A revealsthat this state realization for T, hasindeed
a state dimension sequence given by N = #(3-): at each point in time it is equal to
the number of singular values larger than 1 of the Hankel operator of T at that point.
Theredlization is given in terms of four recursions: two for M and Sthat run forward
in time, the other two for R and Y that run backward in time and depend on S. One
implication of thisisthat it is not possible to compute part of an optimal approximant
of T if themodel of T isknown only partly, say up to timeinstant k. Based on theorem
10.10, the agorithm in figure 10.5 computes a model {A,, Ba,Cy,0} for the Hankel
norm approximant T, in terms of ' and amodel {A,B,C,0} for T.

There are afew remaining issues. Ty, as the strictly upper part of some operator in
X, ispossibly unbounded. This occursif the strictly upper part of @525 is unbounded.
We do not know whether this can actually occur. Therealization of T, iswell defined,
because @33 is bounded, as well as projections of the kind P'(-©33), so that in par-
ticular the Hankel operator H' which defines that realization is bounded. (In fact, one
could probably set up arealization theory for unbounded operatorswith bounded Han-
kel operators.) A related second issue is that possibly £a, = 1. Although this seems
unlikely in view of the assumptions on /4 and the singular values of Hr that we have
made, we have no proof yet that this cannot occur. Notethat the proof of theorem 10.10
is not dependent on £, being strictly smaller than 1. Finally, an aternative derivation
of amodel for T, is possible viaan inner-outer factorization of ©,,. Thisgivesriseto
different expressions but still produces atwo-directional recursive algorithm.

10.4 PARAMETRIZATION OF ALL APPROXIMANTS

At this point, we can study the description of all possible solutionsto the Hankel norm
approximation problem that have order at most equal to N, where N = sdim #(©55) is
the sequence of dimensions of the input state space of @525. We determine all possible
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In: T (model in output normal form for a strictly upper matrix
1))
r (approximation parameters)

Out: Ta (model for Hankel norm approximant Ty)
do algorithm 10.2: gives My, ©, Js,, Cok, D12k, Duk (k= 1,---,n)
S =1

fork=1,---,n
[ Compute i from © using (8.19): gives Fj, Gij, Hij
Scr1 = Fark+ Foz (I = SFaz) 7 ScFiik

end

I'-\’n+1 = H

Yn+1 = H

fork=n,---)1

( Re = Fuok+ Fuk(l =Ra1Fr) TRk

Ck = {Gaak+Gax(l- Rk—ElF217k)_1Rk+1F227k} (I-SR)™?
Aok = {Faox(l =SFi2) 1} .
Bak = {Hook+ Fook(l = SFizk) 1SH12k}
Yk = AaiaAl+ GGy

| Cak = Cuc{~D%yDuk=CHll ~M)Cic} +AaiYir - AMC

end

Figure 10.5.  The approximation algorithm.
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bounded operators of mixed causality type T’ for which it is true that

1 riT-T=sU]| =1,
and (2) the state dimension sequence of T, = (upper part of T')
isat most equal to N.

(Note that we do not assume boundedness of T,.) As we show in theorem 10.17 be-
low, thereare no Hankel norm approximantssatisfying (1) and (2) with statedimension
lower than N. Theresult isthat all solutions are obtained by a linear fractional trans-
form (chain scattering transformation) of © with an upper and contractive parameter
S . That this procedure effectively generates all approximants of locally finite type of
s-degree at most equal to the sequence N can be seen from the fact that if || F™3(T -
Ta) |ln < 1, then an extension T’ of T, must exist such that || F(T-T) || < 1. Thisis
a consequence of atheorem on the Nehari problem (see section 10.6).

Thenotationisasin the previous sections. We started out with an operator T O Z14,
and weassumedit to belocally finite, with astate realization in output normal formand
related factorization T = A”U, where A 02/ andU O/, unitary and locally finite. Then
we proceeded to solve theinterpolation problem [UP -THrYjeo=[A -B0O[U U],
and we saw that the problem was solvabl e provided arel ated Lyapunov-Stein equation
had a boundedIDy invertible solution. The solution was given in terms of an operator
T/ =T"10,B"in X of mixed causdlity type, and the approximant T, of low order was
given by the strictly upper part of T'. In the present section we shall first show that a
large class of Hankel-norm approximants can be given in terms of the same J-unitary
operator © and an arbitrary upper, contractive parameter § . Our previousresult isthe
special case §. = 0. Then we move on to show that all approximants of s-degree at
most N are obtained in this way.

Wefirst derive anumber of preliminary facts which allow usto determine the state
dimension sequence of a product of certain matrices.

Preliminary facts

Proposition 10.11 LetB=1-X, whereX O X and || X|| < 1. Then P(-B)|u2 and
P(-B™) u, eHilbert spaceisomorphismsontf. Likewise, P'(-B) | £,z andP'(- B £,771
areisomorphismson £,Z71.

PROOF Bisinvertible because || X || < 1. Since also

Xp = Pl('x)‘ﬁzz—l: Xi 1= P(X)|z,{2

arestrictly contractive: || Xp|| <1, || Xt || < 1, itfollowsthat Bp = | =X, =P'(-B) |£22‘1
isinvertiblein £, and Bf = | - X; isinvertiblein /. In particular, for u 0 £,Z72, the
decomposition uB =:y; + Uy (withyy Oy, Uy = uBp 0 £,Z71) satisfies
uil[2€llul],  somee>0. (10.25)
Takey O U, y# 0. Toshow that P(-B™2)| ., Isone-to-one, wewill show that thenorm

of the upper part of yB~* isuniformly bounded from below: y, := P(yB™) has ||y, || =
e1llyll (withes > 0).



HANKEL-NORM MODEL REDUCTION 285

Indeed, put yB™ =: yo + Uz (Y2 O U, Up O £Z71). Since u;B = y-y,B, and B,
isinvertible, we can apply the relation (10.25) proven above, in the form P'(uzB) =
€|l u2]|, to obtain

[P'(y2B)[| = [P (u2B) || = e2fuz]| (2> 0).
Because B isbounded: ||B|| < 2, it followsthat || y2 || > 1/2|y2B|| > 1/2¢;| uz]|, or

lly21l > eslluz]f, €3=1/2e,>0.

Hence, at this point we have yB™ = y, + up with || y2 || > €3] uz2|| (€3 > 0). Because
B~tisboundedly invertible, thereexistse4 > O such that | yB™ || > £4]| y||, and we have

1
IIY2||(1+E—3) > [yall+ luzll > [ly2+uzll > eally|l-

We finally obtain that

€4
1+1/e3

1Yzl > Iyl =: edllyl

sothat P(-B™?)| , 1S One-to-one.
To show that P(-B™1) |u2 isonto: P(,B™) = 4>, we have to show that for all y, [

Uo, there existsan y O U, such that
P(yB™) =ya,

i.e., giveny, OUs find y O Uy such that yB™ = y, + up (Some U, 0 £,Z71), or equiv-
dently, yoB = y+ upB. We will use the fact that B, = P’(-B)|£ZZ_1 isinvertible so
that P'(uzB) = upBp uniquely determinesu,. Indeed, givenys,, u, iscomputed as u, =
P'(y2B)Bj!, and theny O 42 isgiven by y = (U +y2)B.
The property on P'(-B™1)| £,7-1 isprovenin asimilar manner. |
Proposition 10.11 allows us to conclude, in particular, that if A isadliced subspace
inU> and B isasin the proposition, then
sdim P(AB™) = sdim A
and if B is another sliced subspacein i/, then B0 A = P(BB™) OP(AB™).
Proposition 10.12 IfB=1-X,X 0 X and|| X || < 1, and if B = P(L,Z1B), then
P(BB™) = P(£o271BY).

ProOF We show mutual inclusion.
(1) P(BB™) O P(£2Z71B™1). Lety O P(BB™). Then there exist u 0 £,Z* and
up 0 £,Z suchthaty =P ((uB+up)B™) = P(u1B™). Hencey O P(£,Z71B™Y).
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(2) P(£oZ27'B™Y) O P(BB™). Assumey = P(u;B™) for some u; 0 £,Z71. Since
Bp=P'(-B) \ £,2° isan isomorphism (proposition 10.11), au O £,Z* exists such that
P'(uB) = —u;. It followsthat

y = PuB™

P((uB+up)B™?)
P((uB-P'(uB))B™)

= P(P(uB)B?) O P(BBY).

Proposition 10.13 IfAO L and A2 O X and if A = P(L,Z7*A™Y), then
LoZ7AY = A0 £,270.

PROOF (Notethat A, as the range of a Hankel operator, need not be closed.) Theleft-
to-right inclusion is obvious. To show the right-to-left inclusion, we show first that
L2710 L,Z71A. Assumethat u 0 £,Z71. Thenu = (UA)A™L. Butsince A £, we
haveuA O £,Z71, and u 0 £,Z AL, Thefact that A isalso in theimage follows by
complementation: £,Z 1A 6 £,Z71 = P(L£,Z71AL), |

Theorem 10.14 LetAO £, A™* O X, and suppose that the space A = P(L,Z 1 A1)
islocaly finite of sdimensionN. LetB=1-X withX O X and || X|| < 1. Then

sdim P(£2Z27PAB ) =N+p O sdim P(£,Z271BA) = p.

PROOF
P(L:Z1AIB™Y) = P((L£210A4)B™Y) [prop. 10.13]
= P(L£,Z27'B?) + P(ABY) [linearity]
P(BB) + P(AB™) [prop. 10.12]

where B = P(£,Z71B).

In the sequel of the proof, we use the following two properties. The closure of a
D-invariant locally finite linear manifold 7 yieldsalocally finite D-invariant subspace
H with the same sdim . Secondly, let M be another locally finite D-invariant subspace
and let X be a bounded operator on X, then HX = [Pr¢(H)] X if MUX = 0.

Since A and B are spacesinl4,, and since according to proposition 10.11, P(-B™1) \ U
isan isomorphism mapping A and B to P(AB™1) and P(BB™1), respectively, we obtain
that sdim (A + B) = N+ p. With A” =, & A, it followsthat P 40(B) hassdim equal
to p, because sdim A = N. The proof terminates by showing that

(1) P(£2Z71BA) = P(P 40 (B)A), for

P(L2Z71BA) = P(P(L,Z'B)A)
P(BA)
P(Po(B)A),
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because AA 0 £,Z71.

(2) P(P40(B)A) isisomorphicto P 4o(B), which followsfrom the fact that the map
P(-A)| ;o isone-to-one, for P(xA) =00 xO AD L,Z71, and thekernel of P(-A) | -
isthusjust {0}.

Consequently, sdim P(£2Z 1 BA) = sdim P (P 40(B)A) = sdim P 40(B) = p.

|

Intheabovetheorem,wehad A0 L. A comparableresultfor AU followsdirectly
by considering a duality property, and yields the corollary below.

Corollary 10.15 LetAOU, XO X, B=1-Xand| X| < 1, andlet A beinvertiblein
X. Supposethat A = P'(UpA™1) has s-dimensionN. Then

sdim P (1:BA Y =N+p O sdim P'(1,AB) = p.

PrROOF For any bounded operator, the dimension of itsrangeis equal to thedimension
of its co-range. Hencefor T 0 X, we have that sdim ran(Hr) = sdim ran(HY), or

sdim P(£,Z271T) = sdim P/ (UT").

Generating new solutions of the interpolation problem

Throughout the remainder of the section we use the notion of causal state dimension
sequence of an operator T O X' as the s-dimension N of the space H(T) = P'(UoTD).
N isthusasequence of numbers{N; : i 00 Z} whereall N; in our case arefinite. Dually,
we call the s-dimension of P'(1/,T) the anti-causal state dimension sequence. We use
thefollowing lemma, in which we must assumethat © is constructed according to the
recipe given in corollary 8.18, so that its input state space H(©) is generated by (viz
equation (10.12))

1(©) = DE(I —zDAE')‘lzD[BFJ BDr‘l] :

Lemma10.16 LetT,T and© beasinlemma10.4, suchthat T = A™U isafactoriza-
tionof T withAO U andU O U isinner, and © is the J-unitary operator with input
State space given by (10.12) and defined by the readlization (10.13). Then

U oge O [£ [
A" re o £ £].

PrROOF We provethisby brute-force calculationson therealizationsof U and ©, asin
(10.13):

UY 0/©={DJ +CY1-Z"A)"1Z"B} {[Dn Do) + BuZ(I-AZ)}[C; C;}
=D{[D11 D] + DjBuZ(I-AZ)YC; C;] +
+CHI-Z"AY)1ZB (D11 Dio] +
+CHI1-ZPAN 2By ByZ(1-AZ)YC1 G-
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Upon using the identities DBy + C-A= 0, BBy + A"A= 1, and
(1=-Z"A91Z501 -A"A) Z(1-AZ) = AZ(1-AZ) 2+ (1 - ZPAT) 2

it is seen that the terms with (1 - AZ)™* cancel each other, so that

[UD 0]@ = DE[Dll Dlz]-l-CD[Cl C2]+
+CHI-ZFAD)1Z9{ATC, C) + B [Dun D1}
o £ L.

In much the same way,
[-a" 1@ = [{-DD{-BBj - (DC"+BAY)Z (1-AZD1Bj} I]x

x {[ Bi Bg } + { rEf‘i’B }Z(I—AZ)‘l[Cl cz]}
= (lower) + {(-DDyj-BBy)By + B} Z(I-AZ)[C; C)] +
+ (-DC"=-BAY) ZH(1 -AZH BBy Z (1 -AZ)L[C1  Cj
(lower) + {-DD{jBy —BB{jBy + B—-DC"A-BA"A} Z(1-AZ)"Y[C; G
= (lower) + {DC"A-B+BA'A+B-DCA-BA"A} Z(1-AZ)1[C; G
= (lower) +0.

O

Theorem 10.17 LetT O ZU bealocally finite operator with u.e. stable output normal
redlization {A,B,C,0}, let ' be an invertible Hermitian diagonal operator. Let Hy be
the Hankel operator of T 1T at time point k, and suppose that an€ > 0 exists such that,
for each k, none of the singular values of Hy arein theinterval [L—¢,1+€]. LetN be
the sequence of the numbers Ny of singular values of Hy that are larger than 1.

DefineU to bethe inner factor of an external factorization (theorem 6.8), with uni-
tary redlization{ A,By,C,Dy}, andlet © be aJ-unitary block-upper operator such that
its input state space H(©) is given by (10.12).

(1) If . O U iscontractive, then ©x —©21S_ is boundedly invertible, and

S= (0118 ~012)(02-0215)™" (10.26)

is contractive.
(2) Let, furthermore, T' = T +TSU. Then

(@ IriT-T=[sV]|=1,
(b) the causal state dimension sequence of T, = (upper part of T')
isprecisely equal toN.

That is, Ty isaHankel norm approximant of T.

PROOF (1) By the J-unitarity of ©, @, is boundedly invertible and || 05302 || < 1,
whence Oz~ 0215 = O2(1 -03302:S ) is boundedly invertible. Hence Sexists as
a bounded operator. Its contractivity follows by the usual direct calculations on scat-
tering operators (see e.g., [DD92)).
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(2a) followsimmediately since " (T -T') = SU and U is unitary.
(2b) The proof uses the following equality:

Tt = [U" —TDr‘l]{_sl‘}

ue - g8 g2 || S | (en-oas)™

A 8] S | En-ons)?
= (NS +B)(02-025)".

Since (A'S_+B') O U, the anti-causal state dimension sequence of T'”is at each point
intimeat most equal to the anti-causal state dimensionsof (9,,—0,1S )~ at that point.
Because the latter expression is equal to (I - 0330215 ) 71053, and |©33015 || < 1,
application of corollary 10.15 with A= @ and B =1 -0,10,:S_shows that this se-
guence is equal to the anti-causal state dimension sequence of 65%, i.e, equa to N.
Hence sdim #H(T') < N (pointwise).

Theproof terminatesby showingthat alsosdim 7(T') =N, sothatinfactsdim H(T') =

N. Define
{ G, = (02-029)7
G1 SG;

sl [ &
Sl-el s
Because © is J-inner: @20 = J, thisequality isequivalentto [G] G5 :=[S’ 1]0,
and using S= -Ar 1+ UT' ! we obtain

S0 that

rGey Gy = T'U” 0o + [-a” re. (10.27)
However, according to lemma 10.16,

u® 0o
[-aP T

O [£ /L]
0 £ £.
Thisimplies H(G5) O #(T') (same proof as in lemma 10.6). Hence sdim #(T') >
sdim #(G5) = N. m

Thus, @l Sof theform S= (011§ —0O12) (O - @21&)_1 withS OU, ||S] <1
giverise to Hankel norm approximants of T. We encountered this expression earlier
in chapter 8: it is a chain-scattering transformation of § by ©. Consequently, Sisthe
transfer of port a; to by if by = a5, asinfigure 10.6.

Thereversequestionis: areall Hankel norm approximantsobtained thisway? That
is, given some T’ whose strictly upper part isaHankel norm approximant of T, isthere
acorresponding upper and contractive S suchthat T’ isgivenby T' = T+ TI'SU, with
Sasin equation (10.26) above. This problem is addressed in the following theorem.
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uo a ap
Zn
212 221 S
Ut 1 Z2 by

Figure 10.6. © (or X) generates Hankel norm approximants via S and parametrized by

S.

The main issue is to prove that § as defined by the equations is upper; the proof is
an extension of the proof that § generated all interpolantsin the definiteinterpolation
problem in section 9.2 (theorem 9.6), although some of the items are now more com-
plicated.

Generating all approximants

Theorem 10.18 LetT,I,U and® beasintheorem 10.17, andlet N be the number of
Hankel singular values of T 1T that arelarger than 1. L et be given a bounded operator
T' O X such that

1) Irir-T=<1,
(2) the state dimension sequence of T, = (upper part of T') isat most equal toN .

DefineS=U(T'P-TH 1, Thenthereisan operator S. with (S. O U, || S || < 1) such
that
S = (OuS -01) (02-02%)™

(i.e., © generates all Hankel-norm gpproximants). The state dimension of T, is pre-
cisely equal toN.

PROOF The proof parallelsin a certain sense the time-invariant proof asgiven e.g. in
[BGR9Q], but differsin detail. In particular, the “winding number” argument to deter-
mine state dimensions must be replaced by theorem 10.14 and its corollary 10.15. The
proof consists of five steps.

1. From the definition of S, and using the factorization T = A™U, we know that
ISl = U =-THr | = Ir*(T-T)|| s 1

S0 Siscontractive. Since S= -Ar 4+ UT'H 1, where A and U are upper, the anti-
causal state dimension sequence of Sis at most equal to N, since it depends exclu-
sively on T'5, for which N is the anti-causal state dimension sequence.

2. Define
G G5 :=[s I]e. (10.28)
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Then #(G]) OH(T') and H(G3) O H(T').
PROOF Using S=-Ar14+UT'™ 1, equation (10.28) can be rewritten as
rey Gy = TU® 0o + [-a” rje.

According to lemma 10.16,

Asin the proof of theorem 10.17, thisimplies # (G}) O H(T') and H(G5) O H(T').

3. Equation (10.28) can be rewritten using @~ = JO"J as

S
=l
Gy isboundedly invertible, and S_ definedby § = G1G§1 iswell defined and con-

tractive: || S || < 1. In addition, Ssatisfies S= (0115 - ©12)(Q2n -0, )™ as
required.

- e[ _%12 } . (10.29)

PROOF Asin the proof of theorem 9.6, step 2, we have, for somee > 0,
G[G1+ GG 2el, GG <GJG;. (10.30)

Together, this shows that G5G, = 1/2¢1, and hence G, is boundedly invertible (but
not necessarily in/). With § = G;G2, equation (10.30) showsthat §’S <1, and
hence || S_|| < 1. Evaluating equation (10.29) gives

Gl = 02-025
< 10.31
SG;! = OuS -G (1031)
and hence S= (011§ —O12) (02 -0xnS ) L.

4. G;1OU, thespace H(T') hasthe samedimensionas 4 (055), and (G) O H(G3).
PrROOF According to equation (10.31), Ggl satisfies

Gl = 0xn(1-0,i019)
Gy (I —65%@213_)_195%.

Let p be the dimension sequence of anti-causal states of G, and N> < N be the
number of anti-causal states of G, with N the number of anti-causal states of ©33.
Application of corollary 10.15 with A = O, and B = (I - ©,30,:5 ) shows that
Nz = N+ p, and hence N, = N and p = 0: G,* O, and H(G5) has dimension N.
Step 2 claimed H(G5) 0 #(T'), and because T' hasat most N anti-causal states, we
must have that in fact H(G5) = H(T'), and hence H(G}) O H(G5), by step 2.

5 8 0OU.
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up tn
u tn Vi tip t2 V1
1 t1a Vtra Yt 13 t23 ta3
14 | 113 | Y12 ta tos tos tag
Uz SNANE’ Y2 up )
toaNt23 22
u u
3 e Y3 us Y3
Us ” Ya ug Ya
T = A" U

Figure 10.7.  Trivial external factorization of T.

PROOF Thiscanbeinferred from G, O/, and H(G}) O H(G5), asfollows. § DU
isequivalentto P'(1/»,S ) =0, and

P (UsS.) P'(UpG1G3Y)

P'(P (U2G1)G1)

since G, 0. Using H(GY) O H(G5), or P'(U2G1) O P'(U2Gy) we obtain that

PUS) O P(PUG2)Gl)
= P (UGGl (since Gt O U)
= 0.

10.5 SCHUR-TYPE RECURSIVE INTERPOLATION

Theglobal state-space procedureof the previoussectionsconstructs, foragiven T O U,
an inner factor U and an interpolating operator ©. The procedure can be specialized
and applied to the case where T is a general upper triangular matrix without an a pri-
ori known state structure. The specialization produces a generalized Schur recursion,
which we derivefor an example T.

Consider a4 x 4 strictly upper triangular matrix T,

@ tip tiz tig

0 tx tn
T:
0 tay |’
0
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wherethe (1,1) entry isindicated by a square and the main diagonal by underscores.
For convenienceof notation, and without loss of generality, wemay takel” =1, andthus
seek for T, (a4 x4 matrix) suchthat || T—-Ta || < 1. A trivia (but non-minimal) statereal-
ization for T that has AA”+ CC” = | isobtained by selecting {[0 0 1],[0 1 0], [1 0 0]}
asabasisfor therow space of the second Hankel matrix Hy = [t12 t13 t14], andlikewise
we select trivial bases for Hz and Hy. Omitting the details, the realizations for T and
an inner factor U that result from this choice turn out to be

B |
. . | 1
T1= U= 1
tiy tiz t2 |0 1
i 1
1 1
1 1
To= 1 U, = 1
ta 3|0 L ]
i N
Ts= 1 Us = 1
t34|0 _.|.
T B
To= |— Up= |——

(‘~ standsfor an entry with zero dimensions). The corresponding matricesU and A =
UT are

with input space sequence C* x €% x C% x €9, and output space sequence C! x CT x
C! xCL. All inputs of U and A are concentrated at point 1, and hence the causality
requirementisalwayssatisfied: U O and A OU. Thestructureof A andU isclarified
by figure 10.7.

The global realization procedure would continue by computing a sequence M

Mk+1:Aqu|kA+BIEBk7 M1: []

and using thisto derive © as demonstrated in section 10.2. Notethat it is not necessary
to haveaminimal realization for T (or U). The extra states correspond to eigenvalues
of M that are zero, and hence are of no influence on the negative signatureof A =1-M
(independently of I"). Hence our non-minimal choice of the realization for T does not
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influence the complexity of the resulting approximant T,. For arecursive derivation of
an interpolating matrix ©, however, we proceed as follows. The (trivial) state realiza-
tions T and U are not needed, but the resulting U is used. The interpolation problem
is to determine a J-unitary and causal © (whose signature will be determined by the
construction) such that

u" -tfHe o u u.

Assume that © 0 U (Me,Ne). The signature matrix J; := Jay, IS known from the
outset and is according to the decomposition [U” —T5. Although the signature J, :=
J IS Not yet known at this point, the number of outputs of © (i.e., the space sequence
No) isaready determined by the condition that each © is a square matrix. With the
above (trivia) redizationsof T and U, it followsthat © has a constant number of two
outputs at each point intime. The signature of each output (+1 or ~1) isdeterminedin
the process of constructing ©, which is done in two steps: © = OI1. Here, © is such
that [U” -TH© O [/ U], wherethe dimension sequences of each{ are constant and
equal to 1 at each point; for example

+ + + + - - - - + + - — + 4+ — -
1 g [0]o o ojlojo oo
1 “th, -tm 6= 000 oo0o0
1t Tty g 0o 00
1y -t Aty -ty O u

where the first upper triangular matrix at the right-hand side corresponds to the first
output of each section of ©, and the second to the second output. At this point, the
signature of each column at the right-hand side can be positive of negative: the output
signature matrix of © isJ,, whichisan unsorted s gnature matrix such that 03,06 %=y,
(the signature of the right-hand side in the equation above is just an example). See
also figure 10.8. The second step is to sort the columns according to their signature,
by introducing a permutation matrix M O D, such that J, = M3, is a conventional
(sorted) signature matrix. The permutation does not changethe fact that [U” -THO O
[U U], but the output dimension sequences of each U/ are different now, and are in
general no longer constant. For the above example signature, [A' —B'] has the form

FH+ 4+ - - - o+ o+ o+ - =

1 ] DDDD--D-DDDD

1 -t -ty o - oo --| -0000

1| tp th -ty - afalinlin

1|ty -ty gy - oo
-8

where A’ has as output sequence C? x C2 x CO x C°, and B' has as output sequence C° x
0 x 2 x C2. We now consider these operationsin more detail.
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UD

| ++++

AI

_B’

Figure 10.8. Computational structure of ©, with example signature at the outputs.

Computational structure

© canbedeterminedrecursively innsteps: © = 01)0 ) -+ O, inthefollowing way.
The columns of @ act on the columns of U”and -T™. Its operationson U  are always
causal because all columns of U™ correspond to thefirst point of the recursion (k = 1).
However, for © to be causal, the k-th column of @ can act only on the first k columns
of TH Taking this into consideration, we are led to a recursive algorithm of the form

[Ak BulOw = [Ax:1) Bkin)]

initialized by A1) = U", B() = —T", and where Oy involves

= using columnsn,n—1,--- k+1 of Ay in turn, make the last (n—k) entries of the
k-th column of Ay equal to 0. In particular, the (k+i)-th columnof A, isusedto
make the (k +i)-th entry of the k-th column of Ay equal to zero.

The operations required to carry out each of these steps are elementary J-unitary rota-
tionsthat act on two columnsat atime and make a sel ected entry of the second column
equal to zero. The precise nature of arotation depends on the corresponding signature
and isin turn dependent on the data — this will be detailed later. We first verify that
this recursion leads to a solution of the interpolation problem.
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k=1: using3elementary rotations, theentriest}, t73, t, arezeroedinturn. This

produces
1 000
0 0 OO0 O 0 -t
0 0000 -t -3
0 00 O0 -ty -t -t
k=2
1 00 0|0 o
0 0o 0oglo O
0 00O 0 0 -t
0 00O 0 0 -t3 -t
k=3
1 0000 oo
0 0o 0oo|lo OO
00O00O0 0 00O
0 00O 0 0O -t

k = 4. norotations are required.

Theresulting matricesare upper triangular. Thesignal flow correspondingto thiscom-
putational schemeisoutlined in figure 10.9(a). Note that the computations have intro-
duced an implicit notion of state, formed by the arrowsthat cross a dotted line between
two stages, so that a (non-minimal) realization of © can be inferred from the elemen-
tary operations.

Elementary rotations: keeping track of signatures

We now consider the elementary operations in the above recursions. An elementary
rotation 0 such that 87§10 = j, (j1 and j, are 2x 2 signature matrices) is defined by

[u t]e=[0 0],

where u,t are scalars, and where ‘[0 stands for some resulting scalar. Initially, one
would consider 6 of atraditional J-unitary form:

9—[_23 _13}0%, ccl+ss7=1,c#0

=[]

However, since |s| < 1, arotation of this form is appropriate only if |u| > [t]. In the
recursive agorithm, thisis the case only if TTY < | which correspondsto a * definite’

which satisfies



HANKEL-NORM MODEL REDUCTION 297

O _0 _40 _0
-tn ~Ip i Tty
(k: 15***

0 0 30 -
0 -t —tx —ty

(k=2)
00 —t3; —t5) =
(k=3)
000 -t = U
(a) (k=4)

(b) (k=4)

Figure 10.9. Computational structure of a recursive solution to the interpolating problem.
(@) ©, with elementary rotations of mixed type (both circular and hyperbolic); (b) one
possible corresponding Z, with circular elementary rotations. The type of sections in (&)
and the signal flow in (D) depend on the data of the interpolation problem. The rotations
which cause an upward arrow (ultimately: a state for T) are shaded.
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interpolation problem and leads to an approximant T, = 0. Our situation is more gen-
eral. If Ju| < |t], we require arotational section of the form

A -s 1 1
9_[ 1 - } o’
resultingin [u t]8 = [ 0]. 8 has signature pairs determined by

~ol 1 = -1

o[t ][]
This shows that the signature of the ‘energy’ of the output vector of such a section is
reversed: if [a; by]8, = [az by, then aja’~bsb'= ~a,a} + byby. Instead of ordinary
(j1, j2)-unitary elementary rotations, we thus have to work with J-unitary rotations 6
with respect to unsorted signature matrices ( j1, j»).

Becausethe signature can bereversed at each elementary step, we haveto keep track
of it to ensure that the resulting global ©-matrix is J-unitary with respect to a certain
signature. Thus assign to each column in [UY —T5 a signature (+1 or —1), which
is updated after each elementary operation, in accordance to the type of rotation. Ini-
tially, the signature of the columns of U"is chosen +1, and those of ~T" are chosen
-1. Because © = O(1)O() - Oyy), Where ©;) is an embedding of the i-th elementary
rotation é(i) into one of full size, it is seen that keeping track of the signature at each
intermediate step ensures that

o' |o-%

where J, isthe unsorted signature matrix given by the signatures of the columns of the
final resulting upper triangular matrices. Thetypesof signaturesthat can occur, and the
appropriate elementary rotations 0 to use, are listed below. These form the processors
in figure 10.9(a).

+ —_

1 [JJ ;]:—iﬂ "fc% — [0 071, iflu>
2 [: ;]:"13 —iﬂiciu _ O g], if [u] < |t|
3 [ u T]:"ls —iD:CiD _ [E 01, ifjul<l]
4 [ u Jtr]:_iu _13(:% B J(;], if Jul> |t
s (v )% 8] =10 o
6 [ u ;1_; o = [0 0]
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1000
0100
0010
0001
0 -t —try —tg, O O O k= 1)
000 li\
0 —ty; —t5, —ts O Q k=2
0001 C
0 -ty —th —t5 O oO———
(k=3)
0001
O _i0 _:0
0 -ty s ~lg7 \

C
O
O

—

=

Il
1N
=

W/
0O
W/

00 -tg, —t. C
57 57 N (k: 5)

(k=6)

)
\J

00 -tg,

0000 =——

(k=7)

Figure 10.10. Computational network of an interpolating Z-matrix of a band-matrix (7%7
matrix, band width 3).

(The case |u] = [t| could occur, which leads to an exception.) We can associate, as
usual, with each J-unitary rotation a corresponding unitary rotation, which is obtained
by rewriting the corresponding equationssuch that the‘ +' quantitiesappear ontheleft-
hand sideandthe‘—" quantitiesontheright-hand side. Thelast two sectionsarealready
circular rotation matrices. By replacing each of the sections of © by the correspond-
ing unitary section, aunitary = matrix that correspondsto © is obtained. A signal flow
scheme of apossible X in our 4 x4 exampleisdepictedin figure 10.9(b). The matching
of signatures at each elementary rotation in the algorithm effectsin figure 10.9(b) that
the signal flow is well defined: an arrow leaving some section will not bounceinto a
signal flow arrow that leaves a neighboring section.

Finally, a solution to the interpolation problem [U” -TH© = [A' -B'] isobtained
by sorting the columnsof the resulting upper triangular matrices obtained by the above
procedure according to their signature, such that all positive signs correspondto A’ and
all negativesignsto B'. The columnsof © are sorted likewise. The solution that is ob-
tained thisway is reminiscent of the state-space solution in the previous section, and in
fact can be derived from it by factoring © into elementary operationsas above. Again,
the network of Z is not computable since it contains loops.
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To give an example of the foregoing, suppose that T is a band matrix. It may be
verified that computationson entries off the band reduceto identity operationsand can
therefore be omitted. The corresponding computational scheme is, for atypical ex-
ample, depicted in figure 10.10. A number of ‘0’ entriesthat are needed to match the
sequences in the correct way have been suppressed in the figure: as many trailing ‘0's
as needed must be postpended to make each sequence havelength 7. Therecursivepro-
cedure can be speciaized even further to handle staircase matrices as well, for which
even moreof the elementary computationsare rendered trivial and can be omitted. The
structure of the diagram will reflect the structure of the staircase.

The recursion and the resulting computational network is a further generalization
(to include indefinite interpolation) of the generalized Schur algorithm introduced in
[DD88]. However, the formalism by which the matrices are set up to initiate the algo-
rithmis new.

Computation of the approximant

With © and B' available, there are variouswaysto obtain the Hankel norm approximant
Ta. The basic relations are given in terms of T’ (the upper triangular part of which is
equal to T,) and the operator X associated to ©:

70 = TD+UEE]_2
70 = BIOE:ZL, 95%2222.

Ideally, one would want to use the computational network of X to derive either Uz 15
or B'©3. However, the network that has been constructed in the previous step of the
algorithm is not computable: it contains delay-freeloops, and hence it cannot be used
directly. A straightforward alternativeis to extract ©,, from the network of © (by ap-
plying an input of the form [0 1]), and subsequently use any technique to invert this
matrix and apply it to B'. A second aternative is to work with the (non-causal) state
realization for ~Z which isavailable at this point. From thisone can derive arealization
for the upper triangular part of G)EZD, by using the recursions given in section 10.3.

Thefirst solution can be made more or less ‘in style’ with the way © has been con-
structed, to the level that only elementary, unitary operations are used. However, the
overall solution is abit crude: after extracting the matrix ©22, the computational net-
work of © is discarded, although it reveal s the structure of ©,, and G)g%, and the algo-
rithm continueswith amatrix inversion techniquethat is not very specific to its current
application. The state-space technique, on the other hand, uses half of the computa-
tional network structure of © (the‘vertical’ segmentation into stages), but does not use
the structure within a stage. The algorithm operates on (state-space) matrices, rather
than at the elementary level, andisin thisrespect ‘ out of style’ with the recursive com-
putation of ©. Itisasyet unclear whether an algorithm can be devised that actsdirectly
on the computational network of @ using elementary operations.

10.6 THE NEHARI PROBLEM

The classical Nehari problemis to determine the distance — in the infinity norm— of
agiven scalar functionin Lo, to the space of bounded analytical functions He, [Neh57,
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AAKT1]. Put in another way, it asks to extend a given analytic function to a function
in L such that the norm of the result is as small as possible. Usually, a sub-optimal
version of the problemisdefined: the norm of the result should be smaller than agiven
bound.

For time-invariant systems, the solutionsare well-known and derived using interpo-
lation or Beurling-L ax representation theory. For time-varying systems, an early state-
ment and proof appearsin thework of Arveson[Arv75,thm. 1.1] on operatorsin anest
algebra. A comparable result has been obtained by Gohberg, Kaashoek and Woerde-
man [Woe89, GKW89, GMW91] in the context of block matrix and operator matrix
extensions. Their solutions are recursive on the entries of the block matrix: it is possi-
bletowork fromtop to bottom, adding rowsto the extension found so far, in such away
that the resulting matrices remain contractive. The time-varying Nehari problem was
perhaps first solved in [DvdV93]. An independent solution appearsin [HI94], which
however assumes the invertibility of A.

Placed in our context, the Nehari problem isto find, if it exists, an extension to a
given operator T O ¢/ to T' O X such that the norm of T’ is as small as possible, or
smaller than a given bound. The theorems given in section 10.2 contain an implicit
solution of such aproblem, for operators T which haveau.e. stable, uniformly observ-
ableredlization. If I in (10.7) is chosen such that all local Hankel singular values are
uniformly smaller than 1, then T' = (B'©,3I") ” obtained throughlemma 10.3is alower
(O £) operator and the state sequence x- is of dimension zero: #(B-) =0and Jz = I.
Such a T’ isknown as the Nehari extension of T: itissuchthat ||[IT1(T-T')|| < 1s0
that, when | T 1T |4 < 1, there exists an extension E 0 X’ such that the upper part of
E isequal to M1T and E is contractive. The Nehari problem isto find E or, equiva-
lently, T'. This problem can also be viewed as a distance problem: given T O Zi/, find
an operator T' O £ that isclosest to it, in the sense that | T—T'|| is minimized.

Theorem 10.19 If T isabounded upper operator which has alocally finite u.e. stable
and uniformly observable realization, then

Tlw = inf | T=-T"]. 10.32
ITln = inf I T-T'| (1032

PROOF Letd = || T||n and consider the operator (d 4+ €)™ T for some e > 0. Then,
withT =d+¢,r:=| (d+¢)7r T ||y < 1 and lemma10.4 applies. Since the largest
singular value of any local Hankel operator of (d + €)™T is majorized by r, we have
that the sequence of singular valueslarger than one is zero, so that G)g% OUandT =
(B'@33(d+¢))isalower operator. Lemma 10.4 ensures that

Id+e)™(T-T)| <1

by construction, and hence
IT-T'|| < d+e.

Lettinge | Oachieves(10.32). Thereverseinequality isobviousfrom proposition 10.2.
m|
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All possible Nehari extensions are parameterized by the set of contractive upper op-
erators § , asaspecia case of theorem 10.18.

A state-space realization of the “maximum entropy” or “central” Nehari extension
T’ for which S = 0 can be obtained as a special instance of the method presented in
section 10.3, and does not need the upward recursions because the dimension of x- is
zero. Theresult is a closed-form solution: it is specified solely in terms of the given
state realization operatorsof T.

Theorem 10.20 Let T O U be a strictly upper locally finite operator with realization
{A,B,C,0} in output normal form. If || T ||y < 1 thenT has a Nehari extension E =
T-T' 0 X suchthat E iscontractiveand the strictly upper part of E isequal to T (i.e.,
T'P0U). A redlization of T'D, i.e., the upper part of —EU, is given by

Ae = Al = (I —AEMA)‘iBEB)
B 2 AL AU
De = C'MA(1 -ARVA) 1B

whereM satisfiesM(™1) = ABMA + B™B.

PrROOF The existence of the Nehari extension has already been proven: with" =1, it

suffices to take T'Y = B'®,3, where B’ and © are asin lemma 10.3 and 10.4. Let By
and Dy be such that
U= [ A C }

Bu Du
is a unitary realization of the inner factor U of the external factorization of T. The
readlization © has the general form of equation (10.13) (with ' = 1), but since Jz =
|, al negative signature is associated with Do, which implies that D3 exists and is
bounded, and also that D»; can be chosen equal to zero (asin [DD92, thm. 3.1]). Hence
we consider aredlization of © of theform

[R " AlC C R(-D) -‘
I R B

where the first column of the operator matrix in the middle is specified, and an exten-
sion by asecond and third columnisto be determined, aswell asastate transformation
R, such that © is J-unitary. We use the fact that U is unitary to derive expressions for
entriesin ©. Let, as before, A bethe J-Gram operator, which is hereequal to A = R'R
(recall that Jg = 1). The remainder of the proof consists of 6 steps.

1. C = Alca,
Du = Dya, wherea = (CPA™IC+DjDy)™/2.
PrROOF The J-unitarity relations between the first and second block column of ©

lead to
AAC1+BjDn = O
CIAC1+DD1n = 1.
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Thefirst equation shows that, for some scaling a,

o] e

The scaling a follows from the second equation.

0

. CZEb—i— DE'ZDU =0.
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PROOF The J-unitarity conditions between the second and third column lead to

CINC;+DpD1, = 0
a GEbEbz—I-G[DEDlz = 0.

B' = C'M(1-AZ)"C,.

PROOF A state-space model of B’ was given in equation (10.23) as
B' = {-DgD12-CH(1-M)C,} + C"MAZ(1 -AZ)"IC;,.

Using the result of step 2 gives the intended simplification.

'H= B0, =C™M (I -[A-C,D33B]2)1C,DL3.
PROOF Let Ac = A—C;D52B. Then, because ©53 O U,

N=BO,l = [CM(1-AZ)73C,] D52 - D5ABZ(1 - AZ) 2C,DZ]
= CM(1-AZ) [I -C2D;2BZ(1 - AZ) Y] CoD34

= CM(1-AZ) ™ [(1 -AeZ) ~CoDBZ] (1 - AeZ) 'C;D%3

CIM(1 -AZ)Y(1 - AZ) (1 - AeZ) 1C,D33 .

. CoD52 = A(I-A"MA)1B".
PROOF The J-unitarity conditionsimply

{ A C f' A W [ C ]
By Du | D | =0
[ B O J -l J [ D2 |
A c 1°TA C, ] [8°
- [BU D11} 'HDH}_O}DZ
o [CD3 A alB
DlZDE% | D11 0
_ /\A Ca ] [(ACY +BB) B
- I| |Bu Dya 1|0
_ 1) +BEB) 185}
B _BU (/\ ) + B'B)1B"




304 TIME-VARYING SYSTEMS AND COMPUTATIONS

where we have used the fact that

A7 B} 1[AA Ca | _ [AD4BB
C{ D Bu Dua | I
Finally, using M = | = A, where M satisfies MY = ABMA + B™B gives ACY +

BB =1-AMA.
6. T'"= De+ BeZ(l —AcZ) 1Ce, Where { Ae, Be, Ce, De} are asin equation (10.33).
PrROOF From step 4,

TY = CM(I1-AsZ)CD53
C'MC,D53 + C'MALZ(1 = AcZ) *CoD353

where Ac = A-C,D52B. It remainsto substituteC;D53 = A(I -A"MA) 1B O

Numerical example

We illustrate theorem 10.20 with a numerical example. Let T be given by the strictly
upper matrix

0 326 .566 .334 .078 -.008 -.012 -.003
0O 0 .326 .566 .334 .078 -.008 -.012
0O 0 0 32 566 .334 .078 -.008
T_|0 0o 0 0 36 566 .33 .078
O 0 0 0 0 .36 .56 .334
o 0 O 0 0 0 .32 .566
o 0 0o 0 0 0 0 .32
o o o o 0 0 0 0]

Thenormof T iscomputed as || T || = 1.215, and T has Hankel singular values equal
to

Hi Hx H3 Hs Hs He H; Hs

7385 .9463 .9856 .9866 .9856 .9463 .7385
.2980 .3605 .3661 .3605 .2980
.0256 .0284 .0256

sothat || T |4 = .9866 < 1. The objectiveisto extend T with a lower triangular part
such that the operator norm of the result isless than 1.
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A realization for T is obtained viaalgorithm 3.9 as

S I _
~.739 | .000
[.733 -517 .000 —.442]

T,— | 508 -012 -084| 87| T,_
[—.738 ~000 .000 | .oooJ
( 738 -509 .000 | -.442

509 -.005 .076| .857

Ts=| 424 845 192|-264| Te=
| -.734 .000 .000| .000
[ —.867 | —.499

T,— | 499 |-867 Tg—
L 326 | .000

Theorem 10.20 gives arealization of T'" as

T = - T, =

' | 000] .ooo] 2
-124 -517 .000 |-1.161]

T,— | 025 -.012 -084|-.654 T/ _
| 074 281 -.018| .494|
121 -509 -.000 |-1.171]

, 027 -005 076 | -656|

Ts=| 205 845 .192|-176| Te=
| 080 .303 .021| .519
[ 702 ‘ ~ 504

T, = 404 | .290 T, =
| 324] 233

and the resulting Nehari extension follows as

(

E=T-T' =

[eNeoNoNoNeoleNeNe]

|

326 .566 .334
-.233 326 .566
076 -494 326
.003 .267 -.519
-.011 -050 .295
.003 -.013 -.050
.000 .003 -.011
0 0 0

E isindeed contractive: | E|| = .9932.

-.519

733 -517 | —-.442

| —.738 .000 | .000
[ 733 -517 -.000
508 -.012 -.084| .857
430 836 -.212| -.265

|-.738 -.000 .000| .000
[ 780  .441 | -.444
506 -.026| .862
-369 .897| .244

| —654 —.000| 000
-] 1.000
.| .000

—-.442

021 -517 | —.965

| -005 .125| .233
'-130 -.517 -.000
023 -.012 -.084
296 836 -.212

.084 .306 -.024
062 441
114 -.026

-.289 .897

—006 -272]
- | .000
|- | .000

—-1.168
-.657
-.183

| 519
~1.0s8

-.601 ‘

122
494

.078
.334
.566
.326

-.008
.078
334
.566
.326

-.494
.076

0

-.012
-.008
.078
334
.566
.326
-.233
0

-.003
-.012
-.008
.078
334
.566
.326

.267
.003
0
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10.7 CONCLUDING REMARKS

In this chapter, we have presented an approximation schemeto derive, for agiven up-
per triangular matrix T, a Hankel-norm approximant T, of lower complexity. A model
of T, can be computed starting from a high-order model of T (obtained e.g., by algo-
rithm 3.9) by applying algorithm 10.5. However, the derivation of amodel for T can be
computationally intensive: itinvolvesasequenceof SV Dsto computetherelevant sub-
spaces. An alternative approach is via the algorithm discussed in section 10.5, which
acts directly on the entriesof T. Only local computations are needed to obtain © and
B'. Further researchisrequired to efficiently compute T, asthe upper part of (B’@g%) o
adirect computation is not really satisfactory in view of the fact that © is obtained in
afactored form.

A second open problem is the selection of a suitable error tolerance matrix I'. At
present, one has to choose some I, which then results in an approximant with a cer-
tain complexity. It is, asyet, unclear how to obtain the reverse, i.e., how to derive, for
agiven desired complexity of the approximant, the tolerance I that will achieve this
complexity.



]. ]. LOW-RANK MATRIX
APPROXIMATION AND SUBSPACE
TRACKING

The usual way to compute alow-rank approximant of amatrix H isto takeits singular
value decomposition (SVD) and truncate it by setting the small singular values equal
to 0. However, the SVD is computationally expensive. Using the Hankel-norm model
reduction techniquesin chapter 10, we can devise a much simpler generalized Schur-
type agorithm to compute similar low-rank approximants. Since rank approximation
plays an important rolein many linear algebraapplications, we devote an independent
chapter to thistopic, even though this leads to some overlap with previous chapters.

For a given matrix H which has d singular values larger than y, we find all rank d
approximants H such that H —H has operator norm (matrix 2-norm) less than y. The
set of approximantsincludesthe truncated SV D approximation. The advantagesof the
Schur algorithm are that it has a much lower computational complexity (similar to a
QR factorization), and directly produces a description of the column space of the ap-
proximants. This column space can be updated and downdated in an on-line scheme,
amenable to implementation on aparallel array of processors.

11.1 INTRODUCTION

Fast adaptive subspace estimation plays an increasingly important role in modern sig-
nal processing. Itformsthekey ingredientin many sensor array signal processing algo-
rithms, system identification, and several recently derived blind signal separation and
equalization algorithms (e.g., [MDCM95, Sl094, vdV P96, vdV TP97]).

307
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The generic subspace estimation problem in these applications might be stated as
follows. Supposethat we are given amatrix H : mxn, consisting of measurement data
which becomes available column-by-column. Furtermore, suppose that it satisfies the
model H = H + N, where H isalow rank matrix and N isadisturbance. Knowing only
H, we can try to estimate H by solving

min ||[H-H| st rank(H)=d (11.1)
H

where || - || denotes the matrix 2-norm (largest singular value). The value of the rank
d is either given or is estimated from the singular values of H. The usua truncated
SVD (TSVD) solutionisto set al but the largest d singular values of H equal to zero.
In subspace estimation, we are primarily interested in the column span of H. For the
TSVD solution, this space is estimated by the span of thefirst d left singular vectors of
H, the so-called principal subspace.

Continuing efforts on SVD agorithms have reduced its computational complexity
to be mainly that of reducing a matrix to a bidiagonal form: not much more than the
complexity of a QR factorization. However, aremaining disadvantage of the SVD in
demanding applicationsisthat it is difficult to update the decomposition for agrowing
number of columnsof H. Indeed, there areimportant applicationsin signal processing
(e.g. adaptive beamforming, model identification, adaptiveleast squaresfilters) that re-
quire on-line estimation of the principal subspace, for growing values of n. A number
of other methods have been developed that alleviate the computational requirements,
yet retainimportant information such as numerical rank and principal subspaces. Some
of thesetechniquesarethe URV decomposition[Ste92], whichisarank revealing form
of a complete orthogonal decomposition [GV89], and the rank revealing QR decom-
position (RRQR), [Fos86, Cha87, CH90, CH92, BS92, Cl94], see [CI94] for areview.
Both the RRQR and the URV a gorithms require estimates of the conditioning of cer-
tain submatricesat every step of theiteration. Thisisaglobal and data-dependent oper-
ation: not avery attractivefeature. The SVD and URV decomposition can be updated
[BN78, Ste92], which is still an iterative process, athough it has been shown recently
that asimpler scheme isfeasibleif the updating vectors satisfy certain stationarity as-
sumptions[MVV92, MDV93]. Aninitial computation of the RRQR consists of an or-
dinary QR, followed by an iteration that makes the decomposition rank revealing. As
a one-sided decomposition, the RRQR is easier to update than an SVD, but also re-
quires (incremental) condition estimations at each updating step. Alternatively, there
are efficient subspace tracking al gorithmswhich under stationary conditionsgradually
converge towards the principa subspace, e.g., [ Yan95].

Asan aternative, we consider atechnique based on the Hankel -norm approximation
theory of chapter 10. It is based on the knowledge of an upper bound to the noise,
|N|| <, and gives a parametrization for all H that satisfy

minrank(H) st [[H-H| <. (11.2)
H
It is readily shown that the resulting approximants H have rank d, whered is equal to

the number of singular valuesof H that arelarger thany. The TSVD iswithintheclass,
but itisnot explicitly identified. The prime advantage of the resulting techniqueisthat
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it gives subspace estimates that have the correct dimension and a known performance
(projecting H onto the estimated subspace givesan H such that ||[H-H || < y), but are
substantially easier to compute and update than the TSVD.

The connection to the theory in chapter 10 is obtained by looking at a special case
of our usua operator T OU (M, N), inwhich

M= .- 000 Mg O ¢ O 00--
N = .- 000 0 0O N O 00-:--.

A matrix T O U/ hasthe form

T
T= 2 =Ty,

thatis, T = Ti» isjust any matrix of any size. Itsonly nonzero Hankel matrixisH = Tyo.
In this chapter, we work out the implications of this specialization.

The computation of the* Schur subspace estimators’ (SSE) that result from thistech-
niqueis based on an implicit signed Cholesky factorization

HH"-y?l =: BB"-AA"

where A, B have minimal dimensions. Thus, the spectrum of HH"is shifted such that
the small eigenvalues become negative, which enables their separation from the large
eigenvalues. It isreadily shown from inertia considerationsthat, even though A and B
are not unique, if H has d singular values larger than y and m—d less than vy, then B
hasd columnsand A hasm—d columns. The main result in this chapter isthat, for any
such pair (A, B), all principal subspace estimates |eading to approximants H satisfying
(11.2) are given by the column span of B— AM, where M is any matrix of compatible
size with ||M|| £ 1. The factorization can be computed via a hyperbolic factorization

Y H]® = [(A0) (BO)]

where © is a J-unitary matrix.

Straightforward generalizations are possible. Suppose that instead of ||N|| <y, we
know NN < y2Ry, where Ry could be an estimate of the noise covariance matrix.
An implicit factorization of HHY-y?Ry leads to minimal rank approximants H such
that || R&l/Z(H -H)|| < y. The subspace estimates are computed from [N H]©® =
[(A 0) (B 0)] whereN isany matrix such that NN” = y?Ry, and are till given by the
range of B-AM, for any ||[M|| < 1. Hence, without extra effort, we can take knowl-
edge of the noise covariance matrix into account. Note that, asymptotically, a suitable
N simply consists of scaled sample vectors of the noise process. |f we have access to
this process (or can estimate noise vectors via subtraction of the estimated H), then it
isinteresting to consider updating schemesfor N aswell asfor H.

11.2  J-UNITARY MATRICES

At thispoint, we review and specialize somematerial on J-unitary matricesfromearlier
chapters. A squarematrix @ isJ-unitary if it satisfies@JO =J, ©JO"=J, whereJis
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In: [r X with signature j1; out: 8, j> suchthat [r X8 =[r' 0], 8,67 = ji:
casel = 1 _1i Jrl> X O j~2:_l =15 S:X/rvé:i—im _15%
case2. ji= |t _1: < O f=|" 1 s=r/x, 8= - _ED —15%
e fi=[t m<w o B=[t | semxe=[ T L2
cased. 1= 1 1i Arl> X O ]~27'—1 1i7 s:x/r,é:i_iu _13%
case5. j~1:i1 1} O i~2:i1 1}a Sfx/m 6= [ZE _CS}
case6. ji= i_l _1} 0 J2= i_l -1} - 8= e 0= { ZE _Cs}
Wherec:\/l——lsl2

Figure 11.1.  Elementary J-unitary zeroing rotations

asignature matrix which follows some prescribed (p+ q) % (p+ q) block-partitioning
of ©:

P g
_p |Ou Op [ Ip
o= [@21 @22}, J= [ " } . (11.3)

If © is applied to a block-partitioned matrix [A BJ, then [A B|o =[C D] O AAU-
BB" = CCY-DD". Hence, J associates a positive signature to the columnsof A,C, and
a negative signature to those of B, D.

For updating purposes, it is necessary to work with column permutations of [A B]
and [C D], whichinducesrow and column permutationsof ©. Thusweintroducematri-
ces O that are J-unitary with respect to unsorted 1signature matricesJ (thetilde reminds
of the absence of sorting), satisfying 83,0 = J,, 65,0"= J;, where J; and J; are di-
agonal matriceswith diagonal entries equal to +1. If M® = N, then Mj;M“= NJ,NE,
sothat J; associatesits s gnatureto the columnsof M, and J, associatesits s gnatureto
the columns of N. By inertia, the total number of positive entriesin J; has to be equal
to that in J, and likewise for the negative entries. L L

A 2x2matrix 6 isan elementary J-unitary rotationiif it satisfies 8710 = j», 8j,6"=
j1, for unsorted signature matrices |1, j. Similar to Givensrotations, it can be used to
zero specific entries of vectors: for a given vector [r x| and signature j1, we can fi nd
8,1, and j, suchthat [r x]8 = [r' 0]. The precise form that 6 assumes depends on j;
and whether |r] > || or |r| < ||, aslisted in figure 11.1. Cases5 and 6 in the table occur
when j; is definite and lead to ordinary circular (unitary) rotations. Situations where
Ir| = |x] with an indefinite signature j; are degenerate (c = 0): the result [0 0] is well
defined but 8 must be considered unbounded.
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A matrix Ais said to be J-nons ngular, with respect to a certain signature matrix J,
if AJA”is nonsingular. It isimmediate that if A is J;-nonsingular and @ isa (J1, J,)-
unitary matrix, then A® is Jo-nonsingular. The following basic result claims that J-
nonsingular matrices can be factored (cf. corollary 8.18):

Theorem 11.1 A matrix A: mx (m+ n) isJ;- nonsingular if and only if there exists a
signature matrix J> anda (Jl, Jz) -unitary matrix O such that

AQ = [X Omxn), X :mxm, invertible. (11.4)

PROOF Sufficiency is obvious. Asto necessity, assumethat Ais J-nonsingular. Then
we can factor AJ;AZas

AJZAT=XJIXP,  X:mxm, invertible,

for some mx m signature matrix J'. This factorization exists and can in principle be
computed from an LDU factorization with pivoting, or from an eigenval ue decompo-
sition of AL A”. Since A is Ji-nonsingular, it is also nonsingular in the ordinary sense,
sothat thereexistsamatrix T : (m+ n) xm, suchthat AT = X. T isnot unique. Because
X isinvertible, we can take

T = JANAJAY) X,

Using (AJ;AD) 1 = X~U3"X 1, itisdirectly verified that this T satisfies T-J, T = J'. The
remainder of the proof istechnical: we haveto show that T can be extended to asquare,
J-unitary matrix. For this, see the proof of lemma 8.16. O

Corollary 11.2 Let A: mx(m+n) beJ:- -nonsingular. Denote by A . i the submatrix
of A, consisting of itsfirsti rows. Then thereex:stsas:gnaturematrliz, and a(Jl,Jz)
unitary matrix © such that

AD = [R Omxnl, R: mxm, lower triangular, invertible

if and only if Aq ;.. isJd;- nonsingular, fori =1,....,m. If the diagonal entries of R are
chosen to be posi itive, then R is uni que.

Such afactorization was proven in [BG81] for square matrices A and upper triangular
R, but this result extends directly to the rectangular case. In [BG81], it was called the
HR-decomposition, and it is a'so known as the hyperbolic QR factorization [OSB91].

11.3 APPROXIMATION THEORY

Central approximant

For a given mx n data matrix H and threshold y, denote the SVD of H as

H=Usv'=[U, Uz][ = % } {VP}

s (11.5)
(Zi >y, (22i<y.
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Here, U and V are unitary matrices, and X is adiagonal matrix which containsthe sin-
gular values oy of H. The matrices are partitioned such that >; contains the singular
valuesthat are strictly larger than y, and X, contains those that are equal to or smaller
thany.

Supposethat d singular valuesof H arelarger thany, and that none of them are equal
toy. Our approximation theory is based on an implicit factorization of

HH"-y?l = BBY-AA". (11.6)

This is a Cholesky factorization of an indefinite Hermitian matrix. A and B are cho-
sen to have full columnrank. They are not unique, but by Sylvester’sinertialaw, their
dimensions are well-defined. Using the SVD of H, we obtain one possible decompo-
sition as
HH"-yl = U1 (21 -y1)U7 + Uz(23-y?1)U7,

wherethefirst term ispositive semidefiniteand hasrank d, and the second termisnega-
tive semidefinite and hasrank m—d. Hence, B hasd columns, and A hasm—-d columns.

To obtain an implicit factorization which avoids computing HHY, we make use of
theorem 11.1.

Theorem 11.3 LetH : mxn haved singular values larger thany, and none equal toyy.
Then there exists a J-unitary matrix © such that

Mim Hl® =[A B] (11.7)

where A' = [A Ogxd], B' = [B Onn-d], Aimx (m-d), B:mxd, and [A B] is of full
rank.

PROOF Thematrix [ylm H] isJ-nonsingular: by assumption, y’I ~-HHhasd negative,
m-—d positive, and no zero eigenvalues. Hence theorem 11.1 implies that there exists
O : [Yim H]® = [X Omxn]. The columns of X are the columns of [A, B], in some per-
muted order, where A, B correspond to columns of X that have a positive or negative
signature, respectively. After sorting the columnsof [X 0] according to their signature,
equation (11.7) results. ]

Note that, by the preservation of J-inner products, equation (11.7) implies (11.6).
From the factorization (11.7), we can immediately derive a 2-norm approximant satis-
fying the conditionsin (11.2). To thisend, partition © according to its signature J into
2x2blocks, likein (11.3).

Theorem 11.4 LetH : mxn haved singular values larger thany, and none equal toyy.
Define the factorization [yim H]© = [A' B'] asin theorem 11.3. Then

H=B03 (11.8)
isarank d approximant such that |H-H || <.

PROOF H is well-defined because O, is invertible (cf. theorem 8.2). It hasrank d
becauseB' = [B 0] hasrank d. By equation (11.7), B’ = yl©12 + HO2,, henceH-H =
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-y©1,03. The proof follows from the fact that ©1,05 is contractive (theorem 8.2).
O

We mentioned in the introduction that the column span (range) of the approximant
isimportant in signal processing applications. From theorem 11.4, it is seen that this
column span is equal to that of B: it is directly produced by the factorization. How-
ever, remark that [A B] in (11.7) isnot unique: for any J-unitary matrix ©1, [A; B1] =
[A B]O; aso satisfies y?| -HH"= A;AT- BB, and could also have been produced
by the factorization. E.g., for some choices of ©1, wewill haveran(B) = ran(U;), and
ran(A) = ran(U;). Using ®1, we can find more approximants.

Parametrization of all approximants

We will now give aformulaof al possible 2-norm approximants H of H of rank equal
to d; there are no approximants of rank less than d. As usual, the set of all minimal-
rank 2-norm approximantswill be parametrized by matrices S_ : mxn, with 2x 2 block
partitioning as

S_:;Wd [(51_)11 (51_)12}7 (11.9)

and satisfying the requirements

(i) contractive: ||S || <1,

(i) block lower: (S)12 =0. (11.10)

The first condition on S will ensure that ||H - H || <y, whereas the second condition
isrequired to have H of rank d.

Theorem 11.5A With the notation and conditions of theorem 11.4, all rank d 2-norm
approximantsH of H are given by

H = (B-AS)(02-025)™",
whereS_ satisfies(i): || S || < 1, and (ii): (S.)12 = 0. The goproximation error is
Si=H-H = y(OuS -012)(02-025)". (11.11)

PrROOF The proof isaspecial case of the proof of theorem 10.18. See also [vdV96].
O

By this theorem, an estimate of the principal subspace of H is given by R(I:l) =
R(B'-AS) =R(B-A(S)n), for any vaid choice of § . Note that (S )11 ranges
over theset of all contractive (m—-d) xd matrices, so that all suitable principal subspace
estimates are given by

ran(B—AM), M| <1.

Thedistance of asubspace estimate with the actual principal subspace, ran(U; ), ismea-
sured only implicitly, in the sense that there exists an approximant H with this column
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spanthatisy-closeto H. Actually, for each subspace estimate there are many such ap-
proximants, since the subspace estimate only depends on (S_)11, whereas the approx-
imant also dependson (S )21 and (S.) 2.

The choice of aparticular approximant H, or subspace estimate ran(l:| ), boilsdown
to a suitable choice of the parameter S_. Various choices are interesting:

1. Theapproximant H in theorem 11.4 is obtained by taking S_ = 0. This approximant
is the simplest to compute; the principal subspace estimate is equal to the range of
B. The approximation error is given by y|| @1265% |l. Note that, evenif al nonzero
singular valuesof H arelarger than y so that it ispossibleto have H = H, the choice
S = Otypically doesnot give zero error. Hence, thissimplechoiceof § could lead
to ‘biased’ estimates.

2. Asthetruncated SV D solution satisfiesthe requirements, thereisan § whichyields
this particular solution and minimizes the approximation error. However, comput-
ing this§ requiresan SVD, or ahyperbolic SVD [OSB91].

3. Itis sometimes possible to obtain a uniform approximation error. First write equa-
tion (11.11) in amore implicit form,
{V_lg-;}_{@n @12}[5}_}
-G O O2 =ln |’

where G isan invertible n x n matrix. This equationimplies
Gy ?SS-1)G = §'S - In.

Suppose m< n. If we can take §_ to be an isometry, § ' = I, then rank(S'S. -
In) = n—m. It followsthat y *Smust also be an isometry, so that all singular values
of SSH-H are equal toy: the approximation error isuniform. § can be anisom-
etry andhave (S_)12 =0onlyif d=2m-d, i.e,d=m/2. Inthat case, we can takefor
example S = [l 0]. Thisapproximant might have relevancein signal processing
applicationswhereasingular datamatrix is distorted by additive uncorrelated noise
with a covariance matrix o2l .

4. If wetake S_ = 7701y, thenwe obtain H = H and the approximation error is zero.
Although this §_ is contractive, it does not satisfy the condition (S )12 = 0, un-
lessd = mor d=n. Simply putting (S_)12 = 0 might make the resulting §_ non-
contractive. To satisfy both conditions on § , a straightforward modification is by
setting

- lg (01012)11 O
=010 = 1 11.12
S = Oudr { On-d } (011012)21 O ( )
The corresponding approximant is
H® = (B' - A©11012[ 1) (022~ 021071012[ 5 1) 2, (11.13)

and the corresponding principal subspace estimate is given by the range of
B := B-A(G11012)11. (11.14)
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The subspace estimateis“ unbiased” in asense discussed below, and isusually quite
accurate when oy is not very close to y. Its efficient computation is discussed in
section 11.5.

The approximation error is determined by
A 0 - _
s—H-AV—you| ¥ | | (©@z-ouoioulil)t (119

This shows that the rank of Sisat most equal to min(m,n—d). If m= n, then the
rank of Sism—-d, i.e., theerror hasthe samerank asatruncated SV D solutionwould
give.

. Toimproveon the approximation error, we proposeto take (S )11 = (@1}@12) 11, @S
inthe previousitem, and usethe freedom providedby (S )21 and (S_)22 tominimize
the norm of the error. The subspace estimateisonly determined by (S )11 andisthe
same as before. Instead of minimizing in terms of S, which involves a non-linear
functionand acontractivity constraint, we make use of thefact that we know already
the column span of the approximant: we arelooking for H = BUN, with B(Y) given
by (11.14) and N : d x n aminimizer of

|mnnH—§”Nw

A solution is given by N = B(WTH, and the resulting approximant is

H = BOBDH
2 (11.16)

)

theprojection of H ontoran(B(Y)). Althoughwe do not computethe § towhichthis
approximant corresponds, the residua error is guaranteed to be less than or equal
toy, because it is at most equal to the norm of Sin (11.15). Hence, there will be
some S_ that satisfies the constraints, although we never compute it explicitly. For

this § , the rank of the residual error is always at most equal to m—d, the rank of
Im-BOBOT,

One other important feature of the subspace estimate B in (11.14) isthat it is un-

biased, in the following sense.
Lemma 11.6 ran(BY) Oran(H).
PrROOF From [(A 0) (B 0)] = [A’' B'] = [yl H]O,wehave

{[A 0 = yOu+HO2
[B 0 = yOp+HO»
Hence

BY 0 = B 0-[A 0]91%@12{| o}

= (YO12+HOx») - (YOu + H@zl)@ﬁ@lz[ ! 0 }

= H(Oxp-021071012) [l O} + HO» [0 J + YO12 {O J
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50 that
B |
BY = H(O2-0,07}01,) { 0 } :

O

We aso have
B[ <|H. (11.17)

Thisshowsthat, although normsof J-unitary matricesmay belarge, thisparticular sub-
space estimate is bounded in norm by the matrix it was derived from.

Because they will be used throughout the chapter, we will give names to the two
“Schur subspace estimates’ B and B(V:

SSE-1: Usg1=B (11.18)

SSE2:  Ussr—B-AMo, Mo = [Im 0]@{%@12{ ¢ } (11.19)

11.4 HYPERBOLIC QR FACTORIZATION

In this section, we consider the computation of the SSE-1 subspace estimate, i.e., the
actual construction of a J-unitary matrix © such that

iy HO=[A B, J:[Im _In}.

We arelooking for algorithmsthat do not square the data and that allow easy updating
of the factorization as more and more columns of H areincluded (growing n). © will
be computed intwo steps. © = OI1, where©isa(J, J})-unitary matrix with respect to
J and an unsorted signature J> and is such that

+ - + *

[Vim H]&= [El Omn],  R:mxm. (11.20)

M isany permutation matrix such that MJ,M"= J is asorted signature matrix. Thelat-
ter factorization can be viewed as a hyperbolic QR factorization, in case R has atrian-
gular form, and can be computed in a number of ways. Hyperbolic Householder trans-
formations have been employed for this purpose [BG81, OSB91], zeroing full rows at
each step, but the most el ementary way isto use elementary rotationsto create one zero
entry at atime, like Givensrotationsfor QR factorizations. Such techniquesareknown
as (generalized) Schur algorithms, because of their similarity to the Schur method for
Toeplitz matrices.

Indefinite Schur algorithm

To compute the factorization (11.20), elementary rotations 8 asin figure 11.1 are em-
bedded in planerotations ©; ) which are applied to the columnsof [yl H] inthe same
way as Givens rotations are used for computing a QR factorization. Each plane rota-
tion producesazero entry in H; specifically, ©; x) annihilatesentry (i, k). A difference
with QR isthat we haveto keep track of the signatures associated to the columns of the
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X Y]i=[Vim H]

=" ]

= lmtn
fork=1tonandi=1tom,
[a b]:=[X(i,i) Y(i,k)]
~ [ 36,0 0
121 00 Jmekm+k)
Compute 8, j» froma,b, j1 st. [a b]d = [0 0]
Embedéinto é(Lkl

(X Y]:=[X YOk
=00y
J(i,1) == (j2)11
(Mm+k m+K) = (J2)22
end
-y

Figure 11.2. Schur algorithm to compute the factorization [yl H]é: [X O] from H.

matrix to determinewhich type of rotationsto use. Thegeneral scheme, however, goes
asfollows:

+ 4+ o+ -
[y X oxox Xl
[yl H] = % X X X X
i X X X x|
R + - - -
[ x 0 x x x| 1
Xy X X X X N
X X X X X
R + - - -
[ x 0 x x x]
X X 0 x x x N
X Xy X X X X
- 4+ - + 4+ - -
Omn [ x 0 00O
o X X 0 0 0 0|=[R O],
| x x 0 00O
o= é(171)é(271) "'é(ml) 'é(l-,Z) "'é(2=2) "'é(mﬁ)‘
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col.3col.2col.1
a(j1)u X17(i~2)11
H Jl) e X2, (12)22
8
? X1 Xo] =[a b]®

Figure 11.3. Signal flow graph of the Schur algorithm. Associated to every matrix entry

D

is also its signature (+ or —). R contains a permutation of [A B] and is initialized by yl.
The shaded processors compute rotation parameters as in figure 11.1.

(Except for thefirst matrix, the signatures of the columnsin the above matrices are ex-
amples, as they are data dependent.) The pivot elements at each step are underlined;
these entries, along with the signatures of the two columnsin which they appear, de-
termine the elementary rotation 6 that will be used at that step, as well asthe resulting
signature j». Thissignatureisthe new signatureof thesetwo columns, after application
of therotation. The algorithm is summarized in figure 11.2.

The nulling scheme ensuresthat [yl H]® = [R 0], where Ris a resulting lower
triangular invertible matrix; it containsthe columnsof A and B in some permuted order.
The columns of R with a positive signature are the columns of A, the columnswith a
negative signature are those of B. Hence, thefinal step (not listed figure 11.2) isto sort
these columns, such that [R 0] = [A 0 B 0] = [A' B]. Then ® = 6 is J-unitary
with respectto J, and [yl H]© = [A’ B].

The complexity of the algorithm is similar to that of the QR factorization: about
1/2nPn rotations, or 2m?n flops. The Schur algorithm has a direct implementation on
asystolic array of processors. Thisarray isentirely similar to the classical Gentleman-
Kung triangular Givens array [GK81b], except that, now, all data entrieshave asigna-
ture associated to them, and the processors have to perform different types of rotations,
depending on these signatures. The corresponding array is shownin figure 11.3.

Updating and downdating

The Schur methodis straightforward to update as more and more columnsof H become
known. If [yl Hn]©,) = [Ra 0] isthe factorization at point n and Hny1 = [Hn hnya],
then, because the algorithm works column-wise,

\, Hn+1]en+1 [Royr O] O [Rn 0 h+1lén+1 Rtz 0 O
Onr1) = On)BM*
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for some J-unitary matrix B(+1) acti ng on the columns of R, and on hy, ;. Hence, we
can continue with the result of the factorization that was obtained at the previous step.
Each update requires about 1/2n? rotations.

The downdating problemisto computethe factorization for Hy withitsfirst column
h; removed, from afactorization of Hy. It can be converted to an updating problem,
where the old column h; is now introduced with a positive signature,

R hy]8™Y = [Ry.q 0.

Thisis possible because, implicitly, wefactor y2I —HyHY+ h;hf = RyJR;+ h;hl. The
uniqueness of the hyperbolic QR factorization into triangular matrices with positive
diagonals([BG81], viz. corollary 11.2) impliesthat theresult R, 1 isprecisely thesame
asif h1 had never been part of H,, at al.

Breakdown

In section 11.4, we had to assumethat the datamatrix H was such that at no point in the
algorithm [a b] j:l[a b|”is equal to zero. If the expression is zero, then there is no J-
unitary rotation 6 such that [a b]6 = [0 0]. Note that the condition in theorem 11.3 that
none of the singular values of H are equal to y does not preclude this case, but merely
ascertains that there exists a © which will zero H. One simple example is obtained by
takingH = [1 1]T, y= 1. Itisstraightforward to show that thereisno J-unitary © such

0} (11.21)

that
1 1]z x 0
ETES LR P E
as the J-norms of the first row will not be equal. Hence © cannot be obtained by the
recursive algorithm. However, amore general © does exist, such that

+ + - +
1 1é_i 1 1 0
1 1 V211 0
viz.

é:i[—ll :1\/21 ~1:[11 ] 52—[1—1 W
1 IS L A

Thedifferenceisthat, in thisfactorization, theresulting matrix Risno longer lower tri-
angular. Theorem 11.7 gives necessary and sufficient conditions on the singular values
of H and a collection of submatrices of H, so that the Schur algorithm does not break
down.

Theorem 11.7 LetH : mxn beagiven matrix, andy = 0. Denote by H _; 1.k the sub-
matrix, consisting of the first to thei-th row and the first k columns of H. The Schur
algorithm does not break down if and only if none of the singular valuesof Hy ; 1 i is
equal toy, fori=1,.... mandk=1,...,n.
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PROOF (Necessity) When processing the k-th column of H by the Schur agorithm,
we arein fact computing a triangular factorization of [yim Hy m1.]. Corollary 11.2
claimsthat asuitable J-unitary operator existsif and only if [yli Hjj iq] isJ-nonsingular,
fori=1,...,m i.e,if andonly if noneof thesingular valuesof Hy ; 1 \ isequal to 1.
Thetriangularizationisdonefork=1,2,... ninturn.

(Sufficiency) Sufficiency at stage (i, k) followsrecursively from the factorization at
the previous stage and the existence and uniqueness of the factorization at the current
stage. |

Similar resultsareknown for the case wherethefactorizationiscomputed viahyper-
bolic Householder transformations where all zerosin arow are generated at the same
time. Inthiscasetherearelessconditions[BG81], viz. theorem 11.2. It should be noted
that the conditionsin theorem 11.7 are quite elaborate, as only one condition (none of
thesingular values of H are equal to y) sufficesfor the existence of ©. Numerically, we
might runinto problemsalso if oneof thesingular valuesisclosetoy, in which casethe
corresponding hyperbolic rotation has alarge norm. How serious thisis dependson a
number of factors, and acareful numerical analysisiscalled for. One examplewherea
largerotation is not fatal is the case where the singularity occurs while processing the
last entry of a column (i = m). Although the rotation will be very large, the resulting
R remains bounded and becomes singular: Rnm = 0. Hence, the subspace informa-
tionis ill accurate, and R varies in a continuous way across the y-boundary; only its
signature is necessarily discontinuous. Pivoting schemes could in principle be used to
prevent large hyperbolicrotations. A moreattractive schemeresultsinthe computation
of the SSE-2, as discussed in section 11.5.

Comparison of SSE-1 and SSE-2

We demonstrate some of the properties of the approximation scheme by means of a
simple example. We take H (0,) = UZ(0,) V"to be a sequence of 3x4 matrices, with
U and V randomly selected constant unitary matrices, and with singular values equal
to

(20,0,,05),  0,=0,001,...,3.99,4.

The approximation toleranceis set to y = 1. We compare the approximants H©) given
by S = 0, H® given by equation (11.13), H(? given by (11.16), and HY) when the
factorization is computed with pivoting. The pivoting scheme consists of column per-
mutations, except when processing the last column, in which case we switch to row
permutations. The pivoting is applied in its extreme form, i.e., whenever thisleadsto
elementary rotation matriceswith a smaller norm. The approximantsare compared on
thefollowing aspects: (a) || ©||, with and without pivoting; (b) || H—H ||, for each of the
mentioned approximants; (c) the accuracy of the subspace estimates, compared to the
principal subspace of H (the column span of the singular vectors with corresponding
singular valueslarger than 1). The distance between two subspaces .4 and 5 is defined
asdist(A,B) = ||P4—Pgl, where P4 isthe orthogonal projection onto A [GV89)].
Figure 11.4(a) shows || © || asafunction of a,. Without pivoting, there are a num-
ber of peaks, corresponding to the values of o, where one of the submatricesHj; g has

)

asingular value equal to 1. In therange 0 < 0, < 4, this occurred for (i,k) = (3,4),
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Figure 11.4. (a) Norm of ©. ||@] — oo for certain values of 02 when the indicated
entry (i, j) of H is processed. (b) The norm of the first and second column of B and B(1).
(c) Norm of the approximation error. (d) Distance between the principal and estimated
subspaces.
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(3,3), (3,2) and (2,4), respectively. When pivoting is applied, the peak at 0, = 1 s,
necessarily, still present, but the other peaks are mostly smoothed out. Figure 11.4(b)
shows the norm of the columns of B, in the scheme without pivoting. For o2 < 1, the
rank of the approximantis1. At g, = 1, the dimension of B increases, although at first,
the new column hasavery small norm. For larger values of a», the norm growsand the
subspace becomes better defined. Figure 11.4 also shows that no peak occurs for the
norm of the columns of the SSE-2 subspace estimate B(Y) of equation (11.14), onwhich
both H(®) and H(? arebased. Thisisas predicted by lemma11.6: || B || < || H || = 20.
Instead of having a peak, the norm of the first column of B'Y) dipsto about 0.12.

In figure 11.4(c), the norm of H—H is shown, for the various choices of H that we
discussed in section 10.4. The lowest line correspondsto the truncated SVD solution,
which gives the lowest attainable error. It is seen that, for all approximants, the ap-
proximation error is always less than y = 1. The approximation error for H(© isin this
example always higher than the error for HY), H(?) and the error for HV is always
higher than the error for H(2), since the latter approximant minimizes this error while
retaining the same subspace estimate. The approximation error for H(@) isalmost iden-
tically closeto the theoretical minimum, exceptinasmall region 1< o, < 1.5. Theer-
rorsfor H(% and H® touch anumber of timesonthe (y = 1)-line. For H(® thiscan be
explained as follows. The error for §. = 0is given by equation (11.11) as —y91,033.
Because the J-unitarity of © implies ©55053 + (©50)(01,053) =1, it follows that
whenever || ©2|| - o, necessarily || 012055 || - 1.

Figure 11.4(d) depicts the distance between the principal and estimated subspaces.
For o, < 1, thisdistance is very close to zero (< .0002) for each of the methods. The
distance jumpsup when o, crosses 1: the subspaceincreasesin dimensionbut isat first
only weakly defined. For BV, the distance goes down again quickly, whereasfor B, it
stays constant for awhile before going down.

11.5 HYPERBOLIC URV DECOMPOQOSITION

Let N: mxn; and H : mxny be given matrices. (Previoudly, we had N = yl.) We
consider implicit factorizations of HH?—NN" as

HH"-NN" = BB"-AA", (11.22)
where A and B together have m columns. A and B follow from the factorization
r} n_2 3_1 n_2 m-d  n;—-m+d d npd
m [N H]@=m [A B]; A=m[A 0 ], B=n[B 0]
(11.23)

where © is a J-unitary matrix partioned conform the equation. According to theorem
11.1, the factorization always exists although © will be unbounded when HHP—- NN
issingular. However, the factorization is not unique.

In section 11.4, we computed the factorization (11.23) by means of ahyperbolic QR
factorization

e +
N HI®=[R Omx(nirn2-m]: (11.249)

inwhich Ris alower or upper triangular mx m matrix. Although this factorization is
simpleto update, it has the drawback that it does not always exist: the triangular form
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of Ristoo restrictive (corollary 11.2, theorem 11.7). The set of exceptionsisfinite, but
in the neighborhood of an exception it may happen that A and B are unbounded with
nearly collinear column spans.

Togetaroundthis, introduceaQR factorizationof [A B]: R=[Ra Rs]=QYA B],
whereRistriangular and Q isunitary. Thisleadsto the more general two-sided decom-
position

QIN H©=[Rs 0|Rs 0. (11.25)

Notethat still [A 0| B 0] = [N H]©. Thistwo-sided decomposition always exists. We
can chooseto have R upper triangular or lower triangular, or even permute the columns
of [A B] beforeintroducing the QR factorization. It is convenient to take R lower tri-
angular: if we split Q = [Qa Qg] accordingly, then

ran(B) = ran(Qg) .

Hence, for this choice, Qg is an orthonormal basis of the (central) principal subspace
estimate. If our objectiveisto estimate a null space basis, then we would swap (A, B)
or take R upper triangular so that ran(A) = ran(Qa).

Weareinterested in SSE-2 subspace estimates, asdefinedin (11.19). Thisdefinition
involvestheinversion of submatricesof ©, whichisnot attractive, also becausethesize
of these submatricesis not constant but growswith n; and np. We will now show how
this can be avoided by posing additional structural restrictionson ©, which is possible
because A, B and © arenot unique. We can usethisfreedomto transform Mg in (11.19)
to zero, as shown in the following lemma

Lemma 11.8 For givenA,B, ©, consider a transformation by aJ-unitary matrix Oy :

[A 0|B 0]Ow A 0|B 0 (11.26)
ooy = © (11.27)

where @y only acts on the columns of A, B (and corresponding columns of ©).

Thenran(B—AMg) = ran(B' - A'Mg/), i.e., the SSE-2 subspace is invariant under
©Owm. Furthermore, there exists a ©y such that Moy = 0, i.e., such that ran(B') is the
SSE-2 subspace.

PROOF The proof israther technical and is given in the appendix. O

Hence, thereis amatrix ©y which transforms © to @ = @0y, such that after the
transformationwe simply take B’ and havethe desired SSE-2 subspacebasis. Knowing
this, there are easier waysto find this transformation. Suppose [©11 ©12] ispartitioned
as

m—d ny—(m—d) d no—d
[On O = m~d (G1)n (Ou)w2 (O12)11 (O12)12
e R ) O 0 0 o |

From the definition of Mg in (11.19), it isseen that to have Mg = 0, it sufficesto find a
transformation on © such that ©71@, hasazero (11)-block. Thiswill be the case, for
example, if both (©/;)12 = 0 and (©),)11 = 0. Thelatter can always be effected by a
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suitably chosen ©y which cancels (0©12)11 against (©11)11. However, to apply lemma
11.8, O is not allowed to change the columns of (©11)1». To zero this block, we may
apply any invertible transformation Te to the rows of [©11 ©12]:

O O] =Te[Ou 061

because 910, = ©7}0y; isinvariant under Te. Thisleadsto anew characterization
of SSE-2 estimates:

Theorem 11.9 Thefollowing factorization provides an SSE-2 subspace estimate. For
givenN : mxny, H : mxny, withny = m, find the subspace dimensiond, Q (unitary),
O (J-unitary), R= [Ra Rs] (lower triangular), T : (m—d) x ny (full rank) such that

g m m-d  n;—(m-d) d np—d

S + + - -

Q'[N HJo = [RA 0 Rs O ] (11.28)
g m-d n-(md) d npy-d
+ - + + - -

T[1 ole = [ o o o] (11.29)

With the partitioning Q = [Qa Qg], an orthonormal basis for the SSE-2 subspace esti-
mateis given by Qg.

ProoOF We only have to show that Mg = 0. Let Te be an extension of T to afull rank
N1 X Ny matrix, then

Ty, 00 =[(Te®1)11 (TeO1u1)12 (Te®@12)11 (TeO12)12] = [Im-¢ O 0 0.

Hence Mo = [Im-g 01071012 4] = [Im-a 0/O73To TeO1o['d] = [0 0)[% = O. |

By virtue of theorem 11.1, the above factorization always exists. If HHP-=NN"is
singular, then certain columnsof © are unbounded and corresponding columnsof Rare
identically zero. Note that the factorization, and hence the SSE-2 subspace, is still not
unique: some freedom is remaining in the generation of the zero entries. With proper
choicesfor Q, ©® and T intermsof theleft and right singular vectorsof H, one can show
that the TSVD (principal) subspace is within the class of SSE-2 subspaces, and has R
diagonal as distinctive feature (see the appendix at the end of this chapter).

The factorization in (11.28) is reminiscent of the URV decomposition [Ste92], but
with a J-unitary ©. The following corollary shows that the factorization has certain
desirable norm properties as well.

Corollary 11.10 The factorization (11.28)-(11.29) is such that

ran(Qg) Oran(H), |IRsl < [IHI, [IRall<[IN]-

PrROOF Using the fact that Mg = 0, lemma 11.6 implies BB < HH", AAT< NNE. 1t
remainsto apply the definition [A B] = [Qa Qg|[Ra Rg] where Q isunitary and Ris
lower. m|
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col: 1. Computedand Jzst. [R; G]6 = [00], with j; = diag[J;, jc]
2. Apply 0 to thei-th column of R and c; update signatures J;, j¢

row: 1. Determineqst. g ciiil] =Y.

2. Apply th~o rows (i,i + 1) of R; apply q to columns (i,i + 1) of Q
3. Compu:tee and |, asinfigure11.1,st. [Rij R j+1]/0 =[00]
4. Apply 6 to columns (i,i + 1) of R; update signatures J;, Ji+1

Figure 11.5.  Two ways to zero i

11.6 UPDATING THE SSE-2

Now that we haveidentified (11.28)-(11.29) asafactorization which providesan SSE-2
subspace, we investigate how this factorization can be updated when new columnsfor
H and N become available. The update consists of two phases, one to update (11.28),
and a second to restore the zero structure of (11.29).

Several updating algorithms are possible, depending on one's objectives. The di-
rection taken here follows from an interest in parallel and pipelined multi-processor
architecturesfor high-throughput signal processing applications. A very desirable as-
pect then is to have a localized, data-independent and one-directional computational
flow, perhapsat the expense of some additional operations. At the sametime, wewould
like to minimize the number of hyperbolic rotations, since these are a potential source
of numerical instability. Thisinduces a tradeoff.

Updating QD[N H|©

Suppose we have already computed the decomposition Q[N H]é =[R 0], whereR=
[Ra Rg] islower triangular and sorted according to signature. In principle, updating
thefactorization with new columnsof H or N isstraightforward. Indeed, let us say that
we want to find a new factorization QUIN' H']& = [R 0], whereeither N' =[N n],
H' = H if we want to add anew columnto N, or N' = N, H' = [H h] if we augment
H. Making use of the previously computed decomposition, it suffices to find Q. and
O. such that

m-d d 1 m-d d 1
0 + - e . + - e
QX |Ra R ¢ ] O = [ F¥A F¥B 0 ] (12.30)
Q’ = QQC 3

wherec= Q'hif weaddacolumnntoN or c= Q"hif weadd acolumnh toH. (Note
that we need to store and update Q to apply thistransformation. Storageof © will not be
needed.) Inthefirst case, c hasapositive signature j. = 1; inthe second case, jc = —1.
Denotethe signatureof Rby J = Iq O —lg, and let J; denotethei-th diagonal entry of
J.
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Figure 11.6. Order in which zero entries are created by algorithm zero-c. Only column
operations (rotations 3 and 7) are possibly hyperbolic and may lead to signature changes

To computethefactorization (11.30), theentriescy, Cp, - - -, Cyy Of carezeroedin turn.
As listed in figure 11.5, there are two possibilities to do this: by elementary column
rotations 6 or by elementary row rotations g. The “col” schemeto zero entry ¢; isthe
most natural and efficient, and directly zeros ¢ against R;j. The “row” scheme first
computes an elementary circular (unitary) rotation q to zero ¢; against ¢i 1, and then a
6-rotation to zero the resulting fill-inin R, i1 against R ;.

For reasons of numerical stability, it is desirable to minimize the number of hyper-
bolic rotations, i.e. rotations 6 that act on columns with unequal signatures. Such hy-
perbolic rotations also might lead to an interchange of signatures, thus destroying the
sorting of the columns of R. Hence, we propose to zero most entries ¢; using row op-
erations, in spite of the added complexity, and to use column operations only for the
zeroing of cy-g and ¢,

A graphical representation of this scheme is given in figure 11.6. Hyperbolic ro-
tations and signature changes are only possible in steps m—d and m. The 6-rotations
in the row stages act on columns of equal signatures, so that they are circular rotations
without signature changes. Theresulting signature of R dependson theinitial and final
signatureof ¢, i.e,, jc and j.. A list of possibilitiesis givenin figure 11.7.

The second phase is to restore the sorting of the columns of R according to their
signature. Thisisonly necessary in cases (b) and (dy) of figure 11.7, and it sufficesto
move the last column of R by a series of d swaps with itsright neighbors. After each
permutation, the resulting fill-in in R ;.1 has to be zeroed by a g-rotation. If desired,
this phase can be made data-independent by always performing the permutations, in-
dependent of the signatures.

L -

Atthispoint, ¢ =0, and R islower triangular and sorted into R = [R,, Rg], so that
we have obtained the updated factorization (11.30). The number of columnsd’ of Rg,
i.e., the principal subspace dimension after the update, dependson j¢ and j;: d stays
constant if j; = je, it increasesif (jo = -1, ji = 1) and decreasesif (jo = -1, jc = 1),
i.e, d' =d+3(j.-jc). Thecolumnsof the matrix block Qg form an orthonormal basis
for the updated subspace estimate B.
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Ry Rg

c c
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_— 90
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Figure 11.7. The four possible signature changes of C, €', and the resulting possible
signatures J' (after zero-c, before sorting). Only columns mM—d and d of R may have
changed signature.

Updating the structure of ©

The next step is to modify the candidate Q. and ©. by some Qu and Oy in order to
satisfy the structural conditions (11.29) on ©. Equation (11.29) shows that we do not
have to keep track of T and © at all: we only have to update a matrix [lym-q Om-axd]-
The columns marked ‘O in (11.29) never change, so we do not have to track them.
Obviously, wedo not haveto store[lm-g O]. Hence, updating ispossibleby only storing

matrices Q and R= [Ra Rg]. In update notation, the structural requirements take the
following form:

m—d d 1 m-d d 1
0 ~0 + - 7 m w + - ie
QmQcm [ Ra Rs C]@c@M = [ R, R, o] (11.31)
Q= QQcQwm (11.32)
m-d d 1 m-d d 1
+ - e + -t
ifjo=+1: W™ | ! 0 Olgg, = md | 0 € 1133
Hle= T "1 {0 o 1) ™ dd | O O D( )
m-d  d 1
m—d d 1 + — J(’;
+ I [ TV
if jo=-1: - md I 0 €
ifje=-1: Tuma [ 1 0 0]&bu = e [ o Dl (11.34)

o
where e’cz{ 0, Je=+1
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The last set of equations (11.33)-(11.34) represent (11.29). Let us summarize (11.33)-
(11.34) by TuE®:Om = E', wherethe structure of E and E’ dependson j, j.. Wethus
have to investigate four cases (jc = +1, j. = +1). Depending on the case at hand, we
haveto ensurethat selected partsof E' arezero. We can use Ty and additional rotations
O for this purpose, i.e., E' = Tw(EOQ.)On, and we try to minimize the number of
rotationsin @y since they might be hyperbolic and createfill-insin R that haveto be
zeroed by additional rotationsQy (viz. step5). Notethat @y isnot allowedto act onthe
last column of E (by definition, and because such an operation would destroy ¢’ = 0).
Also note that the fill-in in EQ; is caused only by the two (hyperbolic) rotations that
are present in O because of algorithm zero-c, hence consists only of 6 entries.

Thefollowinginvestigation of each of the cases separately istechnical, but theresult
issimple: only in one case a specific action isrequired. This covers steps 2-4 from the
outline in the previous section. The labeling of the cases follows figure 11.7, but we
also assume that the sorting by sort-R has been carried out at this point.

(@) jo=+1 j.=+1(d' =d):

m-d-1 1 d-1 1 1
+ + - - 4+
md-1[ O 0[]0 0]O0
EG.= 1| 0 O]0 OO
1 0 Oolo OO
m-d-1 1 d-1 1 1
+ + - - 4+
m-d-1 | 0|0 0]o0
0 E=TuEGHBw= 1| O 1/0 0]0

1 0 ojlo O]DO

Thefirst col-rotation from algorithm zero-cisin fact circular, and can be undone by
choosing asimilar rotationfor Ty. Because matrix multiplicationisassociative, this
automatically clears thefill-in in the top part of the last column as well. After the
second 6-rotation, nofill-inin top part of thelast columniscreated, and sincethelast
row is unconstrained, we end up with the required structure. No extra rotations O
result in this case, so that it is not necessary to actually perform the Ty-operations.

(b) je=+1, je =-1(d' = d-1): after sorting, we have, respectively,

m-d-1 1 1 d-1 1
+ + + - -
m-d-1 O ©0 olo]o
EQ; = 1[ 0 O oo D}
) O ojo | O]

m-d-1 1 1 d-1 1

+ + + - -

m-d-1 | 0 o|0]oO

O E= 1[ 0 1 0|0 o}

1] 0 0 1]0 0O

In this case, thefill-in by the first rotation in ® is removed by asingle circular ro-
tation for Ty, asin the previous case. The second rotation only calls for a scaling
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of the last row by Ty; the last column has a negative signature (ji. = —1) so is not
congtrained. Again, no extra ©-operations are generated, so that it is not necessary
to actually compute Ty.

je=-1 jc=+1(d =d+11):

m-d-1 1 d-1 1 1
+ - - - 4
. md-1[_ O] 0 0 0]0
E&= 1| o | 0O 0o O|O
m-d-1 1 d-1 1 1
+ - - -4
md-1[ | |0 0 0]0
o E= 1| 0 |00 O|CO

Inthiscase, d’ = d + 1, hencethelast row of E’ isunconstrained. No operationsare
required.

jc=-1, j; =-1(d' = d). Thiscase coverstwo possibilities: oneinwhich no sign-
changes occurred during the hyperbolic rotations, and onein which therewasadou-
ble sign-change. After sorting, we have

m-d-1 1 d-1 1 1
+ + - - -
m-d-1 0 olo oo
EQ. = 1 0 olo 0|0
m-d-1 1 1 d-1 1
+ + - - -
m-d-1 0 olo o]0
or EQ, = 1 0 O(0 0|0
m-d-1 1 1 d-1 1
+ + - - -
m-d-1 | 0lo o010
O E= 1 0 110 0|0

Thelast columnisunconstrained ( j; = —1), but thefill-in in the second block of the
last row hasto be zeroed, after which the row hasto be scaled properly. This creates
a situation that cannot be handled using Ty only: we need a (hyperbolic) column
rotation 6 to zero the selected entry. Before we can do this, the first possibility for
EO. requires usto place the two columnsthat are involved right next to each other,
by column permutations. This will generate extra g-rotations as well, to keep Ry
lower triangular. After sorting, a single hyperbolic rotation ©y = 0 suffices. The
resulting signature of thetwo columnsinvolvedin thisrotationissorted as[+1 —1]
automatically, becausethetotal J-normof thisrow isinvariant: itisstill +1, and the
only other nonzero entry has a negative signature. After thisrotation, the +-entry
can be scaled by Ty to become 1. Again, this scaling need not be actually carried
out. However, 8 has to be applied to R as well, and the resulting fill-in has to be
zeroed using an additional g-rotation.
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In: ¢, jc; R(lower), J=diag[Jy, - -, Im| (sorted), Q (unitary); d
Out: updated versions of R, J, Q, d, according to (11.31)-(11.34)

Algorithm SSE2-update:

zero-c: ¢c:=Q%c
eCZOa em—dZL a’n:Oa
fori=1tom

ifi=m-dori=m_
zero ¢; using col (6)

& €| :=[& &6
else
Zero ¢ using row

end

sort-R:  fori=m-1downtom-d+1

permute columnsi and i+ 1 of R (and J;, Ji11)
compute q to zero thefill-in R ;1 against R 141
apply qtorows (i,i+ 1) of Rand columns of Q

end

Mo-trans.: if g = -1and Jmq41 = +1, (case (d))~

compute 8, j2 st. [em—q em|0 = [0 0], j1 = diag[Im-d, Im-d-+1]
apply 6 to columns (m—-d,m-d + 1) of R, update signatures
compute q to zero fill-in Ry m-d+1 @0ainst Ry-d+1 m-d+1
apply g torows (m-d,m-d+ 1) of Rand columns of Q

end

updated: d:=d+ (jL-jc)

Figure 11.8.  SSE-2 updating algorithm
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Hence, only in case (d) do we have to perform an additiona 6-rotation to effect the
Me-transformation. Note that we never have to act on the I—g-1 matrix, only three
entries of the last row of E are needed.

Theresulting algorithmis summarized in figure 11.8, wherethe entries of E that we
need to keep track of are denoted by en-q, &n, &. The Me-transformation, if needed,
consistsof asingle 6-rotation on the columnsof R, followed by ag-rotation on therows
of Rto zero thefill-in. Thesorting stageisdlightly different than before: for simplicity,
it now sorts unconditionally, and only up to column m-d + 1. Possibly, one additional
permutation is required (in case (dz)). This permutation is a side effect of the Me-
transformation (i.e., the sorting effect of the hyperbolic rotation of case (d)).

Thelast columnisunconstrained ( j; = —1), but thefill-in in the second block of the
last row has to be zeroed, after which the row has to be scaled properly. This creates
asituation that cannot be handled using Ty only: we need a (hyperbolic) column ro-
tation 6 to zero the selected entry. Before we can do this, the first possibility for EQ
requires usto place the two columnsthat are involved right next to each other, by col-
umn permutations. This will generate extra g-rotations as well, to keep Ry lower tri-
angular. After sorting, a single hyperbolic rotation O = 6 suffices. It can be shown
frominertia considerationsthat the resulting signature of the two columnsinvolvedin
this rotation will be sorted as [+1 - 1] automatically. @y has to be applied to R as
well, and the resulting fill-in has to be zeroed using an additional g-rotation. A final
observation isthat we never have act on the I ,q—1 matrix, only three entries of the last
row of E are needed.

The updating algorithm can be initialized by R= 0, d = 0, Q = I, The compu-
tational complexity is assessed as m? multiplications (for the initial transformation of
¢ by Q), and about 2n? 4+ 2md elementary rotations. Thisis four times more than the
original HQR scheme for computing the SSE-1.

11.7 NOTES

The updating algorithm which we derived has the following properties. Its main fea-
tureisalocalized, piecewiseregular, data-independent computational flow using plane
J-unitary rotations. The algorithm consists of two phases. aforward phase to zero the
update vector, and a backward phase to restore the sorting and at the same time satisfy
astructural constraint. Each phase is fully pipelineable, but unfortunately the combi-
nation is not, unless they can be meshed together (with some effort, this is sometimes
possible, cf. [MDV93]). Per update vector, there are at most 3 hyperbolic rotations,
which is not minimal, but significantly less than the HQR updating algorithm. Updat-
ing and downdating uses the same computational structure, since downdating H by a
vector h can be done by updating N by h. Exponential windowing and several inter-
esting updating/downdating schemes are possible.

Two closely related subspace tracking algorithms are RRQR and URV. These are
similar to SSE in that they update non-iteratively a rank-revealing factorization with
respect to a specified threshold level. Thetolerance for RRQR is a (soft) upper bound
on the approximation error in matrix 2-norm, asin (11.2). URV on the other hand puts
an upper bound on the error in Frobenius norm. All three algorithmsroughly havethe
same number of operations, but RRQR and URV use only circular rotations and are
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numerically stable. The main distinctive featureisthat RRQR and URV rely on acon-
dition estimation to detect changes in rank, which can be regarded as their Achilles
heel. The condition estimation resultsin along critical path and makes the computa-
tional flow data-dependent. Also, the condition estimateis not perfect: in critical cases
with a singular value close to the threshold, the rank decision is observed to become
erratic.

Appendix 11.A: Proof of lemma 11.8
PROOF of lemmal1.8. Equation (11.27)implies[©11  ©12]0Om =[0); ©),], which

implies
P -0'71o -0 1o
Owm { 1 12} — [ 11¥12

In, In,

T

where T is some invertible matrix. Moreover, since @y only acts on the columns of
A,B, itisseenthat T hasto be block upper. Using thisresult and equation (11.26), we
obtain
—0y 0| [1] _ 5- '
I ol = [B-AMg OT ol -
Since T is block upper, ran(B-AMg) = ran(B' - A'Mg/). To show the second part,
i.e., there exists ©y such that Mg = 0, it suffices to compute a J-unitary matrix Oy
(compatiblein size with ©) such that
+ + - - + 4+ - -
[lna 0 Mg 0OJGu= [O 0 0 O].

B'-AMg =[A 0|B 0|0y

As ||Mg|| < 1, such amatrix which does not change signatures exists and is bounded.
Premultiplying with A, it followsthat [A 0| AMg 0]©y = [0 0|0 0], so that
[AO|BO©Gy = [00|B-AMg 0|©m + [A 0| AMg 0]Owm
= [0O0|B 0] +[J0|00 =:[A"0|B 0].
Itisclear that ran(B') = ran(B—AMg). Sinceran(A’) complementsran(B'), theinvari-

ance of ran(B—-AMg) impliesMg = 0.
O

Appendix 11.B: The principal subspace is an SSE-2

We show that for agiven matrix H, thereis adecomposition (11.28)—(11.29) such that
SSE-2 subspace Qg isequal to theleft principal subspaceof H. Supposefor simplicity
of notation that H is square, with SVD H = U133V + U355V, where 33 > yi and
o < Vyl. DefineQ,0,T as

Q U, Up -1/2
v Ui -3
o - Uy UiZ; | Uy -UzZz 1=
VoZ, iy [ ViZi o Vay ‘ 32—y ,
T = (P-)Yyip Y23
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Itisreadily verified that Q is unitary, © is J-unitary, and that

—$2\1/2
Qiyl He = (v 52) 8‘ (Z%_(\)/z)l/z 8
T 0O = [ 00vy1.

so that (11.28)—(11.29) hold. Since Qg = U, the SSE-2 subspace is equal to the prin-
cipal subspace.
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]. 2 ORTHOGONAL EMBEDDING

In chapter 5, we saw how astate realization of atime-varying transfer operator T can be
computed. Therealizationswhich we obtained werein principleeither ininput normal
form (A“A+ B™B = 1) or in output normal form (AA”+ CC” = 1). In chapter 6, we
considered unitary systemsV with unitary realizations. Such realizations are both in
input normal form and in output normal form, and satisfy the additional property that
both ||V || =1and ||V | = 1, while for T in either normal form, we have | T|| = 1,
whether || T || issmall or not. Since || T || tells something about the sensitivity of the
realization, i.e., thetransfer of errorsin either theinput or the current state to the output
and the next state, it is interesting to know whether it is possible to have a realization
of T for which || T|| <1 when || T| < 1. Thisissue can directly be phrased in terms
of the problem which is the topic in this chapter: the orthogonal embedding problem.
Thisproblemis, given atransfer operator T I/, to extend this system by adding more
inputs and outputs to it such that the resulting system %, a 2 x 2 block operator with

entriesinl,
s _ [ 21 212 }
20 Zp |’

isinner and has T asits partial transfer when the extrainputs are forced to zero: T =
¥11. Seefigure12.1. Sincetheunitarity of X impliesT™T + TCE'TC =1, (whereT, = Z2),
it will be possible to find solutions to the embedding problem only if T is contractive:
| -TST >0, sothat | T|| < 1. Since X isinner, it has a unitary realization £, and a
possiblerealization T of T isat each point k in time a submatrix of Zy (with the same
Ay, and smaller dimensional By, Cy, Dy), and hence T is a contractive realization.

337
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-
n
2n s 212
T 2 0
2

Figure 12.1.  Embedding of a contractive time-varying operator T.

Theorthogonal embedding problem, and a gorithmsto solveit, arethe central issues
in this chapter. The orthogonal embedding problemisknownin other fieldsaswell: it
iscalled the unitary extension problem in operator theory, and the equations governing
its solution (in a state-space context) are known in control theory as the discrete-time
bounded real lemma.

12.1 INTRODUCTION AND CONNECTIONS

In this chapter, we present a constructive solution to the embedding problem, under
the assumption that the number of states of T isfinite at any point in time (localy fi-
nite systems). Theconstructionisdonein astate-space context and givesriseto (again)
atime-varying Riccati equation. Whileit is clear that the contractivity of T is a nec-
essary condition for the existence of an embedding, we show in the sequel that this
conditionis, also in the time-varying context, sufficient to construct asolution when T
islocally finite and u.e. stable. (It is known that not all contractive transfer operators
have an orthogonal embedding, see chapter 7 where we show this negative result for
isometric operators. This generalizes what already happensin the time-invariant case
[Dew76].) We first derive such a solution for the case where T is strictly contractive.
The extension to the boundary case invokes some mathematical complications but in
the end, amost the same algorithm is obtained [vdV D94a].

Besides the above application, the orthogonal embedding problemis typically the
first step in digital filter synthesis problemsin which filters (contractive operators) are
realized asthe partial transfer operator of alossless multi-port filter . OncesuchaZX is
obtained, it can be factored into various kinds of “ladder” or “lattice” cascade redliza
tionsconsisting of elementary lossless degree-1 sections. Such afactorizationisknown
inclassical (time-invariant) circuit theory asaDarlington synthesis[Dar39, AV 73], and
provides a structured way to realize a given operator (‘filter’) in elementary compo-
nents (in the circuit case, gyrators and a single resistor). In our case, each section is
constructed with two elementary (Givens) rotors which havetime-varying rotation an-
gles, and the network that is obtained can, for example, be of theform depictedinfigure
1.4. Inthisfigure, the transfer function T is from (block) input u; to output y; if the
secondary input u, is made equal to zero (the secondary output y» is not used). The
structural factorization isthe topic of chapter 14.

An application of the embedding problem in an operator or linear algebra context
isthe (Cholesky or spectral) factorization of a positive definite operator Q into factors
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Q = WHW, whereW is an upper operator. The transition to the embedding problem is
obtained by a Cayley transformation, which transforms Q > 0 to an upper strictly con-
tractive operator T: a scattering operator. From the orthogonal embedding Z, a factor
W can be derived viaafew straightforward manipulations. This subsumesthe general-
ized Schur method [DD88] that has al so been used for thisapplication, and in which an
embedding Z is obtained in cascaded form. However, the Schur method is order recur-
sive, and can indeed giveriseto afairly large order, whereas the embedding procedure
in this chapter can be used to obtain an embedding X and a factor W of minimal order.
This connection is described in chapter 13.

Thetime-invariant orthogonal embedding probleminitssimplest formactsontrans-
fer functions T (2) and uses a spectral factorization: with

—

T2 =55 T(2= % (12.1)

N

where f, g, h are polynomials of finite degree, it is derived that g(z) (and hence T¢(2))
can be determined from a spectral factorization of

9(299(2) = f(2) fu(2) —h(2)ho(2)

where fo(z) = f(Z1) [Bel68]. The solution of the spectral factorization problem in-
volvesfinding the zeros of g(z)go(z). Note that in equation (12.1) we use the knowl-
edgethat T, can havethe same polesasT.

Polynomial spectral factorization for multi-input/multi-output systemsisrather com-
plicated, seee.q., [Dew76]. A solution strategy that iseasier to handle (and that carries
over to thetime-varying casetoo) isobtained when the problemiscast into astate space
context. Such an approach is discussed in [AV 73] for continuous-time systems, and
implies what is called the bounded real lemma. This lemma states that T(s) is con-
tractive if and only if certain conditions on the state-space matrices are fulfilled. If
thisisthe case, the conditions are such that they imply arealization for T¢(s) such that
[T(s) Tc(s)] islossless and has the same A and C matrices as the redlization of T. To
determine this solution, a Riccati equation has to be solved. The bounded real lemma
can without much effort be stated in the discrete-time context by means of a bilinear
transformation[AHD74]. A derivation based on the conservation of energy appearsin
[GS84], and a proof independent of a continuous-time equivaent isgiven in [Vai85a).
A Riccati equation which describes the problem is stated in [Des91], which formsthe
basis of a cascade factorization. Control applications of the bounded real lemma.in-
clude He-optimal state regulation and state estimation [Y S91].

In the present chapter, the aim isto extend the above classical time-invariant theory
to thetime-varying context. To introducethe strategy for solving thetime-varying em-
bedding problem in a state-space context, consider the following simplified problem.
Just for the moment, let T be a single-input, single-output system, with state-space re-
alization T of constant dimensions. The objectiveisto determinealoss ess embedding
system Z, having two inputs and two outputs, and with state-space realization £ of the
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form
1

NONITHANS
B IHJ J )

Bo Dz D2 |

(all entries in this expression are diagonals). X contains the given realization T, suit-
ably state-space transformed by some boundedly invertible R = diag(R;), which does
not alter the input-output characteristics, hence 15 is equal to the given T. X is ex-
tended by matrix operators By, Cy, D21, D12, D2y corresponding to the second input
and output. If Z isto beinner, it must have a unitary realization Z (theorem 6.3). Con-
versely, if Z isunitary and /4 < 1, then the corresponding transfer operator ¥ isinner;
see theorem 6.4), and hence a way to solve the embedding problem using state-space
methodsisto require X to be unitary.

The embedding problem is thus reduced to finding the state transformation R, and
the embedding matrices B, etc., such that Z is unitary. The problem can be split into
two parts:

1. DetermineR, By, D; to make the columns of £, isometric and orthogonal to each
other, with
[ R " A C
za = | B D

. [ | B, Dn

<)

2. Addoneorthonormal columnZyto Z;tomakeX =X, Z,] unitary. Therealiza-
tion Z that is obtained consists of a diagonal sequence of square finite-dimensional
matrices, hence this can aways be done.

The key step in the above construction is step 1. With proper attention to the dimen-
sionsof the embedding, it isalways possibleto find solutionsto step 2 sincein general,
%4 isjust the orthogonal complement of the columns of Z.

The orthonormality conditions of step 1 trandate to a set of equations whose so-
lution depends at each time instant i on the (strict) positivity of a matrix Mj = R-R,,
which, as we will show, can be computed recursively from the given state-space real -
ization as

Mizi = AMA + BB + (122)
[APMIC; + B{Di] (1 - DD ~CMiG)) ™ [D[ B + CMiA] '
This recursion is again a Riccati-type recursion. The problem with such recursionsis
the term (I -D{D; —C-M;C;), which can potentially become negative and cause M; ;1
to become negative (or indefinite) too. The main contribution of the theory given in
the rest of the chapter is to show that the recursion does not break down (i.e., al M;
are uniformly positive, hence we can find a sequence of invertible state-space transfor-
mations R;), under the condition that T is strictly contractive and the given realization
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Figure 12.2. K|, Hj and V, are submatrices of T.

for T isuniformly reachable. Subsequently, we show in section 12.3 that adlightly al-
tered recursion also does not break down if T is contractive (but not necessarily in the
strict sense), but then we have to impose more requirementson T, for example that it
beuniformly observable. These requirementsare sufficient but possibly too restrictive.

Preliminary relations

We recall some notations and definitions from chapters 2, 4 and 5, and define some
additional onesaswell. Let T O /. Wewill usethefollowing partial transfer operators
on arestricted domain and range (cf. equation (5.2)):

Hr: L2271 - Uy, uHt = P(uT)
Kr: L‘,zz_l - Ezz_l, uKy = P/(UT)
Vi: L2271 - Dy, uvr = Po(uT).

For u 0 £5Z71 we have that uT = uKt + uHt. Vy isafurther restriction of Hy.

We have already used the fact that Hr is aleft D-invariant operator, and hence has
“snapshots’ H; (definition 4.1), which can be viewed as a sequence of time-varying
matrices that would have a Hankel structure in the time-invariant case. In the same
way, matrix representations are obtained for K; and vector representationsfor V:

Ti-ni Tigivr T2

Ti2i Ti2it1

Hi= | T3
Ti-1i Ti-1-1 0
Ti-2j Tizi-1 Ti2i-2

Vi= | T Ki= | Tsji1 Tsiz Tisis

_ Again because Hr, Kt and Vr are D invariant, they also have diagonal expansions
Hr, K and Vi, asfollows. Define the diagonal expansions of signalsuin £,Z71 and
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yini, as
u = Z—lu[_l] +Z_2U[_2] 4+ = u[(fﬁ)Z‘l+u[(_+2?Z‘2+
— (+1)  (+2) _
0= |y oy ] o6m)
Y = Vo+2y+ 2+ = Yo Y 2y 2+
G — (1) (2
y = {y[o] Yy Yz } 0 (D).
Induced by this isomorphy, the definitions
= UHT O Z/{Z = ~f — GE'T
Yp = ukKr O £22_1 < y~p = G'ST
D=uwsr 0O D; - D = V.
lead to
-1 12
Ty T[(Z] Ty
- Ty Ty
fr = 2 '3 |
T K
T 0 (12.3)
T o ,
. Tz . T 12
V=T Kr ity 3
3 T[(+ ) T(+ ) T(+ )

The connection of Hr with H; is obtained by selecting the i-th entry of each diagonal
in Hy and constructing a matrix from it. Similarly, the sequence K; forms a matrix
representation of the operator Ky and likewise V; is the vector representation of the
operator Vr, obtained by selecting thei-th entry of each diagonal in the representation
of V.

Recall from chapter 5 that H; has a factorization H; = CiO;, where C; and O; are
the reachability and observability matrices as defined in (3.23). In terms of diagonal
expansions, it is straightforward to show that Hr hasadecomposition Hr = CO, where
C and O are defined as

A
C:= | BEARAWD 0 = |C ACTY AANCH2) ...

Note that C and O are diagona expansions of the reachability and observability op-
erators Po(-FY) = Po(-BZ(1 -AZ)™t and -Fo = (I -~AZ)™*C. Inturn, C; and O are
snapshots of these operators.
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Since Vi isthefirst column of Hr, we have that Vi has a decomposition
Vr=C-C. (12.49)
Finally, it is clear from equation (12.3) that Kt satisfies the relation
T O

>(-1)
REV_| 7
T Vr Kr

: (12.5)

Thisrelation is seen to correspond to arecursive relation: it specifies that

T; 00
Kit1=

Vi K

for al timeinstantsi. K; ‘grows when i increases as the history of the system grows
— in particular, Ko, isjust amirrored version of T.

12.2 STRICTLY CONTRACTIVE SYSTEMS

Asindicatedin theintroduction, an orthogonal embedding of atransfer operator T 0 U/
ispossibleonly if T isat least contractive. In thissection, we explorethe consequences
of assuming thestrict contractivity of T, which leadsto sufficient conditionsfor an em-
bedding to exist if T is strictly contractive. Thisis donein two steps. Lemma 12.3
derives a general relation in terms of Vi and Kt which is a direct consequence of the
strict contractivity of T. Theorem 12.4 uses this relation to show that some quantity
M 0D, defined by M = (1 -KrKE)™¢, is strictly positive definite, and gives a re-
cursionfor thisM intermsof state-space quantitiesof T. The pointisthat thisrecursion
is precisaly the same as the recursion for M in the embedding problem (viz. equation
(12.2)). Thisprovestheessential step inthe embedding problemfor strictly contractive
operators (section 12.4). The case where T is contractive, but not necessarily strictly
contractive, is deferred to section 12.3.

Contractivity of a transfer operator

Recall proposition 4.3 on the positivity, respectively the strict positivity of aHermitian
operator Al X':

Az20 < {uAu=0, (dlulA’y)
A>0 = [Oe>0:{uAu=ze{uu}, @uldAy).

Let T beatransfer operator ini/. We have defined, in section 4.2, tocall T contractive,
respectively strictly contractive, if

I-TT%20, resp. I-TTU>o0.

Inthelatter case, | -TT isboundedly invertible. Inthissection, our focusisonthecase
that T isstrictly contractive. Themoregeneral caseistreatedinsection12.3. | -TTP>>
Oimpliesthat | =TT >> 0, because of theidentity | + TH(1 -TTH 1T = (1 -THT) L.
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Lemma12.1 If T isstrictly contractive, then Kt and Ky are strictly contractive.

PROOF Letul £,Z7%, andy = uKt. Since T isstrictly contractive, we have from the
above definition that

Po(uu®) — Po(yy") Po[u(l —KrKF)ul
Po[u(I-TTHuY

ePo(uu”)  (somee>0).

YA\

Since, by definition of the diagonal expansion, Po(uu”) = GG~ and Po(yy-) = §§-, and
by definition of Ky, § = 0Ky, we obtain that

(1 -KrKy) a- aat-gy-
Po(uu®) - Po(yy")
ePo(uu’) = ead”  (somee > 0)

[\

which showsthat wealso havethat Ky isstrictly contractive: | -KrKE > 0, | -KEKT >
0. O

Thefact that Kt isstrictly contractiveimpliesin turn that all K; are strictly contrac-
tive.

Strict contractivity in terms of a state-space realization

The purposeof this section isto find conditionsin state-space quantities on the contrac-
tivity of atransfer operator T. Tothisend, weuse Ky rather than T, and in particular the
fact that | - Ky KTD is boundedly invertible and strictly positive when T is contractive.
Since Ké_l) can be specified in terms of Kt and an extra column of diagonals (equa-
tion (12.5)), it is possible to derive a (recursive) formula for (I - IZTIZTD)H) in terms
of Kt and the newly introduced column. The following lemmais standard and will be
instrumental.

Lemma 12.2 (Schur complements/inversion formula) Let X beablock-partitioned
operator,

X =

A BY
B C |’

where A, B and C are bounded operators on Hilbert spaces, and let A and C be self-
adjoint. Then

1) C>0
X>0 - { (2) A-BCIB>0.
IfX > 0, then
A B I 0][ (A-BCB)L 0 | -BTC?
B C -cB | 0 ct 0 |

{ 0 o1 } + {_C-'lB} (A-BC1B) LI -BTCY.
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PROOF X > Oimpliesthat C > 0. If C>> 0, then C™! exists, and

27)-[ ][ [ ]

Because the first and third factorsin this decomposition are invertible,

{g‘ ED}»O - {A_B%_lB C}>>0
(1) C>0
- (2) A-BTIB>0.

This provesthe first part of the lemma. The second part isimmediate from the above
factorization of X. m|

Lemma12.3 Let begivenatransfer operator T OU. If T is strictly contractive, then
I =T Tio ~VF (1 =KrKP) ™ Vr > 0.

PROOF Since T isstrictly contractive, lemma12.1 ensuresthat Kt and Ké_l) aredso
strictly contractive. Using equation (12.5), we have that
70T 8. OO
_goggey | Tl VeV ek
I-K{ 7Ky = o son | (12.6)
-KVr | KKy
Now apply lemma12.2. It isseen that thisexpressionis strictly positive definiteif and
only if .
(1) I-KfKr >0 o
(2 1-Tig T —VrVr —VeKr (1 -KeKr) KV > 0.
Thefirst condition is satisfied because T is strictly contractive. The second condition
isequal to the result, because of the equality | + Ky (I —KFKT) 1KY = (I -KrK§) ™.
O

Theorem 12.4 Let T O U be alocally finite transfer operator with state realization
{A,B,C,D}, whereAO D(B,BV) isu.e stable (¢a < 1). If T isstrictly contractive,
thenM O D(B, B), defined by

M =cH1-KKP) e, (12.7)
satisfies the relations| —D"D —C"MC > 0, and
MY = ASMA+ BB + [A"MC+B™D] (1-D'D-C™MC) ™ [D'B+CMA] .
If in addition the state-space redlization is uniformly reachable, then M > 0.

PrRoOOF M iswell defined if T is strictly contractive, which also implies that M = 0.
If in addition the state-space realization is uniformly reachable, C-C > 0, thenM > 0
and hence M isinvertible.
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With the definition of M and using the fact that D = Tq and Vs = C -C (equation
(12.4)), the positivity of | —D"D —CHMC follows directly from lemma 12.3.
Therecursiverelation for M is obtained by an application of Schur’sinversion for-
mula (lemma 12.2) to equation (12.6), which gives
(1 -KKr)™ }

-] = [0
I

" [ (1-RPRr) R } o2 I VK (1-KPKr) ™
(12.8)

+

with
CDZ

| =T T =V ~VKr (1 - KERr) 2RV
I —DED—CEMC.

Theinvertibility of ®? was already shown. Inserting this expressioninto the definition
of M(1), and using the relations that have been summarized above, MV is obtained
as

MY = 01 -REVRED et
~(o ~ (=10~ (-1)\ "L ~(=
- C(’l)['{l +REY (1-REIREY) RS 1’5} iy

S S AR S S I P

([* -]+ [a—roie e | @2 [ WiRe0-ReRo ] )

[¥ & ] [a)
Vr Kr | [CA
= BB+ATTA + ATHKr(I-KPKr)KFCA +
+ (B + ALY |1+ Ry (1-RFKRr) R ) - 072
: (DDB+CDCD [l +R(1 —KTDKT)‘HZT] CA)
= BB+AMA + (ATMC+BD)d?(D'B+CMA).
O

The equation (12.20) for M is actually a recursive equation, which becomes appar-
ent if wewrite M = diag[M;] and take the i-th entry of every diagonal in the equation:
this producesthe Riccati recursion (12.2). Theorem 12.4 claimsthat for astrictly con-
tractive system, the Riccati recursion has a positive solution M, which is given in ex-
plicit form. In section 12.4 this M plays a crucia role in the construction of such an
embedding. It also furnishes part of the proof of the bounded real lemma.
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12.3 CONTRACTIVE SYSTEMS: THE BOUNDARY CASE!

We will now derive an equivalent of theorem 12.4 for the case where T is contractive
but not necessarily strictly contractive: | —TT"> 0. Whilethe mathematical derivation
is more complicated now, the resulting theoremis only slightly altered. It will turn out
that Kt isnot strictly contractive, and that, instead of (1 -KtK)™, wewill haveto use
the pseudo-inverseof (I - KTDIZT) . Mathematical complicationsarise becausethe range
of (I -KPKr) is not necessarily closed, so that its pseudo-inverse can be unbounded.

Schur inversion formulas for positive semi-definite operators

Let be given some operator A on a Hilbert space H. For better correspondence with
results from other papers, as well as for historical reasons, we work in this section
with operatorswritten from theright to theleft, and thus denotethe ‘left’ range of A as
R(A) = {Ax: xOH}, anditsnullspaceisas V' (A) = {x: Ax= 0}, whichisaclosed
subspace. An orthogonal complement is denoted by [. The operator pseudo-inverse
of Aisdefined asfollows (following Beutler and Root [BR76]).

Definition 12.5 LetH be aHilbert space, and A be a bounded linear operator defined
on’H. Thelinear operator AT : H — H isapseudo-inverseof A if andonly if it is defined
onR(A) OR(A)Y (whichis denseinH) and satisfies the following conditions:

(1) NAH) = RA)"
(2 RA) = NAT (=R(AI)
(3) AATX = x foralxOR(A).

It is provenin [BR76] that (AN = A, (AN = (AT, (A"A)T = ATA™, and that AT is
boundedif and only if R(A) isclosed. We will aso apply aresult of Douglas [Dou66]
on majorization of operators on Hilbert spaces:

Theorem 12.6 LetA andB bebounded operatorson aHilbert space’H. Thefollowing
are equivalent:

(1) AAT < A?BB” (somel >0),
(2 R(A) O R(B),
(3) A = BC for somebounded operatorC onH .

If (1)-(3) are valid, then a unique operator C exists such that

(@ IC| = inf{u:AA"<pBB},
(b)  N(A N(C),
(© RC) O RBY.

The ‘unique operator C' in this theoremisin fact C = BTA, since dso B is uniquely
defined and BT A qualifiesfor C. Consequently, if AA”< BB", then thisC satisfies||C|| <
1.

1This section may be skipped without lass of continuity.
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Using pseudo-inverses, the Schur inversion formula (lemma12.2) can be extended
to the case where X is not uniformly positive.

Lemma 12.7 With H, and H, Hilbert spaces, let A: Hy — Hp, B:Hy - Ho, C:
Ho> — Ho be bounded operators, and let A and C be self-adjoint. Then

A B (1) C=0,
X = [B CD} 20 = ¢ (2 R(B)OR(CY?); ie By =C"/2Bishounded,
(3) A-B{B;=0.

Lemma12.8 Let A,B,C,X beasinlemma12.7. Let X =0 and write B, = C'/2B.
Define the operator W*:

WH =
|

(A-B{By)"/? | } { | —Bﬂ { [ o2

ThenW* iswell-defined and bounded on R (X/2). If v is some bounded operator with
rangein R(XY?), and if

vi = X7y, v, = Wy
then vy and v, are bounded, andviviy = V5V;.

The proof of both lemmas appears as an appendix at the end of the chapter. Note that
WH £ XT1/2, but rather W¥ = UX'/2 on R(X/2), whereU is some Hilbert spaceisom-
etry such that UTU = I. The point is that W¥ is specified in terms of A, B,C, whereasit
is hard to do so for X'/2,

Contractivity in terms of a state space realization

We are now ready to derive a solution to the embedding problem aong the lines of
section 12.2 for the case where T iscontractive, but not necessarily strictly contractive.
Recall the definition of Hr and Kt of section 12.1.

Lemma12.9 LetT beaninput-output operator inU. If T is contractive, then
| -KrKY = HrHY 2 0, (12.9)
and henceKr and Kt are contractive.

PROOF Letul £Z7%, and puty = uT = uKt 4 uHt. The contractivity of T implies

Po(uu) —=Po(yy") 2 0
= Po(u[ —TTEﬂu >0
o Po(u[l =KrKF - HTHTD]u >0
< Po(u[l =KrKFJu") Po(uHTH u”) = 0.

Hence | -KrKY>0o0n £,Z7. Kt isisometrically isomorphic to Kt and is also con-
tractive.
i
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Corollary 12.10 IfT isauniformly observableredlizationof T, then R(KPC) O R(I -
KPKr)Y/2 and henceC; defined by

Cy = (I1-KEKq)172KE¢ (12.10)
is bounded.
PROOF Apply theorem 12.6 to (12.9). From | —KrKY > HrHY it follows that Hy =
(I -KrKE)Y/2N, for some operator N with [|N|| < 1. Taking diagonal expansions, we
have that Hr = (I - K7K¥)Y/2N, and with Fir = CO such that OO > 0, we obtain
Kic = KPcooq oo™
= KHroHoon
= KP(I-ReRP)V2NO( 00T ™
(1-Kfkn)Y2e,

where C; = KEN- 000D is bounded. o
For C; defined in (12.10), define the operator M O D by
M= +CiCy. (12.11)

M is bounded, and M >> 0 if C™C > 0, i.e,, if the realization is uniformly reachable.
Thisdefinition of M iscompatiblewith the definition of M in (12.7) if T isstrictly con-
tractive, viz. M = C7(1 -KrKF) ¢, because then CC; = €Ky (1 -KFKy)*KPC, and
| + Ky (I —KPKr)IKY = (1 -K7KE) L. The latter relation is however not necessarily
validif a pseudo-inverseis used.

The following theorem subsumes theorem 12.4.

Theorem 12.11 Let T O U be an input-output operator with a u.e. stable state space
realization{ A,B,C,D}. If T iscontractiveand therealization is uniformly observable,
then M defined by (12.10) and (12.11) is bounded, M = 0, and

MY = ASMA+ BB + (JATMC +B™D]o") - (0'[D"B + CMA)) (12.12)

with ® = (I-D"D-C"™MC)¥/2 and | -D'D -C"MC > 0. If, in addition, the State space
realization is [uniformly] reachablethenM > 0 [M > 0].

PROOF The proof uses the expressionsfor i+, Kt and C as given by equations (12.4)
and (12.5). To find an expression for M=, put
~To T ~VeVr - —ViKy } _

_ |
X = (| -KEK)D = JUB
(I =K7Kr) ~K5r | - KRy

According to lemma 12.9, X > 0. Lemma 12.7 then implies that R(KVr) O R(I -
KEKr)Y/2 sothat (1 ~KPKr) 772KV = ¢1Cisbounded. (Thisresult would also follow
from corollary 12.10 because R (K:Vr) = R(KXCC) OR(KHC).) Let

I 1/2
® = [I-T§ T~V -cieiic]

[I-DD-CHc e +cfer)C)?
(I-D'D-CMC)Y/2.
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Thethird item of lemma12.7 implies that | -D"D -C"MC = 0. Put

S ogpre ]
B D'B +ClCHCA
CA } - [ KA } '

wH

v o= Rk

Thenlemma12.8yieldsthat the operator v = X1/2v = Ci_l) is bounded, and v, = Wy
is such that V{va = V5\,. Evaluation of v, gives

_why - [ ®f I CcePT1 D'B+CCCA
Vo=V = | | (1 -KERqr) 772 KECA
_ [ et | Cccf ][ D"B+CrA
- | | C1A
[ o"(D"B+CHVA)
B C1A '
Hence

[erea) ™ = vivi = Vi
= ACIC1A+ ([B'D + ARMC]@T) - (#T[DB+ CHVA))

and with Y = [ £ | wefinally obtain

M1

€™ +[egey]
BB+ A CA+ATCIC1A+ ([BD + AMC]®T) - (T[DB + CHVA))
AMA + BB + ([BD + AMC|®T) - (¢T[D"B+CMA)) .

O

The result of this section is thus a relatively simple extension of theorem 12.4: in
the casethat T is not strictly contractive, we can use the recursion

o) = (I-D'D-CmC)Y/2
MY = ABMA BB + [ATMC+B™D]®T. &T DB+ CHVIA]|

although we need the given realization to be uniformly observable. This conditionis
sufficient, but too strong: we only need “ observability at the boundary”, but thisishard
to express (for time-invariant systems, the usual conditionisthat the realization should
be ‘stabilizable'). Therecursion for M is very close to (and encompasses) the expres-
sion that we have obtained before in the strictly contractive case. Note that we know
only that ®T(D"B + C"MA) is bounded, but not necessarily ®®'(D'B -+ CMA): we
have to evaluate ®T(D™B + CHMA), and then square this expression in order to get a
correct answe.

The abovetheoremwill allow the embedding theoremsin the next section to include
contractive systems that need not be strictly contractive. It also gives part of the proof
of the Bounded Real Lemma.
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12.4 LOSSLESS EMBEDDING

We are now ready to solve the embedding problem as defined in theintroduction: given
a bounded causal transfer operator of alocally finite system T, determine a lossless
system 2 such that 213 = T. The strategy is as outlined in the introduction: the prime
guantity to be determined is a state transformation operator R such that the transformed
realization of T is part of the realization of .

We start with an intermediate result.

Isometric embedding

Theorem 12.12 (Isometric embedding) Let T OU(M,N) bealocaly finite input-
output operator with u.e. stable state realization T = {A,B,C,D}. If | =T5T > 0, or
| -T™T 20and T isuniformly observable, thenT hasan extensionZ, OU(M XN, N),

T
e

suchthat 335, = | and As, = A. A redlization for 3y, is

A C A C
Za = [ B, Dy } - [ -o"(D'B+CMA) @ } (1213

where® = (I -D"D-C"MC)¥/2 and M is as defined in (12.11).

PROOF Let £, be of theform

&5
Z, = B D (12.14)
[ B, D2 J

in which B, and Dy are to be determined such that 555, = I. Using corollary 6.5 in
section 6.1, thisisthe case if thereisan M = 0 such that

AMA + BB + BB, = MY
AMC + BD + BiDy = 0
CMC + DD + D5Dy = |

(12.15)

We will show that M given by equation (12.11) is a positive semidefinite solution to
these equations. Indeed, under the conditions imposed on T, theorem 12.4 [theorem
12.11] ensures that this M satisfiesM = 0, | —-D"D-C"MC > 0[I -D"D-C"MC = 0],
and

MY = A'MA+B™B + ([AMC+BD]o") - (#'[D'B+CVA]),  (12.16)

where ® = (I -D"D -CHMC)¥2. With B, and D3 asin (12.13), it immediatedly fol-
lows that equations (12.15) are satisfied.
i
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In the above theorem, M can be interpreted as the reachability Gramian of Z, and
since M = CC + CfC1 with C1 asin (12.10), it is seen that C1C;y is the reachability
Gramian of 1. (A more detailed analysis showsthat —C isits reachability operator.)

Supposethat || T|| < 1 sothat | - TUT isinvertible. A result of Arveson [Arv75],
which is applicable in the present context, claims that there is a factor o1 of 1 = THT
whichisouter, i.e., such that Zg% Ou. Wewill show that our choicefor 51, asdefined
by therealization £, in (12.13), isin fact outer. To thisend, we will look at apossible
realization for 31, viz. proposition 7.7 in section 7.3,

X X _ -1 - -1
2 = { gx gx } = [ A DE?@;BZ g%?l (12.17)

and will show that thisredlizationisu.e. stable: /4« < 1. Inthat case, we can conclude
that =5} O U.

Proposition 12.13 Suppose || T || < 1. Define Z3, asin (12.17) and theorem 12.12.
Thenipx < 1, and 2y, is outer.

PROOF We first assert that the reachability operator of Z3; is given by C* = —(I -
KEKr)IKEC. Itissufficient to show that the given formulaof C* satisfiestherecursion

¥ = [ 2..]. Indeed, with equations (12.4), (12.5), (12.8),

cxtH o — _(|_K1@KT)—(—1)K$—1)C(_1) _
0 |

B _([ (I_R-FKT)_1:|+|:(I_K'FRT)_1K‘P\7T:|.

- ~ i~ ~r~ DD \75 B
'q’z[' ViR (1-KEKT) 1}){ 0 KH {CA}
0 | )
B _[ (I -KEKr)IKECA } "[ (1 -RBRr)1RAcC } ®?(D'B+CMA)
~®2(D'B+CMA)

~(I -KPKt)IKEC[A+ CO2(DTB 4+ CTMA)]

= D>1B2

— [ C(A-CD3iBy) |

The reachability Gramian of Z3; is A* = ™Ky (1 - KFKy)2KEC, which is bounded
becausetheinverseis bounded and C™C isbounded. Accordingto aresult of Anderson
and Moore [AM81, thm. 4.3] (see aso [Nic92)]), if A* is bounded and /4 < 1, then
{px < 1.2 1t followsthat =51 O, so that T4 isouter. O

2The actual condition in [AM81] is that (A—CD3 B, D51By) is uniformly stabilizable, but it is also shown
that thisisthe case if and only if (A, DE%BZ) isuniformly stabilizable. For this, it is sufficient that /4 < 1.
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Orthogonal embedding

Using theorem 12.12, it is straightforward to solve the |ossless embedding problem.

Theorem 12.14 (Orthogonal embedding) LetT O/ (M1,N1) bealocally finiteinput-
output operator with u.e. stable state realization T = {A,B,C,D}. If | =TT > 0, or

| -TET 20 and T isuniformly observable, and if the realization T is uniformly reach-
able, then the lossless embedding problem has a solution = O U(M1 %X N1, N1 x N>)
such that  isinner, 11 = T, o1 isouter, and = has a unitary realization £ where As
is state equivalent to A. If AQ D(B,BY), then N> is specified by #(N>) = #(B) -
#(BY) +#(My).

ProoF The proof is by construction. Let £ be of the form

A C (073
2.%] = | B D |Dp
B, D2 | D2
z = ' [Za Zp] | ] = [Z5 Z,
| |

inwhich RO D(B, B) isaboundedly invertible state transformation. R, B2, D12, D21,
Dy, are to be determined such that £ is unitary, in which case Z isinner (theorem 6.4
in section 6.1).

First, determine M, By, D1» and hence £, asin theorem 12.12. Because T is uni-
formly reachable, M > 0. If we definethe state transformation Rby M = R'R, then Ris
invertible, and £, isan isometry (4%, = 1). The extension of arectangular isometric
matrix to asquare unitary matrix by adding columnsis astandard linear algebra proce-
dure that always has a solution. The same holds for diagonals of matrices. Hence, we
can extend X/, to aunitary matrix X, which isthe realization of aninner system 3. The
resulting dimension sequence of Z isgiven by [#(B) + #(M1) + #(N1)], and the num-
ber of columns of each diagonal entry of £/, isthe sequence [#(B(Y) + #(\1)], hence
the number of columnsto be added isequal to #(\>) = #(B) —#(B™Y)) +#(My). This
number is non-negative because the columns of X}, are linearly independent. i

As was the case with the inner-outer factorization in chapter 7, one difference with
the time-invariant situation is that the solution of the embedding problem gives rise
to atime-varying number of added extra outputs if the number of states of T istime-
varying (B # B(™0), even if the number of inputs and outputs of T is fixed. Another
differenceis that, for the boundary case, we need both uniform reachability and uni-
form observability in order to construct an embedding. From chapter 5 we know that
not every time-varying system admits such arealization, not evenif it has afinite state
dimension; the condition is that the range of Hr must be closed.

Bounded real lemma

A reformulation of theorem 12.12 and proposition 12.13 leadsto theboundedreal lemma
which appearsin system and control theory.
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Theorem 12.15 (Time-varying bounded real lemma, |)

Let T OU(M,N) be abounded causal locally finite input-output operator, with u.e.

stable state realization T = {A,B,C,D}, and A0 D(B,B(™D).

» ||T| < lifandonlyif thereexistsM 0 D(B,B), B, DD(N,B™), Dy OD(N,N)
solving

CMC + D'D + DiDy = | (12.19)

AMA + BB + BB, = M
0

A'MC + B'D + B,Dn
withM 20,1 -D'D-C'MC > 0 and (s cpg, < 1.

m [fT isuniformly observable, then || T || < 1 if and only if (12.19) has a solution M,
By, Dy; suchthatM = 0.

PrRoOF The'onlyif’ partisdirectly derived fromtheorem 12.12 and proposition 12.13.
The'if’ partisacorollary of theorem 12.12: given such M, it follows that there exists
an isometric embedding £, such that 555, = TUT + 55,55 = |, so that 55,551 = | -
TUT 2 0. If in addition Dyy isinvertible and p_cpzi, < 1. then by proposition 12.13
we can concludethat 251 isinvertible, sothat | -T-T > 0,i.e, || T| < 1. i

An dternative version of this theorem is given in 13.5, where the connection be-
tween unitary embedding and spectral factorization is explored.

12.5 NUMERICAL ISSUES

Initial point for the recursion

Suppose that we are given aredlization of a system T that meets the requirements of
the embedding theorem. How do we go about determining a realization of ~? The
embedding theorem is constructive, and Z; (therealization of Z at timeinstant i) can be
determined from knowledge of T; and both M; and M;, 1. In addition, equation (12.16)
can be used to determine M; ; from M;:

Miz1 = AMiA + BB + [AMG +BDi] (1 -DiDi -C'MiG) ™! [DiBi + CMA ],
(12.20)

and thisis the only recursive aspect of the procedure. The single missing item is the
initial point of this recursion: the value of M—, or rather My, where ko isthe pointin
time at which the solution of the embedding problem starts to be of interest.

Aswasthe case beforein the solution of the Lyapunov equation and the inner-outer
factorization (section 7.2), itispossibleto find aniinitial valuefor therecursionfor cer-
tain specific time-varying systems. In fact, the Riccati equation (12.20) isvery similar
to the one which occurred in the inner-outer factorization (cf. equation (7.19)), so that
also the solutions are obtained in similar ways.

Thefirst (and simplest) classis the case where the state dimension of T iszero at a
certain point in time ky. Consider, for example, afinite nx n upper triangular (block)-
matrix T, then the input space sequenceis

Mlz...x@x@xx(Cx...x(Cx@x@X---

n
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and output space sequence N1 = M. A reachable redization of T obvioudy has a
state-space sequence 5 also with B; = () for (i < 0,i = n), and hence aninitial value of
the recursion for M isMg = [-].

A second exampleisthe casewhereT istimeinvariant beforeacertain pointin time
(i=0say). T hasatime-invariant redization {a, b, c,d} fori < 0, and thereisatime-
invariant solution for M aso: M1 = Mj =:m (i < 0). Therecursion (12.20) becomes
an eigenvalue (Riccati) equation

m=a"ma+bb + [admc+bd] (1 -dd-cme) ™t [db+cima] . (12.21)

Thisequation has exact solutionsmwhich can beobtained analytically asin section 7.2,
or numerically by using a Newton-Raphson iteration. An overview of these and other
methods can be found in the collection [BLW91]. It is well known that the analytical
(eigenvalue) methods usually provide more than one solution that satisfies the Riccati
equation; the solution M = C™(1 - KyK¥) ™€ correspondsto the “stable’ solution, for
which M = 0. The stable solution is also the only solution of the Riccati equation that
is stable to a small perturbation when it is plugged in the Riccati recursion (12.20).
In fact, one way to solve (12.21) is to use the recursion (12.20) for an initial value of
M-, = 0, and to iteratetill convergence. It isknown that this occursif the eigenvalues
of a are gtrictly smaller than 1, and that the recursion will monotonically converge to
the stable solution of the Riccati equation.

We can do the samefor time-varying systems, which will then apply to other specific
situations as well, such as periodic systems. The claim is that if M'g = O istaken as
theinitial value of the recursion (12.20) which gives a sequence M/, then M'; — M; as
i - o. An elegant proof is possible, not based on numerical properties of the Riccati
equation but rather on the knowledge that M = C™{(1 - KrKE)C is the solution of the
recursion that we are looking. Details of this proof are however cumbersome because
many time indices will appear, but we give an outline of it below. (A formal proof of
convergence of arelated Riccati equation appearsin section 13.4.

Proposition 12.16 Let {A,B,C,D} be a u.e. stable redlization ({p < 1) of alocally
finite strictly contractivetransfer operator T OU. LetM; = CH(1 —KiKP)Ci bethe exact
solution of the Riccati equation (12.20), and let M; bethe solution, obtained by starting
the recursion with My = 0. ThenM; - M; fori — oo (strong convergence).

ProoF (outling). Theinitial value M’y = 0 is the exact initial point of a recursion
for M of asystem T' whichisrelated to T: Tj; = 0 fori < 0, and T} = Tj; for i = 0.

The sequence M; correspondsto T and isat each point i in time given by M; = CF(I -
KiKD)™¢;. For i = 0, we can define a partitioning of K; and C; as

Ki 0 C
Ki = [ HE Ko } Ci = { CoAl0 i1 }

where K/ isan (i xi) matrix, C isequal to thefirsti rowsof C;,

ACT = AoAL Ay,
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and Hy is related to the Hankel operator Ho, but has a finite number (i) of columns,
which are in reversed order in comparison with Hp. In terms of these quantities, M’ is
givenat timei > 0 by M'i = ¢/Y(1 -K'iK'5)™2¢/. Using this decomposition of K;, and
avariant of Schur’sinversion lemma (lemma 12.2), one can derive that, for i = 0,

(I-KK)™ = {('_K"K'q)_l

0 +
_K!' k'Ol (4r\O
+ {(' KIKETKG(H) }GJ_Z[HBK’E%(I—K’iK'E%)_l ]
where
D2 = | -KoKF-H (1 -KBK ) L(HY) > 0

and hence its inverse is bounded. Inserting the expression for C; and defining H, =
CoOy yields

M = M’i + [Ci/EI(l —K’iK’EE)‘lK’i(O{))D+ (A[O..i—l])D} CODCD_ZC()-
- [OBKE (- KK )] + AL

An examination of the term OLK'5 (1 =K'iK'5)™1¢/ that is more detailed than we wish
toinclude at this point revealsthat it consists of a summation of i terms, each of which
hasafactor A®-k-1 and Ak+1-i-1] (for 0< k<i). Thestability condition /4 < 1implies
that £ > 0 exists such that, in the limit, products of the form Alk-k+1 are bounded in
norm by (1-¢€)" which goesto 0 strongly and uniformly ink asn — . Since ®2 is
bounded, this equation givesM’; — M; asi — . |

“Square-root” solution of the Riccati equation

The embedding algorithm can be implemented along the lines of the proof of the em-
bedding theorem. However, as was the case with the solution of the inner-outer fac-
torization problem in chapter 7, the Riccati recursions on M; can be replaced by more
efficient algorithms that recursively compute the square root of M, i.e., R, instead of
M; itself. The square-root algorithmisgiveninfigure 12.3. The algorithm acts on data
known at the k-th step: the state matrices Ay, By, Ck, D, and the state transformation
Ry obtained at the previous step. Thisdatais collected in amatrix Tey:

R A C
Te = I B D (12.22)
I 0o |
Thekey of thealgorithmisthe construction of aJ-unitary operator © 0 D33, satisfying

OO = J, where
(€] © © |

O3 Oz Oz -l
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In: {T} (areachableredization of T, || T|| < 1)
Out: {Z} (aunitary redlization of embedding %)

Ri=["]
forkzl,---,n_
( R e o]
Texk = | By Dy
i | J [ 0 |
T:e.,k = OxTek, GKSUChthatT'e’k(Z,Z):T’e7k(1,2):T'ewk(2,1):0
Rt O -|
| Bok Daik J
[ Ry Ao G ~
zl,k — | ] Bk Dk [Rk]il |:|
L I Bok Daik
%o = [Ew T
end

Figure 12.3.  The embedding algorithm for finite N XN matrices.
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such that certain entries of T := ©T¢ are zero. (General J-unitary operators are the
subject of chapter 8.) It turns out that, because © is J-unitarity, we havethat T4 I Te =
TEJTe; writing these equations out, it follows that the remaining non-zero entries of
T, are precisely the unknowns RCY, B, and Dy;.

Proposition 12.17 Let T O U beastrictly contractive operator, and let{ A,B,C, D} be
auniformly reachable redlization of T. Define T asin equation (12.22).

Then there is a J-unitary operator © 0 D¥3 such that T, := OT, has zeros at the
entries (2,2), (1,2) and (2,1). T, isof theform

(R 0]
T.=0T=| 0 0
[ B Da J

whereM = RR, By, D1 satisfy the embedding equations (12.15).

PrRoOOF Assumefirst that such an operator © exists. A direct computation reveal sthat
(withM = R'R)

05T — A"MA+BB A"MC+B™D
| (AMMC+B™D)” —(I-D'D-C™MC)
MY -BSB, -DYB
70T = { 22 212 }
-B5D2; -D5Da1
Since @ isJ-unitary, wemust have TRJT = TMJT’, which producestherelations (12.15):

AMA+BB+BB, = M(D
CMC+D™D+D}Dy = |
AMC+BD+BDyy = 0

i.e., the equations that congtituted the Riccati equations. It remains to verify the ex-
istence of a J-unitary © such that T, has zeros at the entries (2,2), (1,2) and (2,1).
Choose © of theform

@ @, 01[e, 006411 0 o0
©=040,0,= | €3, ©3, 0 0 1 0 0 e, o
0 0 I ][ 06%]||0 o oL

where the submatrix { ©3}7,_; is unitary, while the submatrices { @7} and {©f} are
J-unitary with with signature matrix J, = [ $]. The submatrices are determined by
the requirements

0}, 0L 1D _ [ 0
03 O | [!] [(1-DD)2
o e[ R ] _ | 0
03 0% | |[(1I-D'D)¥2] — |(1-D'D-CcHMC)/?
I 0 . .
(% %][% ¢ %“o %WA -3
o3, 65 0 | [o @%ZJ B 0
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Hence necessary requirementsare | —D™D > 0 and | -D"D -C"MC > 0, respectively.
In the present case, because T is strictly contractive, we know that | —D™D > 0 and
| -D"D-C"MC > 0, and these condiitions ensure that the J-unitary submatrices{ ©;}

and{@ } arewell defined, and for example, of theform ofaHaImosextenson[DDQZ]

[ 1-KKB)/2 0 I K
H(K) = 0 (I1-KK)™/2 KE 1|
The unitary submatrlx{e -} isalwayswell defined. i

It is aso a standard technique to factor © even further down into elementary (J)-
unitary operationsthat each act on only two scalar entries of T, and zero one of them
by applying an elementary J-unitary rotation of the form

6:}[1 S}, cc+s5=1.

c|ls 1

With B, and D; known, it is conjectured that it is not really necessary to apply the
state transformation by R and to determine the orthogonal complement of £, if, in the
end, only a cascade factorization of T isrequired, much asin [LK92]. Cascade factor-
izations are the subject of chapter 14.

12.6 NOTES

Many control applications give rise to the Riccati equation (12.2). Usually, the exis-
tence of astabilizing solution is of importance. In the context of our embedding prob-
lem, this would be a solution for which A—CD;%BZ isu.e. stable, or 2,1 isouter. The
uniqueness of such a solution is a standard result which is straightforward to prove.
More is known on time-varying Riccati equations, and on its connection to em-
bedding, positivity, and spectral factorization. We mention in particular the papers
[Nic92], inwhich detail ed attention is paid to the convergence of the recursion to max-
imal/minimal solutions, and [HI93], where the solution of a Kaman-Szegd-Popov-
Yakubovich (KSPY) system of equationsis presented. (See also [HI94] for further de-
tails.) The equations (12.19) can be viewed as a particular instance of these equations.
Although [HI93] gives solutions to a more general class of problems, the boundary
caseis not considered. A major difference with [HI193] isin the proofs of the results:
whereas the latter heavily relies on insights gained in optimal control theory, the ap-
proach taken in this chapter is more based on first principles: | -THT = 221221 -
| -KPKr = Kz Ks,,. The analysis of the latter equation directly leads to arecursion
in which the g|ven expressionsfor M, D21, B, turn up, along with an explicit expres-
sion for the reachability operator of the realization for Zp;. Similar analysis of Kzg =

(Kzﬂ)‘l |leadsto therealization of theinverse, the given expression for thereachability
operator, and the fact that our choice for Z,; is outer.

In an operator-theoretic setting, additional research on the existence of isometric
extensions was done by Feintuch and Markus [FM96b, FM964d], in the context of a
nest algebra.
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Appendix 12.A: Derivation of lemmas 12.7 and 12.8

The contents of lemmas 12.7 and 12.8 are well known for finite matrices (see e.g.,
[CHM 74, BCHM74]) for generalized inverseformulasinvolving Schur complements).
The matrix case is readily extended to operators if the operators are assumed to have
closed range. Without this condition, complications arise because the pseudo-inverses
that are involved are unbounded operators.

We will repeatedly use theorem 12.6 in the following form. Let X = 0 be abounded
operator on aHilbert space H. If visabounded operator whoserangeisin R (X), then
v = Xvi, for some bounded v; O R (XY for which we can take v, = XTv.

A second fact that is used in the proof of lemma12.8isthat XTX = Po: the orthog-
onal projector onto R (XD), with domain # [BR76].

Proof of lemma 12.7

Suppose first that X = 0; we show that (1), (2), (3) hold. It isimmediate that A = 0,
C=0.

R(B) O R(CY?) isproven by showing that there exists A such that BB”< AC; Dou-
glas theoremthenimpliestheresult. The proof isby contradiction. Supposethat there
isnot such aA. Then there exists a sequence { x, : n 0 N} such that

(BB™n,Xn) = N(Cxn, %) > O. (12.A.1)

where (-, -) denotesthe inner product in 7. In particular, || B, || > 0 (al n). For any

Up, X = 0implies
A B- Un Un
(8 &][m]Lah=e

|e, (AUn7Un) + (B%(n,Un) + (BUn,Xn) + (CXn,Xn) 2 O ChOOSE Un = _%Bq(n. US|ng
(12.A.1), we obtain

A 2 I

—_—— 4 - >

(B{ T Um + n} B0, Xn) = 0.
Butif n> ||| + A/, the term in bracesis smaller than —1/./n, which gives a contra-
diction. Hence R(B) 0 R(CY/?).
DefineL = C/2 (although L = L", we will not usethis), and let B; = L'B. Then By

is bounded, and B = LB; with R(B;) O R(LY), whichimplies

N(BY) O N(L). (12.A.2)

To prove A— BB > 0, we will show that

x:{ A BiLY

O
LB, LLD}20 . [A T

B | }zo (12.A.3)

fromwhich A- BEBl > O follows directly by applying vectors of the form [_'Bl] a.
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Thusfor x 0 #H41 0 Ho, take x of the form

X= { — } o { N(L)EllR(LD) }

where x; 0 N(L) and x; O R(LY). Notethat A'(L) O R(LY) isdensein Hy. Then
N (B O N(L) impliesBTx; = 0, while x, O R (L") impliesthat x, = L, for some
bounded x,. Using these observations, it follows that

([ A BY

u u
By | [X1+X2:|’|:X1+X2:|)
(Au,u) + (BiX1,U) + (B1u,X1) + (X1,X1) + (B3Xz, U) + (B1U,X2) + (X2, X2)
(Au,u) + (Bpxa, u) + (B1u, Xp) + (X2, X2)
(Au,u) + (B, U) + (B1u,X5) + (X5, X5)

:(X{u u

A

x5

v

Hence relation (12.A.3) holds on a dense subset of 71 [0 H». By continuity, it holds
everywhere, and consequently A—-B{B; = 0.

It remainsto provethereverseimplication: X = 0if thethree conditionsare satisfied.
Because C = 0 adecomposition of C asC = LL" is defined. Using this decomposition
and B = LBy,

x| A BiL" | _[1 BY ][ A-BBi |
LB, LLE L || I ]| B LY~
Under the stated conditions, the operator
r 01T (A— 1/2
W= [ ! L} ! El’l (A-BiBy) | } (12.A.4)
iswell defined, and is a factor of X such that X = WW". Hence X > 0. |

Proof of lemma 12.8

Let X = 0 have a factorization X = WW, then R(X/2) = R(W) (again by theorem
12.6). It can be inferred from Beutler and Root [BR76] that

XT — WDT'wT — XT/ZxT/Z
henceif R(v) 0 R(XY/2) = R(W), then vy and v, defined by

vi = X2y, R(vq) OR(XY/2)
v, = Wy, R(v2) OR(WH)

are bounded, and® ViV = V5vs.

3Weare careful here not to write Xv. Although R(X) = R(X1/2), weonly havethat R(X) O R(X*?), and
hence X v can be unbounded with R(v) O R(X1/2).
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Let L=C%2 By = L'B and put W asin (12.A.4), so that X = WW". Define the
operator W* by

i ([}

We prove that W¥ = W' on R(W). The result will be, for a bounded operator v with
R(v) O R(XY2) = R(W), that Wiv = W, so that v; := X/2v and v, := Wy are
bounded and satisfy vivy = V5V,

For any v with range in R (W) we have that the operator v; = W'v is bounded and
suchthat v=Wv;. HenceW*v = W*Wv; = WWv; = W'y, sothat W = W' on R(W)
if and only if

WW=W'W onR(W0D.
To analyze W*W, we first prove that BY-BLTL = 0. Indeed, if x 0 A/(L) then x O
N (B (by equation (12.A.2)), and hence both Bjx = 0 and Lx = 0. If, on the other
hand, x O AV(L)Y, then LTLx = x since LL is the projector onto A(L)Y, and hence
BIL'Lx = Bx.
With the definition of W* and the above result,

WwW = | |

[ (A-BB)2  7[1 -BYT[1 }
Lt |’

(A-BB)Y/?
| |
[ (A-BBYY2 [ BI-BL'L | [ (A-BiB)Y? }
| LTL |
(A-B[By)/2(A-B[B,;)/2 [P
L | P2

P1 and P, are projectors onto R (A-BB1)1/2 and R (L), respectively. Now, using

e[ ]

and R(B;) O R(LY), we have that
mm{ (BB }

SinceW'W isthe projector onto R (WD), and W*W is the projector onto therange at the
right-hand side of the expression, this provesthat W*W = W™W on R (WD), asrequired.
HenceW* = W' on R (W), which also impliesthat W* iswell definedonR(W). O




]. 3 SPECTRAL FACTORIZATION

In thischapter we give asimple and straightforward treatment of the spectral factoriza-
tion problem of a positive operator Q 0 X into Q = WW, where Wi [ I/ is outer. We
only consider the case where Q isastrictly positive operator and where its causal part
is bounded and has a u.e. stable realization. Thisleadsto arecursive Riccati equation
with time-varying coefficients for which the minimal positive definite solution leads
to the outer factor. The theory also includes aformulation of atime-varying (strictly-)
positive real lemma. In addition, we provide connections with related problems dis-
cussed in previous chapters in which Riccati equations appear as well, such as inner-
outer factorization and orthogonal embedding. The results can no doubt be formul ated
in a more general way where strict positivity is not assumed, but we consider these
extensions as laying outside the scope of the book.

13.1 INTRODUCTION

The term “spectral factorization” as commonly used refersin its most simple form to
the problem of splitting a polynomial p(s) intwo factors p(s) = p1(s) p2(s) so that the
zeros of py(s) are within a given open region of the complex plane and the zeros of
p2(s) strictly in the complement of its closure. The problem has a solution if and only
if p(s) has no zeros on the boundary. One could extent the problem by alowing zeros
on the boundary and counting them with one or the other region (or both). Moreinter-
esting isthe matrix function extension, which necessitates a definition of a“zero” con-
sistent with Smith-McMillan theory. Spectral factorization became a hot topic when

363
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it was seen to be an essentia step towards the solution of estimation and embedding
problems. The standard problem then became: given a matrix function M(s) which
is positive definite on theimaginary axis, find acausal and causally invertible T(s) so
that M(jw) = T(jw)"T(jw). This more specific case became identified as the generic
one, and a splitting of the necessarily even number of zeros on the imaginary axis be-
came a part of the factorization aswell. If M(s) isrational, then T(s) can be found by
splitting both the zeros and the poles of M(s) with the imaginary axis as boundary. It
is remarkable that thisis always possible. The first (complicated) algorithm to do so
is due to Oono and Yasuura [OY 54], based on the properties of the Smith-McMillan
form [CC92]. Much more attractive schemes came later, e.g., based on the state space
description of the causal part of M(s), and resulting in an algebraic Riccati equation
and a criterion for positivity known as the positive real lemma. (A later extension to
amore general metric is known as the Kalman-Yacubovitch-Popov lemma, for avery
nice introduction to the topic and its ramifications, see [AV73].

In the very general and abstract context of “nest algebras’ of operatorson aHilbert
space, Arveson [Arv75] studied spectral factorization as the factorization of a posi-
tive operator Q = WHW in which W has acausality property related to the nest algebra.
Arveson showsthat in thisvery general set-up, thefactorizationisalways possible pro-
vided that the original operator Q isinvertible. In the traditional special case of opera-
torsbelongingto L™, (the LTI case), it is known that a spectral factorization for M(s)
with Hermitian M(jw) = 0 will exist if and only if the so-called Szegd condition

°° . d
/_wlogdetM(Joo)1+—ww2 > —o0

is satisfied (see [Hel64] for ageneral treatment). For example, the power spectrum of
an ideal low pass filter will not qualify because it will have large intervals on which
M(jw) = 0 and hencelogdetM(jw) = —c0. An extension of this famous result to the
time-varying case is not available, at least not to the knowledge of the authors. There-
forewe shall adopt Arveson’sresult and put ourselves squarely in the situation where
Q is abounded and invertible operator in X', a case which is subsumed by the Szegd
condition, but considerably less general. Still, a further word of caution is needed.
The boundedness and invertibility of Q does not entail the boundedness of the pro-
jection P(Q) aswe aready know from counterexamplesin chapter 2. So, and in order
to achieve finite computations, we introduce a further assumption, namely that Q =
T+ Tinwhich T isacausal and u.e. stable operator.

In our discussion on theinner-outer factorization problem and the embedding prob-
lem (see chapters 6, 7, 12), we have obtained solutions governed by Riccati equations.
In many other problemsin time-invariant system and H.,-control theory, for example
linear quadratic optimal control, optimal filtering and sensitivity minimization, Ric-
cati equationsplay an important role aswell. Thereisafamily of related formsof this
equation, and the precise form depends on the application. Underlying these problems
istypically a spectral factorization problem. The equation usually has more than one
solution, and important issues are the existence and computation of solutions which
are Hermitian and maximally positive or negative, as these conditionsimply minimal-
phase properties of spectral factors, or the stability of closed-loop transfer operators
constructed from the solution. Such solutionsare, for time-invariant systems, obtained
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by an analysis of the elgenvaluesand invariant subspaces of an associated Hamiltonian
matrix.

For general time-varying systems, the Riccati equation becomes a recursion with
time-varying coefficients that can also have time-varying dimensions. For such equa-
tions, much less is known on the structure of solutions. One reason for thisis that the
usua eigenvalue analysisto classify stable and unstable systemsis no longer applica-
ble: A¢ need not even be square. Some results, e.g., on the convergence of solutions
starting from an approximateinitial point, have already been obtained in the solution
of the embedding problem (chapter 12).

In this chapter, we approach the time-varying Riccati equation from a different an-
gle, by starting from the spectral factorization problem. The sameapproachisfollowed
in[SA73] although, inthat paper, the starting point isthe existence of the Cholesky fac-
tor of apositive definite, finite size matrix. The Riccati recursionin these factorization
problems emerges once a state realization for the operator is assumed.

The spectral factorization problem is treated in section 13.2, where also a (related)
time-varying version of the positive real lemma is formulated. Some computational
issues are discussed in section 13.3. Itisargued in section 13.4 that under certain con-
ditions the Riccati recursion converges to the exact solution even if the recursion is
started from an approximate initial point. This allows us to compute spectral factors
of more general time-varying positive operators, even if they are not constant or peri-
odically varying before some point in time. Finally, in section 13.5, we discuss some
connections of the spectral factorization theory with related problemsin which aRic-
cati equation occurs, in particular the orthogonal embedding problem of contractive
operators and the inner-outer factorization problem.

13.2 SPECTRAL FACTORIZATION
Werecall thedefinitionsof outer operatorsfromsection 7.2. Anoperator W, OU (M, N)
is defined to be left outer if
wrw, = u’.
W isright outer if
oW = o770

Arveson [Arv75] has shown, in the general context of nest algebraswhich also applies
to our model of time-varying systems, that if Q 0 X is a positive invertible operator,
i.e. if Q isastrictly positive operator, then an operator W [0 I/ exists such that

Q = whw.
W can be chosen to be outer, in which case the factorization is called a spectral factor-
ization, in the strict sense described in the introduction. Related to this fact is another
theorem by Arveson in the same paper, which claims that operatorsin a Hilbert space
have an inner-outer factorization

W = UW
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where U is aco-isometry (U™U = 1) and W isright outer.r Hence, if Q is uniformly
positive definite, then Q hasthe factorization Q = W-W whereW; is both left and right
outer and invertible, and hence £,Z*\W~ = £,Z* (no closureisneeded) and W O 74.
Any other invertible factor W can be written asW = UW;, where U is now invertible
and henceinner.

In this section, we derive an algorithm to compute a time-varying spectral factor-
ization of operators with a state-space realization. The computation amounts to the
(recursive) solution of a Riccati equation. Such eguations have in general a collection
of solutions. We show that in order to obtain an outer spectral factor, one must select
auniformly positive solution of the Riccati equation, and we show that this solutionis
unique. We need a number of preliminary results.

Realization for TDT

Wefirst deriveaformulato compute arealization of the upper part of the operator T™T,
when arealization of T O U isgiven.

Lemma13.1 Let T O U be given by the state realization T = D + BZ(l - AZ)™*C,
where (s < 1. Then a state realization of the upper part of TT is

A C
D'B+CAA DPD +CEAC

where/ O D isthe (unique) operator satisfying the Lyapunov equation A=Y = APAA+
B"B.

PrROOF Evaluation of THT gives
TOT = [DY+CH1-Z"AD1Z"BY [D+BZ(1-AZ)7IC]
= D'+ CY1-Z"A%1Z"B™D + D'BZ(1-AZ)IC +
+ CHI1-Z"AD)~1ZzMBBZ(1 -AZ)1C.
The expression (1 -Z"A™)1z"BMBZ(1 - AZ) ™ evaluates as
(1-Z"AD1zZ B BZ(1-AZ)™t = (1-Z"ADN 125X + A(1-AZ) 2

where X = A™A, and A is given by the Lyapunov equation AY = A"AA+ BB, Ais
uniqueif £ < 1, and

THT = [D'D+CFAC] + [D'B+CAAIZ(1-AZ)IC
+ CH(1-ZFAD)1ZPAPAC 4+ BMD] .

1Actually, Arveson uses a slightly different definition of outerness (not requiring ker( 'W')‘azz-lz 0), so
that U can be chosen inner. The resulting inner-outer factorizations are the same when W isinvertible. See
chapter 7.)
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Properties of outer factors

The input and output state spaces of an outer factor in a spectral factorization of a
strictly positive definite operator have certain characteristic properties, which we for-
mulate in proposition 13.4. The recursive version of these properties then produces a
Riccati equation, and the existence of the outer factor implies the existence of a (pos-
itive) solution to this equation. Other properties of the equation can be derived from
the link with outer factors as well.

Proposition 13.2 Let T 0 U(M, M) be an outer invertibl€? operator, with state re-
dization T = {A,B,C,D}. ThenS= T™! OU(M, M) has a state realization given
by

[ A-cplB -cD?

s=| " g o (13.1)

Moreover, T is [uniformly] reachable if and only if S is [uniformly] reachable, T is
[uniformly] observableif and only if S is[uniformly] observable. Let A* = A-CD™B.
If ta < 1 andT isreachable or observable, then fpx < 1.

PROOF SinceT isouter and invertible, T 0/, so S= T~ hasareaization whichis
causal. Lety=uT, whereu,y 0 X3". Thenu=yS, and

(1) _ n _ . .
X[k+1] = X[k]A—l— U[k]B - X[k+1] = Xy (A-CD 1B) + y[k]D 1B
Vg = XKC+uxD uy = -xCD™ + yxD™

so that Shas a state realization asin (13.1). To provethe remaining properties, let, as
in(5.1), T be decomposed as

T|p,z1= Kr +Hr: Hr =P(T[, )0 Kr=P(T|,)
'T‘uz =Er

Since-T \ X, isan invertible operator, the same istrue for Ky, because a decomposition
of -Tx, dong X» = £,Z°0 U, in the input and output spaces gives

[ Kr Hr
Tw=1 0 & } '

The Hankel operator Hr hasafactorization in terms of the reachability and observabil -
ity operators F and F, defined as Hr = Po(-F") Fo. Partition u 0 X3* into a past and
afuturepart: u=up+us O L£2Z710Us,, and partition y likewise. Then

Yo = UpKr
y=uT o Xo = Po(upF")
yi = UusT+XqFo.

2Thus, both left and right outer.
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Because T isinvertiblein 4/, Ky isinvertible, and hence, the above set of equationsis
equivaent to

Up = YpKit
u=yS =« Xo = Po(ypK-FlF[D
up = YT t-xgFoT ™.
It followsthat S has reachability and observability operators given by
Fs=FK{”,  Fos=-FoT ..

These operatorsinherit the one-to-one and onto properties of the reachability and ob-
servability operatorsof T.

Finally, to show that £ax < 1if £ < 1 and Ag > 0 or Ag, > O, we invoke the fol-
lowing extension of proposition 5.14: if Ag > 0, then

F isbounded on X = Ia< 1.
Applying thisresult twice yields, if Ag > 0,
/A<l O FboundedonX, 0O FsboundedonX, O /x<1.

A similer result holdsif Ag, > 0. O

Proposition 13.3 LetW O U be boundedly invertible (in X' ), with inner-outer factor-
izationW = UW;, and supposethatW andW; haveu.e. stablerealizationswith the same
(A,C): W=D+BZ(1-AZ)"'C,W, = D; + B;Z(1 -AZ)"IC, o < 1. Let A and A\, be
the reachability Gramians of W andW;, respectively. Then

A=A, A=A iff UOD.
PROOF SinceW; is outer, aredlization of Wt 0 ¢/ is given by
wt=p/t-D;'BZ(1-A*2)'c, A*=A-CD!B,
so that U = WW, 1 hasmain diagonal Po(U) = DD; 2. SinceU™U =, thisimpliesthat
D;'D'DD; 1 <.
Using WSW = WA\ and evaluating each term by means of lemma 13.1 yields the
equalities
D'D+CAC = DID,+CAC
D'B+C'AA = DIB +CAA

where the reachability Gramians A and A, are specified (uniquely) by
AT = AAA+ BB
AT = AIAA+ BB
Thefirst equation is equivalent to
D;"cHA-A,)CD;* = I -D;"D'DD;?

and since D;"D'DD; 1 <1, it followsthat A > A;.
The proof that A = A; = U O D is dso a straightforward consequence of these
equations. O
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Positive real lemmas

The following proposition is of crucial importance in proving that there is a solution
to the Riccati equation associated to the time-varying spectral factorization problem
which givesan outer factor W, andin characterizingthissolution. Recall the definitions
of input and output state spaces of T as H(T) = P'(UaT), Ho(T) = P(L2Z71T), viz
equations (5.3) and (5.5).

Proposition 13.4 Let T OU(M, M) be such that TP+ T >> 0. In addition, let W O
U(M, M) be an invertible factor of TR+ T = W'W. Then Ho(T) O Ho(W). IfW is
outer, Ho(T) = Ho(W). In particular, there exists a redlization of an outer W that has
the same (A,C) pair asaredlization of T.

PROOF Arveson’stheorem on spectral factorization[Arv75] isapplicablein this case,
so we may infer the existence of an invertible operator W O ¢/ such that

To+T = W',
Ingeneral, £,Z7 WP 0 £,Z71, and £,Z27*WH = £,Z71 if and only if W is outer. Thus
Ho(T) = P(EZZ_lT)
= P(LZYT+TH) [sinceTYO L]
= P(L2Z'WHW)

O P(L2Z7'W) = Ho(W).

If Wisouter, then £,Z W= £,71 and theinclusion in the abovederivation becomes
an identity: Wouter 0 Ho(T) = Ho(W). If {AB,C,D} isaredization of T with
{p < 1, then Ho(T) = Do(I —AZ)™IC (if the realization of T is uniformly reachable)
or, more generally, Ho(T) O Do(l1 - AZ)™C. Hence, it is clear that arealization of an
outer W can have the same (A,C)-pair asaredlization of T. |

Note that not necessarily Ho(T) = Ho(W) O W outer , as a simple time-invariant
example shows. The proposition, along with lemma 13.3, assures that a minimal de-
greefactor W of T+ T>> Oisobtained by taking arealization of W to havethe (A, C)-
pair asarealization of T, and that thisfactor isouter if the reachability Gramian of this
realization isas small as possible. This observation formsthe main part of the proof of
the following theorems, which can be used to actually compute the realization of the
outer factor if arealization of T isgiven.

Theorem 13.5 LetT OU (M, M) bealocally finite operator with an observable state
realization { A,B,C,D} such that {p < 1. Then TP+ T >> 0 if and only if a solution
ANDOD, N=0 exists of

AY = ATAA 4 [BP-AAC] (D +DP-CPAC) ™ [B-CTAA] (13.2)

such that D + D"”-C"AC > 0.

IfTU+T >0, letW OU(M, M) beaninvertiblefactor of T"+ T = W"W. A real-
ization{ A, Bw,C,Dw} forW suchthatW is outer isthen given by the smallest solution
A=0, and

Dw = (D+DP-CPAC)Y/?
Bw Dy/[B-CAA] .
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The realization of W is observable and [uniformly] reachable, if T is so.

PROOF Let theredization of T satisfy the given requirements, and supposethat T +
TU> 0. Then T + T =W"W, whereW is outer. Accordingto proposition 13.4, W can
have the same (A,C) pair as T. Hence assume that W = Dy + BwZ(l -AZ)™!C, and
denote its reachability Gramian by A. Then, with help of lemma 13.1, this realization
satisfies

D+DY = D{Dw+CAC, DwDw >0
BZ(I-AZ)"IC = [D{Bw+C"AAZ(1-AZ)™IC
AFD = ATAA+BY By, A=0.

Because the redlization of T is observable, the operator - (I - AZ)~C is one-to-one by
definition, and the above set of equationsreduceto

D+DY = D{Dw+C"AC, D{Dw>0
B = DyBw+CNA

ATYD = AUAA+BEBw,  A=0.
0 Dw = (D+DY-CPAC)Y/?
Bw = Dy’[B-CAA]
ACY = APAA + [BY-APAC] (D 4+ DP-CPAC) 1 [B-CAA]

(Dw, and hence By, are determined up to aleft diagonal unitary factor), so that A sat-
isfies the given Riccati equation. In fact, we showed that if T+ T > 0, the existence
of an outer factor implies that there is a solution A of the Riccati equation which is
positive semi-definite, and such that also D + DP-CFAC > 0. The converse, to show
that T+ T">> 0if these quantities are positive semi-definite, resp. uniformly positive,
follow almost directly from the construction, since it specifies a realization of an in-
vertible factor W of T + T". If this solution A is the smallest possible solution, then,
by lemma 13.3, W is outer. O

The above theorem can be extended to observabl e realizations without reachability
constraint.

Theorem 13.6 Theorem 13.5 holds also if the realization of T is not observable.

The proof of thistheoremistechnical and given in the appendix at the end of the chap-
ter.

Theorems 13.5 and 13.6 can also be specified in two aternate forms, familiar from
the time-invariant context [AV 73, Den75]:

Corollary 13.7 (Thetime-varying positivereal lemma) Let T O U be a locally fi-
nite operator with state realization{ A, B,C,D} such that (s < 1.
Then T2+ T >> 0 if and only if there exist diagonal operators\,Q, By withA=0
and Q > 0 satisfying
AY = AAA+BQB),
B"-AAC
Q = D+D"-CUAC.

&=
ro
|
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PrRoOOF In view of theorems 13.5 and 13.6, it suffices to make the connection Q =
DyDw and By = DwBj. m

Corollary 13.8 (Time-varying spectral factorization) LetQ X beaHermitianop-
erator whose upper part is locally finite with state realization { A,B,C,D} satisfying
KA < 1, i.e.,
Q = D+ BZ(1-A2)"c + cH(1-Z"A%1Z8".
ThenQ > 0if and only if there exists asolution A 0 D,\ = 0 of
AY = APAA + [BP-AAC] (D-CTAC) ™ [B-CTAA], (13.3)

such that D-CEAC > 0.
If Q> 0 and A\ isthe smallest positive solution, then a redlization { A, Bw,C, Dw}
for an outer factor W of Q is given by

Dw = (D-CFAC)Y/2
Bw = Dy[B-CAA].

If the redlization { A,B,C, D} is observable and reachable resp. uniformly reachable,
then\ > 0 resp. \ > O: therealization forW is observable and [uniformly] reachable.

13.3 COMPUTATIONAL ISSUES

We now consider some computational issues that play arolein actually computing a
spectral factorization of a uniformly positive operator Q with alocally finite observ-
ableredlization given asin (13.3). First, note that by taking the k-th entry along each
diagonal of (13.3), we obtain the Riccati recursion

Ner1 = ANA+ [BY=ANGCK] (Dk-CAG) ™ [Ba-CAA . (134)
and with Ag known, (Bw)k, (Dw)k aso follow locally:

(Dw)iDw)k = Dix = GACK
(Bw)k = (Da)k [Be=CNAAY] -

Henceall that isneeded in practical computationsisan initial point for the recursion of
Nk. Specia cases where such aninitial point can indeed be obtained are familiar from
previous chapters.

One general observation is that, since there may be more than one positive solu-
tion A, there also may be more than one initial point Ay. Outer factors are obtained
by choosing the smallest positive solution, which implies taking the smallest positive
initial point: since A< A’ O Ay < AL (Ok), asingle A is part of the smallest solution
if and only if the corresponding A isthe smallest.

Finite matrices

Exact initial conditions can be obtained in the case where Q O X' (M, M) is actually
afinite matrix, i.e., where

M = o XPXPXMIXMox o X MpxPx---,
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Inthis case, Q isafinite nxn (block) matrix, and arealization for Q can start off with
no states at point 1 intime. Since the dimension of A followsthat of A, an exact initial
point for the recursion is A1 = [+] (a0 x 0 matrix). The spectral factorization reduces
for finite matricesto a Cholesky factorization, and the resulting algorithmis an efficient
way to compute Cholesky factorizationsfor (large) matrices with a sparse state space.

Initial time-invariance

A second class of systems are systems which are time invariant before some point in
time, say k= 1. Then, beforepointk = 1, all A\ areequal to each other, andin particular
Ao = 1. Hencethe recursion for A reduces to an algebraic equation

No = AGNoAY + [BY—AGACs] (Do—CoAoCo) ™ [Bo—CiMoAd] .

which isthe classical time-invariant Riccati equation. A solution to this equation can
be obtainedin one of theclassical ways, e.g., asthe solution of aHamiltonian equation.
Multiple solutions exist, and in order to obtain an outer spectral factor W, the smallest
positive solution of the above equation must be chosen. Because the /A, for k > 0 are
determined without freedom by /g viathe recursion (13.4), the resulting A will also
be the smallest positive solution for al time.

Periodic systems

If Q isperiodically time varying, with period n say, then one can apply the usual time-
invariance transformation, by considering a block system consisting of n consecutive
state realization sections. Since the block-system is time invariant, one can compute
the smallest positive solution A1 from the resulting block-Riccati equation with the
classical techniques, and A\ is an exact initial condition to compute the realization of
the spectral factor for time points 2, ---,n. As usual, such a technique may not be at-
tractiveif the period islarge.

Unknown initial conditions

Finally, we consider the more general case where Q is not completely specified but
only, say, its “future” submatrix [Q; j]g is known. The unknown “past” of Q is as-
sumed to be such that Q > 0. In this case, the exact initial point for the recursion of
Ak isunknown. It is possible to start the recursion (13.4) from an approximate initial
point, for which typically Ao = Oischosen. The convergenceof thischoiceisinvesti-
gated in the following section. It is shown in proposition 13.10 that when the realiza-
tion{A,B,C,D} isobservableand has /a < 1, then A\ (corresponding to the recursion
(13.4) withinitial point Ag = 0) convergesto Ay, the exact solution obtained with the
correct initial point Ag.

13.4 CONVERGENCE OF THE RICCATI RECURSION

We study the convergenceof an approximatesolution A (k=0) totheRiccati recursion
(13.4), if the recursion is started with Ag = O rather than the exact initial point Ao. It
is shown that Ax —» Ay for k - o, when Q > 0, £a < 1 and the given redlization is
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observable. Similar resultsarewell knownfor thetime-invariant case, and for thetime-
varying case some results are known from the connection of the Riccati recursion with
Kaman filtering (cf. [AK74, AM79]). However, the derivation given below is more
general because state dimensions are allowed to vary, and hence Ax cannot be assumed
to be square and invertible, asrequired in [AK74].

Consider the following block decomposition of the matrix representation of Q =
WEW, and arelated operator Q = WEW:

Q| Q1 Q3 Wip | Wiz Wiz
Q= ng Qzﬂz Qp |- W= Woz  Wog
Q3 | Q33 Qa3 | ) Was | (135)
Qu| 0 0 [ Wp| O O '
Q=10 (92 95| W= Wor  Wbs
[ 0 |Qp Qu | [ Wss |

In these decompositions,® Q4, correspondsto [Qi j]7%, Q5 = [Qi ;15 isafinitenxn
matrix (where n is some integer to be specified later), and Q33 correspondsto [Q; .
The point of introducing the operator Q isthat Ag is the exact (and smallest positive)
initial point of the Riccati recursion (13.4) for aspectral factorization of thelower right
part of Q, and leads to an outer spectral factor W such that Q = WAW, of which only
thelower right part iscomputed. Thisisseen by puttingA-; = 0, B-; = OintheRiccati
recursion for A, which leads to Ag = 0. The convergence of Ay to A is studied from
this observation.

Asapreliminary step, thefollowing lemmaconsidersaspecial case of theabove Q.

Lemma 13.9 Let begivenan operator Q 0 X', Q > 0, with block decomposition
[ Q3 9p O
Q=| Qp Qzuz Q3
| 0 9} 9

where Q,, isannxn matrix. Let the upper triangular part of Q be locally finite and
u.e stable. Then

QY. ~ (Qa3=0Q30Q75Q) " a@sn -

(strong convergence). Hence (Q1)
Q;,=0.

w5 — (@), whereQ is equal to Q, but with

3The underscore is used in this section to denote that we take block submatrices rather than entries of Q.
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PROOF Let{A B,C,D} bearealization of the upper triangular part of Q with /4 < 1.
Let Qi = C101, Qo3 = C,0,, where

BoA1 - -An1
€y = S_BKZA& L= BnI—BAn—ZAn—l
B—z ! Bn-2An-1
-1 Bn—l

0;=[C ACL AAIC; -+ Ag--Ar2Ch]
O, =[Ch AChrz AA1Chz -]

Then O,C, isasummation of nterms, each containing aproduct A - - - Ai-1 and aprod-
uct Aj;1---An-1. Because fa < 1impliesthat products of the form Ay ---Ag,, - O as
n - oo strongly and uniformly in k, we obtain O1C> - 0if n - oo.

Write X3 = (Q71)33. By repeated use of Schur’sinversion formula (lemma 12.2),
Xz isgiven by the recursion

X1=0Q1, X1 = (Qusaker = ok X Qi) ™ (13.6)

Wefirst consider aspecial case, whereQy y = | (k 1,2,3). Inthederivationbelow, for
ease of discussion it is assumed that also 00 =1, i.e, the redlization is uniformly
observable and in output normal form, although this is not an essential requirement.
The recursion (13.6) becomes

Yi = CXCy
Xerr = (1=OMO) =1+ O M+ Y2+ -] O,

so that, in particular,
Y, = C5e, + 5oL [Y1(| -Y1)" ] 0,C,.
For largen, Yz — C5C, and becomesindependent of Y; and C,, and
Xg — (1= 05€5€205) ™ = (Qa3~ Q0 Q23)

independently of C;. The expression on the right-hand side is the same as the vaue
obtainedforC; =0,i.e., Q;, =0.

Thegeneral case reducesto the above special case by apre- and post-multiplication
by

-1/2
o i
Q, 12
Qg

Thismaps Q,  to |, Cy to Q, 1/ C, and O to Oka+/1 ki1 The latter two mappings
lead to redlizationswith dn‘ferent Bi and C;, but the A; remain the same, and in part|cu—

lar the convergence properties of C,(0, remain unchanged. It follows that (Q1) Q7)o -
(Qa3— Q5:9520Q,5) 71 dso in the general case. 0
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We now return to the spectral factorization problem, with Q given asin (13.5).

Proposition 13.10 Let Q 0 X, Q > 0 have an upper triangular part which is locally
finite and given by an observablerealization { A,B,C,D} wherels < 1. Le¢e ANO D be
the unique solution of (13.3) so that its entries \n satisfy the recursive Riccati equation
(13.4). Let A\n (n=0) be the sequence obtained from the same recursion, but starting
fromN\o = 0.

ThenA\n - N\p @asn — o (strong convergence).

PROOF Let Q, Q have block decompositionsasin (13.5), where Q,, isannxnmatrix.
Let Q — WEW, O — WEW, where W,W are outer spectral factors, then A, A are the
reachability Gramians of the realization of W, W givenin corollary 13.8. Denote

Wiz = Cw10;
Woz = Cw20,
Wiz = Cwi1AoAr--An-10;.

Because /a < 1, we havethat Wi3 — 0asn — o (strongly), so that for large enough n,
An = Cyy2Cw2 and hence

Qa3 Wi W3 + WiaWhs -+ W3 Wag

WEWss + OFA00, .

Consequently, O5(An—An) O, = WEWhs ~WW&3.

The next step is to show that WiaWas —WaWas — O for large n, so that, if the real-
ization is observable, An — An. Let Xg = (WEWa3) ™2, and X3 = (WE\Wks)™L. Since
Q1 =ww and W is outer so that W~ 0 2/, it follows that X3 = (Q )33 and
Xz = (QV)a. Lemma139provesthat if o <1,then (Q )33 — (Q )z asn - o,
so that X3 — X3, and hence An — An. O

Finally, we remark that always A< A Thisisa consequence of the fact that

ol

AsNhe O A1, (13.7)

which is proven directly from the Riccati recursion (13.4) in away similar to [AM79,
ch. 9]. Indeed, let the matrix Gy a, be given by

[ X-ANAC BeGNA X Be] [ A
O | BP-AMC Dk-CMG [BE Dk} {CE}AK[AK &l

parameterized by some matrix X = X". Using Schur’s complements, it follows that, i
Dk—CE/\ka > 0, then

Gxac20 O X=ANA - [Bl-ANCK] (Dk—CiACk) ™ [Bi—CiAkAK] 2 0.

Hence A1 = min{X : Gx a, 2 0}. Butif A< A, then G, & =Gnyn, 20 It

followsthat Ay, 12 /\k+1, S nce/\k+1 isthe smallest matrix X for which Gy A2 0. Th|s
proof also supplements the remark madein section 13.3 that the “ smallest solution”
well defined: if Ay isthe smallest solution at one point, the resulting diagonal operator
N isthe smallest solution at all points.
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13.5 CONNECTIONS

Spectral factorization is intimately connected to the various incarnations of the time-
varying Riccati equation that we encountered earlier, in the solution of the orthogonal
embedding problem (chapter 12) and inner-outer factorizations (chapter 6).

Orthogonal embedding

Recall the orthogonal embedding problem: given a transfer operator T of a bounded
causal discrete-time linear system, extend this system by adding more inputs and out-
putsto it such that the resulting system %,

5 _ [ 211 212 }
20 Zxp |’

isinnerand has T = 214 asitspartial transfer operator when the extrainputsareforced
to zero. Oneway to solvethe embedding problemisto start out from a spectral factor-
ization of 25,551 = | =TT, which gives 251, and next to follow the embedding pro-
cedure for isometric operators of chapter 7 (we know already that even in very simple
cases the embedding may not lead to an inner operator, but it certainly will under the
additional assumption that /a < 1 for the transition operator of T. Hence, the solution
of the embedding problem can also be obtained starting from the spectral factorization
theorems 13.5 and 13.6. Thisleadsto a variant of the embedding theorems (theorem
12.12 and 12.14) and the bounded real lemma (theorem 12.15).

Theorem 13.11 (Time-varying bounded real lemma, I1) Let T OU(M1,N1) bea
locally finite operator with a state realization { A,B,C,D} such that /a < 1. Then| -
TUT > 0if and only if there exists asolutionM 0 D(B,B), M =0 of

MY = AMA+BB + [AMC+BD] (I-D'D-C™MC)™* [D"B+CMA] (13.9)

such that | -D™D —-C"™MC > 0. If in addition the realization of T is observable and
[uniformly] reachable, then M is [uniformly] positive.

If1 =TT > 0, let W O U(N1,N1) be afactor of | -TET = WEW. A redlization
{A,Bw,C,Dw} forW such thatW isouter isthen given by the smallest solutionM =0
of the above equation, and

{DW = (I-D'D-C"mC)Y2

Bw -Dy[D"B+CMA] . (139

PROOF Since /4 < 1, the Lyapunov equation
AV = APAA+ BB
has a unique solution A = 0. By lemma 13.1, an expression for | - T"T is

I-T'T = (I-D"D-CFAC) - [D"B+CIAA Z(1-AZ)IC
- CH(1-ZFAD)1ZPB™D + ATAC .
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The implied realization for the upper part of | - T"T need not be reachable. Theorem
13.6 claimsthat | - T™T > 0if and only if there exists a solution P 0 D of

PCY = A%PA + [BD + AHA + P)C] (I -D'D-CHYA +P)C) X [D'B+CHA + P)A]

suchthat | -D'D-CYA +P)C>> 0and P> 0. Wecan addtheequation ACY) = APAA+
B"B to obtain

(A+P) Y = AHA+P)A+BB +
+ [B'D + AYA +P)C] (I -D'D-CHA +P)C) 1 [D'B+CYA + P)A] .

Asaconsequence, the operator M = A + P is positive semi-definite and satisfies equa-
tion (13.8). If therealization of T is observable and [uniformly] reachable, then A > 0
[A > 0], and the same holds for M.

Theorem 13.6 in addition shows that the realization { A, By, C, Dw}, with Dy, By
as given in (13.9), defines an outer factor W of | - TFT = WEW if M is the smallest
positive semi-definite solution. |

Inner-outer factorization

A realization of the right outer factor T, in an inner-outer factorization of T can also
be computed viaa Riccati equation, aswas shown in theorem 7.4. A realization of the
outer factor followed from aobservablereadization {A,B,C,D} of T as

I A C
e [ RD} [ C'MA+D'B C"™MC+D'D (13.10)

where M = 0 is the solution of maximal rank of
MY = ASMA 4 BB - [A™MC + B™D] (D'D + CMC)T [D"B+CTMA]  (13.11)

and Risaminimal (full range) factor of RR” = (D™D +C"MC)™. Let T; beinvertible,
so that the pseudo-inverse becomes an ordinary and bounded inverse. Using lemma
13.1 and assuming T™T >> 0, one can verify that, indeed, TPT = T,"T;, by deriving that
the realizations of the upper parts are equal. With lemma 13.1, the realization of the
upper part of T, is obtained from (13.10) as

A C
(D"B+C™MA) + C'AA (D™D +CHMC) + CA'C (13.12)

where A\’ is the unique operator satisfying the Lyapunov equation
N = A°NA+ [B'D+AMC] (DD +CMC)™ [D'B+CVA] .

Consequently, (A" + M) = AYA’ + M)A + BB, so that A = A’ + M satisfies the
Lyapunov equation ACY = APAA 4+ B™B. With A, the realization (13.12) becomes

A C
B'D+CAA D'D+CEAC |
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which is the same realization as that of TET in lemma 13.1. Conversely, one can try
to derive theorem 7.4 from the spectral factorization theorem in this manner, for the
special case where TET isinvertible (theorem 7.4 is more general).

In other words, if A isthe reachability Gramian of theredlization of T, and A’ isthe
smallest positive solution of (13.2) so that it isthe reachability Gramian of arealization
of theright outer factor of TET, thenM = A - isthe solution of (13.11) to obtain the
inner-outer factorization. This gives some interpretation of M in that equation. From
lemma 13.3 we know that of all factors of TET with the same (A,C), the right outer
factor T; providesthe smallest reachability Gramian. Hence it followsthat M = 0.

Cholesky factorization and Schur recursions

As noted before, the spectral factorization of a finite-sized positive matrix reduces to
Cholesky factorization. For time-invariant systems (Toeplitz operators), one efficient
technique to compute a Cholesky factorization makes use of Schur recursions[Schl7,
Kai86]. The Schur algorithm can be generalized in variouswaysto apply to triangular
factorizations of general matrices [ADM82], structured operators which have a dis-
placement structure [KKM79, LK84, LK86, LK91], cf. section 3.6, and approximate
factorizations on a staircase band [DD88]. See [Chu89] for an overview.

The key step in the traditional and also generalized Schur and Levinson algorithms
is the trandation of the original context (Q, with Q > 0) to a scattering context (con-
tractiveoperators). A standard transition to the scattering context isobtained by finding
upper triangular operators I, A, such that Q = I'mP-AAP. Using P(Q), the upper tri-
angular part of Q, and assuming Q has been scaled such that Po(Q) = |, asuitable I
and A are defined by

Q = 2P(Q)-I
r = fQ+1) = PQ)
A g(Ql—n = PQ)-I

Itisreadily verified that, indeed, Q = F'TP-AA" In general thereis no guarantee that
I" isbounded (see counterexamplesin chapter 2) so it is necessary to put the additional
assumption that P(Q) is bounded, but it will certainly be boundedly invertible, since
Q is strictly positive definite. Then S:= 1A = (Q; +1)71(Q1 - 1) is awell-defined
and contractive operator: ||S| < 1. The definition of Smay be recognized as a Cayley
transformation of Q4. It hasadirect relation with Q:

PQ=(-5  s=1-[P@]™.

Since Sisstrictly contractiveand P(Q) is upper triangular, the first expression ensures
that Sis upper triangular. Sis even strictly upper triangular because A is so. Also the
state structureis preserved: Shasthe same number of statesasP(Q), and itsmodel can
be directly derived from the model of P(Q) using equation (1.3).

Thestandard way to obtain aCholesky factorization of Q continuesasfollows. Com-
pute any J-unitary matrix © such that

r Ae=[A 0, (13.13)
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A consequence of the J-unitarity of © isthat

g
AAT =T A]@J@HD =rri-an"=q.

HenceA; isafactor of Q: Q = AjA7. With ©, afactor of Q™1 isobtained by computing
I 1j0=[A By, (13.14)

asit isreadily verified using (13.13) and the J-unitarity of © that Q™1 = A,A5 = B,B5.
Hence knowledge of © provides both afactorization of Q and of itsinverse. © can be
computed recursively using a generalized Schur algorithm (as e.g., in [DD88]) which
amountsto arepetition of (i) shifting therowsof I onepositiontotherightto alignwith
A (i.e., post-multiplication by Z), and (ii) using an elementary © “section” to cancel the
front diagonal of A against thecorrespondingdiagonal of I". Itisthusan order-recursive
algorithm. For finite upper triangular matrices of sizenxn, the algorithm can be carried
out in afinite number of steps and yields a ©-matrix having at most n—1 states. It is
possible to obtain an approximate factor by making A zero only on a staircase band.
This leads to approximate factors A, of Q71 that are zero outside the staircase band,
and whose inverse matches the factor A; of Q on the band [DD88, Nel89].

The aboveagorithmisjust one way to compute a Cholesky factorization of agiven
positive matrix Q. Efficient (“fast”) algorithms are based on exploiting knowledge on
the structure of Q. For example, if Q is a Toeplitz matrix, then © can be computed
using the same algorithm but now acting only on the top row of I and the top row
of A (the “generators’ of I and A). This yields the traditional Schur method. More
general displacement structures obeying arelation of theform“G- FlDGFz hasrank a”
are treated in much the same way [Chu89, LK91].

Using the embedding technique given in chapter 12, one other possibility to com-
pute the Cholesky factor via © is the following. Assume that a computational model
for P(Q), the upper triangular part of Q, is known. We have already noted that, since
Sisalso upper triangular, acomputational model for the associated scattering operator
Sfollows without special effort. The next step is to do an embedding: using theorem
12.14, construct alossess embedding matrix X for S, which isaunitary (2x 2) block
matrix computed such that 212 = S. The J-unitary ®@-matrix associated to 2 is defined
as usual by
o— 21— %1225%221 —Zlgzi%

Z2%221 Zz%
35, isouter, so that Zg% and hence © are again upper. % and © satisfy by construction
the relations (for some A} O U/)

I oz=[A S = I Se=[A 0
and since S= ' 1A, multiplication by I shows that © indeed satisfies
[ Al =[A Q.

From themode! of ©, factorsB, andW = B3 of Q1 and Q, respectively, follow using
equation (13.14). The whole agorithm can be put into asingle recursion. Not surpris-
ingly, the resulting recursion for W is precisely the Riccati equation in corollary 13.8.
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13.6 NOTES

Thediscrete-time Riccati equation corresponding to the spectral factorization problem
was originally studied in [And67, AHD74] in the LTI context. Recent overviews of
solution methods, as well as many references to older literature, can be found in the
collection [BLW91] and in [LR95]. The time-varying case has only been studied re-
cently. The present chapter is based on [vdV93b], although several of the results are
reported in the book by Halanay and lonescu as well [HI94].

Appendix 13.A: Proof of theorem 13.6

The proof of theorem 13.6, i.e., theorem 13.5 without the observability constraint, uses
properties of outer operators given in proposition 13.2.

PROOF of theorem 13.6. We will first transform the given realization into one that is
observable. Factor the observability Gramian Ag, of the given realization as

A
_ 11
Ag, = X { O}x,

where X isan invertible state transformation and A1 > 0. Applying X! as state trans-
formationto T leadsto aredlization T’ = {A',B',C’, D} given by

A C | _[x" A C][x*D
B D | I B D I
Partition A, B',C' conformably to the partitioning of A. It follows that

| A A r | C
A_[O Azz}, B =[B; By, c_[o}.

The subsystem { A11,B1,C1, D} isan observableredization of T, with £a,, < 1.
Suppose P is a Hermitian solution of

PCY = ATPA 4 [BP-ATPC'] (D +DP-CPC) 1 [B'-C'TPA] (13.A.2)

Partition P conformably to the partitioning of A: P = [,2?13; ';g]. Then equation (13.A.1)
is equivalent to the three equations

(a) Pﬁl) = A% P11A11 + [BE| - A%Pllcl] (D+ DY- C1EP11C1)_1 [Bl - CEF)llAll]
(b) P{;” = (A} ProAx + A PuAL +
+ [BY-ALPuCi] (D + DP-CiP1C1) 1 [B ~ CiP1 A
(© PLY = AL PsA% + ALPLAL + ALP1As + ALPD AL +
+ [B5- (ALPu + AS,P)Cy] (D + DY=CIP1iCy) ™ B2 —CH(PuArz + ProAg)]

where AI]_ =An-Ci(D+ DH- CEPnCl)‘l [B1— C]FP]_]_A]_]_] .
Accordingto theorem 13.5, thefirst equation has solutions Py; = 0 such that D 4 D™-
C1E|311C1 > 0,if and only if T+ T>> 0. Take Py; to be the smallest positive solution,
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then W is outer and the has an observable realization { A11, Bw1,Ci, Dw} with Dy and
Byw given by
D\%DW = D+ DD—C]FP]_]_C]_
Bw = Dy[Bi-CiPuAul.

According to proposition 13.2, W™ has a redlization with A-operator given by Al =

Aq1 ~C1Dy/Byw = A11 —Cy (D + DY-C{P1Cy) 7 [By = CIPu Ava], and satisfying bax <

1(sincela,, < 1andtherealization of W is observable). The second equationisakind

of Lyapunov equation in Py, as only the first term of the right-hand side is dependent

on Ppo. Given Py, it has a unique bounded solution since EAﬁ <land/p,, <1. The

last equation is a Lyapunov equation in P», and also has a unique bounded sol ution.
Also note that D + D"~C{Py;C; = D + D”~C'™PC’. Hence we showed

T+T9>0 - 0OPsatisfying(13.A.1), suchthat D+ D"-C'"PC’' > 0.

Thelatter alsoimpliesP > 0. With A = X 2PX~5 A isinfact independent of the chosen
state transformation X and satisfies the statements of the theorem.

Therealization of W can be extended to anon-minimal onethat is specified in terms
of Pas{A’,B),C".Dw}, where the newly introduced quantity B, is given by B, =
Dy/[B' ~C""PA'] = [Baw Baw], for acertain Bpy. Upon state-transforming this real-
ization by X, we obtain arealization of W as { A, Bw,C, Dw}, where Dy is as before,
and Byy is specified in terms of A as By = B, X "V = Di[{B-C"AA). O






]. 4 LOSSLESS CASCADE
FACTORIZATIONS

In chapter 12, we showed how a contractive u.e. stabletransfer operator T can be em-
bedded into an inner operator 2. We now derive minimal structural factorizations of
locally finite inner transfer operators into elementary inner operators of degree one.
Theresulting lossless cascade networks provide acanonical realization of T into anet-
work of minimal degree and with a minimal number of coefficients. For a better un-
derstanding of the problem, we first review some aspects of cascade factorizationsfor
time-invariant systems.

14.1 TIME-INVARIANT CASCADE FACTORIZATIONS

Overview

An important and recurring subject in network theory concerns the synthesis (imple-
mentation, or actual realization) of a desired transfer function using elementary com-
ponents. For continuous-time systems, these components would be resistors, capac-
itances, inductors and transformers. In the discrete-time context, the elementary op-
erator is the basic processor which performsthe actual calculations on the digital sig-
nals: typically a multiplier-adder, but other elementary processors are certainly possi-
ble. While one can directly use the given { A,B,C, D} redlization as the actual redliza-
tion of thetransfer operator, doing soisoften unsatisfactory. The number of multiplica-
tionsin an arbitrary state realization of the given system isnot minimal: asingle-input
single output system with n states would require (n+ 1)? multiplications. Typically,
such an implementation is also rather sensitive to small changes in the values of the

383



384 TIME-VARYING SYSTEMS AND COMPUTATIONS

coefficients: asmall change(e.g., because of finite word length effects) can sometimes
even make the modified system unstable. For digital filters, athird issue is the occur-
rence of limit cycles and register overflow. The above-mentioned effects are mitigated
by a deliberate use of the freedom of state transformations on the given state realiza-
tion. By selecting certain canonical formsof the A matrix, such asacompanionformor
adiagonal form (which is not always possible), filters specified by a minimal number
of coefficients are obtained [Kai80].

The coefficient sengitivity issue is a more complicated matter. The central ideais
that one of thefew waysto makethelocations of polesand zerosof theresulting system
well defined isto factor the given transfer functioninto acascade of elementary (degree
one) transfer functions:

T2 =Ti(2) T2(2) - Tn(2)- (14.2)

Each elementary transfer function realizes apole and azero of T(z). For an n-th order
system T(z), thefactorizationisminimal if it consists of n degree one sections. Inthis
case, thefactorizationinto n elementary factorsis canonical and leadsto aminimum of
coefficients, for SISO systems2n + 1, i.e., n coefficients for the poles, n for the zeros,
and one coefficient for the overall scaling.

The synthesis of passivetransfer functionsviacascadefactorizationshasalong his-
tory in classical network theory. Thefirst results were concerned with the factorization
of alossless (inner) transfer function of degree n into a product of n degree-1 lossess
transfer functions, by recursively extracting a degree-1 subnetwork. This procedure
is known as Darlington synthesis of lossess multiports [Dar39], and produces ladder
filters with well-known properties [Bel68]. The use of alossless (unitary) state real-
ization of the inner operator gave the synthesis proceduresby Youlaand Tissi [YT66],
while the synthesis of more general J-unitary operators was considered by Fettweis
[Fet70] in connection to wave-digita filters.

The cascade realization of inner operators leads to a realization procedure of any
passive (contractive) rational transfer function, via a lossless embedding of the con-
tractive transfer function T(z). Thus, one obtains arealization of T(z) in which either
the polesor the zeros of T(z) arelocalized in the elementary sections. State-space ver-
sions of this procedure are discussed in Roberts and Mullis' book [RM87].

Althoughit ismore general, Darlington synthesisis closely connected to the Levin-
son algorithmused in estimation filter theory of stationary stochastic processes[DVK 78].
The estimation filters are prediction (AR) filters with their transmission zeros at infin-
ity, but the filter structure that is obtained is also a ladder filter which can be derived
recursively from the covariance matrix of the stochastic process. The synthesis proce-
dure thus constitutes a recursive Cholesky factorization of positive Toeplitz matrices.
The Toeplitz matrices can be generalized to include the covariance matrices of more
general a-stationary processes [KKM79, FMKL79], and leads to a generalized Schur
parametrization of structured (a-stationary) matrices, i.e., matriceswith alow displace-
ment rank [LK 84]. The paper by Genin et al.[GDK *83] explored the rel ation between
losdless state realizations and the characterization of structured matrices via a cascade
of elementary lossless sections. Finally, there are many parallel resultsin operator the-
ory: Potapov [Pot60] obtained a complete description of (not necessarily rationa) J-
unitary and J-contractivematrix functionsin termsof general cascade decompositions,
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while the lossless embedding and subsequent factorization of contractive functionsin
the setting of colligations was considered by Livsic and Brodskii [BL58, Liv72]. The
Darlington synthesis procedureisalso closely connected, viathe L ossless I nverse Scat-
tering problem, to classical interpolation problems of the Nevanlinna-Pick type; see
[DVK78, DD81b, DD81a, DD84].

Besides afactorization of alossless embedding of T, it isalso possibleto determine
adirect factorization (14.1) [DBN71, VD77, BGK79, DD81c, Rak92]. Such factor-
izations realize both a zero and a pole of T in each elementary section, which makes
them attractivein some applications, but they are al so more complicated to derive. One
can act directly on the transfer function T(z), and in this case the complication is that
non-square factors can occur [VD77], giving rise to a plethora of possible elementary
sections. Thesituationiseasier to describein state-spaceterms. Let T(z) beabounded
system, and supposethat it hasafactorization T = T; To, where Ty, T, areagain bounded
systems, withminimal realizationsT1 ={A1,B1,C1,D1}, T2 ={A2,B2,C,,D2}. Are-
alization for T isthus given by

A C I A; CB; | GiD2
T— | A |C || 0 A | G | 142
Bi |D: By | D2 Bi D1B; | DiD;

Notethat A = At is block upper triangular. If D; and D, are both invertible, then T2

has a realization given by the product of the realizations of T, Land T, 1, which turns
out to have

x . Al 0

A =hAra= [ -C;D;'D;'B; A} } ’

(where A* := A-BD™C isthe A-matrix of the inverse system, whose eigenvalues are
thezerosof T). Thismatrix isblock lower triangular. It can be shown, e.g. [BGK D80,
DD81c], that T can be factorized minimally into factors T1, T, if and only if it has a
minimal realization T in which At isblock upper triangular and A is block lower tri-
angular. The factorization problem is thus reduced to finding a state-space transfor-
mation acting on a given realization of T and a partitioning into 2 x 2 blocks such that
Ar and A} have the required forms. To this end, one has either to determine the solu-
tions of a certain Riccati equation (this replacesthe Riccati equation that occursin the
embedding step), or to compute eigenval ue decompositions (Schur decompositions) of
both A and A*, describing the poles and zeros of the given transfer function. However,
in the subsequent factorization procedure, the conditioning of certain inverses can be
problematic [BGKD80]. Such problemsdo not occur with the factorization of inner or
J-inner functions, as in this case the poles of the system also determine the zeros: for
inner functions X with unitary realizations, £”is arealization of 21 = =" and hence
A* = A5 We only consider the cascade realization of inner functions = from now on.
Repetition of the above factorization into two systems leads to a factorization of
a degree-n system into n systems of degree 1. the elementary sections. A particular
realization of the elementary sections produces orthogonal digital filters. Here, the el-
ementary operator isnot amultiplication, but a plane rotation, where the rotation angle
isthe coefficient of the section. The advantage of such filtersisthat (with ideal rotors)
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they are inherently lossless and stable, even if the coefficients are imprecise, and that
no limit cycles or overflow oscillations can occur. Another advantageis that thefilters
aretypically cascade arraysof identical processorswith only nearest neighbor connec-
tions, which allows for VLSI implementation. Some other issues to be considered are
the pipelinability and computability of the array, which are not always guaranteed. A
number of orthogonal filter structures are possible, depending on the precise factoriza-
tion of theinner transfer operator, and on whether afactorization of Z, or its associated
J-unitary operator © is performed. The factorization can also be done directly on the
transfer function T(2), if it is specified as aratio of two polynomials, or on the state-
spacematrices. Inboth cases, apreliminary embedding step isnecessary. Themainref-
erence papers on orthogonal filter realizations are by Deprettere, Dewilde, P. Rao and
Nouta[DD80, DDR84, DDN84, Dew85], S.K. Rao and Kailath [RK 84], Vaidyanathan
[Vai85b], Regalia, Mitra and Vaidyanathan [RMV88], and Roberts and Mullis' book
[RM87]. Morerecent references are [IM91, Des91].

Givens rotations

We say that £ is an elementary orthogonal rotation if 5 isa 2 x 2 unitary matrix of the

form o
2 e c -s
[ ][0T 43

with ¢ + & = 1. If we operate in the real domain, then the first factor is of course
omitted. Animportant property of elementary rotationsisthat they can be used to zero
aselected entry of agiven matrix: for given aand b, an elementary orthogonal rotation
% exists such that

a a

b 0

In this case, £ is called a Givens rotation, and we write & = givens[a; b] in algorithms.
We do not need ¢ for zeroing entries.

Givensrotationsare used to factor agiven state realization into elementary rotations,
or certain generic groups of rotations called elementary sections. Acting on state real-
izations, the 2 x 2 elementary rotation matrix istypically extended by identity matrices,

2=

(14.4)

, (14.5)

x | x
where the four * x’-s together form the 2x 2 unitary matrix. We use a hat symbol to

denote this elementary 2 x 2-matrix, i.e., we write it as i .
An elementary J-unitary rotation © can be obtained from X in (14.3) if c# O as

o-[** L J[E 22" on]

It can also be used to zero entries of vectors,
a bol=[a 0],
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but only if a"a—-b"b = a™a’ > 0.

Orthogonal digital filter synthesis

Assumethat ¥ isknown, along with aunitary realization Z. Aswas shown in equation
(14.2), anecessary condition for factorization of X isthat As isupper triangular. From
the given realization, this can be ensured via a unitary state-space transformation Q
obtained from a Schur decomposition of the given A-matrix:

QA:Q" = R,

where R is upper triangular. This decomposition always exists (in the complex do-
main), and amounts to a computation of the poles of the system. With As upper tri-
angular, the second phase of the factorization procedure is the factoring of X into a
minimal number of elementary (degree-1) factors. Here, one makes use of thefact that
the product of two unitary matricesis again unitary. A consegquence of thisfact isthat,
in equation (14.2) (where all matrices are unitary now), any £; such that £7% has zero
block entries (2,1) and (3, 1) leadsto Z, of therequired form. Sincethe (2,1) entry is
aready egual to zero, it follows that Z; can be of the formindicated in (14.2): using
=7 oneonly hasto cancel entry (3,1) using entry (1,1). The unitarity of the product
2% ensuresthat alsoitsentries (1, 2) and (1, 3) arezero. Uponfactoring £ down to the
scalar level, it followsthat the elementary unitary factorshavetheform Z; in (14.5). If
> isof degreed, then the factorization consists of d degree-1 factorsand is of theform
= Zl---zd, where

[ ayp X x | x
ap x| X
z = add | X
x X x | X
[ an X 1 1
1 apgy X 1
= 1 1 agd | X
x | x X | X x | X

(14.6)
The a;; are the diagonal entries of Ay, which are the poles of the system. Hence, each
elementary section realizesapole of Z. In (14.6), we assumed that Z isa SISO system.
For multi-input multi-output systems, the procedureis an extension of the above, and
gives (for an example of a system with two inputs and two outputs)

I = [Z11Z51])[Z12Z00] - [£14Z24] T (14.7)
X X X X 1 1
1 1 X X x X
_ 1 1 1 1




388 TIME-VARYING SYSTEMS AND COMPUTATIONS
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Figure 14.1. (@) Z-based cascade factorization, based on a Schur decomposition of As.
3 is a unitary embedding of T : U — Y which is the transfer of U to Y1 if U = 0. (b)
©-based cascade factorization, based on a Schur decomposition of Ag, where © is the
J-unitary chain scattering operator associated to 2.

o

(b)

1 1 1

¥’ istheterminating section of degree0. Itisingeneral aunitary matrix itself, which
can also befactored into elementary Givens rotations, and finally a unit-norm scaling.
The network structure that is obtained is drawn in figure 14.1, which is straightfor-
wardly derived from (14.7) by considering how avector [X; Xz :++Xq U1 Up] istrans-
formed in elementary stepsto [X; X, ---X; Y1 Yo|. The network is pipelinable: the
signal flow is gtrictly unidirectional (from the left to the right). It is also computable:
given the current values of the inputs and of the states, the outputs and the next states
can be computed. The network is specified by a minimal number of 2d + 1 Givens
rotations (parametrized by rotation angles and complex phase rotations). Any strictly
contractive LTI system T can be realized in this way, by embedding T into an inner
system X such that T = 233. As a matter of fact, it is not necessary to compute the
embedding completely: if ~ hasarealization asin (12.18), viz.

R A C G R
p A | B D Dp |
| B, Dy Dy |



LOSSLESS CASCADE FACTORIZATIONS 389

NN N

Figure 14.2.  Hessenberg lossless filter structure.

where{A,B,C, D} isthegivenrealization of T, and R, By, D21 are computed viaaRic-
cati equation, then only A, B and B, determinethefactorsZ; ; (i=1,---,d, j = 1,2),
and C,, D12 and Dy, are not needed. Asfar as the cascade factorization is concerned,
it iseven possible to omit the state transformation by R [LK92], although thisis at the
expense of anumber of other matrix inversions, and we still have to compute R to de-
termine the extension by By, D»; anyway. As an alternative to the above factorization
of Z, one can convert X to a J-unitary © operator with realization © (cf. theorem 8.2),
factor © in a comparable way as done for £, and convert the factors back to the scat-
tering domain. This gives network structures as depicted in figure 14.1(b).

In the abovetwo solutionsto the factorization problem, thetrick to determineamin-
imal factorization was to compute a Schur decomposition of As (or Ag), which intro-
duced as many zero entriesin £ as possible. The remaining 2d + 1 non-zero entries
below the main diagonal of £ induced afactorization of X into 2d + 1 elementary fac-
tors. Thereare other structuresof Z, not requiring an (expensive) Schur decomposition
step, which till result in afactorization of Z into 2d + 1 elementary factors. However,
thistime we do not obtain afactorization of X itself into aproduct 25 - - 24, so that the
individual elementary sectionsdo not realize polesand zerosof Z, and theimplementa-
tionisnot truly acascade factorization in the sense used before. One possible structure
that can be obtained via a unitary state transformation is a Hessenberg structure of A
and the first row of B, which can be computed non-recursively:

X X X X | X X

X X X X | X X

X X X | X X

z: X X | X X
X | X X

X X X X | X X

Z can be be brought into the same form (14.7) as before, by a simple row permu-
tation operation. This does not induce any mathematical operations, but will change
the apparent structure of thefilter. After the permutations, the factorization proceeds
in the same way. The resulting network structure is as depicted in figure 14.2 (viz.
[RK84, Dew8b5, Des91, vdVV96]). The network is again pipelinable. If the realiza-
tion isreal-valued, then a Hessenberg structure can keep all parametersreal. (A Schur
structure needs more complicated sections to handle complex pole pairs.)
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14.2 PARSIMONIOUS PARAMETRIZATION OF CONTRACTIVE LTI
SYSTEMS

The preceding technique can be further refined. As can be shown, the Hessenberg
structure hasaminimal number of parameters. However, without further constraintson
the Givensrotations (14.3), thereis a continuum of equivalent parameter valuesthat all
givethesametransfer operator T. For the purpose of identification, which oftenrely on
nonlinear optimization schemes for parameter fitting, it is interesting to have a canon-
ical parametrization, where there is a one-to-one relation between the parameters and
the transfer operator. Thus, there has been an active search for canonical system rep-
resentations, i.e., minimal parametrizations by which any dynamical system T(z) of a
given class and order may uniquely be represented. For multi-input multi-output sys-
tems, anumber of canonical formsare known, based e.g., on the observer or controller
canonical forms or on balanced realizations[Obe91, Cho94].

For optimization purposes, an important deficiency in most canonical representa-
tionsfor real-valued systemsisthat they require both continuously varying parameters
(in a subset of R), and discrete parameters (in a subset of IN). The latter parameters
are extra parametersthat specify the structure of the system, such asthe Kronecker in-
dices or the number of equal Hankel singular values (for balanced parametrizations).
Alternatively, one can say that the space of all real-valued rational LT| systems cannot
be covered by a single continuous parametrization, but at best by a set of overlapping
parametrizations (indexed by the discrete parameters), each of which onitself doesnot
cover the whole set. For model identification, these “structural” parametersare a nui-
sance, since they have to be selected a priori, and modified if the resulting continu-
ous parametrization is not sufficiently accurate. In fact, since they have little physical
meaning, the only way to solve the optimization problem is to enumerate over a suffi-
cient range of structural parameter valuesto cover all systems of agiven order, and to
perform a non-linear search for each such choice. Obvioudly, thisis not avery attrac-
tive solution.

The purpose of this section is to further refine the Hessenberg structure and derive
that the class of contractive asymptotically stable rational LTI systems is covered by
aminimal representation without any structural parameters. The representation is not
unigue, but for each system T (2) thereisonly afinite number of equivalent descriptions
(unlessthe system is overparametrized). Because the solutionsareisolated, thisshould
not pose a problem for numerical optimization techniques.

Both the realvalued and the complex case can betreated by the same procedure, but
with dlightly different elementary rotations.

In the real-valued case, definefor -1<s<1, c= v1-<% and integers d, m, n, the
plane rotations

i d+j

C -S

Qij(s) = | O R(Fmnx(dmtn) (14.8)
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d+i d+n+ ]
lq
c -S
Zij (s) = I [ R(A+n+m)x(d+n+m) (14.9)
S c

|
Inthe complex-valuedcase, wetake—1<s<1,c=V1-s?, and—3 < @< 7, and define

i d+ |
|
C -S
Qij(9) = o O cla+menx(d+men) (14.10)
<el® cel®
|
d+i d+n+j
lg
c -S
Zj(s) = o _ O cldHm+mx(dn+m) (14.12)
<el® cel®

Also define permutations M4 411 and Mp by

o
rIJD-vd+1 Xd:+1 = X()j(lel : ng:{ld 0 In-|- (14.12)
Xd+2 Xd1 2 [ Im OJ
R

Theorem 14.1 There is a minimal continuous parametrization with d(m+ n) +mn

bounded [real or complex] coefficients which covers the set of al [real or complex]-

valued rational stable contractive LTI systems with m inputs, n outputsand d states.
In particular, every such system may be specified in terms of two matrices SV :

(m+n)xd, S? : mxn with entries|§(j)|s 1 asT(z) = D+ Bz(l -Az)~C where

d n
d A C f— . - . . . Id+n
m [B D} = [ld+m O(dsmyxn] T1,0+1Q11Q21 - Qmyingd Mo Z11Z21 *Zmp Om><(d+nJ
(14.13)

for Qij := Qjj (g(jl)),zi i ‘=Zj (g(jz)). The parametrization is not unique, but for strictly
contractive systems which are reachable via the first input, only a finite (discrete) set
of parameter matrices lead to the same T (z).
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Figure 14.3. Hessenberg structure (M inputs, N outputs, d states)
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In the real-valued case, each parameter specifiesarotation asin (14.8) or (14.9). In
the complex case, the parameter is sel®, which specifies both s and ¢ for a complex
rotation. Thisis possible since @isrestricted to -J < < T.

The structure of this parametrization is perhaps better understood from figure 14.3,
which shows the state space mapping

i Y =[x uk [ ~C }
B D

in terms of the factorization (14.13). Thisis a generalization of the structurein figure
14.2 to multiple inputs and outputs.
The proof of theorem 14.1 is by construction, in three steps.

Step 1: Lossless embedding Assumethat T(z) is specified in terms of amin-
imal realization (A,B,C,D). Step 1isto find an invertible state transformation R, and
state matrices By, D1» such that

s, = { i | IEn L:% D(Lﬂ [ R I} (14.14)

isisometric: £7Z; = I. Upon definingM = R'R, the condition £7Z; = | is equivalent
to solving

CMA + DB + D5B, =
c™MC + DD + D5Dx =

AMA + BB + BB, = M
0 (14.15)
|

Under the conditions of theorem 14.1, the embedding theorem (theorem 12.12) claims
that solutions M > 0 exist, and that for each solution | -D"D—C"MC > 0 (> 0 holdsif
T isdtrictly contractive). M is not unique but solutions are isol ated.

Take any solution M. Then D23 and B, follow from

D5Dyn = |1-D'D-C'™MC

B, = -D)(C™MA+D'B). (14.16)
D1 isasquare root of a positive semidefinite matrix. We choose D21 to be upper tri-
angular with diag(D1) = 0 (and real-valued). If T isstrictly contractive, then this Dy;
isuniqueand diag(D2;) > O, otherwise DEle might be singular with a continuum of
suitable factors.

Step 2: Transformation into Hessenberg form Suppose at this point that
we have
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where ZE‘Zl =1, Dy isupper triangular and diag(D21) = 0. Step 2 isto find a unitary

state transformation Q such that
@ e I
N il

e
S

i.e., denoting by by thefirst row of B,

FARERIE RN

0

isin upper Hessenberg form. Some freedom is |eft; we can use it to guarantee that al
entries on the sub-diagonal are nonnegative and real (a“positive upper Hessenberg”
form). Thisisaways possible by scaling these entriesin turn, starting with the lower-
right entry.

The entries of the sub-diagonal of [bA,;] are strictly positive and Q is unique if and
only if the system is reachable via its first input. Indeed, consider the (finite and re-
versed) reachability matrix of (A',b7),

|' .b’l(A’)d_l '| [ PlAd—l "

b&(A’)Z = b1A2 Q=R
biA biA
b} by

Thestructureof | @i] ensuresthat Risupper triangular with nonnegativemain diagonal.
The system isreachable viathefirst input if and only if Risnonsingular; aso, the QR
factorizationisuniqueif and only if Risnonsingular; in that case there can be no other
Q that will produce an upper-triangular R.

On the other hand, suppose that the system is not reachable viaits first input, i.e.,
supposean entry (k+ 1, k) of the sub-diagonal of | @;] iszero, then Q isnot unique: for

k > 1 any 2x 2 rotation acting on columns and rows k-1 and k of [@;] will keep the

Hessenberg structure invariant, for k = 1, the freedom is a 1 scaling of the first row
and column. Henceif k > 1 a continuum of suitable Q is obtained.

Step 3: Factorization of £; Suppose at this point that we have an embedding
%, isometric, in the required positive Hessenberg form, and with D»; upper triangular
with nonnegative real-valued main diagonal. The final step isto factor £, into ele-
mentary Givensrotations, producing the actual parameters of the state space model. It
suffices for our purposesto consider rotations of the form

Q(S)Z{C_s}, c=Vi-9, -lss<1,

S C



LOSSLESS CASCADE FACTORIZATIONS 395

or

d D d n
0 ] d[A C
®=N74,E1= m ED =m|B D

nll 1N n

By Dzj

where the permutation M4 41 is defined in equation (14.12). (Note that we redefined
A B, --- for ease of notation.) Subsequently, we apply a sequence of rotations to the
rows of @ to reduceit to asubmatrix of theidentity matrix, taking care that A and Dy,
remain upper triangular with nonnegative diagonal entries throughout the transforma-
tions.

= Apply aGivensrotation g torows 1 and d + 1 of ®, to cancel by against ass, i€,
qnulpl] = [aé)l]. In the real-valued case, the rotation is specified by

b
(a8, +bj;)Y/2’

(If both a;; = 0 and b1 = 0, then we may select any sin therange[—1, 1].) Because
a1120,c20andsign(s) = sign(by1), wehavea); =0, so that the positivity property
of the main diagonal of Aisinvariant.

In the complex-valued case, @ is used to map bj; to the real domain first. ajg is
aready real, and this property is retained by the rotation.

= |n the same way, use the transformed ay; to zero all entries of the first column of
[;2] . This defines a sequence of Givensrotations d, -+, qy, , ; Which are applied
inturn to ®. Because ® isisometric, the norm of each row is 1. This property is
retained by therotations, so that after the transformationswe must havea;; = 1 (and
not —1 since the property a;; = O isinvariant).

m |tisclear that Aremainsupper triangular during therotations. We haveto show that
D>, alsoremainsupper triangular, with nonnegativemain diagonal, and that thefirst
row of Ciszero. Thisnontrivial fact followsfromthe orthonormality of the columns
of ®, whichisinvariant under the transformations. Indeed, after the first column of
B has been zeroed, a1; > 0 because the redization is reachable. After (B,)11 has
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been zeroed, we have for the transformed @,

col d+ 1:1
col 1:-
]

dp

m

0

o W

n 0
S (14.17)

Since the rows are orthonormal, the first entry of the d + 1-st column, the trans-
formed cy1, must be zero at this point. Hence, subseguent rotations of the first row
and rows 2 to n of [B, Dy;] do not destroy the zeros on the d + 1-st column. The
sameholdsfor columnsd + 2, - - -, so that D1 staysupper triangular while B, ismade
zero. Thefact that (D21)11 = O after rotation gmy1,1 follows directly from the small
lemma below. Thus, the property diag(D»1) = 0 isinvariant under the transforma-
tionsas well.

Lemma 14.2 Suppose

c s
S C

whereb>0,c=+v1-s220. Thenr =0.

11

a
b

PROOF Thetwo solutionstoca+sh=0,s?+c2=1lare

a b

(a2 + b?)1/2’ c= (a2 + b2)1/2

and
a b

Since both b> 0 and ¢ > 0, the first solution cannot occur. The second solution has
sign(s) = —sign(a). Hence, r = -sa+cbh=0. |

m At this point, we have obtained

mio
QEHn,l"'Q%HLdHZl: n Ogg
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where each Q;j is an embedding of g;j, as defined in (14.8). The zeroing of the sec-
ond through the d-th column of [BB2 ] proceeds similarly. This gives

d n
d 1 o

' =Qhna - QaMg 1 Z1=m |0 D' (14.18)
n |0 D)

where DY, isupper triangular with nonnegative main diagonal. In similar ways, we
now use the main diagonal entries of D5, to zero the entries of D’. For notational

convenience, first permute [DD,Z' 1] to [%'2,1],

d n
ngqa’:(rj\ “) Dzl
m [0 D’J

where MNp is defined in (14.12). Use (D5;)11 to zero the top column of D', by a
sequence of Givens rotations z, -, Zy,,. By orthonormality of the columns, after
thetransformationswe must have (D )11 = 1, and theentriesat theright of (D;)11
have become zero as a side effect. Hence, we can continue with using (D5, )2> to
zero the second column of D', etcetera. In the end, we obtain

Zon 2550 = | 151 |

where each Z;j isan embedding of z; asdefined in (14.9). Conversely, after substi-
tuting (14.18) and inverting all rotations, we have

Z1=latm  Odrmyxn)] ‘M1,d+1Q11Q21 " Qmind -Mp - Z11201 - Zmn -

Since T(2) is specified by the first m+ n columns of Z;, it follows that equation
(14.13) holds. O

14.3 TIME-VARYING 2-BASED CASCADE FACTORIZATION

Thetime-invariant cascade factorization results are readily extended to the context of
time-varying systems. The procedureis roughly the same three-stage algorithm:

1
2.

Embed a given redlization for T into alossless system .

Using unitary state transformations, bring £ into aform that allows aminimal fac-
torization. We choose a Schur form, in which the A matrix of Z is upper triangular.

Using Givens rotations, factor Z into a product of such elementary sections. From
this factorization, the lossless cascade network follows directly.
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For time-invariant systems, we considered a state transformation to Hessenberg form
to avoid eigenvalue computations and to lead to a parsimonious parametrization even
in case of real systemswith complex pole pairs. Inthetime-varying setting, eigenvalue
computations are in a natural way replaced by recursions consisting of QR factoriza-
tionsof the Ay, so thisseemsno longer to beanissue. Theactual factorizationissimilar
to the time-invariant procedure, and can be carried out locally. The main differenceis
that for time-varying systems the dimensions of the state-space matrices need not be
constant, and a distinction has to be made between shrinking and growing state-space
dimensions.

It is shown that it is still possible to obtain a factorization £ = 23 ---2,X/, where
n = maxdy is the maximal local state dimension over all stages, and each Z; is a sec-
tion of local degree at most equal to 1. In asense, theresult isevident: by adding extra
inputs and outpults, it is possible to expand the realization of Z to anon-minimal real-
ization which has d states at each point. However, the theorem is more specific: the
local state dimensions of the factors add up to the local degree of Z, and we obtain a
cascade network with aminimal number of coefficients as well.

Time-varying embedding

Let T OU(M1,N1) bealocaly finite input-output operator with u.e. stable state re-
dlization T = {A B,C,D}. Assumethat T is strictly contractive (this can always be
obtained by a suitable scaling) and that T is uniformly reachable. Then the embed-
ding theorem (theorem 12.14) claimsthat T admitsalosslessembedding = 002/ (M1 %
N1,N1xN2) such that 31 = T, and with unitary realization of the form

N N L

_[ 'J[Bz D21 DZZJ[ 'J.

D, isadiagonal of square matrices, and we can arrange it such that each of these ma-
tricesis upper triangular, with nonnegative main diagonal.

Time-varying “Schur decomposition”

We continue by working on the unitary redlization £. Let A= Az 0 D(B,B™) be
the A-operator of X. The factorization algorithm continues by finding alocally square
unitary state transformation Q [0 D(B, B) such that

QAQUIH = R, (14.19)

whereRO D(B, BV has R, upper triangular. |f A isnot square, say of size dy x di..1,
then R, will be of the same size and al so be rectangular. Inthiscase, “ upper triangular”
is to be made more precise: it means (Ry)i j = 0 fori > j+ (dx—dyy1) (figure 14.4).
Inthe casewhere dy1 > di (figure 14.4(c)), andif theincreasein the number of states
is2 or more, it is possible to introduce extra zero entries in B too, as indicated in the
figure. These play arole later in this chapter. Note that, for minimal realizations, the
growthin state dimension is at most equal to the number of inputsat that pointin time,
so that the extra zero entries only appear in B and not in B.
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In the time-invariant case, expression (14.19) would read QAQ" = R, and the solu-
tion is then precisely the Schur decomposition of A. In this context, the main diagonal
of A consists of its eigenvalues, which are the (inverses of the) poles of the system.
In the present context, relation (14.19) is effectively the (unshifted) QR iteration al-
gorithm that is sometimes used to compute the eigenvalues of A = Ay, if al A arethe
same[GV89]. Theiteration (or rather recursion) is obtained by expanding the diagonal
relation into its entries: QuAQL, 1 = R, or

QAT = RiQ - Q, Ry

QA = RQ3 - Q3R (14.20)

Q3Az =! RsQ4

Each step in the computation amounts to a multiplication by the previously computed
Qx, followed by a QR factorization of theresult, yielding Qx 1 and Ry. Givenaninitia
Qk,y» €9., Qx, = |, theaboverecursion can becarried out in two directions, both forward
and backward in time. For example, take kg = 1, then the forward recursion is given
by (14.20), while the backward decompositionis

AQY = QR - Qo, Ro
A1Q) = QYR - Q1, R

Since we can start at any ko with any unitary Qy,, the decomposition (14.19) is not
unique, although it aways exists. For later reference, we formulate this result in the
following proposition.

Proposition 14.3 Let A0 D(B,B™) belocally finite. Then there is a unitary state
transformationQ 0 D(B, B) such that QAQ"VY = Ris adiagonal operator with all R
upper triangular matrices with nonnegative main diagonals: if Ax has size di x dy 1,
then (R¢)i,j =0fori > j+ (dk—dkt1).

In the context of finite upper triangular matriceswhose state realization startswith 0
statesat instant k = 1, we can take asinitial transformationQ; = [ -]. If the A areequal
to each other, thenthe aboverecursionisprecisaly the (unshifted) QR iterationfor com-
puting the eigenvalues (or Schur decomposition) of A. It is known (see [GV89]) that
the unshifted QR iteration will convergeif the absolute values of the eigenvalues of A
are unegual to each other, and that the rate of convergence is dependent on the small-
est ratio between those absolute eigenvalues. For periodically time-varying systems,
with period n say, an initial state transformation Q1 such that Qx = Qn.k is aso peri-
odical can be computed by considering the conjunction of n consecutive stages. Writ-
ing Ap = A1A; -+ Ap, the Schur decomposition of A, (QuARQT = Rp) gives Qy, while
(14.19) gives Qz, - -+, Qn in turn. Recent investigations show that one can compute the
Schur decomposition of a product of matrices without ever explicitly evaluating the



400 TIME-VARYING SYSTEMS AND COMPUTATIONS

(@) : (b) : (©)

Figure 14.4. Schur forms of Zy. (&) Constant state dimension, (b) shrinking state di-
mension, (C) growing state dimension.

product [BGD92]. The procedureiscalled the periodic QR algorithm, and consists ba-
sically of an implicit shifted QR algorithm acting over a sequence of matrices, rather
than just one matrix.

Structure of a factored lossless stage

A single stage £ of £ has, after transformation to Schur form, one of the three struc-
tures displayed in figure 14.4, depending on whether the state dimension of X is con-
stant, shrinking or growing at point k. The factorization procedure is to factor each
stage into elementary Givens rotations of the general type in (14.3). As beforein the
time-invariant case, it sufficesto consider parsimonious rotations

1 c -s

el® s C

If the state dimension of Xy is constant, then its factorization is precisely the same as
in the time-invariant case. E.g., suppose

a X X X|x x

X X X |Xx X

X X |x X

zk: X | X X

<
X
X
X
X
X

then two rotations factor £ into

( 1 0 0 0fO0 OW
X X X |Xx X
X X |[x x
(z?)kzk = X | X X

X
X
X
X
| I—

'7
o o
X X
X
X
X
X
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Figure 14.5. Lossless cascade realizations of a contractive system T, stage K. (@) Con-
stant state dimension, (D) shrinking state dimension, (C) growing state dimension.



402 TIME-VARYING SYSTEMS AND COMPUTATIONS

Continuing recursively, we obtain a factorization as Zy = Zy -+ Zg kX Zj isthe

I
residue [ : ~ ] where D} is aunitary matrix and can also be factored into elemen-
k
tary operations. The corresponding network structure of a single stage is depicted in
figure 14.5(a).
In the case of a shrinking state dimension, we have for example

(-xx 1
X X

X

i _

We first perform arow permutation, which produces

X X X X
X X X X
X X X X
X X X X

=

X
X
X
X
X
X

X
X
X
X

MeZy =

X X X| X X X

X X X| X X X

sothat, effectively, thefirst state has become an input of the subsequent factors. At this
point, the factorization is equivalent to the factorization of arealization with constant
state dimension. Theresulting network structure of thelossless stageisshowninfigure
14.5(b). Morein general, if the state dimension of £, shrinksby n states, then anumber
of n states are permuted to becomeinputs.

Finally, if the state dimension of 2 grows, for example

0 x x x| x
X X | x

zk X | X

blx
b, x

X X
X X
X X

then a permutation of thefirst row of B produces

by x x x|x
0 x X x| x
M= e
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Thefirst input uy i has effectively been mapped to anew state. CDEZK can subsequently
be factored as a section with constant state dimensions:

1 000

X X

X
(EDkEk = % :

X X X O

Oxxx|x

The corresponding network is depicted in figure 14.5(c). If, morein general, thefirst n
columns of Awould have been zero, then thefirst n rows of B are permuted to become
states. For minimality of the factorization, we must require that the top left nxn sub-
matrix of By has been made upper triangular by suitable unitary state transformations,
in the process of the transformation to Schur form (asindicated in figure 14.4(c)).
With the three types of stages shown in figure 14.5, we can describe all possible
stages that can occur in locally finite unitary realizations that arein Schur form. It has
already been mentioned that the stages can be factored independently of each other.
The cascade network structure of the complete state realization Z then follows by piec-
ing together theresults of theindividual stages. An examplenetwork isshowninfigure
14.6(a). Inthe example, we consider a10x 10 strictly contractive upper triangular ma-
trix T, with 1 input and 1 output at each point, and a state dimension sequence B given

by

T has an embedding into an inner operator . Hence T is the partial transfer operator
of 2 from thefirst input to the first output when the secondary input is put to zero.

Inthetime-invariant case, the Schur form produces afactorization of therealization
into a cascade of elementary sections, each of degree 1. The question at this point is
whether the time-varying cascaded network obtained in figure 14.6(a) also produced
such a factorization. Obvioudy, with time varying state dimensions, the el ementary
sections now have to be time-varying. In the remainder of the section, we show that T
isrealized by a cascade of d = maxdy elementary time-varying sections, each of local
degree 0 or 1. We start by making afew more general observations.

Factorization into two factors

The factorization result (equation (14.2)), which stated that a time-invariant rational
transfer operator T hasafactorization T = Ty T, if and only if itsrealization hasacertain
structure, admits a straightforward generalization to time-varying inner systems.

Proposition 14.4 LetZ O D(BxM,BY xN') beunitary, with locally finite dimen-
sions, and have a block partitioning as

Au A | C
$=| 0 A2 [C (14.21)
Bi B |D
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Figure 14.6. (&) Lossless embedding and cascaded network structure of T : U — Y, a
10% 10 upper triangular matrix with local state dimension < 3. Outputs marked by ‘(] are
ignored. (b) Same as (&), but now displayed as a factorization of Z into three degree-1
sections and a ‘constant’ termination section.
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where Ax O D(Bl,B( )) for some state-space sequence By O B. Déefine the space
sequences N1 and B, by the relations By x M = B ></\/1, and B = By x Bs.

1. Thenunitary operators£;, %, exist, with, = {Ag1,B,C}, D1} O D(81XM,B§_1) x
N1), £5 = {Ag2,B),Co, Dz} OD(Byx N1, BSY x N, such that

Ay C '
z — I A22 C2 = zlzz. (1422)
Bi. |D:1 B, | D2

2. If X isaninner operator with unitary realization Z of theform (14.21), witha; < 1,
thenX = 313,, where¥,,%, areinner operators with unitary realizations given by
21,2, withla, < 1, ¢a, < 1. The sequence of state dimensions of 31, 3, add up
to the sequence of state dimensions of 3 the factorization is minimal.

PROOF

1. Consder [AL BT Itisanisometry in D because A7} A + B{B; = |. Choose
1,D1 O D such that, for each point k,

| (Ai)k (Ck
(Z = { (Bu)x (Dbk}

isaunitary matrix. Then Z; isaunitary operator in D as required, and the number
of added outputsis #(\1) = #(By) —# (B( V) + #(M). Because [AL; 0B]"isaso
the first column of Z, it directly follows that £7Z = £, has the form specified in
(14.21).

2. Thefact fa; < 1 O la, < 1,4p,, < 1isdtraightforward to show. With /a,;, <
1,4a,, < 1, the unitary redizations $., £, defineinner operators ¥;,%, (theorem
6.4). The cascade X;%, has aredlization £, = £ asin (14.21), and hence Z =
¥1%,. Thefactorizationis minimal because (with ¢a < 1) £1, £, are minimal real-
izations, whose degrees add up to the degree of X.

O

Someremarksare appositehere. First notethat if £a; = 1, and Zisaunitary redliza-
tion with reachability and observability Gramiansequal to theidentity, then £; inherits
the fact that the reachability Gramianis|, butif /4, = 1, then nothing can be said, at
first sight, of its observability Gramian, and hencethefact that X, isinner isnot proven
in this case. Second, note that all computations can be carried out locally (separately)
for each stage k. The state dimension sequence 13, determinesthe degree of thefactors,
and also the number of outputs (inputs) of Z; (22). The choice of B; is restricted by
therequired form of (14.21), i.e., thefact that Ay; = 0.

The above proposition can be formulated in a different way that provides some ad-
ditional (more fundamental) insight.
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Proposition 14.5 Let > bealocally finite inner operator. Then
T=%53% 0 H(E) =H(E1)DH (),
whereX1 and 2, areinner operators. Conversely, let 3, be an inner operator, then
HE)DHE) O =515,
where %, is an inner operator.

PROOF For an inner operator X, we have that I/{ZZE = Uy O H(Z) (proposition 6.1).
Consequently, 1,2 = 1,270 H (52) 27, and because 570 £,

H(Z) = Pra(Ush)
H(Z1) O Ppz1(H(Z2) Z))
= H(Z1) O H(Z)ZL.

Conversely, the fact that 2, = Z?Z isaunitary operator is clear, and we have to show
that it isin fact upper. Indeed, sinceZ O U,

PLZZ‘l (UZ) = Pczz—l (UzZ]E_'Z)
= Pr(H(Z1)Z)
Prz1(H(Z)Z) =0  [prop.6.1]

O

so that the lower triangular part of >, is zero. O

Hence, in order to obtain afactorization of X, we can select any inner Z; such that
H(Z1) OH(Z). A suitable X5 is again obtained from equation (14.21): aminimal re-
alization based on A;1 and By has

] a
H(Z1) = D2 [Blz(l —Allz)‘l} — D5 0] [[Bl B2|Z(1-AZ)™

because Ay = 0, sothat indeed 7 (Z1) O H(Z). Z; isobtained, asin the proof of propo-
sition 14.4, by extending [A]; Bf]”to aunitary state-space operator. Special cases oc-
cur if (B1)kx = 0 for some k, athough the propositions remains valid. The following
two situations are typical.

m |f #(B1)kr1 = 0, with #(B1)k = n= 0, then (Ag1)k isa (nx0)-matrix. Inthis case,
% hastheform
A | C
G

S, = | - A=
B, | D

(asbefore, * -’ stands for an entry of zero dimensions) so that

Ol O

~ * Ino

(£1) —l|—] Eg=| 1100
ot 0|0 |
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X1,k
Uz k JR Y1k
U1 k Y1k I
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(a) (c) X1 k+1
X1k U1 k ﬂ
\% Y1k U2 k Y1k
U1 k Y2,k
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(b) (d) XL k+1

Figure 14.7. Elementary sections in a stage. (&) C(0) constant section with zero states,
(b) Ssection, going from 1 state to 0, (C) C(1) section with a constant number of 1 states,
(d) G section, going from 0 to 1 state. The number of inputs/outputs have arbitrarily been
set to 2.

2, isatrivia state-space operator mapping its first n states to n outputs. If n =0,
then (Z1)k = 1.

m If #(B1)k =0, #(B1)ks1 =Nn=20, then (£;), is obtained as the extension of (By) to
aunitary matrix:
. .
(Z1)k = l

(Bu)k | (D1)k
Note that this case can only happen if (As)k hasitsfirst n columns egual to zero:

(As)k = { 0 (Azlz)k } ,

that is, in view of figure 14.4, this can only happen at points where the state dimen-
sion of Z growswith at least n states.

Elementary lossless stage sections

We apply proposition 14.4 to the most elementary type of state dimension sequence
Bi: By with entries having dimensions #(B1)x [0 {0,1}. In alater section, we discuss
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the choice of By; here, we consider the factorization of a single stage of £, and pay
detailed attention to the fact that input/output and state dimensions can betimevarying.
With apartitioning of £ as beforein (14.21), afactor £; of £ isdetermined by finding
a unitary extension of the matrices (Aq1)x and (B1)k. The purpose of this section is
to show how an extension can be obtained in factored form using elementary Givens
rotations. With #(81)x 0 {0, 1} and #(B1)ky1 0{0, 1}, the submatrix (A11)k can have
only the following sizes:

C(0) : 0x0, S: 1x0,
C(1): 1x1, G: 0x1.

The cases C(0) and C(1) describe sections with a constant state dimension, while G, S
stand for sections with growing and shrinking state dimensions, respectively. We dis-
cuss these sectionsiin turn.

C(0): (£1)x hasthe form (£1) — |—| . Seefigure 14.7(a). Obviously, aC(0)

section can always be extracted, but doing so does not lead to a degree reduc-
tion. Nonetheless, it playsarol e as padding section in the description of aglobal
factorization of X into a constant number of sections, later in this chapter.

-1 0
<10 1
C(1): Leta= (Aqu)k and supposethat = hasninputsat point k, so that b = (Bl)k is
an nx 1 vector. Then (£;)y is aunitary extension of the vector [a” by --- bf]™
Of the many possible extensions, one that resultsin aminimal number of coef-

ficients is obtained using Givens rotations, which gives the extension directly
in factored form:

S () hastheform (£1), =

] . Seefigure 14.7(b).

Ek=(Z1)1x - (E)nk (14.23)

where (£4); k is used to zero entry (i + 1) of the vector (£1); , -+ (£1) T, [£]

against thefirst entry. The computational structure (for n = 2) isshowninfigure
14.7(c).

G: Inthiscase, (An1)k =[], and (£1) is a unitary extension of the vector b =
(B1)k- Again, the extension can be found in factored form, now requiringn—1
Givensrotations. See figure 14.7(d).

The four types of elementary stage sectionsin figure 14.7 form the building blocks
of the cascade network realizations based on the Schur form. General structures are
obtained by connecting these sections horizontally (realizing asingle stage in factored
form) and vertically (realizing an elementary degree-1 factor of X). Theresult of hori-
zontal connectionsinto stages has already been discussed before, see figure 14.6(a). It
remains to discuss the connection into vertical elementary degree-1 factors.

Factorization into degree-1 lossless sections

Let begivenalocally finiteinner operator Z, with state dimension sequence 5. Theaob-
jectiveisto computeafactorizationZ = X, --- X2’ into aminimal number of n degree-
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1 sections, and aterminating diagonal unitary operator ¥’ (a‘constant’ section). A re-
lated question is: what is the minimal value of n? It isclear that nis at least equal to
the maximal number maxy #(B) of states of X that are present at any stage. We show
that n can in fact be equal to this number.

In view of proposition 14.4, it remainsto determine a possible state sequence 3; of
thefirst factor 2. The other factorsarethen obtained recursively, by factoring ZE’Z, un-
til the state dimension has been reduced to zero. The remainder = --=Tis then equal
to the constant section X'. The number of states #(31)x of thefirst factor is allowed to
be at most equal to 1 at each stage k, in order to obtain a degree-1 section. The other
constraint on 531 isthe fact that (A1)k in (14.21) must be equd to zero (or have van-
ishing dimensions) for each k. The discussions in the previous paragraph have shown
that, as a consequence, within astageit is not possible to extract aC(1) section before
an Ssection or a G section. A trivial C(0) section can always be extracted.

The following choice of B; satisfiesthe constraints. Let n = maxg#(B8)k. Then By
isgiven by
1, if #(B)k =n,

0, otherwise. (14.24)

#(B1)k = {
Indeed, with this B1, we extract as many stages with C(0) sections as possible (which
do not have constraints), and only extract other sections where factors 5 till 2, must
have states anyway. At the sametime, 31 is such that it reduces the degree of 2: ZE’Z
hasamaximal state dimension n—1. Acting recursively, we obtain afactorization of Z
into n sections, each of which haslocal degree at most 1. The results are summarized
in the following theorem.

Theorem 14.6 LetZ be aninner operator which islocally finite with state dimension
sequence B, and u.e. stable. Let n = maxy#(B)x. Then X has a factorization

S =557,

whereeach 2 isau.e. stableinner section of local degreeat most 1 (maxy#(Bi)x = 1),
and whose local degrees add up to the local degree of = (Si#(Bi)x = #(B)y). Z' isa
unitary diagonal operator.

PrROOF Accordingto theorem 6.3, Z hasaunitary realization Z. Therealization can be
put into Schur form by unitary state transformations (proposition 14.3). Next, choose
B according to equation (14.24). We first show that 3, generates a partitioning of
A = As suchthat, for al k, (A21)k = 0 or has vanishing dimensions. Indeed, aslong as
#(B)k < nand#(B)k.1 < n,wehave#(B1)x = 0and #(B1)k,1 = 0sothat (Ap1)k =[-].
At acertain point k, #(B)k < n and #(B)k+1 = n, and figure 14.4(c) showsthat in this
casewe can put#(B1)ks1 = 1, which makes (A1 )k equal to thefirst column, consisting
only of zero entries. While #(B)x = nand #(B)k.1 = n, A¢ isan upper triangular ma
trix, so that we can put #(51)kx = 1, #(B1)k;1 = 1 to obtain (Az1)k = 0. Finaly, when
#(B)k = nand #(B)k+1 < n, Ac has the form shown in figure 14.4(b), so that we have
to put #(B1)ky1 = 0, which gives (Az1 )k = [ -]. Hence B, satisfies the requirements, so
that, according to proposition 14.4, we can extract afactor ;. We can continuein the
same way with ZE’Z, which has a maximal state dimension equal to n—1. This degree
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reduction is because we had #(B1)x = 1 whenever #(5)x = n. Acting recursively, we
end with &' = 5--- 375 having O states, and hence ' is a unitary diagonal constant.
O

We can write the 10 x 10 examplein figure 14.6(a) in factored form, as obtained by
the above theorem. The resulting cascade factorization is displayed in figure 14.6(b).
The actual structure is the same as given in figure 14.6(a), but the elementary stage
sections are now grouped vertically into sections, rather than horizontally into stages.

Computational complexity

The computational complexity of the cascade network is, at each stage, linear in the
number of elementary operations. Thisisin contrast to adirect network realization of
agiven state realization { A, B,C, D}, which would have quadratical complexity. If the
network consists of N stages and if the average number of statesin a stageis d, then
the number of elementary operations required for avector-matrix multiplication using
the cascade network is of order O(2dN) rotations, rather than O(%NZ) multiplications
for adirect vector-matrix multiplication. (The complexity of arotation operationis 4
multiplicationsfor adirectimplementation). Hence, if d < N, aconsiderablereduction
in the number of operationsisachieved. In addition, the network isnumerically stable.
All elementary operations are rotations, which means that the network is lossless and
does not amplify numerical errorsintroduced at any point in the computation.

14.4 TIME-VARYING ©-BASED CASCADE FACTORIZATION

In the previous section, we embedded the given contractive operator T in aunitary op-
erator >, and subsequently factored this operator into elementary sections. The result
was a computational network consisting of unitary Givens rotations, with a data flow
strictly fromtheleft to the right, and from the top to the bottom. An alternative cascade
factorizationis obtained by computing the J-unitary operator © associated with =, fac-
toring © into elementary J-unitary sections ©;, and converting each of the sections to
their unitary equivalent. The result is again a minimal factorization of the unitary re-
alization Z of ¥ into degree-1 realizations, although the factorization is different from
the onewe obtained earlier. The order of the computationsin this factorization is such
that the corresponding cascade factorization of 2 can no longer be written as a product
of elementary unitary sections.

Thereason for studying ©-based factorizationsis at |east twofold. Firstly, they lead
to different realizations of unitary operators Z, also specified by aminimal number of
parameters. These realizations may have different numerical properties with respect
to parameter sensitivity (although we do not go to that level of detail). Secondly, the
same type of networks are obtained in the solution of a number of other problems.
For example, the solution of certain constrained interpolation problems, such as the
Nevanlinna-Pick interpolation problemin chapter 9, or the solution of the Nehari prob-
lem and (more in general) the model approximation problem in chapter 10, leads to

1in this section, we assume that the reader has knowledge of the contents of section 8.1.
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©-based cascade networks. Thisis of course not coincidental: the description of the
solution of these interpolation problemsalso givesriseto J-unitary operators ©. Upon
factorization of ©, each factor implementsasingle interpolation constraint of the orig-
inal problem. Other problemswhere networks of the same type occur arein the Gener-
alized Schur algorithm for inverse Cholesky factorization [Dep81, DD88], and (time-
varying) prediction-error filters and RLS adaptive filters [Hay91].

Wewill first derive somefactorization resultsfor J-unitary upper operators, and then
specialize to the case where the state signature sequence equals Jz = |. Subsequently,
we derivethe correspondingfactorization of £, and the computational network that this
factorization of Z represents.

Factorization into J-unitary elementary sections

The J-unitary factorization into elementary sections is again straightforward once a
general factorization into two J-unitary factors has been derived. The latter is formu-
lated in the following proposition, comparable to proposition 14.4.

Proposition 14.7 Let® OD(BxM,BY x N') beJ-unitary with statesignatureJ g =
I, and with a block partitioning as

A Ap | C
o= 0 A2 |C (14.25)
B B, |D

where A; O D(Bl,Bg_l)) for some state-space sequence B1 O B. Define the space
sequences N1 and B, by the relations By x M = Bg_l) x N1, and B = By x Bo.
1. J-unitary operators @y, 0, exist, with©; = { Ay1,By,C;, D1} O D(By x M, B{ ™
N1), ©2 = {Ag2,B),Cy, Do} O D(Bax Ny, BSY x '), such that
Au | C |
O = ' A2 | C | =0,0,. (14.26)
Bi |D: B, | Dy

2. If ® OU isad-unitary operator with aJ-unitary realization © of the form (14.25),
andif lpy < 1, then© = ©10,, where©1, ©, areJ-unitary operatorswith J-unitary
redizations given by ©1, ©2, with s, <1, fa,, < 1. Thefactorizationisminimal.

PROOF The proof is the same as in proposition 14.4, except that now a J-unitary ex-
tension of [A7} BY” must befound. The existence of such an extension was provenin
lemma 8.16. The extension yields ©1, and ©, then follows from ©7'© = ©,, which
has the form specified in (14.25). ]

In order to obtain a factorization into elementary sections of local degree< 1, we
choose BB, asin equation (14.24), viz.

HBD :{ 1 if #(B) =n,

0 otherwise.
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With this choice, theorem 14.6 can be adapted to J-unitary operators:

Theorem 14.8 Let© OU be aJ-unitary operator which islocally finite with state di-
mension sequenceB, u.e. stable, and with positive state signature. L et n = maxy #(B)x.
Then © has a factorization

© = 06,0,

where each ©; is a u.e. stable J-unitary section of local degree< 1 (maxy#(Bi)k = 1),
and the local degrees of the®; add up to the local degree of © (5 #(Bi)x = #(B)x). ©
isaJ-unitary diagonal operator.

PrROOF The proof is the same as that of theorem 14.6, but now refers to proposition
14.7. O

It remainsto investigate the structure of an elementary J-unitary section.

Elementary © sections

We now describe the factorization of an elementary J-unitary section of local degree at
most equal to 1 into (J-unitary) Givensrotations. Theresulting structure of thefactored
section is the same as in the unitary case, because the same sequence of operationsis
used to do the factorization. However, the type of each elementary operation is now
either aunitary or aJ-unitary Givensrotation. To keep the discussion manageable, we
assume from now on that all state signaturesare positive, asthiswill bethe casein our
future application.

Asintheunitary case, we assumethat aJ-isometric column [AL, BYJZ O D isgiven,
where each matrix (Aq1 )k of the diagonal has dimensions at most equal to 1. Thiscol-
umn is extended to a J-unitary realization ©1, to be obtained in factored form. It is
sufficient at this point to look only at the factorization of asingle stage of the degree-1
section. With #(51)x 0 {0,1} and #(B1)ky1 0 {0,1}, the four possible sectionsin a
stage are again described by the dimension of (Aq1)k as

C(0) : 0x0, S: 1x0,
C(1) : 1x1, G: O0x1.

The cases C(0) and Sresult in the same (trivial) sections as before:
. . | . . . | 10
O)k=|—— rep.  (Ok=|——F

| 10 1

(seefigure 14.8(a),(b)). The case C(1) is more interesting and follows from a factor-
ization with Givens rotations of vectors of the form

a
b,

-| @
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Figure 14.8. Elementary J-unitary sections in a stage. (@) C(0) constant section with
zero states, (D) Ssection, going from 1 state to 0, (C) C(1) section with a constant number
of 1 states, (d) G section, going from 0 to 1 state. The number of inputs/outputs have
arbitrarily been set to 2: one with positive signature, the other with negative signature. The
shaded circles represent J-unitary Givens rotations.

whereaisascaarandb = | gj ] is partitioned according to the signature of the inputs
at that point. The factorization is obtained in two steps,

/!

a a a a

-1 _ R ~ = R [
(©11)« by [T 0 |- ©2k| 0 | =] 0
b- b- b- 0

Here, (éLl)k consists solely of unitary Givens rotations, used to cancel the entries
of by against a, while (él,z)k consists only of J-unitary Givens rotations. See fig-
ure 14.8(c). Note that the unitary scattering operator (fm)k corresponding to ((33171)k
is the same because it is aready unitary: (£11)x = (©11)k. The factorization of a
G section obviously results in a comparable structure, and can also be described as
(O1)k = (©11)k(O12)k = (Z1,1)k(O1,2)k. Asthe same can obviously be done for the
C(0)- and the Ssections, the overall result is asfollows.

Lemma14.9 Let[A7 BJ"DO D(81XM,B§_1)) be{l,Ju} -isometric:

e, R
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and assume that its state dimension sequence 31 has dimension at most equal to 1 at
each point. Then this column has aJ-unitary extension to 0,0 D(B1xM, Bg_l) xN)
such that . .. L A

O, = 0110:12=21,01>

x|x x| X

X | X

(where partitionings are according to Jp4).

Withtheorem 14.8, theresult isthat if © isaJ-unitary operator which hasaJ-unitary
realization © with state signature sequence Js = |, then © has afactorization into uni-
tary and J-unitary factors as

©=[21017][221027] - [Zn1On2] - ©'. (14.27)

Lemma 14.10 If © hasfactorization (14.27), then the corresponding Z has factoriza-
tion
=212 Zn] T [Zn2 - 22221 )] (14.28)

In Whlche|2 R ZLZ, el R Z'.
ProoF Wefirst arguethat © in (14.27) can be written as
O=[Z11%p1 - Zn1] (012022 O] - & (14.29)

Indeed, because Z; ; and @ », fori # j, act on different state variablesand on different
inputs, their order of application may be reversed: ©,Z; 1 = Z; 10; . Thisalowsto
transform (14.27) into (14.29). Omitting the details, we note that the transition from
a O-representation to a Z-representation is obtained by reversing the computational
direction of the secondary inputs and outputs. This does not affect [Z11Zp 1+ Zn 1]
as only the primary inputs and outputs are involved, while (@102, -:On 2] - @
T [Zh2-Zp2Z1 7). Thisleadsto equation (14.28). m|

The structure of © according to the above factorization of © is depicted in figure
14.9(a). It is the same as the structure of the network of > given in figure 14.6(b),
but contains both unitary and J-unitary rotations (represented by shaded circles). The
structure of Z correspondingto thisfactorization of © (figure14.9(b)) isagainthe same,
but the order in which computationsare doneis not only from left to right, but partially
also from right to left. Within a single stage, suppose that the inputs and the current
state variables are known. In order to compute the next states and the outpults, first all
rotations going from left to right have to be performed, and only then the next state
variables and the output at the left can be computed. The network is said to be non-
pipelinable, and the computational dependency, going from the left to the right and
back to the left again, is said to be the computational bottleneck. This bottleneck isnot
present in the network in figure 14.6, and hence, from a computational point of view,
adirect factorization of £ yields a more attractive network.
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Note that this network of X is a special case of the type of networks that has been
obtained in the model reduction problem (cf. figure 10.10). In chapter 10, more gen-
eral networks were obtained because the state signature of © was alowed to contain
negative entries too.

O-based cascade factorization of T

Let T O U be agiven dtrictly contractive locally finite transfer operator. The process
of realizing T via a ©-based cascade starts with the orthogonal embedding of T in a
unitary operator %, such that

211 T
2= 14.30
[ 2n 22 } ( )

where we have set 21, = T. The next step is to convert 3 to ©, which requires the
invertibility of Z2,:
o— [ S -S10553%  —E55) }
25522 %5

© is an upper operator only if Zg% is upper. As the factorization of © in the previous
subsection required © to be upper (so that it has a causal realization), we see that 35,
should be outer and invertiblein order to obtain a ©-based cascade factorization of .
If thisrequirement is satisfied, then a J-unitary realization © of © isobtained in terms
of aunitary realization £ of = as

A | G G A- CzDE% B, | C- CZDE%DZ]_ —CzDE%
Z=1B,|Du Dio| U ©=|B;- D12D7B; | D11 —D12D33D21  —D12D33
By | Doy Dy DE%BZ DE%DZ]_ DE%
(14.31)

Note that if =5} would not be upper, then we would by necessity obtain /. > 1 at this
point. The factorization proceeds with a state transformation to make Ag upper trian-
gular at each stage, which requiresthe time-varying Schur decomposition discussed in
section 14.3. © is subsequently factored into elementary sections, and conversion to
scattering operatorsfinally produces afactorization of X asin equation (14.28), and in
acomputational network asin figure 14.9(b). In thisfigure, T is the transfer operator
u - yif theinputsat theright are put to zero.

However, the aboveisonly possible when Zg% isouter and invertible. With = given
as(14.30), whenisthisthecase? A necessary conditionfor invertibility isthat 2252222 >
0, and since ZEZZZZ = | -TOT, it follows that T must be strictly contractive. In this
case, proposition 12.13 has shown that the embedding algorithm yields 5, as an outer
spectral factor of | - THT. Hence, if T is strictly contractive, 32, is outer and invert-
ibleautomatically, and T has a ©@-based cascade realization. Thisisthereason why we
have put 21, = T in equation (14.30).

The ©-based cascade network of = represents afilter structurewhich iswell known
in itstime-invariant incarnation. In this context, one typically chooses 211(z) = T(2),
because then the transmission zeros of Z(z), the zeros of %11(z), are equal to those of
T(2). Simultaneously, thezerosof Zx,(z) aredirectly relatedto thoseof 211 (2) (they are
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Figure 14.9. (@) a J-unitary cascade factorization has the same structure as a unitary cas-
cade factorization, but contains J-unitary rotations (shaded circles), (b) Lossless embedding
and O-cascade factorization of a strictly contractive upper operator T 1 U — V.
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‘reflected’ in the unit circle). The point of using thisfilter structureisthat these zeros
appear asthe zerosof theindividual sectionsof the cascade, and hencethey areindivid-
ually determined directly by the parametersof the corresponding section, rather than by
the combined effect of all parameters. It followsthat the zerosof T(z) are highly insen-
sitiveto parameter changes of the cascade, which makesthe construction of filterswith
awell-defined stopband possible, even if approximate parameters (finite word-length
implementations) are used.

However, note that in the time-varying case, using the above-described procedure,
itisnot possibleto choose 211 = T, because 5, will in general not be outer and in this
case Ap in (14.31) isnot stable: ¢a, > 1. Inthetime-invariant case, this does not pose
real problems. even with the eigenvalues of Ag larger than 1, it is possible to factor
@ in the same way as before, which ultimately results in a stable cascade filter back
in the scattering domain. There is no apparent reason why the same would not work
in the time-varying domain: currently, the limitation seemsto lie in the fact that we
alwaysrequire our realizations to be stable, in order to associate a transfer operator to
itvia(l —Az)™1. Theforegoingfactorsprovidereason to investigate (in other research)
caseswherethe A-matrix containsboth astable and an anti-stable part. Because of state
transformations, these parts can become mixed, and one of the first issues to address
would be, given an A operator, to decoupleit into stable and anti-stable parts.






].5 CONCLUSION

As a concluding chapter of this book we offer some thoughts on the likeness and the
differences between linear time invariant and linear time varying systems, and a short
summary of possible applications beyond the realm of the computational theory that
we have presented.

On the likeness and difference between LTI and LTV

It is sometimes said that “linear time-varying system theory is but a dight extension
of thetime-invariant case”. Such a sweeping proposition has only avery partial claim
to truth! While it is true that a number of methods carry over froman LTI to an LTV
context, it is also true that central (and fairly deep) properties of LTI systems do not
hold in the LTV case—in other words: the LTV case is considerably richer. Having
got to the end of this book we can appreciate the similarities and the differences and
give areasoned account of them.

Let usstart withrealizationtheory. Inboth LTI and LTV theory, the Hankel operator
plays a central role. Its minimal factorization into a reachability and an observability
operator allows to derive the state realization operators{ A, B,C}. In the LTI case, the
Hankel operator hasaclassical Hankel structure: its matrix representation hastheform

h1 hy hs
hy, hs
hs

419
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Inthe LTV case, the Hankel operator is actually atensor with three indices, the third
index being necessary because of itstime-varying nature. Thetypical Hankel structure
is not any more a simple algebraic condition of equality between specific entriesin a
matrix but among entries of the tensor. At the same time, a factorization of the  snap-
shots’ of the operator, obtained by keeping one of the indices of the tensor fixed, gives
rise to range conditions from which arealization can be derived. Range propertiesare
capable of characterizing a Hankel operator also in the LTI case, afact that has been
exploited to great advantage in modern system identification theory under the name
4SID: state space subspace system identification (see e.g., [Vib95]). Inthe LTV case,
however, it isthis property that really counts and whose exploitation yieldsthe desired
realization, aswas shownin chapters3 and 5. Aninteresting corollary isthefact that if
an u.e. stable LTI system has aminimal realization of a certain degree, then there will
not exist an LTV redlization for it of lower degree (not even locally). In this respect,
LTV does not provide much more freedom as far as realization theory is concerned!

Moving to the realization theory for inner and J-inner operators (chapters 6, 7 and
8), significant differencesbetween LTI and LTV appear. Inthe LTV caseit is conceiv-
able, even quite common, to find atransfer operator with finite state space and aunitary
realization, but whichisnot inner. Thissituation cannot occur intheL Tl casewherewe
can show that systems with afinite dimensional orthogonal state space realization are
necessarily inner. Defective cases show up much more easily inthe LTV case. A case
in point is an example where the finite-degree LTV system startsout asan LTI system
(for large, negative values of t), changes around t = 0, and finally stabilizes again to
LTI for large positive values of t. If the number of zeros inside the unit circle of the
two extreme LTI systems are different, then the isometric operator in an inner-outer
factorization will not be inner. The reason is the presence of a doubly shift invariant
subspace (see chapter 7). Thesituationisnot at all exotic and manifestsitself already in
simple examples. The corresponding LTI caseinvolvesthe notion of “full range” shift
invariant spaces, with great system theoretic and analytic importance, but of avery dif-
ferent nature: the defective case necessarily entails systems with infinite dimensional
state spaces which in the discrete time context will be rather exotic. Be that asit may,
it turns out that the lack of doubly invariant defect spaces plays an important role in
inner embedding theory in both cases equally.

Most of the approximation theory for systems is based on constrained interpolation
theory—see chapters9and 10. It turnsout that here LTI and LTV paralléel each other. In
fact, LTV throwsanew light on the LTI theory which was previously based on analytic
propertiesof transfer functions (asin the classical paper of Adamyan, Arov and Krein).
Much to our surprise when we devel oped the theory originally, the time-varying ver-
sion of the Schur-Takagi theory (and of course all the other versions of much simpler
classical interpolation problems) appears to be completely and exclusively algebraic.
No analytic property hasto be used to derive all the pertinent results. Thismakesinter-
polation a smooth and transparent piece of theory of great import for many problems
in system theory such as optimal control and model reduction theory.

Foectral factorization theory offersan interesting piece of comparison between the
two cases. Althoughthe W-transform providesfor akind of surrogate spectral theory in
theLTV case, itisarather weak tool, mainly of useininterpolationtheory. LTV theory



CONCLUSION 421

thus misses a strong notion of spectrum on which a splitting of “time-varying poles’
and zeroswith regard to stability can befounded. On the other hand, if calculationsare
based on inner-outer and spectral factorizations, and expressed in state space terms,
then the two have an obvious parallel, as seen from the resulting Riccati equations.
In chapters 12 and 13 we have given a closed form solution to the Riccati equation
which arises in embedding, directly in terms of the transfer operator to be embedded.
Inthe LTI case, solving the algebraic Riccati equation leads directly to an eigenvalue
problem for the related Hamiltonian. No such luxury exists in the LTV case, where
the Riccati equation is in name recursive but can be partially recursive and partially
algebraic, or even completely algebraic asin the LTI case, which is anyway a special
case. Theexistenceof aclosed form solutionisof great help not only to show existence
of asolution, but also to prove convergence of the recursion to the true solution when
started from an approximateinitial point.

Finally, parametrization of state space representations works equally well for the
LTI caseasfortheL TV case, and accordingto the sameprinciples. SincetheLTI theory
isthe most contentious, we haveworked it out in detail in chapter 14, but the technique
appliesequally well tothe LTV case, and has been inspired by it.

We have presented the development in such a way that the LTI case appears as a
special case of the LTV theory—as it should be. Likewise, classical matrix algebra
can be viewed as another special case of the LTV theory (digoint from the LTI case,
of course). It isremarkable that asingle theory is capable to cover al cases. Special-
izing LTV to LTI givessharper resultsin some key instances, especially when external
or inner-outer factorizations are considered, but in many other cases, LTV works just
as well and yields much more general properties. Yet, there are other cases where a
specialization to LTI from LTV does not give al results, e.g., in Hankel-norm model
reduction for LTI Hankel matrices, the LTV theory applies but one would still haveto
show that the resulting approximantis LTI.

Applications

A relatively weak point of LTV theory has been the presumed lack of major appli-
cations. Two major reasons for this are (i) the impossibility of identification from a
single input-output pair, thus precluding adaptive (tracking) applications unless fur-
ther assumptions are made, and (ii) the absence of a spectral theory (no convenient
z-transform). Major results such as a generalized interpolation theory and the corre-
sponding model reduction techniques give new directionsbut are till very new. Thus,
LTV theory has been dow in coming of age, and quite a few related problems were
considered intractable by people working in control, signal processing or numerical
algebra. Gradually, major applications are now appearing, and we expect many more
to come. A short summary:

= mode reduction for finite element models of large scale integrated circuits using
“Schur type interpolation” [ND91, DN9O];

m precalculated control for minimal sensitivity of switched networks, e.g., power dis-
tribution systems [ Yu96, SV 96];
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= new preconditionersfor calculating eigenvaluesof large sparse matricesusing Krylov
subspace methods (e.g., [Saa96]);

= subspace estimation and tracking; stable large matrix inversion; low complexity in-
version of matrices with (multiple) thin bands or other forms of sparseness;

m the design of time-varying filter banks and appropriate inverses for image coding,
especially in high quality applications such as medical images[Heu96].

However, many applications are still to be developed, even for the cases just men-
tioned. Given the present high level of understanding of LTV theory, we believe that
many new applications will arise in the coming years, and that they will be based on
the sound system theoretical principlesthat we have tried to develop in this book.



Appendix A
Hilbert space definitions and properties

Thisappendix containsabrief review of those Hilbert space definitionsand results that
arerelevant to thisbook. The material in this chapter is basic and can be foundin text-
books such as Akhiezer-Glazman [AG81] (which we follow here), Halmos [Hal51],
and Fuhrmann [Fuh81, chap. 2]. The main focusis on the properties of subspaces of a
Hilbert space.

Linear manifolds

In this section, we consider complex vector spaces whose elements (* vectors') are not
further specified (they could, for example, bevectorsintheusual n-dimensional Euclid-
ean space C", or morein general, beinfinite-dimensional vectors). |nacomplex vector
space ‘H two operations are defined: the addition of two elements of ‘H and the mul-
tiplication of an element of # by a complex number, and 7 should contain a unique
null element for addition. Elements f, fp, -+, fy inH are called linearly independent
if (for complex numbersa;)

oy fi+oaofo+-0pfn=0 < qag,-,0n=0.

‘H isfinite dimensional (say n-dimensional) if at most a finite number of n elements
arelinearly independent. Such spaces are studied in linear algebraand yield a special-
ization of Hilbert space theory. A set M of elements of a complex vector space H is
called alinear manifold if for all complex scalars a, 3,

fOM,gOM 0O oaof+pBgOM
A set M iscalled the direct sum of afinite number of linear manifolds My O #H,
M= Mi+ -+ My, (A1)
if for every g O M thereis one and only one expression in the form of asum

g=01+02+-+0n
423
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where gy 0 My, and if any sum of thisformisin M. M isalinear manifolditself. A
set of nlinear manifolds { M} is called linearly independent if

fi+fo+---+ 1, =0 (fiDMi) O f1, -+, fan=0.
Linear independenceis both a necessary and a sufficient condition for the construction
of thedirect sumin (A.1).
Metric space

A metric spaceisaset H for which adistance d(f,g) is defined, which satisfies

(i) d(f,g) d(g,f) >0 whenf#g
(i) d(f,f) = 0
(i)  d(f,g) < d(f,h)+d(g,h) (triangleineq.)

A sequence of elements f,, in H hasastrong limit the point f O A if
l!im d(f,, f) = 0. (A2

We write f, —» f, and say that { f,} convergesto f in norm. Thisis called strong or
norm convergence. From (iii) it followsthat (A.2) implies

Jim_d(fy, f) = 0. (A.3)

A sequence { f,} that satisfies (A.3) is called a Cauchy sequence. There are metric
spaces H in which a Cauchy sequence { fn} does not necessarily convergeto an ele-
ment of the set: (A.3) doesnot imply (A.2). If it does, then H is called complete.

A limit point of aset M O H isany point f 0 H such that any e-neighborhood
{g:d(f,g) <€} (e>0)of f containsinfinitely many pointsof M. A set that contains
all itslimit pointsis said to be closed. The process of adding to M all itslimit points
is called closure, the set yielded is denoted by M: the closure of M. A setisdensein
another set if the closure of the first set yields the second set. As an example, the set
of rational numbersis densein R, for the usua notion of distance.

If in ametric space there is a countable set whose closure coincides with the whole
space, then the space is said to be separable. In this case, the countable set is every-
where dense.

Inner product

A complex vector space H isan inner product spaceif afunctiona (-, ) : HxH - C
is defined such that, for every f, g0 H and aq,a, O C,

(i) (9.f) = (f,9)
(i) (arfi+axfa,g) = ai(f1,9)+ax(f.0)
(i) (.6)20; (/=0 <« f=o0.

The overbar denotes complex conjugation. The norm of f 00 7, induced by the inner
product, is defined by
Ifll2 = (f,H)Y2.
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Some propertiesthat follow from the definitions (i)—(iii) are

lafle = lalffl.  (@OCQ)

(.9l < [fll-lgl.  (Schwarzsinequality)

[f+9all2 = lIfl2+lgll2  (tiangleinequality).
Orthogonality

Two vectors f, g are said to be orthogonal, f O g, if (f,g) = 0. Given aset M, we
write f DM if foral mO M, f Om. A set of vectors{ f;} isan orthogonal set if for
i #j, (fi, fj) = 0. A vector f isnormalized if || f | = 1. An orthonormal set is an
orthogonal set of normalized vectors.

Hilbert space

A Hilbert spaceisaninner product spacethat iscomplete, relativeto the metric defined
by theinner product. The primeexampleof aHilbert spaceisthe space ¢, of sequences
f=[ fo f1 fo -~:]=[fi]%, of complex numbers f; suchthat || f || < «. Theinner
product in this space is defined by*

(f.g9) =5 fig.
Thisspaceis separable: acountable set whose closureis equal to /5 isfor examplethe

set of al vectors with afinite number of non-zero rational components f;. The space
/5 iscomplete, and it is infinite dimensional since the unit vectors

@ = [+ 0100 -]
e = [ 0 010 ] (A.4)
e = [ 0 0 0 1 ]

arelinearly independent.

A closed linear manifold in a Hilbert space # is called a subspace. A subspace is
itself a Hilbert space. An example of a subspace s, given some vector y 0 H, the set
{xOH: (x,y) =0}. (Themainissuein proving that this set is a subspace is the proof
that it is closed; this goes viathe fact that X, - X O (Xn,Y) - (X,y). See [AG81].)
Givenasat M O H, we define

MY = {xOH : (xy)=0,0y0M}.

Again, M" isasubspace. If M is asubspace, then M" is called the orthogonal com-
plement of M. Given a subspace M and avector f [, there exists a unique vector

1The meaning of the infinite sum is defined via a limit process of sums over finite sets, in case these sums
converge. See Hamos [Hal51, §7].
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fiOMsuchthat || f—fy1]j2 < || f—gl2foral g0 .M (g# f1). Thisvector f; iscalled
the component of f in M, or the orthogonal projection of f onto the subspace M. The
vector f, = f — 1 isreadily shown to be orthogonal to M, i.e., f, 0 M. With respect
to ‘H, we have obtained the decomposition

H=MOM", (A.5)

where ‘[J’ denotes the direct sum (+) of orthogonal spaces. The orthogonal comple-
ment M is likewise written as

MP = HeM.

Projection onto a finite-dimensional subspace

Let {e}] be aset of n orthonormal vectors in a Hilbert space #, and let M be the
finite-dimensional subspace spanned by linear combinations of the{g}:

M={m:m=oaie;+ 026+ -+ 0n&,, dl o OIC}.

Becausethe{ g} arelinearly independent, any mJ M can bewritten asauniquelinear
combination of the{g}. It immediately followsthat (m,g) = a;, so that

m:i(m,a)a

where (m, g )& can beregarded asthe projection of monto g. Let f O #, thenthereis
aunique decomposition f = f; + f», with f; O M, f O M. Since (f,,g) =0, we
have (f,g) = (f1,6) and hence

n

f = Z(f,e,)e,Jrfz (f, OMY).

Hence the projection of f onto M is obtained explicitly as $7( f,e)e. The projec-
tion formulacan be extended to infinite dimensional subspaces which are spanned by
acountable sequence of orthonormal elements{e} 7.

Basis

For a given separable Hilbert space H and sequence of vectors{@}7 in H, if every
subset of { @} islinearly independent and the span of the { @} isdensein H, then{ @}
iscalled abasis. Thismeansthat every vector f 0 can be expanded in auniqueway
inaseries

(<) n

f:Zaim = rgipgo; ai@

which convergesin the norm of 7. Such abasisis complete[AG81]: a set of vectors
in # is said to be completeif thereis no non-zero vector in 4 which is orthogonal to
every vector in the set.
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In a separable Hilbert space, any complete sequence of orthonormal vectors { g}
forms a basis. In addition, the cardinalities of two orthonormal bases of a separable
Hilbert space are equal: they are at most countably infinite, and if there is afinite or-
thonormal basis {&}], then any other orthonormal basis has also n elements. The di-
mension of H is defined as the number of elementsin any complete orthonormal basis.
Any subspace of a separable Hilbert spaceis again separable; the dimension of asub-
space is defined in the same way. The dimension of alinear manifold £ is defined to
be the dimension of its closure L.

If two Hilbert spaces H and H' have the same dimension, then they are isomorphic
in the sense that a one-to-one correspondence between the elements of # and H' can
be set up, such that, if f,g0# and f’,g' O #' correspond to f, g, then

1. af’'+pBd correspondstoa f +fg;

2. (f',9)w = (f,9)%.

In fact, the isometry is defined by the transformation of a complete orthonormal basis
in into such abasisin H'.

Non-orthogonal basis; Gram matrix

Let{fq1, -+, fn} beaset of nvectorsin aHilbert space 7. Consider the matrix Ap =
[(fi, fj)]{jjzl of inner products of the fi, i.e.,

( fl: fl) ( f17 f2) e ( fl: fn)
( f27 fl) ( f27 fZ) ( f27 fn)
/\n = . . .
(fmfl) (fnva) (fn:fn)
The set is orthonormal if A, = I. Itislinearly independent if and only if An is non-

singular (i.e., invertible). This can readily be shown from the definition of linear inde-
pendence: let f =ay fi +axf,+ -+ ap f beavector inthelinear manifold generated
by the f;, and suppose that not all a; are equal to zero. By definition, the set of vectors
islinearly independentif f=00 a;=0(i=1,---,n). Because f =00 (f,f;) =
0 (i =1,---,n), we obtain upon substituting the definition of f the set of linear equa-
tions

arp(fi, f1) + o2(f,f2) + - + an(fi,fn) = 0

al(fn,fl) + C(z(fn,fz) + + an(fn,fn) = 0

andhencea; =0(i =1,---,n) followsif and only if A, isinvertible.

Nn is called the Gram matrix of the set of vectors. Gram matrices play an impor-
tant role in the analysis of non-orthogonal bases, asisillustrated by the following. Let
{ f} ¥ beacomplete system of vectorsin aHilbert space #, and let A, be the sequence
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of Gram matrices An = [( fi, fj) [ _;. If

Mo [[Anl]l < o
and
limy_e AR < o

(where || - || denotes the matrix 2-norm), then { fi} 7 isabasisin # [AG81]. Such a
basisiscalled aRiesz basis. Itissaid to be equivalent to an orthonormal basis because
thereis a boundedly invertible transformation (based on A) of { f} to an orthonormal
basis. We use only such bases.

Let{ fi}7 beanon-orthogonal basisin#, and let { g} be an orthonormal basis of
‘H. Then the{ f;} can be expressed in terms of the {q;} as

fi = Y Rijgj,  where Rj=(fiqj). (A.6)
J

Define R = [Rij[{%j_;. The Gram matrix A = [( fi, f;)] can be written in terms of R,
using the expansion (A.6), as

Aij :Z Rik(R)j

so that A = RR". Suppose that both R and R are bounded. Then A and A™! are
bounded as well, so that { fi} is a Riesz basis, and the expression ¥ (R™)ikRyj = i
shows, with (A.6), that each ¢ can be written in terms of the{ f;}:

G =) (RY)ifj

J

Hence{ f;} can be orthonormalized by R, where Ris aboundedly invertiblefactor of
A.

Bounded linear operators

Let H1 and H, be Hilbert spaces, and let D denoteaset in 1. A function (mapping)
T which associates to each element f 0 D some element g = fT in H; is called an
operator. D = D(T) iscaledthedomainof T, whileran(T) = { f T : f O D} isitsrange.
Tislinearif D isalinear manifoldand (o f +Bg)T =a fT+pBgT foral f,g0D and
all complex numbersa, . The norm of alinear operator T is

[T ll2

ITI =
foo,i20 I fll2

and T is bounded if || T|| < . A bounded linear operator is continuous. for every
fo OD,

lim fT = foT (fOD).

£ fo
If Sisanother bounded linear operator such that the product ST isdefined, then || ST || <
[ISIF -1 -
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A linear operator T is finite dimensional if it is bounded and if ran(T) is afinite-
dimensional subspace of #H. Let {h¢} beabasisin ran(T), then the operator can be
expressed as

n

fT = Z(ﬂgk)hk

where{ gy} isafinite system of vectors, not depending on f.
Let T:H1 - Ho beabounded linear operator defined on the whole of #1. The
adjoint of T istheuniqueoperator TU: H, — 71 withtheproperty that forall f,g 01,

(fT,9) = (f.gT").

THalwaysexistsandisunique, (THP=T, (ST)"?=T"S” andif T~ existsthen (T™1)"=
(TH™L =TV Tiscaled sdf-adjoint if T = T"; a self-adjoint operator is called pos-
itiveif (fT,f) =0foral f O#H;.

Let { &} bean orthonormal basisin H. Supposethat thesum 3’ ; (&T, &) con-
verges absolutely. Then T is said to be anuclear operator whose traceis given by

[ee]

trace(T) := Z (T, &),

It can be shown that the property and the val ue of the trace does not depend on thebasis
chosen [AG81].
The null-space or kernel of a bounded linear operator T : H1 — H» isthe linear
manifold
ker(T)={fOH,:fT =0}.

Thislinear manifoldis actually closed, henceker(T) isasubspace. On the other hand,
therange of T isalinear manifold which is not necessarily closed; it is closed if and
only if the range of its adjoint is closed. 1 and ‘H satisfy an orthogonal decomposi-
tion as
Hy = ker(T) 0O ran(TH
H, = ke(TH O ran(T).

T is said to be injective (one-to-one) if fT =gT O f = g, which reducesfor linear
operatorstothecondition fT =00 f=0,i.e, Tisinjectiveif andonly if ker(T) =0.
Henceif therangeof TFisdenseinH1, then T isone-to-one. T issurjective (onto) if its
rangeisall of H,. T with domain restricted to ker(T)" maps one-to-oneto the closure
of itsrange, but is not necessarily surjective. If T isboth injective and surjective, then
(by the closed graph theorem [DS63]) it is boundedly invertible.

An operator P is a projection if it satisfies P> = P. It is called an orthogonal pro-
jection if, in addition, PP = P. If M isasubspacein #, then H = M O MV, The
orthogonal projector Py onto the subspace M is unique.

Thefollowing theorem gives necessary and sufficient conditionsfor therange of an
operator to be closed (cf. [Hal51, §21], [Dou66]):

(A7)

Theorem A.1 LetT be abounded operator on a Hilbert space.
ran(TY) isclosed - DOe>0: ||XT|| 2¢|x|| foralxOran(TY). (A.8)
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A linear manifold (subspace) M is called an invariant manifold (subspace) for an
operator T if MT O M. M isinvariant for T if and only if Py,TPy = TPuy.

An operator U is called an isometry if it satisiesUU" = |, a co-isometry if UU =
I, and unitary if it satisfies both. If U is unitary, then it is invertible, and U™ = U,
Two Hilbert spaces 71 and H, areisometrically isomorphicif thereexistsaninvertible
transformation U such that

(fU,gU)2=(f,0)1 (foral f,gOHs).

Inthis case, U isunitary.

Transfer function theory

In closing this chapter, let us give some ingredients of classical function theory and
harmonic analysis. Consider a causal, time invariant and time discrete system with
impulseresponse [--- 0 Ty T, -, starting a time k = 0. We assume that all Ty
aremxn matrices (for easy reading, assume them scalar). The corresponding transfer
function is defined by the formal series

T@2) =To+ZT+ZTo+ - (A.9)

where z denotes the unit delay (in engineering literature the causal unit delay is usu-
aly denoted 2, for the present discussion the definition given is more convenient.)
The purely formal representation allows for formal multiplication of the transfer func-
tion with a one-sided input series. If u= [ug u; Uy -7 is an input sequence, and
y=[Yo Y1 ¥2 -] the corresponding output sequence such that y = uT, then

k

Yk = i; Ui T

The same would be obtained if we look at the seriesU (z) = ugp + zu; + 22Uy + --- and
Y(2) = y1+2y1+ 22y + -+, and formally equate Y(2) = U (2) T (2).

In the linear time invariant (LTI) case, the transfer operator correspondingto T(z)
is actually given by the Toeplitz operator

0 To T T T,
T(T@)=| . 0 o T T
0 0 0 To T

However, T(z) can also beinterpreted as a mxn matrix function of acomplex vari-
ablez. The convergenceof the series representation for T(2z) in the complex plane can
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then be studied and rel ated to input/output properties of the system whosetransfer func-
tionisT(z). From the theory of Maclaurin series, we know that if the growth in mag-
nitude of the series [Ty is sufficiently restricted, then the series will convergeto an
analytic function inside a disc around the origin, which is also denoted by T(z) but
now has the meaning of a complex matrix function. Of course, formal multiplication
of seriesin asymbol zis consistent with the multiplication of Maclaurin seriesin the
intersection of their domains of convergence.

For the benefit of the reader, we recall afew relevant facts from the theory of com-
plex series. For an extensive treatise on the subject, see [WW92], a more compact ac-
count of propertiesisfound in [Rud66].

m For aone sided series as given in equation (A.9), there exists a positive number p
called the convergence radius which is such that the series converges absolutely in
theopendisc{z: |7 < p} of the complex plane. The serieswill diverge outside the
closed disc {z: |2 < p} (on the circle convergenceis dubious). p is given by the
expression

p = lim [Tl

in which || Ti|| indicates the Euclidean (induced matrix 2-norm) of the matrix T.

= Insidetheopen circle of convergence, T(2) isan analytic function of T(z), meaning

that thederivative de(ZZ) existsasacomplex matrix at eachpoint{z: [z < p} (asingle
complex matrix independent of the direction of dz). The series has a converging
termwise derivativein that region aswell, i.e.,

dT(2 &,
& 7k;kzk M.

Theregionof analyticity of T(z) can extend much beyondtheradiusof convergence,
thanksto analytic extension. For example, theseries 1+ z+ Z2+ - - - hasconvergence
radius1butitsanalyticextensionisgivenby 1/(1-2z), whichisanayticinthewhole
complex plane except the point z= 1. The convergent series corresponding to this
T(2) outside the closed unit disc is given by

which is also of the Maclaurin type, but now in the complex variable z1. None of
these two series converge on the unit circle in the usual sense, but they may do so
in an extended sense.

In particular, if T(z) isanalyticintheopenunitdiscD = {z, |4 < 1}, thenit hasa
onesided series representation T(2) = ¥ § 2T which convergesin D.

= A onesided input sequence U (2) = up + zuy + 22Uy + - -+ of the £o-type is analytic
in the open unit circle and is such that the integral

1 :
o | V(e 20
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isuniformly bounded for p < 1 (the integral isamonotonously increasing function
p). Itslimit for p » 1isgiven by

L ™0 d8 2
o V(€] 20

which is known to exist and to equal the £>-norm of the sequence [uy]3. Thisisa
special case of the celebrated Parseval theorem:

o 1 1 (m - 1 ;
ulle, = [kZoHUkHZ]2 = [E[/_HHU(e'e)sze]? = lU(€%) Iy

inwhichthelast quantity isby definitionthe Lo-normfor functionson theunit circle
T ={z: z= €% whose squared norm is integrable in the measure 2. Such one-
sided functions U (z) are said to belong to the Hardy space Hx(T), which can be
viewed as the subspace of Ly(T) functions with vanishing Fourier coefficients of
strictly negative index. Indeed, such L-functions have a unique analytic extension
to the open unit disc D, uniquely defined by the corresponding one-sided Fourier
expansion. For more information see the introductory survey of [Hof62] and the
treatment of Hardy spacesin [Rud66].

m H. (D) isthe space of functions T(z) which are uniformly boundedin D:
IT@he (D) :=SUPIIT (D < oo.
Z0D

On the unit circle, Ho(T) is a subspace of the space of essentialy bounded, mea-
surable matrix functions L. (T) on the unit circle T of the complex plane.

m A systemisuniformly stablein the “ bounded input bounded output” (BIBO) sense

for the £2-norm, if
uT
mi=sp M <
ude, Ul
By using Parsevalstheorem, it followsthat this operator normisequal tothe L (T)-
norm.

Harmonic analysisshowsthat acausal system T isBIBO stableif andonly if T(2) is
analyticinside the unit disc and uniformly bounded: T(z) isin H. (D) (for the origina
proof, see [BC49]). In this case, SUP_<o<r|| T(p€®)| is @ monotonously increasing
function of p and its norm as a transfer operator is given by

sup [ T(pe®)|= sup |IT(e")]

p<1, —-T<O<T —TI<B<TT

o that .
IT@ e = [TE)]IL, =T

We see that in this case, the norm of T = 7(T(2)) as an input-output operator over
{o-spaces equals the L.,-norm of the Fourier transform T(€®) of T(2) on the unit cir-
cle, which, for causal systemsdescribed by one-sided transfer functions, isactualy the
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supremum of thenorm of T(z) over theopendisc{z: |7 < 1}. Thefact that in thiscase
we have sup; [| T(2)|| = supg || T(€9)]], i.e., the H norm of T(2) on the unit disc is
equal to the L, norm of T(€®) on the unit circle actually follows from the celebrated
maximum modulus theorem valid in a domain of analyticity. Much more is known
about these functions, see e.g., [Hof62].

Thedanger of misinterpretationresidesin partial reversalsof thisresult. Itisnottrue
that the conditions* T (z) isanalyticintheunit disc” and“supg || T(€®)|| < ” entail that
T(2) O Ho, i.e, T causal and || T|| < . The standard and elementary counterexample
isgiven by
1+z
1-z

T(2 =exp(=—)-
T(€®) = exp(icot$) so that for all 6, | T(¢®)]| = 1. However, for 0 < p < 1, we see
that T(p) = expllég - o asp - 1! Note that quite the oppositeis true for T(z) =
exp(Zt}) which does correspond to aBIBO stable system. T(z) = exp(3£) should be
interpreted as a bounded but anticausal transfer function.

Projections of L-functions of the unit circle onto their causal or anticausal parts
may produce similar kinds of problems. Suppose that T(€®) = si__, T«€*® is some

k=—-00

(double sided) Fourier series and consider the “projection to causal” given by
P(T)(€%) = § T

It isnot true that || T(€9)L, < o O ||P(T)(€°)]|L., < c. Thisfact is fundamental to
harmonic analysis and symptomatic for the relation between the time domain and the
frequency or spectral domain. Themost classical exampleisperhapstheideal low pass
filter. Assume that T(€®) isreal and specified by T(€®) = 1 for - <6 < J and zero
for other values of 6. We have To =  and for k # 0

_ [0 —ike@_/n/2 ikgd® 1 TK
Tk_./_nT(é e on ™ L e SN

In matrix form, the corresponding transfer operator is

1 1
1
-0 1 ¥ 1 0 -f1o0o |
T—} o -1 0 1 1 o -1 0
M 3 2 3
1 1 1
1 1
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The projection P(T) is given by the series

PM(2 = %+%[(z—%z3+%z5—---)

— 1
= s+ zarctanz

since §(z- 322+ £2+ -+) = 1. It hasan essential singularity at the points z = i

on the unit circle (i = v/ —1), and hence neither belongsto L. nor to H.,, athoughit is
analytic in the unit disc. Hence we see that P(T) is unbounded in the operator norm,
while T is perfectly bounded.
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Glossary of notation

Diagonal algebra

N =CN:  space of (non-uniform) sequenceswith i-th entry in CNi (p. 20).
N=#A": thesequenceof dimensionsof N (p. 20).

4/2\/ : space of bounded (non-uniform) sequencesin N/

X(M,N): space of bounded operators ¢4 — @/ and XM - AN (p. 22).
Uu,L,D: upper/lower/diagonal bounded operatorsin X' (p. 23).

Xo,Up, L2, Dy: (Hilbert) spaces of operatorsin X',U, L, D with bounded HS-norm

(p. 25).
TG: sequence constructor. A0 X has entries Ajj = TqAn‘j] (p. 22).
Z bilateral causal shift operator (p. 26).
TH diagonal shift of T 0 X" over k positionsinto south-west direction (p. 27).
r(X): spectral radius of X (p. 24).
Py: projection onto a subspace H O &> (p. 25).
P,Po,P":  projection onto Us, Do, L2271 (p. 25).
{A.B} = Po(AB): diagonal inner product (p. 77).
{A B}, = Po(AJBY): indefinite diagonal inner product (p. 200).
A>0: Aisuniformly strictly positive definite (p. 77).
Al =ARAKD ...AD (p. 27).
AK =AAD ... A (p, 26).
T = Po(Z7*T): thek-th diagonal abovethemain (0-th) diagonal of T (p. 28).
Nk = Po(FFY): the Gram operator associated to abasisrepresentation F (p. 84).
sdim (-):  the sequence of dimensions of aleft D-invariant subspace (p. 78).
% the space of bounded sequences with entriesin D
(T the pseudo-inverse (Moore-Penrose generalized inverse)
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System theory

T: realizationmatrix. T ={A,B,C,D} standsforthematrix T = [Q 8} (p- 37).
La: the spectral radius of AZ (p. 38).

H(T), Ho(T),K(T),Ko(T): input state space, output state space, input null space,
output null space of an operator T O X" (p. 89).

Q,F,G,Fq: typically, Q and G are orthonormal basis representationsof the input and

output state space. F, Fg are strong basis representations of these spaces
(p. 105 ff.).

C,0: controllability, observability operators (p. 54).

Hr,Kt,ET: theoperator T on restricted domainsand ranges. Hr : £,Z71 - U isthe
Hankel operator. Ky : L0271 L L7V ErilUs - Us (p. 88).

To[S] = (01 —O12) (022 -0215 )™ (p. 199).



Index

Adjoint, 21, 22, 82, 429
Algorithms
approximation of matrix, 330
approximation of system, 60, 283
canonical forms, 101
Cholesky factorization, 371
displacement Cholesky factor, 69
displacement redlization, 68
external factorization, 131
identification, 63
indefinite interpolation, 273
inner-outer factorization, 158, 159
orthogona embedding, 357
redlization, 56
spectra factorization, 371
Analytic function, 431
Analytic range space, 138, 162
Approximation in Hankel norm, see Hankel-
norm model reduction

Balanced model reduction, 60
Balanced realization, 113, 390
Band matrix, 5, 13, 46, 299
Basic interpolation problem, 238, 242, 244
Basis
boundedness issue, 82, 106
J-orthonormal, 202, 205
of asubspace, 79-84, 426-428
representation, 79
strong, 83
Beurling-Lax theorem, 127, 136-142
Block matrix, 12, 42
Bounded
basis representation, 80, 106
boundedly invertible, 429
operator, 22, 428
Bounded real lemma, 353, 376

Canonica parametrization, 390
Canonical redizations, 98-115

agorithm, 101
of inner operators, 124, 125
of J-unitary operators, 205
Cascade factorization, 8, 383417
elementary stage, 407-410, 412-414
theorems, 409, 412
timeinvariant, 383-397
Cascade of © sections, 200, 410417
Causdlity, 35
mixed, 165-168, 175, 252, 284
mixed causality, 51
Chain scattering operator, 195, 218
cascade factorization, 410417
Cholesky factorization, 13, 67-71, 309, 338,
371, 378-379
Closed range, 89, 113, 429
Closed set, 424
Column of an operator, 23
Complement
J-orthogonal, 201
orthogonal, 78, 425
Complete orthogona decomposition, 150
Complete set, 424, 426
Computational complexity, 2, 5, 9, 13, 51, 167,
265, 268, 383, 410
Computational linear algebra
approximation, 263, 266268
Cholesky factorization, 371, 378-379
complexity, 2, 5, 9, 13, 51, 71, 167, 265,
268, 383, 410
concepts, 1-7
inversion, 5, 145-186
multiplication, 2-4, 383
QR factorization, 142, 170, 175
Computational model, see realization
Computational network, 2
Conjugate-Hankel operator, 213, 280
Conjugation of interpolation problem, 245, 257
Conjugation of J-inner operator, 220, 246
Contractive operator, 77, 343
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conditions on realization, 344, 348
Convergence

of Lyapunov equation, 97-98

of Riccati recursion, 355-356, 372-375
Coprime

inner-coprime factorization, 126132

J-inner-coprime factorization, 218
Crout-Doolittle, 69

Darlington synthesis, 338, 384
Defect space, 179
Deflated interpolation problem, 246, 257
Dense set, 424
Diagonal
algebra, 76-85
expansion, 341
inner product, 76
J-inner product, 200
operator, 23
representation (decomposition), 28
shift, 27
Dichotomy, 24, 156, 186
Dimension sequence, 78
D-invariance, 75
D-invariant subspace, 78
Direct sum, 423
Displacement structure, 13, 44-46, 65-71
Domain, 428
Doubly shift-invariant subspaces, 138-141, 153

Elementary rotation, 296-299, 310, 359, 386—
387,390, 412
Embedding, 337-362
agorithm, 357
connection with spectral fact., 376-377
finite matrix, 354
for minimal parametrization, 393, 398
of isometric operator, 128, 136, 139-142,
157
of J-isometric operator, 215, 225, 253
Equivalent minimal redization, 98
External factorization, 126-132, 165, 170, 270

Factorization
cascade, 383417
external, inner-coprime, 126-132, 165,
170, 270
inner-outer, 149-165, 171
J-inner-coprime, 215-218, 270
J-unitary causal-anticausal, 224
spectral, 371
Filter
based on Hessenberg, 389, 392
based on Z, 397-410
based on ©, 410417
LTI orthogonal filter synthesis, 387-397
Finite-dimensional operator, 429

Finiteness

finite matrix computations, see computa-
tional linear algebra

locally finite state dimensions, 40
locally finite subspace, 78
subspace dimension, 423

Four block problem, 260262

Fractional transformations, 199

Frobenius norm, 25

Full range system, 138

Future operator, 93, 210

Future part of signd, 35, 88

Givens rotation, 412

Givens rotation, 296-299, 310, 359, 386387,
390

Gram operator (Gramian), 83, 84, 427

Halmos extension, 359
Hankel operator, 88-95
definition, 53, 88
diagona expansion, 341
factorization, 92, 103, 107, 113, 168
matrix, 6, 59
snapshot, 90
Hankel-norm, 264, 268-269
Hankel-norm model reduction, 9, 263-306
application to matrices, 307-333
order-recursive algorithm, 292-300
parametrization, 290
redlization of approximant, 281
recipe, 270
Schur recursion, 292-300
theorem, 276
Hardy space, 432
Hermite-Fgjer interpolation, 242-245
Hessenberg form, 159, 389, 392, 393
Hilbert space, 425
Hilbert-Schmidt operators, 25
Ho-Kalman redlization algorithm, 117
Hyperbolic QR, 311, 316-322
Hyperbolic URV, 322-324

Identification, 62—64
Indefinite interpolation, 269-292
I ndefinite spaces, 201
Index sequence, 20
Inertia signature, 45, 203, 205, 209, 310
Injective operator (one-to-one), 429
Inner coprime, 126, 132, 165, 170
Inner extension, see embedding
Inner operator, 121-143, 195
cascade factorization, 394, 400403, 408—
410
external, inner-coprime fact., 126-132,
165, 270
inner-outer fact., 149-165, 171, 377
realization, 123-126



Inner product, 424
diagonal, 76
Hilbert-Schmidt, 25
indefinite, 200
non-uniform, 21

Inner product space, 424

Inner-outer factorization, 149-165, 171
agorithm, 158, 159
theorem, 150
zero structure, 179

Input
normal form, 98
sequence, 20, 34, 73
state space, 89

Input-output map, see transfer operator

Interpolation, 233-260
basic problem, 238, 242, 244
connection to cascade fact., 410
deflated problem, 246, 257
Hermite-Fegjer, 242-245
indefinite, 269-292
Nevanlinna-Pick, 237-241
non-degeneracy condition, 246
Nudel’ man, 250, 255
regularity condition, 246, 257
Schur-Takagi problem, 260, 265
tangential Nevanlinna-Pick, 242
two sided, 250

Invariance
doubly shift-invariance, 138-141
left D invariance, 78
shift invariance, 59

Invariant manifold, 430

Inverse
generalized (Moore-Penrose), 150, 165
of general matrix, operator, 165-172
of outer matrix, operator, 169, 367
of upper matrix, operator, 2, 24, 146-149
system order, 168, 169
zero structure, 179

|sometric system, 122, 132-136

|sometry, 430

|somorphy, 430

| sotropic vector, 201

J-external factorization, 215-218, 270
J-Gram operator, 202, 238, 271
J-inner operator, 191-231
J-inner product, 200
J-isometric operator, 195

conditions, 227

embedding, 215, 225, 253
J-lossless operator, 196, 218-231
J-Lyapunov equation, 218
J-nonsingular matrix, 311
J-orthogonal complement, 201
J-positive, negative, neutral subspace, 201
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J-unitary operator, 195
anticausal J-inner, 219
causal-anticausal factorization, 224
connection with unitary, 196, 207, 412
fractional transformations, 199
J-inner-coprime factorization, 215-218,

270

mixed causality J-inner, 223, 252
redization, 205-209

Kernel, 429
Krein space, 202, 210, 224, 228
Kronecker's theorem, 55, 94, 111, 168

{a, 38
Left interpolation problem, LIP, 245
Levinson recursion, 13, 164, 384
Linear fractional transformation, 284
Linearly independent, 423
Locally finite
basis, 79
realization, 40
subspace, 78
L ossless operator, 121, 195, 218
Lower operator, 23
Lyapunov equation, 67, 68, 96-98, 131
connection with Hankel operator, 274
convergence, 97-98
Lyapunov equivalent, 41

Manifold, 423

Matrix approximation, 307-333

Matrix representation, 22, 74

Metric space, 424

Minimal parametrization, 390-397
Minimal reslization, 54, 59, 93, 168
Minimal system order, 95

Mixed causality, 165-168, 175, 252, 284
Model reduction, 9, 60, 263-306
Multiband matrix, 50

Nehari problem, 260, 300-305
Nerode equivalence, 89
Nevanlinna-Pick interpolation, 237-241
Nevanlinna-Pick tangential interpolation, 242
Non-degenerate interpolation problem, 246
Non-degenerate subspace, 202
Non-uniform sequence, 20
Norm, 424
diagona 2-norm, 268
Hankel-norm, 264, 268-269
Hilbert-Schmidt (Frobenius) norm, 25
of non-uniform sequence, 21
of operator, 22, 76, 428
Normalized redlization, 98
Nudel’ man interpolation, 250, 255

Observability Gramian, 95



458 TIME-VARYING SYSTEMS AND COMPUTATIONS

Observability operator, 54, 93
Observable redization, 59, 93
One-to-one, 429
Onto, 429
Operator
adjoint, 21, 82, 429
bounded, 22, 428
conjugation, 220, 246
contractive, 77, 343
domain, 428
kernel, 429
positive, 77
range, 428
shift, 26
state space model, 103
upper, lower, diagonal, 23
Order of system, 40, 168, 275
Orthogonal projection, 429
Orthogonal complement, 78, 425
Orthogonal projection, 25, 84, 202, 426
Orthogonality, 425
Outer operator or matrix, 5, 149, 365
factorization algorithm, 158, 159
inversion, 169, 367
properties, 367-370
Output
normal form, 98
null space, 89, 90
sequence, 20, 34, 73
state space, 58, 90
Overbar, 424

Parametrization of LTI system, 390-397
Passive layered medium, 195
Passive medium, 193
Past operator, 93, 210
Past part of signal, 35, 83
Periodic systems, 43, 97, 158, 161, 372
Persistently exciting, 62
Pick matrix, 239
Positive operator, 77
Positive real lemma, 370
Projection, 25, 84, 426, 429
boundedness, 28, 433
formula, 85
J-orthogonal, 202
snapshots, 75, 180
Projectively complete subspace, 202

QR factorization, 13, 175
QR iteration, 399
QZ iteration, 158, 161

Range, 428

Rank revealing QR, 60, 308
Reachability Gramian, 95
Reachability operator, 54, 93

Reachable redlization, 59, 93
Realization
algorithm, 56, 101
anomalies, 113
balanced, 112
canonical
controller realization, 104
observer realization, 110
operator redlization, 103, 108
definition, 3540
input normal form, 98

Kronecker’s theorem, 55, 94, 111, 168

localy finite, 40
minimal, 54, 168

of aproduct, 48

of asum, 47

of approximant, 281
of band matrix, 46

of displacement structures, 44-46, 65-71

of finite matrices, 42, 52-62
of inner operators, 125
of isometric operators, 133
of J-isometric operators, 209-210
of J-unitary operators, 205-209
of mixed causality, 51, 165168
of multiband matrix, 50
of operators, 87-119
of periodic systems, 43
of upper (outer) inverse, 2, 48, 169
order, 40, 168, 275
output norma form, 98
similarity/equivalence, 40
SVD-based, 112, 113
uniform exponential stability, 39
unitary, 124-126
Recursion
Lyapunov, 97
Riccati, 159-162, 354, 371
state, 36
Regular interpolation problem, 246
Regular subspace, 202, 204
Representation
basis, 79
matrix, 22, 74
Riccati equation, 159-162, 345, 369, 371
convergence, 355-356, 372-375
initial point, 354355, 371-372
square-root agorithms, 356-359
Riesz basis, 83, 428
Right interpolation problem, RIP, 245
Roomy system, 127, 138

Rotation, elementary (Givens), 296-299, 310,

359, 386-387, 390, 412
Row of an operator, 23

Scattering operator, 191
Schur complement, 344
Schur decomposition, 398-400



Schur recursion, 13, 164, 292-300, 316-318,
378-379, 384
breakdown, 319-320
Schur subspace estimator (SSE), 309
Schur’s inversion lemma, 169
Schur-Takagi interpolation problem, 260, 265
sdim (sequence of dimensions), 78
Section
elementary cascade section, 408-411, 414~
415
edlementary lossless stage section, 407—
408, 412414
Separable space, 424
Sequence
index, 20
non-uniform, 20
of dimensions, 78
of spaces, 20
Shift invariance, 54, 59, 102
Shift operator, 26
Signal, 34
Signature matrix, operator, 194, 202
Similarity of realizations, 40
Slice, 78, 79
Sliced basis, 79-84
Snapshots, 74-76, 81, 90
Spectral factorization, 363-381
theorem, 371
Spectra radius, 24, 38
Square-root algorithm, 158, 159, 356-359
Stability, 39, 106, 113, 367
Stage, 2
State transformation, 40
Strict
contractivity, 77, 343
positivity, 77
Strong basis, 83
Strong convergence, 424
Subspace, 425
canonical J-orth. decomposition, 203
J-positive, negative, neutral subspace, 201
left D-invariant, 78
locally finite, 78
non-degenerate, 202
projectively complete, 202
regular, 202, 204
Subspace tracking, 307-333
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Surjective operator (onto), 429
SVD, singular value decomposition, 60, 264,
307
System
causal (upper), 35
full range, 138
inner, 122
isometric, 122
J-inner, 196
J-isometric, 195
J-lossless, 196
J-unitary, 195
lossless, 195
order, 40, 168, 275
outer, 149
properties
contractivity, 77
minimality, 93
observability, 93
positivity, 77
reachability, 93
u.e. stability, 39
redlization, 37
transfer operator, 34
unitary, 122
System identification, 62—64

Toeplitz operator, 23, 43, 45, 97, 115, 131, 149,
171, 178, 236, 430

Transfer operator, 34

TSVD, truncated SVD, 60, 308

Two sided interpolation, 250

Uniform
exponential stability, 39
observability, 93
reachability, 93
sequence, 20
Unitary extension, see embedding
Unitary operator, 122
Unitary redlization, 124-126
Upper operator, 23
URV decomposition, 60, 308, 324

W-transform, 235-237, 259

Zero structure, 179






