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Preface

Complex function theory and linear algebra provide much of the basic mathematics
needed by engineers engaged in numerical computations, signal processing or control.
The transfer function of a linear time invariant system is a function of the complex vari-
able s or z and it is analytic in a large part of the complex plane. Many important prop-
erties of the system for which it is a transfer function are related to its analytic prop-
erties. On the other hand, engineers often encounter small and large matrices which
describe (linear) maps between physically important quantities. In both cases similar
mathematical and computational problems occur: operators, be they transfer functions
or matrices, have to be simplified, approximated, decomposed and realized. Each field
has developed theory and techniques to solve the main common problems encountered.

Yet, there is a large, mysterious gap between complex function theory and numerical
linear algebra. For example, complex function theory has solved the problem to find
analytic functions of minimal complexity and minimal supremum norm that approxi-
mate given values at strategic points in the complex plane. They serve e.g., as optimal
approximants for a desired behavior of a system to be designed. No similar approxi-
mation theory for matrices existed until recently, except for the case where the matrix
is (very) close to singular. The relevant approximation theory in the complex plane
is spectacular and has found a manifold of applications such as broadband matching,
minimal sensitivity control, and the solution of differential game problems. A similar
“linear algebra” result would without doubt be very desirable. Over the years we have
discovered that a strong link between the two theories can indeed be developed.

To establish this link, one has to move away from the classical idiosyncrasies of
the two basic theories, and develop a new and somewhat unusual paradigm, which,
however, turns out to be quite natural and practical once one gets used to it. Classical
matrix theory and linear algebra act on vectors and matrices. Very early in the devel-
opment of these theories it was found beneficial to move from single scalar quantities
and variables to vector representations. This has been an important lift in the level of
abstraction, with great importance for physics and engineering, and also largely moti-
vated by them. It has allowed for compact, insightful algebraic notations which have
been adopted by a large variety of fields in which multidimensional objects interact
with each other. Mechanics, electromagnetism, quantum mechanics, operations re-ix
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search, electrical network theory and signal processing all are fields which have been
deeply influenced by vector and matrix calculus.

With the advent of powerful electronic computing, global vector or matrix-vector
operations may even be viewed as atomic numerical operations. A vector computer
can be programmed to execute them in parallel by a single instruction. A matrix-vector
or matrix-matrix multiplication, a matrix inversion, and more complicated operations
such as the calculation of matrix eigenvalues, can easily be conceived as simple se-
quences of such massive vector operations. In this book we will add another basic,
vector-like quantity to the arsenal of objects handled by linear algebra. The new ob-
ject represents a diagonal of a matrix or an operator. Thus, in addition to matrix opera-
tions acting on rows or columns, we shall consider elementary operations on diagonals.
These, in fact, can be handled with the same ease by a vector or parallel computer, but
they will have a very different algebraic interpretation.

What is to be gained by such an approach? In the course of the book, we develop a
forceful argument that indeed, it allows us to solve several problems in linear algebra
whose solutions were either unknown, or obscured by the traditional approach. In ad-
dition, the theory also creates its own class of new problems. The missing theoretical
link is provided by system theory, in our case the theory of linear, time discrete and time
varying dynamical systems. For example, we look at the meaning of “computational
complexity” from a system theoretical point of view. Up to now, classical linear alge-
bra had only a limited notion of complexity, restricted to either matrices that are sparse
(most entries equal to zero), or matrices that are close to singular. The sparse structure
is easily destroyed by algebraic operations: even the inverse of such a matrix is not
sparse, and as a result, it seems that multiplication by this inverse is a full-complexity
operation. This does not happen with a system theoretic “realization”: it is straightfor-
ward to show that a minimal realization of the inverse has the same complexity as one
for the original. In addition, system theory will allow us to derive a powerful approxi-
mation theory that maps a given matrix to a matrix of lowest computational complexity
(in the system theoretical sense), given a certain tolerance.

System theory has already had a significant impact on linear algebra, mostly in the
study of Toeplitz matrices and similar structured matrix problems. These are connected
to time-invariant systems. Our approach in this book is complementary: we general-
ize to time-varying systems, which allows to describe any matrix. The structure in the
matrix we are looking for is now less obvious, it is connected to the rank of certain
strategic submatrices. In the course of the book, several classical results in the theory
of time-varying systems are recovered: e.g., we hit on the all-pervasive time-varying
Riccati equation, the bounded real lemma and the related Kalman-Yakubovitch-Popov
lemma. Still, we believe that we are placing the theory in the context of a new “para-
digm”, i.e., a realm of problems and solutions with their own dynamics. Indeed, several
results in time-varying system theory that were only known as abstract theory (such
as proofs by Arveson of the existence of inner-outer factorizations) have now become
explicit “constructive operator theory”. Significant new results in this context are the
time-varying Hankel-norm approximation theory, as well as the solution of several in-
terpolation problems, leading to a generalization of the minimal sensitivity problem
and optimal control theory.
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An added value of the book is the very explicit link which it lays between numerical

linear algebra and generalizations of analytic function theory on the open unit disc, as
traditionally applied to transfer function calculus. The reader will discover the alge-
braic generalizations of a host of classical interpolation problems: Schur, Nevanlinna-
Pick, Caratheodory-Fejer, Nehari, Schur-Takagi. These provide natural solutions to
nice problems in algebra. Conversely, elementary methods in numerical analysis have
interesting counterparts in system theory where their interpretation is non-trivial. E.g.,
we show that inner-outer factorization can be viewed as a generalization of QR factor-
ization, and Hankel-norm model reduction can be used for efficient subspace estima-
tion and tracking.

We do not limit ourselves to finite matrices. The connection to system theory al-
lows to derive meaningful results also for “infinite” matrices, or operators on a Hilbert
space. From a linear algebra point of view, the results are perhaps uncanny: e.g., the
inverse of an upper triangular infinite matrix need not be upper triangular! The con-
nection to time-varying systems gives insight into the mechanics of this: the inverse
of an upper operator is upper if and only if the original system has a property which is
called “outer”. Even for linear algebra, infinite linear systems are useful: such systems
occur e.g., in the discretization of differential equations where the boundary condition
is conveniently placed at infinity. Because the matrix entries become constant as we
move away from the center of the matrix, it can still be described by a finite number of
parameters. It has been amply demonstrated that such a procedure may lead to more ac-
curate overall results. The downside of this generality is perhaps that, in order to obtain
precise results, Hilbert space theory plays a major but sometimes also a mere technical
role. (We summarize some basic notions of Hilbert space theory in an appendix.)

For whom is this book intended? We suggest the following.

It can be used as a graduate course in linear time-varying system theory: all the main
concepts and problems are there, and they are treated in a direct and streamlined
manner. For this purpose we have been somewhat lengthy in developing the basic
framework in the first chapters — our excuses to interested mathematicians!

It can be used as a source of new problems in numerical linear algebra, with a con-
current new methodology to solve them. Several theories in the book scream for
in-depth analysis, in particular the theory of optimal sensitivity reduction, the in-
version theory for infinite systems of equations and the optimal matrix-operator ap-
proximation theory.

It can also be used as an introductory course in a new topic: “theory of computa-
tional systems”. Although the material presented here falls short of a comprehen-
sive theory — the subject matter presently does not go far beyond linear problems
and computations — we do think that there is already sufficient information to jus-
tify independent interest.

It is our hope that the algebraic system’s community will find inspiration and mo-
tivation in the theory presented here. Although it has definite affinities to Arveson’s
“Nested Algebras” and Saeks and Feintuch’s “Resolution Spaces”, it does have a new
flavor, mainly because of its direct link to numerical procedures via the treatment of
diagonals as the new vectorial object.
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1 INTRODUCTION

Two disciplines play a major role in this book. The first is linear algebra, which pro-
vides the setting for the derivation of efficient algorithms to do basic matrix calcula-
tions. The second is linear time-varying system theory, whose concepts we use to treat
and analyze a large class of basic algorithms in a more general setting. In this introduc-
tion we explore important links between the two theories and show how linear time-
varying system theory can be used to solve problems in linear algebra.1.1 COMPUTATIONAL LINEAR ALGEBRA AND TIME-VARYINGSYSTEMSConcepts
As has been known for long, linear system theory and matrix algebra have a common
footage. Indeed, if we represent a sampled signal by a vector, then a linear system —
mapping an input signal to an output signal — has to be representable by a matrix. Of
course, if the signals run from t = −∞ to t = +∞, then the matrix becomes infinite-
dimensional and we rather speak of linear (Hilbert-space) operators instead. The con-
nection between systems and matrices proves to be extremely fruitful.

Our first and foremost purpose in this book will be the “system”atic derivation of
efficient algorithms for basic operations in linear algebra such as matrix multiplication,
inversion and approximation, and their extension to operators which act on vectors of
infinite dimensions yet have a finite numerical description. This endeavor will natu-1
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rally lay in the intersection of linear algebra and system theory, a field that has been
called computational linear algebra.

In most algorithms, the global, desired operation is decomposed into a sequence of
local operations, each of which acts on a limited number of quantities (ultimately two).
Intermediate variables are needed to connect the operations. The collection of these
intermediate quantities at some point in the algorithmic sequence can be called the state
of the algorithm at that point: it is what the algorithmic sequence has to remember from
its past.

This point of view leads to the construction of a dynamical system that represents
the algorithm and whose state equals the state of the computation at each point in the
algorithmic sequence. In the case of the basic matrix operations mentioned above, the
dynamical system will be linear. Although many matrix operations can be represented
by some linear dynamical system, our interest is in matrices that possess a general kind
of structure which results in a low dimensional state vector, and hence leads to effi-
cient (“fast”) algorithms: algorithms that exploit the structure. Structure in a matrix
often has its origin in the physical map that it represents. Many problems in signal
processing, finite element modeling, computational algebra and least-squares estima-
tion produce structured matrices that can indeed be modeled by dynamical systems of
low complexity. There are other very fruitful ways to represent and exploit structure
in matrices. However, the time-varying system point of view produces so many results
that it warrants an independent treatment.

Let us look in more detail at a linear transformation T which acts on some vector u,

u = [u0 u1 u2 · · · un]
and yields an output vector y = uT . The vector u can just as well be viewed as an input
sequence to a linear system which then produces the output sequence y. To this vector-
matrix multiplication we can associate a network of computations that takes u and com-
putes y. Intermediate quantities, states, are found as values on the internal edges of the
network. Matrices with a sparse state structure have a computational network of low
complexity so that using the network to compute y is more efficient than computing uT
directly.

Consider e.g., an upper triangular matrix T along with its inverse,

T = 2664 1 1=2 1=6 1=24
1 1=3 1=12

1 1=4
1

3775 ; T−1 = 2664 1 −1=2
1 −1=3

1 −1=4
1

3775 : (1.1)

The inverse of T is sparse, which is an indication of a sparse state structure. A
computational network that models multiplication by T is depicted in figure 1.1(a).
The reader can readily verify that this network does indeed compute [y1 y2 y3 y4] =[u1 u2 u3 u4]T by trying the scheme on vectors of the form [1 0 0 0] up to [0 0 0 1].
The computations in the network are split into sections, which we will call stages, where
the k-th stage consumes uk and produces yk. At each point k the processor in the stage
active at that point takes its input data uk from the input sequence u and computes new
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Figure 1.1. Computational networks corresponding to T . (a) Direct (trivial) realization,(b) minimal realization.
output data yk which is part of the output sequence y generated by the system. The de-
pendence of yk on ui (i < k) introduces intermediate quantities xk which we have called
states, and which subsume the past history of the system as needed in future calcula-
tions. This state xk is temporarily stored in registers indicated by the symbol z in the
figure.1 The complexity of the computational network is highly dependent on the num-
ber of states at each point. A non-trivial computational network to compute y = uT
which requires less states is shown in figure 1.1(b). The total number of (non trivial)
multiplications in this network is 5, as compared to 6 in a direct computation using T .
Although we have gained only one multiplication here, for a less moderate example,
say an (n × n) upper triangular matrix with n = 10000 and d � n states at each point,
the number of multiplications in the network can be as low as 8dn, instead of roughly
1
2 n2 for a direct computation using T .

1This is a relic of an age-old tradition in signal processing which has little meaning in the present figure.
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The (linear) computations in the network can be summarized by the following re-

cursion, for k = 1 to n:

y = uT ⇔ xk+1 = xkAk +ukBk

yk = xkCk +ukDk
(1.2)

or [xk+1 yk] = [xk uk]Tk ; Tk = �
Ak Ck

Bk Dk

�
in which xk is the state vector at time k (taken to have dk entries), Ak is a dk × dk+1
(possibly non-square) matrix, Bk is a 1 × dk+1 vector, Ck is a dk × 1 vector, and Dk is
a scalar. More general computational networks may have any number of inputs and
outputs, possibly also varying from stage to stage. In the example, we have a sequence
of realization matrices

T1 = �
· ·

1=2 1

� ; T2 = �
1=3 1
1=3 1

� ; T3 = �
1=4 1
1=4 1

� ; T4 = �
· 1
· 1

� ;
where the ‘·’ indicates entries that actually have dimension 0 (i.e. disappear) because
the corresponding states do not exist. The recursion in equation (1.2) shows that it is a
recursion for increasing values of k: the order of computations in the network is strictly
from left to right, and we cannot compute yk unless we know xk, i.e., until we have
processed u1; · · · ;uk−1. Note that yk does not depend on uk+1; · · · ;un. This causality is
a direct consequence of the fact that T has been chosen upper triangular, so that such
an ordering of computations is indeed possible.Time-varying systems
We obtain an obvious link with system theory when we regard T as the input-output
map, alias the transfer operator, of a non-stationary causal linear system with input
u and output y = uT . The i-th row of T then corresponds to the impulse response of
the system when excited by an impulse at time instant i, that is, the output y caused
by an input u with uk = δi−k, where δk is the Kronecker delta. The case where T has a
Toeplitz structure then corresponds to a time-invariant system for which the response to
an impulse at time i+1 is just the same as the response to an impulse at time i, shifted
over one position. The computational network is called a state realization of T , and
the number of states at each point in time is called the system order of the realization
at that point. For time-invariant systems, the state realization can be chosen constant
in time. For a time-varying system, the number of state variables need not be constant:
it can increase and shrink. In this respect the time-varying realization theory is much
richer, and we shall see in a later chapter that a time-varying number of states will en-
able the accuracy of some approximating computational network of T to be varied in
time at will. If the network is regarded as the model of a physical time-varying system
rather than a computational network, then the interpretation of a time-varying number
of states is that the network contains switches that can switch on or off a certain part of
the system and thus can make some states inaccessible for inputs or outputs at certain
points in time.
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If the number of state variables is relatively small, then the computation of the out-
put sequence is efficient in comparison with a straight computation of y = uT . One
example of an operator with a small number of states is the case where T is an upper
triangular band matrix: Ti j = 0 for j − i > p. The state dimension is then equal to or
smaller than p−1, since only p−1 of the previous input values have to be remembered
at any point in the multiplication. However, the state model can be much more general,
e.g., if a banded matrix has an inverse, then this inverse is not bounded but is known to
have a sparse state realization (of the same complexity) too, as we had in the example
above. Moreover, this inversion can be easily carried out by local computations on the
realization of T :2 if T−1 = S, then u = yS can be computed via�

xk+1 = xkAk +ukBk

yk = xkCk +ukDk
⇔

�
xk+1 = xk(Ak −CkD−1

k Bk)+ykD−1
k Bk

uk = −xkCkD−1
k +ykD−1

k

hence S has a computational model given by

Sk = �
Ak −CkD−1

k Bk −CkD−1
k

D−1
k Bk D−1

k

�
(1.3)

Observe that the model for S = T−1 is obtained in a local way from the model of T : Sk

depends only on Tk. Sums and products of matrices with sparse state structures have
again sparse state structures with number of states at each point not larger than the sum
of the number of states of its component systems, and computational networks built
with these compositions (but not necessarily minimal ones) can easily be derived from
those of its components.

In addition, a matrix T 0 that is not upper triangular can be split (or factored) into
an upper triangular and a strictly lower triangular part, each of which can be separately
modeled by a computational network. The computational model of the lower triangular
part has a recursion that runs backward:

x0k−1 = x0kA0k +ukB0k
yk = x0kC0k +ukD0

k :
The model of the lower triangular part can be used to determine a model of a unitary
upper matrix U which is such that U∗T is upper and has a sparse state structure. Thus,
computational methods derived for upper matrices, such as the above inversion for-
mula, can be generalized to matrices of mixed type [vdV95].

Besides matrix inversion, other matrix operations that can be computed efficiently
using sparse computational models are for example the QR factorization (chapter 6)
and the Cholesky factorization (chapter 13).

At this point, the reader may wonder for which class of matrices T there exists a
sparse computational network (or state realization) that realizes the same multiplica-
tion operator. A general criterion will be derived in chapter 5, along with a recursive

2This applies to finite matrices only, for which the inverse of the matrix is automatically upper triangular
again and Dk is square and invertible for all k. For infinite matrices (operators) and block matrices with
non-uniform dimensions, the requirement is that T must be outer. See chapters 6 and 7.
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T = H4
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. . .

15

252422

33 34 35
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Figure 1.2. Hankel matrices are (mirrored) submatrices of T .
algorithm to determine such a network for a given matrix T . The criterion itself is not
very complicated, but in order to specify it, we have to introduce an additional con-
cept. For an upper triangular (n×n) matrix T , define matrices Hi (1 ≤ i ≤ n), (which are
mirrored submatrices of T ), as

Hi = 266664 Ti−1;i Ti−1;i+1 · · · Ti−1;n
Ti−2;i Ti−2;i+1

...
...

. . . T2;n
T1;i · · · T1;n−1 T1;n 377775

(see figure 1.2). The Hi are called (time-varying) Hankel matrices, as they have a Han-
kel structure (constant along anti-diagonals) if T has a Toeplitz structure.3 In terms of
the Hankel matrices, the criterion by which matrices with a sparse state structure can
be detected is given by the following theorem, proven in chapter 5.

Theorem 1.1 The number of states that are required at stage k in a minimal compu-
tational network of an upper triangular matrix T is equal to the rank of its k-th Hankel
matrix Hk.

Let’s verify this statement for our example matrix (1.1). The Hankel matrices are

H1 = [ · · · · ] ; H2 = [1=2 1=6 1=24 ] ;
H3 = �

1=3 1=12
1=6 1=24

� ; H4 = 24 1=4
1=12
1=24

35 :
3Warning: in the current context (arbitrary upper triangular matrices) the Hi do not have a Hankel struc-
ture and the predicate ‘Hankel matrix’ could lead to misinterpretations. The motivation for the use of this
terminology can be found in system theory, where the Hi are related to an abstract operator HT which is
commonly called the Hankel operator. For time-invariant systems, HT reduces to an operator with a matrix
representation that has indeed a traditional Hankel structure.
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Since rank(H1) = 0, no states x1 are necessary. One state is required for x2 and one
for x4, because rank(H2) = rank(H4) = 1. Finally, also only one state is required for
x3, because rank(H3) = 1. In fact, this is (for this example) the only non-trivial rank
condition: if one of the entries in H3 would have been different, then two states would
have been necessary. In general, rank(Hi) ≤ min(i−1;n− i+1), and for a general upper
triangular matrix T without state structure, a computational model indeed requires at
most min(i−1;n− i+1) states for xi. The statement is also readily verified for matrices
with a band structure: if the band width of the matrix is equal to d, then the rank of each
Hankel matrix is at most equal to d. As we have seen previously, the inverse of such
a band matrix (if it exists) has again a low state structure, i.e., the rank of the Hankel
matrices of the inverse is again at most equal to d. For d = 1, such matrices have the
form (after scaling of each row so that the main diagonal entries are equal to 1)

T = 2664 1 −a1

1 −a2
1 −a3

1

3775 ; T−1 = 2664 1 a1 a1a2 a1a2a3

1 a2 a2a3
1 a3

1

3775
and it is seen that H3 of T−1 is indeed of rank 1.1.2 OBJECTIVES OF COMPUTATIONAL MODELINGOperations
With the preceding section as background material, we are now in a position to iden-
tify in more detail some of the objectives of computational modeling, as covered by
this book. Many of the basic operations will assume that the given operators or matri-
ces are upper triangular. Applications which involve other types of matrices will of-
ten require a transformation which converts the problem to a composition of upper (or
lower) triangular matrices. For example, a vector-matrix multiplication with a general
matrix can be written as the sum of two terms: the multiplication of the vector by the
lower triangular part of the matrix, and the multiplication by the upper-triangular part.
Efficient realizations for each will yield an efficient overall realization. In the case of
matrix inversion, we would rather factor the matrix into a product of a lower and an
upper triangular matrix, and treat the factors independently.

We will look at the class of matrices or operators for which the concept of a “sparse
state structure” is meaningful, such that the typical matrix considered has a sequence
of Hankel matrices that all have low rank (relative to the size of the matrix), or can be
well approximated by a matrix that has that property.Realization and cascade factorization. A central question treated in this
book is given a matrix (or operator), find a computational model {Tk}n

1 of minimal
complexity. Such a model could then e.g., be used to efficiently compute multiplica-
tions of vectors by T . Often we want additional properties to be fulfilled, in particular
we wish the computations to be numerically stable. One important strategy is derived
from classical filter theory. It starts out by assuming T to be contractive (i.e., kTk ≤ 1;
if this is not the case, a normalization would pull the trick). Next, it subdivides the
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Figure 1.3. Objectives of computational modeling for matrix multiplication.
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Figure 1.4. Cascade realization of a contractive 8 × 8 matrix T , with a maximum of 3states at each point. The number of algebraic operations is minimal.
question in four subproblems, connected schematically as in figure 1.3: (1) realization
of T by a suitable computational model, (2) embedding of this realization into a larger
model that consists entirely of unitary (lossless) stages, (3) factorization of the stages
of the embedding into a cascade of elementary (degree-1) lossless sections in an al-
gebraically minimal fashion. One can show that this gives an algebraically minimal
scheme to compute multiplications by T . At the same time, it is numerically stable be-
cause all elementary operations are bounded and cannot magnify intermediate errors
due to noise or quantizations.

A possible minimal computational model for an example matrix T that corresponds
to such a cascade realization is drawn in figure 1.4. In this figure, each circle indicates
an elementary rotation of the form[a1 b1]� cos(θ) −sin(θ)

sin(θ) cos(θ) �= [a2 b2] :
The precise form of the realization depends on whether the state dimension is constant,
shrinks or grows. The realization can be divided into elementary sections, where each
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section describes how a single state entry of xk is mapped to an entry of the “next state”
vector xk+1.

The cascade realization in figure 1.4 has a number of additional interesting proper-
ties. First, the number of operations to compute the next state and output is linear in the
number of states at that point, rather than quadratic as would be the case for a general
(non-factored) realization. Another is that the network is pipelinable, meaning that as
soon as an operation has terminated it is ready to receive new data. This is interesting
if the operation ‘multiplication by T’ is to be carried out on a collection of vectors u
on a parallel computer or on a hardware implementation of the computational network.
The property is a consequence of the fact that the signal flow in the network is strictly
uni-directional: from top left to bottom right. Computations on a new vector u (a new
uk and a new xk) can commence in the top-left part of the network, while computations
on the previous u are still being carried out in the bottom-right part.Approximation. It could very well be that the matrix that was originally given
is known via a computational model of a very high order, e.g., via a series expansion.
Then intermediate in the above sequence of steps is (4) the approximation of a given
realization of T by one that has the lowest possible complexity given an acceptable tol-
erance. For example, it could happen that the given matrix T is not of low complexity
because numerical inaccuracies of the entries of T have increased the rank of the Han-
kel matrices of T , since the rank of a matrix is a very sensitive (ill-conditioned) parame-
ter. But even if the given matrix T is known to be exact, an approximation by a reduced-
order model could be appropriate, for example for design purposes in engineering, to
capture the essential behavior of the model. With such a reduced-complexity model,
the designer can more easily detect that certain features are not desired and can possi-
bly predict the effects of certain changes in the design; an overly detailed model would
rather mask these features.

While it is fairly well known in linear algebra how to obtain a (low-rank) approxi-
mant for certain norms to a matrix close to singular (e.g., by use of the singular value
decomposition (SVD)), such approximations are not necessarily appropriate for our
purposes, because the approximant should be upper triangular again and have a lower
system order than before. Moreover, the original operator may be far from singular.
Because the minimal system order at each point is given by the rank of the Hankel ma-
trix at that point, a possible approximation scheme is to approximate each Hankel oper-
ator by one that is of lower rank (this could be done using the SVD). The approximation
error could then very well be defined in terms of the individual Hankel matrix approx-
imations as the supremum over these approximations. Because the Hankel matrices
have many entries in common, it is not immediately clear whether such an approxima-
tion scheme is feasible: replacing one Hankel matrix by one of lower rank in a certain
norm might make it impossible for the other Hankel matrices to find an optimal approx-
imant such that the part that they have in common with the original Hankel matrix will
coincide with the original approximation. In other words: each individual local opti-
mization might prevent a global optimum. The severity of this dilemma is mitigated
by a proper choice of the error criterion. It is truly remarkable that this dilemma has
a neat solution, and that this solution can be obtained in a closed form. The error for
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which a solution is obtained is measured in Hankel norm: it is the supremum over the
spectral norm (the matrix 2-norm) of each individual Hankel matrix,kT kH = sup

i
kHi k ;

and a generalization of the Hankel norm for time-invariant systems. In terms of the
Hankel norm, the following theorem holds true and generalizes the model reduction
techniques based on the Adamjan-Arov-Krein paper [AAK71] to time-varying sys-
tems:

Theorem 1.2 ([DvdV93]) Let T be a strictly upper triangular matrix and let Γ= diag(γi)
be a diagonal Hermitian matrix which parametrizes the acceptable approximation tol-
erance (γi > 0). Let Hk be the Hankel matrix of Γ−1T at stage k, and suppose that, for
each k, none of the singular values of Hk are equal to 1. Then there exists a strictly up-
per triangular matrix Ta whose system order at stage k is equal to the number of singular
values of Hk that are larger than 1, such thatkΓ−1(T − Ta)kH ≤ 1 :
In fact, there is an algorithm that determines a state model for Ta directly from a model
of T . Γ can be used to influence the local approximation error. For a uniform approx-
imation, Γ = γ I, and hence kT − TakH ≤ γ : the approximant is γ-close to T in Hankel
norm, which implies in particular that the approximation error in each row or column
of T is less than γ. If one of the γi is made larger than γ, then the error at the i-th row
of T can become larger also, which might result in an approximant Ta that has fewer
states. Hence Γ can be chosen to yield an approximant that is accurate at certain points
but less tight at others, and whose complexity is minimal.

The realization problem is treated in chapter 5, the embedding problem is the subject
of chapter 12, while the cascade factorization algorithm appears in chapter 14. The
Hankel-norm approximation problem is solved in chapter 10.QR factorization and matrix inversion. Direct methods to invert large ma-
trices may give undesired “unstable” results. For example, suppose we try to invert

T = 266666664 . . .
. . .

1 −2 0
1 −2

1 −2
0 1

. . .

. . .

377777775
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The inverse obtained by truncating the matrix to a large but finite size and inverting
this part using standard linear algebra techniques produces

T−1 ?= 266666664 . . .
...

...
1 2 4 8 · · ·

1 2 4
1 2

0 1 · · ·. . .

377777775
Clearly, this inverse is not bounded as we let the size of the submatrix grow. The true
inverse is given by

T−1 = 2666666664. . .
. . .

· · · −1=2 0 0
−1=4 −1=2 0
−1=8 −1=4 −1=2 0

· · ·−1=16 −1=8 −1=4 −1=2
. . .

...
...

. . .

3777777775 :
Note that it is lower triangular, whereas the original is upper triangular. How could
this have happened? We can obtain valuable insights in the mechanics of this effect by
representing the matrix as a linear system for which it is the transfer operator:

T(z) = 1 − 2z ⇒ T−1(z) = 1
1 − 2z

=�
1+2z+4z2+ · · ·
− 1

2 z−1 − 1
4 z−2 − · · · :

Among other things, this will allow us to handle the instability by translating “unstable”
into “anti-causal” yet bounded. In the above case, we see that T−1(z) has a pole inside
the unit circle: it is not minimum phase and hence the causality reverses.

With time-varying systems, much more is possible. In general, we can conceptually
have a time-varying number of zeros inside and outside the unit circle, —conceptually,
because the notion of poles and zeros is not very well defined for time-varying systems.
We can also have zeros that move from inside the circle to outside, or the other way
around. This means that the inversion of infinite matrices is much more difficult, but
also more interesting, than in the finite case.

The key to solving such inversion problems is to first compute a QR factorization,
or “inner-outer factorization” in the system theoretical framework. This can be done
using the realization of T as obtained earlier, hence can be done efficiently even on
infinite-size matrices, and not surprisingly gives rise to time-varying Riccati equations.
The inversion then reduces to inversion of each of the factors.

We derive the time-varying equivalent of the above example in chapter 7. Other
factorizations, such as the Cholesky factorization, are discussed in chapter 13.Interpolation and matrix completion. Several other topics are of interest
as well. An important part of classical functional analysis and operator theory centers
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around solving constrained interpolation problems: e.g., given “points” in the com-
plex plane and “values” that a matrix-valued function should take in these points, con-
struct an function that is constrained in norm and interpolates these values. In our
present context, the functions are simply block-matrices or operators, the points are
block diagonals, and the values are block diagonals as well. In chapter 9, we derive
algebraic equivalents for very classical interpolation problems such as the Nevanlinna-
Pick, Schur, Hermite-Fejer and Nudel’man problems. These problems are tightly con-
nected to the optimal approximation problem discussed above. Lossless J-unitary ma-
trices play a central role, and are discussed in chapter 8.

In linear system theory, interpolation problems have found application in the solu-
tion of robust control problems, as well as the minimal sensitivity problem: design a
feedback such that a given system becomes stable and the worst-case energy amplifi-
cation of a certain input to a certain output is smaller than a given bound. We treat only
a single example of this: the solution of the four-block problem (section 9.7).

Finally, we consider the Nehari extension problem: for a given upper triangular ma-
trix, try to find a lower-triangular extension such that the overall matrix has a norm
bounded by a prescribed value (section 10.6). Again, the solution is governed by J-
lossless matrices.Operands
In the preceding section, the types of operations (realization, embedding, factorization,
approximation, interpolation) that are considered in this book were introduced. We in-
troduce now the types of operands to which these operations are applied. In principle,
we work with bounded linear operators on Hilbert spaces of (vector) sequences. From
an engineering point of view, such operators can be regarded as infinite-size matrices.
The entries in turn can be block matrices. In general, they could even be operators, but
we do not consider that case. There is no need for the block entries to have the same
size: the only requirement is that all entries on a row of the operator have an equal
number of rows, and all entries on a column of the operator have an equal number of
columns, to ensure that all vector-matrix products are well defined. Consequently, the
upper triangular matrices can have an “appearance” that is not upper triangular. For
example, consider

T = 26666666664
. . .

...
...

· · · 2 222 · · ·22 22222 22222 22222 2· · · 22 2 · · ·
...

...
. . .

37777777775 :
where in this case each box represents a complex number. The main diagonal is dis-
tinguished here by filled boxes.

We say that such an operator describes the input-output behavior of a linear time-
varying system. The system is time invariant if the matrix representation of the opera-
tor is (block) Toeplitz: constant along diagonals. In general, we allow the upper trian-
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gular part to have an arbitrary structure, or even no structure at all. Special cases are
periodically varying systems, which give block-Toeplitz operators, and systems that
are time-invariant outside a finite interval in time, which give operators that are con-
stant at the borders. A sequence on which the operator can be applied (the input of the
system) is represented by a row vector whose entries are again finite-size vectors con-
forming to the block entries of the operator. This corresponds to a system with block
inputs and block outputs. If the size of the block entries is not constant, then the sys-
tem has a time-varying number of inputs and outputs, which corresponds physically to
a system with switches that are used to switch on or off certain inputs and outputs at
certain times. It is possible to model finite matrices this way, as was shown in the intro-
duction. For finite matrices, there are no inputs and outputs before and after a certain
interval in time.

A causal system corresponds to an operator whose matrix representation is upper
triangular. We are interested in such systems because causality implies a computational
direction: usually we can start calculations at the top-left end of the matrix and work
towards the bottom-right end. Causality also introduces the notion of state. We allow
the number of states to be time varying as well. This can be realized, for example, by
switches that connect or disconnect parts of the system. The concept of a time-varying
number of states allows the incorporation of a finer level of detail at certain intervals
in time.1.3 CONNECTIONS AND ALTERNATIVE APPROACHESLow displacement rank
In recent times there has been quite an effort to study “structured matrices” in various
guises. Besides sparse matrices (matrices with many zero entries) which fall within the
context of our theory, two classical examples of structured matrices are the Toeplitz and
Hankel matrices (matrices that are constant along diagonals or anti-diagonals). They
represent the transfer operator of linear time-invariant (LTI) systems. The associated
computational algorithms are well known. For example, for Toeplitz systems we have

– Schur recursions for LU and Cholesky factorization [Sch17, Kai86],

– Levinson recursions for the factorization of the inverse [Lev47],

– Gohberg/Semencul recursions for computing the inverse [GS72],

– Recursions for QR factorization [CKL87].

These algorithms have computational complexity of order O(n2) for matrices of size
(n×n), as compared to O(n3) for algorithms that do not take the Toeplitz structure into
account. Generalizations of the Toeplitz structure are obtained by considering matrices
which have a displacement structure [KKM79, LK84, LK86, LK91]: matrices G for
which there are (simple) matrices F1, F2 such that

G − F∗
1 GF2 (1.4)

is of low rank, α say. This type of matrices occurs, e.g., in stochastic adaptive predic-
tion problems such as the covariance matrix of the received stochastic signal; the matrix
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is called of low displacement rank or α-stationary. Toeplitz matrices are a special case
for which F1 = F2 are shift matrices Z and α = 2. Related examples are block-Toeplitz
and Toeplitz-block matrices, and, e.g., the inverse of a Toeplitz matrix, which is itself
not Toeplitz yet has a displacement rank of α = 2. An overview of inversion and fac-
torization algorithms for such matrices can be found in [Chu89]. Engineering appli-
cations are many, notably adaptive filtering [SK94]. In this book we do not consider
low displacement matrices further (except sporadically in chapter 3, see section 3.6)
and refer the reader to the extensive literature. Low displacement rank presupposes a
structure that brings the operator under consideration “close to time-invariant”. If an
operator has that property, then it is very important to recognize and utilize it since it
leads to efficient algorithms for almost any operation related to the operator. In addi-
tion, matrix-vector multiplication and inversion of a system of equations can then be
done using an adaptation of the fast Fourier transform (FFT). It is possible to combine
the properties of low-displacement matrices with a time-varying system theoretic ap-
proach, an account can be found in [Dew97].Stability and control
The traditional focus of time-varying system theory has been control system design and
related problems such as the stability of the system, optimal control, identification and
modeling. On these topics there are quite a number of attractive textbooks and treat-
ments, we mention [FS82, Kam79, Rug93]. Although some of the issues will appear in
this book, they will not be our focus, which is essentially computational. We do give
an extensive treatment of system identification—a central piece of theory—with the
purpose of finding useful realizations for a linear operation. Reachability and observ-
ability spaces of a system will be omnipresent in many of our topics, such as in system
approximation, algebraic operations on systems, embedding, and parametrization. The
theory that we develop parallels the classical identification theory for time-varying sys-
tems, possibly in a more concrete way.

The notion of “uniform exponential stability” plays a central role in our theory as
well. A linear computational scheme will have to be stable or it will not be usable.
Many theorems are only valid under the condition of stability. However, conditions on
stability of a system is not a great point of interest in the book, and we shall mostly
assume them as a matter of course.

While this book was under redaction, Halanay and Ionescu published a book on
linear time-varying discrete systems [HI94], using a framework very much like ours
(and in fact partly inspired by it via publications in the mathematical literature). The
contents of that book is very relevant to the work presented here, although the type
of problems and their approach is often quite different. In the book of Halanay and
Ionescu, basic concepts such as external factorization, inner-outer factorization, and
J-inner embedding are related to the solution of specific types of (time varying) Ric-
cati equations. We provide the derivation of the relevant Riccati equations as well, but
systematically put them into a geometric context—the context provided by the reach-
ability and observability operators of the system under consideration. On a number
of other issues, the two books are unrelated. Halanay and Ionescu give an extensive
treatment of optimal control and the related game theory. Although we treat some as-
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pects of the former, e.g., the four block problem, we do not consider the latter topic.
On the other hand, since our focus is computational, we provide attractive algorithms
such as “square root algorithms”, parametrizations, and give an extensive treatment on
model reduction and approximation. We have aimed at a textbook which could be used
by engineering students with a good knowledge of linear algebra, but only a rudimen-
tary knowledge of Hilbert space theory. We thought it remarkable that most essential
properties could be approached from a relatively elementary point of view based on the
geometry of reachability and observability spaces.On the origin of this work
The ansatz for the computational modeling as studied in this book was a generaliza-
tion of the Schur interpolation method to provide approximations of matrices to ma-
trices with banded inverses, by Dewilde and Deprettere [DD87, DD88]. The moti-
vation driving this research was the need to invert large matrices that occur in the fi-
nite element modeling of VLSI circuits [JD89, Nel89]. Subsequent research by Al-
pay, Dewilde, and Dym introduced an elegant diagonal notation by which the Schur
interpolation method and similar such generalized, time-varying interpolation prob-
lems could be described [ADD90]. In these days, it became clear that the solution
of many (time-invariant) interpolation problems can effectively be formulated in state
space terms [BGR90]. The new diagonal notation was thus adopted and applied to
the description of time-varying state space systems, resulting in a realization theory
[vdVD91], orthogonal embedding theory with application to structural factorization
[vdVD94a, vdVD93], and later an optimal Hankel-norm model reduction theory as
well [DvdV93], and culminated in a workshop on the topic [DKV92], and the thesis
of Van der Veen [vdV93b]. Subsequent work was on widening the algebraic aspects of
the new theory [vdV96, GvdV96, vdV95], as well as H∞ control aspects [Yu96, SV95,
YSvdVD96, SV96].

The above provides the background for this book. In the mean time, there are many
connections to parallel work by the “Amsterdam group” (Kaashoek, Gohberg, and co-
workers) to interpolation and operator extension [GKW89, Woe89, GKW91, BGK92a],
and to realization of time-varying systems [GKL92, BAGK94].
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2 NOTATION AND PROPERTIES OFNON-UNIFORM SPACES

Time-varying linear systems can be compactly described by a recently developed no-
tation in which the most important objects under consideration, sequences of vectors
and the basic operators on them, are represented by simple symbols. Traditional time-
varying system theory requires a clutter of indices to describe the precise interaction be-
tween signals and systems. The new notation helps to keep the number of indices in for-
mulas at a minimum. Since in our case sequences of vectors may be of infinite length,
we have to put them in a setting that can handle vectors of infinite dimensions. “En-
ergy” also plays an important role, and since energy is measured by quadratic norms,
we are naturally led to a Hilbert space setting, namely to Hilbert spaces of sequences
of the `2-type. This should not be too big a step for engineers versed in finite vector
space theory since most notions of Euclidean vector space theory carry over to Hilbert
spaces. Additional care has to be exercised, however, with convergence of series and
with properties of operators. The benefit of the approach is that matrix theory and sys-
tem theory mesh in a natural way. To achieve that we must introduce a special addi-
tional flavor, namely that the dimensions of the entries of the vectors considered are
not necessarily all equal.

The material covered in this chapter provides a minimal “working basis” for sub-
sequent chapters. Additional properties and more advanced operator theoretic results
are covered in chapter 4. A brief review of Hilbert space definitions and results which
are relevant to later chapters can be found in Appendix A. In this work, we only need
the space `2 of bounded sequences, subspaces thereof, and bounded operators on these
spaces. 19
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Let us consider (possibly infinite) sequences whose entries ui are finite dimensional
vectors:

u = [ · · · u−1 u0 u1 u2 · · · ] : (2.1)

Typically, we write such sequences out as rows of (row) vectors. We say that u rep-
resents a signal, where each component ui is the value of the signal at time instant i.
The square surrounding u0 identifies it as the entry with index zero. If the ui are scalar,
then u is a one-channel signal. A more general situation is obtained by taking the ui to
be (row) vectors themselves, which makes u a multi-channel signal. It is not necessary
that all ui have equal dimensions: we allow for a time-varying number of channels, or
equivalently, for non-uniform sequences. (Physically, such signals could be obtained
by switches.) In order to specify such objects more precisely, we introduce the notion
of index sequences.

Let {Ni ∈N; i ∈Z}be an indexed collection of natural numbers1, such that ui ∈ C Ni :
Ni is the dimension of the vector ui. The sequence N,

N = [Ni ]∞−∞ = [ · · · N−1 N0 N1 N2 · · · ] ∈ NZ
is called the index sequence of u. (The symbol NZ indicates the set (Cartesian product)
of copies of N indexed by elements of Z.) If we define Ni = C Ni , then signals (2.1)
live in the space of non-uniform sequences which is the Cartesian product of theNi:N = · · · ×N−1 × N0 ×N1 ×N2 × · · · =: C N ;
Conversely, if N = C N , then to retrieve the index sequence N fromN we write

N = #(N ) :
A signal inN can be viewed as an infinite sequence that has a partitioning into finite di-
mensional components. Some of these components may have zero dimension (Ni = 0)
to reflect the fact that no input signal is present at that point in time. In that case, we
write ui = · , where ‘ · ’ is a marker or placeholder. Mathematically, ‘ · ’ can be viewed
as the neutral (and only) element of the Hilbert space C 0 , the vector space of dimension
zero. Formally, we must define some calculation rules with sequences or matrices that
have blocks with dimension zero. Aside from obvious rules, the product of an “empty”
matrix of dimension m×0 and an empty matrix of dimension 0×n is a matrix of dimen-
sion m×n with all elements equal to 0. All further rules of block matrix multiplication
remain consistent. Using zero dimension indices, finite dimensional vectors are incor-
porated in the space of non-uniform sequences, by putting Ni = 0 for i outside a finite
interval. We usually do not write these trailing markers if their presence is clear from
the context or otherwise not relevant: this is consistent with the fact that for any set A,

1Zdenotes the set of integers, N the non-negative integers {0;1; · · ·}, and C the complex numbers.
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A × C 0 = A. With abuse of notation, we will also usually identify C 0 with the empty
set ;.

We say that a signal u as in (2.1) has finite energy if the sum

∞

∑
i=−∞

kui k2
2

is finite. In that case we say that u belongs to `N2 , the space of (non-uniform) sequences
in N with finite `2 norm. `N2 is a ’Hilbert space’, it is even a separable Hilbert space,
which means that it has a countable basis. A Hilbert space of non-uniform sequences
is of course isomorphic to a standard `2 Hilbert space, the non-uniformity provides an
additional structure which has only system theoretical implications.

The inner product of two congruent (non-uniform) sequences f ;g in N is defined
in terms of the usual inner product of (row)-vectors inNi as( f ; g) = ∑

i

( fi; gi)
where ( fi; gi) = fig∗

i is equal to 0 if Ni = 0, by definition.2 The corresponding norm
is defined by

u = [ui ]∞−∞ : kuk2
2 = (u; u) = ∞

∑
i=−∞

kui k2
2

so that kuk2
2 represents the energy of the signal. `N2 can thus be viewed as an ordinary

separable Hilbert space of sequences on which a certain regrouping (of scalars into fi-
nite dimensional vectors) has been superimposed. Consequently, properties of Hilbert
spaces carry over to the present context when this grouping is suppressed.

To illustrate some of the above, let N = [ · · · 0 0 1 3 2 0 0 · · · ]. The vector

u = [ 6 ; [3 2 1] ; [4 2] ] is an element of the non-uniform sequence space N = C N ,
suppressing entries with zero dimensions. The norm of u is given by kuk2 = [62 +(32 +22 +12)+(42 +22)]1=2. We see that classical Euclidean vector space theory fits
in easily.Operators on non-uniform spaces
LetM andN be spaces of sequences corresponding to index sequences M, N. When
we consider sequences in these spaces as signals, then a system that maps ingoing sig-
nals in M to outgoing signals inN is described by an operator fromM toN :

T :M→N ; y = uT :
Following [ADD90, DD92], we adopt a convention of writing operators at the right
of input sequences: y = uT . If for some reason there is confusion, we use brackets:

2 ∗ denotes the complex conjugate transpose of vectors or matrices, or the adjoint of operators.
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‘T(u)’. This unconventional notation is perhaps unnatural at first, but it does have ad-
vantages: signals correspond to row sequences, circuit diagrams read like the formu-
las, and the inverse scattering problem, which we shall treat extensively, appears more
natural. Continuous applications of maps such as “STU · · ·” associate from left to right
(uSTU := ((uS)T)U) and can often be interpreted as matrix products. Things get more
complicated when S or T are maps defined on more complex objects than sequences.
Notable examples are projection operators defined on spaces of operators, and the so-
called Hankel operator which is introduced in the next chapter.

We denote by X (M;N ) the space of bounded linear operators `M2 → `N2 : an oper-
ator T is in X (M;N ) if and only if for each u ∈ `M2 , the result y = uT is in `N2 , and so
that kT k= sup

u∈`M2 ;u 6=0

kuT k2kuk2

is bounded. kT k is called the induced operator norm of T . A bounded operator defined
everywhere on separable Hilbert spaces admits a matrix representation which uniquely
determines the operator [AG81]:

T = [Ti j]∞i; j=−∞ = 26666664 . . .
... . .

.

T−1;−1 T−1;0 T−1;1
· · · T0;−1 T00 T01 · · ·

T1;−1 T10 T11

. .
. ...

. . .

37777775 (2.2)

(where the square identifies the 00-entry), so that it fits the usual vector-matrix multi-
plication rules. The block entry Ti j is an Mi × N j matrix.

To identify the block-entries, rows and columns of T , it is convenient to have spe-
cific operators which construct a sequence from its entries. Following [ADD90], we
define for a given space sequenceN , the operator πk as

·πk : Nk →N : aπk = a[ · · · 0 INk 0 · · · ] : (2.3)

Thus, πk constructs a sequence out of an element of Nk, by embedding it into a se-
quence which is otherwise zero (or empty, depending on the context). We define an
“adjoint” to πk as

·π∗
k : N →Nk : uk = uπ∗

k :
Thus, π∗

k retrieves the k-th (block) entry of a sequence.3 We often implicitly use the
facts that πkπ∗

k = INk and ∑k π∗
kπk = IN , which is a “resolution of the identity”. Clearly,

both πk and π∗
k have matrix representations. If an operator T with a congruent matrix

representation is positioned to the right of πk, then the (matrix or operator) product πkT
makes sense and corresponds to taking the k-th row out of T . Similarly, Tπ∗

k selects its
k-th column.

3Properly speaking, the definition of an adjoint necessitates a Hilbert space context, but the operators do
make obvious sense in a larger context as well.
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The block entry Ti j of T is given by Ti j = πiTπ∗

j . With regard to (2.2), the operator
Ti = πiT can be called the i-th (block) row of T , while Tπ∗

j is the j-th column of T .
In X (M;N ), we define the space of bounded upper operatorsU(M;N ) = {T ∈X (M;N ) : Ti j = 0 (i > j)} ;

the space of bounded lower operatorsL(M;N ) = {T ∈ X (M;N ) : Ti j = 0 (i < j)} ;
and the space of bounded diagonal operatorsD = U ∩L :
As a matter of notational convenience, we often just write X ;U ;L;D when the under-
lying spaces are clear from the context or are of no particular relevance. For A ∈ D,
“Ai” serves as shorthand for the entry Aii, and we write

A = diag[ · · · A−1 A0 A1 · · · ] = diag[Ai ] :U , L and D satisfy the following elementary properties [ADD90]:U ·U ⊂ U L∗ = UL ·L ⊂ L U∗ = LD ·D ⊂ D : (2.4)

A link with classical linear time invariant (LTI) is established easily. In the time-
invariant context, the sequencesM and N are uniform, and the transfer operator be-
haves identically at each point in time: a shift of the input sequence over a few time
slots produces still the same output sequence, but translated over the same shift. This
translates to T having a Toeplitz structure: for all integers i, j and k, Ti; j = Ti+k; j+k, or,
equivalently, all block entries on the same diagonal are equal. Toeplitz operators are
often represented by their z-transform, which we define as follows. Denote by Tk the
entry on the k-th diagonal (i.e., Tk = Ti;i+k for any i), and let

T(z) = +∞

∑
i=−∞

Tkzk ;
then T(z) is called the matrix-valued transfer function associated to T . Note that this
definition is purely formal, there is no guarantee that the series converges at any point
of the complex plane. Occasionally, we will use a “meta-operator” T which associates
a Toeplitz representation to a transfer function:T (T(z)) = 26666666664

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . T−1 T0 T1 T2 T3

. . .
. . . T−2 T−1 T0 T1 T2

. . .
. . . T−3 T−2 T−1 T0 T1

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

37777777775 :
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Harmonic analysis on LTI systems will often provide interesting examples and coun-
terexamples.

If D ∈ D and invertible, then D−1 ∈ D, and (D−1)i = (Di)−1 [ADD90]. However,
unlike the situation for finite-size matrices on uniform sequences, the spaces U and L
are not closed under inversion: if an upper operator T ∈U is boundedly invertible, then
the inverse is not necessarily upper. A simple example of this is given by the pair of
Toeplitz operators

T = 266666664. . .
. . .

1 −2 0
1 −2

0 1
. . .
. . .

377777775 ; T−1 = 26666666664
. . .
. . . 0 0

−1=2 0
−1=4 −1=2 0

· · · −1=8 −1=4 −1=2 0
...

. . .
. . .

37777777775 :
But also for finite-size matrices based on non-uniform space sequences, the same can
happen. For example, let T : C 2 × C 1 → C × C × C ,

T = 24 C C CC 2
n 1

1=2
0
2

0
0C 0 1=4 1

35 ; T−1 = 24 C 2 CC 1 0 0C -1/4 1/2 0C 1/16 -1/8 1

35 (2.5)

(the underscore identifies the position of the 0-th diagonal). When viewed as matrices
without considering their structure, T−1 is of course just the matrix inverse of T . Mixed
cases where the inverse has a lower and an upper part can also occur, and these inverses
are not trivially computed, as they require a “dichotomy”: a splitting of spaces into a
part that determines the upper part and a part that gives the lower part. The topic will
be investigated in chapter 7.

An important special case of upper operators with upper inverses is the following.
An operator of the form (I − X), where X is a bounded operator, has an inverse that is
given by the series expansion (Neumann expansion)(I − X)−1 = I+X +X2 + · · · (2.6)

when the series converges in norm. It is known in operator theory that this will be the
case when the geometric series 1+kX k+kX2 k+ · · · converges, which occurs when
the spectral radius r(X) of X is smaller than 1:4

r(X) := lim
n→∞

kXn k1=n < 1 :
4For readers not familiar with the concept of spectral radius, we mention that for a finite matrix X, r(X) is
equal to the largest eigenvalue of X. In the context of operators, however, the spectrum is more complicated.
See [AG81].
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Proposition 2.1 If X ∈ U and r(X)< 1, then (I − X)−1 is given by (2.6) and is also inU .

It is known that the sequence kXnk1=n converges when n goes to infinity (for an ele-
mentary proof, see [Yos71, p.212]). Also, r(X) ≤ kX k because kXnk1=n ≤ (kX kn)1=n.Hilbert-Schmidt operators
The Hilbert-Schmidt norm for objects in X (M;N ) is defined askAk2

HS = ∑
i; j kAi jk2

HS (A ∈ X (M;N )) ;
where kAi jk2

HS is, in turn, equal to the sum of the squared norms of the entries of Ai j.5

For finite matrices, the Hilbert-Schmidt norm is usually called the Frobenius norm. The
space in X (M;N ) of operators which are bounded in Hilbert-Schmidt norm is given
by X2(M;N ) = {A ∈ X (M;N ) : kAk2

HS < ∞} :
On X2(M;N ), the corresponding Hilbert-Schmidt inner product is

〈A; B〉HS = trace(AB∗)
where the trace operator is a summation of the diagonal entries along the (block-)diagonal
of AB∗. The Hilbert Schmidt norm satisfies kAk2

HS = 〈A;A〉HS = trace(AA∗). X2(M;N )
is a Hilbert space for the Hilbert-Schmidt inner product (it becomes an ordinary Hilbert
space of sequences if the entries Ai j are scalar and written as one sequence). Subspaces
of X2(M;N ) are the spaces of upper, lower and diagonal Hilbert-Schmidt operators,
respectively given by U2 = X2 ∩UL2 = X2 ∩LD2 = X2 ∩D : (2.7)

We write PH for the orthogonal projection operator ofX2 onto some subspaceH ofX2. We use an abbreviated notation for the following special projections:

P : the orthogonal projection of X2 onto U2

P0 : the orthogonal projection of X2 onto [X2	U2]: P0 = I − P
P0 : the orthogonal projection of X2 onto D2.

(2.8)

The above projections are bounded operators on Hilbert-Schmidt spaces in the induced
Hilbert-Schmidt operator norm. They can be generalized to operators on X on which
P, however, is not bounded (this is one of the reasons for introducing Hilbert-Schmidt

5If A= [Ai j ] is a doubly indexed collection of operators and is Hilbert-Schmidt summable: ∑i j kAi jk2 < ∞,
then A corresponds to a bounded operator in X automatically, since ∑ j |∑i uiAi j |2 ≤ ∑ j [∑i |ui |2 · ∑i kAi jk2] ≤
∑i |ui |2 · ∑i j kAi jk2 < ∞.
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spaces). This situation generalizes what already happens with Toeplitz operators; a few
examples are given at the end of the section.

Elementary properties of P0 are

P0(D1XD2 ) = D1 P0(X)D2 (D1;2 ∈D; X ∈ X ) ;[P0(X) ]∗ = P0(X∗) :
Operators in X2 satisfy the “two-sided ideal” properties: if A ∈X2, and B ∈X with

dimensions such that the product AB is well defined, then AB ∈ X2. A similar result
holds for BA if this product is well defined. A consequence is that operators in X can
be thought of as maps from a Hilbert-Schmidt space X2 of the correct dimensions to
another such space. We will use such spaces as generalized signal spaces `2.2.2 SHIFTS AND DIAGONAL REPRESENTATIONSShift operators
For an index sequence N = [ · · · N−1 N0 N1 · · · ], we denote the sequence right-shifted

over k positions by N(k) = [ · · · N−k−1 N−k N−k+1 · · · ] :The corresponding right-shifted

space sequence is denotedN (k) = C N(k)
. The right bilateral shift operator Z = ZN on

sequences u ∈N is defined by (uZ)i = ui−1 ; i.e.,[ · · · u0 u1 u2 · · · ] Z = [ · · · u−1 u0 u1 · · · ] :
ZN is an operator `N2 → `N (1)

2 . It is readily checked from its definition that

Zi j = πiZπ∗
j = �

I ; if j = i+1 ;
0 ; otherwise,

so that Z ∈ U and Z has a matrix representation

Z = 26666666664
. . .

. . .
0 IN−1×N−1 0

0 IN0×N0

0 IN1×N1

0 0
. . .
. . .

37777777775 :
Z is unitary on `N2 : ZZ∗ = I, Z∗Z = I, so that Z−1 = Z∗. The operator Z[k] denotes the
k-times repeated application of Z:

Z[k] = ZNZN (1) · · ·ZN (k−1) :
Note that formally Zk is not well defined because the dimensions in the multiplications
do not match. Nonetheless, as a relaxation of notation we will in future sections often
suppress dimension information in formulas and just write Zk instead of Z[k].
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Since Z ∈ U , the properties in equation (2.4) specialize to [ADD90]

ZU ⊂ UUZ ⊂ U
Z−1L ⊂ LLZ−1 ⊂ L L∩ ZU = 0LZ−1 ∩U = 0

Similar properties hold for U2 and L2.
It is a fundamental fact (easy and proven in [ADD90]) that U2 ⊥ L2Z−1 and U2 ⊥

Z−1L2, and that X2 admits an orthogonal decompositionX2 = L2Z−1 ⊕U2 = L2Z−1 ⊕D2 ⊕U2Z :
Previously (in equation (2.8)), we defined P0 to be the orthogonal projection onto [X2	U2]. Hence P0 = PL2Z−1 .Diagonal shifts
Operators inX do not commute simply with the shift operator: let T ∈X (M;N ), and
define T (1) by

ZMT (1) = TZN ;
that is, T (1) = Z∗TZ, then T (1) is the operator T whose representation is shifted one
position into the South-East direction: (T (1))i; j = Ti−1; j−1. If T commutes with the shift
operator, T (1) = T , then Ti; j = Ti−1; j−1 and T is a Toeplitz operator. More generally, the
k-th diagonal shift of T ∈ X (M;N ) into the southeast direction along the diagonals
of T is defined by

T (k) = (Z[k])∗TZ[k] ;
which is in X (M(k);N (k)). Equivalently, (T (k))i j = Ti−k; j−k. The diagonal shift takes
each of the spaces L, U and D into themselves (albeit with shifted index sequences);
it is readily verified that if S;T ∈X such that the product ST is well defined, and(ST)(k) = S(k)T (k) ; T (k+m) = (T (k))(m) :
We will often run across products (AZ)n, where A ∈X (N ;N (−1)). These are evaluated
as (AZ)n = (AZ)(AZ) · · ·(AZ)= Z[n]A(n)A(n−1) · · ·A(1)=: Z[n]A{n}

where A{n} is defined as

A{0} = I
A{n} = A(n)A{n−1} = A(n)A(n−1) · · ·A(1) : (2.9)
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T[0]0

T =
Z[2]T[2]
ZT[1]Figure 2.1. Diagonal decomposition of an operator T ∈ U .Diagonal representation

For T ∈X (M;N ), let T[k] ∈D(M(k);N ) denote the k-th subdiagonal above the cen-
tral (0-th) diagonal of T , defined as:

T[k] = P0(Z−kT) ;
so that (T[k])i = Ti−k;i. T[k] is a bounded operator because its entries are bounded bykTk and kuT[k]k = supikuiTi−k;ik ≤ kukkTk. Based on a recursive use of the propertyU =D +̇ZU , we see that, for T ∈ U ,

T −
n

∑
k=0

Z[k]T[k] ∈ Z[n+1]U
so that T has a decomposition into a sum of shifted diagonals, at least formally (see fig-
ure 2.1). Although the collection {T[k]}∞

0 uniquely specifies T , the sum does not neces-
sarily converge to T for n → ∞ in a uniform sense [ADD90]. However, for operators inU2 the sum does converge in the Hilbert-Schmidt norm, which provides another reason
for the use of Hilbert-Schmidt spaces:

U ∈ X2 : U = ∞

∑
−∞

Z[k]U[k] ; U[k] = P0(Z[−k]U) :Projections of operators onto U or L
The projection of a bounded operator inX onto one inU orLmay not lead to a bounded
operator. This already happens for time-invariant systems, where it is known that pro-
jections of L∞-functions of the unit circle onto their causal or anticausal parts may pro-
duce similar kinds of problems. The classical example (see appendix A) is the ideal
low pass filter. Assume that T(eiθ) is real and specified by T(eiθ) = 1 for − π

2 ≤ θ ≤ π
2



NOTATION AND PROPERTIES OF NON-UNIFORM SPACES 29Table 2.1. Glossary of notation.X bounded operators P0 proj. onto D T[k] = P0(Z−kT)U ;L;D b. upper, lower, diag. P proj. onto U2 T(k) = Z[k]∗TZ[k]
M = #M ∈ NZ dimension sequence P0 proj. onto L2Z−1 T{k} = T(k) · · ·T(1)M= CM sequence space T [k] = T · · ·T(k−1)

and zero for other values of θ. We have T0 = 1
2 and for k 6= 0

Tk = Z π

−π
T(eiθ)e−ikθ dθ

2π
= Z π=2

−π=2
e−ikθ dθ

2π
= 1

πk
sin(πk

2
):

Written out in matrix form, the corresponding transfer operator is given by

T = 1
π

266666666666666664
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 1 π
2 1 0 − 1

3 0 1
5 0

. . .
. . . − 1

3 0 1 π
2 1 0 − 1

3 0 1
5

. . .
. . . 0 − 1

3 0 1 π
2 1 0 − 1

3 0
. . .

. . . 1
5 0 − 1

3 0 1 π
2 1 0 − 1

3

. . .
. . . 0 1

5 0 − 1
3 0 1 π

2 1 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

377777777777777775
The projection P(T) is given by the series

P(T)(z) = 1
2 + 1

π (z − 1
3 z3 + 1

5 z5 − · · ·)= 1
2 + 1

π arctan z

since d
dz(z − 1

3 z3 + 1
5 z5 + · · ·) = 1

1+z2 . It has an essential singularity at the points z = ±i

on the unit circle (i =p−1), and hence neither belongs to L∞ nor to H∞, although it is
analytic in the unit disc. Hence we see that P(T)(z) is unbounded in the operator norm,
while T(z) is perfectly bounded (the operator norm is equal to the L∞(T)-norm.)

We may expect similar problems with projection theory to upper and lower parts in
time varying system theory also. In fact, we can construct simple examples from our



30 TIME-VARYING SYSTEMS AND COMPUTATIONS
knowledge of LTI theory. For example, the operator

T1 = 1
π

26666666664
π
2 1 0 − 1

3 0 1
5 0 · · ·

1 π
2 1 0 − 1

3 0 1
5 · · ·

0 1 π
2 1 0 − 1

3 0 · · ·
− 1

3 0 1 π
2 1 0 − 1

3 · · ·
0 − 1

3 0 1 π
2 1 0 · · ·

1
5 0 − 1

3 0 1 π
2 1 · · ·

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

37777777775
is bounded as a sub-operator of T , but its projection to upper,

T2 = 1
π

26666666664
π
2 1 0 − 1

3 0 1
5 0 · · ·

π
2 1 0 − 1

3 0 1
5 · · ·

π
2 1 0 − 1

3 0 · · ·
π
2 1 0 − 1

3 · · ·
π
2 1 0 · · ·

0 π
2 1 · · ·

. . .
. . .

37777777775
produces an unbounded operator. This can be shown directly from the properties of
the series [1;− 1

3 ; 1
5 ; · · ·], but the calculation would lead us too far astray here. The “log-

arithmic series” [1; 1
2 ; 1

3 ; 1
4 ; · · ·] and its subseries provide a wealth of additional examples

well documented in the literature on harmonic analysis. We have reached the conclu-
sion that it is not true that the boundedness of T implies the boundedness of P(T).2.3 NOTES
The diagonal notation used in this book was originally introduced by Alpay and Dewilde
in [AD90] (and subsequently in Alpay, Dewilde and Dym [ADD90]), who developed a
generalization of the z-transform for upper non-commutative operators, called the W-
transform, and investigated the interpolating properties of lossless time-varying sys-
tems represented by these operators. It has been refined a number of times to allow
for sequences with non-uniform dimensions [vdVD91, DvdV93, vdV93b]. A time-
continuous version was defined by Ball e.a. [BGK92b]. The basic mathematical prop-
erties were proven in [ADD90] and additional properties later in Dewilde and Dym
[DD92].

There are a number of other approaches to describe time-varying systems. Starting
in the 1950s [Zad50] (or even earlier), time-varying network theory and extensions of
important system theoretic notions to the time-varying case have been discussed by
many authors. While most of the early work is on continuous-time linear systems and
differential equations with time-varying coefficients (see, e.g., [Zad61] for a 1960 sur-
vey), discrete-time systems have gradually come into favor. There are some more re-
cent approaches which are important, running in parallel with the time-varying state-
space realization theory discussed later in chapters 3 and 5. These are presented in
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the monograph by Feintuch and Saeks [FS82], in which a Hilbert resolution space set-
ting is taken, and in work by Kamen, Poolla and Khargonekar [KKP85, KP86, PK87],
where time-varying systems are put into an algebraic framework of polynomial non-
commutative rings. In the latter approach, a different kind of generalized z-transform is
introduced. However, many of these results, in particular on controllability, detectabil-
ity, stabilizability etc., have been discussed by many authors without using these spe-
cialized mathematical means, but rather by simply time indexing the state-space matri-
ces {A;B;C;D} and deriving expressions (iterations) in terms of these matrices. There
is usually a one-to-one correspondence between these expressions and their equivalent
in our notation.





3 TIME-VARYING STATE SPACEREALIZATIONS

Time-varying systems provide an especially fruitful point of view for the study of the
properties of linear maps and operators acting on sequences of data vectors. The no-
tation and preliminary results given in chapter 2 prepared the grounds for a realization
theory of such systems. A linear operator may often be decomposed into a composition
of local linear transformations in which intermediate data called states are generated
for use in subsequent stages. This brings the theory of such transformations into the
realm of linear dymamic system theory for discrete-time signals. The global transfor-
mation plays the role of input-output operator or transfer operator, while the decom-
position can be interpreted as the realization of a computational scheme in which small
local transformations are executed. Hence, methods from system theory can be used
to yield schemes of minimal complexity, optimal approximations to systems of lower
complexity, and so on.

The fact that there is a strong connection between system theory and linear algebra
has long been known and exploited. For matrices with a Toeplitz or Hankel structure,
this has resulted in fast matrix multiplications (via fast Fourier transforms), and Schur
recursions for Cholesky factorizations. For the more general case of upper triangular
matrices without such Toeplitz structure, the connection with systems theory becomes
fruitful if we consider time-varying state realizations, and if we assume that the number
of states in the realization is small compared to the size of the matrix.

The important first step in setting up a computational scheme for general upper ma-
trices is to make the connection with system theory explicit, and in particular, to solve
the realization problem. It is the problem of finding a decomposition of the original33
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operator into a sequence of operations, each of which utilizes only partial data of the in-
put sequence, generates intermediate quantities called states, and produces a part of the
output. In doing so, we have made the implicit assumption in our computational model
that the input data becomes available sequentially, and that the output data is generated
sequentially as well. Since the original operator is assumed to be linear, the problem
reduces to find, for a given upper triangular matrix T , a realization {Ak;Bk;Ck;Dk} that
has the given matrix as its input-output operator, i.e., such that[y1 y2 · · · yn ] = [u1 u2 · · · un ]T ⇔

�
xk+1 = xkAk +ukBk

yk = xkCk +ukDk

In the present chapter, we restrict the discussion to finite matrices and investigate state
realizations and their relation with the matrices that they realize. We will discover
how finite matrices are embedded in the more general framework of operators, con-
sider some prime examples of finite matrices with a low number of states, and derive
an algorithm for minimal state space realization of finite matrices. The more general
case, the realization problem for operators on non-finite sequences of data, is deferred
to chapter 5.3.1 REALIZATIONS OF A TRANSFER OPERATORTransfer operator
Let `M2 and `N2 be two (non-uniform) spaces as defined in the previous chapter, and
let the input-output behaviour of a linear time-varying and discrete time system be de-
scribed by its transfer operator (input-output operator), which is an operator T which
maps signals in `M2 to signals in `N2 :

T : `M2 → `N2 : y = uT :
We callM the input space of the system, andN the output space.

We assume for the time being that T is bounded: it maps signals of bounded en-
ergy to other signals of bounded energy, with a uniform upper bound. Other spaces,
such as `∞, could have been considered as signal spaces [Mur84], but `2 is mathemat-
ically more attractive. Many facts in operator theory are simplest for Hilbert spaces,
and some facts, such as the existence of an adjoint operator, are dependent on the avail-
ability of an inner product. One could restrict the attention further and consider only
input/output sequences with compact support: signals which are non-zero only on a
finite number of time points. The argument for doing so is that most of the mathemati-
cal complications of the Hilbert Space context disappear, and since such sequences are
dense in `2, the resulting system theory (save for the mathematical details) is closely
related to the Hilbert space realization theory. This is the approach taken in the paral-
lel time-varying system theory of [GKL92], and in a sense, the results are the same for
finite matrices. In our case, however, we are interested mainly in problems of system
approximation and numerical realization in which the `2 norm plays an essential role,
so we keep to the Hilbert space setting.

At this point, let us introduce an important generalization of the `2-setting, which
will be heavily used in subsequent chapters. Since time-varying systems may change at
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each point in time, we wish to consider collections of inputs and corresponding outputs
which reveal characteristic properties of the system at each point in time, rather than
just a single input and its corresponding output. Therefore, we wish to consider a type
of input or output space more general than `M2 . We define this more general space so
that it provides us with a collection of input and corresponding output time-sequences.
An infinite collection of input sequences would fit in a (doubly infinite) matrix, with
one row for each sequence, and each sequence with dimensions given byM. The total
matrix is formally a mapping from CZ := [· · · × C × C × C × · · ·] toM. Here, CZ is just
a sequence of copies of C ; the set Z contains the indices of the rows.

In the notation of section 2.1, we then define the Hilbert spaceXM
2 := X2(CZ;M) :

An element of this space can thus be viewed as an infinite collection of signal sequences
from `M2 , stacked on top of each other, and such that the grand total energy of the col-
lection is bounded.

Having collections of signals in one object allows us to apply a number of relevant
input sequences to a system all at once, and collect the results in a similar collection of
output sequences. There is no advantage in doing this with XM

2 itself, but it is quite
useful to act on certain subspaces ofXM

2 , like UM2 (the space of “upper” signal collec-
tions). An element of UM2 is such that its i-th row is a signal in `M2 which is identically
zero before point i in time, for each i. The support of the signal on row i is completely
in “the future”, with respect to time point i. Since the systems we consider are time-
varying, any analysis will have to take all time points i equally and separately into ac-
count, and this is precisely why it is useful to have the complete collection available in
one object in UM2 .

In a similar vein, elements ofDM2 are signals that only have support at the “current
point in time”, for every point i, i.e., it contains all impulses. Finally, Z−1LM2 is the
collection of all signals with support “in the strict past”.

A first use of the new notation for collections of signals is the following definition.

Definition 3.1 A transfer operator T is causal if

U ∈ U2 ⇒ Y =UT ∈ U2 :
Proposition 3.2 T is causal if and only if it is an upper operator: T ∈ U .

An expression of causality in terms of `2-sequences is more elaborate, as it has to state
that for all k and for all signals that are zero before point k, the corresponding response
is also zero before point k.

The rows of T can be viewed as the impulse responses of the system. Indeed, in the
single-input single-output case, and if T is a causal transfer operator, the response to the
unit impulse at time i, u = [δi]∞−∞, is y = uT = [· · · 0 Tii Ti;i+1 Ti;i+2 · · · ], precisely the
i-th row of T . An obvious extension holds for general multi-dimensional sequences.Realizations
Suppose that a transfer operator T is given. An important question is to know whether
the corresponding system admits a dynamical realization in the form of a recursion on
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Figure 3.1. Time-varying state realization.
a sequence of states:

xk+1 = xkAk +ukBk k = · · · ; −1; 0; 1 ; · · ·
yk = xkCk +ukDk : (3.1)

The expression states that the computation of y is performed as a sequence of stages,
which are connected by intermediate quantities {xk}, the states. The state at point k
is data extracted from the input sequence u up to that point, such that knowledge of
the state is sufficient to be able to compute future outputs without reference to the old
input data. {Ak;Bk;Ck;Dk} are called the state realization matrices. We require them
to be uniformly bounded and to have finite dimensions, possibly varying with k. The
state equations represent the structure of the computations as a sequence of operations,
which is depicted in figure 3.1. In this figure, the symbols “z” stand for registers that
store the values of the state variables when the computation goes from one point in time
to the next. We often collect the matrices Ak;Bk;Ck;Dk into a single transition matrix,
denoted by a boldface symbol, e.g.,

Tk = �
Ak Ck

Bk Dk

� ;
which allows to rewrite the state equations (3.1) as[xk+1 yk] = [xk uk]Tk :
The realization automatically represents a causal operator: if uk = 0 for all k less than
some point k0 in time, then yk = 0 (k < k0).
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Realizations of the type (3.1) can be rewritten in global operator form by assembling

the matrices {Ak}, {Bk} etc. as diagonal operators on spaces of sequences of appropri-
ate dimensions:

A = 2664 . . . 0
Ak

0 . . .

3775 C = 2664 . . . 0
Ck

0 . . .

3775 (3.2)

B = 2664 . . . 0
Bk

0 . . .

3775 D = 2664 . . . 0
Dk

0 . . .

3775
Let `M2 be the space of input sequences, `N2 the space of output sequences, and let us
define B = · · · ⊕B0 ⊕B1 ⊕ · · · as the sequence of spaces to which the state belongs1.
Then

u = [ · · · u0 u1 u2 · · · ] ∈ `M2
y = [ · · · y0 y1 y2 · · · ] ∈ `N2
x = [ · · · x0 x1 x2 · · · ] ∈ B

xZ−1 = [ · · · x1 x2 x3 · · · ] ∈ B(−1) :
The shift-operator Z was defined in section 2.1. Its inverse Z−1 shifts a sequence over
one position to the left; by B(−1) we denote the corresponding shifted space sequence.
A discrete-time causal time-varying linear realization T consists of the set of four maps

T = �
A C
B D

� ; A ∈ D(B;B(−1)) ; C ∈ D(B;N ) ;
B ∈ D(M;B(−1)) ; D ∈ D(M;N ) ; (3.3)

which together represent the dynamical state equations

xZ−1 = xA+uB
y = xC+uD : (3.4)

This definition constitutes the same set of time-varying state equations as in (3.1), but
now written in an index-free form and acting on sequences. The state equations (3.1)
are recovered by taking the k-th entry of each sequence and the correspondingk-th entry
along the diagonal of each realization matrix. A difference between the equations (3.1)
and (3.4) is that the former equations suggest a recursion which can be carried out to
obtain the next state xk+1 and current output yk from the current state xk and input uk,
whereas the equations (3.4) are implicit conditions which some sequences u, x and y
have to satisfy:

x(I − AZ) = uBZ : (3.5)

If (I − AZ) is boundedly invertible on the space `B2 to which the state x belongs, then
(3.5) has a solution

x = uBZ(I − AZ)−1 :
1We shall discuss the precise structure of B later on.
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Substitution into the second equation of (3.4) leads to

y = u
h
D+BZ(I − AZ)−1C

i ;
so that the transfer operator corresponding to the state equations (3.4) is

T = D+BZ(I − AZ)−1C :
Note the similarity of this expression for the transfer operator T and the familiar expres-
sion of the transfer function T(z) = d+bz(1−az)−1c for time-invariant systems with a
time-invariant realization {a;b;c;d}, where a;b;c;d are matrices rather than diagonal
operators with matrix entries.

However, even if the state sequences are Hilbert-Schmidt bounded (i.e., they live
in `B2 ), (I −AZ)−1 is not necessarily causal, as we showed by some examples in section
2.1. Only if (I − AZ)−1 ∈ U will the transfer u → x be causal. In contrast, the recursion
(3.1) when started at some point in time, leads to a map which is always causal, but
might be unbounded. In that case, (3.5) is not equivalent to (3.1).

According to proposition 2.1, (I − AZ) has an inverse which is upper and given by
the converging series (I − AZ)−1 = I+AZ+(AZ)2 + · · ·

if the spectral radius `A := r(AZ)< 1. Since r(AZ) = limn→∞(AZ)n, and(AZ)n = AZAZ · · ·AZ = Z[n]A(n)A(n−1) · · ·A(1) = Z[n]A{n}

we find that `A = lim
k→∞

kA{k} k1=k ;
where A{n} := A(n) · · ·A(1) and A(n) := Z−nAZn is a version of A, shifted downwards
along the diagonal over n positions2. Note that `A < 1 does not mean that kAk < 1.
For example, the diagonal operator

A = 266666666664
. . .

1
2

1
2

1000
1
2

1
2

. . .

377777777775
has norm 1000 but `A = 1

2 .

2There is a dual quantity to `A, namely the spectral radius of AZ∗, which equals limn→∞ AA(1) · · ·A(n−1) =
limn→∞ A[n]. Its value is not necessarily equal to `A. We shall not encounter it furtheron in this book.
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Definition 3.3 A realization {A;B;C;D} is called uniformly exponentially stable(u.e.
stable) if `A < 1.

If the transfer operator is a matrix of finite dimensions so that B has finite support,
then the realization will always be u.e. stable. There are many definitions of stability
in the control literature (cf. [SA68, AM69, AM81, AM92, Rug93]). Our definition is
the only notion of stability that we use in the sequel.

If `A < 1, then x is given by the series

x = uBZ(I − AZ)−1= uBZ+uBZ(AZ)+uBZ(AZ)2+ · · · (3.6)

which is convergent for any u ∈ `M2 . Clearly x ∈ `B2 , since the operator BZ(I − AZ)−1

is bounded. Hence, if `A < 1, the formal solution of the realization equations (3.4) for
a given u equals the solution generated by the recursion (3.1), and

y = uD+uBZC+uBZAZC+uBZ(AZ)2C+ · · ·= uD+uZB(1)C+uZ2B(2)A(1)C+uZ3B(3)A{2}C+ · · · : (3.7)

If `A = 1, then (3.6) may or may not converge to a sequence x with bounded entries,
depending on u and B. Although the analysis of realizations for which `A = 1 is cer-
tainly possible under suitable conditions, we shall usually limit our attention to the u.e.
stable case. The analysis of `A to characterize u.e. stable (`A < 1), marginally stable
(`A = 1) and unstable (`A > 1) systems replaces the notion in LTI systems theory of
poles (eigenvalues of A) that lie in, on, or outside the unit circle.

For the general case we can state the following definition (cf. equation (3.7)).

Definition 3.4 A 2×2 matrix of block diagonals T is said to be a realization of a trans-
fer operator T ∈ U if the diagonals T[k] = P0(Z−kT) of T equal the diagonal expansion
(3.7):

T[k] = 8<: 0 ; k < 0 ;
D ; k = 0 ;
B(k)A{k−1}C ; k > 0 : (3.8)

Equivalently, the entries Ti j of T are given by

Ti j = 8<: 0 ; i > j
Di ; i = j
BiAi+1 · · ·A j−1C j ; i < j ; (3.9)

and it follows that the transfer operator which corresponds to the realization {A;B;C;D}
has the matrix representation

T = 26666666664
. . .

...
...

D−1 B−1C0 B−1A0C1 B−1A0A1C2 · · ·
D0 B0C1 B0A1C2

D1 B1C2

0 D2 · · ·
. . .

37777777775 : (3.10)
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Definition 3.5 Let T ∈U . An operator T ∈U is said to be locally finite if it has a state
realization whose state space sequenceB is such that eachBk has finite dimension. The
order of the realization is the index sequence #(B) of B.

The concept of locally finite operators is a generalization of rational transfer functions
to the context of time-varying systems.Realizations on X2

We can extend the realization (3.4) further by considering generalized inputs U inXM
2

and outputs Y in XN
2 :

XZ−1 = XA+UB
Y = XC+UD : (3.11)

If `A < 1, then X =UBZ(I −AZ)−1, so that X ∈X B
2 . The classical realization (3.4) may

be recovered by selecting corresponding rows in U, Y and X. Indeed, we can interpret
the rows of U ∈XM

2 as a collection of input sequences u ∈ `M2 , applied simultaneous
to the system. Likewise, Y ∈ `N2 contains the corresponding output sequences y ∈ `N2 .
This interpretation will be pursued at length in the following chapters.

A recursive description for the realization (3.11) is a generalization of (3.1), and is
obtained by selecting the k-th diagonal of U;Y , and X in (3.11):

X(−1)[k+1] = X[k]A+U[k]B
Y[k] = X[k]C+U[k]D : (3.12)

Note that the k-th diagonal of XZ−1 is X(−1)[k+1], which contains a diagonal shift. The same
remarks on the relation between this recursive realization and the equations (3.11) as
made earlier on the `2-realizations are in order here. Starting with chapter 5, we will
heavily use this type of realizations, where we act on sequences of diagonals rather than
scalars.State transformations
Two realizations {A;B;C;D} and {A0;B0;C0;D0} are called equivalent if they realize the
same transfer operator T ,

D = D0
B(k)A{k−1}C = B0(k)A0{k−1}C0 (all k ≥ 0) : (3.13)

Given a realization of an operator T ∈U , it is straightforward to generate other realiza-
tions that are equivalent to it. For a boundedly invertible diagonal operator R (some-
times called a Lyapunov transformation), inserting x = x0R in the state equations (3.11)
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leads to �

x0RZ−1 = x0RA + uB
y = x0RC + uD

⇔
�

x0Z−1R(−1) = x0RA + uB
y = x0RC + uD

⇔
�

x0Z−1 = x0RAR−(−1) + uBR−(−1)
y = x0RC + uD

⇔
�

x0Z−1 = x0A0 + uB0
y = x0C0 + uD0 :

Proposition 3.6 Let R ∈ D(B;B) be boundedly invertible in D. If {A;B;C;D} is a
realization of a system with transfer operator T , then an equivalent realization is given
by {A0;B0;C0;D0}, where3�

A0 C0
B0 D0 �= �

R
I

��
A C
B D

�" h
R(−1)i−1

I

# : (3.14)

In addition, the spectral radii of AZ and A0Z are the same: `A = `A0 .
PROOF We have already D = D0, and

B0(k)A0{k−1}C0= B(k)R−(k−1) · R(k−1)A{k−1}R−(k−2) · R(k−2)A{k−2}R−(k−3) · · ·R(1)A(1)R−1 · RC= B(k)A{k−1}C :
Stability is preserved under the transformation:`RAR−(−1) = limn→∞ k(RAR−(−1)Z)n k1=n= limn→∞ k(RAZR−1)n k1=n= limn→∞ kR(AZ)nR−1 k1=n

≤ limn→∞ kRk1=n ·k(AZ)nk1=n ·kR−1k1=n = `A

(3.15)

since kRk1=n → 1 and kR−1 k1=n → 1. Because `A ≤ `RAR−(−1) can be proven in the same
way, it follows that `A = `RAR−(−1) . 2

If the realizations {A;B;C;D} and {A0;B0;C0;D0} are related by (3.14) using bounded
R with bounded R−1, then we call them Lyapunov equivalent.3.2 SPECIAL CLASSES OF TIME-VARYING SYSTEMS
In this section, we examine the behavior of certain interesting subclasses of systems.
Since it takes an infinite amount of data and time to describe a general time-varying

3In future equations, we write, for shorthand, R−(−1) := [R(−1)]−1.
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system, it pays to consider special classes of operators in which computations can be
carried out in finite time. Interesting classes are (1) finite matrices, (2) periodically
varying systems, (3) systems which are initially time-invariant or periodic, then start
to change, and become again time-invariant or periodic after some finite period (time-
invariant or periodic at the borders), (4) systems that are quasi-periodic with a given
law of quasi-periodicity, and (5) systems with low displacement rank [KKM79]. Some-
times we can even treat the general case with finite computations, especially when we
are interested only in the behavior of the system in a finite window of time.Finite matrices
Matrices of finite size can be embedded in the general framework in several ways. For
example, if the input space sequence M = · · · ⊕M−1 ⊕M0 ⊕M1 ⊕ · · · has Mi = ;
for i outside a finite interval, [1;n] say, and if the output space sequenceN hasNi = ;
also for i outside [1;n], then T ∈ U(M;N ) is an upper triangular n × n (block) matrix:

T = 2666666666664
· · · · · · ·

· · · · · ·
T11 T12 · · · T1n · ·

T22 · · · T2n · ·
. . .

...
...

Tnn · ·
· ·

·

3777777777775 ≡

26664 T11 T12 · · · T1n

T22 · · · T2n
. . .

...
Tnn

37775
where “·” stands for an entry in which one or both dimensions are zero. We can choose
the sequence of state spaces B to have zero dimensions outside the index interval [2;n]
in this case, so that computations start and end with zero dimensional state vectors.
Doing so yields computational networks in the form described in chapter 1. The fi-
nite matrices form an important subclass of the bounded operators, because (i) initial
conditions are known precisely (a vanishing state vector) (ii) computations are finite,
so that boundedness and convergence are not an issue (these issues become important
again, of course, for very large matrices). In particular, `A = 0 always.

By taking the dimensions of the non-empty Mi non-uniform, block-matrices are
special cases of finite matrices, and sometimes, matrices that are not upper triangular
in the ordinary sense, are block-upper, i.e., in U(M;N ), whereM andN are chosen
appropriately. An example is given in figure 3.2(a). An extreme representative of a
block-upper matrix is obtained by takingM = · · · ⊕ ; ⊕ M1 ⊕ ; ⊕ ; · · ·N = · · · ⊕ ; ⊕ ; ⊕ N2 ⊕ ; · · ·

so that a matrix T ∈ U has the form

T = 2664 · · · ·
· T12 ·

· ·
·

3775 ≡ [T12] ;



TIME-VARYING STATE SPACE REALIZATIONS 43

(a) (b)

u1

y2

x2

z

z

z

Figure 3.2. (a) A block-upper matrix; (b) a state realization of a special case of a block-upper matrix, T = [T12].
that is, T = T12 is just any matrix of any size. Figure 3.2(b) depicts the time-varying
state realization of such a system. Inputs are only present at time 1, and outputs are
only generated at time 2. The number of states that are needed in going from time 1 to
time 2 is, for a minimal realization, equal to the rank of T12, as we will see in the next
section. There are applications in low-rank matrix approximation theory that use this
degenerate view of a matrix [vdV96].Time-invariant on the borders
A second important subclass of time-varying systems are systems for which the state
realization matrices {Ak;Bk;Ck;Dk} are time-invariant for k outside a finite time inter-
val, again say [1;n]. This class properly contains the finite matrix case. The structure
resulting from such realizations is depicted in figure 3.3. Computations on such sys-
tems can typically be split in a time-invariant part, for which methods of classical sys-
tem theory can be used, and a time-varying part, which will typically involve recursions
starting from initial values provided by the time-invariant part. Boundedness often re-
duces to a time-invariant issue. For example, `A is equal to max(r(A0);r(An+1)), solely
governed by the stability of the time-invariant parts.Periodic systems
A third subclass is the class of periodically varying systems. If a system has a period
n, then it can be viewed as a time-invariant system T with block entries Ti j = Ti− j of
size n × n: T is a block Toeplitz operator. The realization matrices {A;B;C;D} of this
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Figure 3.3. Transfer operator of a system that is time-invariant on the borders. Only theshaded areas are non-Toeplitz.
block operator are given in terms of the time-varying {Ak;Bk;Ck;Dk} as

A = A1A2 · · ·An ; C = [C1 A1C2 A1A2C3 · · · A1 · · ·An−1Cn ]
B = 26664B1A2A3 · · ·An

B2A3 · · ·An
...

Bn

37775 D = 26664D1 B1C2 B1A2C3 · · · B1A2 · · ·An−1Cn

D2 B2C3 B2A3 · · ·An−1Cn
. . .

...
Dn

37775
Computations involving such operators can often be done by taking it as a block time-
invariant system, which will provide exact initial conditions at the beginning of each
period. These time-invariant solutions can be computed in classical ways. However,
if the period is large, this may not be attractive, in which case the general methods
may be more appealing. The classical Floquet theorem for time continuous systems
which states that there is a periodic state transformation which transforms a periodic
state transition matrix A(t) into a time invariant one does not have a simple time dis-
crete counterpart. A generic counterexample is a system with period 2 and A matrices
given by

A1 = �
0 1
0 0

� ; A2 = �
1 0
0 1

� ;
and suppose that there would exist state transformation matrices R1 and R2 such that
R1A1R−1

2 =R2A2R−1
1 =: α, then we should have (R−1

1 αR1)2 = [ 0
0

1
0 ] which is impossible

since this latter matrix has no square root.Systems of low displacement rank
An important class of structured matrices is formed by matrices of low “displacement
rank”, and was extensively studied by Kailath and his many students and co-workers
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[KKM79, KS95] (see in particular the theses of Lev-Ari [Lev83] and Sayed [Say92]).
Although the brunch of this book is devoted to another kind of structure, namely low-
dimensional state realizations, we give here a short introduction to low displacement
matrices, and at the end of this chapter, we give a theory which combines results of the
two theories, namely low complexity parametrizations for systems that are at the same
time of low displacement type and of low systems rank.

Let R be an n × n positive definite matrix, and let us define the n × n “displacement
matrix”, alias restricted shift operator

σ = 266664 0 0

1
. . .
. . .

. . .
0 1 0

377775 :
This matrix is similar to the reverse shift operator Z∗, but unlike Z∗, it truncates the
shifted sequence and introduces a zero, so that it is not an invertible operator. The dis-
placement of R is defined as R−σRσ∗ [KKM79]. We assume that it has inertia (p;o;q),
which means that there exist matrices

G = [g0 g1 · · · gn−1] ; J = �
Ip

−Iq

�
of dimensions (p+q)× n and (p+q)× (p+q) respectively, such that

R − σRσ∗ = G∗JG = 26664 g∗
0

g∗
1
...

g∗
n−1

37775J[g0 · · · gn−1] ;
in which G has full row rank. It is convenient to split each entry gk according to the
inertia formula:

gk = �
p gk1
q gk2

� :
α := p+q is called the displacement rank. If α is small compared to n, then R is said to
be of low displacement rank. Clearly, R is parametrized by the entries of G. Important
calculations on R such as the determination of its Cholesky factorization R = L∗L or
that of its inverse can be done efficiently on G rather than on R itself. In fact, this is
not limited to positive definite matrices R, but can be generalized to any matrix T with
(block matrix) entries. In the sequel we shall just look at additive and multiplicative
decompositions of a positive definite matrix R= L∗L = 1

2 (F+F∗), because that covers
the most important applications.

The two notions, low displacement rank and low system order are not related to each
other. We know of systems that score high for one and low for the other. The proto-
type example of a low displacement rank matrix is a Toeplitz matrix, which has dis-
placement rank one or two. Such a matrix may not have a useful low dimensional state
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space realization. For example, the LTI transfer function T(z) = z+ 1

2 z2 + 1
3 z3 + · · · is

of course of low displacement rank but no finite dimensional state space realization is
capable of reproducing the decay 1

n , characteristic of a transfer function of logarithmic
type.Uniformly exponentially stable systems
Finally, a large class of systems for which precise and finite calculations are possible
is the class of u.e. stable systems: systems that have a realization for which `A < 1.
Recursions on such systems are typically convergent, that is, independent of the precise
initial value at point k as k → −∞. This means that it is possible to limit attention to a
finite time-interval, and to obtain arbitrarily accurate initial values for this interval by
performing a finite recursion on data outside the interval, starting with initial values set
to 0.

For example, if in a computation for k > 1, an initial state x1 is required, then this
latter value can be approximated to arbitrary precision using a finite sequence of past
input samples and system matrices, since

x1 = x−nA−n · · ·A0 + [u−n u−n+1 · · · u0]26664 B−nA−n+1A−n+2 · · ·A0

B−n+1A−n+2 · · ·A0
...

B0

37775 : (3.16)

If the system is u.e. stable, then kA−n · · ·A0k can be made arbitrarily small by choosing
n large enough. Neglect of the first term in (3.16) then gives an accurate approximation
for x1. The same approximation would of course be obtained by choosing x−n = 0 if
that were possible, and computing x1 via the state recursion.3.3 EXAMPLES AND EXTENSIONS
Using the connection of a matrix or operator in U and its realization as visualized in
equation (3.10), we study some simple classes of matrices and their corresponding re-
alizations, as well as some simple operations on matrices such as sums and products,
a special case of matrix inversion, and extensions to more general realization frame-
works.Banded matrices
One of the easiest examples of a matrix for which it is possible to write down a real-
ization directly is the case of a banded matrix. Thus let T ∈ U be given by

T = 2666664 T11 T12 T1;d 0 0
T22 T2;d T2;d+1 0

. . .
. . . Tn−d+1;n

Tn−1;n−1 Tn−1;n
0 Tn;n

3777775 :
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The width of the band is in this case equal to d. A trivial realization for T requires up
to d − 1 states per stage:

T1=" · ·

1 T11

#
Tk =266666664 0 Tk−d+1;k

1
. . . 0 Tk−d+2;k
. . .

. . .
...

0 1 0 Tk−1;k
0 · · · 0 1 Tk;k

377777775
T2=" 1 0 T12

0 1 T22

#
Tn−1=266666664 0 Tn−d;n−1

1
. . . 0 Tn−d+1;n−1
. . .

. . .
...

0 1 0 Tn−2;n−1

0 · · · 0 1 Tn−1;n−1

377777775
T3=264 1 0 0 T13

0 1 0 T23

0 0 1 T33

375 Tn =266664 · Tn−d+1;n
·

...
· Tn−1;n
· Tn;n 377775 :

This is not necessarily a minimal realization: there might exist realizations with a smaller
number of states, depending on the precise values of Ti j . Even for general banded ma-
trices, the number of states in the last d stages can be made smaller than presented here,
although this will introduce some irregularities in the structure of these sections.

Other matrices for which one can obtain realizations directly are matrices with a
staircase band structure, and band matrices with some spurious entries in the upper
right hand corner. The latter type of matrix arises in finite difference modeling of one
dimensional differential equations with periodic boundary conditions (figure 3.4). In
simple cases, the non-zero entries of the matrix are just +1 and −1 (for a first-order
differential equation), and the matrix has a Toeplitz structure (constant along the di-
agonals). A three-diagonal matrix occurs with simple discretizations of second-order
ODEs. Nonuniform spacing of the discretization points leads to banded matrices with-
out the Toeplitz structure.Sum of two realizations
Let T1;T2 ∈U(M;N ) be two transfer operators, with realizations {A1;B1;C1;D1} and
{A2;B2;C2;D2}, respectively. Then the sum of these two operators, T = T1 +T2, has a
realization given directly in terms of these two realizations as"

A C

B D

# = 264 A1 0 C1

0 A2 C2

B1 B2 D1 +D2

375
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0

0Figure 3.4. A block-upper matrix with a maximal state dimension of 2. The main diagonalis shaded; N1 = ; andMn+1 = ;. This type of matrix arises after discretization in certain1-D �nite di�erence modeling problems with periodic boundary conditions.
The state dimension sequence of this realization is equal to the sum of the state di-
mension sequences of T1 and T2. Note, however, that this realization is not necessarily
minimal: there might exist a realization of T whose state dimension sequence is smaller
(for reduction of the state space to minimal dimensions, see the next section).Product of two realizations
The product of T1 ∈U(M;N1) and T2 ∈U(N1;N2) can also be obtained using realiza-
tions: if T1 has a realization {A1;B1;C1;D1} and T2 has a realization {A2;B2;C2;D2},
then T = T1T2 has a realization given by"

A C

B D

# = 264 A1 C1
I 0

B1 0 D1

375264 I 0
A2 C2

0 B2 D2

375 = 264 A1 C1B2 C1D2
0 A2 C2

B1 D1B2 D1D2

375
(3.17)

Again, the state dimensions sequences of T1 and T2 add up to the state dimension se-
quence of T , and again, this realization is not necessarily minimal: there might exist
realizations of T that have smaller state dimension sequences.Realization of an upper inverse
Let T ∈U be an invertible operator or matrix, and suppose that it is known that T−1 ∈U
is also upper, then it is straightforward to derive a realization for T−1. From T−1T = I
and TT−1 = I, we obtain that D = T[0] must be invertible, and�

xZ−1 = xA+uB
y = xC+uD

⇔
�

xZ−1 = x(A −CD−1B) + yD−1B
u = −xCD−1 + yD−1 :

Hence, S = T−1 has a realization

S = �
A −CD−1B −CD−1

D−1B D−1

�= �
A

0

�+�
−C
I

�
D−1[B I] : (3.18)



TIME-VARYING STATE SPACE REALIZATIONS 49
xk

Bk

Dk

Ck

uk

Akxk xk+1

yk

yk

Ak

uk

xk+1

D−1
k

Bk

−Ck

Figure 3.5. Simple local computational scheme for inverting a system
+ T1

T2

u y

Figure 3.6. Feedback con�guration.
As shown in figure 3.5, the latter factorization allows to apply the inverse in an efficient
manner: only D−1

k has to be computed.
A −CD−1B has the same dimensions as A, so that the state dimension of the realiza-

tion of the inverse is at each point equal to the state dimension of T at that point. We
will see in section 13.2 (proposition 13.2) that, under some assumptions on the realiza-
tion of T , `A < 1 ⇔ `A−CD−1B < 1, so that for u.e. stable realizations, the realization
of the inverse is u.e. stable, too.

The above is only valid if T−1 is upper. Not every operator in U is invertible in U ;
the condition is that T must be outer, a notion that we will define in chapter 6. Some
examples of matrices that are not outer have been given in chapter 2; in particular,
block-upper matrices of which the entries on the main diagonal are not square give
rise to inverses that need not be upper, but have a lower triangular part, too. General
matrix/operator inversion is studied in chapter 7.
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Figure 3.7. (a) Multiband matrix, (b) feedback structure that models T−1.Feedback
Suppose that two systems T1 ∈U and T2 ∈U are connected in a feedback configuration
(figure 3.6). If the resulting transfer operator T = T1(I − T2T1)−1 is bounded, then a
realization of T can directly be written down in terms of realizations of T1 and T2, using
x = [x1 x2] as the state vector:

T = 264 A1 C1B2 0
0 A2

0 0

375+24 C1D2
C2

I

35 (I − D1D2)−1[B1 D1B2 D1] :
Feedback configurations arise in the inversion of a sum of two operators. An example
is given in the following subsection.Extension to multi-band matrices
Let T = T1+ZnT2, where T1 and T2 are band matrices and n> 0. Then T is a multi-band
matrix (figure 3.7(a)). A realization of T has the following structure:

T = 2666664 A2 C2
B2 D2

In−1 0
0 A1 C1

1 B1 D1

3777775 :
(If T1 and T2 are not SISO, then the identity matrices must have sufficiently large di-
mensions.) If n is large, then the state dimension of T is not small, but it has a sparse
structure, so that multiplications are still efficient. It is sometimes possible to keep this
sparse structure during operations on T . Consider e.g. the inverse of a multi-band ma-
trix, which (if it exists as a bounded upper matrix) is full: S = T−1 = (T1 +ZnT2)−1 =(I+T−1

1 ZnT2)−1T−1
1 . S can be interpreted as a feedback model (figure 3.7(b)). Its real-
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ization still has a sparse structure with complexity essentially independent of n:

S = 2666664 A2 −C2D−1
1 −C2D−1

1 B1 −C2D−1
1

B2 −D2D−1
1 −D2D−1

1 B1 −D2D−1
1

In−1 0
−C1D−1

1 A1 −C1D−1
1 B1 −C1D−1

1

D−1
1 D−1

1 B1 D−1
1

3777775= 2666664 A2

B2

In−1
0 A1

0

3777775 + 266664 −C2
−D2

0
−C1

1

377775D−1
1 [0 0 1 B1 1] :

Using the latter factorization, multiplication by T−1 can be performed just as efficiently
as multiplication by T . Other operations such as QR-factorization lead to a complexity
that is essentially linear in n.Systems of mixed causality; general matrices
Throughout this book, many basic properties assume that the transfer operator T is up-
per triangular, so that the corresponding forward state recursions are stable. This, how-
ever, does not mean that all results are limited to this case: it is possible to fit general
matrices or operators inX into the time-varying systems framework. Viewing such op-
erators as the sum or product of an upper and a lower triangular matrix (provided each
of these parts on its own is bounded), it is possible to determine realizations of T ∈X
as the sum or product of a forward-running and a backward-running set of state equa-
tions. The computation of a factorization of such operators into a product of a lower
triangular unitary matrix and an upper triangular matrix is in fact a (partial) QR fac-
torization. We will see in chapter 6 that, given realizations of the upper and the lower
triangular part, it can be computed using state space matrices only.

To extend our framework to this more general situation, let {Tk}n
1, {T0k}n

1 be a series
of matrices with block entries

Tk = �
Ak Ck

Bk Dk

� ; T0k = �
A0k C0k
B0k 0

� ; k = 1; · · · ; n ;
and consider the time-varying forward and backward state recursions, for k = 1; · · · ;n,(T)� xk+1 = xkAk +ukBk

yk = xkCk +ukDk
(T0)� x0k−1 = x0kA0k +ukB0k

y0k = x0kC0k (3.19)

using the initial values
x1 = [ · ] ; x0n = [ · ] ;

and let the output of the system be the sum of the forward and backward recursions:

zk = yk + y0k :
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The intermediate quantities in the recursion are xk, the forward state, and x0k, the back-
ward state. The relation between u = [u1; u2; · · · ; un] and z = [z1; z2; · · · ; zn], as gener-
ated by the given state recursions, is

z = u

26666664 D1 B1C2 B1A2C3 B1A2A3C4 · · ·
B02C01 D2 B2C3 B2A3C4

B03A02C01 B03C02 D3 B3C4
...

B04A03A02C01 B04A03C02 B04C03 D4 · · · Bn−2An−1Cn...
...

. . . Bn−1Cn

· · · B0nA0n−1C0n−2 B0nC0n−1 Dn

37777775 :
As shown in the next section, any finite matrix can be written in this form. The recur-
sions (3.19) can be used to compute a vector-matrix multiplication z = uT efficiently,
provided the matrix T is specified in terms of its realization and the state dimensions
are relatively small in comparison with the size of the matrix. Accordingly, we say that
matrices {Tk}n

1, {T0k}n
1 form a time-varying realization of mixed causality for a matrix

T ∈X , if the block entries of T are given by

Ti j =8<: Di ; i = j ;
BiAi+1 · · ·A j−1C j ; i < j ;
B0iA0i−1 · · ·A0j+1C0j ; i > j :3.4 REALIZATION THEORY FOR FINITE MATRICES

An important part of chapter 5 is concerned with the realization problem: the problem
to determine a realization {A;B;C;D} for a given operator T ∈ U . In this chapter, we
give a solution for the case where T is a finite (block)-upper triangular matrix, rather
than a more general operator acting on infinite sequences. The proof becomes simple
and direct since difficulties with convergence and boundedness are avoided. For clarity
of exposition, we use expressions with indices rather than diagonals.Realization algorithm for upper triangular matrices
Let us assume that we are given a finite upper triangular matrix T , as a special case of a
bounded operator. Assume that {Ak;Bk;Ck;Dk} defines a not yet known time-varying
state realization for T , which specifies T via the time-varying state equations (3.1):

xk+1 = xkAk +ukBk

yk = xkCk +ukDk

We look for properties of this realization that enable us to derive it from T , i.e., to find
a realization given the transfer specification. According to definition 3.4, the entries
Ti j of T can be expressed in terms of {Ak;Bk;Ck;Dk} as (see (3.9))

Ti j = 8<: 0 ; i > j
Di ; i = j
BiAi+1 · · ·A j−1C j ; i < j : (3.20)
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22T = H1

H2

H3
. . .

Figure 3.8. Hankel matrices are submatrices of T . H2 is shaded.
We assume the Ti j are known; the problem is to find {Ak;Bk;Ck;Dk}. There is no am-
biguity about Dk: Dk = Tk;k. The main realization problem is to determine suitable
{Ak;Bk;Ck}. Because state transformations are allowed, these matrices are not unique.

The key to the solution of the realization problem is the analysis of certain subma-
trices Hk of T . Define

Hk = 26664 Tk−1;k Tk−1;k+1 Tk−1;k+2 · · ·
Tk−2;k Tk−2;k+1
Tk−3;k . . .

...

37775 : (3.21)

We call this matrix a time-varying Hankel operator, at point k, since it would have the
special structure known as “Hankel matrix” in the time-invariant case, namely that the
elements on the antidiagonals are equal: (Hk)i j = (Hk)`m if i+ j = `+m. In the time-
varying case the collection of matrices {Hk} still has a special structure, as we will
see soon. The entries of Hk are taken from the submatrix of the matrix T above and
to the right of entry Tk;k, as depicted in figure 3.8. For finite matrices T , Hk is a finite(k − 1)× (n − k) matrix. We have (traditionally) reversed the ordering of rows of Hk in
comparison to the ordering of rows of T , because we will allow for operators (“infinite
matrices”) later on, and we wish to have the infinite sides of semi-infinite matrices at
the bottom and right. If {Ak;Bk;Ck;Dk} is a realization of T then substitution of (3.20)
into (3.21) produces

Hk = 26664 Bk−1Ck Bk−1AkCk+1 Bk−1AkAk+1Ck+2 · · ·
Bk−2Ak−1Ck Bk−2Ak−1AkCk+1
Bk−3Ak−2Ak−1Ck

. . .
...

37775 :



54 TIME-VARYING SYSTEMS AND COMPUTATIONS
A first observation is that Hk has a factorization due to the regular structure of its entries,
as

Hk = 26664 Bk−1
Bk−2Ak−1
Bk−3Ak−2Ak−1
...

37775 [Ck AkCk+1 AkAk+1Ck+2 · · ·] =: CkOk ; (3.22)

where we have definedCk = 26664 Bk−1
Bk−2Ak−1
Bk−3Ak−2Ak−1
...

37775 ; Ok = [Ck AkCk+1 AkAk+1Ck+2 · · · ] : (3.23)Ck is called the reachability matrix at point k, whileOk is called the observability matrix
at point k. We explain the reason for this terminology later.

If Ak has size dk ×dk+1, then from the factorization (3.22) it follows that the rank of
Hk is less than or equal to dk, the number of columns of Ck and rows ofOk. A realization
will be minimal if the rank of Hk is equal to dk, for all k. Obviously, no realizations exist
for which the state dimension is smaller.

A second observation that follows from the factorization is a shift-invariance prop-
erty. Let H←

k be the matrix defined by removing the first column from Hk (which also
can be viewed as Hk shifted one notch to the left with the first column chopped off),
then we obtain the factorization

H←
k = 26664 Bk−1

Bk−2Ak−1
Bk−3Ak−2Ak−1
...

37775 · Ak · [Ck+1 Ak+1Ck+2 Ak+1Ak+2Ck+3 · · · ] = CkAkOk+1 :
The underlying property is O←

k = AkOk+1. Shifting upward in a dual way, we have

H↑
k+1 = CkAkOk+1, and C↑

k+1 = CkAk. The shift-invariance properties allow us to de-
termine the Ak from the Ok or the Ck. If the factorization (3.22) is minimal, then the
columns of Ck are linearly independent as well as the rows of Ok, so that C∗

kCk > 0
and OkO∗

k > 0. These matrices are of full rank, Ck has a left inverse given by C†
k =(C∗

kCk)−1C∗
k whileOk has a right inverse given byO†

k =O∗
k (OkO∗

k )−1, and we can solve
for Ak:

Ak =O←
k O†

k+1 = C†
kC↑

k+1 : (3.24)

From the definitions of Ck and Ok, we also have

Bk = [first row of Ck+1] ;
Ck = [first column of Ok] : (3.25)

Hence, once all Hk have been factored into Hk = CkOk, the constituting {Ak;Bk;Ck}
can be derived from the structure in Ck andOk.
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Theorem 3.7 Let T be an upper triangular matrix, and let dk be the rank of its Han-
kel matrices Hk. For each k, let Hk = CkOk, where Ck;Ok are rank-dk factors. Then
{Ak;Bk;Ck;Dk} is a minimal realization for T , where Ak, Bk, Ck are given by (3.24)
and (3.25), and Dk = Tk;k.

This theorem parallels the famous Kronecker realization theorem [Kro90] in the present
setting.
PROOF For k = 1; · · · ;n, let Hk = CkOk be a minimal factorization of Hk, and let us
choose Ak =O←

k O†
k+1 and Bk, Ck as in (3.25). We must show that Ti j =BiAi+1 · · ·A j−1C j(i < j). As all these elements are entries of some Hk, this is equivalent to showing thatCk andOk are given by equation (3.23).

We will first prove that O←
k = AkOk+1, where Ak =O←

k O†
k+1. Note that

H↑
k+1 = H←

k ; (3.26)

i.e., H←
k is obtained by removing the top row of Hk+1. Hence, the row span of H←

k is
contained in that of Hk+1. Because the factorizations Hk = CkOk and Hk+1 = Ck+1Ok+1
are minimal, these row spans are equal to the row spans of O←

k and Ok+1. It follows
that there exist matrices Ak such that O←

k = AkOk+1. One solution is Ak =O←
k O†

k+1.

Substituting the given factorizations into (3.26) yieldsC↑
k+1Ok+1 = CkO←

k = CkAkOk+1,

so that, as Ok+1 is right-invertible, C↑
k+1 = CkAk.

We will now derive the expression for Ok. By the definition of Ck, and becauseO←
k = AkOk+1, we have Ok = [Ck O←

k ]= [Ck AkOk+1] : (3.27)

Recursion on k now gives the required expression (3.23) forOk. The expression for Ck

is similarly derived from the definition of Bk and C↑
k+1 = CkAk, which yieldsCk+1 = �

BkC↑
k+1

�= �
BkCkAk

� :
ExpandingOk+1 and Ck recursively produces (3.23), and thus by definition of Hk the
required values of Ti j. 2

The realization algorithm is shown in figure 3.9. It is natural that d1 = 0 and dn+1 =
0, so that a minimal realization starts and ends with a zero number of states. The algo-
rithm is reminiscent of the principal component identification method of system theory
[Kun78]. Some numerical issues are discussed later in this section.

Corollary 3.8 If, for some k, C∗
kCk = I and C∗

k+1Ck+1 = I, then A∗
kAk +B∗

kBk = I. If,
for some k, OkO∗

k = I andOk+1O∗
k+1 = I, then CkC∗

k +AkA∗
k = I.

PROOF The second claim follows from the first equation in (3.27) by taking the square
of this expression, and using the fact thatO←

k =AkOk+1. The first claim follows dually.2
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In: T (an upper triangular n × n matrix)
Out: {Tk} (a minimal realization)C1 = [ · ] ;O1 = [ · ]
for k = 1; · · · ;n266666664 dk+1 = rank(Hk+1)

Hk+1 =: Ck+1Ok+1 (take any minimal factorization)

Ak = [0 C†
k ]Ck+1

Bk = [first row of Ck+1]
Ck = [first column ofOk]
Dk = Tk;k

endFigure 3.9. The realization algorithm. The factorization Hk = CkOk can be obtainedfrom a QR-factorization or an SVD.
Realizations for which C∗

kCk = I for all k are said to be in input normal form, whereas
realizations for which OkO∗

k = I for all k are in output normal form. E.g., the trivial
realization for banded matrices, discussed in section 3.3, has Ck = I, and gives a real-
ization in input normal form, although not necessarily minimal.Numerical example
As an example of the realization theorem and the algorithm in figure 3.9, let the transfer
matrix be given by

T = 26666664 1 :800 :200 :050 :013 :003
0 :900 :600 :240 :096 :038
0 0 :800 :500 :250 :125
0 0 0 :700 :400 :240
0 0 0 0 :600 :300
0 0 0 0 0 :500

37777775 (3.28)

The position of the Hankel matrix H4 is indicated (recall that this submatrix must be
mirrored to obtain H4). A stable numerical way to obtain the minimal rank factorization
of Hk as Hk = CkOk is by computing its singular value decomposition (SVD) [GV89].
The SVDs of the Hankel matrices are computed as Hk = ÛkΣ̂kV̂∗

k , where

H1 = [ · ]
H2 = � :800 :200 :050 :013 :003

�= 1 · 0:826 · [:968 :242 :061 :015 :004]
H3 = � :600 :240 :096 :038:200 :050 :013 :003

�
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�� :685 0
0 :033

�� :922 :356 :139 :055
−:374 :729 :511 :259

�
H4 = 24 :500 :250 :125:240 :096 :038:050 :013 :003

35= 24 :908 :405 :112:412 −:808 −:420:080 −:428 :901

3524 :631 0 0
0 :029 0
0 0 :001

3524 :882 :424 :205
−:448 :622 :642:145 −:658 :739

35
etcetera. In the above, columns and rows that correspond to zero singular values have
been omitted. The non-zero singular values of the Hankel operators of T are

H1 H2 H3 H4 H5 H6

σ1 :826 :685 :631 :553 :406
σ2 :033 :029 :023
σ3 :001

Hence T has a state-space realization which grows from zero states (k = 1) to a max-
imum of 3 states (k = 4), and then shrinks back to 0 states (k > 6). Small singular
values represent states that are not very important. We apply the realization algorithm,
using the factorizations Hk = CkOk = (Ûk)(Σ̂kV̂∗

k ). This yields as time-varying state
realization for T the collection {Tk}6

1,

T1 = "
· ·

1:000 1:000

#
T4 = 26664 :536 −:810 :557:045 :308 −:013

−:000 :040 :000:843 :498 :700

37775
T2 = " :298 −:955 :800:955 :298 :900

#
T5 = 264 :671 :481:051 −:012:739 :600

375
T3 = 264 :417 −:899 −:133 :632:047 :167 −:985 −:012:908 :405 :112 :800

375 T6 = "
· :406

· :500

# :
As is seen from the table of singular values, H4 is close to a singular matrix, and hence
one expects that T can be approximated by a matrix close to it such that only two states
are needed. That this is indeed possible will be shown in chapter 10.System-theoretic interpretation
In the previous section, we have noted two properties of the Hankel matrices: their
ranks are equal to the minimal system order at each point in time, and they satisfy a
shift-invariance property. These properties have a fundamental system-theoretical na-
ture, which we briefly explain now. We go into more details in chapter 5.
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Figure 3.10. Principle of the identi�cation of a time-varying state-space model. In thisdiagram, the current time is k = 0. All possible inputs with non-zero values up to time
k = −1 (the past) are applied, and the corresponding output sequences are recorded fromtime k = 0 on (the future). Thus, only part of T is used: H0, the Hankel operator at instant
k = 0. The rank of the Hankel operator determines the state dimension at that point.

Let T be a given input-output operator. Denote a certain time instant as “current
time”, say point i. Apply an input sequence u ∈ `2 to the system which is arbitrary up
to k = i − 1 and equal to 0 from k = i on. We say that such an input has support in “the
past”, with respect to time k = i. The corresponding output sequence y = uT is taken
into consideration only from time k = i on, i.e., we record only the “future” part of y.
See figure 3.10. The following two observations form the cornerstone of realization
theory. Let y f (i) denote the half-sided sequence y f (i) = [yi yi+1 · · · ] ∈ `+2 , and likewise
define up(i) = [ui−1 ui−2 · · · ] ∈ `−

2 . The future output sequence is dependent only on xi:

y f (i) = [yi yi+1 · · ·] = xi [Ci AiCi+1 AiAi+1Ci+2 · · · ]= xiOi :
Hence upon applying all possible inputs that are zero from k = i on, the corresponding
possible outputs y f (i) are restricted by the finite dimension of xi to a subspace of small
dimensions in `+2 (in the example: two dimensions). This subspace is called the natural
output state space, or space of natural responses, at time k = i. Of course, if we select
another point in time as current time, then a similar property holds, mutatis mutandis.

A second observation is almost trivial. If we stop the input at k = i − 1, but now only
record the output from k = i+1 on, then we reach a subset of the subspace {y f (i+1)}.
This subset is again a subspace, now of the form�

xiAi [Ci+1 Ai+1Ci+2 Ai+1Ai+2Ci+3 · · · ] : xi ∈ C di
	 : (3.29)
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A refinement of this observation leads to the mathematical concept of shift invariance:
the subspace (3.29) is equal to the output state space at time i after the application of
a shift, and this subspace is contained in the next output state space, at time i+1. The
appearance of Ai in this expression enables us to identify it.

Write up(i) = [ui−1 ui−2 ui−3 · · · ]. Then from the relation y = uT follows y f (i) =
up(i)Hi, where

Hi = 26664 Ti−1;i Ti−1;i+1 Ti−1;i+2 · · ·
Ti−2;i Ti−2;i+1
Ti−3;0 . . .

...

37775 :
Repeating the same exercise for all the signal pairs up(k), y f (k), we obtain a sequence
of operators Hk, which are precisely the Hankel matrices defined in (3.21). In the time-
invariant case, where T has a Toeplitz structure, the construction yields Hk which are all
the same and do indeed possess a Hankel structure (constant along anti-diagonals). Al-
though we have lost the traditional anti-diagonal Hankel structure in the time-varying
case, we have retained two important properties: the rank property and a shift-invariance
property.

With regard to the rank property: suppose that we have a factorization of Hk: Hk =CkOk. Then the multiplication y f (k) = up(k)Hk can be split into two stages using an
intermediate quantity xk which is precisely the state at time k:

xk = up(k)Ck

y f (k) = xkOk :
This factorization is typical of any state realization: the future output y f (k) is not di-
rectly computed, but uses an intermediate quantity xk. From the decomposition Hk =CkOk, it is directly inferred that the rank of Hk determines the minimal dimensions ofCk and Ok. If the decomposition is minimal, that is, if Ck and Ok are full-rank factors
(C∗

kCk > 0, OkO∗
k > 0), then the dimension of the state space of the realization corre-

sponding to Ck and Ok is equal to rank(Hk). If all Ck satisfy C∗
kCk > 0, then we call

the resulting realization reachable, and if all Ok satisfy OkO∗
k > 0, then we call the

realization observable. Hence, if the realization is both reachable and observable, it is
minimal. The reason for this nomenclature is that if a realization is reachable (at point
k), any state xk can be reached using some up(k): it suffices to take up(k) = xkC†

k , whereC†
k = (C∗

kCk)−1C∗
k . Similarly, if a realization is observable, then from an observed out-

put y f (k), and assuming u f (k) = 0, the state xk can be retrieved as xk = y f (k)O†
k , whereO†

k =O∗
k (OkO∗

k )−1.
In chapter 5, we elaborate on the concepts of reachability, observability, and in-

put/output state spaces. This plays a fundamental role throughout the remainder of this
book. It is possible to define them in an index-free notation using diagonal operators,
and this will prove valuable in derivations later on.Numerical issues
The key part of the realization algorithm is to obtain bases Ck and Ok for the column
space and row space of each Hankel matrix Hk of T . The singular value decomposition
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(SVD) [GV89] is a robust tool for doing this. It is a decomposition of Hk into factorsUk,
Σk, Vk, where Uk and Vk are unitary matrices whose columns contain the left and right
singular vectors of Hk, and Σk is a diagonal matrix with positive entries (the singular
values of Hk) on the diagonal. The integer dk is set equal to the number of non-zero
singular values of Hk, and the first dk columns of Uk and Vk constitute basis vectors for
the column spans of Hk and H∗

k .
Figure 3.9 only gives an algorithmic outline of the realization procedure. Because

Hk+1 has a large overlap with Hk, an efficient SVD updating algorithm can be devised
that takes this structure into account. Other decompositions from linear algebra that
identify subspaces can be used instead. In theory a QR factorization of the Hk should
work, although this is not advisable in practice because a QR factorization is not rank
revealing: the addition of a small amount of noise on the entries of T will make all
Hankel matrices have full rank, thus producing a realization of high order. Decompo-
sitions that can be used instead of QR are rank revealing QR [Fos86, Cha87, BS92],
and the URV decomposition [Ste92], which is equivalent to SVD but computationally
less demanding.

Note that, based on the singular values of Hk, a reduced order model can be ob-
tained by omitting some vectors in Ck and Ok, in particular those that correspond to
small singular values. For time-invariant systems, this technique leads to a so-called
balanced model reduction. Although widely used for time-invariant systems, this is for
time-varying systems in fact a “heuristic” model reduction theory, because the model-
ing error norm is not known. (For LTI systems, a potentially large upper bound on the
modeling error is given by the sum of the truncated singular values [Glo84].) A pre-
cise approximation theory results if the tolerance on the error is given in terms of the
Hankel norm, which is the subject of chapter 10. The approximation algorithm in that
chapter is in fact a competitor for the rank revealing QR method.Computational issues
We mention some other issues related to theorem 3.7 and the corresponding realiza-
tion algorithm, which are of some importance for a practical implementation of the
algorithm.

Let T be a given upper triangular matrix, and consider its sequence of Hankel ma-
trices {Hk}, where Hk has rank dk. If for each Hk a submatrix Ĥk is known such that
rank(Ĥk) = dk also, then it is possible to determine a realization of T based on fac-
torizations of the Ĥk rather than factorizations of Hk. This generalization of the time-
invariant analog [Kal65] is useful since it can yield considerable computational savings
if the Ĥk have small dimensions in comparison with Hk. A remaining practical prob-
lem is how to obtain the Ĥk in an efficient way, because, unlike the time-invariant case,
T need not be diagonally dominant even if its Hankel matrices have low rank, so that
the Ĥk can still be matrices of large size. A trivial example of the latter is provided by
taking T to be an n × n matrix consisting of zeros, except for the (1;n)-entry.

In this section, we use the matrix πr := [Ir 0 0 · · · ] to select the first r rows of
a matrix at its right. We use, as before, the notation H←

k to denote Hk with its first
column deleted, and let † denote the generalized (left or right) inverse of a matrix. The
following result (and proof) can be found in [GKL92].
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Ĥk+1

Ĥk Ĥk;k+1

Figure 3.11. Relation between Ĥk and Ĥk+1.
Theorem 3.9 Let T be an upper triangular matrix with Hankel matrices Hk having
rank dk. For each k, suppose that the numbers r(k) and c(k) are such that the subma-
trices Ĥk = πr(k)Hkπ∗

c(k) have rank dk. Let Ĥk = ĈkÔk be a factorization of Ĥk into
minimal rank factors. Then a realization of T is given by

Âk = Ĉ†
k Ĥk;k+1Ô†

k ; Ĉk = Ôkπ∗
1 ;

B̂k = π1Ĉk ; D̂k = Tk;k ;
where Ĥk;k+1 = πr(k)H←

k π∗
c(k+1).

PROOF A diagram of the relations between Ĥk, Ĥk+1 and Ĥk;k+1 is provided in figure
3.11. The proof consists of two parts. We first verify that the full size Hankel matrix
Hk has a minimal factorization into rank dk factors Ck and Ok such thatĈk = πr(k)Ck ; Ôk =Okπ∗

c(k) ; (3.30)

i.e., , certain extensions of Ĉk and Ôk. Indeed, let Hk = C̃kÕk be any minimal factoriza-
tion, then Ĥk = πr(k)Hkπ∗

c(k) = (πr(k)C̃k)(Õkπ∗
c(k)). Because rank(Ĥk) = dk also, it fol-

lows that πr(k)C̃k and Õkπ∗
c(k) are full rank factors of Ĥk, so that these are related to the

given factorization Ĥk = ĈkÔk as Ĉk = (πr(k)C̃k)Rk and Ôk = R−1
k (Õkπ∗

c(k)), where Rk

is an invertible state transformation. Putting Ck = C̃kRk and Ok = R−1
k Õk gives (3.30).

The second step is to verify that {Âk; B̂k;Ĉk;D̂k} is a realization of T . This is done
by proving that it is precisely equal to the realization based on the full-size factors Ck

and Ok. The main issue is to show that Ak = C†
k H←

k O†
k+1 is equal to Âk. Expressions

for these generalized inverses areC†
kCk = Ĉ†

k πr(k)CkOkO†
k = Okπ∗

c(k)Ô†
k
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because C†

kCk = Idk = Ĉ†
k Ĉk = Ĉ†

k πr(k)Ck, and likewise forO†
k . Hence

Ak = C†
kCkAkOk+1O†

k+1= Ĉ†
k πr(k)CkAkOk+1π∗

c(k+1)Ô†
k+1= Ĉ†

k πr(k)H←
k π∗

c(k+1)Ô†
k+1= Ĉ†

k Ĥk;k+1Ô†
k+1 = Âk :

With less effort, it follows that Bk = π1Ck = π1πr(k)Ck = π1Ĉk = B̂k, and likewise Ck =
Ĉk. 2

The theorem shows that even for Hankel matrices with infinite dimensions we can
find a realization, as long as we are sure that the finite Hankel matrices have their rank
equal to the actual system order at that point. Unlike for time-invariant systems, we
can never be sure that a finite size Hankel matrix has indeed the maximal rank without
making further assumptions on the matrix. Hence, without making assumptions on the
matrix, it is not really possible to work with finite size Hankel matrices and obtain exact
state space models. An approximate realization algorithm is discussed in chapter 10.3.5 IDENTIFICATION FROM INPUT-OUTPUT DATA
Theorem 3.7 and the realization algorithm assume knowledge of the input-output op-
erator T . This is equivalent to assuming that the time-varying impulse response of the
system is known. Many applications, however, provide only input-output data, i.e.,
pairs of input sequences u ∈ `M2 with corresponding outputs y ∈ `N2 . We will need sev-
eral such pairs. In that case, these rows can be stacked into matrices U and Y . Since
we have

Y =UT

it follows that if U has a left inverse U† such that U†U = I, then T can be computed
as T =U†Y , and from T we can obtain the realization as in theorem 3.7 or 3.9. Thus,
system identification from input-output data is, at this level, not much different from
the realization problem with known impulse response data.

In the time-invariant case, it suffices to have a single input-output pair (u;y), since
other independent pairs can be found simply by time-shifting the sequences, exploiting
the time-invariance of the system. For time-invariant systems, the condition on u so
that U has a left inverse is called persistently exciting.

For time-varying systems, of course, we cannot generate multiple input-output pairs
from a single one, and we really need a collection of input-output pairs. Whether this
can be realized in practice depends on the application: e.g., we might have multiple
copies of the system to obtain input-output pairs that span the same period in time.
Even so, we have the problem that with a finite collection of input-output pairs we can
only estimate the part of the system that has actually been excited.

Let’s again consider the finite matrix case, with a time window running from 1 to n.
There are two possibilities. If the system starts and stops with zero state dimensions,
then T is an n × n matrix, and we need at least n independent input-output pairs (u;y),
stacked into n × n matrices U and Y , to proceed as indicated above. However, a more
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general case occurs if the input-output pairs have been observed over a finite time in-
terval of length n, but in actuality span a much larger period. In that case, the initial
state x1 need not be zero, so that we obtain

y = x1O1 +uT :
Here, T is a finite n × n matrix which is a submatrix of the actual much larger input-
output operator, spanning only the window of interest. The above equation can be de-
rived in several ways, e.g., by using linearity: the output y is the sum of the effect of
the input with zero initial state, and of the initial state with zero input. With a stack of
inputs and outputs collected as rows in U and Y , we obtain

Y = X1O1 +UT ;
where X1 is a column vector containing the initial states. Let’s assume that we have N
such finite input-output pairs, and no knowledge of X1. Our objective is to construct a
system T of minimal complexity that is consistent with the given data. The main idea
for doing this is to get rid of the influence of the term X1O1 by using the causality of
T .

The first step is to employ a QR factorization to reduce the data matrices, i.e., to
compute a unitary N × N matrix Q such that

Q∗[U Y ] = 24 R11 R12
0 R22

0 0

35=: [U 0 Y 0] :
Since the system is linear, the premultiplication by Q∗ can be viewed as simply generat-
ing new input-output pairs, consisting of linear combinations of the old pairs. Thus, we
have new pairs [U 0;Y 0] for which Y 0 = X 01O1+U 0T . We can go further and premultiply
the top block row by R−1

11 (assuming the inputs were chosen such that it is invertible),
which produces a new pair [U 00;Y 00] where U 00 = [ I

0 ]. Dropping the quotes for readabil-
ity, we can say that after these steps we have a data matrix Y such that

Y = 264 Y1
...

YN

375= X1O1 +�
T
0

�
(3.31)

where T is upper triangular.
The second term on the right has only n nonzero rows. Thus,264 Yn+1

...
YN

375= 264(X1)n+1
...(X1)N

375O1 :
This allows us to identify a basis forO1: it is the row span of this part of the data. The
initial state dimension d1 follows as well, as the rank of this submatrix. We need at
least n+d1 independent input sequences u to do this.
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The first part of the data specifies264 Y1;1 · · · Y1;n

...
...

Yn;1 · · · Yn;n 375= 264(X1)1
...(X1)n

375O1 +26664 T1;1 · · · · · · T1;n
T2;2 · · · T2;n

. . .
...

0 Tn;n 37775 :
WithO1 known, the next objective is to estimate the above first part of X1, so that this
term can be subtracted. Here, we have to use the fact that T is upper triangular: we can
select submatrices where T is zero. Thus[Yk;1 · · · Yk;k] = (X1)k [(O1)1 · · · (O1)k] ; (k = 2; · · · ;n) : (3.32)

The last factor on the right has d1 rows. Thus, only for k ≥ d1 can (X1)k be consistently
estimated as(X1)k = [Yk;1 · · · Yk;k] [(O1)1 · · · (O1)k]† ; (k = d1; · · · ;n) : (3.33)

The first d1 states cannot be recovered, but we can choose something reasonable so that
(3.32) holds, e.g., by using the same equation (3.33). This will provide a realization that
is consistent with the given data, although the initial [Bk;Dk] (for k = 1; · · · ;d1 −1) will
be some arbitrary fit.

At this point, we have recovered the initial state X1. Thus, the term X1O1 can be
subtracted from Y , which leaves an estimate for T . The realization of T can now be
obtained as before using the realization procedure in theorem 3.7.

The above procedure is only intended as a framework. There are several points for
improvement:

1. O1 is estimated from the zero block in (3.31). However, also the zero submatrices in
the lower triangular part of T should be used for this, as well as the nonzero (Hankel)
submatrices of the upper triangular part of T .

2. The pseudo-inverses in (3.33) are nested and of increasing dimensions. This could
be exploited in a computationally efficient implementation.

3. In practical situations, Y is perturbed by noise. A major point of interest is to devise
an identification procedure that is asymptotically consistent even in this case.

Similar algorithms for identification of time-varying systems from input-output en-
sembles have been proposed in [VY95, Yu96]. Those algorithms differ in the last step,
where they try to remove the influence of X1 by projection onto the complement ofO1,
and shifts thereof. This was inspired by recent subspace-based identification schemes
in the time-invariant domain [MMVV89, VD92a, VD92b, Ver94, Ove95, Vib94]. Some
applications to actual time-varying systems (the dynamics of a human joint) can be
found in [KH90, KKMH91, YV93].
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In section 3.2 we discussed systems of low displacement rank: matrices R for which the
displacement R−σRσ∗ has low rank. We continue the discussion on systems with low
displacement rank by deriving a realization theory for such systems, in case they also
have a low state dimension. We consider the finite-size matrix case, which necessarily
leads to time-varying realizations. The objective is to use the structure provided by the
low displacement rank to derive a recursive rule for computing the state space matrices
of the next time instant in terms of the current one.

Thus let R be a positive definite matrix of size n × n, possibly with block matrix en-
tries which we take square of fixed dimensions. Let us write R = [ri j] as

R = L∗L = 1
2
(F +F∗)

in which L and F are upper triangular matrices. Hence,

F = 2664 r00 2r01 · · · 2r0;n−1

r11
. . .

.... . . 2rn−2;n−1

0 rn−1;n−1

3775 :
Recall the definition of the restricted backward shift operator

σ = 266664 0 0

1
. . .
. . .

. . .
0 1 0

377775 :
We will assume that R has a displacement structure:

R − σRσ∗ = G∗JG = 264 g∗
0
...

g∗
n−1

375J[g0 · · · gn−1] :
where J has p positive and q negative signature entries, and G has p+q rows.Realization of the additive component F

Let us write for simplicity R−σRσ∗ =: X, then it is easy to see that R can be recovered
from X via the formula

R = X +σXσ∗ + · · ·+σn−1X(σ∗)n−1:
The contribution of each term to the Hankel operators for F is straightforward to eval-
uate. Indeed, consider the Hankel operator Hk(F) for F (k = 1; · · · ;n − 1). The contri-
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butions of the individual terms to Hk(F) are

Hk(X) = 264 g∗
k−1
...

g∗
0

375J
�

gk · · · gn−1
�

Hk(σXσ∗) = 26664 g∗
k−2
...

g∗
0

0

37775J
�

gk−1 · · · gn−2
�

Hk(σk−1X(σ∗)k−1) = 26664 g∗
0

0
...
0

37775J
�

g1 · · · gn−k
� :

Putting these terms together and using the outer product representation of a matrix, we
obtain

Hk(F) = 2

2666664 g∗
0J g∗

1J
. . . g∗

k−1J

g∗
0J

. . .
. . .

. . . g∗
1J

0 g∗
0J

37777752664 g1 g2 . .
.

gn−k

g2 . .
.

. .
.

gn−k+1
. .

.
. .

.

gk . .
.

. .
.

gn−1

3775 ; (3.34)

which is of the form Toeplitz matrix times Hankel matrix. From (3.34) we conclude
that

rank(Hk(F)) ≤ rank

2664 g1 g2 . .
.

gn−k

g2 . .
.

. .
.

gn−k+1
. .

.
. .

.

gk . .
.

. .
.

gn−1

3775 ;
where the latter matrix is a submatrix of the semi-infinite Hankel operator for the LTI
system

g0 +g1z+g2z2 +g3z3 + · · · :
A (standard) realization for this LTI system can be used as a starting point for the re-
alization of F. Assuming that the rank of the global Hankel operator is δ, so that we
need a state space of dimension δ, we find matrices α;β;γ of dimensions δ×δ;(p+q)×
δ;δ × 1 such that

gi = βαi−1γ : (3.35)

The k-th Hankel matrix for the series {gi} as needed in (3.34) is then264 g1 · · · gn−k
...

...
gk · · · gn−1

375= 26664 β
βα
...

βαk−1

37775 [γ αγ · · · αn−k−1γ] :
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Thus, the k-th Hankel matrix for F is

Hk(F) = 2

2666664 g∗
0J g∗

1J
. . . g∗

k−1J

g∗
0J

. . .
. . .

. . . g∗
1J

0 g∗
0J

377777526664 β
βα
...

βαk−1

37775 [γ αγ · · · αn−k−1γ] : (3.36)

Clearly, this is a factorization of the form Hk(F) = CkOk, and a realization for F can
have a time-invariant Ak = α and Ck = γ. The {Bk;Dk}-part of the realization will be
time-varying. Bk−1 is found from the first row of the first factor,

Bk−1 = 2(g∗
0Jβ+g∗

1Jβα+ · · ·+g∗
k−1Jβαk−1)= 2g∗

0Jβ + 2γ∗[β∗Jβα+ · · ·+(α∗)k−2β∗Jβαk−1] :
Let us define

Λk := β∗Jβ+ · · ·+(α∗)k−1β∗Jβαk−1 ;
then Λk satisfies the recursive Lyapunov equation4

Λk = β∗Jβ+α∗Λk−1α ;
and Bk can easily be computed from Λk via

Bk = 2(g∗
0Jβ+ γ∗Λkα) :

Similarly,
Dk = g∗

kJgk + · · ·+g∗
0Jg0

which satisfies the recursion

D0 = g∗
0Jg0 ; Dk = g∗

kJgk +Dk−1 ; (k ≥ 1):
This constitutes a low rank recursive realization for F. The algorithm is summarized

in figure 3.12. The realization is not necessarily (locally) minimal: for this, it should
at least start and end with zero state dimensions. If the dimension n of R grows while
R stays bounded, then |α| < 1 and the scheme converges gradually to a time invariant
realization, since Λk, Bk, Dk converge as k → ∞.A realization for the multiplicative Cholesky factor L

We had before

R = 1
2
(F+F∗) = L∗L :

4Such equations are discussed in extenso later in section 5.3.
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In: A generator G and signature J such that R − σRσ∗ = G∗JG
Out: A realization for F ∈ U such that R = 1

2 (F +F∗).
Find a realization {α;β;γ} from the LTI system (3.35)
A0 = · (size 0 × δ)
C0 = · (size 0 × 1)
Λ0 = 0 (size δ × δ)
D0 = g∗

0Jg0

for k = 1; · · · ;n − 1
Ak = α; Ck = γ
Λk = β∗Jβ+α∗Λk−1α
Bk−1 = 2(g∗

0Jβ+ γ∗Λk−1α)
Dk = g∗

kJgk +Dk−1
endFigure 3.12. Realization algorithm for the additive component F of a positive de�nitematrix R of low displacement rank.

We will try to find a realization for L of the form (in diagonal notation)

L = DL +BLZ(I − AZ)−1C ; (3.37)

where we keep Ak = α and Ck = γ from before, and compute new BL;k; DL;k from the
realization {Ak;Bk;Ck;Dk} of F of the preceding section. We should then have

L∗L = D∗
LDL + C∗(I − Z∗A∗)−1Z∗B∗

LDL +D∗
LBLZ(I − AZ)−1C+ C∗(I − Z∗A∗)−1Z∗B∗

LBLZ(I − AZ)−1C :
The last term in this expression is quadratic. It can be subjected to a partial fraction
expansion, which in this generalized context leads to(I − Z∗A∗)−1(B∗

LBL)(1)(I − AZ)−1 = (I − Z∗A∗)−1M+M(I − AZ)−1 − M= M+MAZ(I − AZ)−1 +(I − Z∗A∗)−1Z∗A∗M

where the block diagonal matrix M satisfies the equation

M(−1) = B∗
LBL +A∗MA : (3.38)

This equation in diagonals is actually again a recursive Lyapunov-Stein equation,
and it has indeed a (unique) solution which can be computed recursively, provided that
at each step B∗

L;kBL;k is known. Indeed, with initial point M0 = 0, the expansion of
(3.38) into its diagonal entries leads to

Mk+1 = B∗
L;kBL;k +A∗

kMkAk (k = 0;1; · · ·) :
When we introduce the partial fraction decomposition in the equation for L∗L above,
and identify the strictly upper triangular, diagonal and strictly lower triangular parts,
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In: A generator G and signature J such that R − σRσ∗ = G∗JG
Out: A realization for L ∈ U such that R = L∗L.

α; γ from the LTI system (3.35).
B0;D0 from the algorithm in figure 3.12
DL;0 = [ 1

2 (D0 +D∗
0)]1=2

BL;0 = 1
2 D−∗

L;0B0

M1 = B∗
L;0BL;0

for i = 1; · · · ;n − 1
Ai = α; Ci = γ
Bi;Di from the algorithm in figure 3.12
DL;i = [ 1

2(Di +D∗
i )−C∗MiC]1=2

BL;i = D−∗
L;i[ 1

2 Bi −C∗MiA]
Mi+1 = B∗

L;iBL;i +A∗MiA
end Figure 3.13. Realization of a Cholesky factor L of R

viz.

L∗L = D∗
LDL +C∗MC + (D∗

LBL +C∗MA)(I − AZ)−1C + [∗]
1
2 (F +F∗) = 1

2 (D + D∗) + 1
2 BZ(I − AZ)−1C + [∗] ;

then we see that the block diagonal matrices BL and DL must satisfy the set of equations8<: 1
2 (D+D∗) = D∗

LDL +C∗MC
1
2 B = D∗

LBL +C∗MA
M(−1) = B∗

LBL +A∗MA : (3.39)

This set of equations clearly leads to a recursive algorithm, at least if they are consis-
tently solvable (which we have to show) — see the algorithm in figure 3.13.

One may think that a solution must exist, almost by construction (since the starting
point of the recursion is well known — M0 = 0), but there is reasonable doubt that at
some point k, the equation for DL;k,

D∗
L;kDL;k = 1

2(Dk +D∗
k)−C∗

kMkCk

cannot be satisfied because the second member is possibly not positive definite. It is
instructive to show that this cannot happen. We construct the proof by looking at the
Cholesky factorization of R in a “Crout-Doolittle” fashion — the classical “LU factor-
ization” or Gauss elimination method to solve a system of linear equations, see [Ste77].
The general Crout-Doolittle method (without pivoting) consists in the recursive con-
struction of a tableau for the lower/upper factorization of a general matrix T , but it ap-
plies almost without modification to the Cholesky decomposition of a (strictly) positive
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matrix R. In this case, we recursively construct the factorization26664 r00 r01 r02 · · ·

r10 r11 r12 · · ·
r20 r21 r22 · · ·
...

...
...

. . .

37775= 26664 l∗
00 0

l∗
01 l∗

11
l∗
02 l∗

12 l∗
22

...
...

...
. . .

3777526664 l00 l01 l02 · · ·
l11 l12 · · ·

l22 · · ·

0
. . .

37775
by peeling off the first row and column of R:

R = 264 l∗
00

l∗
01
...

375 [l00 l01 · · ·]+264 0 0 · · ·
0
...

R0 375 :
It is clear that [l00 l01 · · ·] = r−∗=2

00 [r00 r01 · · ·] :
In this way, the first column and row of L∗ and L are computed; the procedure is then
repeated on the smaller matrix R0 to find the next columns and rows, etcetera. The en-
tries of L are thus recursively determined by

Step 0: l00 = r1=2
00

l0 j = l−∗
00 r0 j ( j = 1;2; · · ·) ;

Step i: lii = (rii − ∑i−1
k=0 l∗

kilki)1=2

li j = l−∗
ii (ri j − ∑i−1

k=0 l∗
kilk j) ( j = i+1; i+2; · · ·) :

A standard proof (see e.g., lemma 12.2 later in the book) shows that, for finite ma-
trices

R > 0 ⇔
�

r00 > 0
R0 > 0 :

This can be used to derive the central property in the algorithm: the pivot is strictly
positive definite whenever R is, so that its square root can be taken, in the case of scalar
as well as matrix block entries.

In our case we have, thanks to the realization for F,

R = 26664 1
2 [D0 +D∗

0] 1
2 B0γ 1

2 B0αγ 1
2 B0α2γ · · ·

1
2 γ∗B∗

0
1
2 [D1 +D∗

1] 1
2 B1γ 1

2 B1αγ · · ·
1
2 γ∗α∗B∗

0
1
2 γ∗B∗

1
1
2 [D2 +D∗

2] 1
2 B2γ · · ·

...
...

...
...

. . .

37775 :
We now show that the recursions that solve (3.39) in effect generate the Crout-Doolittle
recursion.

Step 0: M0 = · , 1
2 [D0 +D∗

0] = D∗
L;0DL;0, 1

2 B0 = D∗
L;0BL;0 are of course solvable for

DL;0 and BL;0, and produce the first row of L as[l00 l01 · · ·] = [DL;0 BL;0γ BL;0αγ BL;0α2γ · · ·] :
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Step i: let us assume that the first i rows (i.e., with indices 0; · · · ; i−1) of L are known
and satisfy

lki = BL;kαk−i−1γ (k < i) :
We have to show for the i-th row that D∗

L;iDL;i is well defined (i.e., the expression
for it is positive definite), and also that the rest of the row with index i is correct.
The Crout-Doolittle scheme applies and, thanks to the induction hypothesis, it says
that

rii −
i−1

∑
k=0

l∗
kilki = 1

2 [Di +D∗
i ]− ∑i−1

k=0 γ∗[α∗]i−1−kB∗
L;kBL;kαi−k−1γ

is positive definite. The recursion for M on the other hand gives an expression for
the sum:

Mi = i−1

∑
k=0

[α∗]i−1−kB∗
L;kBL;kαi−k−1

so that the formula is in fact

rii −
i−1

∑
k=0

l∗
kilki = 1

2 [Di +D∗
i ]− γ∗Miγ ;

which is hence positive-definite and can be factored as D∗
L;iDL;i. This also gives

DL;i = lii. A further identification with the Crout-Doolittle scheme produces, for
j > i,

li j = D−∗
L;i{ 1

2 Biα j−i−1γ − ∑i−1
k=0(BL;kαi−1−kγ)∗(BL;kα j−1−kγ)}= D−∗

L;i[ 1
2 Bi − γ∗Miα]α j−i−1γ :

Since we defined BL;i to satisfy

1
2 Bi = D∗

L;iBL;i + γ∗Miα

we find li j =BL;iαi− j+1γ, which is the posed realization for L. We may conclude that
the scheme given by (3.38) always produces a strictly positive-definite expression
for

1
2 [Di +D∗

i ]− γ∗Miγ ;
when the original R is strictly positive definite.

This concludes the proof of the existence of the realization for L as given by the
algorithm.Discussion
A legitimate question is of course, “what do we gain in complexity reduction of calcu-
lations when we apply the realization theory to a system of low displacement rank?”
A meaningful answer to such a question requires an understanding of what we mean
by ‘calculations’. We consider two cases: calculations aiming at the construction of a
model for the system or its inverse, and calculations that aim at applying the model to
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an input. Both the low displacement rank and the low Hankel degree will contribute in
both cases — and in the expected manner. The low displacement rank allows for real-
izations of F and L in which only the matrices Bk and Dk vary from one point to next
using simple update equations, depending only on the actual gk, which is itself only
dependent on time-invariant data. If the Hankel rank is δ and the original system has
scalar inputs and outputs, then the complexity of the realization {α;β;γ} is of the order
of (p+ q)δ (see chapter 14 for further discussions on complexity of the time varying
state space model). Hence we end up with a parameter update scheme which can be
very efficient, depending on the precise values of the three parameters. The compu-
tational efficiency of a vector-matrix products realized by a state space computational
scheme is directly proportional to the size of the state δ. As for the inverse (say of L),
we also face two types of computations: updates and the application of the comput-
ing scheme to inputs. Again, the update of the realization matrices for the inverse is a
purely local matter dependent only on the actual gk or their realization, via the formulas
given by (3.18). The computations can be restricted to the computation of D−1

k only.
Of course, the usage of a time varying systems model for computation precludes

the utilization of the FFT as complexity reducing engine. An FFT scheme, however,
requires a complete shuffle of the data, either at the input side, or in the course of the
computations. It is (in some variations) the computational scheme that uses the small-
est number of multiplications and additions possible, but at the cost of maximal shuf-
fling of data. It also does not utilize the fact that relevant impulse responses can have a
lot of structure or can be approximated with very little data. In selective applications,
accuracy will suffer. This is the reason why in many signal processing applications, fil-
tering algorithms are the preferred mode of implementation, although they coexist with
the FFT. Even intermediate forms are possible, utilized in subband or multiresolution
coding schemes, in which some shuffling of data takes place, combined with classi-
cal filtering. Therefore, a clear-cut statement concerning the advantage of one or the
other is hard to make outside a specific application domain. This holds true even for the
Toeplitz case. Here, Hankel realization theory reduces to the classical LTI realization
theory, and the displacement rank may be just 1, so that vector-matrix multiplication
reduces to a single FFT. The relative computational efficiency then pitches the system’s
degree δ against the logarithm of the time sequence — lnn, which might appear to be
to the advantage of the latter. But then, not all items in the complexity calculation have
been included! E.g., the ‘pipeline’ complexity of the FFT is again n against δ, which
may be very disadvantageous in concrete cases. And if selective accuracy is included
in the considerations, then the length of the FFT and the wordlength to be used may
just be impractical.



4 DIAGONAL ALGEBRA

In the theory of discrete time systems, there are two classes of “most elementary” op-
erators, namely instantaneous or non-dynamic operators which affect only the current
input and leave the state undisturbed, and “simple shifts” (unit delays). In our notation,
the first class corresponds to diagonal transfer operators (block diagonal matrices, ele-
ments ofD or matrices for which only the main diagonal is non-zero), whereas simple
shifts are represented by Z: a matrix whose only non zero block-entries are identity
matrices on the first off-diagonal. With these two basic components, we can set up
a “diagonal algebra” which yields expressions that look like those of classical time-
invariant system theory. Many results from that theory carry over straightforwardly as
well: the notation is not just cosmetically interesting.

In chapter 3, we have looked at systems T that map input sequences in `M2 to output
sequences in `N2 , and we have briefly considered the use of stackings of such sequences
into stacked spaces XM

2 := X2(CZ;M). Interestingly, such a generalized input se-
quence can be brought into the elementary scheme of algebra of diagonals, by viewing
an element ofX2(CZ;M) simply as a (row) sequence of diagonals. Based on this idea,
we set up a non-commutative algebra in which diagonals play the role of scalars and
the Hilbert space of `2-sequences becomes a Hilbert space module of sequences of di-
agonals (cf. [GH77]). In the same way, the scalar Hilbert space inner product translates
to a diagonal inner product in the Hilbert space module. The idea of using such a diag-
onal algebra originated in the papers of Alpay, Dewilde and Dym [ADD90]. We omit
the (standard) proof that an algebra is obtained, and confine ourselves to proving the
properties that we actually need. 73
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In this chapter, we introduce the necessary algebraic background and concepts, so

that we can focus on the system theoretical consequences in chapter 5 and further.4.1 SEQUENCES OF DIAGONALSCollections of signals
Let CZ denote a doubly infinite sequence of one dimensional copies of the complex
plane C , and let us consider X2(CZ;M) for some input space sequence M. If U ∈X2(CZ;M), then each row in U is a sequence in `M2 . An operator T mapping `M2 to`N2 can easily be extended to an operator mappingX2(CZ;M) toX2(CZ;N ): just let T
act on individual rows of U, in agreement with the matrix representation of UT . In this
way, T is upgraded to an operator which maps one Hilbert-Schmidt space to another,
with the same norm kTk. Note that T is quite a special operator on X2-spaces: it is
described by a matrix representation with only two indices.

For simplicity of notation, we will write from now onXM
2 = X2(CZ;M) ;LM2 = L2(CZ;M) ;UM2 = U2(CZ;M) : (4.1)

Also, we will often simply write X2 instead ofXM
2 if the precise structure ofM is not

particularly relevant to the argument.
A second way to represent an element of X2 was indicated in section 2.1:

U ∈ X2 : U = ∞

∑
−∞

Z[k]U[k] ; U[k] = P0(Z[−k]U) :
Thus, U can also be viewed as a sequence of diagonals. Applying U to T , it is seen that
T acts on U as it would act on an `2-sequence:

Y =UT = (· · ·+Z[−1]U[−1]+U[0]+ZU[1]+Z[2]U[2]+ · · ·)T :
If we introduce a diagonal expansion for T as well, we can work out the expression for
a diagonal Y[n] of the result:

Y[n] = P0(Z[−n]UT)= P0

�
Z[−n] ∑k(Z[k]U[k] ∑i Z[i]T[i])�= ∑k Z[k−n]U[k]Z[n−k]T[n−k]= ∑k U(n−k)[k] T[n−k] :

This expression plays the role of convolution in the present diagonal setting. If T ∈ U ,
then it is a causal transfer operator, and the summation runs from k = −∞ to k = n.D-invariance and snapshots
Since elements of an X2 space have natural matrix representations, general operators
mapping anX2 space to anX2 space require a tensor representation with four indices. It
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turns out that most operators that we use throughout this book have a special structure,
called left D-invariance, which allows them to be specified by at most three indices.
Singling out one of these indices as a parameter (often the index corresponding to time
evolution), we obtain a representation of the operator as a sequence of matrices which
we can aptly name a sequence of “snapshots”. We say that an operator T : X2 → X2 is
left D-invariant if for all D ∈D; U ∈X2,

D(UT) = (DU)T :
An operator which is left D-invariant maps the rows of U independently of each other:
the k-th row ofY =UT depends only on the k-th row ofU. To see this, it suffices to take
for U an operator in X2 which has zero rows except possibly for the k-th row. Let D
be a diagonal operator which is zero except for the k-th diagonal entry, which is taken
equal to I. Then DY = D(UT) = (DU)T = UT = Y , which implies that Y has zero
rows except for the k-th row. This can also be checked in the more formal πk-notation
of chapter 2, equation (2.3), in which πkU = uk, the k-th row of U; π∗

k(πkU) =U, and
D = π∗

kπk.

Definition 4.1 Let T : X2 → X2 be a left D-invariant operator. Then Tk,

Tk : `2 → `2 : u 7→ uTk = πk( [π∗
ku]T) :

is called a snapshot of T at point k.

Note that π∗
ku is an operator U in X2, whose k-th row is equal to u, and which is zero

otherwise. Hence, this operator has the correct dimensions as left argument for T . Be-
cause T is left D-invariant, the resulting operator Y = UT also has zero rows except
for the k-th row. Denote this row by y ∈ `2, then applying the definition, we obtain that
Y =UT ⇔ y = uTk.

More in general, we can take any U ∈X2, break it apart into its rows uk = πkU ∈ `2,
apply Tk to uk, for each k, and assemble the resulting rows yk = ukTk into Y = ∑π∗

kyk.
By D-invariance, the result is equal to Y =UT . This proves the following proposition.

Proposition 4.2 Let T :X2 →X2 be a left D-invariant operator. Then, for all U ∈X2,

Y =UT ⇔ yk = ukTk (all k) :
Hence, the collection of snapshots {Tk} forms a complete description of T .Examples
As an example, consider the projection operator P, which projects X2 onto U2. It is
easily verified that P is a left D-invariant operator: P(DU) = DP(U) for all D ∈ D.
Hence P has a collection of snapshots {Pk}. Applying the definition, we obtain that
the snapshots Pk are

Pk = 26666664 . . .
. . .

. . .
. . . 0 0

0 1 0
0 1

. . .
. . .

. . .
. . .

37777775 (4.2)
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where the underlined entry of Pk is at the (k;k)-th position. For a sequence u ∈ `2, all
entries in uPk with index smaller than k are zero, while the other entries remain equal to
the originals in the sequence u. The collection of operators {Pk} is nested: Pk+1 � Pk

for an obvious definition of the ordering relation “�”. This property can be used to
describe time-varying systems [FS82].

A second, trivial example is formed by the transfer operators T : `M2 → `N2 upgraded
to T : X2(CZ;M) → X2(CZ;N ). All its snapshots are the same, and equal to T .

A more elaborate example is the following. Let M = N = [· · · 0 1 1 1 1 0 · · ·] and
T : `M2 → `N2 be given by

T = 2664 1 t01 t02 t03
1 t12 t13

1 t23

1

3775
T is an operator X2 → X2 as well. Consider the operator HT : X2 → X2 : HT =
P(P0( ·)T ), i.e., an argument to HT is first projected onto L2Z−1, subsequently mul-
tiplied by T , then projected onto U2. HT is left D-invariant. Its non-zero snapshots are
given by

H1 = 2664 0 t01 t02 t03

0 0 0
0 0

0

3775 ; H2 = 2664 0 0 t02 t03

0 t12 t13

0 0
0

3775 ;
H3 = 2664 0 0 0 t03

0 0 t13

0 t23

0

3775 : (4.3)

4.2 THE DIAGONAL ALGEBRA OF X2Diagonal inner product
An operator U ∈ XM

2 consists of rows Ui = πiU ∈ `M2 such that U = ∑i π∗
i Ui. XM

2
is the direct orthogonal sum of its subspaces π∗

i πiXM
2 , each of which is isomorphic to`M2 . If T is an operator `M2 → `N2 , extended to XM

2 → XN
2 , then T is left D-invariant,

and the rows of U act as independent input sequences to T . Consequently, the norm of
an operator T on `2 is also equal tokT k = sup

U∈XM2 kUT kHSkU kHS

In the space XM
2 , we define the diagonal inner product as [ADD90]

{A;B} := P0(AB∗) (A;B ∈XM
2 ) : (4.4)
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This inner product takes diagonal values and plays a similar role as the scalar inner
product in Hilbert spaces.1 Some properties are {A;B} ∈D2(M;M), and 〈A;B〉HS =
trace{A;B}. The i-th entry of {A;B} on the diagonal is equal to the ordinary inner prod-
uct of `2-sequences (Ai;Bi):

{A;B} = diag[ (Ai;Bi) ]∞−∞ ;
where Ai = πiA and Bi = πiB are the i-th rows of A and B, respectively. In particular,
we have that

A = 0 ⇔ 〈A;A〉HS = 0 ⇔ {A;A} = 0 ; (4.5)

〈DA;B〉HS = 0 (all D ∈D) ⇔ {A;B} = 0 : (4.6)Positive and contractive operators
A Hermitian operator A in X (M;M) is positive, A ≥ 0, if for all u ∈ `M2 ,(uA;u) ≥ 0 :
We say that A is strictly positive,2 notation A� 0, if there is an ε > 0 such that, for all
u in `M2 , (uA;u) ≥ ε(u;u) :
It is known that a positive operator A ∈X is strictly positive if and only if A is bound-
edly invertible in X . The above definitions can be formulated in terms of the diagonal
inner product, as follows.

Proposition 4.3 Let A ∈X (M;M) be a bounded Hermitian operator.

A ≥ 0 ⇔ for all U ∈XM
2 : {UA;U} ≥ 0 ;

A� 0 ⇔ ∃ ε > 0 : for all U ∈ XM
2 : {UA;U} ≥ ε{U;U} :

PROOF A Hermitian diagonal operator is positive if and only if all its diagonal entries
are positive. Since the diagonal inner product is a diagonal of ordinary inner products:
{UA;U} = diag[ (UiA;Ui) ]∞−∞, where Ui = πiU is the i-th row of U, we have that for all
U ∈ XM

2 ,

{UA;U} ≥ 0 ⇔ (UiA;Ui) ≥ 0 (all i)
⇔ for all V ∈ XM

2 : 〈VA;V〉HS = ∑i (ViA;Vi) ≥ 0 :
A similar reasoning applies to the second part of the proposition. 2

Let T be an operator in X (M;N ). T is said to be contractive if y = uT ⇒ kyk ≤kuk, that is, if (uT;uT) ≤ (u;u) for all u ∈ `M2 . T is strictly contractive if there is ε > 0
such that (uT;uT) ≤ (1 − ε)(u;u) for all u ∈ `M2 . Hence T is contractive, respectively
strictly contractive, if

I − TT∗ ≥ 0 ; resp. I − TT∗ � 0 :
1The diagonal inner product does not evaluate to a scalar and hence it is not an inner product in the usual
Hilbert space theory, but rather in a Hilbert space module sense.
2More precisely, uniformly strictly positive.
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Consider subspaces (i.e., closed linear manifolds) of the Hilbert space XM

2 with the
standard Hilbert-Schmidt inner product and which satisfy the additional property of
left D-invariance: H in XM

2 is said to be left D-invariant if F ∈ H ⇒ DF ∈ H for
any diagonal D ∈D(CZ;CZ), i.e., DH ⊂ H :
A left D-invariant subspace has the property that it falls apart naturally into a stack of
independent slices: just as XM

2 = · · ·`M2 × `M2 × · · · earlier, we can writeH= · · · ×H0 ×H1 × · · · (4.7)

where each Hi = πiH is a subspace in `M2 . Indeed, if F ∈ H, then DF ∈ H, and by
taking D equal to [Di = 1; Dk = 0 (k 6= i)], that is, D= π∗

i πi ∈D, it follows that π∗
i πiF =

π∗
i Fi ∈H, hence (· · · ×H0 ×H1 × · · ·) ⊂H and F ∈ H ⇒ Fi ∈ Hi. Conversely, F ∈XM
2 ;Fi ∈Hi ⇒ F ∈H by definition of theHi’s. The D-invariance property implies

that the Hi are “uncoupled”: the fact that an element F of H has a component Fi inHi does not pose conditions on other rows of F. A closely related alternative to the
description (4.7) is provided by the following lemma:

Lemma 4.4 LetH∈XM
2 be a left D-invariant subspace, and letHi = πiH∈ `M2 . The

spaces π∗
iHi are subspaces ofH which are pairwise orthogonal and together spanH:H = · · · ⊕ π∗

0H0 ⊕ π∗
1H1 ⊕ · · · :

PROOF An element of π∗
iHi has all its rows equal to zero, except possibly the i-th

row. π∗
iHi is a subspace of H because π∗

iHi = π∗
i πiH = DH ⊂H, where D = π∗

i πi ∈D. π∗
iHi is orthogonal to π∗

jH j if i 6= j because, for Fi ∈ Hi;Fj ∈ H j, we have that
〈π∗

i Fi;π∗
jFj〉HS = trace π∗

i (Fi;Fj)π j and trace π∗
i Aπ j = 0 (i 6= j) for all A of appropriate

dimensions. The collection {π∗
iHi} spansH because ∑i π∗

i πi = I. 2
LetH be a left D invariant subspace inXM

2 . Each of its slicesHi is a subspace in the
Hilbert space `M2 . Let Ni be the dimension of the subspaceHi. If each of these dimen-
sions is finite then we say thatH is of locally finite dimension. Note that the dimension
ofH is equal to the sum of all Ni, andH can be a finite or infinite dimensional subspace
in XM

2 . The index sequence N = [Ni]∞−∞ is called the (left) dimension sequence of the
left D-invariant subspaceH, and we write

N = sdim (H) :
The orthogonal complement of a subspaceH in XM

2 isH⊥ = {F ∈X2 : 〈F;G〉HS = 0 ; all G ∈H} :
Since XM

2 is a Hilbert space,H⊥ is a subspace, andH⊕H⊥ = XM
2 .

Proposition 4.5 IfH is a left D invariant subspace in XM
2 , thenH⊥ is also left D in-

variant, and H⊥ = {F ∈XM
2 : {F;G} = 0 ; all G ∈H} :
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PROOF A straightforward proof uses (4.6) twice. Let F ∈ H⊥, G ∈ H, then the D-
invariance property ofH implies

〈F;DG〉HS = 0 (all D ∈D) ⇔ {F;G} = 0 ⇔ 〈DF;G〉HS = 0 (all D ∈D)
so that DF ∈H⊥. 2

Consequently,H⊥ also falls apart into subspaces (H⊥)i, and it is easy to show that(H⊥)i = (Hi)⊥, so that the orthogonal complement of a left D-invariant subspace H
consists of the complement of its slicesHi.

We list some more straightforward properties of D-invariant subspaces.

If A and B are left D-invariant subspaces, then so are PA(B) and PA⊥(B), the pro-
jections of B ontoA and A⊥, respectively.

If A or B is locally finite, then so is PA(B).
If two linearly independent subspacesA and B of XM

2 are locally finite, then so is
their direct sum A+̇B.

IfA is a left D-invariant subspace and B ∈X is a bounded linear operator, thenAB
is also a left D-invariant subspace, with

sdim (AB) ≤ sdim (A) : (4.8)

(The overbar denotes closure.)4.3 SLICED BASES AND PROJECTIONS IN X2Sliced bases of locally �nite subspaces
Let H be a left D-invariant subspace of XM

2 . Since XM
2 is separable in the Hilbert-

Schmidt metric,H has an orthonormal basis. We have seen thatH falls apart into slicesHi = πiH, which are subspaces in `M2 . If each of these subspaces has finite dimension
(Ni, say), thenH is by definition locally finite. In this section, we consider special basis
representations for such subspaces which are consistent with the sliced structure.

Let Hi have an orthonormal basis {(qi)1; · · · ;(qi)Ni }, with each (qi) j ∈ `M2 . Be-
cause of lemma 4.4, an orthonormal basis ofH is the set {π∗

i (qi) j} ( j = 1; · · · ;Ni; i =
−∞; · · · ;∞). It is notationally convenient to collect the set of (qi) j into one operator Q.
This is done in two steps.

Stack {(qi) j} j=1::Ni as one operator Qi ∈ [C Ni → `M2 ]. Note that Λi = QiQ∗
i is well

defined, it is the Gram matrix of the basis of Hi. In the current situation, the basis
is orthonormal and Λi = I. The subspace Hi is generated by the basis operator Qi

in the sense thatHi = C Ni Qi: it consists of all linear combinations of the (qi) j .

Stack the Qi further as one operator

Q = ∑
i

π∗
i Qi (4.9)
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Q =

...

(q0)1

	
N2

(q1)1(q1)2(q1)3(q2)1(q2)2

Q0

Q1

n
Q2

n
M0 M1

...

}N0o
N1

Figure 4.1. Basis representation Q of some subspace in X2.
with rows πiQ=Qi. See figure 4.1. Usually, we haveH⊂U2 orH⊂L2Z−1, which
is signified by the diagonal staircase line in the figure (for these subspaces, the basis
vectors are zero at the left, resp. right of the line).

We call Q an (orthonormal) sliced basis representation of the given basis ofH. A num-
ber of properties of such a basis operator are listed below.

Proposition 4.6 LetH be a locally finite D-invariant subspace inXM
2 , with sdim (H)=

N, and let Q be an orthonormal sliced basis representation forH. Let N = C N . Then
any F ∈H can be uniquely written as

F = DF Q ;
for a certain DF ∈DN2 . In particular, Q is bounded on DN2 and generatesH viaH = DN2 Q :
PROOF Let us start from the orthonormal basis {(qi)1; · · · ;(qi)Ni } of eachHi. Because
{π∗

i (qi) j} ( j = 1; · · · ;Ni; i = −∞; · · · ;∞) is a basis of H, any F ∈ H can be written as
the linear combination of the basis sequences

F = ∑
i; j (αi) j · π∗

i (qi) j ; (4.10)

where the coefficients (αi) j are uniquely determined by F and ∑i j |(αi) j |2 = kF k2
HS <

∞. Using Qi, equation (4.10) becomes

F = ∑
i

αi · π∗
i Qi ; (4.11)
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where αi = [(αi)1; · · · ;(αi)Ni ] ∈ C 1×Ni satisfies ∑i kαi k2

2 < ∞. In terms of Q, equation
(4.11) in turn becomes

F = DF Q ; DF = diag[αi]∞−∞ ∈DN2 ; (4.12)

so thatH=DN2 Q. The expressionH=DN2 Q shows that Q is bounded as a [D2 →X2]
operator. 2Example
Let M = N = [· · · 0 1 1 1 1 0 · · ·] and T : `M2 → `N2 be given by

T = 2664 1 α1 α1α2 α1α2α3
1 α2 α2α3

1 α3
1

3775
Consider H = P(L2Z−1T). (This type of subspace will be frequently used in the fol-
lowing chapters.) H is a left D-invariant subspace. To obtain a basis representation forH, we first look at its slices Hi. Note that, by D-invariance, π∗

iHi = P(π∗
i πiL2Z−1T),

and that πiL2Z−1 is the subspace in `M2 consisting of sequences that are zero from en-
try i on. After multiplying with T , the resulting sequences are acted upon by P(π∗

i ·),
whose action can also be described as setting al entries before point i equal to zero,
and embedding the result in XN

2 . It is clear that only H1; · · · ;H3 are nonzero. These
subspaces are given byH1 = row(H1) ; H1 = �

α1 α1α2 α1α2α3
�H2 = row(H2) ; H2 = �

α1α2 α1α2α3

α2 α2α3

�H3 = row(H3) ; H3 = 24 α1α2α3

α2α3

α3

35
The connection with the snapshots of HT in (4.3) is not coincidental, and will be worked
out in chapter 5. Assuming αi 6= 0, we thus have sdim (H) = [· · · 0 1 1 1 0 · · ·], and
an unnormalized basis forH is given by

Q = 2666664 · · · ·

1 α2 α2α3

1 α3

1

3777775 ;
suppressing the remaining empty dimensions.
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Q can be viewed as an operator from (a domain in)XN

2 toXM
2 , but it is not necessarily

a bounded operator. A simple example of an unbounded Q is obtained by taking Qi =[· · · 0 1 0 · · ·] (all i), so that

uQ = [· · · u−1 u0 u1 · · ·]2664 ...
0 1 0

...

3775 = [· · · 0
∞

∑
−∞

ui 0 · · ·] ;
which can be infinite since an `2-sequence need not be summable (as is demonstrated
by the sequence [1; 1

2 ; 1
3 ; · · ·]). Although it is usually enough to consider Q with domain

restricted to D2, sometimes we need properties which seem to involve a more general
domain, and we derive such properties below. (A reader not interested in these details
can continue with proposition 4.7.)

To start, note that along with Q, operators DQ and QX (D ∈ D;X ∈ X ) are also
bounded [D2 → X2] operators since DD2 ∈ D2, X2X ∈ X2. The domain of definition
of Q can be extended: for example, the application of Q on elements of the type D2Z
is consistently defined via

D(ZQ) = Z(D(1)Q) ; (4.13)

and can be consistently extended Q (though not necessarily in a bounded fashion), to
all finite sums of terms of the type DZ[k]Q. Hence Q is densely defined on XN

2 by
extension.

We have defined, see (2.8), the operator P0 onX2 as the projection ontoD2. We have
already extended P0 to operators in X : P0(X) = diag[Xii] ∈ D, where Xii = πiXπ∗

i is
bounded for each i. P0 can also be extended to unbounded operators that are bounded
as [D2 → X2] operators: because π∗

i πi ∈ D2 and hence π∗
i πiQ ∈ X2, Qii = πiQπ∗

i =
πi(π∗

i πiQ)π∗
i is uniformly bounded over i. Thus P0(Q) = diag(Qii) is well defined and

bounded: P0(Q) ∈ D. The extension satisfies the usual homogeneity rule for P0: if
D1;2 ∈D, then P0(D1QD2) = D1P0(Q)D2.

As a bounded operator Q :DN2 →XM
2 , Q has a bounded adjoint: Qa :XM

2 →DN2 .
But also as a (possibly unbounded) operator [XN

2 → XM
2 ], Q has an (unbounded) ad-

joint Q∗ : XM
2 → XN

2 , see [AG81, §44]. It is defined as follows: let dom(Q) be the
domain of Q in XN

2 . The domain of Q∗ consists of all elements G ∈ XM
2 for which

there is a F0 ∈XN
2 such that for every F ∈ dom(Q),

〈FQ;G〉HS = 〈F;F0〉HS ; (4.14)

and we write F0 = GQ∗. The existence of Q∗ implies symmetrically: if F ∈ dom(Q)
then for all G ∈ dom(Q∗) and F0 = GQ∗ ∈XN

2 we have that 〈FQ;G〉HS = 〈F;FQ∗〉HS.
Restricting F to D2 ⊂ dom(Q) on which it is a bounded operator, and since then it is
true (for any F0) that

〈F;F0〉HS = 〈F;P0(F0)〉HS;
we have 〈FQ;G〉HS = 〈F;P0(GQ∗)〉HS, and hence P0( ·Q∗) is the adjoint operator of [Q
restricted toDN2 ]. Since the latter operator is bounded, its adjoint is a bounded [XM

2 →



DIAGONAL ALGEBRA 83DN2 ] operator. The Qa alluded to earlier is in fact given by Qa = P0(·Q∗), so that Q∗

can be viewed as a natural extension of Qa.
As a corollary, P0( ·QQ∗) is a bounded [DN2 →DN2 ] operator, hence

ΛQ := P0(QQ∗) ∈D(N ;N )
is well defined by the extension of the domain of P0 discussed earlier. The operator
ΛQ is the Gram operator of the basis {(π∗

i qi) j} of H. It is a diagonal operator whose
entries Λi = QiQ∗

i contain the Gram matrices of the bases of the subspaces Hi of H.
Because these bases have been chosen orthonormal, ΛQ = I.

Finally, using the definition (4.13), the adjoint of ·(ZQ) restricted toD2 is formally
equal to P0(Z−1 · Q∗)(−1): let D ∈D2, X ∈X2, then

{DZQ;X} = {ZD(1)Q;X} (4.15)= {D(1)Q;Z−1X}(−1)= {D(1);P0(Z−1XQ∗)}(−1)= {D;P0(Z−1XQ∗)(−1)} :
The computing rules on unbounded basis operators introduced so far are sufficient

for our purposes. The importance of such basis representations is illustrated by the
following proposition.

Proposition 4.7 LetH be a locally finite D-invariant subspace in XM
2 , and let Q be a

sliced basis representation ofH. Let F ∈H, then

F = P0(FQ∗)Q = {F;Q}Q :
PROOF Let N = sdim H andN = C N . According to (4.12), any element F ofH has a
representation F = DF Q in terms of Q, where DF ∈DN2 . The diagonal of coefficients
DF is obtained as

DF = P0(FQ∗) :
Since F ∈ XM

2 , we have indeed that DF ∈DN2 . 2Non-orthogonal bases of locally �nite subspaces
The preceding discussion can be generalized to non-orthonormal bases. Again, let H
be a locally finite left D-invariant subspace in XM

2 . H falls apart into subspacesHi =
πiH with finite dimensions Ni. For each i, let {( fi)1; · · · ;( fi)Ni } be a complete system
of vectors whose Gram matrix Λi = [(( fi) j; ( fi)k) ]Ni

j;k=1 is bounded and boundedly in-
vertible. The total collection {π∗

i ( fi) j } ( j = 1; · · · ;Ni, all i) is called a Riesz basis ofH.
The condition on Λ is equivalent to demanding that it be strictly positive: Λ� 0. We
call such a basis a strong sliced basis. For such a strong sliced basis, we can construct
operators Fi and stack them in an operator F in the same way as before. We obtain
similar results: F generatesH via H = DN2 F ;



84 TIME-VARYING SYSTEMS AND COMPUTATIONS
it may be an unbounded operator, densely defined onXN

2 , but it is bounded as a [DN2 →XM
2 ] operator, and its adjoint F∗ exists in X2, which in general may be unbounded

as well. The operator P0( ·F∗) : XM
2 → DN2 is well defined and bounded, and is the

adjoint of F with domain restricted to DN2 . Consequently, the operator ΛF = P0(FF∗)
is in D(N ;N ), and is equal to the Gram operator Λ of the chosen basis:

ΛF = P0(FF∗) = diag[Λi] :
If Q is an orthonormal sliced basis representation ofH, then F can be expressed in

terms of Q:
F = RQ ; R ∈D(N ;N ) ;

where R is given explicitly as R = P0(FQ∗).
If F is a given strong sliced basis representation, then it can be orthonormalized by

factoring ΛF into invertible factors R as

ΛF = P0(FF∗) =: RR∗ :
Since ΛF � 0, this is always possible. The orthonormal sliced basis representation Q
is given by Q = R−1F; indeed

ΛQ = P0(R−1FF∗R−∗) = R−1P0(FF∗)R−∗ = I :Orthogonal projection onto subspaces
Using the sliced representation for left D-invariant subspaces, we now turn our atten-
tion to the projection onto subspaces. We shall need the following proposition.

Proposition 4.8 LetH be a locally finite left D-invariant subspace in XM
2 , and let Q

be an orthonormal sliced basis representation ofH, then (for X ∈ XM
2 ),

X ⊥ H ⇔ P0(XQ∗) = 0 :
PROOF Any Y in H can be written as Y = DQ, for some D ∈ D2. Then X ⊥ Y ⇔
{X;Y} = P0(XY∗) = 0, and P0(XY∗) = P0(XQ∗D∗) = P0(XQ∗)D∗. Letting Y range
overH, this expression is zero for all D inD2, and it follows that P0(XQ∗) = 0. 2

Let H be a subspace in XM
2 . Then XM

2 = H⊕H⊥, so that every X ∈ XM
2 can

be written (uniquely) as X = X1 +X2, where X1 ∈ H and X2 ∈ H⊥. The operator of
(orthogonal) projection ontoH is defined as PH(X) = X1.

Theorem 4.9 Let H be a locally finite left D-invariant subspace in XM
2 , and let Q

be a sliced orthonormal basis representation of H. The orthogonal projection of any
X ∈ XM

2 ontoH is given by

PH(X) = P0(XQ∗)Q : (4.16)
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PROOF Let X = X1 +X2, where X1 = PH(X) ∈H and X2 ∈H⊥. Then

P0(XQ∗)Q = P0((X1 +X2)Q∗)Q= P0(X1Q∗)Q + P0(X2Q∗)Q= P0(X1Q∗)Q [prop. 4.8]= X1 [prop. 4.7]
Hence PH(X) = P(XQ∗)Q. 2
Corollary 4.10 Let H be a locally finite left D-invariant subspace in XM

2 , and let F
be a strong sliced basis representation of H. The orthogonal projection of X ∈ XM

2
ontoH is given by

PH(X ) = P0(XF∗)Λ−1
F F : (4.17)

PROOF If F is a strong sliced basis representation generatingH, then F = RQ, where
Q is an orthonormal basis representation and R ∈D is any boundedly invertible factor
of ΛF = RR∗. Inserting Q = R−1F in (4.16), the result is obtained. 2

Equation (4.17) generalizes the classical projection formula to the present diagonal
algebra context. As in the classical use, an operator P defined everywhere on X2 is an
orthogonal projector if and only if it is idempotent and Hermitian: PP = P, P∗ = P.
These properties are readily verified for the definition in (4.16):

PH is idempotent since

PH (PH(X)) = P0
�

P0(XQ∗) · QQ∗� · Q =
P0(XQ∗)P0(QQ∗) · Q = P0(XQ∗) · Q = PH(X):

PH is Hermitian if {PH(A);B} = {A;PH(B)} for all A;B ∈X2. Expanding the first
term yields

{PH(A);B} = P0
�

P0(AQ∗ ) · QB∗ � = P0(AQ∗)P0(QB∗):
The second term is equal to

{A;PH(B)} = P0(A [P0(BQ∗) · Q]∗)= P0 (AQ∗ P0(QB∗))= P0(AQ∗)P0(QB∗):
Hence PH is Hermitian.





5 OPERATOR REALIZATION THEORY

The realization problem for time-varying systems is to find a (minimal) state space de-
scription for the input-output operator of a time-varying system, solely based on the
collection of time-varying impulse responses. An important role in its solution is played
by the Hankel operator, which is a restriction or suboperator of the input-output oper-
ator. It maps input signals with support in the “past” to output signals restricted to the
future. Its relevance to the realization theory of time-invariant systems has been known
since the early 1960s and resulted in Ho and Kalman’s canonical realization algorithm
in 1966 [HK66]. The fundamental properties that enable one to derive a realization
are not the linearity or time invariance of the system (although these properties greatly
simplify the problem), but rather its causality and the existence of a factorization of the
Hankel operator into a surjective and an injective part [KFA70]. Thus, the problem of
realization was brought into the algebraic context of the characterization of the Han-
kel operator. The algorithm derived by Ho and Kalman does not require knowledge of
these invariant factors but uses the underlying structure to find the state representation
of the system.

In section 3.4 we studied realization theory for the finite matrix case, and we intro-
duced the Hankel operator as a sequence of matrices {Hk}. A direct extension of this
approach to operators (“infinite matrices”) is grosso modo possible but faces additional
difficulties with boundedness and convergence. The operator case is nonetheless inter-
esting: it allows us to treat large classes of matrices and operators which correspond
e.g., to systems that are initially time-invariant (matrices that are partially Toeplitz) or
are periodically varying, and allows us also to analyze very large matrices for which87
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only the behavior on a finite submatrix is of interest (viz. section 3.2). The purpose of
this chapter is to extend the finite matrix approach of section 3.4 to an operator-theoretic
setting. To this end we introduce concepts such as input and output state spaces, and
basis representations for these spaces. These are fundamental ingredients for our real-
ization theory and are used throughout the remaining chapters of the book. In addition,
we formulate the reachability and observability operator as single (diagonal) opera-
tors rather than as an indexed collection of matrices, and connect these operators to the
basis representations of the input/output state spaces. The index-free notation proves
to be extremely valuable in subsequent chapters: it enables short proofs of theorems
that would be burdensome otherwise. In fact, many proofs are almost carbon copies of
those for the time-invariant case, with the difference that the shift-operator Z does not
commute with most other operators: AZ 6= ZA.5.1 THE HANKEL OPERATOR
In section 3.4, we have introduced sequences of Hankel matrices {Hk} as submatri-
ces of a given upper triangular matrix T . We move now to a more formal approach,
which allows us to represent this sequence by a single operator HT , which we will call
the Hankel operator. It is now necessary to work not on single input sequences, but
on collections of them, namely one for each point in time. In chapter 2 we have intro-
duced the spacesXM

2 as generalized input space and XN
2 as generalized output space,

and have indicated how the transfer operator acts between them. We define the Hankel
operator as acting between subspaces of these spaces.De�nition of the Hankel operator
Using the projection operators P and P0 defined in (2.8) in chapter 2, define the past
part of a signal U ∈ X2 as its projection onto L2Z−1: Up = P0(U), and its future part
as its projection onto U2: U f =P(U), so that U =Up+U f . The same definitions apply
to the past and future part of an output Y . For an operator T ∈ U , mapping XM

2 intoXN
2 , the action of T onto U ∈XM

2 can then be split into three parts:

Y =UT ⇔
�

Yp = UpKT

Yf = UpHT + U f ET
(5.1)

where

KT : L2Z−1 → L2Z−1 : UpKT = P0(UpT)
HT : L2Z−1 → U2 : UpHT = P(UpT)
ET : U2 → U2 : U f ET = P(U f T) =U f T : (5.2)

Note that there is no transfer from U f to Yp, due to causality. Since T is a bounded
operator and the projections are contractions on X2, these operators are also bounded.
The operator HT = P( ·T)��L2Z−1 is called the Hankel operator of T : it is the map of

inputs in L2Z−1 to the part in U2 of the corresponding outputs. See figure 5.1(b). The
operators KT and ET do not have special names attached to them; they will occasionally
be used in later chapters.
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(a) (b)Figure 5.1. (a) realization T of T , (b) splitting into past and future signals, (c) repre-sentation by Tp and Tf , using the factorization of HT in (5.17).De�nition of state spaces
In the study of the Hankel operator, the range and kernel of HT and its adjoint ·H∗

T =
P0( ·T∗)��U2

play a major role. Neither ran(HT ) nor ran(H∗
T ) have to be closed. We will

use these subspaces throughout the remainder of the book, and therefore we attach spe-
cific symbols to them. Some preliminary properties are derived at this point.

Let the subspacesH and K in L2Z−1 be defined as

input null space: K = ker( ·HT ) = {U ∈ L2Z−1 : P(UT) = 0}
input state space: H= ran( ·H∗

T ) = P0(U2T∗) : (5.3)K, as a kernel, is always a closed subspace. It is readily verified that these subspaces are
left D-invariant; e.g.,K is left D-invariant since for D ∈D, P(UT) = 0 ⇒ P(DUT) =
DP(UT) = 0. The kernel of a linear operator defines equivalence classes: we say that
an input U1 ∈L2Z−1 in the past is Nerode equivalent to U2 ∈L2Z−1 if and only if they
have the same future outputs: P(U1T) = P(U2T). Consequently, P [(U1 −U2)T ] = 0,
hence U1 is Nerode equivalent to U2 if U1 − U2 ∈ K. This means that, as far as the
future part of the output signal is concerned, there is no distinction between U1 and
U2: for the purpose of computing Yf , a collection of Nerode-equivalent signals may be
represented by a single one of them. The idea underlying state realizations is that the
selected signal, in turn, will be represented by a state variable in D2. Signals that are
Nerode-equivalent are mapped to the same state.

The kernel of an operator and the closure of the range of its adjoint span the whole
space on which they are defined (cf. (A.7)). Hence, we have that ker(·HT ) is orthogonal
to ran(·H∗

T ) and ker(HT )⊕ ran(H∗
T ) = L2Z−1, orH ⊕ K = L2Z−1 : (5.4)



90 TIME-VARYING SYSTEMS AND COMPUTATIONS
In a dual way, we define the

output state space: Ho = ran( ·HT ) = P(L2Z−1T)
output null space: Ko = ker( ·H∗

T ) = {Y ∈ U2 : P0(YT∗) = 0} : (5.5)Ho, as the range of HT , is the left D-invariant manifold containing the projections ontoU2 of all outputs of the system that can be generated from inputs in L2Z−1. Ko is its
complement in U2: Ho ⊕ Ko = U2 : (5.6)

The input and output null and state spaces satisfy the following relations:

P(KT) = 0 ; Ho =HHT = P(HT)
P0(KoT∗) = 0 ; H=HoH∗

T = P0(HoT∗) : (5.7)

(The two equations on the right follow from inserting (5.4) and (5.6) into the definitions
of H and Ho, and using the two equations on the left.) These relations ensure that H
andHo have the same dimension sequences:

Proposition 5.1 IfH andHo are locally finite subspaces, then

sdim (H) = sdim (Ho) :
PROOF Apply equation (4.8) to (5.7): Ho =HHT and H =HoH∗

T . This yields that
sdim (Ho) ≤ sdim (H) and sdim (H) ≤ sdim (Ho). 2

We will see later in this chapter that the sequence of dimensions of the state spaces
is equal to the minimal system order of T .Connection of HT with {Hk}
A consequence of the fact that HT is a left D-invariant operator is that the spaces H,K, Ho, and Ko are left D-invariant; e.g.,

Yf =UpHT = P(UpT) ⇒ DYf = DP(UpT) = P(DUpT) = (DUp)HT :
As indicated in section 4.1, the operator HT (and likewise, KT and ET , which are also
left D-invariant operators) can be viewed as an indexed sequence of snapshots. Ac-
cording to definition 4.1, the snapshot Hk is obtained via

∀U ∈ L2Z−1 : (π∗
kUk)HT = π∗

k(UkHk) (5.8)

whereUk = πkU is the k-th row ofU. (The operator πk was defined in (2.3) and projects
elements of X2 onto rows in `2.) Hence Hk is an operator such that

Y =UHT ⇔ Yk =UkHk (all k) :
Since U ∈L2Z−1, Uk is a sequence which has zero entries from its k-th entry on. Like-
wise, Y =UHT ∈ U2 has rows Yk which have zero entries before time k. Thus, Hk has
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the matrix representation

Hk = 266666664 ...
Tk−3;k . .

.

0 Tk−2;k Tk−2;k+1
Tk−1;k Tk−1;k+1 Tk−1;k+2 · · ·

0 0

377777775 : (5.9)

This yields the definition of Hk of the previous section, equation (3.21), save for an
(isomorphic) mirroring operation.

If we write Hk = πkH as the k-th slice of the D-invariant subspace H (as we have
done in section 4.2), and similarly forHo, thenHk = ran( ·H∗

k ) ; (Ho)k = ran( ·Hk) : (5.10)5.2 REACHABILITY AND OBSERVABILITY OPERATORSFactorization of HT

If a u.e. stable realization {A;B;C;D} of T is given, then from (3.23) it follows that
each Hk can be factored as Hk = CkOk. An obvious question that emerges at this point
is whether the operator HT admits a similar factorization. The answer should be affir-
mative, of course, in view of the close connection between HT and its snapshots Hk.
The key is the identification of the state as an intermediate quantity through which the
input-output map factors.

Recall from equation (3.11) the state equations that describe the mapping Y = UT
based on input and output spaces of X2-type:�

XZ−1 = XA+UB
Y = XC+UD

(5.11)

The state X can be written in terms of its diagonals as

X = ∞

∑
k=−∞

ZkX[k] ; X[k] = P0(Z−kX) ;
and likewise for U and Y . The recursive description of (5.11) is (viz. (3.12))

X(−1)[k+1] = X[k]A+U[k]B
Y[k] = X[k]C+U[k]D (5.12)

If `A < 1 and U ∈XM
2 , then (5.11) can be solved for X which leads to

X =UBZ(I − AZ)−1 :
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Specializing to the 0-th diagonal (considering all the “presents” at once) produces

X[0] = P0(UpBZ(I − AZ)−1) : (5.13)

Note that U f does not play a role because BZ(I − AZ)−1 ∈ UZ. Now assume U = Up

(i.e., U f = 0). Equation (5.11) then implies P(XZ−1) = P(X)A ; Yf = P(X)C, so that
the “future state” X f = P(X) satisfies

P(X f Z
−1) = X f A :

Since P(X f Z−1) = X f Z−1 − X[0]Z−1, we have X f = X[0]+X f AZ, or

X f = X[0](I − AZ)−1

Yf = X fC = X[0](I − AZ)−1C : (5.14)

Equations (5.13) and (5.14) represent a factorization of the Hankel operator. It is il-
lustrated in figure 5.1(a) and (b): HT is the transfer of Up to Yf for U f = 0. The past
inputUp determines the state X[0], which then determines the future outputYf , provided
U f = 0. We reserve special symbols for the main operators in this development. Let F
and Fo be defined by

F∗ = BZ(I − AZ)−1 = BZ+BZ AZ+BZ (AZ)2+ · · ·
Fo = (I − AZ)−1C = C+AZC+(AZ)2C+ · · · : (5.15)

F is strictly lower, Fo is upper, and they satisfy the equations

F∗ = F∗AZ+BZ
Fo = AZFo +C : (5.16)

The above derivation is valid for `A < 1. If `A is not strictly less than 1, then F and Fo

are not necessarily bounded and have to be used with care. We restrict our attention to
the u.e. stable case (`A < 1) at this point, although generalizations will be needed later
on.

The following theorem summarizes the previous development. Yf = UpHT can be
computed as Yf = P0(UpF∗)Fo, so that HT has a factorization into a product of two
operators: Yf = X[0]Fo, where X[0] = P0(UpF∗).
Theorem 5.2 Let T ∈ U , and let {A;B;C;D} be a u.e. stable locally finite realization
of T . Let F and Fo be as given in (5.15). Then HT has a factorization

·HT = P0( ·F∗)Fo : (5.17)

The factorization of HT is equivalent to the factorization Hk = CkOk in (3.23). In-
deed, taking snapshots of P0( ·F∗) and Fo produces Ck andOk. In view of (5.1) and the
factorization of the Hankel operator, the computation of Y =UT can be written as the
composition of two operators Tp and Tf , using an intermediate quantity X[0], the state.� �

X[0] Yp
� = UpTp

Yf = [X[0] U f ]Tf
where

8<: Tp = [P0( ·F∗) KT ]
Tf = �

Fo

ET

� : (5.18)
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We interpret Tp as the “past” input-output operator and Tf as the “future” input-output
operator. Past and future are only connected via X[0]. See figure 5.1(c).De�nitions of reachability and observability
An important property that the factorization HT = P0( ·F∗)Fo can possess is (local)
minimality, since that implies the minimality of the dimension sequence #B of X[0] and
thus the minimality of the realization. Let {A;B;C;D} be a u.e. stable locally finite
realization of T where A ∈D(B;B(−1)). With F and Fo as in equation (5.15), we define
the

reachability operator: P0( ·F∗)��L2Z−1

observability operator: ·Fo
��DB2

Reachability, observability and minimality are defined as properties of the ranges of
these operators, as follows.

Definition 5.3 A realization is reachable if P0(L2Z−1 F∗) is dense in DB2 , and uni-
formly reachable if P0(L2Z−1 F∗) =DB2 .

A realization is observable if P0(U2F∗
o) is dense in DB2 , and uniformly observable

if P0(U2F∗
o) =DB2 .

A realization is said to be minimal if it is both reachable and observable.

Using the fact that the closure of the range of an operator and the kernel of its adjoint
are complementary subspaces, we immediately obtain the following proposition.

Proposition 5.4 A realization is reachable if and only if the operator ·F
��D2

is one-to-
one: DF = 0 ⇒ D = 0 (all D ∈ D2). If the realization is uniformly reachable, thenD2F is a closed subspace.

A realization is observable if and only if the operator ·Fo
��D2

is one-to-one: DFo =
0 ⇒ D = 0 (all D ∈ D2). If the realization is uniformly observable, then D2Fo is
closed.

PROOF If P0( ·F∗) is regarded as an operator fromL2Z−1 →DB2 , then its adjoint oper-
ator is ·F with domain restricted toDB2 . In view of (A.7), we obtain the decompositionDB2 = ranP0( ·F∗)⊕ ker( ·F

��D2
). The range of P0( ·F∗) is dense in D2 if and only if

ker( ·F
��D2

) = 0, i.e., ·F
��D2

is one-to-one. Finally, the range of an operator is closed if
and only if the range of its adjoint is closed. 2

Let us now recall the definitions of the input and output state spaces (equations (5.3)
and (5.5)): H= ran( ·H∗

T ) ; Ho = ran( ·HT ) :
Using the fact that HT has a factorization HT = P0( ·F∗)Fo, we can prove the following
relations between these spaces and F, Fo.

Proposition 5.5 Let {A;B;C;D} be a u.e. stable locally finite realization of T , with
A ∈D(B;B(−1)), and let F and Fo be the associated reachability and observability op-
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erators. ThenHo ⊂DB2 Fo andH ⊂DB2 F, and we have the following implications:

reachability ⇒ Ho = DB2 Fo

uniform reachability ⇒ Ho = DB2 Fo

observability ⇒ H = DB2 F

uniform observability ⇒ H = DB2 F :
PROOF Since HT = P0( ·F∗)Fo, it follows that Ho = ranHT = P0(L2Z−1F∗)Fo ⊂DB2 Fo. If the realization is uniformly reachable, then P0(L2Z−1 F∗) =DB2 , so that, in-
deed, Ho = DB2 Fo. We also have Ko = kerH∗

T = kerP0( ·F∗
o)F��U2

. If the realization

is reachable, then F is one-to-one and Ko = kerP0( ·F∗
o)��U2

, with complement Ho =
ran( ·Fo

��D2
) =DB2 Fo. The remaining statements are proven in the same manner. 2

Proposition 5.6 If a realization of T is both uniformly reachable and uniformly ob-
servable, then the range of HT : Ho =DB2 Fo, and the range of H∗

T : H=DB2 F, are closed
subspaces.

Conversely, let Ho and H be closed subspaces. If the realization is reachable and
uniformly observable, then it is uniformly reachable. Likewise, if the realization is
observable and uniformly reachable, then it is uniformly observable.

PROOF The first part of the proposition follows immediately from proposition 5.5:
since the realization is uniformly reachable, Ho = DB2 Fo. Because the realization is
uniformly observable, proposition 5.4 asserts thatDB2 Fo is a closed subspace, and henceHo = ranHT is a closed subspace.

We now prove the second part. According to proposition 5.5, uniform observability
implies H = D2F is closed, so that the range of the adjoint of ·F

��D2
is closed, too:

P0(L2Z−1F∗) is closed. Reachability means, by definition, P0(L2Z−1F∗) =D2, hence
P0(L2Z−1F∗) =D2: the realization is uniformly reachable. 2

Propositions 5.4 and 5.5 have a direct corollary, which is part of a Kronecker-type
theorem for time-varying systems. The second part appears as theorem 5.19 in the next
section.

Corollary 5.7 (Kronecker-type thm, I) Let T ∈ U be a locally finite transfer opera-
tor which has a u.e. stable realization with state dimension sequence B. If the realiza-
tion is minimal, then #B = sdim H= sdim Ho.

PROOF The given realization defines F and Fo by equations (5.15). Reachability im-
plies Ho = DB2 Fo. Observability implies that Fo is one-to-one, hence sdimDB2 Fo =
sdimDB2 = #B. 2

The corollary can be stated at the local level as well: if the realization is minimal
and the k-th slice πkHo = (Ho)k ofHo has a dimension dk, then dk is equal to the state
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dimension of the realization at point k. Hence, we recover part of the realization theo-
rem for finite matrices (theorem 3.7). It is also true that (Ho)k is equal to the range of
Hk, the k-th snapshot of the Hankel operator, as we have seen in (5.10), and that dk is
equal to the rank of Hk.

Most of the remainder of this chapter is concerned with a proof of the converse of
the corollary, i.e., to show that if sdimH= sdimHo = [ · · · d0 d1 d2 · · · ] is a uniformly
bounded sequence of dimensions, where dk = rankHk, then there exist realizations of
T with dk equal to the system order at point k. We call the sequence the minimal sys-
tem order of T . The actual construction of such minimal realizations is the subject of
section 5.4, where the converse of corollary 5.7 appears as theorem 5.19.Computation rules for F and Fo

Equations (5.16) will often be used in the following form.

P0(Z−1 · F∗)(−1) = P0( · [F∗A+B])
ZF = A∗F+B∗ (5.19)

Fo = C+AZ Fo

P0( ·F∗
o) = P0(Z−1 · F∗

o)(−1)A∗ +P0( ·C∗) (5.20)

T = D+F∗C
T = D + BZ Fo : (5.21)5.3 REACHABILITY AND OBSERVABILITY GRAMIANS

Whether a given realization is reachable and observable is important: it determines
whether the realization is minimal. Some state space operations to be dealt with in
following chapters can only be carried out on realizations that are reachable and/or ob-
servable. However, the form in which reachability and observability properties have
been presented so far (as range conditions) does not give a straightforward method to
determine these properties for a given realization. The purpose of this section is to
make these properties more concrete.

Proposition 5.5 states that if a realization is reachable and observable, then the in-
put and output state spaces are given by H =D2F, Ho =D2Fo. Hence F and Fo can
be viewed as basis representations that generate these subspaces. In view of this, we
define the Gramians of these bases as

reachability Gramian: ΛF = P0(FF∗)
observability Gramian: ΛFo = P0(FoF∗

o) :
ΛF and ΛFo are bounded diagonal operators, see section 4.3.

Proposition 5.8 A realization is reachable if and only if ΛF > 0, and uniformly reach-
able if and only if ΛF � 0.

A realization is observable if and only if ΛFo > 0, and uniformly observable if and
only if ΛFo � 0.
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PROOF In terms of diagonal inner products, DF= 0 ⇔ {DF;DF}= 0, and {DF;DF}=
P0(DFF∗D∗) = DP0(FF∗)D∗. With proposition 5.4, this implies that the realization is
reachable if and only if the Gram operator ΛF = P0(FF∗) > 0. Proof of the propo-
sition on uniformity also works by transforming to the local level. If ΛF � 0 then
Λ−1 exists and is bounded. In that case, let Dn be a sequence in D2 such that Un :=
DnF → U for some U ∈ L2Z−1. Then P0(DnFF∗) = P0(UnF∗) so that the sequence
Dn = P0(UnF∗)Λ−1

F is bounded and converges to a diagonal D for which U = DF. This
shows closure. Conversely, if the map is closed, then by standard Hilbert space argu-
ments ΛF must be boundedly invertible and since it is positive already, it then must be
strictly positive definite as well.1 2

The reachability and observability Gramians will play an important role in many
of the topics of the remaining chapters, because it is often possible to compute them
recursively.Lyapunov equations
Proposition 5.9 Let {A;B;C;D} be a u.e. stable realization, and let the operator F be
given by equation (5.15), with Gramian ΛF = P0(FF∗).

ΛF satisfies the equation

Λ(−1)
F = B∗B+A∗ΛFA : (5.22)

PROOF Using equation (5.19),

Λ(−1)
F = P0(Z−1[ZF]F∗)(−1)= P0([B∗ +A∗F] [B+F∗A])= P0(B∗B) + P0(A∗FF∗A) + P0(B∗F∗A) + P0(A∗FB)= B∗B + A∗P0(FF∗)A + 0 + 0 : 2

Equations of the type

M(−1) = A∗MA+B∗B ; M ∈D(B;B) (5.23)

are known as Lyapunov or Lyapunov-Stein equations. If `A < 1, then it is easy to verify
by substitution that the equation has a solution given by

M = ∞

∑
k=0

(A{k})∗(B∗B)(k+1)A{k} ; (5.24)

where A{k} = A(k) · · ·A(1) for k ≥ 1 and A{0} = I. If `A < 1, then the summation con-
verges and the solution is unique: if Λ is another solution, then(M − Λ)(−1) = A∗(M − Λ)A

⇒ M − Λ = (A{k})∗(M − Λ)(k)A{k}

1This is a corollary to the closed graph theorem, see [Rud66] p. 122.



OPERATOR REALIZATION THEORY 97
and `A < 1 implies A{k} → 0 so that Λ = M. If `A = 1, then the Lyapunov equation
does not necessarily have a unique solution. For example, if A = I and B = 0, then the
resulting equation is M(−1) = M so that any M which is Toeplitz and diagonal will do,
whereas ΛF = P0(FF∗) = 0 in this example.

We obtain the dual to proposition 5.9 in a similar way.

Proposition 5.10 Let {A;B;C;D} be a u.e. stable realization, and let the operator Fo

be given by equation (5.15), with Gramian ΛFo = P0(FoF∗
o). Then ΛFo satisfies the

(dual) Lyapunov equation

ΛFo = CC∗ +AΛ(−1)
Fo

A∗ : (5.25)

Again, if `A < 1, then the solution to the equation Q =CC∗ +AQ(−1)A∗ is unique and
equal to ΛFo .

For a given realization, the Lyapunov equation is computable: by taking the k-th
entry of every diagonal in this equation, we obtain the recursion

Mk+1 = A∗
kMkAk +B∗

kBk ; k = · · · ;−1;0;1; · · · ; (5.26)

and Mk can be computed, for k = · · · ;−1;0;1; · · ·, provided we have an appropriate ini-
tial point for the recursion. Exact initial points can be obtained in most cases of interest,
as follows.

• If the realization is a realization for a finite n × n matrix, then we can assume that
the realization {Ak;Bk;Ck;Dk} starts with a zero number of states at time 1, say. An
exact initial value is then M1 = [ · ], a matrix with zero dimensions.

• For systems which are time invariant before some point in time (k = 1, say), an
exact initial value can be computed analytically from the time-invariant algebraic equa-
tion that holds before time k = 1:

M0 = A∗
0M0A0 +B∗

0B0 :
The solution to this equation follows from an eigenvalue decomposition (Schur decom-
position) of A0, or by using Kronecker products, see [HJ89].

• If the system is periodically time-varying, then it can be viewed as a time-invariant
system T with block entries Ti j = Ti− j of size n × n: T is a block Toeplitz operator. As
discussed in section 3.2, we can assume that the realization is periodical, too, in which
case we can replace it by a block realization {A;B;C;D} that is time-invariant. The
Lyapunov equation can be solved for this time-invariant system, although this is not
really attractive if the period is large.

• Finally, if we have a time-varying realization for which `A < 1, then, as we have
shown before, the Lyapunov recursion is strongly convergent. In that case, Mk at some
point k is independent of the precise initialization of the recursion at k ≈ −∞, say. Hence
it is possible to limit attention to a finite time-interval, and to obtain arbitrarily accu-
rate initial values for this interval by performing a finite recursion on data outside the
interval, starting with initial values set to 0. For the Lyapunov recursion example, M1
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can be determined as

M1 = A∗
0 M0 A0 +B∗

0B0= A∗
0A∗

−1 M−1 A−1A0 +B∗
0B0 +A∗

0B∗
−1B−1A0= A∗

0 · · ·A∗
−n M−n A−n · · ·A0 ++ (

B∗
0B0 +A∗

0B∗
−1B−1A0 + n

∑
i=2

A∗
0 · · ·A∗

−i+1B∗
−iB−iA−i+1 · · ·A0

) :
If the system is u.e. stable, then kA−n · · ·A0k can be made arbitrarily small by choosing
n large enough. Neglecting for this n the first term gives an approximation of M1. The
same approximation would have been obtained by choosing M−n = 0, and computing
M1 via the recursion (5.26).Normalized realizations
Lyapunov equations arise in the normalization of a given realization. Suppose that we
are given a u.e. stable minimal realization {A;B;C;D} of some locally finite operator
T ∈ U . The objective is to find a similar realization {A0;B0;C0;D} which is in input
normal form, i.e., for which ΛF0 = I. In view of (5.22), such a realization satisfies
A0∗A0+B0∗B0 = I. Let F and Fo be the reachability and observability operators of T
as in (5.15), and define F0 and F0o likewise for T0. If R is a state transformation that
brings T into T0 according to (3.14), then F = R∗F0 and RFo = F0o, and the correspond-
ing Gram operators satisfy

ΛF = R∗ΛF0R
ΛF0o = RΛFoR∗ : (5.27)

The first equation gives
ΛF = R∗R ;

so that the required state transformation R is a factor of ΛF. R is boundedly invert-
ible if and only if ΛF is uniformly positive, that is, if the given realization is uniformly
reachable. If `A < 1, then R is obtained by solving the Lyapunov equation (5.23) for M,
followed by solving the factorization M = R∗R. Another way to arrive at the Lyapunov
equation directly is by inserting the relations A0 = RAR−(−1) and B0 = BR−(−1) into the
normalization condition A0∗A0+B0∗B0 = I, and putting M = R∗R. Likewise, a realiza-
tion in output normal form (for which ΛF0o = I so that A0A0∗ +C0C0∗ = I) is obtained by
factoring ΛFo = R−1R−∗, and we see that the given realization must be uniformly ob-
servable. Again, if `A < 1, then R can be obtained by solving the Lyapunov equation
Q =CC∗ +AQ(−1)A∗ for Q after which R is obtained as a factor of Q−1. The Lyapunov
equation is directly obtained by inserting the relations A0 = RAR−(−1) and C0 = RC into
the condition A0A0∗ +C0C0∗ = I.Equivalent minimal realizations
Reachability and observability Gramians can also be used to compute equivalent min-
imal realizations from realizations that are not reachable and/or not observable. Sup-
pose that we are given a u.e. stable realization {A;B;C;D} of a locally finite operator
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T ∈ U , and let us assume that it is not in reachable form. To transform it into a canon-
ical form, let ΛF ∈D be the reachability Gramian of the given realization of T . Since
ΛF ≥ 0, it has a factorization

ΛF = R∗
�

Λ11
0

�
R ; R = �

R1
R2

� ; (5.28)

where Λ11 > 0 and R is an invertible operator inD (e.g., R can be chosen unitary). Note
that the range of Λ11 is not necessarily closed: it need not be uniformly positive. In
case R is unitary and has the indicated block decomposition, then ran( ·R2) = ker( ·ΛF),
ran( ·R1) = ran( ·ΛF). Applying R as state transformation to T leads to a realization
T0 = {A0;B0;C0;D} given by�

A0 C0
B0 D

�= �
R

I

��
A C
B D

��
R−(−1)

I

� :
ΛF0 := [Λ11

0 ] is the reachability Gramian of T0, and satisfies the Lyapunov equation

Λ(−1)
F0 =A0∗ΛF0A0+B0∗B0. Partition A0;B0;C0 conformably to the partitioning of R. Then

A0 = �
A011 0
A021 A022

� ; B0 = [B01 0 ] ; C0 = �
C01
C02 � ; D0 = D ; (5.29)

because the Lyapunov equation leads, in particular, to 0 = B0∗2 B02 +A0∗12Λ11A012, so that
B2 = 0 and A12 = 0 since Λ11 > 0. It follows that {A011;B01;C01;D} is a (smaller) real-
ization of T which is reachable, with reachability Gramian equal to Λ11.

Similarly, a realization which is not observable can be transformed into the canon-
ical form

A0 = �
A011 A012
0 A022

� ; B0 = [B01 B02 ] ; C0 = �
C01
0

� ; D0 = D ;
by computing a factorization of the observability Gramian ΛFo as

ΛFo = R−1
� (Λo)11

0

�
R−∗ ;

and now {A011;B01;C01;D} form an equivalent realization with observable states.
Realizations that are neither reachable nor observable can be transformed into a min-

imal realization by applying both transformations in succession, as follows. In the first
step the reduction of the reachability Gramian yields

A0 = �
A01 0
A021 A02 � ; B0 = [B01 0] ; C0 = �

C01
C02 � :

Reducing the systems {A01; B01;C01} and {A02; 0;C02} separately produces state transfor-
mations R01 and R02 such that

{R01A01R0−(−1)
1 ;B01R0−(−1)

1 ;R01C01} =��
A0011 A0012
0 A0022

� ; [B001 B002 ];� C001
0

��
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T00(−1)X(−1)
1[1] X(−1)

2[1] X(−1)
3[1] X(−1)

4[1]
X4[0]X3[0]X2[0]X1[0]

U[0] Y[0]
U(−1)[1] Y (−1)[1]

U(1)[−1] Y (1)[−1]T00(1)

Figure 5.2. Splitting of the state space into four parts. Only state X1 is useful, i.e., bothreachable and observable.
and

{R02A02R0−(−1)
2 ;B02R0−(−1)

2 ;R02C02} =��
A0033 A0034
0 A0044

� ; [0 0];� C002
0

�� :
If we now apply the transformation [R01

R02 ] to the primed system, we obtain

T00 = �
A00 C00
B00 D00 �= 26666664 A0011 A0012 0 0 C001

0 A0022 0 0 0

A0031 A0032 A0033 A0034 C002
A0041 A0042 0 A0044 0

B001 B002 0 0 D

37777775 :
The structure of this realization is shown in figure 5.2. The state space is split into

four subspaces. Only state X1 is useful. States X2 and X4 are not observable, states
X3 and X4 get no excitation and hence remain zero if they were initially zero (X3 is
observable if some “deus ex machina” has put a non-zero value there). Non-minimal
realizations should be avoided from numerical and computational points of view: they
lead to extra, unnecessary operations on the data. Physically, the spurious states can be
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In: T = (A;B;C;D) (a locally finite realization)
Out: T0 = (A0;B0;C0;D0) (a) an equivalent reachable realization(b) an equivalent observable realization(a) Initialize Q̂1

for k = 1;2; · · ·26664 Compute Q̂k+1 from an LQ factorization:"
Q̂kAk Q̂kCk

Bk Dk

#=:

"
A0k 0 C0k
B0k 0 D0

k

#264 Q̂k+1 0
∗

0 I

375
end(b) Initialize Q̂n+1
for k = n;n − 1; · · ·26664 Compute Q̂k from a QR factorization:"

AkQ̂k+1 Ck

BkQ̂k+1 Dk

#=:

"
Q̂k ∗ 0

0 0 I

#264 A0k C0k
0 0

B0k D0
k

375
endFigure 5.3. Algorithm to bring a realization into (a) reachable form, (b) observable form.

a source of noise and instability, and hence we usually wish to retain only the minimal
part:

T̂00 = �
A0011 C0011
B0011 D00 � :

A practical algorithm to bring a realization into reachable form uses the observation
that in (5.29) we are only interested in A011, B01, C01, D, and want to reject the remaining
blocks. Thus, if R = [R1

R2
] and R−1 = [(R−1)1 (R−1)2], then we only need R1 and (R−1)1.

It is convenient to use a unitary state transformation Q = [Q1
Q2

] in place of R, because

Q−1 =Q∗ = [Q∗
1 Q∗

2]. Hence, we need only retain Q1 and do not have to invert any ma-
trix. The resulting algorithm is summarized in figure 5.3(a), where Q1 is called Q̂. The
algorithm can often be combined with other forward recursions, to ensure reachability
“on the fly”. Since the state transformation matrices are not inverted, the algorithm
could in principle be applied to a realization for which the reachability operator does
not have closed range, provided that the QR factorization algorithm used is reliable
for nearly singular matrices. In that case, the resulting realization is reachable, but not
uniformly reachable.

The initialization of the algorithm depends on the situation at hand. For a finite ma-
trix T , A1 starts with 0 states, so that Q̂1 = [ · ]. For systems that are time-invariant be-
fore time k = 1, Q̂1 = Q̂0 is derived from the solution of the time-invariant Lyapunov
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equation

Λ0 = A∗
0Λ0A0 +B∗

0B0 ; Λ0 =: Q∗
0

�
Λ11

0

�
Q0 = Q̂∗

0Λ11Q̂0 :
The solution of the Lyapunov equation for other cases of interest is discussed in the
beginning of this section.5.4 ABSTRACT REALIZATION THEORY
In the preceding section, we assumed knowledge of a u.e. stable realization {A;B;C;D}
of an operator T . We will now investigate how such realizations can be derived. This is
done by the analysis of HT and its characteristic subspaces,H andHo. We show how a
shift-invariance property of these spaces, along with the choice of a basis in either one
of them, produces minimal realizations which are either in “input normal form” (or in
“canonical controller form”) or in “output normal form” (canonical observer form). In
all four cases, realizations with `A ≤ 1 are obtained.Shift-invariance properties
Recall the definitions of the input state spaceH and the input null spaceK in equation
(5.3): H = ran( ·H∗

T ) = P0(U2T∗)K = ker( ·HT ) = {U ∈ L2Z−1 : P(UT) = 0} :K satisfies the shift-invariance property

Z−1K ⊂K : (5.30)

Indeed, if U ∈K, then P(UT) = 0, hence UT ∈ L2Z−1 and thus Z−1UT ∈ L2Z−1, too.
But this means that P(Z−1UT) = 0 so that Z−1U ∈K.

The shift-invariance property of K implies a shift-invariance property of its com-
plementH. We will use it in the following form.

Lemma 5.11 Let A( ·) := PH(Z−1 ·). Then(a) A(PK(U)) = 0 for all U ∈ X2.(b) On L2Z−1, An( ·) = PH(Z−n ·), for n > 0.

PROOF (a) is a consequence ofH ⊥K and Z−1K ⊂K, so thatH ⊥ Z−1K.(b) For any U ∈ L2Z−1,

PH[Z−1PH(Z−1U)] = PH[Z−1PH(Z−1U)+Z−1PK(Z−1U)]= PH(Z−2U) :
The result for n > 2 follows by induction. 2
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Let T be a given bounded linear causal time-varying system transfer operator in U , and
letH;Ho;K and Ko be its input-output state and null spaces, respectively. Then,

for U ∈ L2Z−1 : P(UT) = P[PH(U)T ] :
This property is related to Nerode equivalence: as far as the “future output” P(UT) of
T is concerned, inputs U ∈ L2Z−1 are equivalent to their projection PH(U) ontoH. It
follows immediately that the Hankel operator HT = P( ·T)��L2Z−1 can be factored:

·HT = P[PH( ·)T ] : (5.31)

Introducing the “state” X0, this becomes more clearly visible: for Up ∈ L2Z−1,

Yf =UpHT ⇔
�

X0 = PH(Up)
Yf = P(X0T) :

More in general, for U ∈X2 and any k ∈Z, and with U[k] = P0(Z−kU) equal to the k-th
diagonal of U,

Y =UT ⇔
�

Xk = PH(Z−kU)
Y[k] = P0(XkT)+U[k]T[0] (5.32)

where we have introduced a state Xk, and used (i) (Z−kU)T = Z−kY , (ii) by causality,
Y[k] does not depend on U[ j] for j > k.

The shift-invariance property in lemma 5.11 directly gives a recursion for Xk. To-
gether, these lead to an operator state space model in a form that is already familiar in
a number of other contexts (see e.g., [KFA70, Fuh76, Hel74, FS82, You86]).

Theorem 5.12 Let T ∈ U(M;N ) be a given transfer operator with input state spaceH. Define bounded operators A;B;C;D by

A : H→H C : H→DN2
B : DM2 →H D : DM2 →DN2 �

A C
B D

�= �
PH(Z−1·) P0( ·T)
PH(Z−1·) P0( ·T) �

Then, (1) the (uniformly bounded) sequence {Xk} defined by Xk = PH(Z−kU) for U ∈XM
2 satisfies

Xk+1 = XkA+U[k]B : (5.33)

(2) If Y =UT and U ∈XM
2 , then Y[k] satisfies

Y[k] = XkC+U[k]D:
(3) The spectral radius r(A) satisfies r(A) ≤ 1. If r(A)< 1, then {Xk} ∈H is the only
uniformly bounded sequence in H which satisfies the recursion (5.33).

PROOF The proof goes in three steps.
(1) Xk = PH(Z−kU) satisfies (5.33):
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Xk+1 = PH(Z−k−1U) = PH(Z−1(Z−kU))= PH(Z−1(PH(Z−kU) + PK(Z−kU) + P(Z−kU)))= PH(Z−1Xk) + 0 + PH(Z−1P0(Z−kU))= XkA + U[k]B :

(2) The output equation is also satisfied: with Xk =PH(Z−kU), equation (5.32) ensures
that

Y =UT ⇔ Y[k] = P0(XkT ) + P0(U[k]T) = XkC + U[k]D (all k) :
(3) If r(A) < 1, then {Xk} is unique: suppose there is another sequence {X0

k} which
satisfies 5.33, then for X00

k := Xk − X0
k and n > 0 we have

X00
k = PH(Z−nX00

k−n) = X00
k−nAn:

Hence, kX00
kk ≤ kX00

k−nkkAnk. Let M be an upper bound on {kX00
kk}, and r(A)< ρ< 1,

then for n large enough we have (by definition of the spectral radius) that kAnk< ρn.
Hence, kX00

kk< Mρn

for large enough n. Since n can be arbitrarily large, it follows that kX00
kk = 0, and Xk

must be unique. 2
Without the uniform bound on the sequence {kXkk}, uniqueness of the sequence

cannot be assured. This already occurs in the LTI context, and example of this is given
at the end of the chapter.

The realization which we have obtained has its state in H, and may therefore be
called a canonical controller state realization. Alternatively, we can choose the state
operator in the output state space, in which case we obtain a canonical observer real-
ization. This will be derived in a subsequent section.Canonical controller realization
Although the state-space description in the form of operator recursions as in theorem
5.12 is the core of any state realization, it is not very useful for our purposes yet. If
we assume the state space to be of locally finite dimension, then by choosing a sliced
orthonormal basis representation Q inH such thatH=D2Q (viz. section 4.3), we can
derive concrete matrix representations for the abstract operators A, B in terms of Q,
and produce state space descriptions based on diagonal operators A;B;C;D. Thus let

Xk = X[k]Q ; X[k] ∈D2 :
Using the projection formula, PH( ·) = P0( ·Q∗)Q (thm. 4.9), gives Xk = PH(Z−kU) =
P0(Z−kUQ∗)Q, so that

X[k] = P0(Z−kUQ∗) :
Also, P(XkT) = X[k]P(QT). The factorization of the Hankel operator in (5.31) thus
becomes

·HT = P0( ·Q∗)P(QT) : (5.34)
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Comparing (5.34) with the factorization of HT obtained in section 5.1, we see that the
reachability operator of a realization based on this factorization is P0( ·Q∗). As ΛQ =
P0(QQ∗) = I, such a realization will be uniformly reachable, and even be in input nor-
mal form. The operator Fo := P(QT) is the observability operator. Fo is one-to-one,
because

DFo = 0 ⇔ P(DQT) = 0
⇔ DQ ∈K
⇒ D = 0 ;

since Q forms a sliced basis of the orthogonal complement of K. Hence a realization
based on this factorization is observable and minimal.

The following theorem is the main theorem of this section: it gives an explicit real-
ization {A;B;C;D} in terms of the basis Q of the input state space.

Theorem 5.13 (canonical controller realization) Let T ∈U(M;N ) be a given trans-
fer operator with input state space H of locally finite dimensions. Let Q be a sliced
orthonormal basis representation of H: H = DB2 Q, ΛQ = I, where B is defined by
sdimH= #B. Define

A ∈D(B;B(−1)) C ∈D(B;N )
B ∈D(M;B(−1)) D ∈D(M;N ) �

A C
B D

�= �
P0(Z−1QQ∗)(−1) P0(QT)
P0(Z−1Q∗)(−1) P0(T) �

Then, forU ∈XM
2 , Y ∈XN

2 , there exists a uniformly bounded sequence of states X[k] ∈D2;k = −∞; · · · ;∞ such that

Y =UT ⇒

(
X(−1)[k+1] = X[k]A+U[k]B
Y[k] = X[k]C+U[k]D (all k) : (5.35)

This realization is observable and uniformly reachable (hence minimal), in input nor-
mal form, and `A ≤ 1.

If `A < 1, then there is a unique uniformly bounded solution {X[k]}. In that case, the
operator X given by X = ∑k ZkX[k] is in X B

2 , and (5.35) is equivalent to�
XZ−1 = XA+UB

Y = XC+UD :
(At the end of this chapter we give an example to show that the qualification “uni-

formly bounded” in the uniqueness assertion is needed.)
PROOF Starting from the operator realization in theorem 5.12, define X[k] :=P0(XkQ∗),
so that Xk = X[k]Q. Then

Xk+1 = X[k+1]Q = XkA + U[k]B= PH(Z−1Xk) + PH(Z−1U[k])= P0(Z−1XkQ∗)Q + P0(Z−1U[k] Q∗)Q [thm. 4.9]= P0(Z−1X[k]QQ∗)Q + P0(Z−1U[k] Q∗)Q= X(1)[k] P0(Z−1QQ∗)Q + U(1)[k] P0(Z−1Q∗)Q ;
that is, X(−1)[k+1] = X[k]P0(Z−1QQ∗)(−1) + U[k]P0(Z−1Q∗)(−1) :
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In the same way,

Y[k] = XkC+U[k]D= P0(XkT )+P0(U[k]T)= X[k]P0(QT )+U[k]P0(T) :
The definition of A is connected to the definition of A via the chosen basis Q as(DQ)A = D(1)A(1)Q (any D ∈DB2 ) :
Recursive application gives(DQ)An = D(n)A{n}Q (any D ∈DB2 ) ; (5.36)

where A{n} = A(n) · · ·A(1). Hence kA{n} k= kAn k= kPH(Z−n ·)k, so that `A = r(A) ≤
1. 2

Equation (5.36) shows that Q and A are closely connected. In particular, since (5.36)
is valid for any D ∈DB2 , we can derive

P0(Z−nQQ∗) = A{n} : (5.37)

Similarly, we can show that

P0(Z−nQ∗) = B(n)A{n−1} : (5.38)

In view of these relations, it comes as no surprise that we can relate the stability prop-
erties of A to the boundedness of Q, as is shown in the following proposition.

Proposition 5.14 Let Q be a sliced orthonormal basis representation ofH, and let the
operators A and A be as given in theorems 5.12 and 5.13. Then Q is bounded on X2 if
and only if `A < 1.

PROOF The proof is technical and relegated to an appendix at the end of the chapter.2
The formulation in theorem 5.13 has carefully avoided to state that X ∈X2. Clearly

Xk = X[k]Q = PH(Z−kU) produces an X = ∑k ZkX[k] which satisfies XZ−1 = XA+UB.
However, X is not guaranteed to be HS-bounded, unless `A < 1, since then X =UBZ(I−
AZ)−1 with U ∈ X2 and BZ(I − AZ)−1 ∈ X . An alternative expression for X follows
from

X[k] = P0(Z−kUQ∗) :
Hence we can write X = UQ∗. Again this does not guarantee that X ∈ X2, since ·Q∗

is not necessarily a bounded operator on U2, although the expression is well defined as
a collection of inner products. (See section 4.3 for a discussion on this.)

If `A = 1, then an equation like XZ−1 = XA may have non-zero solutions with uni-
formly bounded norms {kX[k]k}. E.g., if A = I, it will suffice to take for all {i; j},
Xi; j = Xi; j+1. A solution with uniformly bounded {kX[k]k} will not be unique!
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Related realizations can be derived if a different, possibly non-orthogonalbasis inH

is chosen. For canonical results, we have to require that this alternative basis is a strong
(sliced) basis, i.e., has a uniformly positive Gramian (viz. the definitions in section 4.3).
The realization that is obtained in this case is linked to the realization based on Q via
an invertible state transformation.

Theorem 5.15 Let T ∈ U(M;N ) be a given transfer operator with input state spaceH of locally finite dimensions.
If F is a strong sliced basis representation ofH,H=DB2 F, such that ΛF is bounded

and ΛF = P0(FF∗)� 0, then T has a state realization�
A C
B D

�= �
Λ−1

F P0(Z−1FF∗ )(−1) Λ−1
F P0(FT )

P0(Z−1F∗ )(−1) P0(T ) �
A ∈D(B;B(−1)) C ∈D(B;N )
B ∈D(M;B(−1)) D ∈D(M;N ) :

This realization is uniformly reachable, observable, and has `A ≤ 1.

PROOF The realization follows from theorem 5.12 in the same way as the realization
in theorem 5.13 was derived, but now with the projector ontoH written in terms of F:
PH(·) =P0( ·F∗)Λ−1

F F (viz. equation (4.17)), and the choice of X[k] =P0(XkF∗) so that
Xk = X[k]Λ−1

F F. (The rest of the proof is straightforward and omitted.) 2
When F is written in terms of a sliced orthonormal basis representation Q ofH,

F = R∗Q
ΛF = P0(FF∗ ) = R∗R

(where R ∈D(B;B) is a boundedly invertible factor of ΛF), then the above realization
based on F can be “normalized” to obtain the realization based on Q via a state trans-
formation X → X 0R, where X 0 is a state in the realization based on Q. This provides
another way to derive theorem 5.15 from theorem 5.13.

The realization based on the basis representation F ofH provides a factorization of
HT into

·HT = P0( ·F∗) Λ−1
F P(FT) : (5.39)

The realization is uniformly reachable by construction: the reachability operator is given
by P0( ·F∗), with Gramian ΛF� 0. The observability operator is Fo =Λ−1

F P(FT). The
fact that Fo is one-to-one on DB2 is proven in the same way as done for the realization
based on Q, and hence the realization is observable and minimal.Numerical example
To illustrate some of the above with a numerical example, consider again the transfer
matrix T given in equation (3.28). The range of the Hankel operator HT is given locally
by the row spaces of the Hankel matrices {Hk}, and likewise for the range of HT . Basis
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vectors for these ranges are given in turn by the V- and U-matrices of the SVDs of the
{Hk} that have already been computed in section 3.4. Hence, for example,C1 = [ · ]C2 = [1]C3 = � :955 :298:298 −:955

�
etcetera. The operator F = Q as used in the present section is obtained by stacking
these matrices into one upper operator. This gives

F =
266666666666666666664

...
...

· · · · · · · · · · · · · ·

· · · · 1 0 0 0

· · · · :298 :955 0 0
· · · · −:955 :298 0 0

· · · · 0:080 0:412 0:908 0
· · · · −0:428 −0:808 0:405 0
· · · · 0:901 −0:420 0:112 0

...
...

377777777777777777775 : (5.40)

In fact, the i-th row of F is given by the entries of C∗
i (after permutation of the rows ofCi since the definitions of Hk in chapter 3 and this chapter differ in that respect). It is

readily verified that F satisfies P0(FF∗) = I. It can also be shown that theorem 5.13
applied to F = Q gives the same realization as the realization algorithm in chapter 3.Canonical observer realizations
In the previous section, we have defined the state Xk at point k to be the projection of
the “past input” with respect to point k, Up(k) := P0(Z−kU), onto the input state spaceH. If we select a sliced orthonormal basis or another sliced strong basis ofH, we ob-
tain a canonical realization which we called a controller realization because the state
is defined via an orthogonal projection of the input data. Dually, we can derive real-
izations based on a definition of state at the output side of the system. In that case, we
obtain canonical realizations in observer form (the state is observed at the output). To
this end, we define the operator state Xk to be the projection of the past input, after
transformation by T , onto the output state space Ho:

Xk = P(Up(k)T) ∈ Ho : (5.41)

The procedure gives rise to an almost trivial factorization of the Hankel operator: for
Up ∈ L2Z−1,

Yf =UpHT ⇔
�

X0 = P(UpT)
Yf = X0

(5.42)
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which generalizes to

Y =UT ⇔
�

Xk = P(Up(k)T)
Y[k] = P0(Xk)+U[k]T[0] : (5.43)

The shift-invariance property from which the state recursions are derived is a conse-
quence of the identity P(Z−1P( ·)) = P(Z−1 ·), from which it follows that[P(Z−1 ·)]n = P(Z−n ·) (5.44)

and also that the output state spaceHo = P(L2Z−1T) is restricted shift-invariant: with
U ∈ L2Z−1 ⇒ P(Z−1P(UT)) = P(Z−1UT), and hence

P(Z−1Ho) ⊂ Ho : (5.45)

Theorem 5.16 Let T ∈ U(M;N ) be a given transfer operator with output state spaceHo. Define bounded operators A;B;C;D as

A : Ho →Ho C : Ho →DN2
B : DM2 →Ho D : DM2 →DN2 �

A C
B D

�= �
P(Z−1·) P0(·)

P(Z−1 · T) P0(·T) �
Then, for U ∈ XM

2 , Y ∈ XN
2 , the sequence {Xk = P(Up(k)T)} is uniformly bounded,

and satisfies �
Xk+1 = XkA+U[k]B
Y[k] = XkC+U[k]D (all k) : (5.46)

A has spectral radius r(A) ≤ 1. If r(A) < 1, then there there is only one uniformly
bounded solution for (5.46) and it is given by {Xk}.

PROOF We first show that, for ·A = P(Z−1 ·), ·B = P(Z−1 · T), it follows that Xk =
P(Up(k)T) satisfies

Xk+1 = XkA+U[k]B :
From (5.44), we have that ·An = P(Z−n ·), and ·BAn−1 = P(Z−n · T). Also, with Xk =
P(Up(k)T), equation (5.43) directly gives

Y[k] = P0(Xk)+U[k]T[0] = XkC+U[k]D ;
for C=P0( ·) and D=P0( ·T). Uniqueness is shown in a similar fashion as in theorem
5.12. 2

Note that, if Xk ∈Ho, then XkA=P(Z−1Xk)∈Ho as required, because of the shift-
invariance property ofHo (equation 5.45)).

A realization is obtained by chosing a strong sliced basis inHo. Assume the system
to be locally finite, and let G be an orthonormal sliced basis representation: Ho =D2G,
ΛG = I. Then

Xk = X[k]G ; X[k] = P0(XkG∗) :
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In particular, X0 =P(UpT) =PHo(UpT)=P0((UpT)G∗)G, so that X[0] =P0(UpTG∗).
Hence, the factorization of HT in equation (5.42) becomes

·HT = P0( ·TG∗) G :
A realization based on this factorization has observability operator G, with observ-
ability Gramian ΛG = I, and reachability operator P0( ·TG∗) =: P0( ·F∗), where F =
P0(GT∗). Its kernel ker( ·F)��D2

= 0, because, for any D ∈DB2 ,

DF = 0 ⇔ P0(DGT∗) = 0
⇔ DG ∈Ko

⇒ D = 0 :
Hence, the realization is reachable, but not necessarily uniformly.

Theorem 5.17 (canonical observer realization) Let T ∈U(M;N ) be a given trans-
fer operator with output state spaceHo of locally finite dimensions. Let G be an ortho-
normal sliced basis representation ofHo: Ho =DB2 G, ΛG = I.

A ∈D(B;B(−1)) C ∈D(B;N )
B ∈D(M;B(−1)) D ∈D(M;N ) �

A C
B D

�= �
P0(Z−1GG∗)(−1) P0(G)
P0(Z−1TG∗)(−1) P0(T)�

Then, forU ∈XM
2 , Y ∈XN

2 , there exists a uniformly bounded sequence of states X[k] ∈D2;k = −∞; · · · ;∞ such that

Y =UT ⇒

(
X(−1)[k+1] = X[k]A+U[k]B
Y[k] = X[k]C+U[k]D (all k) : (5.47)

The realization is reachable and uniformly observable (hence minimal), in output nor-
mal form, and has `A ≤ 1. If `A < 1, then (5.47) has a unique uniformly bounded solu-
tion for which X = ∑k ZkX[k] is in X B

2 .

PROOF For a given Xk in Ho, put Xk = X[k]G, with X[k] ∈DB2 . Then

Xk+1 = X[k+1]G = P(Z−1Xk) + P(Z−1U[k]T)= PHo(Z−1Xk) + PHo(Z−1U[k]T)= PHo(Z−1X[k]G) + PHo(Z−1U[k]T)= P0(Z−1X[k]GG∗)G + P0(Z−1U[k]TG∗)G= X(1)[k] P0(Z−1GG∗)G + U(1)[k] P0(Z−1TG∗)G :
Hence A = P0(Z−1GG∗)(−1) and B = P0(Z−1TG∗)(−1). In the same way,

P0(Xk ) = P0(X[k]G) = X[k] P0(G) ;
hence C = P0(G). The fact that the realization is minimal follows from the minimality
of the corresponding factorization of HT . The state variables are uniformly bounded:kX[k]k ≤ kUkkTk:
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Finally, uniqueness is proven in the same way as in theorem 5.13. 2

We can generalize the canonical observer realization if we allow a non-orthonormal
sliced basis Fo forHo.

Theorem 5.18 Let T ∈ U(M;N ) be a given transfer operator with output state spaceHo of locally finite dimensions.
If Fo is a strong sliced basis representation of Ho: Ho = DB2 Fo, such that ΛFo is

bounded and ΛFo = P0(FoF∗
o)� 0, then T has a state realization�

A C
B D

�= "
P0(Z−1FoF∗

o )(−1)Λ−(−1)
Fo

P0(Fo )
P0(Z−1T F∗

o )(−1)Λ−(−1)
Fo

P0(T ) #
A ∈D(B;B(−1)) C ∈D(B;N )
B ∈D(M;B(−1)) D ∈D(M;N ) :

This realization is reachable, uniformly observable, and has `A ≤ 1.

PROOF The proof follows from theorem 5.17 and can be derived by taking a state trans-
formation X = X 0R, such that Fo = RG for a sliced orthogonal basis G. 2

The factorization of HT corresponding to this realization is

HT = P0( ·T F∗
o)Λ−1

Fo
Fo : (5.48)

The realization is uniformly observable by construction: the observability Gramian is
ΛFo � 0. The reachability operator is given by ·F∗ = PZU ( ·T F∗

o)Λ−1
Fo

; the fact that F
is one-to-one on DB2 is proven in the same way as before, and hence the realization is
reachable and minimal.Realization theorem for operators
The preceding theorems, along with proposition 5.6, amount to a converse of corollary
5.7:

Theorem 5.19 (Kronecker-type thm, II) Let T ∈ U be a locally finite operator, and
letH andHo be respectively the corange and range of its Hankel operator ·HT . Then
there exist minimal realizations {A;B;C;D} for T for which `A ≤ 1 and for which the
state is observable and uniformly reachable.

Dually, there exist minimal realizations for which `A ≤ 1 and for which the state is
reachable and uniformly observable. Uniformly minimal realizations with `A ≤ 1 exist
if and only if the range of HT is closed.

As mentioned before, we are primarily interested in cases where `A < 1: u.e. sta-
ble realizations. Such a realization occurs if the basis for the subspacesH orHo from
which the realization is constructed generates a bounded operator Q or G. It is possi-
ble that a given T ∈ U has subspaces H and Ho that do not have such bounded basis
operators, so that it does not have a u.e. stable realization. An example is given later
in this section.



112 TIME-VARYING SYSTEMS AND COMPUTATIONS
Because the canonical controller and observer realizations both provide a factoriza-

tion of the Hankel operator HT , there is a connection between the two representations.

Theorem 5.20 Given a bounded system transfer operator T ∈ U with locally finite
dimensional state spacesH andHo, let F be the representation of a strong sliced basis
inH. Put

Fo = Λ−1
F P(FT)

and suppose that Fo represents a strong sliced basis (ΛFo � 0). Then the canonical
realization based on F (theorem 5.15) is identical to the canonical realization based on
Fo (theorem 5.18).

PROOF The factorizations of HT in equations (5.39) and (5.48) are

HT = P0( ·F∗)Λ−1
F P(FT) = P0( ·TF∗

o)Λ−1
Fo

Fo :
The realization corresponding to the first factorization has P0( ·F∗) as its reachability
operator and Λ−1

F P(FT) as its observability operator; the realization corresponding to
the second factorization has P0( ·TF∗

o)ΛFo as its reachability operator and Fo as its ob-
servability operator. If we take Fo = Λ−1

F P(FT), then the two realizations have the
same observability operator. As the realizations are observable, we must have that
P0( ·F∗) = P0( ·TF∗

o)ΛFo , so that they also have the same reachability operator. The
result follows by noting that two realizations that have the same reachability operator
must have the same {A;B}-pair, and two realizations that have the same observability
operator must have the same {A;C}-pair. 2SVD-based realizations and balanced realizations
We obtain bases Q and G in a generic way via a singular value decomposition of the
snapshots of HT . Let T ∈ U be locally finite. Then there exist Q, G, Σ̂ such that

·HT = P0( ·Q∗)Σ̂G with

8<: DB2 Q = H ; ΛQ = IDB2 G = Ho ; ΛG = I
Σ̂ ∈ D(B;B) ; Σ̂∗ = Σ̂ : (5.49)

in which, moreover, each Σ̂ is diagonal and has non-negative entries in decreasing or-
der. We produce this factorization of HT by computing the singular value decompo-
sition of its snapshots Hk (as in section 3.4), putting the singular vectors whose span
is the range of H∗

k and Hk into Qk and Gk, and putting the non-zero singular values
into Σ̂k. Then Q, G are obtained by stacking the Qi and Gi (like was done in equations
(4.9)), and setting Σ̂ = diag[Σ̂k]∞−∞. Since kHk k= k Σ̂k k, also kHT k= k Σ̂k. The ensu-
ing factorizations corresponding to the canonical realizations we derived earlier in this
section are

HT = [P0( ·Q∗)]�Σ̂G
�= P0( ·F∗) Fo ; (F = Q ; Fo = Σ̂G)= �

P0( ·Q∗)Σ̂�G = P0( ·F0∗) F0o ; (F0 = Σ̂Q ; F0o = G) :
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The factorization of HT on the first line corresponds to a canonical controller realiza-
tion on Q for which ΛFo = Σ̂2, while the second factorization corresponds to a canon-
ical observer realization based on G and has ΛF0 = Σ̂2. The actual construction of the
realization based on G, according to theorem 5.17, can be done along the lines of al-
gorithm 3.9 in section 3.4.

A realization is said to be balanced if its reachability Gramian is equal to its ob-
servability Gramian, and if all diagonal entries of ΛF = ΛFo are diagonal matrices. A
realization based on the SVD factorization

HT = [P0( ·Q∗)Σ̂1=2] [Σ̂1=2G]
is balanced: ΛF = Σ̂1=2 and ΛFo = Σ̂1=2.

Proposition 5.21 Let T ∈U be a locally finite operator, and let its Hankel operator HT

have an SVD-based factorization given by (5.49). H and Ho are closed subspaces if
and only if Σ̂ is boundedly invertible, and a realization of T which is uniformly reach-
able and uniformly observable exists if and only if this condition holds.

PROOF Consider the SVD-based factorization of HT in terms of (5.49). A realization
based on Q is uniformly reachable, and because Fo = Σ̂G, the observability Gramian
is ΛFo = Σ̂2. Hence the realization is observable. It is uniformly observable, Σ̂2 � 0,
if and only if Σ̂−1 is bounded. According to proposition 5.6, this occurs if and only ifH and Ho are both closed subspaces. Proposition 5.6 already implied that any other
realization can be both uniformly reachable and uniformly observable if and only if
these subspaces are closed. 2Anomalies
Some anomalies noted in the previous sections are
1. the basis representations Q, G of H and Ho can be unbounded operators, which

occurs if and only if `A = 1 (proposition 5.14),
2. HT , H∗

T can have rangesHo,H which are not closed, which occurs if Σ̂ in proposi-
tion 5.21 is not boundedly invertible.

We show by some examples that these phenomena are unconnected. An example that
shows that it is not true that Q and G bounded implies that Σ̂−1 is bounded, is provided
by

T = 26664 0 1=2 0
0 1=4

0 1=8

0 . . .
. . .

37775 :
Q, G and Σ̂ are given by

Q=26664 1 0 0
1 0

0 1 0
. . .

. . .

37775 ; G=26664 1 0
1

0 1
. . .

37775 ; Σ̂=266664 1=2 0
1=4

0 1=8
. . .

377775 :
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Q and G are bounded, but Σ̂−1 is unbounded. A realization based on Q yields Ak = 0,
Bk = 1, Ck = 2−k−1, Dk = 0 (k ≥ 0). Indeed, the realization is not uniformly observable.

It is also not true that Σ̂−1 bounded implies that Q, G are bounded. An example is
obtained by considering inner operators (operators T which are both unitary and upper).
As shown in chapter 6, such operators have Hankel matrices Hk that are isometries, so
that Σ̂ = IB. We also show in that chapter that a unitary realization T = {A;B;C;D}
realizes a unitary operator T . It is, however, possible to construct a sequence of unitary
matrices Tk such that `A = 1, a trivial example being

Tk = �
ck sk

−s∗
k c∗

k

� ; c∗
kck + s∗

ksk = 1 ;
where ck → 1 for k → ∞. With `A = 1, Q and G are unbounded.

Hence there is no connection between the properties `A < 1 (Q and G bounded) and
the fact thatH andHo are closed subspaces (Σ̂ boundedly invertible).

As a pathological example in which some of the above-mentioned aspects occur,
consider the operator

T = 26664 0 1 1
2

1
4

1
8

1
16 · · ·

0 1
2

1
4

1
8

1
16 · · ·

0 1
4

1
8

1
16 · · ·

0
...

. . .

37775 :
T is a bounded operator: it is equal to a diagonal scaling of the bounded LTI system
z(1 − 1

2 z)−1. One possible (SVD-based) factorization of its Hankel operators Hk is

Hk = σk ·
1p
k

2666666664 1
1
...
1
0
...

3777777775
9>>>=>>>;k

·
1
p

�
1

1
2

1
4

· · ·

� (k > 0) ;
where σk = p

p
k

2k−1 and p is equal to the norm of the vector [1 1
2

1
4 · · · ]. Each Hankel

matrix Hk has only one singular value unequal to 0, and σk → 0 if k → ∞, hence Σ̂ is
not boundedly invertible. Q and G follow from the above decomposition as

Q = 2666666664 ·
1 0
1p
2

1p
2

0
1p
3

1p
3

1p
3

0
1p
4

1p
4

1p
4

1p
4

0
...

. . .

3777777775 G = 26666664 ·
1
p

1
2p

1
4p

1
8p · · ·

1
p

1
2p

1
4p · · ·

1
p

1
2p · · ·
. . .

37777775 :
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G is bounded, but Q is unbounded, which can be seen, e.g., from the fact that the norms
of its columns are unbounded. A realization based on G has

Ak = 1
2 ; Ck = 1

p ; (k > 0) ; (5.50)

so that `A = 1
2 , but Bk = p

2k−1 → 0 (k → ∞) and the realization is not uniformly reach-
able. A realization based on Q is

Ak = 1p
k

kp
k+1

= p
kp

k+1
→ 1 (k → ∞)

Bk = 1p
k+1

→ 0
(5.51)

and indeed `A = 1, which was to be expected as Q is unbounded.On the uniqueness of the solution of canonical state equations
As indicated in theorem 5.12, the state sequence {X[k]} has to be uniformly bounded or
else it cannot be assured to be unique. Some insight in this point might be gained by
looking at a time-invariant example, for which we can easily exhibit the non-uniqueness
alluded to. Let us take the simple case for which the transfer function is given by 1=(1−
az), with 0 < |a| < 1. We study it in the LTI domain and then translate to our LTV for-
malism. With scalar inputs and outputs, the input and output X2 spaces are analogous
to L2 of the unit circle T of the complex plane, which we indicate by L2(T). “Future”
inputs and outputs are in H2(T), the subspace of L2(T) of functions whose Fourier co-
efficients are zero for strictly negative indices, while inputs and outputs that belong to
the strict past are in H⊥

2 , the orthogonal complement of H2 in L2(T). In our example,
the relevant state spaces and null spaces are known to be2Ĥ = n

dz−1

1−āz−1 : d ∈ CoK̂ = H⊥
2 ·
h

z−1−a
1−āz−1

iĤo = �
d

1−az : d ∈ C 	K̂o = H2 ·
�

z−ā
1−az

� : (5.52)

The “hatted” spaces indicate the analogs of the spaces defined earlier, but now in the
time-invariant Fourier transform context. (A formal correspondence of spaces can be
set up, but here we just present it intuitively.) Translated to our time-varying formalism,
the functions of z become Toeplitz operators. This can be viewed as replacing the scalar
z in the series expansion of the function by the shift operator Z. For brevity, recall the
transformation operator T :

f (z) = · · ·z−1 f−1 + f0 + z f1 + · · · ⇔ T ( f (z)) = · · ·Z−1 f−1 + f0 +Z f1 + · · · :
2For example, u(z) ∈ K̂ ⇔ u(z) · (1=(1 − az)) ∈ H⊥

2 , which is the case if and only if u(z) can be written as

u1(z) · z−1−a
1−āz−1 with u1(z)∈ H⊥

2 . This follows directly from the fact that z−1−a
1−āz−1 · 1

1−az = z−1

1−āz−1 .
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We find that H = {DT ( dz−1

1−āz−1 ) : D ∈D2}K = L2Z−1 ·T h z−1−a
1−āz−1

iHo = {DT ( d
1−az ) : D ∈D2}Ko = U2T � z−ā
1−az

� : (5.53)

The orthogonal space decompositions H⊥
2 = K̂⊕ Ĥ and H2 = Ĥo ⊕ K̂o carry over

to L2Z−1 =K⊕H and U2 =Ho ⊕Ko — the proofs for the time-invariant case can be
deduced from those for the LTV case. Let

E := T ( z−1

1 − āz−1 )
and let us define

Xk := akE : (5.54)

Since z−1ak z−1

1−āz−1 = ak
� (z−1−a)z−1

1−āz−1 +a · z−1

1−āz−1

�
and (z−1−a)z−1

1−āz−1 ⊥ Ĥ, we have

PĤ(z−1ak z−1

1 − āz−1 ) = ak+1 z−1

1 − āz−1 :
Hence,

PH(Z−1akE) = PH(Z−1akT ( z−1

1−āz−1 ))= PH(akT ( z−2

1−āz−1 ))= akT (PĤ( z−2

1−āz−1 ))= ak+1E ;
so that

XkA = PH(akZ−1E) = Xk+1 : (5.55)

The sequence Xk is unbounded for k → −∞, but it does satisfy XkA = Xk+1. When
r(A) = 1, obviously no uniqueness statement can be made, e.g., when a = 1, the se-
quence just exhibited would be a (uniformly) bounded solution of the autonomous sys-
tem.5.5 NOTES
The concept of state originated as an abstraction of computer memory in automaton
theory [Ner58]. It entered system theory in the late 1950s when the connection with
first-order differential equations became clear. During the 1960s, much effort was put
into the construction of state models for continuous-time LTI and LTV systems spec-
ified by their impulse response H(t;τ), such that y(t) = R

H(t;τ)u(τ)dτ. Among the
initial results was the proof that realizability is equivalent to the separability of the im-
pulse response matrix into H(t;τ) = Ψ(t)Θ(τ). However, the effective construction of
this factorization was difficult, and even not always possible, and the direct realizations
that were produced were not always asymptotically stable [Kam79]. For LTI systems,
state-space realization synthesis began with the work of Kalman and his co-workers
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[Kal63, HK66, KFA70], Gilbert [Gil63] and Youla [You66]. The use of the Hankel ma-
trix, which does not require a separable form of the impulse response matrix, resulted
in the Ho-Kalman algorithm [HK66], which was independently obtained by Youla and
Tissi [YT66]. In the 1970s, a new tool carried over from linear algebra into the world of
system theory: the singular value decomposition. With this tool, a numerically robust
way became available to compute the factorization of the Hankel matrix. The SVD was
incorporated into the realization algorithm by Moore in 1978 (see [Moo79, Moo81])
in the context of continuous-time systems for the purpose of balancing the realization.
There are closely related papers by Zeiger and McEwen [ZM74] and by Pernebo and
Silverman [PS79]. It was realized at that time that a balanced realization can be ap-
proximated very straightforwardly, and the resulting combination (reported by Kung
in 1978 [Kun78] for discrete-time systems) gave rise to a class of robust identification
algorithms, called Principal Component identification techniques.

For continuous-time time-varying systems with a constant system order, a realiza-
tion theory was developed by Silverman and Meadows [SM66, SA68, SM69]. Reach-
ability and stability issues were treated also in [AM69]. Kamen extended Kalman’s al-
gebraic module theory to incorporate a continuous-time pure delay operator [Kam75,
Kam76a], and considered the realization by state-space models of systems Ay(t) =
Bu(t), where A and B are matrix polynomials in the differential operator p and unit
delay operator d. For time-varying systems, these results could be extended by using
a non-commutative ring of polynomials [Kam76b].

The development of discrete-time realization theory for LTV systems started in the
1970s with the work of Weiss [Wei72] and Evans [Eva72]. The concepts of reachabil-
ity, observability and minimality were defined (see also [AM81]), but the realization
theory was limited to state dimensions of constant rank. An algebraic approach was
followed by Kamen, Khargonekar, and Poolla [KH79, KKP85, PK87], who defined
time-varying systems via modules of non-commutative rings of polynomials acting on
signals in `∞(Z). Many definitions and results in [KKP85] can be translated directly
into the diagonal algebra considered in this book: instead of Z, two operators z and σ are
used, where σ is a time-shift operator on sequences, and z is an algebraic symbol. The
description of objects using z and σ is equivalent to our description of diagonals and
polynomials (in Z) of diagonals. The aspect of varying state dimensions was first pub-
lished in Van der Veen and Dewilde [vdVD91]. A similar realization theory for lower
triangular block matrices was presented by Gohberg, Kaashoek and Lerer [GKL92],
in which operators on `∞(Z) were considered. Many ingredients (e.g., the definition
of the Hankel operator and its factorization) can also be found in Halanay and Ionescu
[HI94].

In a parallel development, mathematicians and “fundamental” engineers considered
state-space theory for operators on a Hilbert space. Besides the mathematical elegance,
Hilbert spaces seemed necessary to incorporate infinite dimensional systems in a state
space theory. Such systems arise in a natural way in the time-continuous context of
systems which contain “pure delays”, e.g., networks with lossless transmission lines.
Scattering theory for such networks was developed by Phillips and Lax [LP67], but
without using state-space theory. Connections between the fields of Hilbert space op-
erator theory (in particular the work of Sz.-Nagy and Foias [SNF70]) and network syn-
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thesis were made by Livsic in 1965 in Russia and with other viewpoints by Dewilde
[Dew76], Helton [Hel72, Hel74, Hel76] and Fuhrmann [Fuh74, Fuh75, Fuh76, Fuh81]
in the West. These efforts put the algebraic realization theory of Kalman into the Hardy
space context of shift-invariant subspaces à la Helson [Hel64], Beurling-Lax represen-
tations of such subspaces by inner functions [Beu49, Lax59], and coprime factoriza-
tions. More recently, additional results on this type of realization theory (the existence
of balanced realizations for infinite-dimensional discrete-time systems) have been ob-
tained by Young [You86]. These ideas and results on infinite-dimensional realization
theory of operators in Hilbert space are fundamental to the time-varying realization
theory as treated in this chapter, and to a number of results in the chapters to come.

Finally, one different but related approach to the time-varying realizations of oper-
ators in Hilbert space is the work of Feintuch and Saeks [FS82]. Their theory is based
on a Hilbert space resolution of the identity in terms of a nested series of projectors that
endow the abstract Hilbert space with a time structure. The projectors are projectors
of sequences onto the past, with respect to each point k in time. With the projectors,
one can define various types of causality, and the theory provides operators with a state
structure via a factorization of the Hankel operator, which is also defined in terms of
the projections. Many of the issues mentioned in the present chapter are also discussed
in the book [FS82], but in a different language.Appendix 5.A: Proof of proposition 5.14
PROOF of proposition 5.14. Because we know already that `A ≤ 1, the proof that Q is
bounded if and only if `A < 1 can consist of the two steps,

1. `A = 1 ⇒ the operator [I+AZ+(AZ)2+ · · ·] is unbounded on DB2 ;
2. Q bounded ⇒ the operator [I+AZ+(AZ)2 + · · ·] is bounded on DB2 :

Proof of step 1. By definition, `A = r(AZ) = lim
n→∞

k(AZ)n k1=n. We already know

that kAZk ≤ 1. Suppose that for some finite n we have k(AZ)n k1=n < 1. Then alsok(AZ)n k< 1, so that k(AZ)2n k ≤ k(AZ)n k2 < 1 and k(AZ)2n k1=2n ≤ k(AZ)n k1=n < 1.
It follows that`A = 1 ⇒ k(AZ)n k = 1 ( for all n)

⇒ sup
D:kDkHS=1

kD(AZ)n kHS = 1 ( for all n) : (5.A.1)

Because kAZk ≤ 1 implies kD(AZ)n−1kHS ≥ kD(AZ)n kHS for any D ∈ D2, we have
from (5.A.1) that

sup
D:kDkHS=1

n

∑
k=0
kD(AZ)k k2

HS ≥ sup
D:kDkHS=1

nkD(AZ)n k2
HS = n : (5.A.2)

This follows from the following reasoning: for any 0< ε< 1 and any n, choose D such
that kDkHS = 1 and kD(AZ)nk2

HS ≥ 1 − ε=n, then for all k ≤ n we have kD(AZ)kk2
HS ≥

1 − ε=n, and hence

sup
D:kDkHS=1

n

∑
k=1
kD(AZ)kk2

HS ≥ n − ε :
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Since ε was arbitrary, (5.A.2) follows.

Now since, for any n,

sup
D:kDkHS=1

kD
h
I+AZ+(AZ)2+ · · ·

ik2
HS ≥ sup

D:kDkHS=1

n

∑
k=0

kD(AZ)k k2
HS ;

it follows from (5.A.2) by taking the limit for n → ∞, that the left-hand side of this
expression is equal to infinity. This proves that

�
I+AZ+(AZ)2+ · · ·

�
is unbounded

on D2.
Proof of step 2. We first remark that equation (5.36), along with An = PH(Z−n ·)

(lemma 5.11) and PH(·) = P0( ·Q∗)Q (theorem 4.9), results in the expression

A{n} = P0(Z−nQQ∗) (n ≥ 0) : (5.A.3)

If Q is a bounded operator, then the operator P(·QQ∗) acting on D ∈ D2 is bounded
and in U2. But, using (5.A.3), P(DQQ∗) can be evaluated as

P(DQQ∗) = ∑∞
0 Zn P0(Z−nDQQ∗)= ∑∞
0 ZnD(n) P0(Z−nQQ∗)= ∑∞
0 ZnD(n)A{n}= D ∑∞

0 (AZ)n= D
�
I+AZ+(AZ)2 + · · ·

� :
Hence Q bounded implies that

�
I+AZ+(AZ)2+ · · ·

�
is bounded on D2. 2





6 ISOMETRIC AND INNEROPERATORS

Lossless systems play an important role in the class of linear systems. They are causal
systems which “conserve energy”. If energy is measured as the square of a quadratic
norm k ·k, a lossless system transforms an input signal u with bounded energy kuk to an
output signal y = uT which contains the same total energy: kuk= kyk. In filter theory,
scalar lossless systems are also known as allpass filters, with a flat amplitude spectrum
but a variable phase. They have many interesting properties. One is that any passive
rational filter may be realized as the partial response of a lossless filter. Another prop-
erty is that lossless systems may be implemented in a locally lossless way as well, by
using a state space realization in which every section is itself lossless. Such realiza-
tions do not amplify noise introduced at any point in the system, and they can be made
robust with respect to parameter deviations as well.

The most elementary algebraic expression of losslessness is the orthogonal or Jacobi
rotation (in which φ is an angle):�

cosφ −sinφ
sinφ cosφ

� :
It plays a central role in many algorithms for linear algebra, e.g., for computing QR
factorizations and the singular value decomposition. The Jacobi rotation is a building
block for more general classes of matrices or operators called isometric, unitary and
inner. We study their main system theoretic properties in this and the following chapter.
The embedding of passive systems into lossless systems is the topic of chapter 12, and121
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the implementation of a pointwise lossless realization by a cascade of Jacobi rotations
is in chapter 14.

Conservation of energy between input and output (kuk= kyk) requires only that the
corresponding operator V : y = uV is isometric (VV∗ = I). V does not have to be causal
to be isometric. The class of causal isometric operators characterizes DZ-invariant sub-
spaces in U2: subspaces that are both left D-invariant and invariant under shifts. This is
the content of a general version of the Beurling-Lax theorem, possibly due to Arveson
[Arv75], which will play a central role in this chapter. We rederive it in our context
(the proof is illuminating and parallels the classical proof), and use it to characterize
the main system theoretical input and output spaces. It is a non-trivial question, and
one of fierce controversy in the literature, to identify the class of causal, isometric op-
erators that can be embedded into a causal unitary operator. A useful characterization
is given in this chapter.

We say that a transfer operatorV is inner ifV ∈U satisfies bothVV∗ = I andV∗V = I.
We first show that if an operator is inner and locally finite, then it admits a realization[A

B
C
D ] which is unitary. Conversely, if a realization is unitary and has `A < 1, then the

corresponding transfer operator is inner. With this background, we look at certain stan-
dard factorizations of transfer operators T . The first factorization that we consider is
what we call the external factorization: a factorization of the type

T = ∆∗V

where V is inner and ∆ ∈ U . (In the literature the term inner-coprime is often used,
which we shall reserve for the case where the factorization is minimal.) Such a fac-
torization exists if the output nullspace Ko(T) of T can be represented as Ko(T) =U2V , where V is an inner function, which will imply thatHo(V) =Ho(T). Because of
this property, inner operators play an important role in the derivation of reduced-order
models discussed in chapter 10. The factorization can be derived in two ways: via a
constructive proof using realizations, but also via the generalized Beurling-Lax theo-
rem. Finally, we utilize the external factorization to give a general embedding theorem
which characterizes the set of causal operators that have a (minimal) unitary extension.
A similar factorization, the inner-outer factorization, is treated in chapter 7.6.1 REALIZATION OF INNER OPERATORSDe�nitions
An operator V ∈ X is called an isometry if VV∗ = I, a (co-)isometry if V∗V = I, and
unitary if both VV∗ = I and V∗V = I, or V−1 = V∗. Equivalently, an operator is an
isometry if its domain and range are closed subspaces in X2 and if inner products are
conserved: for F;G ∈ X2, 〈FV;GV〉HS = 〈F;G〉HS, or {FV;GV} = {F;G} in the diag-
onal inner product notation. We shall say that an operator is inner if it is unitary and
upper. Systems described by isometric or inner operators satisfy an energy conserva-
tion property: let U;Y ∈ X2,

if VV∗ = I then Y =UV ⇒ kY kHS = kU kHS

if V∗V = I then Y =UV∗ ⇒ kY kHS = kU kHS :
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Another elementary property is that they leave orthogonality intact:

if VV∗ = I then X ⊥ Y ⇔ XV ⊥ YV
if V∗V = I then X ⊥ Y ⇔ XV∗ ⊥ YV∗ :

If V is an isometry, then it maps closed sets into closed sets: since distances between
elements of the set are preserved, xn → x ⇒ xnV → xV .

For finite matrices (operators in U(M;N ) with index sequences that vanish outside
a finite interval), the notion of inner is particularly tied to how the index sequences ofM andN run. If they are all pointwise scalar and equal, then an inner matrix will triv-
ially be a diagonal: non-trivial inner matrices are possible only when the dimensions
ofM andN are varying. This is because an upper triangular and unitary matrix with
scalar entries is necessarily diagonal. However, many more types of matrices qualify
as upper in our formalism. E.g., with the proper choice of input and output sequences,
a unitary matrix of the form 266664 ? ? ? ? ?? ? ? ? ?

0 ? ? ? ?
0 0 ? ? ?
0 0 0 ? ? 377775

may be considered upper and thus inner.

Let V= h
A C
B D

i
be a realization operator. The realization is called unitary if VV∗ = I

and V∗V = I.
The purpose of this section is to show that ifV is a locally finite inner operator, then it

has a realization that is unitary. Conversely, a u.e. stable unitary realization corresponds
to an inner operator. There are various ways to prove these properties. For example,
we can start with a realization of V in input normal form, i.e., A∗A+B∗B = I. To have
a unitary realization V, it suffices to show that VV∗ =V∗V = I implies that there exist
C and D such that A∗C+B∗D = 0, C∗C+D∗D = I. However, a direct proof of this is
not so easy. We propose a more elegant indirect proof, which gives valuable insight
into the geometrical properties of the underlying state spaces as well.State-space properties of inner operators
For a transfer operator T ∈ U , we have defined the input/output state and null spaces in
chapter 5 in terms of the ranges and kernels of the Hankel operator HT and its adjoint
(equations (5.3), (5.5)):K(T) = ker(HT ) = {U ∈ L2Z−1 : P(UT) = 0}H(T) = ran(H∗

T ) = P0(U2T∗)Ho(T) = ran(HT ) = P(L2Z−1T)Ko(T) = ker(H∗
T ) = {Y ∈ U2 : P0(YT∗) = 0} :

These subspaces provide decompositions of L2Z−1 and U2 asH(T) ⊕ K(T) = L2Z−1Ho(T) ⊕ Ko(T) = U2 :
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For inner operators V , the null spaces take on a more specific structure.

Proposition 6.1 Let V ∈ U be an inner operator. ThenK(V) = L2Z−1 V∗ ; H(V) = L2Z−1 	 L2Z−1 V∗Ko(V) = U2V ; Ho(V) = U2 	 U2V :H andHo are closed subspaces. In addition,Ho =HV ; H=HoV∗ :
PROOF Since X2V ⊂ X2 and VV∗ = I, X2 ⊂ X2V∗ ⊂ X2 and hence X2 = X2V∗ =(L2Z−1 ⊕U2)V∗. Because V∗V = I, L2Z−1V∗ ⊥ U2V∗, so thatX2 = L2Z−1V∗ ⊕ U2V∗ : (6.1)

Both L2Z−1V∗ and U2V∗ are closed subspaces, and because V ∈ U , L2Z−1V∗ ⊂L2Z−1.
Projecting equation (6.1) onto L2Z−1 producesH= P0(U2V∗) = L2Z−1	L2Z−1V∗ :
As an orthogonal complement, this is a closed subspace, so thatH is closed. HenceL2Z−1 = L2Z−1V∗ ⊕ H ; (6.2)

so that K = L2Z−1V∗. From (6.2), it also follows immediately thatL2Z−1 ⊕ HV = L2Z−1V :
HenceHV ⊂ U2, andHV = P(L2Z−1V) =Ho. The remaining results are obtained by
dual arguments. 2

For general transfer operators T , we had already thatHo = P(HT). Thus, inner op-
erators are special in the sense that they map their input state space fully into the output
state space, without the intervention of a projection. Likewise, the Hankel operator of
V , HV , satisfies ·HV = ·V onH. Since ·HV = 0 onK, we see that HV is an isometry. In
the locally finite case, the non-zero singular values of its snapshots are all equal to 1:
in the SVD-based factorization HV = P0( ·Q∗)Σ̂G of equation (5.49), we have Σ̂ = I.Unitary realizations
We now show that (i) if a locally finite operator V is inner, then it has a unitary realiza-
tion V (which is obtained by a canonical realization based on Q or G); and conversely,
(ii) if V is a unitary realization with `A < 1, then the corresponding operator V is inner.
The case `A = 1 is much more complicated and deferred to sections 6.3 and especially
6.4.

We start with a lemma which is actually a corollary of proposition 6.1.

Lemma 6.2 Let V ∈ U be a locally finite inner operator. If Q is a sliced orthonormal
basis representation of the input state space H of V , then G = QV is a sliced ortho-
normal basis representation of its output state space Ho, and the canonical controller
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realization based on Q (theorem 5.13) is equal to the canonical observer realization
based on G (theorem 5.17).

PROOF According to theorem 5.20, a sliced basis of Ho is obtained as Fo = P(QV).
BecauseHo =HV , it follows that Fo = P(QV) = QV = G. G is an orthonormal basis
ofHo, because ΛG =P0(QVV∗Q∗) =ΛQ = I. The canonical realizations are obtained
from theorems 5.13 and 5.17, respectively, as

V = �
P0(Z−1QQ∗)(−1) P0(QV)
P0(Z−1Q∗)(−1) P0(V) �

and V0 = �
P0(Z−1GG∗)(−1) P0(G)
P0(Z−1VG∗)(−1) P0(V) � :

(6.3)
The fact that both realizations are equal follows directly by inserting G = QV . 2
Theorem 6.3 Let V ∈ U be a locally finite inner operator. Then V has a realization V
which is unitary and both uniformly reachable and uniformly observable.

PROOF Let Q be an orthonormal basis representation for H(V), and let V be given
by the canonical controller realization (6.3). This realization satisfies the properties
(5.19)–(5.21):

ZQ = A∗Q+B∗ ; V = D+Q∗C : (6.4)

We set out to prove that V∗V = I, i.e.,

A∗A+B∗B = I ; C∗C+D∗D = I ; A∗C+B∗D = 0 :
A∗A+B∗B = I follows from the fact that Q is an orthonormal basis: ΛQ = I, which
satisfies the Lyapunov equation (5.22). To show that C∗C +D∗D = I, use equation
(6.4) and the fact that Q is strictly lower:

P0(V∗V) = I ⇒ P0( [D∗ +C∗Q][D+Q∗C] )= D∗D+C∗P0(QQ∗)C+D∗P0(Q∗)C+C∗P0(Q)D= D∗D+C∗C+0+0 = I :
A∗C+B∗D = 0 follows from lemma 6.2: G = QV spansHo(V), hence G ∈ U so that
P0(ZQV) = P0(ZG) = 0. With equation (6.4), we obtain

P0(ZQV) = 0 ⇒ P0( [B∗ +A∗Q][D+Q∗C] )= B∗D+A∗P0(QQ∗)C= B∗D+A∗C = 0 :
Hence V∗V = I. Dually, we find in the same way that V0 in (6.3) satisfies V0V0∗ = I.
Since V = V0 if G = QV (lemma 6.2), it follows that V is unitary. 2

The converse of this theorem is in general true only if, in addition, `A < 1: in that
case, a unitary realization corresponds to an inner operator. If `A = 1, then additional
assumptions on the reachability and observability of the realization must be made. The
latter case is deferred to theorem 6.12 in the next section.
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Theorem 6.4 Let V = [A

B
C
D ] be a state realization of a locally finite operator V ∈ U . If`A < 1, then V unitary implies that V is inner.

PROOF If `A < 1, then (I − AZ)−1 is bounded, so that we can write

I −V∗V = I − [D+BZ(I − AZ)−1C]∗ [D+BZ(I − AZ)−1C]= I − D∗D − C∗(I − Z∗A∗)−1Z∗B∗D − D∗BZ(I − AZ)−1C
− C∗(I − Z∗A∗)−1Z∗B∗BZ(I − AZ)−1C= I − D∗D + C∗(I − Z∗A∗)−1Z∗A∗C + C∗AZ(I − AZ)−1C +
− C∗(I − Z∗A∗)−1Z∗�I − A∗A

	
Z(I − AZ)−1C= C∗C + C∗(I − Z∗A∗)−1

�
Z∗A∗ +AZ − I − Z∗A∗AZ

	(I − AZ)−1C

since B∗D = −A∗C, B∗B = I − A∗A and I − D∗D =C∗C, and hence

I −V∗V = C∗(I − Z∗A∗)−1
�(I − Z∗A∗)(I − AZ) ++ Z∗A∗ +AZ − I − Z∗A∗AZ

	(I − AZ)−1C= 0 :
I −VV∗ = 0 is verified by an analogous procedure. 2

A slightly more general version of this, not using normalized realizations, is given
by the following corollary, where M is the reachability Gramian of the given realiza-
tion, and Q its observability Gramian. (A comparable result can be found in [HI94,
§2.5].)

Corollary 6.5 Let T ∈ U be a locally finite input-output operator with u.e. stable state
realization T. Then

∃M ∈D : T∗
�

M
I

�
T = �

M(−1)
I

�
⇒ T∗T = I

∃Q ∈D : T
�

Q(−1)
I

�
T∗ = �

Q
I

�
⇒ TT∗ = I :

Conversely, if T∗T = I and TT∗ = I, and the realization is uniformly reachable or ob-
servable, then the left-hand sides are satisfied with M = Q−1.6.2 EXTERNAL FACTORIZATIONDe�nition
Let T ∈ U be some transfer operator. We call an external factorization a factorization
of the form

T = ∆∗V ;
where ∆ = VT∗ ∈ U and V ∈ U is an inner operator. If the factorization is such that
V is an inner transfer operator of smallest possible local degree such that ∆ = VT∗ is
upper, then we call the factorization inner coprime. We show that if T has a locally
finite state space and a uniformly observable realization for which `A < 1, then such
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factorizations exist. They can readily be computed from a state realization. If V has
the same output state space as T , then the factorization is minimal. The minimal inner
factor will be unique except for a left unitary diagonal factor.

To obtain a better understanding of the external (inner-coprime) factorization, con-
sider the scalar time-invariant case. Let

T = z − α∗

1 − βz
; |α|; |β| < 1 :

Then T has an inner-coprime factorization as

T = ∆∗V = z − α∗

z − β∗ ·
z − β∗

1 − βz
; ∆ = 1 − αz

1 − βz
; V = z − β∗

1 − βz
:

Hence the poles of T are collected in the inner factor V . These poles also appear as
poles of ∆, unless they are matched by complementary zeros of T .

The existence of external and inner-coprime factorizations has great system theo-
retical importance. Aside from the fact that it plays a key role in important practical
questions such as the design of low-sensitivity controllers, it is directly related to the
existence of a meaningful state-space representation. Since it is also a matter of con-
troversy in the literature, we devote a few words to introduce the question; for the time-
invariant case deeper treatments can be found in [Dew76] and [Fuh81].

In the case of a single-input, single-output time-invariant system, the existence of
inner-coprime factorizations is equivalent to the existence of non-trivial system null-
spacesK(T) andKo(T). The Fourier transform ofKo(T) is a subspace of H2, the space
of Fourier transforms of one-sided `2-sequences whose support is the non-negative in-
tegers. Ko(T) has a special property: it is z-invariant: z ·Ko(T)⊂Ko(T). Dually,K(T)
is a z−1-invariant subspace of the orthogonal complement H⊥

2 of H2 which represents
past inputs.

Beurling’s celebrated theorem [Hel64, Hof62] states thatKo(T) is either trivial (=
{0}) or there exists an inner function φo(z) such that Ko(T) = φo(z)H2 (in this sim-
ple context, “inner” means that φo(z) is analytic in the open unit disc of the complex
plane, and that |φo(eiθ)| = 1 almost everywhere on the unit circle; in other words, φo

is a pure phase function). Dually, either K(T) = {0} or there exists an inner φ(z) such
thatK(T) = φ∗(z)H⊥

2 . In the first case, the null-space is trivial and the system remem-
bers its full past. In that case there is no meaningful state space description: the state
is equivalent to the whole input sequence, and the state space description is nothing
but the input-output description. In the second case, the null-space is very large, and
each state stands for an input collection isomorphic to H2. One can say that the system
forgets almost everything from its past. There is no in-between: once a system forgets
one input, it will forget an infinity of them.

In [Dew76] such systems have been called “roomy”. Their transfer functions can
be characterized by an analytical property, they are “pseudo-meromorphicallycontinu-
able”, see the work of Helton [Hel74]. It turns out that roominess is a necessary and
sufficient condition for the lossless (inner) embedding of a causal contractive transfer
function. This fact was discovered independently by Arov and Dewilde around 1971.
For multi-dimensional systems the situation is more complex, but the property that a
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lossless embedding exists if and only if the causal contractive system is roomy still ap-
plies. We shall find many of these properties back in the time-varying case. Again,
external and coprime factorization play a major role. Similar time-varying coprime
factorizations have also been reported in [PK87, DS92, RPK92].Derivation
The following simple observation is crucial in the computation of the inner factor of
an external factorization.

Proposition 6.6 Let be given operators T ∈ U and V ∈ U . Then ∆ :=VT∗ is upper if
and only if U2V ⊂Ko(T).
PROOF ∆ ∈ U ⇔ P0(U2∆) = 0. Substitution of ∆ =VT∗ produces, if U2V ⊂Ko(T),

P0(U2∆) = P0(U2VT∗)
⊂ P0(Ko(T)T∗)= 0 :

This produces the “if” statement. The converse follows from the property Ko(T) =
{u ∈ U2 : P0(uT∗) = 0}, hence P0[(uV)T∗] = P0(u∆) = 0, and uV ∈Ko(T). 2Ko(T) is the largest subspace in U2 which remains upper under mapping by T∗. It
follows that a system V with lowest state dimensions such that ∆=VT∗ ∈U is obtained
if U2V = Ko(T), since the larger the nullspace, the smaller the state dimension. We
shall make this observation more precise soon.

If V is inner, then from proposition 6.1, we have thatKo(V) = U2V , which provides
the following additional result.

Corollary 6.7 If V is inner, then ∆ =VT∗ is upper if and only ifHo(T) ⊂Ho(V).
The next step in the construction of the external factorization is the calculation of

an operator V such that Ho(V) = Ho(T). This can be done in a state-space context,
directly on a realization of T . Let T be a locally finite operator in U . We start from a
realization of T in output normal form, i.e., such that

AA∗ +CC∗ = I ; (6.5)

which means that at each point k in time the equation AkA∗
k +CkC∗

k = I is satisfied.
Such a realization is obtained from a canonical observer realization (viz. theorem 5.17),
or by normalizing any uniformly observable realization (section 5.3). We assume that
T ∈ U(M;N ), with state-space sequence B, so that A ∈ D(B;B(−1)). For each time
instant k, we augment the state transition matrices [Ak Ck] of T with as many extra rows
as needed to yield a unitary (hence square) matrix Vk:

Vk = � Bk+1 NkBk Ak Ck(MV)k (BV)k (DV )k

� : (6.6)
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The added rows introduce a space (MV )k with dimensions satisfying #Bk+#(MV)k =
#Bk+1 + #Nk : Since [Ak Ck] must have full row rank to enable AkA∗

k +CkC∗
k = I, it

follows that #Bk+1+#Nk ≥ #Bk, hence #(MV)k ≥ 0. Assemble the individual matrices
{Ak;(BV )k;Ck;(DV )k} into diagonal operators {A;BV ;C;DV }, and define V by taking
the corresponding operator V as a state-space realization for V . By theorem 6.4, V is
inner if also `A < 1, and because T and V have the same (A;C)-matrices, Ho(V) =Ho(T), as required to make ∆ ∈ U .

Although the construction is the same whether `A < 1 or `A = 1, the proof that it
yields an external factorization is less elementary (and only conditionally true) for the
case `A = 1, so the latter case is omitted in the following theorem.

Theorem 6.8 Let T be a locally finite operator in U . If T has a realization which is
uniformly observable and for which `A < 1, then there exists an inner operator V such
that

T = ∆∗V

where ∆ =VT∗ ∈ U .

PROOF Under the present conditions on T , it has a minimal realization T which is
in output normal form and has `A < 1. Then the above construction gives a unitary
realization V. Since this realization has `A < 1, theorem 6.4 ensures that V is a minimal
realization and that the corresponding operator V is inner. By construction Ho(V) =Ho(T), so that application of corollary 6.7 shows that ∆ := VT∗ is upper. Because V
is inner, this implies that T = ∆∗U. 2

The fact that ∆ = VT∗ is upper can also be verified by a direct computation of ∆.
Let’s assume for generality that the realization for T has observability Gramian Q� 0.
Then the corresponding unnormalized realization V= [ A C

BV DV
] satisfies in particular the

relations AQ(−1)A∗ +CC∗ = Q, BV Q(−1)A∗ +DVC∗ = 0, and it follows that

∆ =VT∗ = �
DV +BVZ(I − AZ)−1C

��
D∗ +C∗(I − Z∗A∗)−1Z∗B∗�= �

DV +BVZ(I − AZ)−1C
�

D∗ + DVC∗(I − Z∗A∗)−1Z∗B∗ ++ BV Z(I − AZ)−1CC∗(I − Z∗A∗)−1Z∗B∗= �
DV +BVZ(I − AZ)−1C

�
D∗ − BV Q(−1)A∗(I − Z∗A∗)−1Z∗B∗ ++ BV Z(I − AZ)−1 (Q − AQ(−1)A∗)(I − Z∗A∗)−1Z∗B∗ :

Now, we make use of the relation

Z(I − AZ)−1(Q − AQ(−1)A∗)(I − Z∗A∗)−1Z∗= (I − ZA)−1 Z(Q − AQ(−1)A∗)(Z − A∗)−1= (I − ZA)−1Q(−1) + Q(−1)A∗(Z − A∗)−1= Q(−1)+Z(I − AZ)−1AQ(−1) + Q(−1)A∗(I − Z∗A∗)−1Z∗

where the second step is easily verified by pre- and postmultiplying with (I − ZA) and(Z − A∗), respectively. Plugging this relation into the expression for ∆, it is seen that
the anti-causal parts of the expression cancel, and we obtain

∆ = DV D∗ +BVQ(−1)B∗ + BV Z(I − AZ)−1(AQ(−1)B∗ +CD∗) :
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Figure 6.1. External factorization: (a) The structure of a state realization for an example
T , (b) the structure of the corresponding ∆∗ and (c) inner factor V such that T = ∆∗V .
In summary, if `A < 1; AQ(−1)A∗ +CC∗ = Q� 0, then T has an external factorization
T = ∆∗V with realizations of the form

T = �
A C
B D

�
⇒ V = �

A C
BV DV

� ; ∆∆∆ = �
A AQ(−1)B∗ +CD∗

BV BV Q(−1)B∗ +DVD∗

� : (6.7)

This realization is not necessarily minimal: if, for example, T is itself inner, then B =
BV and D = DV , so that C∆ = 0, and the realization for ∆ is not observable.

A dual result is a factorization T =U∆∗ with realizations of the form

T = �
A C
B D

�
⇒ U = �

A CU

B DU

� ; ∆∆∆ = �
A CU

C∗MA+D∗B C∗MCU +D∗DU

�
(6.8)

which is valid for `A < 1, A∗MA+B∗B = M(−1)� 0.
Because the Ak are not necessarily square matrices, the dimension of the state space

may vary in time. A consequence of this is that the number of inputs of V varies in time
for an inner V with minimal state dimension. The varying number of inputs of V are of
course matched by a varying number of outputs of ∆∗. Figure 6.1 illustrates this point.Algorithm
If we do not assume that the realization for T is in output normal form, then the recur-
sion to normalize T and the complementation to compute V and ∆∆∆ can conveniently be
combined into a single “QR iteration”:
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Proposition 6.9 Under conditions of theorem 6.8, let (A;B;C;D) be any uniformly
observable realization of T . Denote realizations of V and ∆ by

V = �
AV CV

BV DV

� ; ∆∆∆ = �
A∆ C∆
B∆ D∆

� :
Then V and ∆∆∆ such that T = ∆∗V follow (backward) recursively from the LQ factor-
izations264 AkRk+1 Ck

I 0
BkRk+1 Dk

375=:

264 Rk 0

∆∆∆∗
k

375Vk ; k = · · · ;n;n − 1;n − 2; · · · (6.9)

where Vk is unitary and Rk : dk × dk is a recursively determined square matrix.
Dually, let (A;B;C;D) be any uniformly reachable realization of T . Realizations V

and ∆∆∆ such that T =V∆∗ follow recursively from the QR factorizations�
RkAk I RkCk

Bk 0 Dk

�=: Vk

�
Rk+1

0
∆∆∆k

� ; k = · · · ;n;n+1;n+2; · · · :
PROOF Postmultiplying (6.9) with its transpose removes Vk and produces the equation

Ak(Rk+1R∗
k+1)A∗

k +CkC
∗
k = (RkR∗

k) :
Hence Rk is the square root of the solution of the Lyapunov equation associated to(A;C) (viz. (5.25)), and a state transformation by R will bring T into output normal
form, as discussed in section 5.3. Working out (6.9) gives the equations[R−1AR(−1) R−1C]� A∗

V B∗
V

C∗
V D∗

V

�= [I 0]
∆∆∆∗ = �

I 0
BR(−1) D

��
A∗

V B∗
V

C∗
V D∗

V

�= �
A∗

V B∗
V(BR(−1))A∗

V +DC∗
V (BR(−1))B∗

V +DD∗
V

� :
After taking the state transformation by R into account, these are precisely the defining
equations (6.6) for V and (6.7) for ∆∆∆. 2

Both recursions require an initial Rn (for some adequate n). Since R is the square
root of the solution of a Lyapunov equation, it may be initialized in a similar way as in
section 5.3. In particular,

1. if T is a finite n × n matrix, we can start with Rn = [ · ],
2. if T is Toeplitz starting from some point n in time, then we can initialize (6.9) by

taking Rn to be the solution of the time-invariant Lyapunov equation

AnQA∗
n +CnC∗

n = Q ; Q =: R∗
nRn :

3. We already had to assume `A < 1 to guarantee the existence of the external fac-
torization. The Lyapunov equation is strongly convergent for `A < 1, hence even
if we start with an imprecise initial R̂n, it will converge towards the true solution
(R̂k → Rk). Thus, we may start with any invertible Rn, e.g., Rn = I. Here, n should
be sufficiently far away from the interval in which the external factorization is of
interest.
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One remaining issue with the external factorization is to explain why (and when) it can
be called inner coprime. Two upper operators T1 and T2 are called (left inner) coprime
if they do not have a common, non-trivial left inner factor [Dew76], i.e., if

T1 = WT 01
T2 = WT 02

(where T 01;2 ∈ U and W is inner) implies W ∈D. With this definition of inner coprime-
ness, it is possible to show that ∆ and V in the factorization T = ∆∗V are inner coprime
if Ko(T) = U2V =Ko(V). Indeed, suppose that they have a common left inner factor
W , then T = ∆∗

1V1, where
∆1 = W∗∆ ∈ U
V1 = W∗V ∈ U :

On the one hand, U2V = U2WV1 ⊂ U2V1. On the other, ∆1 ∈ U ⇒ U2∆1 = U2[V1T∗] =[U2V1]T∗ ⊂ U2, hence U2V1 ⊂ U2V , since U2V = Ko(T) is the largest subspace in U2
that is mapped by T∗ to U2. Combining both observations gives U2V1 = U2V , so that
V1 is equal to V , up to a left diagonal unitary factor.6.3 STATE-SPACE PROPERTIES OF ISOMETRIC SYSTEMS
In section 6.1, we derived a number of state space properties of inner systems. In prepa-
ration of a treatment on inner-outer factorizations in chapter 7, it is necessary to con-
sider also the state space properties of isometric operators. It will turn out that an inner-
outer factorization with an inner operator as defined earlier is not always possible, even
in the locally finite case.

The equivalent of proposition 6.1 for isometric operators is more complicated:

Proposition 6.10 Let V ∈ U . Then

VV∗ = I ⇒

8>><>>: Ko = U2V ⊕ ker( ·V∗
��U2

) ;H = HoV∗U2V∗ = U2 ⊕ H
ker( ·V∗

��X2
) = {0} ⇒ V is inner

V∗V = I ⇒

8>>><>>>: K = L2Z−1V∗ ⊕ ker( ·V
��L2Z−1) :Ho = HVL2Z−1V = L2Z−1 ⊕ Ho

ker( ·V
��X2

) = {0} ⇒ V is inner .

PROOF Let VV∗ = I. Because V is an isometry, the subspace X2V = ran(V) is closed.
Because X2V = L2Z−1V ⊕U2V , both U2V and L2Z−1V are closed subspaces.U2V ⊂ Ko, because P0( [U2V ]V∗) = 0. The remaining subspace Ko	U2V consists
of elements Ko 	 U2V = {X ∈ U2 : P0(XV∗) = 0 ∧ P(XV∗) = 0}= {X ∈ U2 : XV∗ = 0}= ker( ·V∗

��U2
) :



ISOMETRIC AND INNER OPERATORS 133
Hence Ko = U2V ⊕ ker( ·V∗

��U2
).

To show thatH =HoV∗, take U ∈ L2Z−1. Then UV =U1 +Y , where U1 ∈ L2Z−1

and Y = P(UV) ∈ Ho ⊂ U2. All of Ho can be reached by Y if U ranges over L2Z−1.
Multiplication by V∗ gives U =U1V∗ +YV∗, and since V∗ ∈ L, it follows that YV∗ ∈L2Z−1, and this is true for all Y ∈Ho. HenceHoV∗ ⊂ L2Z−1 and alsoHoV∗ ⊂ L2Z−1 :
SinceH= P0(U2V∗) = P0(HoV∗), we obtainH =HoV∗. Thirdly, the expressions forHo and Ko combined giveU2 = Ho ⊕ U2V ⊕ ker( ·V∗��U2

)
hence U2V∗ =HoV∗+̇U2. BecauseHoV∗ =H∈L2Z−1, the two components are actu-
ally orthogonal. Finally, sinceV is an isometry, its range is closed, and if ker( ·V∗��X2

) =
{0} then that range is actually X2. Hence V has a left inverse, which must be equal to
the right inverse V∗, V∗V = I and V is inner.

Dual results hold in case V∗V = I. 2
The spaces ker( ·V∗

��U2
) and ker( ·V∗

��X2
) are fundamentally different: because the

inputs are restricted to U2, the first can be the zero space while the other contains non-
zero elements — this fact will be of great importance for the inversion theory of the
next chapter. A dual remark holds for ·V .Isometric realizations
Theorems 6.3 and 6.4 on the realizations of inner operators have specializations to iso-
metric operators and realizations. For later use, we now consider the case `A = 1 as
well, which complicates the proof of theorem 6.12.

Theorem 6.11 Let V ∈ U be a locally finite operator. Then

V∗V = I ⇒ The canonical controller realization V of V satisfies V∗V = I
and is observable and uniformly reachable.

VV∗ = I ⇒ The canonical observer realization V of V satisfies VV∗ = I
and is reachable and uniformly observable.

PROOF The proof is the same as the proof of theorem 6.3. 2
Theorem 6.12 Let V = [A

B
C
D ] be a state realization of a locally finite operator V ∈ U .

Let ΛF and ΛFo be the reachability and the observability Gramians of the given real-
ization. If `A < 1, then

V∗V = I ⇒ V∗V = I ; ΛF = I ;
VV∗ = I ⇒ VV∗ = I ; ΛFo = I : (6.10)

If `A ≤ 1, then
V∗V = I ; ΛF = I ⇒ V∗V = I ;
VV∗ = I ; ΛFo = I ⇒ VV∗ = I :
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PROOF If `A < 1, then V∗V = I implies a.o. A∗A+B∗B = I. This expression can be
compared with the Lyapunov equation for F: A∗ΛFA+B∗B = Λ(−1)

F . Since `A < 1, the
equation has a unique solution, which must be ΛF = I. A dual result holds for ΛFo in
case VV∗ = I. In contrast, if `A = 1, then ΛF cannot be uniquely determined: we cannot
conclude uniform reachability from A∗A+B∗B = I. Hence, in that case we have to put
this as a requirement.

Assume V∗V = I and ΛF = I. Since it is an orthonormal basis, we write Q for F
from now on. Equations (6.4) hold:

P0( ·V) = P0( · [D+Q∗C])
V∗ = D∗ +C∗Q :

To show V∗V = I, we show that P0(Z−nV∗V) is = I for n = 0, and = 0 otherwise. For
n = 0:

P0(V∗V) = P0( [D∗ +C∗Q] [D+Q∗C] )= P0(D∗D) + P0(D∗Q∗C) + P0(C∗QD) + P0(C∗QQ∗C)= D∗D + C∗C = I :
For n > 0,

P0(Z−nV∗V)= P0(Z−n[D∗ +C∗Q] [D+Q∗C] )= P0(Z−nD∗D) + P0(Z−nD∗Q∗C) + P0(Z−nC∗QD) + P0(Z−nC∗QQ∗C) :
Using equations (5.37) and (5.38), viz.

P0(Z−nQQ∗) = A{n} (n ≥ 0)
P0(Z−nQ∗) = B(n)A{n−1} (n > 0) ;

gives
P0(Z−nV∗V) = 0 + 0 + D∗(n)B(n)A{n−1}C + C∗(n)A{n}C= [D∗B+C∗A](n)A{n−1}C= 0 :

Taking adjoints shows that P0(Z−nV∗V) = 0 for n < 0, too. Hence V∗V = I.
The fact [VV∗ = I ; ΛFo = I] ⇒ VV∗ = I can be shown in a dual way. 2

Theorem 6.12 has an interpretation in terms of conservation of energy. Let V be a re-
alization for some boundedoperator, such that VV∗ = I. With [X(−1)[k+1] Y[k]] = [X[k] U[k]]V,
this property ensures that, for each k,k [X(−1)[k+1] Y[k]]k2

HS = k [X[k] U[k]]k2
HS : (6.11)

Summing this equation over all k yieldskY k2
HS +kX k2

HS = kU k2
HS +kX k2

HS :
If `A < 1, then X ∈X2 so that kX k2

HS <∞, and it follows that kY kHS = kU kHS, so that
VV∗ = I. In the case where `A = 1, kX k2

HS can be unbounded: energy can remain in the
state X[k] for k → ∞, so that the system is not lossless. If the realization has observability
Gramian equal to I, this can in fact not occur, but observability cannot be determined
from AA∗ +CC∗ = I if `A = 1.
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Figure 6.2. A simple isometric system.Example
As an example, let V ∈ U(M;N ) be given by

V = 266666664 d0 b0 0 0 0 0 · · ·
· · · · · · · · ·
0 0 d2 b2 0 0 · · ·
· · · · · · · · ·
0 0 0 0 d4 b4 · · ·

. . .

377777775 #M = [1 0 1 0 1 0 · · ·]
#N = [1 1 1 1 1 1 · · ·]
#B = [0 1 0 1 0 1 · · ·] ;

where d2
k + b2

k = 1 (the underlined entries form the main diagonal, the ‘·’ denotes an
entry with zero dimensions). V is an isometry: VV∗ = I. It has an isometric realization,
VV∗ = I, given by

Vk = "
· ·

bk dk

#
(even k) ; Vk = "

· 1

· ·

#
(odd k) :

See figure 6.2. Let bk → 0, for i → ∞. Then the output state spaceHo(V) =P(L2Z−1V)
is not a closed subspace: it is the range of the Hankel operator HV of V , with snapshots(HV )k = 0 (even k) ; (HV)k = 264 bk−1 0 · · ·

0 0
...

. . .

375 (odd k) :
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The row range of (HV)k determines the k-th slice of Ho(V). For odd k, the Hankel
matrix has rank 1, but the range of the whole collection is not closed because bk → 0
but never becomes equal to 0.

In this example, V can be extended to an inner operator W , by adding extra inputs.
This is straightforwardly done by completing each realization matrix Vk to a unitary
matrix Wk, which yields

Wk = 264 · ·

bk dk

−dk bk

375 (even k) ; Wk = "
· 1

· ·

#
(odd k) ;

W = 266666664 d0 b0 0 0 0 · · ·
b0 −d0 0 0 0 · · ·
· · · · · · · ·
0 0 d2 b2 0 · · ·
0 0 b2 −d2 0 · · ·

. . .

377777775 #MW = [2 0 2 0 2 0 · · ·]
#NW = [1 1 1 1 1 1 · · ·]
#BW = [0 1 0 1 0 1 · · ·] :

W satisfies WW∗ = IMW and W∗W = INW . Its output state space is closed, and it is the
closure of the output state space of V : Ho(W) =Ho(V). Indeed, the snapshots of the
Hankel operator of W are given by(HW )k = 0 (even k) ; (HW )k = 26664 bk−1 0 · · ·

−dk−1 0
0 0
...

. . .

37775 (odd k) ;
and each odd Hankel operator snapshot has one nonzero singular value, equal to 1.

Not every isometric transfer operator can be embedded in an inner one, although
every isometric realization can be completed to a unitary one. A counterexample is
given in the next section.6.4 BEURLING-LAX LIKE THEOREM
The existence of the external factorization was shown to depend on the construction
of an inner operator V such that U2V is equal to some specified subspace Ko(T), the
output null space of the system T . There is, however, a general result, which states that
any subspace1K0 which is left D-invariant and Z-invariant (i.e., such that ZK0 ⊂K0) is
of the formU2V , for some isometric operator V . Such a theorem is known in the Hardy
space setting as a Beurling-Lax theorem [Beu49, Lax59, Hel64]. It not only provides
the external factorization in the locally finite case, but other factorizations as well, such
as the inner-outer factorization in section 7.2.

1The index 0 in K0 will get meaning later in this section, when we consider a nested sequence of spaces Kn
constructed from K0.
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From the next theorem, it follows that the input spaceM of V ∈ U(M;N ) satisfy-

ing K0 = UM2 V is of locally finite dimension only if K0	ZK0 is a locally finite sub-
space. AlthoughMwill be locally finite in the application to inner-outer factorization,
we will prove theorem 6.13 for the more general situation. This calls for an extension
of some of the definitions in chapter 2, to include operators with matrix representations
whose entries are again operators. The extensions are straightforward (see [DD92]).

Theorem 6.13 (BeurlingLax-like) All DZ-invariant subspacesK0 inUN2 have the formK0 = UM2 V , where V ∈ U(M;N ) is an isometry (VV∗ = I). V is uniquely defined ex-
cept for a right diagonal unitary factor.

PROOF Let R0 = K0	ZK0. This is a D-invariant subspace in UN2 . We can assume
that it is non-empty, for elseK0 = ZK0 = ZnK0 for all n ≥ 0. In that case, note that X ∈U2 ⇒ limn→∞ P(Z−nX) = 0, so that in particular, for X ∈K0 ⊂U2, we have Z−nX ∈K0,
and limn→∞ P(Z−nX) = limn→∞ Z−nX = 0. This implies that K0 = {0}, so that there is
nothing to prove whenR0 is empty.

Now defineRn =ZnK0	Zn+1K0. ThenRn =ZnR0, andK0 ⊂R0 ⊕R1 ⊕R2 ⊕ · · ·.
In factK0 =R0 ⊕R1 ⊕R2 ⊕ · · ·, for suppose that f ∈K0 and f ⊥R0 ⊕R1 ⊕ · · ·, then
it follows that f ∈ ZnK0 ⊂ ZnU2 for all n ≥ 1, and hence f = 0.

Suppose sdim R0 =M, and define the sequence of Hilbert spacesM to have entriesMk = CMk (Mk = `2 if Mk = ∞).2 Then there exist isometries Vk : Mk → (R0)k

such that (R0)k =MkVk. Let V be the operator whose k-th block-row is equal to Vk.
Stacking the Vk into one operator V , we obtain an orthonormal basis representation ofR0, as in chapter 4, such thatR0 =DM2 V ; P0(VV∗) = I :
It follows thatRn =D2ZnV , and becauseRi ⊥R j (i 6= j), that D1ZnV ⊥ D2V (n ≥ 1)
for all D1;2 ∈D2, i.e.,

P0(ZnVV∗) = 0
P0(VV∗Z−n) = 0

so that VV∗ = I: V is an isometry. The orthogonal collection {D2ZnV}∞
n=0 ∈ K0, and

together spans the space U2V . Hence K0 = {D2ZnV}∞
0 = U2V .

The uniqueness follows easily by retracing the steps and showing that any charac-
teristic V actually defines an orthonormal basis for the “wandering subspace”R0. 2

The above proof is in the style of Helson [Hel64, §VI.3] for the time-invariant Hardy
space setting. This proof was in turn based on Beurling’s work [Beu49] for the scalar
(SISO) case and Lax [Lax59] for the extension to vector valued functions.

2Let N be the index sequence corresponding to N , with entries Ni. It follows that the dimension sequence
M has entries Mi < Ni +Ni+1+ · · ·. Although Mi can be infinite, an orthonormal basis for (R0)i = πiR0 is
still countable, and the construction of an orthonormal basis representation ofR0 can be done as explained
in the proof of the theorem.
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Theorem 6.13 is instrumental in completing the description of isometric operators given
in proposition 6.10. In that proposition, it was found that V is inner if VV∗ = I and
ker( ·V∗

��X2
) = {0}. A remaining issue is to give conditions in state space terms under

which V is actually inner, or can be extended/embedded into an inner transfer operator.
As we already know, a sufficient condition is that `A < 1. A precise condition involves
the notion of “doubly shift-invariant subspaces”.

For time-invariant systems, V will be inner if and only if the corresponding output
null space Ko(V) is “full range” [Hel64].3 Systems T for which Ko(T) is full range
are called “roomy” in [Dew76]. Time invariant systems of finite degree are roomy: ifHo(T) is finite dimensional, then its complementKo(T) is automatically full range. In
the time-varying setting this turns out not to be true. To show this, we start out with a
study of the geometry of the state spaces of an isometry.

If V is inner, then Ko(V) = U2V and Ho(V) = U2	U2V . If V is an isometry, then
the structure of the orthogonal complement ofHo(V) is more involved. LetKo = U2V
and K0o = ker( ·V∗��U2

) = {X ∈ U2 : XV∗ = 0}, then, by proposition 6.10,U2 = Ho(V) ⊕ K0o ⊕ Ko : (6.12)

However, the condition K0o = {0} does not entail {X ∈ X2 : XV∗ = 0} = {0}, so thatK0o = {0} does not imply that V is inner (an elementary example is given in chapter
7). The spaceK0o, if non-empty, can be absorbed in an isometric embedding of V , with
output state spaceHo(V) and output null space U2V ⊕K0o. The result is not necessarily
an inner operator, but one which has a unitary realization, which makes it “almost”
inner but not quite. Indeed, there might be elements in ker( ·V∗��X2

) that are not in K0o
and hence cannot be absorbed. This “defect space” will be shown to satisfy a double
shift invariance property.

Let K0 = Ko = U2V and Kn = P(Z−nK0). Define H0 = U2	K0, and, for n > 0,Hn = P(Z−nH0).
Proposition 6.14 With the definitions given above and for n ≥ 0,Kn ⊂ Kn+1K0o = U2 	 S∞

0 Kn :
PROOF Because ZK0 ⊂ K0, it follows that K0 = P(Z−1ZK0) ⊂ P(Z−1K0) = K1. Re-
peating the argument gives Kn ⊂Kn+1. Let X ∈ U2. Then, and because K0 = U2V ,

X ∈K0o ⇔ XV∗ = 0
⇔ P0(XV∗Zn) = 0 (all n ∈ Z)
⇔ X ⊥ P(Z−nK0) (all n ≥ 0)
⇔ X ⊥

S∞
0 P(Z−nK0) (all n ≥ 0) :

3The notion of full range refers to the space spanned by z-transforms of functions of Ko at each point of the
unit circle in the complex plane (a so-called “analytic range function”).
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This property can also be given in terms ofHn:

Corollary 6.15 With the definitions given above and for n ≥ 0,Hn = U2 	 Kn ;Hn+1 ⊂ Hn ;K0o = T∞
0 Hn :

PROOF
X ∈ U2 	 Kn ⇔ X ∈ U2 ; X ⊥Kn

⇔ X ∈ U2 ; ZnX ⊥K0

⇔ X ∈ U2 ; ZnX ∈H0

⇔ X ∈ U2 ; X ∈ Z−nH0
⇔ X ∈ P(Z−nH0) = Hn :

HenceHn = U2	Kn. The remaining issues are a corollary of proposition 6.14. 2
Proposition 6.16 K0o is a doubly shift-invariant subspace inU2: ZK0o ⊂K0o, P(Z−1K0o)⊂K0o.

PROOF ZK0o ⊂K0o, because

ZK0o = {ZX : X ∈K0o}= {ZX : X ∈ U2 ∧ XV∗ = 0}= {ZX : X ∈ U2 ∧ ZXV∗ = 0}= {Y ∈ ZU2 : YV∗ = 0}
⊂ K0o :

But also P(Z−1K0o)⊂K0o, because P(Z−1Hn) =Hn+1 ⊂Hn, andHn =Tn
k=0Hn. Hence

P(Z−1 Tn
k=0Hk) =Hn+1 ⊂

Tn
k=0Hk. Letting n → ∞ yields P(Z−1K0o) ⊂K0o. 2

An important corollary of the preceding discussion is that an isometric transfer op-
erator V ∈ U for which K0o(V) 6= {0} admits a completion by another isometric U into
a larger isometric operator W = [UV ] for which K0o(W) = {0} and which has a unitary
realization. W is “almost” inner, since from theorem 6.4 we know it has to be inner if`A < 1. The existence of U follows from the fact that the kernel K0o = ker( ·V∗

��U2
) is

shift-invariant (proposition 6.16), so that, according to theorem 6.13, it can be written
as K0o = U2U:

Proposition 6.17 If V ∈ U(M;N ) is a locally finite isometry (VV∗ = I), then there
exists an isometry U ∈ U(MU ;N ) such that ker( ·V∗��UN2 ) = UMU

2 U. The operator

W = �
U
V

�
is again isometric, now withK0o(W) = {0}, and it has a unitary realization. Conversely,
if V is isometric and has a unitary realization, then the correspondingK0o = {0}.
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PROOF If V is an isometry, then (proposition 6.10)UN2 = Ho(V) ⊕ ker( ·V∗��UN2 ) ⊕ UM2 V ; (6.13)

where K0o := ker( ·V∗��U2
) is left DZ-invariant. According to theorem 6.13 there exists

an isometry U ∈ U(MU ;N ) such that K0o = UMU
2 U. To conclude that WW∗ = I, it

remains to show thatUV∗ = 0, which is true becauseU2V ⊥U2U. HenceU2W =U2U ⊕U2V , and since Ho(W) ⊃Ho(V), we must have (from equation (6.13)) thatHo(W) =Ho(V) and K0o(W) = ker( ·W∗��U2
) = {0}.

By theorem 6.11, V has a canonical observer realization

V = �
AV BV

CV DV

�
which has observability Gramian ΛFo = I and satisfies VV∗ = I. Since U and W con-
structed above are isometric as well, and have the same output state space as V , their
canonical observer realizations U and W have the same AV , CV and are also isometric.
Hence, we must have that

W = 24 AV BV

CV DV

BU DU

35 : (6.14)

By theorem 6.12, it then follows that W is the realization of an operator W such that
WW∗ = I. If at this point W would not be unitary then this can only be because its local
realizations Wk would not be square matrices (since they have finite size). In that case,
W can be extended to a unitary matrix, but after application of theorem 6.12, it would
follow that W is not yet an isometry, because its extension is. From this contradiction,
it follows that W must be unitary.

The same argument also proves the converse statement in the theorem. 2
It is relatively easy to construct an isometric transfer function V for which K0o :=

ker( ·V∗��U2
) = {0} but not K00o := ker( ·V∗��X2

) = {0}, and we do so in chapter 7. This
shows that W in the last proposition is not necessarily inner. We already know from
proposition 6.10 that W will be inner if ker( ·W∗��X2

) = {0}. In addition, from theorem
6.12, we can conclude thatW is inner if the realization ofV has `A < 1, or in case `A = 1,
if the realization ofW is both uniformly observable and uniformly controllable. For this
it is necessary that the input and output state space of W are closed. Problems can be
expected if this does not hold for V .K00o is doubly shift invariant on all of X2 (ZK00o ⊂K00o and Z−1K00o ⊂K00o). This fact is
very important and characterizes this subspace. We explore the matter a little further
in the following proposition; additional results will be proven in section 7.5.

Proposition 6.18 Assume that V is an isometry for which K0o := ker( ·V∗
��U2

) = {0},

but K00o := ker( ·V∗��X2
) 6= {0}. Then P(K00o) ⊂Ho(V). Moreover, let A be defined by

the canonical observer realization of V . Then `A = 1.

PROOF By assumption, K00o contains non-zero members, and clearly, it forms a left
D;Z;Z−1 (i.e., doubly shift invariant) subspace of X2. Let yo ∈K00o and y = P(yo), and



ISOMETRIC AND INNER OPERATORS 141
consider the diagonal inner product {y;uV} for an arbitrary u ∈ U2:

{y;uV} = P0(yV∗u∗)= P0([yo − (yo − y)]V∗u∗)= −P0 ((yo − y)V∗u∗) = 0 ;
since (yo − y) ∈ L2Z−1. Hence y ∈Ho(V) = U2	U2V .

Furthermore, an output normal realization based on an orthonormal basis represen-
tation G of Ho will produce an A-matrix for which yA(1) = P(Z−1y), or more gener-
ally, yA{n} = P(Z−ny), see section 5.4. To show that `A = 1, we have to show that

limn→∞kA{n}k 1
n = 1. This we do by showing that for all n > 0, kA{n}k = 1. Pick an

n ≥ 1 and an arbitrary ε < 1. If yo ∈ K00o , then it is also true for any k that Zkyo ∈ K00o ,
due to double shift invariance. By taking yo to be a unit-norm member of K00o shifted
far enough to the right, we can guarantee that the corresponding y = Pyo as well as
P(Z−nyo) have their norm as close to 1 as we wish. Thus, given ε choose a yo ∈K00o and
y = P(yo) such that (1) kyk= 1, (2) kyo − yk< ε=3 and (3) kZ−nyo − P(Z−nyo)k< ε=3.
It follows thatkP(Z−ny)− Z−nyk ≤ kP(Z−n(y − yo)) k + kP(Z−nyo)− Z−nyo k + kZ−nyo − Z−nyk< ε ;
and since kZ−nyk= kyk= 1, kP(Z−ny)k > 1 − ε :
Since A{n} maps y on P(Z−ny), it must be that kA{n}k> 1−ε, and since ε was arbitrary
to start with, kA{n}k= 1 and `A = 1. 2

The second part of this theorem should not come as a surprise in view of the inner
realization theorem 6.4, for if `A had been less than one, then V would have been inner,
and K00o = {0} (this observation amounts to an indirect proof of the property).Embedding through external factorization
Suppose that an isometric transfer operator V ∈ U (with VV∗ = I) is given, and assume
that it has a right coprime factorization

V = ∆∗U

with ∆ ∈U and U inner. We show that ∆ is actually diagonal, and there exists a unitary
diagonal Ud such that

∆∗ = [I 0]Ud; V = [I 0] (UdU) :
The latter expression is an alternative right coprime factorization for V .

The property is easy to prove from the previous theory, in particular proposition
6.18. An alternative proof follows from an adaptation of the LTI theory in [Dew76],
and we give a sketch of how it would work in the present context.
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If ∆ and U form a right coprime pair, then there exist sequences of transfer operators

Mn ∈ U and Nn ∈ U such that

lim
n→∞

(UMn +∆Nn) = I

(only a weak limit is needed, the sequences of operators do not necessarily converge
individually). Now, VV∗ = I implies ∆∗∆ = I, and hence

lim
n→∞

(∆∗UMn +Nn) = ∆∗ :
It follows that

∆∗ = lim
n→∞

(VMn +Nn) ∈ U ;
and hence ∆ must be diagonal, and isometric. A further reduction brings it to the form[I 0]Ud. The embedding theory will be given a further extensive treatment in chapter
12.6.5 EXAMPLE
As an example of the use of inner-coprime factorizations, consider a mixed-causality
operator T ∈ X with a decomposition T = TL+TU where TL ∈ L and TU ∈ ZU . Our
objective is to compute a QR factorization of T ,

Q∗T = R ; Q unitary; R ∈ U :
Note that Q∗(TL+ TU ) = Q∗TL+Q∗TU . Suppose that we compute an inner-coprime
factorization of T∗L :

T∗L = ∆∗V ; ∆ ∈ U ; V ∈ U ; inner:
Then VTL = ∆ ∈ U , and also VTU ∈ U since both factors are upper. The QR factoriza-
tion is thus given by

Q =V∗ ∈ L ; R = ∆+VTU ∈ U :
In view of theorem 6.8, the factorization is possible if T∗L has a locally finite realization
that is uniformly observable and u.e. stable.

The factorization can be computed by the algorithm in proposition 6.9; this is worked
out in detail in chapter 7. For a simple numerical example, which is amenable to direct
calculations, take

T =
26666666666666664

. . .
1 0

1

1
1=2 1
1=4 1=2 1

0 1=8 1=4 1=2 1
...

...
. . .

37777777777777775 :
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The inner-coprime factorization T = Q∗R is

Q∗ =
2666666666666664

. . .
1 0

1 [1 0][0 1
2

p
3] 1=2[0 1

4

p
3] −3=4 1=2

0 [0 1
8

p
3] −3=8 −3=4 1=2

...
...

. . .

3777777777777775
R =

26666666666666664
. . .

1 0
1 �

1
1
3

p
3

��
0

2
3

p
3

��
0

1
3

p
3

��
0

1
6

p
3

�
· · ·

0 −1 − 1
2 − 1

4 · · ·
0 −1 − 1

2
0 0 −1 · · ·

. . .

37777777777777775 :
It is not hard to verify this by direct multiplications: Q is unitary and T = Q∗R, but
obviously, this factorization is not trivially obtained. It has been computed by Matlab
using the state space algorithm in proposition 6.9. Note that the number of inputs of Q
and R is not constant: it is equal to 2 at time k = 0.





7 INNER-OUTER FACTORIZATIONAND OPERATOR INVERSION

Direct methods to invert large matrices may give undesired “unstable” results. We can
obtain valuable insights into the mechanics of this effect by representing the matrix as
a time-varying system for which it is the transfer operator. Among other things, this
will allow us to handle the instability by translating “unstable” into “anti-causal” yet
bounded.

A central role in doing that is played by inner-outer factorizations of the relevant
transfer operator: yet another consequence of the Beurling-Lax like theory of the pre-
vious chapter. The inner parts of the operator capture the part of the operator that causes
the instability in the inverse, while the outer part can be straightforwardly inverted. The
theory of inner-outer factorization may appear to be complex at first, but numerically
it simply amounts to the computation of a sequence of QR factorization steps on the
state space description of the original transfer operator, much like the computation of
the external factorization of chapter 6. In fact, the inner-outer factorization provides a
QR factorization of an upper operator, which is interesting only for infinite operators
or finite matrices that are singular or have nonsquare blocks.

This chapter will be mostly motivated by the inversion problem, but we also cover
important theoretical grounds on inner-outer factorization, since this forms the basis for
the inversion algorithms. The chapter is concluded by a brief investigation of the “zero
structure” of a transfer operator. For this we could analyze the pole structure of the
inverse operator, but only if it exists. The inner-outer factorization provides precisely
the same information without this complication, and we study its limit behavior in a
specific case. 145
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The inversion of large structured matrices is a delicate problem which often arises in
finite element modeling applications, or (implicitly) in non-stationary inverse filtering
problems in signal processing. To stress the fact that these matrices might be fairly
large and even so large that ordinary linear algebra techniques might fail, we allow
them to have infinite size, i.e., they are operators on the space of `2-sequences. To set
the scene, consider the infinite Toeplitz matrix

T = 266666664 . . .
. . .

1 −1=2 0
1 −1=2

1 −1=2
0 1

. . .

. . .

377777775 : (7.1)

The inverse of T is given by

T−1 = 266666664 . . .
...

...
1 1=2 1=4 1=8 · · ·

1 1=2 1=4
1 1=2

0 1 · · ·. . .

377777775 ;
as is readily verified: TT−1 = I, T−1T = I. One way to guess T−1 in this case is to
restrict T to a (sufficiently large) finite matrix and invert that matrix. For example,24 1 −1=2 0

0 1 −1=2
0 0 1

35−1 = 24 1 1=2 1=4
0 1 1=2
0 0 1

35
already gives an indication. In general, however, this method will not give correct re-
sults. Another way to obtain T−1, perhaps more appealing to engineers, goes via the
z-transform:

T(z) = 1 − 1
2 z

⇒ T−1(z) = 1

1 − 1
2 z

= 1+ 1
2 z+ 1

4 z2 + · · · :
The expansion is valid for |z| ≤ 2.

What happens if we now take

T = 266666664 . . .
. . .

1 −2 0
1 −2

1 −2
0 1

. . .

. . .

377777775 (7.2)
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and treat it in the same way? The method “restricting to finite” would yield

T−1 ?= 266666664 . . .
...

...
1 2 4 8 · · ·

1 2 4
1 2

0 1 · · ·. . .

377777775 :
In transfer function parlance, that would correspond to writing

T−1(z) = 1+2z+4z2+ · · · :
Thus, T−1 is unbounded, and the series expansion for T−1(z) is not even valid for |z|< 1.
The correct, bounded inverse is e.g. obtained via

T−1(z) = 1
1 − 2z

= − 1
2 z−1

1 − 1
2 z−1= − 1

2 z−1 − 1
4 z−2 − · · ·

⇒ T−1 = 2666666664. . .
. . .

· · · −1=2 0 0
−1=4 −1=2 0
−1=8 −1=4 −1=2 0

· · ·−1=16 −1=8 −1=4 −1=2
. . .

...
...

. . .

3777777775 : (7.3)

Again, it is readily verified that TT−1 = I, T−1T = I. This inverse is bounded but not
causal. We see that the inverse of an upper operator need not be upper. In the light
of finite dimensional linear algebra, this seems to be a strange result. An intuitive ex-
planation is that, because the matrix is so large, the location of the main diagonal is
not clear: a shift of the whole matrix over one (or a few) positions should be allowed
and should only give a similar (reverse) shift in the inverse. For example, T−1 can be
guessed from finite matrix calculus if one shifts the origin over one position:24 −2 0 0

1 −2 0
0 1 −2

35−1 = 24 −1=2 0 0
−1=4 −1=2 0
−1=8 −1=4 −1=2

35 :
A better explanation is to say that T(z) is not an outer function, that is to say it is non-
minimum phase, and hence T−1(z) is not causal, which translates to a lower triangular
matrix representation (we shall make this more precise soon).

The above example gives a very elementary insight in how system theory (in this
case the z-transform) can help with the bounded inversion of large matrices. The ex-
amples so far were cast in a time-invariant framework: all matrices were Toeplitz. We
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now go beyond this and consider general matrices and their connection to time-varying
systems.

A simple illustrative example is provided by the combination of the above two cases:

T = 26666666666664
. . .

. . .
1 −1=2 0

1 −1=2

1 −2
1 −2

1 −2
0 1

. . .

. . .

37777777777775 : (7.4)

Is T−1 upper? But then it would be unbounded:

T−1 ?= 26666666666664
. . .

...
...

...
1 1=2 1=4 1=2 1 2 · · ·

1 1=2 1 2 4

1 2 4 8 · · ·
1 2 4

0 1 2
1 · · ·. . .

37777777777775 :
Something similar happens if we opt for a lower triangular matrix representation. A
bounded T−1 (if it exists!) will most likely be a combination of upper (the top-left cor-
ner) and lower (the bottom-right corner), and some unknown interaction in the center:
something like

T−1 ?= . (7.5)

The purpose of this chapter is to give precise answers to such questions. We shall see
that, in fact, T is not directly invertible, although it has a closed range. The form given
in the figure is a Moore-Penrose pseudoinverse.
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There are several potential applications of the theory in this chapter:

1. Time-varying filter inversion: T in (7.4) could represent an adaptive FIR filter, with a
zero that moves from z = 2 to z = 1=2. Think e.g., of an adaptive channel estimate
that has to be inverted to retrieve the input signal from an observed output signal
[TD95]. As the example shows, a direct inversion might lead to unstable results.

2. Finite element matrix inversion: Finite element matrices are often very large, and
hence the effects observed above might play a role. Presently, stability of the inverse
is ensured by careful selection of boundary conditions: the borders of the matrix
are chosen such that its inverse (as determined by finite linear algebra) is well be-
haved. Time-varying techniques might give additional insight. Under stability as-
sumptions, it is even envisioned that one might do without explicit boundary condi-
tions: extend T to an infinite matrix, which is constant (Toeplitz) towards (−∞;−∞)
and (+∞;+∞). LTI systems theory gives explicit starting points for inversion recur-
sions. It is even possible to “zoom in” on a selected part of T−1, without computing
all of it.

3. System inversion also plays a role in control, e.g., the manipulation of a flexible
robot-arm [BL93].

4. Matrices and operators for which we already have a state realization with a low num-
ber of states can be inverted efficiently in this way. This is the topic of section 7.3.
A prime example of such operators is the band matrix: this corresponds to a time-
varying FIR filter. See chapter 3 for more examples.7.2 INNER-OUTER FACTORIZATIONS

For rational time-invariant single-input single-output systems, the inner-outer factor-
ization is a factorization of an analytical (causal) transfer function T(z) into the product
of an inner and an outer transfer function: T(z) =V(z)To(z). The inner factor V(z) has
its poles outside the unit disc and has modulus 1 on the unit circle, whereas the outer
factor To(z) and its inverse are analytical in the open unit disc. Such functions are called
minimum phase in engineering. For example, (with |α |; |β | < 1)

z
z − α∗

1 − βz
= z

z − α∗

1 − αz
·

1 − αz
1 − βz

:
The resulting outer factor is such that its inverse is again a stable system, provided it
has no zeros on the unit circle. For multi-input multi-output systems, the definition
of the outer factor is more complicated (see e.g., Halmos [Hel64]) and takes the form
of a range condition: To(z) is outer if To(z)H 2

m = H 2
n , where H 2

m is the Hardy space
of analytical m-dimensional vector-valued functions. Because matrix multiplication is
not commutative, there is now a distinction between left and right outer factors. We
shall see that generalizations of these definitions to the time-varying context are fairly
straightforward.

An operator T` ∈ U is said to be left outer ifU2T` = U2 : (7.6)
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Other definitions are possible;1 this definition is such that ran( ·T`) = X2T` = X2, so
that ker( ·T∗` ) = {0} and T` has an algebraic left inverse (which can be unbounded ifX2T` is not closed).

A factorization of an operator T ∈ U into

T = T`V ; T` left outer; VV∗ = I

(V inner if possible) is called an outer-inner factorization. This factorization can be
obtained from the Beurling-Lax type theorem 6.13 by taking a different definition ofK0 than was the case in the external factorization (where we tookK0 equal to the output
null spaceKo(T)). Note that the closure in (7.6) is necessary: for example, the system
T = I − Z has inner factor V = I and of necessity an outer factor T` = I − Z. T` is not
boundedly invertible, and U2T` is only dense in U2. This happens when the range of
T is not a closed subspace. The time-invariant equivalent of this example is T(z) =
1 − z, which has a zero on the unit circle. Here also, V(z) = 1, and T`(z) = T(z) is not
boundedly invertible. Also note that if T is not an invertible operator, then it is not
possible to obtain an inner factor: V can only be isometric since we have chosen T` to
be (left) invertible.

Dually, we define Tr ∈ U to be right outer ifL2Z−1T∗
r = L2Z−1 : (7.7)

The corresponding inner-outer factorization is

T =VTr ; V∗V = I; Tr right outer : (7.8)

The two factorizations can be combined to obtain

T =URV ; U∗U = I ; VV∗ = I ; R left and right outer :
This is similar to a complete orthogonal decomposition in linear algebra [GV89]. R
is algebraically invertible in U , and R−1 is bounded if the range of T is closed. T† :=
V∗R−1U∗ will be a Moore-Penrose pseudo-inverse for T and it will be bounded if R−1

is. If U and V are both inner, then T† will be the inverse of T . If T has a state space
realization then there will be state space realizations for U, V , R and R−1 as well, but
the last one may be unbounded.

Theorem 7.1 (inner-outer factorization) Let T ∈ U(M;N ). Then T has a factor-
ization (outer-inner factorization)

T = T`V ;
where V ∈ U(MV ;N ) is an isometry (VV∗ = I), T` ∈ U(M;MV) is left outer, and
#(MV) ≤ #(M). V is inner if and only if ker( ·T∗) = {0}.

1See e.g., Arveson [Arv75], who, translated to our notation, requires that U2T` is dense in P(X2T`) and that
the projection operator onto the range of T` is diagonal.
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Dually, T has a factorization (inner-outer factorization)

T = VTr

where V ∈ U(M;NV ) is a coisometry (V∗V = I), Tr ∈ U(NV ;N ) is right outer, andNV ⊂N . V is inner if and only if ker( ·T) = {0}.

PROOF Let K0 = U2T . Then K0 is a D-invariant subspace which is shift-invariant:
ZK0 ⊂K0. According to theorem 6.13, there is a space sequenceMV and an isometric
operator V ∈ U(MV ;N ), VV∗ = I, such that UM2 T = UMV

2 V .

Define T` = TV∗. Then T` ∈U(M;MV ) andUM2 T` =U2TV∗ =U2TV∗ =U2VV∗ =UMV
2 , so that T` is left outer. It remains to prove that T = T`V , i.e., T = TV∗V . This is

immediate if V is inner. If V is not inner, then it follows from the fact that ·V∗V is an
orthogonal projection onto the range of ·V . Indeed, sinceU2T =U2V , alsoX2T =X2V :
the closure of the range of T is equal to the range of V , and T is not changed by the
projection. Since ran( ·T)⊕ ker( ·T∗) = X2, we must have ker( ·T∗) = ker( ·V∗). By
proposition 6.10, V is inner if and only if the latter space is empty.

By construction,UM2 T =DMV
2 V ⊕ZUMV

2 V withMV of minimal dimensions. Hence,

P0(UM2 TV∗) = P0(UM2 T`) = DM2 P0(T`) =DMV
2 and it follows that #(MV) ≤ #(M)

(since the dimension of the range of a matrix cannot exceed the dimension of the do-
main). 2

Thus, the isometric factor V of the outer-inner factorization is defined by the prop-
erty U2T = U2V . If ranT is not all of XM

2 , then V is not full range either, so that it is
not inner. One can define a factorization based on the extension of V to an inner opera-
tor W = [U

V ], if such an embedding exists; see proposition 6.17 in the previous chapter.
This then gives a factorization T = T`W for whichUM2 T` = U2TW∗= U2VW∗= UMV

2 [0 I] ⊂ UMW
2 ;

so that T` is upper but not precisely outer:2 it reaches only a subset of UMW
2 . This is

the best we can hope for, in view of the fact that T is not “full range”.

2T` is outer according to Arveson’s definition [Arv75].
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Let

T =
2666666666666664

. . .
. . .
1 −1=2 0

1 −1=2

1 −2
1 −2

0 1 −2

1
. . .
. . .

3777777777777775 : (7.9)

T is a prototype time-varying system: for negative times it coincides with a minimal
phase time invariant system, while for positive times, the system has switched to a time
invariant behavior which now has a zero at z = 1=2 and has thus become “maximum
phase”.

T has a right inverse obtained from the time-invariant behavior and given by

Ti =
266666666666664

. . .
. . .

. . .
...

1 1=2 1=4
0 1 1=2 0

1

0
−1=2 0 0

0 −1=4 −1=2 0
...

. . .
. . .

. . .

377777777777775 : (7.10)

Hence T itself is right outer: the inner-outer factorization is T = I ·Tr. Since the right in-
verse Ti is a bounded operator, the range of T is closed as well.3 It is not hard to see that
Tx= 0 for x= [· · · 1

4
1
2 1 1

2
1
4 · · ·]T . Hence the columns of T are not linearly indepen-

dent (although looking at T one would have guessed differently!): ker( ·T∗��X2
) 6= {0}.

Thus, T is not invertible, and the right inverse is not a left inverse. In addition, the in-
verse displayed in (7.10) is not the Moore-Penrose inverse, see further in this chapter.

We can try to construct the outer-inner factorization for T from the property thatKo(V) = U2V = U2T . As explored later in this chapter, for this we should look for the
largest sliced upper basis Fo satisfying P(FoT∗) = 0, which will then be a basis for the
output state space Ho(V), the orthogonal complement of Ko(V). By inspection, we

3Suppose that in the range of T , there is a sequence yn → y, then there is a sequence un in the domain of T
such that yn = unT . Since TTi = I we have that un = unTTi = ynTi → yTi is a convergent series. It follows
that y= uT since in turn y= limn→∞ unT = uT .
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obtain

Fo =
26666666666666664

. . .
...

...
...

...
...

...
...

1=8 1=4 1=2 1 1=2 1=4 1=8 · · ·
1=4 1=2 1 1=2 1=4 1=8 · · ·

1=2 1 1=2 1=4 1=8 · · ·

1 1=2 1=4 1=8 · · ·
1 1=2 1=4

. . .
0 1 1=2

. . .
1

. . .

. . .

37777777777777775 : (7.11)

(Note that the basis is not a bounded operator in X , butD2Fo ⊂ U2.) Based on Fo, we
can construct a realization for V by normalizing Fo to an orthonormal basis represen-
tation G, defining AV = P0(Z−1GG∗ )(−1), CV = P0(G), as in the canonical observer
realization in chapter 5, theorem 5.17, followed by pointwise completion of (AV ;CV )
to a square unitary realization. The result is shown in (7.34) at the end of the chapter,
where the outer-inner factorization will be obtained in a more structured way.

As remarked above, ker( ·T∗��X2
) 6= {0}. Hence, by theorem 7.1, the V-operator in

the outer-inner factorization which we just constructed cannot be inner and is only iso-
metric. This is tightly connected to the existence of a doubly shift invariant subspace,
and this illustrates the discussion of section 6.4. The spaceK00o := ker( ·V∗

��X2
) as used

in that section is equal to ker( ·T∗
��X2

), and clearly it is a left D-invariant and doubly
shift invariant subspace. An (unnormalized) sliced basis for this subspace is26666664 ...

...
...

...
...

· · · 1=4 1=2 1 1=2 1=4 · · ·
· · · 1=4 1=2 1 1=2 1=4 · · ·
· · · 1=4 1=2 1 1=2 1=4 · · ·

...
...

...
...

...

37777775 :
The fact that the slices consist of look-alike basis vectors is characteristic for the (left)
double shift invariance of K00o : obviously, shifting the rows up or down gives the same
result. As announced in the proof of proposition 6.18, the projection ofK00o ontoU2 will
be inD2Fo; in the present case we obtain even all ofD2Fo in this way. The derivation in
section 7.4 (equation (7.34)) will show that although V has a unitary realization, it has`A = 1 and it is not an inner operator, in accordance to proposition 6.18. This matches
with the fact that ker( ·V∗) =K00o is not zero and ran( ·V) is not the whole output space.
Finally, it is not hard to see by direct calculation that K0o := ker( ·V∗ |U2) = {0}.Computation of the inner-outer factorization T = VTr

In this section, we choose to work with the inner-outer factorization of T , as in (7.8):
T =VTr where Tr is right outer: L2Z−1T∗

r =L2Z−1, and the left inner (isometric) factor
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V satisfies V∗V = I and is obtained by settingK(V) :=L2Z−1V∗ equal toL2Z−1T∗. For
this factorization, K0 := ker( ·V

��L2Z−1) = ker( ·T
��L2Z−1) :

On the one hand, L2Z−1	L2Z−1V∗ =H(V) ⊕ K0 ;
and on the other (for KT = P0( ·T

��L2Z−1)),L2Z−1 = ker( ·KT )⊕ ran( ·K∗
T ) = {u ∈ L2Z−1 : uT ∈ U2} ⊕ L2Z−1T∗ ;

so that, with L2Z−1V∗ = L2Z−1T∗,H(V) ⊕ K0 = {u ∈ L2Z−1 : uT ∈ U2} :
Thus we see that H(V) is the largest subspace in L2Z−1 for which H(V)KT = {0}
and which is orthogonal to K0. This property provides a way to compute the inner-
outer factorization. Note that if H(V) is too small, then L2Z−1V∗ ⊃ L2Z−1T∗, i.e.,L2Z−1T∗ ⊂ L2Z−1T∗V ⊂ L2Z−1. In that case, V∗T is not outer, although the range
might have improved on T itself. This defines a hierarchy of partial solutions. In terms
of subspaces, the maximal solution is unique.

Let Q be a sliced orthonormal basis representation ofH(V): H(V)=D2Q ∈L2Z−1,
and let Fo be a sliced basis representation ofHo(T), or more generally, for a subspace
in U2 containingHo(T). The fact thatH(V)KT = 0 translates to the condition QT ∈U .
Because H(V)T ⊂Ho(T), we must have that QT = YFo for some bounded diagonal
operator Y , which will play an instrumental role in the derivation of a state realization
for V . It remains to implement the condition H(V) ⊥ K0. Suppose that Q has a com-
ponent in K0, so that DQ ∈K0, for some D ∈D2. Then, since K0 = ker( ·T

��L2Z−1),
DQ ∈K0 ⇔ DQT = DY Fo = 0 ⇔ D ∈ ker( ·Y) (7.12)

(since Fo is assumed to represent a basis). HenceH(V) =D2Q can be described as the
largest subspace of typeD2Q for which QT = Y Fo with ker( ·Y) = {0}.

If B is the space sequence of the state of the given realization for T , and BV is the
space sequence of the state of the realization for V , then Y ∈D(BV ;B). The condition
ker( ·Y) = {0} implies that BV ⊂ B (pointwise), so that the state dimension of V is
at each point in time less than or equal to the state dimension of T at that point (the
condition forces each diagonal component Ykk of Y to be a square or “wide” matrix,
the number of columns is equal to or larger than the number of rows).

In the following theorems, we shall say that (A; B) is a realization for some sliced
basis Q in Z−1LB2 , if Q∗ = BZ(I − AZ)−1, provided `A < 1. If `A = 1, then we have to
be more prudent and say that the k-th diagonal P0(Z−kQ∗) of Q∗ matches B(k)A{k−1},
for each k ≥ 0. Dually, if G is a sliced basis in U2, then we shall say that (A; C) is a
realization for it, if G = (I − AZ)−1C (for `A < 1), and in general if the k-th diagonal
P0(Z−kG) of G matches A{k−1}C.



INNER-OUTER FACTORIZATION AND OPERATOR INVERSION 155
Lemma 7.2 Let T ∈ U be a locally finite input-output operator, and suppose that T =
{A;B;C;D} is an observable and u.e. stable realization of T . Also let (AV ;BV) be a
realization for some orthonormal basis Q in L2Z−1. ThenD2QT ∈ U2 ⇔ ∃ Y ∈D(BV ;B) :

8<: (a) A∗
V Y A + B∗

V B = Y (−1)(b) A∗
V Y C + B∗

V D = 0(c) ker(·Y) = {0} :
Y is unique, and bounded: Y∗Y ≤ ΛF, where ΛF is the reachability Gramian of T.

PROOF Let F∗ =BZ(I −AZ)−1 and Fo = (I −AZ)−1C. We use in this proof the relations
(cf. (5.19)–(5.21))

T = D + F∗C ; ZF = A∗F + B∗ ; ZQ = A∗
V Q + B∗

V :
We first show that Y : P(QT) =YFo ⇒ (a). Recall that the Hankel operator associated
to T is HT =P( ·T)��L2Z−1=P0( ·F∗)Fo (cf. theorem 5.2). Hence P(QT) = P0(QF∗)Fo,
and if the realization is observable, this implies that Y is unique and given by

Y = P0(QF∗) = P0

h(Z − A∗
V)−1B∗

V B(Z∗ − A)−1
i : (7.13)

Y is well defined because `A < 1 so that the summation is convergent in norm. Further-
more,

Y (−1) = P0(ZQF∗Z∗)= P0([A∗
V Q+B∗

V ][F∗A+B])= A∗
VYA + B∗

V B ;
hence (a) holds. Next we show that (a) ⇒ Y = P0(QFo). Since `A < 1, this equation
has a unique and bounded solution, which is seen from an expansion of the equation
into a summation similar as in (5.24). Necessarily, the solution satisfies P(QT) =YFo.
Hence also (a) ⇒ P(QT) = YFo.

Let Y be the solution of (a). Now, to derive the equivalence of (b) withD2QT ∈U2,
we use the fact that D2QT ∈ U2 ⇔ P0(ZnQT) = 0 for all n > 0. Recurring:

n = 1 : P0(ZQT) = P0( [A∗
V Q+B∗

V ][D+F∗C)= A∗
V P0(QF∗)C + B∗

V D + 0+0= A∗
VYC + B∗

V D :
Hence P0(ZQT) = 0 ⇔ A∗

VYC+B∗
V D = 0. For n > 1, assume P0(Zn−1QT) = 0. Then

P0(ZnQT) = P0(Zn−1[ZQT ])= P0(Zn−1[A∗
V Q]T) + P0(Zn−1B∗

V T)= A∗(n−1)
V P0(Zn−1QT) + B∗(n−1)

V P0(Zn−1T)= 0 + 0 :
Hence (b) is both necessary and sufficient for the conditionD2QT ∈ U2 to be satisfied.
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The bound on Y∗Y follows from the observation that

Y∗Y = P0(FQ∗)P0(QF∗)= P0(P0(FQ∗)QF∗)= P0(PH(F)F∗) ; PH( ·) = P0( ·Q∗)Q
≤ P0(FF∗) = ΛF

where we have used the fact that PH( ·) is an orthogonal projector (ontoD2Q, i.e., the
input state space of V), viz. theorem 4.9. 2

The computation of Y amounts to a generalized partial fraction splitting of expres-
sion (7.13). The quadratic term can in this case be split in linear terms because there is
an automatic “dichotomy”: half of the expression lays in (an extension of) L and the
other half in U . The uniqueness of Y is of course dependent on the choice of Q — any
sliced DZ-invariant subspace of D2Q would provide a solution for Y as well, but one
that has smaller dimensions.

Proposition 7.3 Let T ∈ U be a locally finite input-output operator, and suppose that
T = {A;B;C;D} is an observable and u.e. stable realization of T .

Also let W = [U V ] ∈ U be isometric (W∗W = I) and have a unitary realization
W = [AV

BV

CU
DU

CV
DV

] with state dimension BV .
Let Tr ∈ U have a (not necessarily minimal) realization (A;BTr ;C;DTr). Then the

following statements are equivalent:

1. V∗T = Tr is right outer and U∗T = 0,

2. (W;Y;BTr ;DTr) is a solution of

W∗
�

YA YC
B D

�= 24 Y (−1) 0
0 0

BTr DTr

35
ker( ·Y) = {0}
ker( ·DTr) = {0}

(7.14)

where W is unitary and the state dimension #BV is maximal among all possible so-
lutions.

The “maximal solution” Y is bounded and unique up to a left diagonal unitary factor.

PROOF Equation (7.14), written out in full, reads(a) A∗
V Y A + B∗

V B = Y (−1)(b) A∗
V Y C + B∗

V D = 0(c) C∗
UYA+D∗

UB = 0(d) C∗
UYC+D∗

UD = 0

(e) C∗
VYC+D∗

VD = DTr( f ) C∗
VYA+D∗

VB = BTr(g) ker( ·Y) = {0}(h) ker( ·DTr) = {0} : (7.15)

(⇒) Suppose that W = [U V ] is isometric with a unitary realization W and such that
V∗T is right outer, and U∗T = 0. Let Q be the sliced orthonormal basis ofH(W) corre-
sponding to the realization W. W∗T ∈ U , so that, by lemma 7.2, there is Y ∈D, given
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by (a);(b), such that QT =YFo. Also, since T = D+BZFo,

U∗T = [D∗
U +C∗

UQ]T= D∗
UT +C∗

UQT= D∗
U [D+BZ Fo]+C∗

UY Fo= [D∗
UD+C∗

UYC]+ [D∗
UB+C∗

UYA]Z Fo : (7.16)

Hence

U∗T = 0 ⇔
�

C∗
UYA+D∗

UB = 0
C∗

UYC+D∗
UD = 0

(7.17)

which proves (c) and (d). Much as in (7.16),

Tr =V∗T = [C∗
VYC+D∗

VD] + [C∗
VYA+D∗

VB]Z Fo :
A realization of Tr is thus given by (A;BTr ;C;DTr), with BTr ;DTr given by (e), ( f ). The
condition that Tr = V∗T is right outer implies that ker( ·V

��L2Z−1) = ker( ·T
��L2Z−1) so

that by (7.12), ker( ·Y) = {0}. Finally, (h) holds, for else Tr cannot be right outer.
(⇐) Suppose we have a solution of (7.15). Let Q be the orthonormal sliced basis

generated by (AV ;BV ). By lemma 7.2, (a) and (b) imply that QT ∈ U . W is a unitary
completion of [AV BV ] and H(W) = D2Q. Hence H(W)T ∈ U2, i.e., H(W) ⊂ {u ∈L2Z−1 : uT ∈ U2}. Condition (g) implies thatH(W) ⊥ ker( ·T

��L2Z−1). Since (AV ;BV )
are of largest possible dimension, it follows thatH(W) = {u ∈ L2Z−1 : uT ∈ U2} 	 ker( ·T

��L2Z−1)
(The existence of a W such that equality is obtained follows from the existence of the
inner-outer factorization for the locally finite case.) Since W has a unitary realization,
we have L2Z−1 =H(W)⊕L2Z−1W∗

We also have, for KT = P0( ·T
��L2Z−1), thatL2Z−1 = ker( ·KT )⊕ ran( ·K∗

T ) = {u ∈ L2Z−1 : uT ∈ U2} ⊕L2Z−1T∗

Hence L2Z−1W∗ = ker( ·T
��L2Z−1)⊕L2Z−1T∗.

We now look at the decomposition W = [U V ]. From (c), (d) and equation (7.17) it
follows that U∗T = 0, and from (h) that U is the largest operator with H(U) =H(W)
to do so. Hence L2Z−1U∗ = ker( ·T

��L2Z−1), so that L2Z−1V∗ =L2Z−1T∗. This implies
that Tr is outer.

The bound on Y follows from lemma 7.2 (Y∗Y ≤ ΛF), and its uniqueness from the
fact that the basis Q ofH(W) is unique up to a unitary diagonal state transformation.2

Proposition 7.3 directly leads to an algorithm to compute the inner-outer factoriza-
tion recursively (see figure 7.1). The main step in the algorithm is a QL (unitary-lower)
factorization. Given Yk, this produces all necessary state space matrices at point k, and
Yk+1 for the next step. Because both Yk+1 and DTr;k have full row rank, the dimensions
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In: {Tk} (an observable realization of T)
Out: {Vk};{(Tr)k} (realizations of the isometric and right outer factor)

Initialize Y1

for k = 1;2; · · ·266666666666666664
Compute a QL factorization: W0 unitary such that�

YkAk YkCk

Bk Dk

�=: W0
k

24 0 0
Yk+1 0
BTr;k DTr;k 35 ; ker( ·Yk+1) = 0 ;

ker( ·DTr ;k) = 0

W0
k =:

�
CU;k AV;k CV;k
DU;k BV;k DV;k �

Vk := �
AV;k CV;k
BV;k DV;k �

Tr;k := �
Ak Ck

BTr;k DTr;k �
end Figure 7.1. Inner-outer factorization algorithm for T =VTr

of the QL factorization are unique, and the factorization itself is unique up to block-
diagonal unitary factors acting on columns of W and rows of Yk+1 and [BTr;k DTr;k],
corresponding to unitary state space transformations on W and unitary left diagonal
factors on Tr and V∗. Both transformations are admissible.

The main issue left to be discussed concerns the initialization of Y . Note that once
Y1 is fixed, the remainder of the recursion is determined. Hence, the choice of Y1 has to
ensure that we end up with the maximal solution that is required to obtain outer factors.
In this respect, note that if D is invertible, then Y = [ · ] is always a solution, but perhaps
not the maximal solution.

Nonetheless, for finite n × n block matrices, we may simply set Y1 = [ · ], assuming
T is a realization that starts with zero states. Interesting situations can in this case only
occur if D does not have full row rank.

For systems which are time-invariant before k = 1, the recursion becomes an equa-
tion, in fact leading to an eigenvalue problem. In terms of Y (or rather, Y∗Y), this equa-
tion is an algebraic Riccati equation, and its solution will be discussed in the next sub-
section.

For systems which are periodic, the corresponding LTI Riccati equation of the en-
closing LTI system has to be solved as well, which is not attractive if the period is
large. In terms of Riccati equations, an alternative solution for periodical systems was
proposed in [HL94], in which an iteration over a chain of QZ decompositions is com-
puted. This has numerical advantages, as only orthogonal transformations are used,
and no products of A-matrices have to be evaluated. The method also allows to do a
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preprocessing with state transformations on the realization, in particular to transform
all A-matrices into upper Hessenberg form, and thus have faster convergence of the QZ
steps.

Alternatively (and in fact not much differently), we can act as in the unstructured
case with `A < 1: start with a random Ŷ1 of full rank d1, where d1 is the state dimension
of T at time k = 1. For example, set Ŷ1 = (Λ1=2

F )1: the reachability Gramian of the
realization of T . We have to show that the resulting sequence {Ŷ}k; k = 1;2; · · · will
converge down to the true maximal-size solution Yk. The analysis of this is deferred to
section 13.4, where a similar Riccati equation is investigated. (Note that if the rank of
the initial Y1 is too small, it will usually converge towards a non-maximal solution of
the equations: Tr will not be outer.) The speed of convergence is only linear.Riccati equation
In the time-invariant setting, it is well known that the outer factor Tr of T can be writ-
ten in closed form in terms of the original state matrices {A;B;C;D} of T and only
one unknown intermediate quantity, M say, which is the solution of a Riccati equation
with {A;B;C;D} as parameters. One way to obtain the Riccati equation is by look-
ing at a spectral factorization of the squared relation T∗T = T∗

r Tr. Riccati equations
can be solved recursively; efficient solution methods for the recursive version are the
square-root algorithms, in which extra intermediate quantities are introduced to avoid
the computation of inverses and square roots. In fact, algorithm (7.1) to compute the
realization for Tr is precisely the square-root algorithm. We show in this section how
the corresponding Riccati equation is derived.

Theorem 7.4 Let T ∈ U be a locally finite transfer operator, let T = {A;B;C;D} be
an observable realization of T , and assume `A < 1. Then the Riccati equation

M(−1) = A∗MA+B∗B −
�
A∗MC+B∗D

�(D∗D+C∗MC)† �D∗B+C∗MA
�

(7.18)

has a solution M ∈ D, M ≥ 0 of (pointwise) maximal rank.4 The maximal solution is
unique and bounded: M ≤ ΛF.

Define DTr to be a minimal full range factor (ker( ·DTr) = {0}) of D∗
Tr

DTr = D∗D+
C∗MC : Then a realization of the right outer factor Tr of T so that Tr =V∗T is given by

Tr = �
A C

D†∗
Tr
(C∗MA+D∗B) DTr

� :
PROOF We start from proposition 7.3, in particular equation (7.14). Premultiplying
this equation with its Hermitian transpose, using W∗W = I, and denoting M := Y∗Y

4(·)† denotes the operator pseudo-inverse [BR76]. Although it is non-unique, the definition of M(−1) is. In
practice, it is advantageous to choose the unique least-squares pseudo-inverse for (·)†.
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produces8<: M(−1) = A∗MA+B∗B − B∗

Tr
BTr

D∗
Tr

DTr = C∗MC+D∗D
D∗

Tr
BTr = C∗MA+D∗B

⇔ 8<: M(−1) = A∗MA+B∗B − [A∗MC+B∗D] (D∗D+C∗MC)† [D∗B+C∗MA]
DTr = Q(C∗MC+D∗D)1=2 ; (Q ∈D isometric, s.t. ker( ·DTr) = {0})
BTr = D†∗

Tr
[C∗MA+D∗B]

(The right inverse D†
Tr

need not be bounded, which happens if the range of DTr is not

closed. However, the product D†∗
Tr
[C∗MA+D∗B] is bounded, which can be motivated

from the fact that BTr is the same as in proposition 7.3, but can also proven directly. We
omit the details.) 2

Equation (7.18) is a time-varying Riccati equation. It is a (generalized) quadratic
equation which often arises in problems involving spectral factorizations, or Cholesky
factorizations, once the state equations are substituted for the operator. We will en-
counter it several more times, e.g., in the solution of the time-varying lossless embed-
ding problem (chapter 12), and in the spectral factorization problem discussed in chap-
ter 13. The algebraic Riccati equation has a rich history; a list of contributions and
contributors can be found in [Nic92, BLW91, LR95].

Necessary and sufficient conditions for the existence of positive semidefinite, and
“stabilizing” (or outer) solutions for the LTI Riccati equation were proven by Won-
ham [Won68], Kucera [Kuc72], and Molinari [Mol75], but under the assumption that
D∗

Tr
DTr > 0.
By taking the k-th entry of each diagonal in equation (7.18), we obtain the recursion

Mk+1 = A∗
kMkAk +B∗

kBk −
−
�
A∗

kMkCk +B∗
kDk

�(D∗
kDk +C∗

kMkCk)†
�
D∗

kBk +C∗
kMkAk

� : (7.19)

Initial conditions for the recursion can be obtained for our usual list of special cases.

1. When T starts with zero states at some point k0 in time, then Mk0 = [ · ] . If T is time
invariant before k0, then Mk0 is given by a time-invariant Riccati equation.

2. The exact solution of (7.19) for the LTI case can be computed in several ways. In
comparison with standard solutions based on connections with the linear-quadratic
optimal control problem, complications arise because in our problem we can neither
assume D∗D nor A to be invertible. In that case, the solution is not given directly
in terms of the eigenvalues and eigenvectors of a Hamiltonian matrix, but of a ma-
trix pencil. Pencil techniques were perhaps first introduced in [PLS80], to avoid the
inversion of A. To avoid inversion of D∗D as well, the pencil matrices have to be
extended, e.g., as done in [LR95, §15.2], which we follow here. Suppose A : d × d
and D : m × n. The realization is assumed to be observable. Define

Fe = 24 Id 0 0
0 A∗ 0
0 −C∗ 0

35 ; Ge = 24 A 0 C
−B∗B Id −B∗D
D∗B 0 D∗D

35 :
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Compute the solutions of the pencil λFe − Ge, preferably via the QZ decomposition
[GV89]: find matrices Q;Z (unitary), RF;RG (upper triangular), and V (the gener-
alized eigenvectors) such that

QFeZ = RF

QGeZ = RG

FeV diag(RG) = GeV diag(RF) :
Let V 0 contain the columns of V for which |(RF)ii| < |(RG)ii| (i.e., the eigenvectors
of the eigenvalues inside the unit circle), and partition V 0 into

V 0 = 24d V1
d V2

n V3

35 :
It is shown in [LR95] for the case where D∗D is invertible and where there are no
zeros on the unit circle (the pencil is regular), that V 0 has d columns, that V1 is in-
vertible, and that V2V−1

1 is Hermitian, positive semidefinite, and in fact the maximal
solution to the LTI Riccati equation. Thus, M = V2V−1

1 is the solution of the LTI
Riccati equation that gives the outer factor. It seems possible to extend the method
to the more general case where D∗D is not invertible, and to allow zeros on the unit
circle. This is still an open research area, and additional conditions (on reachability)
seem to be in order.

3. Periodic Riccati equations were studied in [KN79, BCN88, dS91, Nic92, BGD92,
HL94]. Necessary and sufficient conditions for convergence of the periodic Riccati
recursion to the maximal solution from any initial point M̂0 which satisfies M̂0 ≥ εId

or M̂0 ≥ M0 were established in [dS91] (assuming D∗D > 0). An interesting method
to find the periodic solution is described in [HL94]. Instead of directly following the
Riccati recursion, the method is based on a cyclic (period p) QZ factorization of the
pencil

Ek = �
A×

k 0
B∗D(D∗D)−1D∗B − B∗

kBk 0

� ; Fk = �
I Ck(D∗

kDk)−1C∗
k

0 A×∗
k

�
A×

k := Ak −Ck(D∗
kDk)−1D∗

kBk ;
(again assuming D∗D to be invertible) into a chain

Q∗
1E1Z2 = RE1 ; Q∗

1F1Z1 = RF1

Q∗
2E2Z3 = RE2 ; Q∗

2F2Z2 = RF2
...

...
Q∗

pEpZp+1 = REp ; Q∗
pFpZp = RFp

Z1 = Zp+1

where Qk, Zk are all unitary, and REk , RFk are all upper triangular. The periodic con-
dition is that Z1 = Zp+1. The decomposition is basically obtained by first reduc-
ing all Ek and Fk to triangular or Hessenberg forms, and following the suggested
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iteration a number of times, starting with some Z1. In general, convergence is lin-
ear. Once the decomposition is found, the generalized eigenvalues are given by
the product Λ = diag(RE1)diag(RF1)−1 · · ·diag(REp)diag(RFp1)−1, provided the in-
verses exist, or else by a more complicated expression (see [HL94]). The decompo-
sition can be made sorted in such a way that the first d “eigenvalues” λk are smaller
than 1, in which case the solution of the periodic Riccati equation is obtained as
Mk = Z21;kZ−1

11;k, where

Zk = �
Z11;k Z12;k
Z21;k Z22;k � :Computation of the outer-inner factorization T = T`V

For completeness and future reference, we present at this point also the derivation of the
outer-inner factorization T = T`V in which T` is left outer and V is isometric, VV∗ =
I. It is of course completely analogous to that of the inner-outer factorization in the
preceding section. This time, V is defined via the propertyU2V = U2T (7.20)

in accordance to the generalized Beurling-Lax theory of chapter 6. The further elabo-
ration given there shows that we have the decompositionU2 = Ho(V) ⊕ U2V ⊕ ker( ·V∗��U2

) (7.21)

in which it also holds that ker( ·V∗��U2
) = ker( ·T∗��U2

). This space is a defect space

or kernel for T∗ which we characterize here as a causal sliced space5 annihilated by
T∗. However, the kernel or defect space of T∗ may be larger, it is indeed possible that
·T∗

��U2
is strictly smaller than ·T∗

��X2
. In that case, there is a component in the defect

space which is intrinsically non-causal, and V is isometric but not inner. This aspect is
investigated later in section 7.5.

Let us define G to be a sliced orthonormal basis forHo(V), and let the corresponding
realization be given by the observability pair (AV ;CV ). G is not necessarily bounded
in operator norm, and we only assume `AV ≤ 1. We have, by definition, that

G =CV +AV ZG

and that a causal, again not necessarily bounded realization for V is given by

V = DV +BVZG

5In classical analytical function theory, valid when T is LTI, it would correspond to an “analytical range
space” in the sense of Helson [Hel64], i.e., a range space with a basis consisting of functions which are uni-
formly bounded and analytic in the unit disc of the complex plane, corresponding to causal and bounded
transfer functions. He also shows that the (left or right) nullspace of a rational transfer matrix is an analytic
range space. The property does not hold in general for non-rational transfer functions.
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in which an additional pair (BV ;DV ) makes�

AV CV

BV DV

�
isometric and of the appropriate dimensions (see further).

Let FT be a minimal basis for the input state space of T , and FoT the corresponding
basis of the output state space, satisfying the realization equations (5.19)–(5.21), viz.

FoT = AZFoT +C
T = BZFoT +D

F∗
T Z∗ = F∗

T A+B
T = F∗

TC+D :
The main property that follows from (7.20) and the orthogonal decomposition (7.21)
is that

GT∗ = YFT (7.22)

for some bounded diagonal operator Y with ker( ·Y) = {0}. In particular, GT∗ is an-
ticausal, and since the adjoint Hankel operator for T can be expressed in terms of FT

and FoT as
·H∗

T = P0( ·F∗
oT )FT

we find
Y = P0(GF∗

oT) (7.23)

which proves in particular its boundedness, and the fact that its sequence of row di-
mensions are pointwise less than that of F∗

oT . Inserting the expressions for G and FoT

gives a recursion for Y in terms of the state space matrices for T and V :

Y = P0{[CV +AVZG][C∗ +F∗
oTZ∗A∗]}= CVC∗ +AVY (−1)A∗ :

The definition of all the quantities involved is found by working out the two relations

T∗` = VT∗

YFT = GT∗ :
In detail,

T∗
o = VT∗ = [DV +BVZG]T∗= DV T∗ +BVZGT∗ = DV T∗ +BV ZYFT= DV [D∗ +C∗FT ]+BVY (−1)ZFT ;

and since ZFT = B∗ +A∗FT , we find

T∗
o = DV [D∗ +C∗FT ]+BVY (−1)[B∗ +A∗FT ]= [DV D∗ +BVY (−1)B∗]+ [DVC∗ +BVY (−1)A∗]FT=: D∗` +C∗`FT ;

which shows that T` inherits A;B from T , and has C`;D` as shown. From GT∗ = YFT

we obtain

GT∗ = [CV +AVZG]T∗ =CV T∗ +AVZGT∗= CV T∗ +AVY (−1)ZFT= CV [D∗ +C∗FT ]+AVY (−1)[B∗ +A∗FT ]= CV D∗ +AVY (−1)B∗ +[CVC∗ +AVY (−1)A∗]FT
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showing that CV D∗ +AVY (−1)B∗ = 0 in addition to the recursion for Y which we know
already.

Finally, the space ker( ·T∗
��U2

) is also characterized by a causal isometry U such

that its closure equals U2U, for which UT∗ = 0 (and UV∗ = 0 as well). Working out
the relation UT∗ = 0 as before for VT∗ leads to DUD∗ +BUY (−1)B∗ = 0 and DUC∗ +
BUY (−1)A∗ = 0, while U inherits the observality space Ho(V). Putting it all together
gives the recursion24 AV CV

BV DV

BU DU

35� Y (−1)A∗ Y (−1)B∗

C∗ D∗

�= 24 Y 0
C∗` D∗`
0 0

35 : (7.24)

where the matrix on the far left is unitary. These relations, together with the additional
properties

ker( ·Y) = {0}
ker( ·D∗`) = {0}

fully characterize the unknown quantities, up to orthogonal equivalences. These are the
square root equations for the outer-inner factorization. As before, the corresponding
Riccati equation can be obtained by eliminating the leftmost unitary matrix in (7.24)
via premultiplication with the complex conjugates.Geometric \innovation" interpretation
Outer-inner factorization hinges on the determination of an orthonormal basis of maxi-
mal dimensions for the spaceR0 :=K0	ZK0 withK0 =U2T — see the Beurling-Lax
type theorem 6.13. Such a basis admits a geometric interpretation as an “innovations”
sequence and can — in principle — be calculated using a Levinson or Schur algorithm,
as sketched below.

By theorem 6.13, there exists a V ∈ U , VV∗ = I, such thatR0 =D2V (indeed, V is
the right inner factor of T). Since R0 ⊂ K0 there must be diagonal operators Gi ∈ D
such that

V = ∞

∑
i=0

Gi · ZiT :
Formally, we can write G=∑∞

i=0 GiZi (although the sum need not converge to a bounded
operator), so that V = GT . In fact, if T = T`V is an outer-inner factorization in which
T` is boundedly invertible, then G = T−1` . Let us assume that this is the case.

The orthogonality condition V ⊥ ZK0 can be written as ∀F ∈ K0 : P0(VF∗Z−1) =
0. In particular, for all n ≥ 1 : P0(VT∗Z−n) = 0, i.e., P0(GTT∗Z−n) = 0. If we do a
diagonal expansion of this, we obtain with Cn = P0(TT∗Z−n),[G0 G1 · · · ]2666664 C0 C∗

1 C∗
2 · · ·

C1 C(−1)
0 C∗

1
(−1) . . .

C2 C(−1)
1 C(−2)

0
. . .

...
...

. . .
. . .

3777775= [G−∗
0 0 · · · ] : (7.25)
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Here, all equations but the first express the orthogonalities. The first equation is ob-
tained from the fact that T−1` (TT∗)T−∗` = I ⇔ G(TT∗) = G−∗ ∈ L, specialized to the
main diagonal. The fact that T` is outer also implies that (G−∗)0 = (G0)−∗.

V can be interpreted as the normalized innovations of T with respect to ZT , Z2T , etc.
As a consequence, G can be found through a limiting procedure based on successive
partial (normalized) innovations. In particular, if Gn is the n-th innovation, we could
expect that Gn will converge to G when n → ∞. Gn in turn can be found through a
recursive algorithm known as Schur’s algorithm. We do not pursue the matter further.7.3 OPERATOR INVERSION
The strategy for the inversion of an operator T ∈ X is to determine the following fac-
torizations:

T = Q∗R [Inner-coprime]: Q inner
R = URr [Inner-outer]: U∗U = I;

Rr right outer
Rr = R`rV [Outer-inner]: VV∗ = I;

R`r left outer

(all factors in U), (7.26)

so that T =Q∗UR`rV . The final factor, R`r, is upper and both left and right outer, hence
invertible in U , and its inverse is easily obtained. T is not necessarily invertible: U
and V are isometries, and might not be unitary. In any case, T has a Moore-Penrose
(pseudo-)inverse

T† =V∗R−1`r U∗Q ;
and T is invertible with T−1 = T† if U and V are both unitary. The inverse is thus spec-
ified as a lower-upper-lower-upper factorization. The factors may be multiplied to ob-
tain an explicit matrix representation of T†, but because each of them will be known
by its state representation, it is computationally efficient to keep it in factored form. In
this section we consider the connection of matrix inversion with state representations
in detail.Time-varying state realizations of mixed causality
Let {Tk}, {T0k} be series of matrices with block entries

Tk = �
Ak Ck

Bk Dk

� ; T0k = �
A0k C0k
B0k 0

� ;
and consider the time-varying forward and backward state recursions,(T) �

xk+1 = xkAk +ukBk

yk = xkCk +ukDk(T0) �
x0k−1 = x0kA0k +ukB0k
y0k = x0kC0k
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· · ·

B1
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1
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1
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A0
1

x3

x0
2x0

1

· · ·u0 u1 u2 u3

· · ·z0 z1 z2 z3

· · ·

Figure 7.2. State realization which models the multiplication z = uT .
zk = yk + y0k :

See figure 7.2. The recursion maps input sequences [uk] to output sequences [yk], [y0k]
and finally [zk]. The intermediate quantities in the recursion are xk, the forward state,
and x0k, the backward state. The matrices {Ak;Bk;Ck;Dk;A0k;B0k;C0k} must have com-
patible dimensions in order for the multiplications to make sense, but they need not be
square or have constant dimensions. Zero dimensions are also allowed. The relation
between input u = [· · · u1 u2 · · ·] and output z = [· · · z1 z2 · · ·], as generated by the
above state recursions, is

z = uT : T = 2666666664. . .
...

...
· · · D1 B1C2 B1A2C3 B1A2A3C4 · · ·

B02C01 D2 B2C3 B2A3C4

B03A02C01 B03C02 D3 B3C4

· · · B04A03C02 B04C03 D4 · · ·
...

...
. . .

3777777775
so that the state recursions can be used to compute a vector-matrix multiplication z =
uT , where the matrix T is of the above form. Accordingly, we will say that a matrix T
has a (time-varying) state realization if there exist matrices {Tk}, {T0k} such that the
block entries of T = [Ti j] are given by

Ti j =8<: Di ; i = j ;
BiAi+1 · · ·A j−1C j ; i < j ;
B0iA0i−1 · · ·A0j+1C0j ; i > j : (7.27)
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11 12 13 14 15

2524

H4

22

33 34 35

4544

55

23

...

. . .

. . .

T =
H0

4

H2

H3

Figure 7.3. Hankel matrices are submatrices of T . H3 is shaded.
The upper triangular part of T is generated by the forward state recursions {Tk}, the
lower triangular part by the backward state recursions {T0k}. To have nicely converging
expressions in (7.27), we always require realizations to be exponentially stable, in the
sense that ( `A = limn→∞ supi kAi+1 · · ·Ai+nk 1

n < 1 ;`A0 = limn→∞ supi kA0i−1 · · ·A0i−nk 1
n < 1 :

The computation of a vector-matrix product using the state equations is more efficient
than a direct multiplication if, for all k, the dimensions of xk and x0k are relatively small
compared to the matrix size. If this dimension is, on average, equal to d, and T is an
n × n matrix, then a vector-matrix multiplication has complexity O(d2n) (this can be
reduced further to O(dn) by considering minimal parametrizations of the realization,
viz. [vdVD93, Dew95]) and chapter 14), and a matrix inversion has complexityO(d2n)
rather than O(n3).Computation of a state realization
Computation of a minimal state realization for a given matrix or operator T was the
topic of chapters 3 and 5. We summarize the main points, and generalize to the opera-
tors of mixed causality that we have here.

Minimal realizations are connected to time-varying Hankel matrices, in the present
case

Hk = 264 Tk−1;k Tk−1;k+1 · · ·
Tk−2;k Tk−2;k+1

...
. . .

375 ; H0
k = 264 Tk;k−1 Tk;k−2 · · ·

Tk+1;k−1 Tk+1;k−2
...

. . .

375 : (7.28)
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See figure 7.3. When we substitute the realization equations (7.27) into (7.28), we ob-
tain that Hk (and also H0

k) have structured factorizations of the form

Hk = 26664Bk−1Ck Bk−1AkCk+1 · · ·
Bk−2Ak−1Ck Bk−2Ak−1AkCk+1
Bk−3Ak−2Ak−1Ck

. . .
...

37775= 26664Bk−1
Bk−2Ak−1
Bk−3Ak−2Ak−1

...

37775 [Ck AkCk+1 AkAk+1Ck+2 · · ·] = CkOk :
The rank of the factorization of Hk is (at most) equal to the state dimension dk at time k,
and similarly for H0

k and d0k. Conversely, the structure of this factorization can be used
to derive realizations from it.

Theorem 7.5 Let T ∈ X , and define dk = rank(Hk); d0k = rank(H0
k). If all dk, d0k are

finite, then there are (marginally) exponentially stable time-varying state realizations
that realize T . The minimal dimension of xk and x0k of any state realization of T is equal
to dk and d0k, respectively.

Hence, the state dimensions of the realization (which determines the computational
complexity of multiplications and inversions using state realizations) are equal to the
ranks of the Hankel matrices. These ranks are not necessarily the same for all k, so that
the number of states may be time-varying.

Minimal state realizations are obtained from minimal factorizations of the Hk and
H0

k. In principle, the following algorithm from section 3.4 is suitable. Let Hk = QkRk

be a QR factorization of Hk, where Qk is an isometry (Q∗
kQk = Idk ), and Rk has full row

rank dk. Likewise, let H0
k = Q0

kR0k. Then a realization of T is given by

T : Ak = [0 Q∗
k ]Qk+1

Bk = (Qk+1)(1; :)
Ck = Rk(:;1)
Dk = Tk;k T0 : A0k = [0 Q0∗

k+1]Q0
k

B0k = Q0
k(1; :)

C0k = R0k+1(:;1)
D0

k = 0 :
(For a matrix X, the notation X(1; :) denotes the first row of X, and X(:;1) the first
column.) Important refinements are possible. For example, it is not necessary to act
on the infinite size matrix Hk: it is sufficient to consider a principal submatrix that has
rank dk (theorem 3.9). Also note that Hk and Hk+1 have many entries in common, which
can be exploited by considering updating algorithms for the QR factorizations.State complexity of the inverse
Suppose that T is an invertible matrix or operator with a state realization of low com-
plexity. Under some regularity conditions, it is straightforward to prove that the inverse
has a state realization of the same complexity.
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Proposition 7.6 Let T ∈ X be an invertible operator with finite dimensional Hankel
matrices (HT )k and (H0

T )k, defined by (7.28). Put dk := rank(HT )k and d0k := rank(H0
T )k.

If, for each k, at least one of the submatrices [Ti j]k−1
i; j=−∞ or [Ti j]∞i; j=k is invertible, then

S= T−1 has Hankel matrices with the same ranks: rank(HS)k = dk and rank(H0
S)k = d0k.

PROOF We will use Schur’s inversion lemma. In general, let A;B;C;D be matrices or
operators such that A and D are square, and A is invertible, then�

A B
C D

�= �
I 0

CA−1 I

��
A 0
0 D −CA−1B

��
I A−1B
0 I

� :
If in addition the inverse of this block matrix exists, then D× := D−CA−1B is invertible
and the inverse of the block matrix is given by�

A0 B0
C0 D0�=�I −A−1B

0 I

��
A−1 0
0 (D×)−1

��
I 0

−CA−1 I

�=� (∗) −A−1B(D×)−1

−(D×)−1CA−1 (D×)−1

� :
In particular, D0 is invertible, rankB0 = rankB, rankC0 = rankC. The proposition fol-
lows if [ A B

C D ] is taken to be a partioning of T , such that B = (HT )k and C = (H0
T )k. 2Outer inversion

If a matrix or operator is block upper and has an inverse which is again block upper (i.e.,
the corresponding time-varying system is both left and right outer), then it is straight-
forward to derive a state realization of the inverse.

Proposition 7.7 Let T ∈U be invertible and left and right outer, so that S := T−1 ∈U .
If T has a state realization T = {Ak;Bk;Ck;Dk}, then a realization of S is given by

Sk = �
Ak −CkD−1

k Bk −CkD−1
k

D−1
k Bk D−1

k

� :
PROOF From T−1T = I and TT−1 = I, and the fact that T−1 is upper, we obtain that all
Dk = Tk;k must be invertible. Using this, we rewrite the state equations:�

xZ−1 = xA+uB
y = xC+uD

⇔
�

xZ−1 = x(A −CD−1B) + yD−1B
u = −xCD−1 + yD−1 :

The second set of state equations generates the inverse mapping y → u, so that it must
be a realization of T−1. The remaining part of the proof is to show that {Ak −CkD−1

k Bk}
is a stable state operator. The proof of this is omitted, but it is essentially a consequence
of the fact that T is outer invertible and hence has a bounded upper inverse. See also
proposition 13.2. 2
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Note that the realization of the inverse is obtained locally: it is, at point k, only de-

pendent on the realization of the given matrix at point k. Hence, it is quite easy to com-
pute the inverse of an operator once we know that it is left and right outer.Inner-coprime factorization
In order to use the above inversion proposition on a matrix T which is not block upper,
we compute a kind of QR factorization of T as T = Q∆, where Q is block lower and
unitary, and ∆ is block upper. Since Q is unitary, its inverse is equal to its Hermitian
transpose and can trivially be obtained. We first consider the special case where T is
lower triangular. This case is related to the inner-coprime factorization in section 6.2.

Proposition 7.8 (a) Suppose that T ∈L has an exponentially stable finite dimensional
state realization T0 = {A0k;B0k;C0k;D0

k}, with A0k : d0k × d0k−1. Then T has a factorization
T = Q∗R, where Q ∈ U is inner and R ∈ U .

(b) Denote realizations of Q and R by

Qk = � (AQ)k (CQ)k(BQ)k (DQ)k

� ; Rk = � (AR)k (CR)k(BR)k (DR)k

� :
Then Qk and Rk follow recursively from the QR factorization�

YkA0k I YkC0k
B0k 0 D0

k

�= Q∗
k

�
Yk−1

0
Rk

�
(7.29)

where Yk : d0k × d0k is a square matrix.

The state operators of Q and R are the same: (AQ)k = (AR)k, and they are related to
A0∗k via a state transformation. The resulting number of inputs of Q and R may be time-
varying. In particular, Q can be a block matrix whose entries are matrices, even if T
itself has scalar entries.

Equation (7.29) is a recursion: for a given initial matrix Yk0 , we can compute Qk0 ,
Rk0 , and Yk0−1. Hence we obtain the state realization matrices for Q and R in turn for
k= k0 −1; k0 −2; · · ·. All we need is a correct initial value for the recursion. Exact initial
values can be computed in the case of systems that are LTI for large k (Y∗

k0
Yk0 satisfies

a Lyapunov equation), or periodically varying, or that have zero state dimensions for
k > k0. However, even if this is not the case, we can obtain Q and R to any precision
we like by starting the recursion with any (invertible) initial value, such as Ỹk0 = I. The
assumption that T has an exponentially stable realization implies that Ỹk → Yk (k →
−∞), the correct value for Y . Convergence is monotonic, and the speed of convergence
is depending on the “amount of stability” of the A0k.

The more general case (T ∈ X ) is a corollary of the above proposition. Split T =
TL+TU , with TL ∈L and TU ∈ ZU (strictly upper). The above inner-coprime factoriza-
tion, applied to TL, gives TL = Q∗R. Then T has a factorization T = Q∗(R+QTU ) =:
Q∗∆, where ∆ ∈ U . The realization for Q is only dependent on TL, and follows from
the recursion (7.29). A realization for ∆ is obtained by multiplying Q with TU , and
adding R. These operations can be done in state space. Using the fact that AQ = AR
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and BQ = BR, we obtain

∆∆∆k = 264 (AQ)k (CQ)kBk (CR)k

0 Ak Ck(BQ)k (DQ)kBk (DR)k

375 :Inner-outer factorization
Let T ∈U , with exponentially stable finite dimensional realization T= {Ak;Bk;Ck;Dk},
where Ak : dk × dk+1, A0k : d0k × d0k−1. The inner-outer factorization T = UTr, where
U∗U = I and Tr is right outer, can be computed recursively, as follows. Suppose that,
at point k, we know the matrix Yk. Compute the following QR factorization:� nk dk+1

mk Dk Bk(dY)k YkCk YkAk

�=: Wk

24 nk dk+1(mr)k (Dr)k (Br)k(dY)k+1 0 Yk+1
0 0

35 (7.30)

where Wk is unitary, and the partitioning of the factors at the right hand side of (7.30)
is such that (Dr)k and Yk+1 both have full row rank. This also defines the dimensions(mr)k and (dY)k+1. Since the factorization produces Yk+1, we can perform the QR fac-
torization (7.30) in turn for k+1;k+2; · · ·.

Theorem 7.1 in section 7.2 claimed that this recursion determines the inner-outer
factorization. Wk has a partitioning as

Wk = � (mr)k (dY )k+1

mk (DU)k (BU)k ∗(dY )k (CU)k (AU)k ∗

� :
It turns out that U = {(AU)k; (BU)k; (CU)k; (DU)k} is a realization of U, and
Tr = {Ak; (Br)k;Ck; (Dr)k} is a realization of Tr.

In [vdV93a], the inner-outer factorization was solved using a time-varying Riccati
equation (see also [Nic92]). The above recursive QR factorization is a square-root vari-
ant of it. Correct initial points for the recursion can be obtained in a similar way as
for the inner-coprime factorization. If T is Toeplitz for k < k0, then Yk0 can be com-
puted from the underlying time-invariant Riccati equation (viz. section 7.2) which is
retrieved upon squaring of (7.30), thus eliminating Wk. As is well known, this calls
for the solution of an eigenvalue problem. Similar results hold for the case where T
is periodically varying before k < k0, or has zero state dimensions (dk = 0;k < k0).
But, as for the inner-coprime factorization, we can in fact take any invertible starting
value, such as Ỹk0 = I, and perform the recursion: because of the assumed stability of
A, Ỹk → Yk. In a sense, we are using the familiar QR-iteration [GV89] for computing
eigenvalues! (Open question is how the shifted QR iteration fits in this framework.)

The outer-inner factorization T = T`V (VV∗ = I, T` left outer) is computed similarly,
now by the backward recursive LQ factorization� nk (dY )k

mk Dk BkYk

dk Ck AkYk

�=:

� (n`)k (dY )k−1

mk (D`)k 0 0
dk (C`)k Yk−1 0

�
Wk : (7.31)
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The partitioning is such that (D`)k and Yk−1 have full column rank. Wk is unitary and
has a partitioning as

Wk = 24 nk (dY )k(n`)k (DV )k (BV)k(dY)k−1 (CV )k (AV)k

∗ ∗

35 :
Realizations of the factors are given by

V = {(AV)k;(BV )k;(CV )k;(DV )k}
T` = {Ak;Bk;(C`)k;(D`)k} :

An example of the outer-inner factorization is given in section 7.4.Inversion
At this point, we have obtained state space versions of all operators in the factoriza-
tion T = Q∗UR`rV of equation (7.26): Q is obtained by the backward inner-coprime
factorization of section 7.3, U by the forward inner-outer QR recursion in equation
(7.30), and V by the backward outer-inner LQ recursion in equation (7.31). We also
have obtained a state space expression for the inverse of the outer factor R`r, viz. sec-
tion 7.3. The realizations of the (pseudo-)inverses of the inner (isometric) factors are
obtained simply via transposition: e.g., the realization forV∗ is anti-causal and given by
{(AV)∗

k ;(CV )∗
k ;(BV )∗

k ;(DV )∗
k}. The pseudo-inverse of T is given by T† =V∗R−1`r U∗Q.

It is possible to obtain a single set of state matrices for T†, by using formulas for
the multiplication and addition of realizations. This is complicated to some extent be-
cause of the alternating upper-lower nature of the factors. Moreover, it is often not nec-
essary to obtain a single realization: matrix-vector multiplication is carried out more
efficiently on a factored representation than on a closed-form realization. This is be-
cause for a closed-form representation, the number of multiplications per point in time
is roughly equal to the square of the sum of the state dimensions of all factors, whereas
in the factored form it is equal to the sum of the square of these dimensions. See also
section 14.7.4 EXAMPLES
We illustrate the preceding sections with some examples of the inner-outer factoriza-
tion algorithm on finite (4 × 4) matrices and on a simple infinite matrix. In the finite
matrix case, interesting things can occur only when T is singular or when the dimen-
sions of T are not uniform.Finite size matrices
1. Using algorithm 7.1 on

T = 2664 0 1 4 6
0 0 2 5
0 0 0 3
0 0 0 0

3775
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(the underlined entries form the 0-th diagonal) yields an almost trivial left isometric
factor V or left inner factor W :

V =2664 · 1 0 0
· 0 1 0
· 0 0 1
· 0 0 0

3775 W =2664 · 1 0 0 0
· 0 1 0 0
· 0 0 1 0
· 0 0 0 1

3775 #MW = [1 1 1 1]
#NW = [0 1 1 2]
#BW = [0 1 1 1]

It is seen that V is not inner, because T is singular. W is the inner extension of V .
The only effect of W is a redefinition of time intervals: W acts as a shift operator.
Tr =W∗T is

W∗T = 266664 · · · ·
0 1 4 6
0 0 2 5
0 0 0 3
0 0 0 0

377775 #MTr = [0 1 1 2]
#NTr = [1 1 1 1] :

The multiplication by W∗ has shifted the rows of T downwards. This is possible:
the result Tr is still upper. V∗T is equal to W∗T with its last row removed.

2. Take

T = 2664 0 1 4 6
0 1 2 5
0 0 1 3
0 0 0 1

3775 #M = [1 1 1 1]
#N = [1 1 1 1]
#B = [0 1 2 1] :

Hence T is again singular, but now a simple shift will not suffice. The algorithm
computes W as

W = 2664 · −0:707 0:577 0:367 0:180
· −0:707 −0:577 −0:367 −0:180
· 0 0:577 −0:733 −0:359
· 0 0 −0:440 0:898

3775 #MW = [1 1 1 1]
#NW = [0 1 1 2]
#BW = [0 1 1 1]

Tr =W∗T = 266664 · · · ·
0 −1:414 −4:243 −7:778
0 0 1:732 2:309
0 0 0 −2:273
0 0 0 0

377775 #MTr = [0 1 1 2]
#NTr = [1 1 1 1] :

V is equal to W with its last column removed, so that Tr =V∗T is equal to the above
Tr with its last row removed.

3. In the previous examples, we considered only systems T with a constant number of
inputs and outputs (equal to 1), for which V 6= I only if T is singular. However, a
non-identical V can also occur if the number of inputs and outputs of T varies in
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time. Thus consider

T = 266664 1:000 0:500 0:250 0:125
1:000 0:300 0:100 0:027

0 1:000 0:500 0:250
0 0 1:000 0:300
· · · ·

377775 #M = [2 1 1 0]
#N = [1 1 1 1]
#B = [0 1 2 1]

V = 266664 −0:707 0:099 0:025 −0:699
−0:707 −0:099 −0:025 0:699

0 0:990 −0:005 0:139
0 0 0:999 0:035
· · · ·

377775 #MV = [2 1 1 0]
#NV = [1 1 1 1]
#BV = [0 1 1 1] :

In this case, V is itself inner. The outer factor Tr follows as

Tr =V∗T =2664 −1:414 −0:565 −0:247 −0:107
0 1:010 0:509 0:257
0 0 1:001 0:301
0 0 0 −0:023

3775 #MTr = [1 1 1 1]
#NTr = [1 1 1 1] :In�nite-size matrices

A simple doubly infinite example which can be computed by hand is

T = 2666666666664
...

1 0
1

1 1

0 1
0 1

0 0 1...
...

3777777777775 : (7.32)

In this example, T does not have full row span: [ · · · 0 0 1 0 0 · · · ] is not contained
in it, and ker( ·T∗) 6= {0}. The outer-inner factorization is

T = T`V=2666666666664
...

1 0
1 p

2

1
1

0 1...

3777777777775
2666666666664

...
1 0

1
1p
2

1p
2

0 1
0 1

0 0
......

3777777777775 :
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T` obviously has a left inverse T−1` which is upper (it is even diagonal and a right inverse
in this case). V is only an isometry: VV∗ = I, but V∗V 6= I, consistent with theorem 7.1.
The inner-outer factorization is

T =UTr= 2666666666664
... ·

1 · 0
1 ·

1 ·

· 1
· 0 1

0 · 0
...

·
...

3777777777775
2666666666664

...
1

1
1 1

· · · · · · · ·
1

1 ...

3777777777775 :
U has a column with zero horizontal dimension (signified by ‘·’), butU∗U = I nonethe-
less. Tr has a right inverse T−1

r which is upper,

T−1
r = 2666666666664

... ·
1 ·

1 ·
1 ·

·
· 1
· 1
·

...

3777777777775 ;
but T−1

r Tr 6= I: it is not a left inverse. If our purpose is the inversion of T , then it is clear
in this case that T only has a right inverse. The outer-inner factorization is useful for
computing this inverse: it is equal to V∗T−1` .

An interesting observation from these examples is that the inner-outer factorization
of finite matrices T is equal to the QR factorization of T when it is considered as an or-
dinary matrix without block entries. In combination with the external factorization, this
observation can be used to efficiently compute the QR factorization of a general block
matrix (mixed upper-lower) if both its upper and its lower parts have state realizations
of low dimensions. Let X be such a matrix, then first compute U such that T =UX is
upper (U follows from an external factorization of P(X∗) =: ∆∗U), and subsequently
compute the inner-outer factorization of T as T =VTr. Then the QR factorization of X
follows as X = (U∗V)Tr. Note that if the square-root algorithm is used, then the global
QR factorization of X is replaced by local QR factorizations of state-space matrices.
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As a last example for this section, consider again T from equation (7.4). A realization
for T is straightforward to obtain, since it is a banded matrix:

k = −∞; · · · ;0 : Tk = "
0 −1=2

1 1

#
k = 1; · · · ;∞ : Tk = "

0 −2

1 1

# :
T is already upper, so an inner-coprime factorization is not necessary. We pointed out
before that the inner-outer factorization of T is T = I · T . This is because the initial
point of the recursion (7.30), given by the LTI solution of the inner-outer factorization
of the top-left block of T , produces (dY)0 = 0, and hence all subsequent Yk’s have zero
dimensions. Consequently, T is immediately seen to be right outer by itself.

The next step is to compute the outer-inner factorization of the right outer factor, i.e.,
of T . An initial point for the recursion (7.31) is obtained as Yk =p3, k ≥ 1. It requires
the solution of an LTI Riccati equation to find it (this equation is the dual of (7.19)
specialized to LTI, and its solution can be found using the pencil technique described
below that equation), but it is easy to verify that it is a stationary solution of (7.31) for
k ≥ 1: it satisfies the equation�

1
p

3
−2 0

�| {z }"
D BY
C AY

# = �
2 0 ·

−1
p

3 ·

�| {z }"
D` 0 0
C` Y 0

# 24 1
2

1
2

p
3

− 1
2

p
3 1

2
· ·

35| {z }
Wk

(7.33)

(where ‘·’ denotes zero dimensions). Alternatively, we can start the recursion with
Ỹ20 = 1, say, and obtain Ỹ0 = 1:7321· · · ≈

p
3. Equation (7.33) also shows that the

realization of the outer factor has (D`)k = 2 and (C`)k = −1, for k ≥ 0. Continuing with
the recursion gives us(T`)1 = "

0 −1

1 2

# ; V1 = "
0:5 −0:866

0:866 0:5 #
Y0 = 1:732 ;(T`)0 = "

0 −0:25

1 2

# ; V0 = "
0:5 −0:866

0:866 0:5 #
Y−1 = 0:433 ;(T`)−1 = "

0 −0:459

1 1:090

# ; V−1 = "
0:918 −0:397

0:397 0:918

#
Y−2 = 0:199 ;(T`)−2 = "

0 −0:490

1 1:020

# ; V−2 = "
0:981 −0:195

0:195 0:981

#
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Y−3 = 0:097 ;(T`)−3 = "

0 −0:498

1 1:005

# ; V−3 = "
0:995 −0:097

0:097 0:995

#
Y−4 = 0:049 ;(T`)−4 = "

0 −0:499

1 1:001

# ; V−4 = "
0:999 −0:048

0:048 0:999

#
Y−5 = 0:024 ;(T`)−5 = "

0 −0:500

1 1:000

# ; V−5 = "
1:000 −0:024

0:024 1:000

#
Y−6 = 0:012 :

Thus, Yk tends towards zero as k → −∞, and at the same time, Vk tends towards the
identity matrix. For this reason, `A = 1, and V is not uniformly reachable. The latter is
seen from the definition of the snapshots of the reachability operator Ck in (3.23), viz.Ck = 26664 Bk−1

Bk−2Ak−1
Bk−3Ak−2Ak−1
...

37775 ; Ok = [Ck AkCk+1 AkAk+1Ck+2 · · · ] :
Since Ck only looks at An for a decreasing sequence n = k;k − 1;k − 2; · · ·, and Bn → 0,
we can make kCkkHS arbitrarily small for k sufficiently close to −∞. The implication
is that, although all Vk are unitary, the corresponding operator V is not inner, and T is
not right invertible. Note that we do have that V is isometric: VV∗ = I, because V is
uniformly observable (Ok looks at An for increasing values of n). All this is consistent
with theorem 7.1: since ker( ·T∗) 6= {0}, V cannot be inner. The fact that `A = 1 is
consistent with proposition 6.18.

We could continue with V as defined above, but in practice, we settle for an approx-
imation. At a certain point, (say around k = −10, but actually depending on the desired
accuracy),6 we will decide on dY;k−1 = 0, after which the number of states in Vk will
be reduced to zero as well:

V−9 = "
1:000 −0:000

0:000 1:000

#
V−10 = "

· ·

0:000 1:000

#
V−11 = "

· ·

· 1:000

# :
6A decent approximation theory is found in chapter 10. The convergence of Yk and its decomposition into a
full-rank and a singular part is studied in section 7.5.
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This brings us back to the LTI solution for this part of T . It is seen from V−10 that it is
not unitary at this point in time: only V−10V∗

−10 = I holds, but V∗
−10V−10 6= I. Conse-

quently,VV∗ = I butV∗V 6= I, as we had without the approximation. Now it is clear that
V is not unitary but only isometric, and hence T is only left invertible. The situation is
not unlike T in (7.32), but less pronounced.

The outer-inner factorization of T is thus

T` =
266666666666666664

. . .
. . .
1 −0:5 0

1 −0:5
1 −0:49

1 −0:46
1:09 −0:25

2 −1
2 −1

0 2
......

377777777777777775 (7.34)

V =
266666666666666664

. . .
...

...
1 −0:00 −0:00 −0:00 −0:01 −0:02 −0:01 −0:00 · · ·

1 −0:00 −0:01 −0:02 −0:04 −0:02 −0:01
1 −0:02 −0:04 −0:08 −0:04 −0:02

0:98 −0:08 −0:15 −0:08 −0:04
0:92 −0:34 −0:17 −0:09

0:5 −0:75 −0:37
0:5 −0:75

0 0:5 · · ·. . .

377777777777777775 :
The (left) inverse of T is

T† =V∗T` =
2666666666666666664

. . .
...

...
· · · 1:00 0:49 0:24 0:10 0:01 0:01 0:00 0:00· · ·

−0:01 0:99 0:48 0:20 0:03 0:01 0:01 0:00
−0:01−0:02 0:95 0:40 0:05 0:03 0:01 0:01
−0:02−0:05−0:10 0:80 0:10 0:05 0:03 0:01

−0:05−0:10−0:20−0:40 0:20 0:10 0:05 0:03
−0:02−0:05−0:10−0:20 −0:40 0:05 0:03 0:01
−0:01−0:02−0:05−0:10 −0:20−0:47 0:01 0:01

· · ·−0:01−0:01−0:02−0:05 −0:10−0:24−0:49 0:00· · ·
...

...
. . .

3777777777777777775 :
It has indeed the structure which we announced in equation (7.5): it is Toeplitz towards(−∞;−∞) and (+∞;+∞), and equal to the solution of the LTI subsystems of T in those
regions. In addition, there is some limited interaction in the center which glues the two
solutions together. All entries are nicely bounded.
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In this section we study the zero-structure of a transfer operator further for as far as
it is relevant to system inversion. Here, the term “zero-structure” relates to the sys-
tem dynamics of the inverse system. The latter is often captured through a left or right
external factorization. In particular, we know from chapter 6 that a locally finite, uni-
formly exponentially stable system has a left and a right external factorization with in-
ner functions that characterize (share) the system dynamics of the original system and
are obtained through unitary completions, respectively of a coisometric pair [A

B ] in a
canonical input normal form or an isometric pair [A C] in a canonical output normal
form of the original system. If the system T has a causal and uniformly exponentially
stable inverse T−1, then external factorizations on T−1 would provide similar kind of
information on T−1, and it would be logical to call that the “zero structure” of T . For
more general T we cannot work on T−1, since it does not exist, but inner-outer type
factorizations come to the rescue. The structural description, however, turns out to be
considerably more complicated, and interestingly so, not in the least because certain
effects occur in the time-varying case that have no equivalent in the LTI case. In par-
ticular we can expect to encounter quite simple isometric transfer functions with uni-
tary realizations and which are not inner, while studying the inner-outer factorization
of even quite simple isometric transfer functions. We shall see that such transfer func-
tions have a non-trivial kernel or defect space which plays an important role in the zero
structure of T .

The theory presented in this section allows us to make statements on the inversion
of upper transfer operators which are uniformly locally finite, and very precise ones on
systems which have an LTI realization for very small (toward −∞) and very large time
indices (toward ∞), while changing in between.

The exploration of the zero-structure of a transfer operator T starts out via an in-
vestigation of its outer-inner factorization T = T`V in which T` is left outer and V is
isometric, VV∗ = I, see the end of section 7.2. V is defined via the propertyU2V = U2T ; (7.35)

and we have the decompositionU2 = Ho(V) ⊕ U2V ⊕ ker( ·V∗|U2) (7.36)

where also ker( ·V∗��U2
) = ker( ·T∗��U2

). It is a sliced upper space, characterized via the

extended Beurling-Lax theorem by a causal isometric operatorU such that ker( ·V∗
��U2

)=
UU2.

However, the nullspace of T∗ may be larger: it is indeed possible that ·T∗��U2
is

strictly smaller than ·T∗��X2
. In that case, there is a component in the nullspace which

is intrinsically non-causal, and which could be termed a (right-) “defect” space for T .
Its investigation is the topic of this section, and it is connected to the doubly invariant
subspaces mentioned in section 6.4. It may even be larger than (with ‘

W
’ indicating a

sum of subspaces)
−∞_

n=0

Znker( ·V∗)��U2
;
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which may be zero while ker( ·T∗)��X2

is not.

Let us define7 K00o = ker( ·T∗)��X2
	 −∞_

n=0

Znker( ·V∗)��U2
: (7.37)

From proposition 6.18 applied to the extensionW = [V
U ]we know that P(K00o)⊂Ho(V).

Our first theorem asserts that this space has finite dimensional slices when the original
system T is uniformly locally finite. Since K00o is doubly Z-invariant (ZK00o ⊂ K00o and
Z∗K00o ⊂K00o), the k-th slice πkK00o will have the same basis for each integer k. We denote
by g00 this common basis of each πkK00o . πkK00o is a subspace of πkX2, which is itself
isomorphic to `2((−∞;∞)) — for ease of discussion and notation we just identify these
two spaces.

Let Pk be the k-th snapshot of the projection operator P, i.e., a diagonal matrix with[Pk]i;i = 0 for i < k and I for i ≥ k, as defined in equation (4.2). We know already that
for all k, the rows of g00Pk are contained in πkHo(V). This observation leads to the
following theorem.

Theorem 7.9 Suppose that T is uniformly locally finite with the upper bound on the
dimension given by some integer δ, then g00 is finite dimensional.

PROOF From proposition 6.18, we have that for all k

g00Pk = (πkK00o)Pk ⊂ πkHo :
For the purpose of establishing a contradiction, suppose now that πkK00o would not be
of finite dimension. Let, for ` > δ, { f1; · · · ; f`} be orthonormal basis vectors of πkK00o
(they are basis vectors of any slice of K00o , since all the slices are equal). Let ε be a
positive number much smaller than 1, and choose k close enough to −∞ so that

∀ fn ∈ { f1; · · · ; f`} : k fnPk − fnk< ε :
Then { fnPk} also form a basis, which for small ε is almost orthonormal, and they are
contained in πkHo. This contradicts the assumption that the dimension of πkHo is less
than δ. Hence, πkK00o cannot have more than δ basis vectors. 2Locally �nite systems with compact support
In the remainder of this section we specialize to the case where

(A) the system T has a u.e. stable realization and becomes an LTI system represented
by T−∞ when the time index k → −∞. We assume moreover that we know an initial
point Yk0 of the backward recursion (7.24) which governs the computation of the
outer-inner factorization (this would e.g., be the case if the system would also be
LTI for k → +∞);

7Note: this definition is a generalization of our earlier use of K00o in proposition 6.18, since now we do not
assume that ker( ·V∗)��U2

= {0}. The extension W = [ V
U ] absorbs this subspace.
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(B) ker( ·T∗)��U2

= {0};

(C) ker( ·T∗
−∞)��U2

= {0}, too.

(The more general case can be done just as well but leads to a considerably more de-
tailed and technical development which we wish to avoid here).

Let T−∞ = [T−∞]`V−∞ be the outer-inner factorization of T−∞ and letHo(V−∞) be the
corresponding observability space. We try to find the relation between πkHo(V) and
πkHo(V−∞) when k → −∞. Let G be an orthonormal sliced basis representation ofHo(V). The defining properties for f ∈ πkHo(V) can be formulated as

(1) f = f Pk — causality;

(2) f ⊥ ran( ·PkT).
(2) is a direct consequence of the relation GT∗ ∈ L2Z∗, and sufficient as defining

relation for G because of hypothesis (B). Likewise, we have that f 0 ∈ πkHo(V−∞) if
and only if f 0 = f 0Pk and f 0 ⊥ span(PkT−∞), this time because of hypothesis (C).

Because of proposition 6.18, we know that the spaceH2k := πkP(K00o)
is contained in πkHo(V). We also know from theorem 7.9 that the space πkK00o is finite
dimensional and independent of k. Hence, in the limit for very small k, the space πkK00o
itself is contained in πkHo(V). The question is: what else is in πkHo(V)? A strong
candidate is πkHo(V−∞), or at least a space close to it, since for small k, T is behaving
like T−∞. We claim that the space πkHo(V−∞) is in fact nearly orthogonal to the set of
row vectors {PkT}. The near orthogonality will become better for smaller k.

Based on that fact it seems but a small step to look for a subspace close to πkHo(V−∞)
as orthogonal complement for πkP(K00o) in πkHo(V) for k → −∞. Let ε be a positive
number much smaller than 1. We say that two subspaces S1 and S2 are ε-close to each
other (and we write S1

ε≈ S2) if, for the respective orthonormal projectors PS1 and PS2 ,kPS1 − PS2k ≤ ε. In particular, S1 and S2 must then necessarily have the same dimen-
sions, and the maximum angle between them must be of the order of ε.

The near orthogonality of πkHo(V−∞) on the vectors which define the orthogonal
complement of πkHo(V) does not guarantee the existence of a subspace in πkHo(V)
that is actually orthogonal to the space defined by those vectors, namely ran( ·PkT).
For example, in three dimensional space, [0;0;1] will become nearly orthogonal on the
collection [1;0;0]; [0;1;0]; [0;0;ε] when ε → 0, but the span of the latter three vectors
remains the whole space. It turns out that πkHo(V) may contain a subspace, which we
will callH1k, H1k := πkHo(V) 	 πkP(K00o) ;
that is ε-close to πkHo(V−∞), and orthogonal to πkK00o . H1k may have any dimension be-
tween zero and the dimension of πkHo(V−∞), depending on the actual data, but cannot
be larger. In the following theorem we show that there can be nothing else in πkHo(V),
and this fact will allow us to study the convergence of the recursion for Y in equation
(7.24).
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H2kH1k Figure 7.4. The evolution of the left zero structure when k → −∞.

Figure 7.4 depicts the situation. In our standard example T , equation (7.9), we see
thatH1k is actually empty (as expected sinceHo(V−∞) = {0}), while a basis vector for
πkP(K00o) is given by [· · · 0 0 2k · · · 1

2 1 1
2

1
4 · · ·] :

We give another, opposite example at the end of this section in which both H1k andH2k are trivial, while πkHo(V−∞) is not.

Theorem 7.10 Let T be a transfer operator satisfying the hypotheses (A)–(C) above
and ε a positive number much smaller than 1. Then there exists an integer k1 which is

such that for all k < k1, πkHo(V) =H1k ⊕H2k, where H1k
ε
⊂ πkHo(V−∞) and H2k :=

πkP(K00o) ε≈ πkK00o . In particular,

dim(πkHo(V)) ≤ dim(πkHo(V−∞)) + dim(πkK00o);
for all k. H1k is dependent on k only in the sense that all H1kZ−k are ε-close to each
other, while alle H2k are ε-close to each other.

PROOF The proof is based on the construction of the index k1 in the −∞ LTI zone cho-
sen small enough so that there exists a spaceH1k ⊂Ho(V) nearly contained inHo(V−∞)
and orthogonal toH2k = πkP(K00o), and such thatHo(V) =H1k ⊕H2k. For that purpose
we select a collection of four integers k1 < · · · < k4 as follows (see figure 7.5).

1. let k4 be such that T has an LTI realization for all k < k4;

2. choose k3 < k4 such that for all k < k3, T is essentially equal to T−∞, meaning thatkπkT − πkT−∞k< ε, and K00o is essentially concentrated on [k3;∞), meaning that for
all f ∈ πkK00o , k f − f Pk3k< ε. Such a k3 can always be found, because of proposition
6.18 and the assumption that T has a u.e. stable realization;

3. choose next an interval-size K which essentially supports (that is within ε) the func-
tions in π0Ho(V−∞). We have, under the assumption of local finiteness, that for any
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k2k1 k3

k3

LTV

g00 is concentrated here

LTI

T is essentially LTI
and`2(P12) is essentially generated by

πk1Ho(V)⊕ this rowspan

Rows of T

k4

Figure 7.5. The de�nition of the various indices relevant to the proof of theorem 7.10.
k, the πkHo(V−∞) are finite dimensional subspaces of `2([k;∞)), which are, more-
over, shifted versions of each other in the sense that

π`Ho(V−∞) = πkHo(V−∞)Z[`−k]:
We pick K large enough to insure that the constituent functions of π0Ho(V−∞) essen-
tially vanish outside the interval [0;K). Because of time-invariance such an interval
can be used at other time points than 0 as well.

4. Then choose k1 < k3 −K such that `2([k1;∞))(Pk1 −P(k1+K)) (which is isomorphic to`2([k1;k1 +K))) is essentially generated by ran( ·(Pk1 − Pk3)T−∞)⊕Ho(V−∞). Such
a K can be found because of the hypothesis that ker( ·T∗

−∞)��U2
= {0} so that actually`2([k1;∞)) = πk1Ho(V−∞)⊕ ran( ·(Pk1 T−∞)) ; (7.38)

itself a specialization of the relation U2 =Ho(V−∞)⊕ (U2T). If we take the span in
the second member of (7.38) large enough, we can nearly generate any given finite
dimensional subspace of `2([k1;∞)), and in particular `2([k1;∞))(Pk1 − Pk1+K).

5. Put k2 = k1 +K.

The proof now runs in steps.
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We start out by remarking that πk1Ho(V−∞) is nearly orthogonal to the vectors in
{Pk1T}. The reason is that if f ∈ πk1Ho(V−∞) with k fk = 1, then because of the
choice of k1 and k2, f is essentially (i.e., within norm ε) supported on the interval[k1;k2). Since now {Pk1T−∞P12} = {Pk1TP12}, we have that f

ε
⊥ {Pk1T}.

Now we show that there is nothing more in πk1Ho(V) than the orthogonal sum of a
space8 H1, which is essentially contained in πk1Ho(V−∞) and hence essentially sup-
ported on the interval [k1;k2), and the space H2 = πk1P(K00o) = (πk1K00o)Pk1 which
is ε-close to πk1K00o and whose functions are (uniformly) essentially supported on
the interval [k3;∞). We know already that H2 is ε-orthogonal to the row vectors
in {TPk2 }, by definition of K00o and k3. A converse statement is true as well: if
f ∈ `2([k2;∞)) is such that k fk= 1 and ∀g : g ∈ ran( ·TPk2) with kgk= 1, |( f ;g)| <
ε, then f is ε-close to πk1K00o , for the extension [· · · 0 f ] of f from `2([k2;∞)) to`2((−∞;∞)) will be nearly orthogonal to ran( ·T), and hence be ε-close toK00o , which
is by definition the orthogonal complement of ran( ·T), under the assumption that
ker( ·T∗)��U2

= {0}.

Suppose now that f ∈ πk1H0(V), k fk= 1 and that f is nearly orthogonal onHo(V−∞).
We show that f is then nearly contained inH2. This we do by showing that f is es-
sentially supported on the interval [k2;∞) (i.e., k f − f Pk2k< ε), since we have just
shown that it will then nearly belong toH2. But `2([k1;∞))(Pk1 − Pk2) is ε-close to
πk1Ho(V−∞)⊕ ran( ·(Pk1 −Pk3)T−∞) by construction, and since ran( ·(Pk1 −Pk3)T−∞)
is ε-close to ran( ·(Pk1 −Pk3)T), also by construction, we have that f is ε-orthogonal
to `2([k1;∞))(Pk1 −Pk2). It follows that the support of f is essentially on [k2;∞) and
hence that f is nearly in H2. It follows that any f ∈Ho(V) can be decomposed as

f = f1 + f2 with f1
ε
∈Ho(V−∞) and f2 ∈H2, and we have that

πk1Ho(V) ε
⊂ πk1Ho(V−∞)+H2;

in which the two spaces on the right hand side are nearly orthogonal. Let nowH1 =
πk1Ho(V)	H2, then it follows that H1 must be nearly contained in πk1(V−∞) as
claimed. The considerations so far are equally valid if k1 is replaced by any k < k1
and k2 by k+K, leading to the definition of spacesH1k andH2k which are such that
the support of functions in the first is essentially on the interval [k;k+K) and of the
second on [k3;∞).
Finally, the statement that for k < k1, H1k is dependent on k only in the sense that
all H1kZ−k are ε-close to each other follows from the fact that if f ∈ `2([k;∞)) is

such that k fk = 1, f ⊥ ran( ·PkT) and support( f ) ε
⊂ [k;k+K), then there exists an

f1 ∈ πkHo(V−∞) such that k f − f1k < ε, which in turn entails that for all integers` ≥ 1, f1Z−` will be nearly orthogonal on ran( ·Pk−`T) so thatH1(k−`) will be nearly
equal to H1kZ−`, by an argument akin to the one used in the proof of theorem 7.9.
The stability statement for H2k follows directly from the fact that H2k

ε≈ πkK00o for
all k ≤ k1. 2

8We drop the index k1 in the definition of the spaces H1 and H2 for temporary convenience.



INNER-OUTER FACTORIZATION AND OPERATOR INVERSION 185
From theorem 7.10 it follows (at least under the hypotheses (A)–(C) stated) that the

operator Y which plays a central role in the recursion (7.24) is such that for k → −∞, Yk

can be forced to have a limit, and that this limit has a form which characterizes the two
important spacesH1k andH2k. The recursion in (7.24) determines the Yk only up to left
unitary equivalence. On the other hand, we know from the definition of Y in equation
(7.23) that Y =P0(GF∗

oT ), where G is the orthonormal sliced basis ofHo(V) and FoT is
the sliced basis for the output state space of T . This specializes to Yk =(πkG)(πkFoT)∗.
Hence, if the recursion is arranged in such a way that for very small k,

1. πkFoT is essentially LTI, while

2. the basis in πkG decomposes into πkG1 which is essentially LTI and generatesH1k,
and πkG2 which is essentially constant and generates πkK00o — see figure 7.4,

then we see that Yk decomposes in Y1k and Y2k so that

1. Y1k = (πkG1)(πkFoT )∗ which becomes essentially LTI and converges to a constant
matrix with zero (left) kernel, and

2. Y2k = (πkG2)(πkFoT )∗ which converges to zero, since the support of πkFoT , which
is LTI, shifts out of the support of πkG2, which is constant.

The phenomenom is easily observed in our standard examples. For T as in (7.4),
(7.33) we had for k ≥ 1, Yk =p3 while for k → −∞, Yk → 0. Hence, for small k,H1k =
{0} and H2k is one-dimensional and generated by [ · · · 1

4
1
2 1 1

2
1
4 · · · ]. Dually,

suppose that we had tried to find an outer-inner factorization of

T =
2666666666666664

. . .
. . .
1 −2 0

1 −2

1 −1=2
1 −1=2

0 1 −1=2

1
. . .
. . .

3777777777777775 : (7.39)

We would have found Yk = [ · ] for all k, even for k → −∞. In this case, T itself is left-
outer, it has a bounded left-inverse. AlthoughHo(V−∞) is non trivial, we see thatH1k

actually is, showing by example that althoughHo(V−∞) is ε-orthogonal on span(PkT),
the latter just generates the whole space `2([k;∞)) for all k.

To conclude this section, we make somewhat more general statements on the exis-
tence of non-trivial defect spaces such as K00o . Let us look at the case where the state
dimension of the system is the same for all k, all Dk in the state representation for T are
square and invertible, and the system is LTI for both k → ∞ and k → −∞. Let us call
these two LTI systems T−∞ and T∞ respectively. Generalizing what was said in the pre-
ceeding paragraph, we can state (and prove easily from the recursion for Y) that if T∞ is
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minimal phase, then for all k, Yk = [ · ], so that the system is left-outer independently of
T−∞. If T∞ is not minimal phase, then the system is certainly not left-outer and Yk will
be non-trivial, and its behaviour for k → ∞ will be more interesting. If, in that case,
T−∞ is minimal phase, then there will be a defect space K00o of dimension equal to the
degree of non-minimality of T∞. Let the degrees of non-minimality of T±∞ be δ±∞ re-
spectively, then, if δ−∞ ≤ δ∞, there will be a defect space of dimension at least δ∞ −δ−∞
and at most δ∞. We believe that there are examples for any intermediate case. Further
classifications and the relation between the right and the left inner-outer factorization
of a given operator T merits further study!7.6 NOTES
The inversion of an operator is of course a central problem in functional analysis, and
much theory has been developed for it. Particularly relevant to our case is the formula-
tion in terms of a nest algebra, for which factorization and inversion results have been
derived a.o. by Arveson [Arv75], The key ingredient is the inner-outer factorization,
also treated in Arveson’s paper. However, a more elementary and concrete treatment is
based on the classical Beurling-Lax theory, as seen in chapters 6 and 7. In the LTI case,
the connection of the inner-outer factorization to the Riccati equation is well known.
A parallel treatment of the LTV case can be found in chapter 3 of the book of Halanay
and Ionescu [HI94], where the inner-outer factorization is treated as an application of
Kalman-Szegö-Popov-Yakubovich systems.

The time-varying inner-outer factorization also provides for a splitting into causal
(upper) and anti-causal (lower) parts: a dichotomy. This point has been investigated
by Gohberg and co-workers [GKvS84, BAGK94].
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8 J-UNITARY OPERATORS

J-unitary operators and their siblings, symplectic operators, play an important role in
physics and mathematics. Aside from the fact that they describe a physically interest-
ing situation, they are instrumental in interpolation and approximation theory as well.
The physical motivation is found in lossless scattering theory, which gives an operator
description of wave propagation and reflection. An introduction to this is given in sec-
tion 8.1. We saw in the previous chapters that reachability and observability spaces are
instrumental in the realization theory of operators in general. In the case of J-unitary
operators these spaces turn out to be rather special, with interesting geometrical prop-
erties (sections 8.2 and 8.4).

An important special case of J-unitary or J-isometric operators are those which give
a chain description of a lossless scattering operator. We give characterizations of such
operators, also for the case where they are of mixed causality. Such operators have
been extensively utilized in the H∞ control literature.

The chapter forms an introduction to chapter 9 in which a number of classical inter-
polation problems are brought into the general context of time varying systems, and to
chapter 10 on optimal approximation of transfer operators and model reduction.8.1 SCATTERING OPERATORSPassive media
Let us consider a set of waves impinging onto a physical medium. In general, the
medium scatters the waves and even reflects part of the energy back towards the source191
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reflected waves b

Linear medium

incident waves a

Figure 8.1. Scattering at a linear passive (physical) medium.
as well. We shall restrict our interest to media that are linear, and connected to the out-
side world with just a finite set of ports (figure 8.1).

Linearity implies, among others, that there is no “harmonic distortion” in the scat-
tering process (no transfer of energy between frequencies), while the assumption of
a finite set of ports means that the interaction of the medium with the outside world
happens through a finite set of input signals, which are scattered by the medium and
transferred to a finite set of output signals. The first set we call incident waves while
the scattered set consists of the reflected waves. We are interested in the energy that the
input signals have introduced into the medium at some point in time, and the energy of
the signals that flow out of the medium.

With reference to figure 8.1, let the incident wave consist of a sequence a = [ak].
We define the energy brought into the medium from k = −∞ up to and including time
t as E(a; t) = t

∑
k=−∞

aka∗
k = t

∑
k=−∞

kak k2 :
Similarly, the energy taken out from the medium from k = −∞ up to and including t isE(b; t) = t

∑
k=−∞

bkb∗
k = t

∑
k=−∞

kbk k2 :
The net balance of energy the medium has absorbed from the outside world from cre-
ation to time t then becomes E(t) = t

∑
k=−∞

(aka∗
k − bkb∗

k) ;
i.e., the difference between incident and reflected energy.

The incident vector ak belongs, at each point k, to a finite vector space Mk while
the reflected vector belongs to a (possibly different) space Nk. It is standard practice,
usually not limiting, to restrict incident and reflected waves to spaces `M2 and `N2 . We
shall do so, unless indicated otherwise.
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A medium is called passive if it does not contain a source of energy. As stated,

the notion is imprecise (for just the physical existence of the medium makes it con-
tain energy). We replace the definition by a more precise, instrumental one which only
holds for the linear case. We say that a linear medium is passive if for all t and all inci-
dent waves with finite energy, the overall reflected energy up to t is smaller than or at
most equal to the overall incident energy up to that point in time: E(b; t) ≤ E(a; t). The
medium is said to be lossless if it is passive and, in addition, for all a ∈ `M2 , E(b;∞) =E(a;∞). In that case, all incident energy eventually gets reflected (presuming it is fi-
nite).

We can always characterize a passive medium by a scattering operator which maps
the incident wave a to the reflected wave b, and which has the additional property of
causality. With the basic assumptions of the previous paragraph, this operator must
always exist, because

1. if ak = 0 for −∞ < k ≤ t, then bk = 0 for −∞ < k ≤ t as well, since at any point in
time the net absorbed energy E(t) must be non-negative. This defines causality, viz.
definition 3.1.

2. The relation (a;b) between incident and reflected waves must be univocal: suppose(a;b) and (a;b0) are two compatible input-output wave pairs, then by linearity also(0;b − b0) must be compatible, and by the passivity assumptions, necessarily for all
k, bk = b0k, i.e., b ≡ b0. Hence the relation (a;b) is an operator well defined on an
acceptable input space of incident waves.

An additional assumption allows the whole of `M2 as space of incident waves: we
say that any a ∈ `M2 is allowable as incident wave (solvability assumption). From the
preceding discussion, we derive the scattering operator S asS : `M2 → `N2 : b = S(a) :
The solvability assumption is merely technical: it makes the mathematics work and
is reasonably harmless since it could have been obtained by closure on finite input
sequences—a tedious procedure which brings no new insights.

The matrix calculus which we described in the earlier chapters allows us now to
write

b = aS

where passivity implies that S is a bounded operator: S ∈X , and causality even gives
S ∈ U . The passivity assumption also provides the inequality

I − SS∗ ≥ 0 ; (8.1)

whereas if S is lossless,
I − SS∗ = 0 ; (8.2)

i.e., S is isometric. If, in addition, S∗ (which is an anticausal operator) is isometric as
well, we have

SS∗ = I ; S∗S = I (8.3)

and S is unitary. We have seen in section 6.4 that a locally finite isometric operator S
can often be completed to a unitary one by the addition of a well chosen set of outputs.
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Port 1 Port 2

incident waves a1

reflected waves b1

medium

Linear layered

b2

a2

Figure 8.2. Scattering at a layered physical medium.Layered physical media
Next, consider a layered physical medium for which the inputs and outputs are each
partitioned into two sets. The first set we call, for convenience, port 1, and the second
set port 2 — see figure 8.2. We split the incident waves accordingly into two sets: a1 ∈`M+

2 to port 1 and b2 ∈ `N−
2 to port 2, and the reflected waves b1 ∈ `M−

2 and a2 ∈ `N+
2 .

(The “+” subscript goes with the energy transport from left to right, while “−” goes
with energy from right to left.) The total energy absorbed up to and including time t
by the medium at port 1 is now given byE1(t) = t

∑
k=−∞

(a1;ka∗
1;k − b1;kb∗

1;k)
and at t = ∞ by E1(∞) = [a1 b1]� IM+

−IM−

��
a∗

1
b∗

1

� :
At port 2, we have E2(t) = t

∑
k=−∞

(b2;kb∗
2;k − a2;ka∗

2;k)E2(∞) = [b2 a2]� IN−
−IN+ ��

b∗
2

a∗
2

� :E1(∞) and E2(∞) are expressed in terms of a non-definite inner product characterized
by the signature matrices

J1 = �
IM+

−IM−

� ; J2 = �
IN+

−IN−

� :
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We saw in the previous section that a passive layered medium possesses a causal and
contractive scattering operator Σ ∈ U ,

Σ : `M+
2 × `N−

2 → `N+
2 × `M−

2 :[a2 b1] = [a1 b2]� Σ11 Σ12

Σ21 Σ22

� : (8.4)

It may also happen that the map [a1 b1] 7→ [a2 b2] from waves at port 1 to waves at
port 2 exists. In that case we say that the medium possesses a chain scattering operator.
It is commonly denoted with the symbol Θ:

Θ : `M+
2 × `M−

2 → `N+
2 × `N−

2 :[a2 b2] = [a1 b1]� Θ11 Θ12

Θ21 Θ22

� : (8.5)

Since (8.4) and (8.5) describe the same linear relations between a1;a2;b1;b2, they are
connected. In particular, if Σ22 is boundedly invertible, then Θ exists as a bounded
operator and is given by

Θ = �
Σ11 − Σ12Σ−1

22Σ21 −Σ12Σ−1
22

Σ−1
22Σ21 Σ−1

22

� :
Conversely, if Θ is known and Θ−1

22 is a meaningful operator, then Σ is given by

Σ = �
Θ11 − Θ12Θ−1

22Θ21 −Θ12Θ−1
22

Θ−1
22Θ21 Θ−1

22

� :
Definition 8.1 A bounded operator Θ ∈ X is a(JM;JN )-isometry if ΘJNΘ∗ = JM,(JN ;JM)-coisometry if Θ∗JMΘ = JN ,(JM;JN )-unitary if both ΘJNΘ∗ = JM and Θ∗JMΘ = JN .

If Θ is bounded and (JM;JN )-unitary, then Θ−1 is bounded as well and given by

Θ−1 = JNΘ∗JM :
Σ is called inner if it is causal and unitary,1

Σ is lossless if it is causal and isometric, ΣΣ∗ = I.

1See the extensive discussion on inner operators in the previous chapter. The definition is in line with the
notion of “inner” in the theory of matrix analytic functions as given by [Hel64], and does not follow e.g.,
[FM96a] which does not require unitarity, only isometry. The two definitions cannot be reconciled, because
a causal and isometric operator does not necessarily have a causal unitary extension, as shown by the coun-
terexamples in the previous chapter.
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Suppose that the scattering operator Σ of a layered medium is inner, and that the cor-
responding chain scattering operator Θ exists. This will be the case if Σ−1

22 exists, let us
say, as a bounded operator.

Θ is J-inner [J-lossless] if it is J-unitary [J-isometric], and the corresponding Σ ex-
ists and is causal.

A J-inner Θ need not be causal, but it will be J-unitary. It is causal only if Σ−1
22 is causal.

Similarly, it may be that Θ is J-unitary and that the corresponding Σ exists (which
is the case when Θ−1

22 exists), but such that the corresponding Σ is not causal. Θ is then
merely J-unitary, but not J-inner, and it does not correspond to a “physical” scattering
system. We will see later that the various cases on Σ and Θ all are of interest.

The following theorem gives a number of properties of the connections between Θ
and Σ, where it is only assumed that Θ is J-unitary (not necessarily J-inner).

Theorem 8.2 Let Θ ∈X (M;N ) be a (JM;JN )-unitary operator with partitioning (8.5).
Then

1. Θ−1
22 exists and is bounded,

2. kΘ−1
22k ≤ 1; kΘ−1

22Θ21k< 1, kΘ12Θ−1
22 k< 1.

3. The corresponding scattering operator Σ exists, is unitary, and given by

Σ = �
Θ11 − Θ12Θ−1

22Θ21 −Θ12Θ−1
22

Θ−1
22Θ21 Θ−1

22

�= �
Θ−∗

11 −Θ12Θ−1
22

Θ∗
12Θ−∗

11 Θ−1
22

�= �
Θ−∗

11 −Θ−∗
11Θ∗

21
Θ−1

22Θ21 Θ−1
22

� : (8.6)

PROOF The proofs are elementary and well known; see e.g., [ADD90, lemma 5.2],
[BGK92a].

1. ΘJΘ∗ = J and Θ∗JΘ = J give the relations

Θ22Θ∗
22 = I+Θ21Θ∗

21 ; Θ∗
22Θ22 = I+Θ∗

12Θ12 :
Hence Θ22 and Θ∗

22 both have closed range and empty kernel. By the closed graph
theorem, Θ22 is boundedly invertible and both Θ−1

22Θ−∗
22 � 0 and Θ−∗

22Θ−1
22 � 0.

2. Applying Θ−1
22 and Θ−∗

22 to the left and right, respectively, of above two expressions
yields

I = Θ−1
22Θ−∗

22 +(Θ−1
22Θ21)(Θ−1

22Θ21)∗ ; I = Θ−∗
22Θ−1

22 +(Θ12Θ−1
22)∗(Θ12Θ−1

22) :
Hence Θ−1

22Θ−∗
22 ≤ I and also Θ−∗

22Θ−1
22 ≤ I, i.e., kΘ−1

22k ≤ 1. Because Θ−1
22Θ−∗

22 � 0 and
Θ−∗

22Θ−1
22 � 0 it follows that kΘ−1

22Θ21k< 1 and kΘ12Θ−1
22 k< 1.
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Figure 8.3. The connection between Θ and the corresponding scattering operator Σ.
3. Writing out the expression [a1 b1]Θ = [a2 b2] in full gives�

a1Θ11 +b1Θ21 = a2

a1Θ12 +b1Θ22 = b2
⇔

�
a1(Θ11 − Θ12Θ−1

22Θ21)+b2Θ−1
22Θ21=a2

−a1Θ12Θ−1
22 +b2Θ−1

22 =b1

as Θ22 is invertible. The second set of equations is [a1 b2]Σ = [a2 b1]. The fact that
Σ is unitary can be verified by computing Σ∗Σ and ΣΣ∗ in terms of its block entries.

4. Finally, the equalities in (8.6) follow directly from the J-unitarity, in particular the
partial equations

Θ11Θ∗
11 − Θ12Θ∗

12 = I ; Θ21Θ∗
11 = Θ22Θ∗

12

and
Θ∗

11Θ11 − Θ∗
21Θ21 = I ; Θ∗

11Θ12 = Θ21Θ∗
22 ;

from which it follows e.g., that Θ∗
11 is boundedly invertible. 2

A signal flow interpretation for the connection between Θ and Σ is given in figure
8.3. We see that the “bottom arrow” is reversed. Because Θ22 is invertible, all signals
b2 are admissible (i.e., Θ22 has full range), and b2 can act as an independent input. If
we try to reverse the argument and construct Θ from Σ, we must exercise some care,
as Σ22 is guaranteed to be contractive when Σ is unitary, but Σ−1

22 need not be upper nor
bounded even when Σ is.Example
Take M+ = h C 4 ; ; ; ; ; ;i M− = h C ; C ; C ; C iN+ = h C 2 ; C 2 ; ; ; ;i N− = h ; ; ; ; C 2 ; C 2

i :
A signal in theM+ space will have the form

a1 = [a10; ·; ·; ·] ∈ M+
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−

Figure 8.4. Example of non-uniform input and output spaces of a J-unitary operator Θ.
where a10 has dimension 4, while

b1 = [b10; b11; b12; b13] ∈ M−
a2 = [a20; a21; · ; · ] ∈ N+
b2 = [ · ; · ; b22; b23] ∈ N−

in which the entries a20; a21; b22; b23 have dimension 2, and b10; b11; b12; b13 have
dimension 1. The other entries are “empty” or non-existent. One possible form Θ could
take (see figure 8.4) is
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· ·· · · · · · · · · ·
· ·· · · · · · · · · ·
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0 CCCC 2 C 2 C 2;; ; ;
The diagonals in the subblocks of Θ have a somewhat erratic behavior, and some di-
agonal entries vanish. Such a Θ may occur in practical approximation situations, as
is seen from examples in chapter 10. A signal flow diagram for Θ is drawn in figure
8.4. Since Θ is upper, it will be causal. The signal flow for Θ is from left-to-right. It is
customary to also indicate the signature of Θ, or the energy flow that goes with a signal
(i.e., the signal flow of Σ). This is shown in the figure by ‘+’ and ‘−’-signs.
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Given a layered medium characterized by either a scattering operator Σ of a chain scat-
tering operator Θ, we can produce a variety of scattering maps between the waves a1

and b1 at port 1, by loading port 2 with a scatterer SL which realizes the map b2 = a2SL

(as in figure 8.3(b)). In that case, and provided the inverse of (I − SLΣ21) exists, we
have b1 = a1S with

S = Σ12 +Σ11(I − SLΣ21)−1SLΣ22

SL = (Θ11 +SΘ21)−1(Θ12 +SΘ22)
S = (Θ12 − Θ11SL)(Θ21SL − Θ22)−1 =: TΘ[SL] : (8.7)

The third equation above follows from the second after chasing the denominator and
solving for S. The relations between the port quantities can conveniently be expressed,
with A = Θ11 +SΘ21, as [I S]Θ = A[I SL] : (8.8)

We shall see that (8.8) is closely related to the interpolation properties of a scattering
medium. If u ∈ `M+

2 is an input to the layered system, loaded by SL, and y = uS is the
corresponding output, then we can view the operator [I S] which maps u 7→ [u; y] as a
so-called angle operator. In passive scattering situations, SL is contractive and Θ will
be J-unitary. As a result, S is automatically contractive as well, since

I − SS∗ = [I S]J1

�
I

S∗

�= [I S]ΘJ2Θ∗
�

I
S∗

�= A[I SL]J2

�
I

S∗
L

�
A∗= A(I − SLS∗

L)A∗ ≥ 0 :
The existence of S can sometimes be asserted even though I −SLΣ21 is not invertible. It
suffices that Σ corresponds to a lossless system and SL to a lossy load (i.e., causal and
contractive). Under these two hypotheses it will be true that a1a∗

1 − b1b∗
1 ≥ 0, and the

map a1 7→ b1 is well defined. There may be a “defect” at the output port of Θ in the
sense that all the possible physical b2’s need not span the whole space. Hence it may
happen that the domain for (I − SLΣ21)−1 is restricted (it is the range of Σ11). On the
other hand, if Θ exists, then the third expression for S in (8.7) is always well defined
for any kSLk ≤ 1: (Θ21SL −Θ22)−1 =(Θ−1

22Θ21SL −I)−1Θ−1
22. From theorem 8.2 we know

that Θ−1
22 is bounded, as well as (Θ−1

22Θ21SL − I)−1, because kΘ−1
22Θ21k< 1.

In a physical context, S describes the reflectivity of the layered medium at port 1.
The “thicker” the medium is, the less influence a load SL will have upon the input scat-
tering function, and the more it will be determined by the intermediate layers. For ex-
ample, if an incident wave at port 1 needs n sample time slots to travel to port 2 and
back, then the first n samples of the reflected wave will not be dependent on the load.
Then, writing

S = TΘ[SL]
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Θn

a1

b1

a2

b2

Θ1 · · ·Θ2

Figure 8.5. Cascade of Θ-sections.
for the input scattering operator at port 1 when port 2 is loaded in SL, if

S1 = TΘ[SL1 ] and S2 = TΘ[SL2 ]
we shall have that S1 has the same first n diagonals as S2 or, alternatively, S1 − S2 is
causally divisible by Zn — S1 and S2 interpolate the same n diagonal “values”. In the
next chapter we shall see that chain scattering operators can be used to describe many
more general instances of interpolation.

One of the main reasons for introducing the chain scattering matrix is the simplicity
by which the overall scattering situation of a layerered medium can be expressed in
terms of the individual layers. With reference to figure 8.5, we find that the overall
chain scattering matrix of the cascade is

Θ = Θ1Θ2 · · ·Θn :
The corresponding operation on the Σ matrices is complicated and known as the “Red-
heffer product”, after the author who introduced it in the physics literature [Red62].8.2 GEOMETRY OF DIAGONAL J-INNER PRODUCT SPACESJ-inner products
In the sequel, the “geometry” of the reachability and observability spaces of a J-unitary
transformation will play a major role. The important metric, often imposed or induced
by the situation, turns out to be indefinite. In this section we collect the main properties
of such spaces as we need them. Keeping in line with the policy of working on diago-
nals as if they were scalars, we define diagonal J-inner products. Let x = [x1 x2] and
y = [y1 y2] belong to a space of type XM

2 ×XN
2

and let P0 denote, as usual, the projection onto the 0-th diagonal, then the diagonal J-
inner product of x with y is given by

{x;y}J = P0(x1x∗
1)− P0(x2x∗

2) :
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The scalar J-inner product 〈x;y〉J is the trace of {x;y}J . It is easy to verify that it is an
ordinary, although indefinite inner product.

LetH be some subspace of XM
2 ×XN

2 . We say thatH is J-positive if, for all x ∈H, {x;x}J ≥ 0 (i.e., entry-wise positive),H is uniformly J-positive if there exists an ε > 0 such that for all x ∈H, {x;x}J ≥
ε{x;x},H is J-neutral if, for all x ∈H, {x;x}J = 0,H is J-negative if, for all x ∈H, {x;x}J ≤ 0,H is uniformly J-negative if there exists an ε > 0 such that for all x ∈H, −{x;x}J ≥
ε{x;x},

In many cases H will have no definite sign, and we call it indefinite. In particular, ifH=XM
2 [I S], S will be contractive, isometric or expansive (i.e., SS∗ −I ≥ 0) if and only

if H is J-positive, J-neutral, or J-negative respectively. Notice that if H is J-neutral,
then for all x;y ∈H it is true that {x;y}J = 0. This follows from the trapezium identity
which is generally valid for inner product spaces (whether definite or not):

{x;y} = 1
4
({x+ y;x+ y} − {x − y;x − y} + i{x+ iy;x+ iy} − i{x − iy;x − iy}) :Inde�nite spaces

Now we move to some basic properties of spaces on which an indefinite inner product
is defined, mostly for use in subsequent chapters. Extensive treatments can be found in
[Bog74, Kre70, AY89]. Consider the indefinite diagonal inner product {·; ·}J defined
onXM

2 ×XN
2 . Note that it is always true that |{x;x}J | ≤ {x;x}, so that all x ∈XM

2 ×XN
2

have finite {x;x}J . We say that a vector x is isotropic if {x;x}J = 0. The span of a set of
isotropic vectors is not necessarily J-neutral as can be seen from span{[1 1]; [1 − 1]}
in C 2 , endowed with the inner product {x;y}J = x1y1 − x2y2.

LetH be a subspace of XM
2 ×XN

2 as before. We denote its orthogonal complement
with respect to the indefinite inner product byH[⊥]. It is defined by the ruleH[⊥] = {x ∈ XM

2 ×XN
2 : ∀y ∈H; {x;y}J = 0} :

It follows immediately thatH[⊥] =H⊥J for the orthogonal complementH⊥ in the usual,
definite inner product. Hence,H[⊥] is a closed subspace (with respect to the natural in-
ner product), and (H[⊥])[⊥] =H. IfH is D-invariant, then so isH[⊥].

On uniformly J-positive (or J-negative) definite subspaces, the J-inner product is
equivalent to the usual inner product: ε{x;x} ≤ |{x;x}J | ≤ {x;x} ; which ensures that
important properties such as completeness and closedness carry over: a uniformly J-
definite subspace is a Hilbert space. We are, however, interested in more general cases
than just uniformly definite subspaces, namely in cases where subspacesH can be split
into H =H+�H−, where H+ and H− are uniformly J-positive and J-negative sub-
spaces respectively, and “�” denotes the J-orthogonal direct sum:H = A�B ⇔ H = A +̇ B ; A [⊥] B :
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Such spaces are called Krein spaces. The indefinite direct sum is the analog of ⊕, but in
using�, a number of properties that are a matter of course in Hilbert spaces no longer
hold. For example, for orthogonal complementation in the usual (definite) inner prod-
uct, we always have thatH∩H⊥ = 0 andH⊕H⊥ =X2. With an indefinite metric, the
analogous equations do not hold in general. The intersection ofH andH[⊥] is not nec-
essarily empty: for example, if H is a neutral subspace, then H ⊂H[⊥]. One can also
show that a subspace and its J-complement do not necessarily span the whole space.
E.g., the J-orthogonal complement of span([1 1]) in C 2 is span([1 1]) as well.

The algebraic sum H+̇H[⊥] needs no longer be a direct sum: if x ∈H+̇H[⊥] then
the decomposition x = x1 + x2 with x1 ∈H and x2 ∈H[⊥] need not be unique.

A subspace H of X2 is said to be projectively complete if H+̇H[⊥] = X2. In this
case, each x ∈ X2 has at least one decomposition into x = x1 + x2 with x1 ∈ H and
x2 ∈H[⊥]. A vector x ∈H is called a J-orthogonal projection of a vector y ∈X2 if (i)
x ∈H and (ii) (y − x) [⊥]H.

LetH0 =H∩H[⊥]. ThenH0 is automatically neutral. H is called a non-degenerate
subspace if H0 = {0}. It is straightforward to show that[H+̇H[⊥]][⊥] =H[⊥] ∩H[⊥][⊥] =H[⊥] ∩H=H0

so that X2 = (H+̇H[⊥])⊕H0J : (8.9)

It follows thatH can be projectively complete only if it is non-degenerate:H∩H[⊥] =
{0}. In that case, decompositions are unique, so that ifH is projectively complete, thenX2 =H�H[⊥].Inde�nite Gramians
The situation in which we are interested is as follows: let H be a locally finite D-
invariant subspace in some given “base space”XM

2 , and letB be the non-uniformspace
sequence whose dimension #B is the sequence of dimensions of the subspace H, as
defined in section 4.3. H has some strong basis representation F such that H = DB2 F
(cf. proposition 4.6). Let J ∈D(M;M) be some given signature operator on the base
spaceM— it is a diagonal of signature matrices, one for each entry inM:

Jk = � (IM+)k (−IM−)k

�
(the exact form of J is not really important here, the decomposition ofM usually cor-
responds to a division of ports according to incoming and reflected waves). In analogy
to the definition of the Gram operator ΛF = {F;F} in chapter 4, we define the J-Gram
operator of this basis as the diagonal operator

ΛJ
F = [F;F] = P0(FJ F∗) ∈ D(B;B) : (8.10)

F is called a JB-orthonormal basis representation when ΛJ
F = JB, where JB is some

signature operator on B. The dimensions of F are B ×M. We call H regular if the J-
Gram operator of some strong basis in the normal metric is boundedly invertible. Since
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strong bases are related by invertible diagonal transformations R: F0 = RF, the invert-
ibility properties of the Gram operators of all these bases are the same, so that regularity
is a property of the subspace. Note that ΛF � 0 does not imply that ΛJ

F is boundedly
invertible. The reverse implication is true with some caution: ΛJ

F boundedly invertible
does not necessarily imply that ΛF is bounded, but if it is, then ΛF � 0.2

If ΛJ
F is boundedly invertible, then it has a factorization into ΛJ

F = RJBR∗, where R
and JB are diagonals in D(B;B), R is invertible and JB is the signature matrix of ΛJ

F:
it is a diagonal of matrices (JB)k = � (I+)k (−I−)k

�
and defines a partitioning of B intoB=B+ ×B−. JB is again independent of the choice
of basis in H. We call JB the inertia signature matrix of the subspace H, and the se-
quences #(B+) and #(B−) corresponding to the number of positive and negative entries
of JB at each point is called the inertia ofH. More general (non regular) subspaces can
also have a zero-inertia, corresponding to singularities of ΛJ

F, but if H is regular, then
it has no zero-inertia. (The zero-inertia is only well defined if the range of ΛJ

F is closed,
or equivalently, if any of its eigenvalues is either equal to zero or uniformly bounded
away from zero.)Canonical subspace decomposition
The following theorem is proved in [AY89, thm. 1.7.16] for classical Krein spaces, and
holds in the present context as well. It is a fairly straightforward consequence of the
closed graph theorem of functional analysis [DS63]. We refer the reader to the original
paper and standard textbooks if he wishes to explore the matter further.

Theorem 8.3 LetH be a locally finite left D-invariant subspace in X2, and let J be a
signature matrix associated to it. The following are equivalent:

1. H is projectively complete;H�H[⊥] = X2,

2. H is regular,

3. H is a Krein space: H = H+�H−, where H+ and H− are uniformly J-positive
(resp. J-negative) subspaces,

4. Any element in X2 has at least one J-orthogonal projection ontoH.

2Counterexample: Take J = [ 1
0

0
−1 ], εn a series of positive numbers for n = 0;1; · · · such that εn → 0, and

F = diag

� p
1+1=εn

p
1=εnp

1=εn
p

1+1=εn

� ; :
We see that ΛJ

F = J, so that ΛJ
F is boundedly invertible, but Fn does not have finite regular norm itself, and[ΛF]n = �

1+2=εn 2
p

1=ε2
n +1=εn

2
p

1=ε2
n +1=εn 1+2=εn

�
≈
�

2=εn 2=εn

2=εn 2=εn

� :
Hence it is not true that ΛF � 0, not even on its domain.
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Corollary 8.4 Let H be a locally finite regular left D-invariant subspace in X B

2 with
dimension sequence B, and let JB be the inertia signature matrix of H. Then H has
a canonical decomposition H = H+ �H− into uniformly definite subspaces, where
sdim H+ = #B+ = #+(JB) and sdim H− = #B− = #−(JB).8.3 STATE SPACE PROPERTIES OF J-UNITARY OPERATORS
Block-upper, locally finite, bounded J-unitary operators have remarkable state space
properties. If Θ is such an operator, then its canonical input and output state spacesH(Θ) andHo(Θ) are closed, regular subspaces. From the theory of the previous sec-
tion it then follows that the decompositionH(Θ) =H+�H− exists, withH+ andH−
uniformly definite. We explore this and other state space properties in the present sec-
tion.

Proposition 8.5 Let Θ ∈X (M;N ) be a locally finite (JM;JN )-unitary operator. ThenH(Θ) andHo(Θ) are closed subspaces,K(Θ) = L2Z−1 Θ∗JM ; H(Θ) = L2Z−1 	 K(Θ)Ko(Θ) = U2ΘJN ; Ho(Θ) = U2 	 Ko(Θ) : (8.11)

Furthermore, Ho(Θ) = H(Θ)JMΘH(Θ) = Ho(Θ)JNΘ∗ : (8.12)

PROOF L2Z−1Θ∗JM is contained in the null space of the Hankel operator HΘ sinceL2Z−1Θ∗JMΘ=L2Z−1JN =L2Z−1. DefineH=L2Z−1	L2Z−1Θ∗JM and let H0
Θ∗ =

PL2Z−1( ·Θ∗)|U2 . For any x ∈ H, y = xJMΘJN is such that x = yΘ∗, and for all z ∈L2Z−1 it is true that {y;z} = {x;JN zΘ∗JM} = 0, by the definition of x. Hence y ∈U2 and H is in the range of H0
Θ∗ , i.e., H = H(Θ). In addition, H is automatically

closed because it is the complement of a subspace, and K(Θ) = L2Z−1Θ∗JM. A dual
reasoning produces Ko(Θ) and Ho(Θ). Equations (8.12) follow in the same vein: let
x ∈H(Θ), then

{xJΘ;L2Z−1} = {x;L2Z−1Θ∗J} = {x;K(Θ)} = 0 : 2
Proposition 8.5 has great consequences for interpolation theory, as we shall see in

chapter 9. Combination with the theory of the previous section produces the following
proposition.

Proposition 8.6 H(Θ) andHo(Θ) as defined in proposition 8.5 are regular;L2Z−1 = H � L2Z−1Θ∗U2 = Ho � U2Θ :
PROOF H[⊥]

o =H⊥
o J =KoJ = U2Θ by proposition 8.5. To prove that U2 =Ho�H[⊥]

o ,
we show that every y ∈ U2 has a J-orthogonal projection onto Ho. Let y ∈ U2, and



J-UNITARY OPERATORS 205
define yΘ−1 = u1 + y1, with u1 ∈ L2Z−1 and y1 ∈ U2. Furthermore, define u2 = u1J ∈L2Z−1. Then u2 ∈ H because u2 = PL2Z−1(yΘ−1)J = PL2Z−1 ((yJ)Θ∗). It follows by

proposition 8.5 that y = u2JΘ+y1Θ, where u2JΘ ∈Ho and y1Θ ∈H[⊥]
o =U2Θ. Hence

every y ∈U2 has a J-projection ontoHo, so that according to theorem 8.3Ho is regular.
A dual proof holds forH. 2
Corollary 8.7 Let Θ ∈U(M;N ) be a locally finite bounded J-unitary operator. If F is
a JB-orthonormal basis representation ofH(Θ), then Fo = JBFJMΘ is a J-orthonormal
basis representation ofHo(Θ), and in this case the canonical controller realization based
on F (theorem 5.15) and canonical observer realization based on Fo (theorem 5.18) are
equal.

PROOF BecauseH(Θ) is regular (proposition 8.6), there is a J-orthonormal basis rep-
resentation F ofH: ΛJ

F = P0(FJ F∗) = JB. This F defines a factorization of the Hankel
operator of Θ as HΘ = P0( ·F∗)Fo where Fo = Λ−1

F P(FΘ) is a basis of the output state
spaceHo of Θ (theorem 5.20). On the other hand, the relationHo =HJΘ ensures that
Fa, defined as Fa = FJMΘ, is upper and also a J-orthonormal basis representation ofHo. The connection between Fa and Fo is Fa = FJMΘ =FJMHΘ =P0(FJMF∗)Fo =
JBFo, so that Fo = JBFa = JBFJMΘ. It is readily verified that Fo is also J-orthonormal.
Theorem 5.20 claims that the canonical observer realization based on this Fo is equal
to the canonical controller realization of F. 2J-Unitary realizations
A realization matrix ΘΘΘ ∈D(B ×M;B(−1) ×N ) with signature matrices J1, J2,

ΘΘΘ = �
A C
B D

� ; J1 = �
JB

JM � ; J2 = �
J(−1)B

JN �
(8.13)

is said to be J-unitary if

ΘΘΘ∗J1ΘΘΘ = J2 ; ΘΘΘJ2ΘΘΘ∗ = J1 :
We call JB the state signature matrix of ΘΘΘ. With “#” indicating the sequence of di-
mensions of a space sequence, we have that the total number of positive entries of the
signatures at the left-hand side of each equation, for each time instant k, is equal to
the total positive signature at the right-hand side, and similarly for the total negative
signature (the inertia theorem):

#B+ + #M+ = #B(−1)+ + #N+
#B− + #M− = #B(−1)

− + #N− : (8.14)

As for inner systems, J-unitary systems and J-unitary realizations go together. Proofs
of this are similar to the unitary case (theorems 6.3 and 6.4). In particular, the follow-
ing theorem claims that if Θ is a locally finite bounded J-unitary upper operator, then
one can find a minimal realization for Θ which is J-unitary, for an appropriate J-metric
defined on the input (or output) canonical state space.
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Theorem 8.8 Let Θ ∈ U(M;N ) be a bounded locally finite (JM;JN )-unitary opera-
tor. Let JB be the inertia signature matrix ofH(Θ), and let F be a J-orthonormal basis
representation forH(Θ).

Then the canonical controller realization ΘΘΘ based on F is J-unitary, and identical to
the canonical observer realization based on Fo = JBFJMΘ.

PROOF Let ΘΘΘ be given by the canonical controller realization (theorem 5.15). This
realization satisfies the properties (5.19)–(5.21):�

ZF = A∗F+B∗ ;
P0(Z−1 · F∗)(−1) = P0( · [F∗A+B])�
P0( ·Θ) = P0( · [D+F∗C]) ;

Θ∗ = D∗ +C∗F : (8.15)

To verify that ΘΘΘ∗J1ΘΘΘ = J2, we have to show that�
Θ∗JMΘ = JN

P0(FJMF∗) = JB ⇒

8<: A∗JBA+B∗JMB = J(−1)B
C∗JBC+D∗JMD = JN
A∗JBC+B∗JMD = 0 :

Indeed,

P0(FJMF∗) = JB ⇒ J(−1)B = P0(Z−1 (ZF)JMF∗)(−1)= P0(Z−1 [(A∗F+B∗)JM]F∗)(−1)= P0([A∗F+B∗]JM [F∗A+B])= A∗JBA+B∗JMB ;
P0(Θ∗JMΘ) = JN ⇒ P0( [D∗ +C∗F]JM [D+F∗C] )= D∗JMD+C∗P0(FJMF∗)C= D∗JMD+C∗JBC = JN :

Note further that P0(ZFJΘ) = P0(ZJFo) = 0, hence

P0(ZFJΘ) = 0 ⇒ P0( [B∗ +A∗F]JM[D+F∗C] )= B∗JMD+A∗P0(FJMF∗)C= B∗JMD+A∗JBC = 0 :
Hence ΘΘΘ∗J1ΘΘΘ = J2. The relation ΘΘΘJ2ΘΘΘ∗ = J1 can be derived in the same (dual) way
as above. The equality of both realizations has been proven in corollary 8.7. 2

As was the case with inner operators (viz. theorem 6.12), the converse of this theo-
rem is in general true only if, in addition, `A < 1. If `A = 1, then additional assumptions
on the reachability and observability of the realization must be made.

Theorem 8.9 Let ΘΘΘ = [A
B

C
D ] be a state realization of a locally finite bounded trans-

fer operator Θ ∈ U , with `A < 1, and denote by ΛJ
F and ΛJ

Fo
the reachability and the

observability J-Gramians of the given realization respectively. Then

ΘΘΘ∗J1ΘΘΘ = J2 ⇒ Θ∗JMΘ = JN ; ΛJ
F = JB ;

ΘΘΘJ2ΘΘΘ∗ = J1 ⇒ ΘJNΘ∗ =M ; ΛJ
Fo

= JB : (8.16)
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PROOF Since `A < 1, a closed form expression for Θ is

Θ = D+BZ(I − AZ)−1C

and direct computations give

JN − Θ∗JMΘ = JN − [D+BZ(I − AZ)−1C]∗JM[D+BZ(I − AZ)−1C]= C∗JBC + C∗(I − Z∗A∗)−1Z∗A∗JBC + C∗JBAZ(I − AZ)−1C

− C∗(I − Z∗A∗)−1Z∗�J(−1)B − A∗JBA
	

Z(I − AZ)−1C

since B∗JMD = −A∗JBC, B∗JMB = J(−1)B − A∗JBA and JN − D∗JMD = C∗JBC, and
hence

JN − Θ∗JMΘ = C∗(I − Z∗A∗)−1
�(I − Z∗A∗)JB(I − AZ) + Z∗A∗JB(I − AZ)+ (I − Z∗A∗)JBAZ − JB + Z∗A∗JBAZ

	(I − AZ)−1C= 0 :
The second equality follows by an analogous procedure. 2

More general versions of these theorems for J-isometric operators are easily de-
duced and given at the end of the section.Unitary state representation for Σ in terms of ΘΘΘ
Let ΘΘΘ be a J-unitary realization of a bounded J-unitary operator Θ ∈ U , with state
signature matrix JB. We have seen (in proposition 8.6) that the input and output state
spacesH(Θ) andHo(Θ) are regular: there exist definite spacesH+ andH− such thatH =H+�H−. This partitioning induces a partitioning of the state space sequence B
into B=B+ ×B− conformably to JB. Because the bases chosen for the state spaces are
J-orthonormal (ΘΘΘ is J-unitary), the basis representation F can be partitioned into two J-
orthonormal bases F+ and F−, such thatH+ =DB+

2 F+ andH− =DB−
2 F−. Hence a state

x ∈ X B
2 is partitioned into x = [x+ x−] ∈ X B+

2 ×X B−
2 , where x+ and x− are the parts

of the state that correspond to the positive and negative subspaces in the state spaceH:
x+F+ ∈H+ and x−F− ∈H−. The decomposition of the state defines a partitioning of
ΘΘΘ according to the equation[x+ x− a1 b1]ΘΘΘ = [x+Z−1 x−Z−1 a2 b2] (8.17)

into

ΘΘΘ = 2664 x+Z−1 x−Z−1 a2 b2

x+ A11 A12 C11 C12

x− A21 A22 C21 C22

a1 B11 B12 D11 D12

b1 B21 B22 D21 D22

3775 : (8.18)

We have shown, in theorem 8.2, that associated to Θ is a unitary operator Σ such that[a1 b2]Σ = [a2 b1] ⇔ [a1 b1]Θ = [a2 b2] :
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The question we adress now is how a given realization ΘΘΘ of Θ gives rise to a realization
ΣΣΣ of Σ.

A reordering of rows and columns in (8.18) with respect to their signatures converts
ΘΘΘ into a genuine square-block J-unitary operator, i.e., each matrix26664 A11 C11 A12 C12

B11 D11 B12 D12

A21 C21 A22 C22

B21 D21 B22 D22

37775
k

is a square and J-unitary matrix with respect to the signature�
I(B+)k×(M+)k

−I(B−)k×(M−)k

� = �
I(B+)k+1×(N+)k

−I(B−)k+1×(N−)k

� :
In particular, each submatrix �

A22 C22

B22 D22

�
k

of ΘΘΘk is square and invertible, and because ΘΘΘ is J-unitary, the block-diagonal operator
constructed from these submatrices is boundedly invertible as well. It follows that the
following block-diagonal operators are well defined (cf. equation (8.6)):�

F11 H11

G11 K11

� = �
A11 C11

B11 D11

�
−
�

A12 C12

B12 D12

��
A22 C22

B22 D22

�−1�
A21 C21

B21 D21

��
F12 H12
G12 K12

� = −
�

A12 C12
B12 D12

��
A22 C22
B22 D22

�−1�
F21 H21

G21 K21

� = �
A22 C22

B22 D22

�−1�
A21 C21

B21 D21

��
F22 H22

G22 K22

� = �
A22 C22

B22 D22

�−1

(8.19)
and we obtain the relation[x+ x−Z−1 a1 b2]ΣΣΣ = [x+Z−1 x− a2 b1] (8.20)

where

ΣΣΣ = 2664 x+Z−1 x− a2 b1

x+ F11 F12 H11 H12

x−Z−1 F21 F22 H21 H22

a1 G11 G12 K11 K12

b2 G21 G22 K21 K22

3775 : (8.21)

See figure 8.6. An important point which can be readily derived from the J-unitarity
of ΘΘΘ is the fact that ΣΣΣ is unitary:

ΣΣΣΣΣΣ∗ = I ; ΣΣΣ∗ΣΣΣ = I :
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−+(B+)k(M+)k(M−)k

(N+)k(N−)k
ΘΘΘk

(M+)k +(M−)k −

(B−)k(B+)k (N+)k(N−)k
ΣΣΣk(B+)k+1(B−)k+1 (B+)k+1(B−)k+1(a) (b) +− + −+ +

− −

+
− −

+
Figure 8.6. (a) The spaces connected with a realization for a J-unitary block-upper op-erator Θ which transfers `M+

2 ×`M−
2 to `N+

2 ×`N−
2 . The state transition operator is markedas ΘΘΘ. (b) The corresponding scattering situation.

Because in (8.20) state quantities with and without the factor Z−1 appear in the same ar-
gument at the left- and right-hand sides, ΣΣΣ is possibly a kind of generalized or implicit
realization for a transfer operator Σ, but is not computable in this form. Σ is guaranteed
to exist (because Θ−1

22 exists—see theorem 8.2) and can be obtained from ΣΣΣ by elimi-
nation of x− and x+. ΣΣΣ can be interpreted as a realization having an upward-going state
x− and a downward state x+, as depicted in figure 8.6. Recall that although Σ is unitary,
it is not necessarily upper. The upward-going state x− is instrumental in generating the
lower triangular (anti-causal) part of Σ. The precise details will be investigated later
(proposition 8.14), but a preliminary result is straightforward to derive.

Proposition 8.10 Let ΘΘΘ be a (J1;J2)-unitary realization for a J-unitary operator Θ. If
JB = I, then Θ−1

22 ∈ U , that is, Θ22 is outer, Θ is J-inner, and the corresponding unitary
operator Σ is upper and hence inner.

PROOF If JB = I, then the dimension of x− is zero, so that the implicit state relations ΣΣΣ
for Σ in (8.20) are reduced to ordinary state equations [x+Z−1 a2 b1] = [x+ a1 b2]ΣΣΣ,
which define an upper (causal) operator Σ. 2

Θ-matrices with a realization ΘΘΘ which is J-unitary with state signature JB = I corre-
spond to inner scattering operators Σ. They will play a central role in the interpolation
theory of the next chapter.J-isometric operators
If we only know that Θ is J-isometric (Θ∗JΘ = J) then a number of properties change.
Most importantly, we cannot deduce that the input and output state spaces of Θ are
regular. Consequently, we might not be able to find a strong basis that has a boundedly
invertible J-Gramian ΛJ , thus precluding a J-isometric realization. Nonetheless, we
can find unnormalized realizations that show us whether the corresponding operator is
J-isometric. The fact that the J-Gramian is not invertible also implies that the signature
(inertia) JB of ΛJ cannot be very well determined: components might be ε-close to
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zero. An important implication will be that it is not always possible to extend a given
J-isometric operator to a J-unitary operator.

The following theorem is a more general version of theorems 8.8 and 8.9.

Theorem 8.11 Let Θ ∈U be a locally finite operator with a u.e. stable realization ΘΘΘ =[A
B

C
D ]. Then

Θ∗JΘ = J ⇔ ∃M ∈D :

8<: A∗MA+B∗JB = M(−1)
A∗MC+B∗JD = 0
C∗MC+D∗JD = J

ΘJΘ∗ = J ⇔ ∃M ∈D :

8<: AM(−1)A∗ +CJC∗ = M
AM(−1)B∗ +CJD∗ = 0
BM(−1)B∗ +DJD∗ = J

PROOF (Θ∗JΘ= J ⇒ · · ·) Define F = (BZ(I −AZ)−1)∗. Since `A < 1, properties (8.15)

hold. Define M = P0(FJF∗). The rest of the proof is similar to that of theorem (8.8),
replacing JB by M.

(Θ∗JΘ = J ⇐ · · ·) Direct computation as in theorem 8.9.

The other relations follow in a dual way. 28.4 PAST AND FUTURE SCATTERING OPERATORS
This section dives deeper into the properties of the state space of a general causal J-
unitary matrix: one that does not necessarily correspond to a causal (and hence inner)
scattering matrix. These properties will appear to be of crucial importance to model
reduction theory as treated in chapter 10. We give them here because they form a nice
application of Krein space theory and have independent interest.

In section 5.1, we introduced the decomposition u = up + u f for a signal u ∈ X2,
where up = PL2Z−1(u) ∈ L2Z−1 is the “past” part of the signal (with reference to its
0-th diagonal), and u f = P(u) ∈ U2 is its “future” part. We also showed how a causal
operator T with state realization T could be split into a past operator Tp which maps up

to [x[0] yp] and a future operator Tf which maps [x[0] u f ] to y f . In the present context, let
the signals a1;b1;a2;b2 and the state sequences x+;x− be inX2 and be related by ΘΘΘ as in
(8.17). With the partitioning of the signals a1, etc., into a past and a future part, Θ can
be split into operators (·)Θp : Z−1LM2 → [DB2 Z−1LN2 ] and (·)Θ f : [DB2 UM2 ] → UN2
via [a1p b1p]Θp = [x+[0] x−[0] a2p b2p][x+[0] x−[0] a1 f b1 f ]Θ f = [a2 f b2 f ] : (8.22)

Θp and Θ f are determined once basis representations for the input and output state
spaces of Θ have been chosen. The following procedure is as in section 5.1. The split-
ting of signals into past and future parts associates to Θ an “expanded” version Θ̂, de-
fined such that (up +u f )Θ = (yp + y f ) ⇔ [up u f ]Θ̂ = [yp y f ]:
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Θ̂ = �

KΘ HΘ
0 EΘ

�
where

8><>: KΘ = PL2Z−1( ·Θ)��L2Z−1

HΘ = P( ·Θ)��L2Z−1

EΘ = P( ·Θ)��U2

(8.23)

Let F be a J-orthonormal basis for H(Θ), and let Fo = J FJΘ be the corresponding
left DZ-invariant J-orthonormal basis for Ho(Θ). Then Θp and Θ f are given by (cf.
equation (5.18))

Θp = [P0( ·F∗) KΘ] ; Θ f = �
Fo

EΘ

� : (8.24)

We first show that Θp and Θ f are J-unitary operators. Then, as a consequence of the
theory in the previous section (in particular proposition 8.10) there exist operators (·)Σp,(·)Σ f : [x−[0] a1p b2p]Σp = [x+[0] a2p b1p][x+[0] a1 f b2 f ]Σ f = [x−[0] a2 f b1 f ] (8.25)

which are scattering operators corresponding to Θp and Θ f , respectively (see figure
8.7(b)). The J-unitarity of Θp and Θ f , and hence the existence and unitarity of Σp and
Σ f , is asserted in the next proposition.

Proposition 8.12 Let Θ ∈ U(M;N ) be a locally finite J-unitary operator, and let ΘΘΘ
be a J-unitary realization for Θ. Then Θp and Θ f are J-unitary operators, and Σp, Σ f

are well-defined unitary operators.

PROOF Let Θ̂ be given as in equation (8.23). Θ̂ is, except for ordering of elements,
the same operator as Θ. Hence, for appropriate J’s it is J-unitary as well, so that8<: EΘ J E∗

Θ = J ;
HΘ J E∗

Θ = 0 ;
HΘJH∗

Θ +KΘ J K∗
Θ = J ; 8<: K∗

Θ J KΘ = J ;
H∗

Θ J KΘ = 0 ;
H∗

Θ J HΘ +E∗
Θ J EΘ = J : (8.26)

Let F be a J-orthonormal basis for H(Θ), and let Fo = J FJΘ be the corresponding
J-orthonormal basis for Ho(Θ). Note that Fo is also given by Fo = J FJHΘ, so that
FoJE∗

Θ = J FJ HΘJE∗
Θ = 0. With the chosen basis, the Hankel operator has a factoriza-

tion as HΘ = P0( ·F∗)Fo and H∗
Θ = P0( ·F∗

o)F, so that

H∗
Θ J HΘ = P0( ·F∗

o)P0(FJF∗)Fo = P0( ·F∗
o)J Fo : (8.27)

Θ f of equation (8.24) has the adjoint Θ∗
f = [P0( ·F∗

o) E∗
Θ], so that (with (8.26))

Θ f J Θ∗
f = �

Fo

EΘ

�
J [P0( ·F∗

o) E∗
Θ]= �

P0(FoJ F∗
o) FoJ E∗

Θ
P0(EΘJ Fo) EΘJ E∗

Θ

�= �
JB 0
0 JM �
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(b)
b2[0] x+[0] x−[0]

Σp

S

R

Σ f

ΣΣΣ(−1)ΣΣΣ

ΣΣΣ(1)ΣΣΣ(2)
x(1)+[−1]
x+[0]
x(−1)+[1]

b(1)1[−1]
a2[0]
a(−1)

2[1]a(−1)
1[1]

b(−1)
1[0]b1[0]a1[0]

b(−1)
2[1]

a(1)1[−1] a(1)2[−1]
b(1)2[−1]b(2)2[−2]a(2)2[−2]a(2)1[−2]

b(2)1[−2]
x−[0]
x(−1)

−[1]
x(1)−[−1]

b2p

a2p

a2 f

b2 fb1 f

a1 f

b1p

a1p

(a)Figure 8.7. (a) The state transition scheme for Σ, (b) The decomposition of Σ into apast operator Σp and a future operator Σ f linked by the state [x+[0] x−[0]]. This summarizesthe �gure on the left for all time.



J-UNITARY OPERATORS 213
and with (8.27), also

Θ∗
f J Θ f = [P0( ·F∗

o) E∗
Θ] J

�
Fo

EΘ

� = P0( ·F∗
o)J Fo +E∗

Θ J EΘ = J :
Hence Θ f is J-unitary. The J-unitarity of Θp follows in a dual way. Θ f and Θp may
be considered “normal” J-unitary operators with inputs as given in equations (8.22).
Proposition 8.10 then applies and from it follows the existence of unitary scattering
matrices Σ f and Σp given by the I/O relations (8.25). 2State space structure of Σ22 = Θ−1

22

Proposition 8.10 shows that if the state signature sequence JB = I, then Σ22 = Θ−1
22 is

upper and Θ is J-inner. In chapter 10 on optimal approximations, an important role
is played by J-unitary operators with non-trivial state signature, in which case Θ−1

22 is
generally not upper. In particular, we will be interested in the dimension of the state
space sequenceH(Θ−∗

22) of Θ−1
22, determined by the lower (anti-causal) part of Θ−1

22: we
shall see that this quantity will be characteristic of the complexity of the approximation.
To this end, we use in this section a “conjugate-Hankel” operator, defined as

H0 := H0
Θ−1

22
= P0( ·Θ−1

22)��U2
: (8.28)

The definition is such thatH(Θ−∗
22) = ran(H0).

Because Θ−1
22 = Σ22, the conjugate-Hankel operator H0 defined in (8.28) is a restric-

tion of the partial map Σ22 : b2 7→ b1. Indeed, H0 : b2 f 7→ b1p is such that b2 f and b1p

satisfy the input-output relations defined by Σ under the conditions a1 = 0 and b2p = 0
(see also figure 8.7(b)). H0, as a Hankel operator, can be factored as H0 = στ, where
the operators

σ : b2 f 7→ x−[0]
τ : x−[0] 7→ b1p

can be derived from Σ f and Σp by elimination of x+[0], taking a1 = 0 and b2p = 0. We
show, in proposition 8.13, that the operator σ is “onto” while τ is “one-to-one”, so that
the factorization of H0 into these operators is minimal. It is even uniformly minimal:
the state x−[0] is uniformly reachable by b2 f (i.e., the range of σ spansD2), and x−[0] as
input of τ is uniformly observable. It follows, in proposition 8.14, that the dimension
of x−[0] at each point in time determines the local dimension of the subspace H(Θ−∗

22)
at that point.

Proposition 8.13 Let Θ ∈ U be a locally finite J-unitary operator, with J-unitary re-
alization ΘΘΘ such that `A < 1. Let x+;x−;a1;b1;a2;b2 satisfy (8.22) and (8.25).

1. If a1p = 0 and b2p = 0, then the map τ : x−[0] 7→ b1p is one-to-one and boundedly
invertible on its range, i.e.,

∃ ε > 0 : kb1pk ≥ εkx−[0] k : (8.29)
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2. The map σ : b2 f 7→ x−[0] is onto, and moreover, there exists M < ∞ such that for any

x−[0] there is a b2 f in its pre-image such thatkb2 f k ≤ Mkx−[0] k :
PROOF

1. The map τ : x−[0] 7→ b1p is one-to-one. Since Σp is a well-defined bounded operator

on the whole space XM1p
2 ×XN2p

2 , we can put a1p = 0 and b2p = 0, and specialize
equation (8.25) to [x−[0] 0 0]Σp = [x+[0] a2p b1p], that is, we have for some x+[0]
and a2p [0 b1p]Θp = [x+[0] x−[0] a2p 0] : (8.30)

Since Θp is bounded, there is an M such that kb1pk < 1 ⇒ kx−[0]k < M and
hence, with ε = 1=M: kx−[0] k ≥ 1 ⇒ kb1pk ≥ ε : It follows that x−[0] 7→ b1p is one-
to-one as claimed, and that (8.29) holds.

2. The map σ : b2 f 7→ x−[0] is onto. Let be given any x−[0]. We have to show that there
is a b2 f which generates this state via Σ f . First, with a1p = 0 and b2p = 0, Σp as-
sociates a unique b1p and x+[0] to x−[0]. Put also a1 f = b1 f = 0, then Θ generates
a corresponding b2 f as b2 f = b1Θ22. Because Σ f is well defined, application of
Σ f to [x+[0] 0 b2 f ] gives again a state x0−[0]; but this must be equal to x−[0] because
they both generate the same b1p and the map x−[0] 7→ b1p is one-to-one. Hence this
b2 f generates the given state x−[0]. In addition, we have from kb1pk ≤ kx−[0]k andkΘk ≤ M < ∞ that kb2 f k ≤ kΘ22kkb1pk

≤ Mkx−[0]k :
This means that the state x−[0] is uniformly reachable by b2 f as well. 2
Proposition 8.13 is instrumental in proving that the sequence of the number of states

x− of the anti-causal part of Θ−1
22 is equal to the sequence of ranks of the Hankel operator

H0.
Proposition 8.14 Let Θ ∈ U be a locally finite J-unitary operator, with state signature
operator JB. The s-dimension ofH(Θ−∗

22) is equal to #−(JB) = #(B−), i.e., the sequence
of the number of negative entries in JB.

PROOF H(Θ−∗
22) = PL2Z−1(U2Θ−1

22)= {PL2Z−1(b2 f Θ−1
22) : b2 f ∈ U2} :

Put a1 = 0 and b2p = 0 so that b1p = PL2Z−1(b2 f Θ−1
22). The space H(Θ−∗

22) = {b1p :
b2 ∈ U2} is generated by the map H0 : b2 f 7→ b1p. But this map can be split into σ :
b2 f 7→ x−[0] and τ : x−[0] 7→ b1p. Because [x−[0] 0 0]Σp = [x+[0] a2p b1p], the signal
x−[0] determines b1p completely. In proposition 8.13 we showed that x−[0] 7→ b1p is one-
to-one and that b2 f 7→ x−[0] is onto. Hence, the state x−[0] is both uniformly observable
in b1p and uniformly reachable by b2 f , i.e., its state dimension sequence for the map
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b2 f 7→ b1p is minimal at each point in time. Since the number of state variables in x−[0]
is given by #−(JB) = #(B−), it follows that

sdim H(Θ−∗
22) = #(B−) : 28.5 J-UNITARY EXTERNAL FACTORIZATION

In this section we investigate external (or J-inner-coprime) factorizations, similar as in
chapter 6 for inner factors, but now so that, given T ∈ U(M;N ) and a signature JM,

T∗Θ = ∆ ; (8.31)

where Θ ∈ U is J-unitary and ∆ is upper. Notice that (8.31) is in a dual form to that
used in section 6.2, where we were working with T = ∆∗V , or VT∗ = ∆. This is of
course not essential, and a dual form of proposition 6.6 holds.

Proposition 8.15 Let be given operators T ∈U and Θ ∈ U . Then ∆ = T∗Θ is upper if
and only if L2Z−1Θ∗ ⊂K(T). If Θ is, in addition, J-unitary, then L2Z−1Θ∗J = K(Θ),
and ∆ is upper if and only if Θ satisfiesH(JT) ⊂ H(Θ) :

The construction of such a Θ is comparable to the construction for inner operators.
Assume that T is locally finite, that {A;B;C;D} is a realization for T which is uniformly
reachable and that `A < 1, then F = �

BZ(I − AZ)−1
�∗

is a strong basis representation
such that H(T) ⊂ D2F (the latter being necessarily closed). An operator Θ such that
∆ ∈ U is obtained by taking H(Θ) = D2FJ, and a J-orthonormal realization of Θ is
obtained by making FJ J-orthonormal, which is possible if and only if ΛJ

F = P0(FJ F∗)
is boundedly invertible, i.e., if D2F is a regular (Krein) space. Let JB be the signature
of ΛJ

F, then ΛJ
F = R∗JBR for some invertible state transformation R, and hence AΘ and

BΘ of a J-unitary realization are given by�
AΘ
BΘ

�= �
R

I

��
A
JB

�
R−(−1) : (8.32)

It remains to complete this realization such that

ΘΘΘ = �
AΘ CΘ
BΘ DΘ

�
is (J1;J2)-unitary. This step is less obvious than for inner systems, so we first prove
an additional lemma before stating the main theorem.

Lemma 8.16 Let be given finite matrices α, β, and signature matrices j1, j2, j3 such
that

α∗ j1α+β∗ j2β = j3 :
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Then there exist matrices γ, δ and a signature matrix j4 such that θ = [α γ

β δ ] is a J-unitary
matrix, in the sense

θ∗
�

j1
j2

�
θ = �

j3
j4

� ; θ
�

j3
j4

�
θ∗ = �

j1
j2

� :
PROOF Suppose that α is an (mα × nα)-dimensional matrix, and β : (mβ × nα). It is
clear that if an extension exists, then j4 is specified by the inertia relations:

#+( j4) = #+( j1) + #+( j2) − #+( j3)
#−( j4) = #−( j1) + #−( j2) − #−( j3) :

Since the first block column of θ is already J-isometric,[α∗ β∗]� j1
j2

��
α
β

�= j3 ;
it remains to show that it can be completed to a J-unitary matrix. Because j3 is non-
singular, the nα columns of [α

β ] are linearly independent. Choose a matrix [ c
d ] with

mα +mβ − nα independent columns such that[α∗ β∗]� j1
j2

��
c
d

� = 0 (8.33)

and such that the columns of [ c
d ] form a basis for the orthogonal complement of the

column span of [ j1α
j2β ]. We claim that the square matrix [α c

β d ] is invertible. To prove
this, it is enough to show that its null space is zero. Suppose that�

α c
β d

��
x1
x2

�= �
0
0

�
then [α∗ β∗]� j1

j2

��
α c
β d

��
x1
x2

�= �
j3x1
0

�= �
0
0

� :
Hence x1 = 0 and [ c

d ]x2 = 0. But the columns of [ c
d ] are linearly independent, so that

x2 = 0. Thus �
α∗ β∗

c∗ d∗

��
j1

j2

��
α c
β d

�= �
j3

N

�
where N is a square invertible matrix. By the usual inertia argument, the signature of N
is equal to j4, and hence N has a factorization N = R∗ j4R, where R is invertible. Thus
putting �

γ
δ

�= �
c
d

�
R−1 ; θ = �

α γ
β δ

�
ensures that θ is j-unitary as required (we are indepted to H. Dym for this elegant ar-
gument). 2
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Theorem 8.17 Let be given a subspaceH=DB2 FJ in Z−1LM2 , specified by a bounded
basis representation F = �

BZ(I − AZ)−1
�∗

, (`A < 1), which is such that ΛJ
F is bound-

edly invertible. Then there exists a bounded J-unitary operator Θ ∈ U(M;NΘ) such
that H =H(Θ). Θ is unique up to a right diagonal J-unitary factor. Its output space
sequence,NΘ has dimension sequences given by

#(NΘ)+ = #B+ − #B(−1)+ + #M+ ≥ 0
#(NΘ)− = #B− − #B(−1)

− + #M− ≥ 0 : (8.34)

PROOF Since ΛJ
F is boundedly invertible, there is a signature operator JB and a bound-

edly invertible operator R ∈D such that ΛJ
F =R∗JBR. The signature JB implies a space

sequence decomposition B = B+ ×B−, and since ΛJ
F satisfies the Lyapunov equation

A∗ΛJ
FA + B∗JMB = (ΛJ

F)(−1) :
AΘ, BΘ, given by �

AΘ
BΘ

�= �
R

I

��
A
JB

�
R−(−1)

form a J-isometric block column with diagonal entries. We proceed with the construc-
tion of a realization ΘΘΘ of the form

ΘΘΘ = �
AΘ CΘ
BΘ DΘ

�= �
R

I

��
A C0
JB DΘ

��
R−(−1)

I

�
(8.35)

which is a square matrix at each point k, and where CΘ (or C0) and DΘ are yet to be
determined. ΘΘΘ is to satisfy ΘΘΘ∗J1ΘΘΘ = J2 , ΘΘΘJ2ΘΘΘ∗ = J1, for

J1 = �
JB

JM � ; J2 := �
J(−1)B

JNΘ

�
where JNΘ is still to be determined, and with it the dimensionality of the output space
sequence NΘ. However, since all other signatures are known at this point, these fol-
low from the inertia property (equation (8.14)) as the space sequence with dimensions
given by (8.34). To obtain ΘΘΘ, it remains to show that [AΘ

BΘ
] can be completed to form

ΘΘΘ in (8.35), in such a way that the whole operator is J-unitary. This completion can
be achieved for each point k individually with local computations, and exists as was
shown in lemma 8.16. Since ΘΘΘ is J-unitary and `A < 1, theorem 8.9 implies that the
corresponding operator Θ is J-unitary. Finally,H(Θ) =H by construction.

The uniqueness of Θ, up to a left diagonal J-unitary factor, is proven in the same way
as for inner operators in the Beurling-Lax like theorem 6.13. Indeed, let Θ1 be another
J-unitary operator such thatH=H(Θ1), thenK=L2Z−1	H=L2Z−1Θ∗ =L2Z−1Θ∗

1,
so that L2Z−1Θ∗JΘ1 = L2Z−1L2Z−1Θ∗

1JΘ = L2Z−1

which implies Θ∗JΘ1 ∈ D, say Θ∗JΘ1 = JD, where D ∈ D. Then Θ1 = ΘD, and D
must be J-unitary. 2
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Corollary 8.18 Let T ∈ U(M;N ) be a locally finite operator with uniformly reach-
able realization {A;B;C;D} such that `A < 1, and let be given a signature matrix JM.
If the solution Λ of the J-Lyapunov equation

A∗ΛA + B∗JMB = Λ(−1) (8.36)

is such that Λ is boundedly invertible, then there exists a bounded J-unitary operator
Θ ∈ U(M;NΘ) such that

T∗Θ = ∆ ∈ U :
The state signature JB equal to the inertia of Λ. NΘ and its signature are determined by
equation (8.34). In particular, if Λ� 0 then Θ is J-inner.

PROOF The conditions imply that the subspace H = D2FJ = D2
�
BZ(I − AZ)−1

�∗
J

has ΛJ
F = Λ boundedly invertible. Hence theorem 8.17 asserts that there is a J-unitary

operator Θ such thatH(Θ) =H. Note that a necessary condition for Λ to be invertible
is that the given realization be uniformly reachable, so thatH(JT) = H(T)J ⊂ D2FJ = H = H(Θ) :
This in turn implies that ∆ = T∗Θ is upper. 2

For later use, we evaluate ∆= T∗Θ. Instead of CΘ, we use C0=R−1CΘ (see equation
(8.35)), as A∆ will become equal to the original A in this case. We also apply the relation
JB(FJ)JMΘ = Fo, which in case `A < 1 reads(I − Z∗A∗

Θ)−1Z∗B∗
Θ J Θ = JB(I − AΘZ)−1CΘ :

Thus

∆ = T∗Θ = [D∗ +C∗(I − Z∗A∗)−1Z∗B∗]Θ= D∗[DΘ +BΘZ(I − AΘZ)−1CΘ] + C∗R∗(I − Z∗A∗
Θ)−1Z∗B∗

Θ J Θ= D∗DΘ + D∗BΘZ(I − AΘZ)−1CΘ + C∗R∗JB(I − AΘZ)−1CΘ= D∗DΘ + D∗JBZ(I − AZ)−1C0 + C∗ΛJ(I − AZ)−1C0 :
Consequently,

∆ = T∗Θ = �
D∗DΘ + C∗ΛJC0	 + �

D∗JB+C∗ΛJA
	

Z(I − AZ)−1C0 ; (8.37)

where ΛJ = Λ is given by (8.36) and C0 by (8.35).8.6 J-LOSSLESS AND J-INNER CHAIN SCATTERING OPERATORS
As defined before, a unitary scattering operator Σ is called inner if it is also causal. Sim-
ilarly, an isometric scattering operator which can be embedded into a unitary operator
is called lossless if it is also causal.3. The corresponding chain scattering operator Θ

3Just “isometric” is not good enough: we can easily realize a resistor of 1 ohm with an infinite, seemingly
lossless transmission line!
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is called J-inner respectively J-lossless. Even though we have only considered causal
Θ’s so far, it is important to note that in general it may be causal, anticausal or of mixed
causality, even when the corresponding Σ is inner. The topic of this section and the next
is to study conditions under which a general Θ ∈ X corresponds to a lossless system.
As done so far, we assume that the chain scattering operators under consideration are
bounded and have u.e. stable realizations.Causal J-lossless and J-inner operators
Proposition 8.19 Suppose that Θ ∈ U is a locally finite causal J-isometric operator
with a canonical realization which is u.e. stable (`A < 1). If the output state space Ho

of Θ is uniformly J-positive, then there exists an extension Θ0 of Θ which is J-inner.

PROOF Since it is assumed uniformly J-positive, the output state space Ho has a J-
orthonormal basis Fo whose J-Gramian is ΛJ

Fo
= IB. By lemma 8.16 and the actual

construction therein, the corresponding J-isometric realization ΘΘΘ = [A
B

C
D ] can be com-

pleted to a J-unitary realization ΘΘΘ0 by the adjunction of an appropriate number of rows:

ΘΘΘ0 = 24 A C
B D
B0 D0 35 : (8.38)

Since ΘΘΘ0 is J-unitary, it is a realization of a J-unitary chain scattering operator Θ0, and
by proposition 8.10 the corresponding Σ0 is inner. 2Anticausal J-inner chain scattering operators
We now consider the case where Θ is J-unitary and anticausal. When does Θ corre-
spond to an inner scattering operator Σ, in other words, when is Θ J-inner? Clearly, Θ∗

is causal and the previous theory applies to it in a dual sense.

Proposition 8.20 Suppose that Θ ∈ L is an anticausal, J-unitary operator, and that it
has a minimal realization

Θ = �
B1

B2

�
Z∗(I − AZ∗)−1[C1 C2]+D

with `A < 1. The corresponding scattering operator Σ is causal (hence inner) if and
only if the Lyapunov-Stein equation

−A∗P(−1)A+B∗
1B1 − B∗

2B2 = −P (8.39)

has a strictly positive definite solution P.

PROOF The realization for Θ can be written as[x+ x− a2 b2] = [x(−1)+ x(−1)
− a1 b1]ΘΘΘ ; ΘΘΘ = 24 A C1 C2

B1 D11 D12

B2 D21 D22

35 :
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The corresponding scattering operator Σ is defined by rearranging state, input and out-
put variables to [x+ x(−1)

− a2 b1] = [x(−1)+ x− a1 b2]ΣΣΣ :
This realization is unitary, and defines a causal operator if and only if the anticausal
state dimension is empty: #B+ = 0 — dual to proposition 8.14. This is equivalent to
requiring that the J-Gramians of the chosen basis representations are uniformly nega-
tive, which leads to (8.39) if we do not insist on the realization to be J-unitary. 2Conjugation
A causal, J-inner operator can be transformed into an anticausal one under a broad gen-
eral condition of “regularity”. This operation, which we introduce in this section, is a
form of duality, called conjugation here. It has nice applications in signal processing
and in interpolation theory, considered in the next chapter. The standard external fac-
torization introduced in chapter 6 does not pull the trick: suppose that Θ = U∆∗ with
U inner, then the conjugate factor ∆ will usually not be J-unitary. However, if we do
the external factorization in a block-row fashion, then interesting results appear. Let
us assume that external factorizations of the block rows of Θ exist:

Θ+ = [Θ11 Θ12] = U[Θc
11 Θc

12]
Θ− = [Θ21 Θ22] = W [Θc

21 Θc
22] (8.40)

where U, W are inner and Θc
i j ∈ L, so that�

Θc
11 Θc

12
Θc

21 Θc
22

�= �
U∗

W∗

��
Θ11 Θ12
Θ21 Θ22

�
(8.41)

is in L. Now, much more is true: in the next proposition we show that Θc is in fact J-
inner. To ensure the existence of the factorizations (8.40), we will need the following
technical condition

(TC) the part of the reachability Gramian of ΘΘΘ corresponding to the subsystem Θ− has
a closed range.

Proposition 8.21 Let Θ ∈ U be a causal J-inner operator with a J-unitary realization
for which the transition operator αfor has `α < 1 and for which condition (TC) above
is satisfied. Then the conjugate operator given by (8.41) is anticausal and J-inner, and
has a state transition operator which is a suboperator of α∗.

PROOF Let the J-unitary realization for the J-inner operator Θ be given by

ΘΘΘ = 24 α γ1 γ2
β1 δ11 δ12

β2 δ21 δ22

35
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such that `α < 1. (We use greek symbols here to distinguish the canonical J-unitary
realizations.) Since Θ is J-inner, we have, by corollary 8.18, that

α∗α+β∗
1β1 − β∗

2β2 = I: (8.42)

Let the positive diagonal operators MU and MW be defined by the Lyapunov-Stein equa-
tions:

α∗MUα+β∗
1β1 = M(−1)

U (8.43)

α∗MW α+β∗
2β2 = M(−1)

W : (8.44)

Subtracting (8.43) from (8.42) and adding (8.44) produces

α∗(I − MU +MW)α = (I − MU +MW)(−1)
and hence

I − MU +MW = 0 : (8.45)

Clearly MU � 0, since MU = I +MW and MW ≥ 0. However, MW may be singular,
which happens if not all states are reachable from the “negative” inputs. Let’s first
prove the proposition for the case where MW � 0. Subsequently we will demonstrate
how (under conditions of regularity) the more general situation can be reduced to this
case.

• Thus suppose that MW � 0. We proceed by computing external factorizations of[Θ11 Θ12] and [Θ21 Θ22]. Since `α < 1 and the realizations are uniformly reachable
(MU � 0, MW � 0), application of theorem 6.8 produces (unnormalized) realizations
for the respective inner factors of the form

U = �
α CU

β1 DU

� ; W = �
α CW

β2 DW

� ; (8.46)

where, in particular (
αM−(−1)

U α∗ +CUC∗
U = M−1

U

αM−(−1)
W α∗ +CWC∗

W = M−1
W : (8.47)

Realizations for the corresponding external factors are obtained from the result in equa-
tion (6.8). For [Θc

11 Θc
12] = U∗[Θ11 Θ12] we find that it is anticausal with anticausal

realization �
α∗ α∗MUγ1 +β∗

1δ11 α∗MUγ2 +β∗
1δ12

C∗
U C∗

UMUγ1 +D∗
Uδ11 C∗

UMU γ2 +D∗
Uδ12

� : (8.48)

Likewise, [Θc
21 Θc

22] =W∗[Θ21 Θ22] is anticausal with realization�
α∗ α∗MW γ1 +β∗

2δ21 α∗MW γ2 +β∗
2δ22

C∗
W C∗

W MW γ1 +D∗
Wδ21 C∗

W MW γ2 +D∗
Wδ22

� : (8.49)



222 TIME-VARYING SYSTEMS AND COMPUTATIONS
The key is now to show that the two anticausal realizations have equal (1,1), (1,2) and
(1,3) entries, so that they can be combined into a single realization with the state di-
mensions of α∗. This follows directly from MU = I +MW and the J-unitarity of the
original realization:

α∗γ1 +β∗
1δ11 − β∗

2δ21 = 0 ; α∗γ2 +β∗
1δ12 − β∗

2δ22 = 0 :
Hence we find as anticausal and unnormalized realization for Θc

ΘΘΘc = 24 α∗ α∗MW γ1 +β∗
2δ21 α∗MW γ2 +β∗

2δ22
C∗

U C∗
U(I+MW)γ1 +D∗

Uδ11 C∗
U(I+MW )γ2 +D∗

Uδ12

C∗
W C∗

W MW γ1 +D∗
Uδ21 C∗

W MW γ2 +D∗
Wδ22

35 : (8.50)

We know already that Θc is J-unitary (by construction). It remains to show that it is ac-
tually J-inner. By proposition 8.20, this will be the case if there exists a strictly positive
solution to the Lyapunov-Stein equation

−αP(−1)α∗ +CUC∗
U −CWC∗

W = −P : (8.51)

Using (8.47), it follows that the solution of this equation is

P = M−1
W (I+MW)−1

which is indeed strictly positive definite. This proves the proposition for MW � 0.
• We now investigate the general case where MW in (8.45) may be singular. Let

R ∈D be a unitary operator such that

MW = R∗
�

M0
W 0

0 0

�
R

where M0
W ∈ D is of minimal dimensions. Under condition (TC), M0

W � 0, because
MW is the reachability Gramian of the realization of Θ−. (See also section 5.3 for this.)
If we apply the state transformation R, we obtain a new, equivalent state realization for
Θ given by

ΘΘΘ = 26664 α11 0 γ11 γ12

α21 α22 γ21 γ22

β11 β12 δ11 δ12
β21 0 δ21 δ22

37775 ;
which is still J-unitary, but now exhibits a part of the state space connected to the pair[α; β2] which is unreachable by the “negative” inputs. Hence, this part must be purely
inner, and can be factored out as follows. Clearly, [α22

β12
] is isometric and can be com-

pleted to the realization of an inner operator U1 with unitary realization

U1 = �
α22 CU1

β12 DU1

� :
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Since the second block column of ΘΘΘ is orthogonal to the others, it follows that26664 I

α∗
22 β∗

12

C∗
U1

D∗
U1

I

3777526664 α11 0 γ11 γ12
α21 α22 γ21 γ22

β11 β12 δ11 δ12

β21 0 δ21 δ22

37775= 26664 α11 0 γ11 γ12
0 I 0 0

β011 0 δ011 δ012
β21 0 δ21 δ22

37775 ;
for certain β011, δ011, δ012 defined by the equation. Thus we have constructed the factor-
ization (cf. equation (3.17))

Θ = �
U1

I

�
Θ0 (8.52)

where Θ0 ∈ U has the J-unitary realization

ΘΘΘ0 = 264 α11 γ11 γ12

β011 δ011 δ012
β21 δ21 δ22

375 : (8.53)

It is easy to verify that Θ0 is J-inner, and it has M0
U � 0, M0

W � 0 by construction. This
brings us back to the case considered before. 2

Θc may be called a conjugate of Θ0. The inner operators U and W which enter in its
construction provide external factorizations for each of its block entries.8.7 THE MIXED CAUSALITY CASE
We now consider J-isometric and J-unitary chain scattering operators Θ of mixed type,
having both a causal and an anticausal part, and give special attention to the J-lossless
and J-inner cases. We restrict ourselves to bounded, locally finite operators which have
a bounded partitioning into upper and lower triangular parts and have u.e. stable real-
izations:

Θ = B1Z(I − A1Z)−1C1 +D+B2Z∗(I − A2Z∗)−1C2 (8.54)

in which `A1 < 1 and `A2 < 1. Clearly, B1Z(I − A1Z)−1C1 and B2Z∗(I − A2Z∗)−1C2 are
the strictly causal and anticausal parts of Θ respectively.

A state space description with transfer operator given by (8.54) and corresponding
to figure 8.8(a) is given by[x(−1)

1 x2 | y] = [x1 x(−1)
2 | u]264 A1 C1

A2 C2

B1 B2 D

375 : (8.55)

Because J-isometric properties are hard to test on a sum of two realizations, we will
be interested in expressing the given realization as the product of a causal and an anti-
causal factor. Once we have a factorization, it is immediately clear that Θ is J-isometric
if its factors are J-isometric, i.e., if the realizations of each of the factors are J-isometric.
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Figure 8.8. (a) A mixed causal/anticausal computational scheme for Θ, (b) an equivalentfactored realization, obtained after a state transformation.Minimal causal-anticausal factorizations
Theorem 8.22 Let Θ ∈X be J-isometric (ΘJ2Θ∗ = J1), with a locally finite, minimal,
u.e. stable realization (8.55) for which (A2;C2) is uniformly observable. Define the
spaces H1 := P0(U2Θ∗)H2 := P0(U2Θ)
and suppose thatH2 is a regular space (a Krein space). Then Θ has a factorization as

Θ = Θ`Θr ; Θ` ∈ U ; Θr ∈ L ;
in which Θ` is J-isometric, Θr is J-unitary, andH1 = P0(U2Θ∗`) (the input state space of Θ`)H2 = P0(U2Θr) (the anti-causal output state space of Θr) :
PROOF H2 is a (locally finite) regular space with a strong basis generated by (A2;C2).
Hence, this basis has a non-singular J-Gramian, so that the J-unitary external factor-
ization in corollary 8.18, applied to the lower triangular part of Θ (call it T∗) produces
a J-unitary Θr ∈ L such that ∆ = T∗Θ∗

r ∈ U . Since the upper triangular part of Θ is
kept upper, this implies that there exists a factorization Θ = Θ`Θr where Θ` ∈ U and
Θr ∈L is J-unitary. Moreover, by construction,H2 = P0(U2Θr). Since it immediately
follows that Θ` is J-isometric, we only have to show thatH1 is equal toH0 := P0(U2Θ∗`) = P0(U2ΘrJΘ∗) : (8.56)

Since Θr is J-unitary, we have from proposition 8.5 applied to Θ∗
r thatU2 =H2JΘ∗

r�U2Θ∗
r , which implies that U2 is formed by the span of these two components: U2 =
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r +̇U2Θ∗

r . Using Θ∗
r = JΘ−1J, it follows that U2Θr =H2+̇U2. (These spaces are

actually orthogonal: U2Θr =H2 ⊕U2.) Substitution into (8.56) givesH0 = P0(H2JΘ∗)+̇P0(U2JΘ∗) : (8.57)

The definition ofH2 and the J-isometry of Θ ensure that P0(H2JΘ∗) ⊂ P0(U2JΘ∗):
P0(H2JΘ∗) = P0 �P0(U2Θ)JΘ∗� ⊂ P0 �(U2Θ+̇U2)JΘ∗�= P0(U2JΘ∗):

It follows thatH0 =H1. 2
Since Θ` can be extended to a J-unitary operator if its input state space is regular,

we also have the following result.

Corollary 8.23 Let Θ ∈X be J-isometric. Under the hypotheses of theorem 8.22, and
in addition assuming thatH1 is regular, Θ has a J-unitary extension of the same state
complexity.

The factorization of Θ into Θ`Θr can be called minimal (in a state complexity sense)
since the state complexity of each of the factors add up to the state complexity of Θ
itself. Θ` has a realization given by Θ` = D` +B1Z(I − A1Z)−1C` for certain D`, C`,
and Θr has a realization Θr = Dr +BrZ∗(I − A2Z∗)−1C2, for certain Dr, Br. Since Θr is
J-unitary, the extension of [A2 C2] to a J-unitary realization is more or less unique, so[Br Dr] can directly be computed. In contrast, B` and D` cannot be found by extension,
but have to be computed such that the factorization holds. This can be done as follows.

Let
Θ` = D`+B1Z(I − A1Z)−1C`
Θr = Dr +BrZ∗(I − A2Z∗)−1C2 :

In general, the product of two operators of this form (one upper, one lower) is given by

Θ`Θr = (D`Dr +B1Y (−1)C2) + B1Z(I − A1Z)−1{C`Dr +A1Y (−1)C2}+ {D`Br +B1Y (−1)A2}Z∗(I − A2Z∗)−1C2

where Y is the solution of Y = A1Y (−1)A2 +C`Br. Thus we have

Θ = Θ`Θr ⇔

8>><>>: Y = A1Y (−1)A2 +C`Br

D = B1Y (−1)C2 +D`Dr

C1 = A1Y (−1)C2 +C`Dr

B2 = B1Y (−1)A2 +D`Br

⇔
�

Y C1

B2 D

�= �
A1 C`
B1 D`�| {z }

ΘΘΘ` �
Y (−1)

I

��
A2 C2

Br Dr

�| {z }
ΘΘΘr

: (8.58)

The underlined variables are unknown and to be computed. Let’s assume for simplicity
that [A2 C2] has been chosen a J-orthonormal basis: A2JA∗

2+C2JC∗
2 = J; the existence

of such a basis follows from the regularity assumption onH2. By theorem 8.17, there is
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an extension [Br Dr] such that ΘΘΘr is a J-unitary realization. Choose any such extension.
Upon inverting ΘΘΘr (using ΘΘΘ−1

r = JΘΘΘ∗J), it follows that�
A1

B1

�
Y (−1)J = �

Y C1

B2 D

��
J

J

��
A∗

2
C∗

2

��
C`
D` �J = �

Y C1
B2 D

��
J

J

��
B∗

r
D∗

r

� : (8.59)

If we now also assume, for simplicity, that (A1;B1) was chosen to be an orthonormal
basis, A∗

1A1 +B∗
1B1 = I, then

Y (−1)J = [A∗
1 B∗

1]� Y C1

B2 D

��
J

J

��
A∗

2
C∗

2

�= A∗
1(YJ)A∗

2 + (A∗
1C1JC∗

2 +B∗
1B2JA∗

2 +B∗
1DJC∗

2) : (8.60)

This defines a recursive Lyapunov-type equation for Y , with a unique bounded solu-
tion (since `A1 < 1 and `A2 < 1). With Y known, C` and D` follow from the second
equation in (8.59). More in general, a bounded Y can be computed similarly whenever(A1;B1) is uniformly reachable and (A2;C2) is uniformly observable with a nonsin-
gular J-Gramian. Minimality of the anticausal component of the given realization is
important, otherwise the state dimension of Θr might become too large, requiring ad-
ditional states in Θ` to compensate so that the given structure of the realization of Θ`
is no longer valid.

The connection between the realization of Θ in summation form (fig. 8.8(a)) and the
factored realization (fig. 8.8(b)) is via a state transformation in terms of Y . Indeed, let[x01 x02] = [x1 x2]� I Y

0 I

�
⇔ [x1 x2] = [x01 x02]� I −Y

0 I

�
(8.61)

be a state transformation. Upon rearranging (8.55), we obtain[x1 x2 u]24 A1 0 C1

0 −I 0
B1 B2 D

35= [x(−1)
1 x(−1)

1 y]24 I 0 0
0 −A2 −C2

0 0 I

35 :
The state transformation then produces[x01 x02 u]24 A1 Y C1

0 −I 0
B1 B2 D

35= [x01(−1) x02(−1) y]24 I Y (−1)A2 Y (−1)C2

0 −A2 −C2

0 0 I

35 :
Rearranging back, we obtain[x01(−1) x02 y] = [x01 x02(−1) u]24 A1 Y C1

0 A2 C2

B1 B2 D

3524I Y (−1)A2 Y (−1)C2
0 I 0
0 0 I

35−1= [x01 x02(−1) u]24 A1 Y − A1Y (−1)A2 C1 − A1Y (−1)C2

A2 C2

B1 B2 − B1Y (−1)A2 D − B1Y (−1)C2

35 :
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Suppose we have found Y , D`, Dr, B`, Cr satisfying (8.58), then the realization factors
into 24 A1 Y − A1Y (−1)A2 C1 − A1Y (−1)C2

A2 C2

B1 B2 − B1Y (−1)A2 D − B1Y (−1)C2

35= 24 A1 C`Br C`Dr

A2 C2
B1 D`Br D`Dr

35= 24 A1 C`
I

B1 D` 3524 I
A2 C2

Br Dr

35
so that [x01(−1) z] = [x1 u]ΘΘΘ`[x02 y] = [x02(−1) z]ΘΘΘr

ΘΘΘ` = �
A1 C`
B1 D` � ; ΘΘΘr = �

A2 C2

Br Dr

� :
Thus, the realization resulting after state transformation factors into the product of two
realizations (one causal, the other anticausal), corresponding to a factorization of Θ
into Θ = Θ`Θr.Condition for J-isometry
We wish to answer the following questions:

1. Under which conditions does the realization (8.55) correspond to a J-isometric or
J-unitary transfer operator Θ?

2. Under which conditions is Θ also J-lossless or J-inner?

Because of the expression of the realization as a sum of a causal and an anticausal
part, the conditions turn out to be more involved than in the previous cases, but a simple
physical reasoning quickly provides sufficient insight which can then be verified under
appropriate conditions. Hence, we start the discussion informally and then give a set
of properties with proofs.

The guiding physical principle is that (8.55) will correspond to a J-isometric real-
ization when there is a signed hermitian energy metric Q on the states [x1 x2] which,
together with the energy metrics J1 and J2 on the inputs and outputs, gets preserved
for all compatible input, output and state sequences. Counting the energy carried by[x1 x2] as algebraically positive (i.e., a positive sign is considered as energy flowing
into the circuit shown in figure 8.8(a)), then we obtain the energy balance[x(−1)

1 x(−1)
2 | y]2664Q(−1)

11 Q(−1)
12 0

Q(−1)
21 Q(−1)

22 0

0 0 J2

37752664x(−1)
1

∗

x(−1)
2

∗

y∗

3775= [x1 x2 | u]264Q11 Q12 0
Q21 Q22 0

0 0 J1

375264x∗
1

x∗
2

u∗

375 :
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In this equation, the variables x1, x(−1)

2 and u are independent (since Θ was assumed

bounded). Substituting the dependent variables x(−1)
1 , x2 and y using (8.55), we obtain[x1 x(−1)

2 | u]264 A1 0 C1

0 I C2

B1 0 D

3752664Q(−1)
11 Q(−1)

12 0

Q(−1)
21 Q(−1)

22 0

0 0 J2

3775264A∗
1 0 B∗

1
0 I 0

C∗
1 C∗

2 D∗

375264 x∗
1

x(−1)∗
2

u∗

375= [x1 x(−1)
2 | u]264 I 0 0

0 A2 0

0 B2 I

375264Q11 Q12 0
Q21 Q22 0

0 0 J1

375264I 0 0
0 A∗

2 B∗
2

0 0 I

375264 x∗
1

x(−1)∗
2

u∗

375 :
Since this must hold for any combination of independent variables, we obtain that the
system preserves (Q;J1;J2)-energy, if and only if264 A1 0 C1

0 I C2

B1 0 D

3752664 Q(−1)
11 Q(−1)

12 0

Q(−1)
21 Q(−1)

22 0

0 0 J2

3775264 A∗
1 0 B∗

1
0 I 0

C∗
1 C∗

2 D∗

375== 264 I 0 0
0 A2 0

0 B2 I

375264 Q11 Q12 0
Q21 Q22 0

0 0 J1

375264 I 0 0
0 A∗

2 B∗
2

0 0 I

375 : (8.62)

If the operator Θ is J-isometric, we may expect that there is a (unique) diagonal
hermitian operator Q which satisfies (8.62). In case Q is (strictly) positive definite, we
expect that Θ will correspond to a J-lossless system, since in that case it has a corre-
sponding lossless and causal scattering system. There are, however, additional diffi-
culties. For example, if we look at the (2,2) entries in (8.62), it follows that

Q(−1)
22 +C2J2C∗

2 = A2Q22A∗
2 : (8.63)

When we require Q and hence Q22 to be strictly positive definite, it follows that the
space P0(U2Θ) =D2Z∗(I − A2Z∗)−1C2 has to be a regular space (a Krein space). But it
is quite conceivable that there are operators Θ that are J-lossless without this condition
being satisfied: the partitioning of the operator into upper and lower triangular parts and
forcing a regular state space structure on each part might be too restrictive. We take
exemption from such anomalous cases for the sake of simplicity. In the case where Q
is not positive definite, we require Q22 to be invertible, by posing regularity conditions
on certain state spaces related to Θ.

Theorem 8.24 Let Θ ∈X have a locally finite, minimal, u.e. stable realization (8.55),
for which (A1;B1) is uniformly reachable and (A2;C2) is uniformly observable. Sup-
pose thatH2 :=P0(U2Θ) =D2Z∗(I−A2Z∗)−1C2 is a regular space in the J metric. Then
Θ is J-isometric if and only if there exists an operator Q ∈D which satisfies (8.62).

PROOF

Sufficiency
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Suppose that Q satisfies (8.62), then we have to show that Θ is J-isometric. A direct,

brute force calculation to verify that ΘJ2Θ∗ is equal to J1 is possible [Yu96, pp. 74-75].
In particular, equation (8.62) specifies

1: A1Q(−1)
11 A∗

1 +C1J2C∗
1 = Q11A 4: B1Q(−1)

11 A∗
1 − B2Q21 +DJ2C∗

1 = 0

2: A1Q(−1)
12 +C1J2C∗

2 = Q12A∗
2 5: B1Q(−1)

12 +DJ2C∗
2 − B2Q22A∗

2 = 0

3: Q(−1)
22 = A2Q22A∗

2 −C2J2C∗
2 6: B1Q(−1)

11 B∗
1 +DJ2D∗ − B2Q22B∗

2 = J1

By writing out ΘJ2Θ∗ and using the above relations, a straightforward but tedious deriva-
tion shows that

ΘJ2Θ∗ = [D+B1Z(I − A1Z)−1C1 +B2Z∗(I − A2Z∗)−1C2] · J2·
·[D∗ +C∗

1(I − Z∗A∗
1)−1Z∗B∗

1 +C∗
2(I − ZA∗

2)−1B∗
2]= · · · = J1

and thus that Θ is J-isometric.
Necessity

Now we suppose that Θ is J-isometric (ΘJ2Θ∗ = J1) and show that (8.62) holds for
a suitable Q. By theorem 8.22, Θ has a minimal factorization into Θ = Θ`Θr, where
Θ` ∈ U is J-isometric, and Θr ∈ L is J-unitary, with realizations[x01(−1) z] = [x01 u]ΘΘΘ`[x02 y] = [x02(−1) z]ΘΘΘr

ΘΘΘ` = �
A1 C`
B1 D` � ; ΘΘΘr = �

A2 C2

Br Dr

� ;
see also figure 8.8. The J-isometric properties of these factors translate to the existence
of M ∈D and P ∈D such that�

A1 C`
B1 D` �� M(−1)

J

��
A1 C`
B1 D` �∗ = �

M
J

��
A2 C2

Br Dr

��
−P

J

��
A2 C2

Br Dr

�∗ = �
−P(−1)

J

� (8.64)

and the connection of these state space operators to the given realization of Θ is pro-
vided by (8.58), viz. 8>><>>: Y = A1Y (−1)A2 +C`Br

D = B1Y (−1)C2 +D`Dr

C1 = A1Y (−1)C2 +C`Dr

B2 = B1Y (−1)A2 +D`Br :
These equations are sufficient to derive (8.62). Indeed, since Θ = Θ`Θr, an alternative
realization for Θ is given by the product realization [x01(−1) x02 y] = [x01 x02(−1) u]ΘΘΘ0
where

ΘΘΘ0 = 24 A1 C`
I

B1 D` 3524 I
A2 Cr

B2 Dr

35= 24 A1 C`Br C`Dr

A2 C2

B1 D`B2 D`Dr

35= 24 A1 Y − A1Y (−1)A2 C1 − A1Y (−1)C2

0 A2 C2

B1 B2 − B1Y (−1)A2 D − B1Y (−1)C2

35 :
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The J-isometric properties (8.64) result in a similar property for ΘΘΘ0:

ΘΘΘ024 M(−1)
−P

J

35ΘΘΘ0∗ = 24 M
−P(−1)

J

35 :
Rearranging the center terms gives the equality24 A1 C1 − A1Y (−1)C2

I C2

B1 D − B1Y (−1)C2

3524 M(−1)
P(−1)

J

35 [∗]∗= 24 I Y − A1Y (−1)A2

A2

B2 − B1Y (−1)A2 I

3524 M
P

J

35 [∗]∗ : (8.65)

Note that24I A1Y (−1)
I

B1Y (−1) I

3524A1 C1 − A1Y (−1)C2
I C2

B1 D − B1Y (−1)C2

35= 24A1 C1
I C2

D1 D

3524I Y (−1)
I

I

35 ;24I A1Y (−1)
I

B1Y (−1) I

3524I Y − A1Y (−1)A2
A2

B2 − B1Y (−1)A2 I

35 = 24I
A2

B2 I

3524I Y
I

I

35 :
Thus, premultiplying (8.65) by the first factor and postmultiplying by its conjugate pro-
duces24A1 C1

I C2
B1 D

3524I Y (−1)
I

I

3524 M(−1)
P(−1)

J

3524 I
Y (−1)∗ I

I

3524A1 C1

I C2
B1 D

35∗= 24I
A2
B2 I

3524I Y
I

I

3524M
P

J

3524 I
Y∗ I

I

3524I
A2
B2 I

35∗ :
Hence, we showed that (8.62) holds with

Q = �
I Y

I

��
M

P

��
I

Y∗ I

� : (8.66)2
Clearly, the above factorization of Q induces the same state transformation as used

in (8.61) to transform the given realization into a factored realization. This connects
the condition on Q for J-isometry to conditions on M and P for J-isometry of each of
the factors.

It is straightforward to verify that Θ is J-lossless if both its factors Θ` and Θr are
J-lossless, i.e., if both M and P are strictly positive definite. With equation (8.66) in
mind, it immediately follows that Θ is J-lossless if Q is strictly positive definite.
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Proposition 8.25 Under the hypotheses of theorem 8.24, the transfer operator Θ ∈X
is J-lossless if and only if the Q satisfying (8.62) is strictly positive definite.

The various properties of J-lossless scattering operators form the major ingredients
of an approach to H∞ control based on J-external and J-inner-outer factorizations. This
approach was pioneered by Kimura in the time-invariant case, see his recent book on
the topic [Kim97], and extended to the LTV case in [Yu96]. Since a detailed account
of this topic would lead us too far astray, we induce the interested reader to consult the
cited literature.





9 ALGEBRAIC INTERPOLATION

In this chapter, we use our knowledge of Hankel operators and chain scattering matrices
to solve a set of constrained interpolation problems. These are problems in which one
looks for an operator that meets a collection of specifications of the following type: (1)
the operator takes specific “values” at specific “points” (we shall make the notion more
precise) (2) it is constrained in norm, and (3) it is causal and has minimal state dimen-
sions. We have to limit ourselves to specifications that satisfy a precise structure, but
the class is large enough for interesting applications, namely time-varying equivalents
of the celebrated “H∞ optimal control” problem or control for minimal sensitivity. Al-
gebraic interpolation is an extension of the notion of interpolation in complex function
theory, and we derive algebraic equivalents for very classical interpolation problems
such as the Nevanlinna-Pick, Schur, Hermite-Fejer and Nudel’man problems.

The simplest possible formulation of an algebraic interpolation problem in the di-
agonal taste would be: find an operator for which certain linear combinations of its
diagonals have specific values, and which meets additional causality and norm con-
straints. Even in the case where only a set of diagonals are specified, we do not solve
the general constrained interpolation problem in closed form: the specified diagonals
are not chosen randomly, they must form a band. This situation resembles the complex
function case, and we shall recognize the limitations of the classical theory.

Lossless J-unitary matrices play a central role in the solution of interpolation prob-
lems. This can be motivated as follows. Consider the input scattering operator of a
time-invariant lossless system with transfer operator Σ(ω) whose output is loaded by
the passive scattering operator SL (figure 9.1). The relation between SL and S is given233
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SLΣ12

a1

b1

Σ11 a2

Σ22

S Σ21

Σ

b2Figure 9.1. Lossless scattering operator loaded by a passive scattering SL.
by

S = Σ12 +Σ11(I − SLΣ21)−1SLΣ22 :
Σ12 is the input reflection operator, Σ11 is the input transmission operator. Suppose now
that for some vector ξ and some complex frequency ω we have that the transmission
scattering function satisfies ξΣ11(ω) = 0, then

ξS(ω) = ξΣ12(ω) =: η ;
independently of SL. If η is specified (it is a characteristic of the lossless system and not
of the load), then we see that ξS(z) interpolates η at the frequency ω. At the same time,
S is a causal, contractive operator, for physical reasons. In this chapter we shall see how
this situation generalizes to the time-varying situation. The frequency ω is known as a
transmission zero of the lossless medium, and will be replaced by a diagonal operator
in the new theory. Just as in the time-invariant theory (which is subsumed by the more
general theory), it will be advantageous to work with chain scattering matrices rather
than scattering matrices, because cascading the former gives much simpler expression.

Connections between circuit and system theory problems and the mathematical tech-
niques around interpolation, reproducing kernels and the lifting of a contractive op-
erator had been obtained a decade earlier by Helton [Hel78] in the pursuit of a solu-
tion to the broadband matching problem (see also [e.a87]). The connection with the
global and recursive solution to the Lossless Inverse Scattering problem was studied in
[DVK78, DD81b, DD81a, DD84], and collected in the monograph [Dym89] by Dym.
The recursive solution of the Schur-Takagi problem by Limebeer and Green [LG90]
can be viewed as an extension of such results to meromorphic (indefinite) interpola-
tion problems. In a parallel development, the state space theory for the interpolation
problem was extensively studied in the book [BGR90] by Ball, Gohberg and Rodman.
The wide interest in this type of problems was kindled by one of its many applications:
the robust (or H∞-) control problem formulated by Zames in [Zam81] and brought into
the context of scattering and interpolation theory by Helton [Hel82].

The general strategy of the interpolation problems studied in this chapter is to con-
nect each interpolation problem to a partially specified realization of an appropriate
J-lossless operator (i.e., the chain scattering matrix of a lossless — inner and causal —
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system, see definition 8.1). The approach is not unlike the one followed by Ball-Gohberg-
Rodman for the classical case [BGR90], but we take a system theoretic tack throughout,
which in our view is both more general and numerically more appealing. It is reminis-
cent of the method adopted by Dym [Dym89], but we do not use reproducing kernel
theory since the case of locally finite dimensions can be handled in more elementary
ways.

In its simplest, complex-analytic form, the Nevanlinna-Pick interpolation problem
can be stated as follows:

Let {vi}i=1;···;n be an indexed set of n points in the open unit disc D of the complex planeC and let {si}i=1;···;n be a set of n values in C ,

find a function S(z) which is analytic and contractive in D (i.e., ∀z ∈ D : |S(z)| ≤ 1), such
that S(vi) = si.

To translate the classical problem in an algebraic setting, there is one hurdle we must
take at the start, since we lack the notion of “point evaluation” in the algebraic setting.
What does it mean for a matrix or operator T to “take a value” at a “point”, in anal-
ogy to the evaluation S(vi)? Keeping in line with our diagonal based methodology, the
analogs of vi and si should be diagonals of matrices or operators. Evaluation of an oper-
ator on a diagonal was first introduced in [AD90], and studied extensively in [ADD90].
The diagonal version of the Nevanlinna-Pick problem was first solved in [Dew91] in
a somewhat restricted setting, and further generalized in [DD92] and a slew of subse-
quent publications, see e.g., [BGK92a].9.1 DIAGONAL EVALUATIONS OR THE W-TRANSFORM
Suppose that T ∈U(M;N ) is a bounded and upper operator, and thatV ∈D(M;M(1))
is a diagonal operator for which the spectral radius `V = ρ(VZ∗)< 1. We search for a
diagonal T∧(V) ∈D(M;N ) which is such that

T = T∧(V)+(Z −V)T 0
for some T 0 ∈U . It turns out that under the conditions stated, T∧(V) exists and is given
by a nice series expression which is the equivalent of a Maclaurin series expansion at
a given point z : |z| < 1 in the complex plane.

Theorem 9.1 Let T ∈ U(M;N ) be a bounded, upper operator with diagonal expan-
sion

T = ∞

∑
i=0

Z[i]T[i]; (9.1)

let V ∈D(M;M(1)) be a diagonal operator for which `V < 1, and define for n ≥ 0

V [n] =VV (1) · · ·V (n−1) with V [0] = I; (9.2)

then the sum

T∧(V) = ∞

∑
i=0

V [i]T[i] (9.3)
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converges in the operator norm, and

T = T∧(V)+(Z −V)T 0 (9.4)

for a T 0 ∈ U . Moreover, operators T∧(V) ∈D and T 0 ∈ U satisfying (9.3) are unique.

PROOF A complete analytic proof for the theorem is given in [ADD90]; as we do not
need the property directly in the sequel, we suffice with a sketch of the main ingredi-
ents. The convergence of the sum (9.3) in operator norm follows from the fact that the
diagonals T[i] are uniformly bounded by kT k, and `V = limn→∞kV [n] k1=n < 1 so that
the series is majorized in norm by a convergent geometric series. If we now calculate
(using again convergent series arguments)

T 0 = Z∗(I −VZ∗)−1T − Z∗(I −VZ∗)−1T∧(V);
we find that the diagonal coefficients of Z[i] vanish for negative i’s, showing that T 0 is
indeed upper. 2

In analogy to the complex function case, we say that T∧(V) is the “diagonal value”
which T takes at the “diagonal point” V .

Definition 9.2 Given an upper operator T ∈U(M;N ), then its W-transformW(T) is
the mapW : {V ∈D(M;M(1)) : `V < 1} →D(M;N ) : W(T ;V) = ∞

∑
i=0

V [i]T[i] : (9.5)W assigns to each diagonal operator V of the proper type the diagonal operator
T∧(V). If T is a Toeplitz operator, then its z-transform converges in the open unit disc
of the complex plane, and its evaluation at the point z : |z| < 1 is given by T(z) =
t0 + zt1 + z2t2 + · · ·: exactly the same as the W-transform T∧(zI).

The W-transform has interesting properties (again see [ADD90]), in particular:

1. Chain rule: (T1T2)∧(V) = (T∧
1 (V)T2)∧(V).

Remark that the chain rule is not as strong as in the Toeplitz case, where it holds that(T1T2)(z) = T1(z)T2(z).
2. T∧(V) = P0

�(I −VZ∗)−1T
�
.

This useful formula provides a good link with interpolation theory. A direct proof
is as follows. For A;B ∈ U , we have

P0(A∗B) = P0
�
∑(A[n])∗Z−nB

�= ∑(A[n])∗P0(Z−nB)= ∑(A[n])∗B[n] :
Taking A = (I −ZV∗)−1 = I+ZV∗+ZV∗ZV∗+ · · ·, we have that the n-th diagonal of
A is given by A[n] = (V (n−1))∗ · · ·(V (1))∗V∗, hence putting (A[n])∗ =V [n] and B[n] =
T[n] and comparing with (9.5) we obtain the result.
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3. T∧(V) = 0 ⇔ T 0 := (Z −V)−1T ∈ U :

This property follows directly from 2.

The interpolation property in 3. is, more generally, characterized by the following
proposition which is, in fact, the same as theorem 9.1.

Proposition 9.3 For S ∈ U , V; η ∈D and `V < 1,

S∧(V) = η ⇔ (Z −V)−1(S − η) ∈ U
⇔ P0(D2(Z −V)−1(S − η)) = 0 :

PROOF

S∧(V) = η ⇔ S∧(V)− η = 0

⇔ S∧(V)− η∧(V) = 0

⇔ (S − η)∧(V) = 0

⇔ (Z −V)−1(S − η) ∈ U : 29.2 THE ALGEBRAIC NEVANLINNA-PICK PROBLEM
At this point, we assume that we are given a set of diagonals {vi}i=1;···;n ∈D(M;M(1))
and a set of diagonal values {si}i=1;···;n ∈ D(M;N ), and are asked for a contractive,
upper transfer function S ∈ U(M;N ) such that

S∧(vi) = si: (9.6)

This is a straightforward generalization of the classical Nevanlinna-Pick problem to
our algebraic context, since (9.6) reduces to the classical case when all the operators
are Toeplitz.

It is useful to collect the n data points {vi}n
1 into a single diagonal operator. Let

V ∈D(Mn;(Mn)(1)) be a diagonal operator whose k-th block entry along the diagonal
is given by the k-th entry along the diagonal of every vi, i.e.,

Vk = 26664 (v1)k (v2)k
. . . (vn)k

37775 ; (k = −∞; · · · ;∞) : (9.7)

Similarly, define diagonal operators ξ ∈ D(Mn;M) and η ∈ D(Mn;N ) whose k-th
entries along the diagonal are given by

ξk = 264 I
...
I

375 ; ηk = 264 (s1)k
...(sn)k

375 : (9.8)
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Then the set of n interpolation conditions (9.6) becomes a single condition and the
time-varying Nevanlinna-Pick interpolation problem can be stated compactly as fol-
lows [AD90].

Basic interpolation problem #1: given operators ξ; η; V ∈D, with `V < 1, find a strictly
contractive operator S ∈ U such that(Z −V)−1(ξS − η) ∈ U : (9.9)

This way of writing the Nevanlinna-Pick problem suggests many generalizations,
because V , ξ and η may be replaced by more general structures than (9.7)-(9.8). Some
generalizations are considered further on in this chapter. Here we proceed with the
solution using the rather general formalism of (9.9).

Let A :=V∗, B := [ ξ∗

−η∗ ], J = [ I
0

0
−I ], and define F by

F1 = (Z −V)−1ξ
F2 = (Z −V)−1η
F = [F1 F2] = (Z −V)−1[ξ η] = (I − AZ)−∗Z∗B∗J : (9.10)

The space H = DMn

2 FJ ⊂ L2Z−1 generated by FJ is left D-invariant as well as left
invariant for the restricted shift P0(Z ·): it is the input state space of a dynamical system
partially described by A and B. The following proposition shows that there is, indeed,
an intimate connection between the interpolation problem and the input state space of
dynamical systems.

Proposition 9.4 Let F be defined by (9.10), then S ∈ U is a solution to the basic inter-
polation problem #1 if it is strictly contractive and if

P0(D2F
�

S
−I

�) = 0 : (9.11)

PROOF In view of the definition of F, equation (9.11) is nothing but a rewrite of (9.9).2
Let ΛJ

F be the J-Gramian associated to F, i.e.,

ΛJ
F = P0(FJF∗) :

To proceed with comfort, we impose one more condition on the Nevanlinna-Pick data.
Let ΛF1 = P0(F1F∗

1) be the Gramian of F1. We will assume from now on that ΛF1 is
bounded and non-singular, i.e., strictly positive: ΛF1 � 0. This condition enforces a
“well posedness” of the problem. It also precludes that data points {vk} coincide. The
more general case of interpolation points with multiplicity larger than one is considered
in section 9.4.

Proposition 9.5 Suppose that the given interpolation data is such that ΛF1 � 0, and
that the interpolation problem #1 has a strictly contractive solution, then ΛJ

F � 0.
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PROOF Let S ∈ U be the strictly contractive solution. By (9.11), we have

P0(F1S − F2) = 0 :
On the other hand, since F2 ∈ Z∗L2,

P(F1S − F2) = P(F1S) :
Summing up the two equations, we find F1S − F2 = P(F1S), or

F2 = P0(F1S) :
This implies, in particular, that P0(F1SS∗F∗

1) ≥ P0(F2F∗
2) ; so that

ΛJ
F = P0(F1F∗

1 − F2F∗
2) ≥ P0

�
F1(I − SS∗)F∗

1

� :
Since S is assumed to be strictly contractive, there will be an ε> 0 such that I−SS∗ ≥ εI,
and ΛJ

F ≥ εΛF1 � 0 : 2
It should be clear that the converse property

ΛJ
F � 0 ⇒ ΛF1 � 0

holds as well so that the condition of proposition 9.5 is necessary. Now assume that ΛJ
F

is boundedly invertible. ThenH :=D2FJ is a closed (regular) subspace, and S ∈ U is
an interpolant if it is contractive and if

P0(H� S
I

�) = 0 : (9.12)

Since ΛJ
F is boundedly invertible, there is, by theorem 8.17, a bounded J-unitary op-

erator Θ such thatH=HΘ, the input state space of Θ. The following theorem shows
that the solution of the interpolation problem reduces to the construction of Θ. This es-
tablishes a link between interpolation problems and J-unitary operators, just as in the
classical case [Dym89] for interpolation by complex functions. The Gramian ΛJ

F plays
a central role in interpolation theory and has been dignified with the name Pick matrix;
in our case it is a Pick operator of a rather general kind.

Theorem 9.6 Let be given the interpolation data (9.7)-(9.8), define F as in (9.9). As-
sume furthermore that

ΛF1 = P0

�(Z −V)−1ξξ∗(Z∗ −V∗)−1
�� 0 :

Then the basic interpolation problem #1 has a strictly contractive solution S ∈U if and
only if

ΛJ
F = P0((Z −V)−1[ξξ∗ − ηη∗](Z∗ −V∗)−1) � 0 :

In this case, there is a J-inner operator Θ with HΘ = D2FJ. The complete collection
of solutions is parametrized by

S = TΘ[SL] ; (SL ∈ U ; kSL k< 1) ;
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where TΘ[·] is defined in (8.7).

PROOF The “only if” part of the proof is the subject of proposition 9.5. Sufficiency
goes as follows. If ΛJ

F � 0, then it is boundedly invertible and we can construct a J-
unitary operator Θ such thatH =HΘ (theorem 8.17). Because ΛJ

F � 0, we have that
the corresponding Θ−1

22 ∈ U (proposition 8.10). To make the proof complete, we show
that (1) if ΛJ

F � 0 and SL ∈ U is some strictly contractive operator, then S = TΘ[SL] is
a solution of the interpolation problem, and (2) if S is a solution, it must have the form
TΘ[SL] for some strictly contractive SL ∈ U .

1. ΛJ
F � 0; SL ∈ U ; kSL k< 1 ⇒ S = TΘ[SL] is a solution

The connection between SL and S is given by equation (8.7):

S = (Θ11 − Θ12SL)(Θ21SL − Θ22)−1

⇔
�

S
−I

�= Θ
�

SL

−I

�
Φ−1

o ; Φo = Θ22 − Θ21SL : (9.13)

Recall from theorem 8.2 that Θ−1
22 is upper, and kΘ−1

22Θ21 k< 1. If SL ∈U is such thatkSLk ≤ 1, then Φo =Θ−1
22(I−Θ−1

22Θ21) is invertible inU : Φ−1
o =(I−Θ−1

22Θ21SL)−1Θ−1
22 ∈U . Also recall the relation between the input state spaceH(Θ) and output state spaceHo(Θ) (proposition 8.5): Ho =HJΘ. We obtain that S = TΘ[SL] impliesH(Θ)J� S

−I

�=H(Θ)JΘ
�

SL

−I

�
Φ−1

o =Ho(Θ)� SL

−I

�
Φ−1

o ∈ U ;
so that

P0�H(Θ)J� S
−I

��= 0 :
By proposition 9.4, S is an interpolant.

2. If S is a solution, then S = TΘ[SL], where SL is a contraction in U .

If S is an interpolant, then P0(H(Θ)J[ S
−I ]) = 0, and we have to show that there is

some contractive operator SL ∈ U such that S = TΘ[SL]. The proof consists of four
steps.

Step 1: G := Θ−1

�
S
−I

�
is upper.

P0(U2G) = P0(U2Θ−1
�

S
−I

�)= P0(P0[U2Θ∗]J� S
−I

�) [since S ∈ U ]= P0(H(Θ)J� S
−I

�)= 0 :
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Step 2: Let G be decomposed in two operators G1 and G2 such that�

S
−I

�= Θ
�

G1

G2

� (G1; G2 ∈ U); (9.14)

then G2 is boundedly invertible, and SL := G1G−1
2 is well defined and contrac-

tive. In addition, S = (Θ11SL − Θ12)(Θ22 − Θ21SL)−1 = TΘ[SL], as required.
Θ is boundedly invertible because Θ−1 = JΘ∗J so that kΘ−1k= kΘk. Hence
ΘΘ∗ ≥ εI for some ε > 0 and

G∗
1G1 +G∗

2G2 = [S∗ I]ΘΘ∗
�

S
I

�
≥ ε(S∗S+ I)
≥ εI : (9.15)

From the J-unitarity of Θ, and the contractivity of S we also have that

G∗
1G1 ≤ G∗

2G2:
Together, this shows that G∗

2G2 ≥ 1
2 εI, and hence G2 is boundedly invertible

(but we have not shown yet that G−1
2 is in U). Postmultiplying equation (9.14)

with G−1
2 gives

G−1
2 = Θ22 − Θ21SL

SG−1
2 = Θ11SL − Θ12

and hence S = (Θ11SL − Θ12)(Θ22 − Θ21SL)−1.

Step 3: Let X ∈X be a strictly contractive operator. Then (I − X)−1 ∈ U ⇔ X ∈ U .
⇐ is clear. ⇒: let Y = 2(I − X)−1 − I = (I +X)(I − X)−1. Then Y is strictly
positive real, i.e., Y +Y∗ � 0, since

Y +Y∗ = 2(I − X∗)−1(I − X∗X)(I − X)−1;
and Y ∈ U by hypothesis. It follows that (I+Y)−1 ∈U , for the map I+Y is one
to one and onto U2

1, and the open mapping theorem applies [Rud66]. Since
X = 2(I+G)−1 − I, we have in turn that X ∈ U .

Step 4: SL is upper
From equation (9.15), we have that G2Θ22 = (I −Θ−1

22Θ21SL)−1, and it is known
that the left hand side is upper. Hence, by step 3, Θ−1

22Θ21SL is upper and since
Θ22 ∈ U , Θ22SL is upper, and G−1

2 = Θ22 − Θ21SL is upper too, so that SL =
G1G−1

2 ∈ U . 2
1The classical argument runs as follows. I+Y is one-to-one since

∀u ∈ U2 : P0(u(I+Y)(I+Y∗)u∗) = P0(uu∗)+P0(u(Y +Y∗)u∗)+P0(uYY∗u∗) ≥ P0(uu∗)
and hence u(I +Y) = 0 ⇒ u = 0. I +Y is onto since (1) by a similar argument, (I +Y∗) is one-to-one,
so that the range of (I+Y) is dense in U ; and (2) that range must also be closed, because if the sequence
{vn ∈ R(I+Y)} converges to v, then v ∈ R(I+Y), since the corresponding un : vn = un(I+Y) forms a
Cauchy series.



242 TIME-VARYING SYSTEMS AND COMPUTATIONS9.3 THE TANGENTIAL NEVANLINNA-PICK PROBLEM
An immediate extension of the standard Nevanlinna-Pick problem occurs when inter-
polation is only requested in certain directions. We replace the identity operators in the
ξk composites in equation (9.8) by more general blocks, or possibly simple vectors, and
the values that have to be matched are conformal block-rectangular quantities:

ξk = 264 (ξ1)k
...(ξn)k

375 ; ηk = 264 (η1)k
...(ηn)k

375 (k = −∞; · · · ;∞) : (9.16)

The corresponding tangential interpolation problem has the same formulation as basic
interpolation problem #1 in the previous section:

Basic interpolation problem #2: given operators ξ;η;V ∈ D with `V < 1, find a strictly
contractive S such that (Z −V)−1[ξS − η] ∈ U :

Since the formulation is the same, propositions 9.4, 9.5 are valid also for the more gen-
eral interpolation data (9.16) replacing (9.8). Also theorem 9.6 is valid as stated: the
directional interpolation problem has a strictly contractive solution if and only if ΛJ

F is
strictly positive definite.9.4 THE HERMITE-FEJER INTERPOLATION PROBLEM
The Hermite-Fejer interpolation problem deals with interpolation points of higher mul-
tiplicity. We can easily work this problem into the framework of the previous sections
provided that certain non-singularity conditions are satisfied. There is a small hurdle
that we must take at the start, namely how to define higher order multiplicity in the
present context. We find a hint by looking at Zk. Because Z : M → M(1), a more
correct reading of this expression is Z[k] = ZZ(1) · · ·Z(k−1): dimensions change in the
product. Extending this observation to (Z −V), where V is a diagonal operator of di-
mensionsM×M(1) conformal to Z, we see that we must consider products of the type(Z −V)[k] = (Z −V) · (Z −V)(1) · · ·(Z −V)(k−1) :
A special role will be played by its inverse, which we shall denote by2(Z −V)−[k] := (Z −V)−(k−1) · · ·(Z −V)−1 :
Similarly as before, in a tangential Hermite-Fejer problem a directional operator ξ ∈D(Mn;N ) is defined, and we have to consider the operator (Z −V)−[k]ξ as a general-
ization of (Z −V)−1ξ which occurs in the tangential Nevanlinna-Pick problem.

An interpolation property which puts multiple conditions on the same point V can
be formulated, in analogy to the classical case, as

ξS −
n

η0 +(Z −V)η1 + · · ·+(Z −V)[k−1]ηk−1

o= (Z −V)[k]S0 : (9.17)

2Recall the shorthand notation X−(k) := (X(k))−1 = (X−1)(k).
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where S0 is some upper operator. By rearranging terms, it is directly seen that this equa-
tion can be valid only if a number of lower-order interpolation conditions are satisfied
as well, viz.

ξS −
n

η0 +(Z −V)η1 + · · ·+(Z −V)[k−2]ηk−2

o = (Z −V)[k−1]S00
...

ξS − η0 = (Z −V)S00···0 (9.18)

in which the S00; · · · S00···0 are upper triangular remainders. At this point, the objective
is to make the old strategy work in the present context again, i.e., to construct a ba-
sis representation F from the interpolation data such that S is a solution if and only if
P0(D2F[ S

−I ]) = 0, or F[ S
−I ] ∈ U , and such that F generates the input state space of some

J-lossless system Θ.
To this end, define A, B1, B2 as

A∗ = 26664 V 0
I V (1)

. . .
. . .

0 I V (k−1) 37775 :
B1 = [ξ∗ 0 · · · 0]; B2 = −[η∗

0 · · · η∗
k−1] :

Note that, for convenience, we have written A as a matrix of diagonals, whereas we
used to have A a diagonal of matrices. The two representations are of course isomor-
phic and have the same meaning.3

Also let
F1 = Z∗(I − A∗Z∗)−1B∗

1
F2 = −Z∗(I − A∗Z∗)−1B∗

2
F = [F1 F2] = (I − A∗Z∗)−1[B∗

1 B∗
2]J :

To verify that F does indeed satisfy the interpolation condition F[ S
−I ], it has to be eval-

uated in terms of V , ξ and {ηi}. Thus

Z − A∗ = 26664 Z −V 0
−I (Z −V)(1)

−I
. . .

0 −I (Z −V)(k−1) 37775
3The construction of A, B1 and B2 may appear artificial as given here. However, if follows in a logical way
from a study of the ‘restricted shift’ operator P0(Z ·) applied to (Z − V)−[k]ξ. When applying the restricted
ship repeatedly, one generates new elements of a subspace, for which a basis consists of all elements of the
type (Z −V)−[`]ξ; 1 ≤ ` ≤ k. A matrix representation of the restricted shift in that basis is given by the matrix
A∗.



244 TIME-VARYING SYSTEMS AND COMPUTATIONS(Z − A∗)−1 = 26664 (Z −V)−1 0(Z −V)−[2] (Z −V)−(1)
...

. . .(Z −V)−[k] (Z −V)−[k−1](1) · · · (Z −V)−(k−1) 37775
and hence

F1 = (Z − A∗)−1B∗
1 = 26664 (Z −V)−1ξ(Z −V)−[2]ξ

...(Z −V)−[k]ξ 37775 (9.19)

F
�

S
−I

�= 26664(Z −V)−1(ξS − η0)(Z −V)−[2](ξS − η0)− (Z −V)−(1)η1
...(Z −V)−[k](ξS − η0)− (Z −V)−[k−1](1)η1 − · · ·− (Z −V)−(k−1)ηk−1

37775 : (9.20)

Let us call the last entry of the vector S0, then

ξS −
n

η0 +(Z −V)η1 + · · ·+(Z −V)[k−1]ηk−1

o = (Z −V)[k]S0 :
Comparing with (9.17), we obtain that the interpolation condition is satisfied if and
only if S0 ∈ U . It is not hard to see that the derived additional interpolation conditions
in (9.18) are satisfied if the other entries of the vector in (9.20) are upper. Hence, the
interpolation conditions are equivalent to P0(D2F[ S

−I ]) = 0.
At this point, we are back on familiar grounds. Again, we can find a (strictly) con-

tractive solution S if H := D2FJ =D2(Z − A∗)−1[B∗
1 B∗

2]
is an input state space of a J-lossless operator Θ. That will be the case if and only if
the Pick matrix

ΛJ
F = P0

�(Z − A∗)−1[B∗
1B1 − B∗

2B2](Z∗ − A)−1
�� 0

because the same chain of arguments which led to theorem 9.6 again applies.
The interpolation problems which we have considered so far can be bootstrapped to

an even more general statement, containing interpolation problems #1 and #2 as special
cases:

Basic Interpolation Problem #3: Given n diagonal operators {Vi}i=1;···;n with all `Vi < 1,
and for each Vi an index ki ∈ N and interpolation data (diagonals) (ξi;ηi0; · · · ;ηi;ki−1).
Find a (strictly) contractive S such that, for i = 1; · · · ;n,

∃S0
i ∈ U : ξiS − {ηi0 +(Z −Vi)ηi1 + · · ·+(Z −Vi)[ki−1]ηi;ki−1} = (Z −Vi)[ki]S0

i :
With this data, the above derivations easily leads to the theorem:
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Theorem 9.7 Define

A∗ = diag

8>>>><>>>>:266664 V1 0

I V (1)
1
. . .

. . .

0 I V (k1−1)
1

377775 ; · · · ;266664 Vn 0

I V (1)
n
. . .

. . .

0 I V (kn−1)
n

3777759>>>>=>>>>;
B1 = [(ξ∗

1 0 · · · 0) · · · (ξ∗
n 0 · · · 0)]

B2 = −[(η∗
10 η∗

11 · · · η∗
1;k1−1) · · · (η∗

n0 η∗
n1 · · · η∗

n;kn−1)];
and assume that

ΛF1 = P0

�(Z − A∗)−1B∗
1B1(Z∗ − A)−1

�� 0 ;
then there exists a strictly contractive S ∈ U satisfying the interpolation conditions #3,
if and only if

ΛJ
F := P0

�(Z − A∗)−1(B∗
1B1 − B∗

2B2)(Z∗ − A)−1
�� 0 :

If this is the case, then there is a lossless chain scattering matrix Θ which has (A; [B1
B2
])

as reachability pair. All solutions are given as

S = TΘ[SL] ; SL ∈ U ; kSL k< 1 :
PROOF The proof is the same as that of theorem 9.6. 2

In chapter 8 we have studied how Θ can actually be computed. A final observation
is that in our general notation, even the large, multiple point Hermite-Fejer problem
can be formulated as a simple one-point “tangential” Nevanlinna-Pick problem, be it
with a very complex single diagonal point given by A =V∗, and “tangential” interpo-
lation data given by B1 = ξ∗ and B2 = −η∗. It is this fact that reduces all our one sided
interpolation problems to a single, simple, general formalism.9.5 CONJUGATION OF A LEFT INTERPOLATION PROBLEM
For given ξ, η and V with `V < 1, let us call a left interpolation problem, LIP(V;ξ;η),
the problem to find S such that(Z −V)−1(ξS − η) ∈ U ; S ∈ U ; kSk< 1 : (9.21)

This covers all the basic interpolation problems considered before, and more. Simi-
larly, a right interpolation problem, RIP(V;ζ; ι), is to find S such that(Sζ − ι)(Z −V)−1 ∈ U ; S ∈ U ; kSk< 1 : (9.22)

The right interpolation problem is a dual to the left interpolation problem, and all the
‘right’ results can be obtained from the ‘left’ results in a straightforward fashion. How-
ever, more is possible. Under certain conditions, a left problem can be converted into
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a right problem with the same basic operator V , in such a way that a solution for one
will exist if and only if a solution for the other exists. The construction is closely re-
lated to the conjugation theory of the previous chapter. It turns out that the original
problem must satisfy a condition of non-degeneracy to be convertible. Degeneracy
of an interpolation problem is in itself an interesting property since it leads to (par-
tially) unique solutions given by an inner factor, and a (possibly substantial) reduction
of the interpolation problem. We study it in this section together with its connection
to conjugation. In a further section we shall use the knowledge obtained to convert a
double-sided problem to a single-sided one, after reduction of an eventual degeneracy.
To avoid technicalities, we work under certain regularity conditions, which can almost
always be assumed in practical problems.

To this end, define (1) Λ1 := P0[(Z −V)−1ξξ∗(Z∗ −V∗)−1](2) Λ2 := P0[(Z −V)−1ηη∗(Z∗ −V∗)−1]: (9.23)

We shall say that the LIP is non-degenerate if Λ1 � 0 and Λ2 > 0, i.e., Λ2 has empty
kernel. We say that it is regular if(1) Λ1 � 0(2) Λ2 has closed range: (9.24)

Hence a non-degenerate regular LIP has both Λ1 � 0 and Λ2 � 0. A degenerate LIP
with Λ1 � 0 can be converted to a non-degenerate one, as shown in the next propo-
sition. Handling the non-regular case is much harder, since the conjugation theory for
J-unitary operators of the previous chapter then breaks down. We do not have good
results for that case which as far as we know is still open.

Proposition 9.8 Consider the LIP(V;ξ;η), and let the corresponding Λ1 � 0. Then
all solutions of the LIP are of the form S =US0 where U ∈ U is inner, and S0 ∈ U is the
solution of a non-degenerate LIP (V 0;ξ0;η0), in which V 0 is a suboperator of V , and ξ0,
η0 are of comparatively smaller dimensions than ξ, η, respectively. If the original LIP
is regular, then so is the deflated LIP.

PROOF The property is a direct consequence of the conjugation theory for J-inner ma-
trices of section 8.6. Suppose that the interpolation problem has solutions (otherwise
there is nothing to prove). Let Θ be the causal J-inner matrix which defines the solu-
tions, i.e., all solutions S are given by S = TΘ[SL] where SL is causal and strictly con-
tractive. The reachability pair (A;B) for Θ is given by(V∗;� ξ∗

−η∗

�) :
Let Λ1 and Λ2 be as defined above. Concentrating on Λ2, let R be a unitary transfor-
mation such that

Λ2 = R∗
�

Λ02 0
0 0

�
R
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in which Λ02 has trivial kernel (Λ02 > 0), and let us define a further partitioning of the
data, after state transformation by R, as26664 V∗

11 0
V∗

12 V∗
22

ξ∗
1 ξ∗

2
−η∗

1 0

37775 := 264 RV∗R−(−1)
ξ∗R−(−1)

−η∗R−(−1) 375 :
Just as in the proof of proposition 8.21 of section 8.6, we see that Θ factors as

Θ = �
U

I

�
Θ0 (9.25)

in which U is inner and has a realization of the form

U = �
V∗

22 C∗
U

ξ∗
2 D∗

U

�
for appropriate CU and DU , and whereby Θ0 ∈ U is J-inner and has a realization with
reachability pair 264 V∗

11

CUΛ12V∗
12 +DUξ∗

1
−η∗

1

375
where Λ12 is the unique bounded solution of the Lyapunov equationV22Λ12V∗

22+ξ2ξ∗
2 =

Λ(−1)
12 . Hence, with V 0 =V11, ξ0 =V12Λ12C∗

U +ξ1D∗
U , η0 = η1, the interpolation prob-

lem is reduced to: find S0 such that(Z −V 0)−1(ξ0S0 − η0) ∈ U ; (9.26)

S0 ∈ U , kS0k < 1. This interpolation problem has Λ02 > 0: it is non-degenerate. All
solutions to the original interpolation problem are described by S = TΘ[SL]. The fac-
torization of Θ in (9.25) forces S =US0, where S0 = TΘ0 [SL]. (See also figure 9.2.) 2

It should be clear that if the original LIP is regular, then so is the derived problem —
the Gramians involved are equivalent under unitary similarity. Proposition 9.8 allows a
simple reduction of a partially degenerate LIP (or dually RIP) to a nondegenerate one.
We restrict the conjugation theory to purely non-degenerate problems since conjuga-
tion does not work on the purely degenerate part: in general, there is no (fixed) diagonal
η such that for each S satisfying P0(Z −V)−1ξS= 0 there exists a conjugate Sc such that
P0Scη(Z −V)−1 = 0.

Proposition 9.9 Let (V;ξ;η) describe a non-degenerate, regular LIP with Gramians
Λ1, Λ2 as defined in (9.23). Then there exist diagonal operatorsCU1 ;DU1 ;CU2 ;DU2 such
that

U1 = �
V∗ C∗

U1

ξ∗ D∗
U1

� ; U2 = �
V∗ C∗

U2

η∗ D∗
U2

�
(9.27)
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SLΘ0

⇒

U

b2

a2a1

b1

S S0
⇒ΘFigure 9.2. The extraction of the degeneracy from an interpolation problem yields aninner factor U and a remainder S0

are realizations of inner operators U1 and U2, and the LIP is equivalent to a right inter-
polation problem given by(CU1 − S0CU2)(Z −V)−1 ∈ U ; S0 ∈ U ; kS0k< 1 ; (9.28)

in the sense that if S0 is a solution to the RIP, then S =U1S0U∗
2 is a solution to the LIP,

and vice-versa.

PROOF Let Θ be the causal J-inner matrix that solves the LIP problem in equation
(9.21) according to theorem 9.6. Θ has reachability pair given by A :=V∗, B := [ ξ∗

−η∗ ].
By assumption, the Lyapunov-Krein equations VΛ1V∗ + ξξ∗ = Λ(−1)

1 and VΛ2V∗ +
ηη∗ = Λ(−1)

2 have boundedly invertible solutions, so that by theorem 6.3 the reacha-
bility pairs (V∗;ξ∗), (V∗;η∗) can be completed to realizations of inner operators with
realizations of the form (9.27). By the conjugation proposition 8.21 of chapter 8 there
exists an anticausal, J-inner operator Θ0,

Θ0 = �
U∗

1
U∗

2

�
Θ ∈ L ;

where Θ0 has reachability pair given by(V;� CU1

−CU2

�) :
Let us complete the realization of Θ0 in a minimal way with operators B0;D0 (they will
not play a role), so that

Θ0 = D0+�
CU1

−CU2

�(Z −V)−1B0 :
We show now that if Θ0 is loaded in a causal, contractive load SL, then the resulting

S0 = U∗
1 SU2 satisfies the interpolation problem given by (9.28) — see figure 9.3. The

relation between S0 and SL is summarized by the equation[I S0]Θ0 = Φi
0[I SL]
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SLΘ0

⇒
b2

a2a1

b1

S S0
⇒Θ

U1

U∗
2

Figure 9.3. The transformation of Θ to Θ0 and the resulting transformation of S to S0.The picture is \unphysical" as a signal ow diagram, but both Θ and Θ0 are J-inner.
in which

Φi
0 = Θ0−∗

11 (I − SLΘ0
12

∗Θ0−∗
11 )−1 = Σ011(I − SLΣ021)−1 :

Since Θ0 is J-inner, the corresponding Σ0 is inner, Σ011 = Θ0−∗
11 is strictly contractive as

well as Σ021, and Φ0
i is bounded and upper (its physical meaning should be clear from

figure 9.3). Hence we find after substituting Θ0[CU1 − S0CU2 ](Z −V)−1B0 = Φ0
i[I SL]− [I S0]D0

and
P0(CU1 − S0CU2)(Z −V)−1B0 = 0 :

This is almost the desired interpolation expression: we still have to cancel out B0. That
is the subject of the following proposition, which we state as a separate lemma because
of its independent interest.

Lemma 9.10 Suppose that `A < 1, (A;B) form a reachable pair, X ∈ U and

B(Z − A)−1X ∈ U ; (9.29)

then (Z − A)−1X ∈ U .

PROOF of the lemma. By definition of evaluation at a diagonal A we have that X =
X∧(A)+ (Z − A)X1 with X1 ∈ U , hence by equation (9.29), B(Z − A)−1X∧(A) ∈ U so that
B(Z − A)−1X∧(A) = 0. Evaluating this equality term by term we find B(−1)X∧(A) = 0,
B(−2)A(−1)X∧(A) = 0, etc., or in matrix notation:266664 B(−1)

B(−2)A(−1)
B(−3)A(−2)A(−1)

...

377775X∧(A) = 0 : (9.30)

In (9.30) we recognize the reachability operator, which is assumed one-to-one. Hence
X∧(A) = 0, and (Z − A)−1X = X1 ∈ U . 2

The lemma has to be applied here in its dual (observability) form and yields (9.28).
The property is symmetric: if S0 solves the RIP interpolation problem (9.28), then, by a
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theory dual to that given by theorems 9.5 and 9.6, there will be a corresponding lower
J-inner Θ0-matrix and a load SL such that S0 = TΘ0 [SL]. This Θ0-matrix will be non-
degenerate and regular (due to the symmetrical structure of U1 and U2), and will yield,
after conjugation, a Θ which solves the original LIP interpolation problem. Hence the
RIP and LIP are equivalent in the sense that a solution for one yields a solution for the
other and vice versa. 29.6 TWO SIDED INTERPOLATION
An interesting (and practical) case occurs when doubled sided interpolation data are
given and a constrained solution is asked. We shall see that this more general prob-
lem has some unique characteristics which make a further generalization of the theory
necessary. In the literature it is sometimes referred to as the Nudel’man interpolation
problem [Dym89].

Let be given two sets of diagonal operators,(V;ξ;η) and (W;ζ; ι) ; (9.31)

with `V < 1, `W < 1, asked is a strictly contractive S ∈ U which satisfies

1. a left interpolation property, (Z −V)−1[ξS − η] ∈ U (9.32)

2. and a right interpolation property,[Sζ − ι](Z −W)−1 ∈ U : (9.33)

In other words, we wish to solve a left and a right interpolation problem jointly. As
before, the above description of the problem is such that it fits several types of interpo-
lation problems, such as the tangential Nevanlinna-Pick and Hermite-Fejer problems
of the previous sections. Again equations (9.32) and (9.33) can be manipulated in at-
tractive alternative forms.4 Define

H1 = (Z −V)−1ξ ; G1 = (Z −V)−1η
G2 = (I −W∗Z)−1ζ∗ ; H2 = (I −W∗Z)−1ι∗

then H1;G1 ∈ Z−1L and G2;H2 ∈ U . The interpolation conditions (9.32)–(9.33) can
now be written as

P0(D2[H1S − G1]) = 0 (9.34)

P(D2[G2S∗ − H2]) = 0 : (9.35)

4We are indebted to H. Dym for informal information on this matter and providing us with a nice survey of
ideas [DF97].
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Solutions of the above two-sided interpolation problem turn out to be given in terms of
a J-inner chain scattering operator Θ as before, although this time it will be of mixed
causality. There are additional complications: it may happen that the complete solu-
tion set is not defined in terms of a single operator Θ. We shall explore a more restric-
tive condition on the interpolation data where the Θ obtained is indeed uniquely deter-
mined. A description of the complete set of solutions for the general case can be found
in the recent literature, see [DF97]. This is a generalization of what already happens
in the linear time invariant case [KKY87].

Proposition 9.11 Let Θ ∈ X be a J-inner operator such that

Θ = �
ι

−ζ

�(Z −W)−1[C1 C2]+�
R11

R12

�
(9.36)

Θ−1 = �
C3
C4

�(Z −V)−1[ξ η]+�
R21
R22

�
(9.37)

in which Ri j ∈U , for i; j = 1;2, and
�

W; � ι
−ζ

� ; [C1 C2]�,
�

V; �C3

C4

� ; [ξ η]� are min-

imal realizations of the respective anticausal parts, Let S= TΘ[SL] for a strictly contrac-
tive SL ∈ U . Then (Z −V)−1(ξS − η) ∈ U and (Sζ − ι)(Z −W)−1 ∈ U .

PROOF The proposition is derived by using standard properties of a J-lossless Θ and
the corresponding lossless scattering operator Σ, viz. theorem 8.2. Note that, by defini-
tion of losslessness, Σ is causal. Suppose S = TΘ[SL], i.e., (by its definition in equation
(8.7)),

S = Σ12 +Σ11SL(I − SLΣ21)−1Σ22= (Θ12 − Θ11SL)(Θ21SL − Θ22)−1

then �
−S
I

�
Φo = Θ

�
−SL

I

�
(9.38)

where Φo = Θ22 − Θ21SL. From equation (8.6) we have

Φo = Θ22(I − Θ−1
22Θ21SL)= Σ−1

22(I − Σ21SL) :
Since kΣ21 k< 1, it follows that Φo is invertible once SL is contractive, with

Φ−1
o = (I − Σ21SL)−1Σ22 :

Since Σ is a causal operator, and also SL ∈ U , it follows that both Φ−1
o ∈ U and S =

Σ12 +Σ11SLΦ−1
o ∈ U . Subsequently postmultiplying (9.37) with (9.38) produces�

−SL

I

�
Φ−1

o = �
C3

C4

�(Z −V)−1(η − ξS) +R22 − R21S
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with R22 and R21 in U . Because the left hand side is also upper, an invocation of lemma
9.10 together with minimality proves the first interpolation property,(Z −V)−1(ξS − η) ∈ U :
To show the second interpolation property, recall that S= TΘ[SL] also implies (by equa-
tion (8.7))

SL = (Θ11 +SΘ21)−1(Θ12 +SΘ22)
or, using Θ−1 = JΘ∗J, [I S]Θ = Φi[I SL]

⇔ [I − S] = Φi[I − SL]Θ∗

where
Φi = Θ−∗

11(I − SLΘ∗
12Θ−∗

11)−1= Σ11(I − SLΣ21)−1

using again the connections of Θ with Σ in equation (8.6). For similar reasons as before,
it follows from the fact that Σ is upper and SL is upper and contractive that Φi ∈ U and
S ∈ U . Premultiplying (9.36) with [I S] = Φi[I SL]Θ−1 gives

Φi[I SL] = (ι − Sζ)(Z −W)−1[C1 C2] +R11+SR12 ;
with the Ri j in U , and because Φi[I SL] ∈ U , also (ι − Sζ)(Z −W)−1[C1 C2] ∈ U : An
invocation of the dual form of lemma 9.10, using minimality of the realization, pro-
duces (ι − Sζ)(Z −W)−1 ∈ U : 2

Equations (9.36) and (9.37) completely specify the dynamics of Θ. Since Θ−1 =
JΘ∗J, we can write

Θ = �
ι

−ζ

�(Z −W)−1[C1 C2] + D + �
ξ∗

−η∗

�(Z∗ −V∗)−1[C∗
3 −C∗

4] (9.39)

in which D and the Ci’s are diagonal operators. We explore this form in more detail
now.

Lemma 9.12 Θ ∈ X in equations (9.36) and (9.37) ( i.e., Θ in (9.39)) has a mixed
causality type realization of the form[x(−1)+ x− a2 b2] = [x+ x(−1)

− a1 b1]26664 V∗ C∗
3 −C∗

4
W C1 C2

ξ∗ ι D11 D12
−η∗ −ζ D21 D22

37775 : (9.40)
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−+ ΘΘΘ

−+ +
−−

x(−1)+ x(−1)
− (b)
x−x++

b2b1

a1 a2

−

ΣΣΣ++ −

−

+
−

x(−1)
−x(−1)+
x−x++

b2b1

a2a1

⇔(a)Figure 9.4. (a) The realization for Θ has mixed causality; (b) the realization of thecorresponding Σ is causal.
PROOF The first term in (9.39) is generated by the anticausal state equations(

x− = x(−1)
− W +[a1 b1][ ι

−ζ ]
y− = x(−1)

− [C1 C2]
whereas the last term is generated by(

x(−1)+ = x+V∗ +[a1 b1][ ξ∗

−η∗ ]
y+ = x+[C∗

3 −C∗
4] 2Construction of a J-inner Θ

The central question that has to be resolved now is how and under which conditions
suitable Ci’s and Di j’s can be found such that the candidate realization ΘΘΘ in (9.40) in-
deed corresponds to a J-unitary, even J-inner scattering operator. The latter means that
the corresponding lossless scattering operator Σ is causal, hence has a causal realization
ΣΣΣ. The situation is drawn in figure 9.4.

Our strategy is as follows and uses the knowledge we have of J-inner operators of
mixed type. Suppose that we have found matching Ci’s and Di j’s to make Θ J-lossless,
and that we have computed the corresponding realization ΣΣΣ. We aim at constructing an
inner Σ with a state realization ΣΣΣ 0 that is unitary. It need not be equal to ΣΣΣ, but at least
there must be an invertible state transformation R connecting ΣΣΣ to ΣΣΣ 0. We will work out
how R transforms ΘΘΘ into ΘΘΘ0 (this is not obvious because ΘΘΘ is not a causal realization).
A second observation is that if ΣΣΣ 0 is unitary, its corresponding ΘΘΘ0 is a J-unitary map.
That is to say, if we denote ΘΘΘ0 = [A0

B0 C0
D0 ], then we must have, among others,

A0∗JBA0+B0∗J1B0 = J(−1)B ; (9.41)
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for signature matrices J whose partitioning J = [ I

0
0
−I ] follows the partitioning of ΘΘΘ. We

will show that A0 and B0 are determined only by the known data V , W , ι, η, ξ, ζ, and
the unknown R (i.e., the unknown Ci’s and Di j’s do not enter into A0 and B0). It follows
that (9.41) gives sufficient conditions to compute a diagonal operator P := R∗R, which
specifies R as its Cholesky factor. Once R is known, we know A0 and B0, and it suffices
to complete [A0

B0 ] to a square J-unitary operator to find ΘΘΘ0. This last step is the same as
in section 8.5.

We now work out the details. First, we consider how R transforms ΘΘΘ into ΘΘΘ0. De-
note the transformed state vector by [x0+ x0−], and define R by[x+ x−] = [x0+ x0−]� R11 R12

0 R22

� ; (9.42)

where R11;R22 are square. We have set R21 = 0 because in the end R will only be de-
fined as a factor of R∗R. Substituting (9.42) into the state equations (9.40), we obtain[x0(−1)+ R(−1)

11 x0+R12 + x0−R22] == [x0+R11 x0(−1)+ R(−1)
12 + x0(−1)

− R(−1)
22 a1 b1]26664 V∗

W

ξ∗ ι
−η∗ −ζ

37775
and a similar expression in terms of theCi’s and Di j’s which is not of interest. Rearrang-

ing the terms of this equation to recover the mapping [x0(−1)+ x0−] 7→ [x0+ x0(−1)
− a1 b1],

we obtain[x0(−1)+ x0−]�R(−1)
11 −R(−1)

12 W
0 R22

�= [x0+ x0(−1)
− ]�R11V∗ −R12

0 R(−1)
22 W

�+[a1 b1]� ξ∗ ι
−η∗ −ζ

� ;
that is, the leading block column of ΘΘΘ0 is"

A0
B0 #= 26664 R11V∗ −R12

0 R(−1)
22 W

ξ∗ ι
−η∗ −ζ

37775� R(−1)
11 −R(−1)

12 W
0 R22

�−1 :
The condition (9.41) that this block column is J-isometric now reads�

VR∗
11 0

−R∗
12 W∗R(−1)

22

�
J

�
R11V∗ −R12

0 R(−1)
22 W

�+�
ξ −η
ι∗ −ζ∗

�
J

�
ξ∗ ι

−η∗ −ζ

�= "
R(−1)∗

11 0

−W∗R(−1)∗
12 R∗

22

#
J

�
R(−1)

11 −R(−1)
12 W

0 R22

�
which after some rearrangements becomes"

R(−1)∗
11 0

−W∗R(−1)∗
12 W∗R(−1)∗

22

#"
R(−1)

11 −R(−1)
12 W

0 R(−1)
22 W

#= �
VR∗

11 0
−R∗

12 R∗
22

��
R11V∗ −R12

0 R22

� + �
ξ −η
ι∗ −ζ∗

�
J

�
ξ∗ ι

−η∗ −ζ

� :
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With

P := R∗R = �
R∗

11 0
R∗

12 R∗
22

��
R11 R12
0 R22

�
we find that P satisfies�

I
−W∗

�
P(−1)�I

−W

�= �
V

−I

�
P

�
V∗

−I

�+�
ξ η
ι∗ ζ∗

�
J

�
ξ∗ ι
η∗ ζ

� : (9.43)

P plays the role of “Pick matrix” in the mixed interpolation problem.

Theorem 9.13 The mixed (Nudel’man) interpolation problem in (9.32)–(9.33) has a
strictly contractive solution S if and only if there exists a boundedly invertible, strictly
positive, diagonal operator P satisfying (9.43).

If this is the case, then there exists a J-lossless operator Θ ∈X with mixed-causality
realization of the form (9.40). All S of the form

S = TΘ[SL] ; SL ∈ U ; kSL k< 1

are solutions to the problem.

Equation (9.43) may have more than one solution which satisfies the positivity condi-
tion. In that case there is also more than one Θ which provides solutions to the inter-
polation problem.
PROOF

Step 1: If P exists and P� 0 then there are solutions S. These are given in terms of a
lossless chain scattering matrix Θ as TΘ[SL], in which SL ranges over causal, strictly
contractive operators.

Once P is known, a factorization P = R∗R with R upper triangular gives the state
transformation that makes [A0

B0 ] J-isometric. By theorem 8.17 there exist a comple-
tion by matrices C0 and D0 so that

ΘΘΘ = �
A0 C0
B0 D0 � (9.44)

is a J-unitary state transition matrix mapping [x0+; x0(−1)
− ; a1; b1] to [x0(−1)+ ; x0−; a2; b2].

As a consequence the map

ΣΣΣ 0 : [x0+; x0−; a1; b2] 7→ [x0(−1)+ ; x0(−1)
− ; a2; b1]

is not only well-defined but unitary as well, and hence corresponds to a causal loss-
less system (theorem 6.4). Under the present conditions on the interpolation data,
the realizations for ΣΣΣ 0, ΘΘΘ0 and ΘΘΘ are all minimal. By proposition 9.11, each S =
TΘ[SL] with SL upper and strictly contractive is an interpolant satisfying the interpo-
lation condition (9.32)-(9.33).

Step 2: If there is a strictly contractive solution S, then equation (9.43) has a strictly
positive definite solution P.
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Suppose that we have a strictly contractive S satisfying equations (9.32)-(9.33), or
alternatively (9.34)-(9.35), whose notation we use further on. We claim, following
the Dym-theory as in [DF97], that the matrix

P = P0

��
H1 G1

H2 G2

��
I −S

−S∗ I

��
H∗

1 H∗
2

G∗
1 G∗

2

��
(9.45)

satisfies (9.43). The proof for the entries P11 and P22 parallels the earlier develop-
ments and follows from the observation that

P11 = P0(H1H∗
1 − G1S∗H∗

1 − H1SG∗
1 +G1G∗

1) = P0(G∗
1G1 − H∗

1 H1)
because H1S = G1 +R1 for some R1 ∈ U so that P0(R1G∗

1) = 0. Likewise,

P22 = −P0(G2G∗
2 − H2H∗

2) :
The interesting calculation is on P12 (or its adjoint P21):

P12 = P0(H1H∗
2 − G1S∗H∗

2 − H1SG∗
2 +G1G∗

2) = −P0(H1SG∗
2) (9.46)

since all the other entries are either in ZU or in Z−1L. Elaborating on (9.46) produces

P12 = −P0(Z∗(I −VZ∗)−1ξSζ(I − Z∗W)−1)
and

P(−1)
12 = ZP12Z∗ = −P0((I −VZ∗)−1ξSζ(I − Z∗W)−1Z∗) :

It follows that

VP12 − P(−1)
12 W = −P0

�(I −VZ∗)−1{VZ∗ξSζ − ξSζZ∗W}(I − Z∗W)−1
�= −P0(ξSζ(I − Z∗W)−1 − (I −VZ∗)−1ξSζ) :

But because of (9.34)-(9.35),

P0(Sζ(I − Z∗W)−1) = P0((I −W∗Z)−1ζ∗S∗)∗ = ι

and
P0((I −VZ∗)−1ξS) = P0((I −VZ∗)−1η) = η

the expression simplifies to

VP12 − P(−1)
12 W = −ξι+ηζ (9.47)

which is precisely the “12” term in (9.43). 2
We proceed by showing that the collection of solutions TΘ[SL] to the mixed interpo-

lation problem is complete if the linear map X 7→ Y on D defined by

VX − X(−1)W = Y (9.48)
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is boundedly invertible. In the LTI case the latter would happen (only) when the spectra
of V and W are disjoint. In the time varying case, V and W may be non-square, so there
is more chance for irregular behavior. Conditions on V and W for bounded invertibility
of the fundamental equation (9.48) in the LTV case have not been investigated to our
knowledge.

An interesting way of proving uniqueness is by converting the mixed interpolation
problem to an equivalent one-sided problem, using the conjugation ideas of the previ-
ous chapter.Conjugation of the mixed interpolation problem
In this subsection we shall convert the two sided interpolation problem to a one-sided
problem of the same total size, under the additional conditions

(1) (V;ξ;η) defines a regular LIP,

(2) the linear map (9.48), i.e., X 7→ Y : VX − X(−1)W = Y , has a bounded inverse.

These conditions are also sufficient to assure uniqueness of the solution provided by
theorem 9.13.

If the original LIP problem with (V;ξ;η) is degenerate, then by proposition 9.8, any
solution must be of the form S =US0 where U is an inner function defined by the un-
reachable part in [V∗

η∗ ], while S0 is the solution of the deflated problem given by (9.26).
If (V;ξ;η) is regular, then so is the deflated interpolation problem with data (V 0;ξ0;η0).
Moreover, the derived map

V 0X − X(−1)W = Y

is also boundedly invertible if the original map is (the verification is straightforward).
Hence we may just as well assume that the original interpolation problem was non-
degenerate to start with. Now, let U1 and U2 be inner operators with realizations

U1 = �
V∗ C∗

U1

ξ∗ D∗
U1

� ; U2 = �
V∗ C∗

U2

η∗ D∗
U2

� ;
which define as before the conjugate of the LIP(V;ξ;η) as a right interpolation problem(CU1 − S0CU2)(Z −V)−1 ∈ U : (9.49)

By proposition 9.9, we know that S is a solution to LIP(V;ξ;η) if and only if

S0 =U∗
1 SU2 (9.50)

is a solution to (9.49). Propagation of S0 to the second interpolation condition (ι −
Sζ)(Z −W)−1 ∈ U produces (ι −U1S0U∗

2 ζ)(Z −W)−1 ∈ U : (9.51)

This problem does not quite look like an interpolation problem, but it turns out that
(9.51) can be converted to a normal (right-) interpolation condition, if the bounded in-
vertibility of (9.48) holds. The remainder of this section is devoted to proving that there
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exists interpolation data (W; ι0;ζ0) so that (9.51) is equivalent to the interpolation con-
dition (ι0 − S0ζ0)(Z −W)−1 ∈ U (9.52)

on the transformed scattering function S0.
Lemma 9.14 If the linear map (9.48) is boundedly invertible, then the equations(U1ι0 − ι)(Z −W)−1 ∈ U (9.53)(U2ζ0 − ζ)(Z −W)−1 ∈ U (9.54)

have unique diagonal solutions ι0 and ζ0.
PROOF Let’s concentrate on (9.53) — the proof for the second one will be similar.
Premultiplying it with U∗

1 we obtain the condition for ι0:
ι0(Z −W)−1 −U∗

1 ι(Z −W)−1 =U∗
1Y (9.55)

for some Y ∈ U . Since the left hand side of this equation is in Z∗L, we have that the
right hand side is actually of the formCU(Z −V)−1D for some diagonal D (it is obtained
by projecting it on Z∗L.) Now,

U∗
1 ι(Z −W)−1 = DU1ι(Z −W)−1 +CU1(Z −V)−1ξι(Z −W)−1= [DU1ι −CU1X](Z −W)−1 +CU1(Z −V)−1X(−1)

in which X is the unique solution of

VX − X(−1)W = ξι :
Hence, (9.53) will be satisfied if and only if(ι0 − DU1ι+CU1X)(Z −W)−1 +CU1(Z −V)−1(X(−1) − D) = 0 :
We find a solution if we choose D = X(−1) and

ι0 = DU1ι −CU1 X :
We now have to show that the solution found is unique. This we do by an invocation
of lemma 9.10. Equation (9.4) has the form

α(Z −W)−1 +CU1(Z −V)−1β = 0

for some diagonals α and β which we must show to be necessarily zero. Postmultiply-
ing with (Z −W) yields

α+CU1(Z −V)−1β(Z −W) = 0

which is of the form required by the lemma (the pair (V;CU1) is reachable by construc-
tion). We conclude that (Z −V)−1β(Z −W) ∈ U
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but it cannot be anything else than a diagonal, say α1, due to the form of the left member
of the inclusion. Hence

β(Z −W) = (Z −V)α1

from which it follows immediately that α1 = β(1), and

Vβ(1) − βW = 0 :
This equation is now of the form (9.48) which we assumed to have a unique solution,
β(1) = 0 in this case. Hence also α1 = 0 and following also α =CU1 α = 0. This shows
uniqueness.

Likewise, the second equation will be solved by ζ0 = DU2ζ −CU2Y in which VY −
Y (−1)W = ηζ, which, again, has a unique solution by assumption. 2

Based on the lemma we can now show that (9.51) is equivalent to the interpolation
condition (9.52). The easiest way to see this is via an adaptation of the properties of
the W-transform to its dual. Mutatis mutandis, we write the right version of the W-
transform as ·∨ so that we can write (9.53) as� (U1ι0)∨(W) = ι(U2ζ0)∨(W) = ζ

while the interpolation problem to be shown is expressed by(S0ζ0)∨(W) = ι0 :
Using the chain rule, which in this case reads (AB)∨(W) = (A(B)∨(W))∨(W), the equa-
tion U1S0ζ0 = SU2ζ0 and the lemma, we obtain the following chain of equivalences:(S0ζ0)∨(W) = ι0 ⇔ (U1(S0ζ0)∨(W))∨(W) = ι

⇔ (U1S0ζ0)∨(W) = ι
⇔ (SU2ζ0)∨(W) = ι
⇔ (S(U2ζ0)∨(W))∨(W) = ι
⇔ (Sζ)∨(W) = ι

which is the equivalence to be proven. We have established the following theorem:

Theorem 9.15 Consider the two-sided interpolation problem: find S ∈ U , kSk ≤ 1,
such that (Z −V)−1(ξS − η) ∈ U(Sζ − ι)(Z −W)−1 ∈ U :
Suppose that (V;ξ;η) defines a non-degenerate and regular left interpolation problem,
and that the linear map given by (9.48), i.e., X 7→ Y : VX − X(−1)W = Y , is boundedly
invertible.

Then the interpolation problem is equivalent to a one-sided interpolation problem
given by the interpolation conditions (9.49)–(9.52), viz.(CU1 − S0CU2)(Z −V)−1 ∈ U(ι0 − S0ζ0)(Z −W)−1 ∈ U



260 TIME-VARYING SYSTEMS AND COMPUTATIONS
in the sense that the solution of one produces a solution of the other and vice-versa,
the relation being given by (9.50). In particular, the Θ-matrix defined in theorem 9.13
is unique except for a diagonal J-unitary right factor, and provides a complete set of
solutions.

Theorem 9.15 settles the uniqueness question for the case that the double-sided in-
terpolation problem has a non-degenerate LIP part, and the linear map (9.48) is non-
singular. It is easy to relax the condition of non-degeneracy. Indeed, if the LIP under
consideration is regular but degenerate, then we know, by proposition 9.9, that we can
handle the degenerate part of the interpolation problem separately, whose solution is
essentially unique and described by a single inner function U. The overall solution
will then be characterized by the cascade

Θ = �
U

I

�
Θ0

in which Θ0 solves a reduced, but now non-degenerate (mixed-mode) interpolation prob-
lem. If the other condition, namely the non-singularity of equation (9.48), is satisfied,
then uniqueness is again assured. In practice, it will always pay to take the degener-
ate part of an interpolation problem out, since its solution is so much simpler than the
general solution.9.7 THE FOUR BLOCK PROBLEM
An important application and illustration of interpolation theory is the solution of con-
trol problems for optimal sensitivity. Let us assume that we are given a block-partitioned,
strictly anticausal transfer operator

T = �
T11 T12

T21 T22

�
∈ Z∗L : (9.56)

The question is to find R ∈ U such that� T11 +R T12
T21 T22

�< 1 ; (9.57)

and to describe all possible solutions.
This problem is known as the “four block problem”, and it is a prototype problem

for a variety of questions in optimal control and game theory. It has received quite
some attention in the literature, see e.g., [GL95, CSK94, IO96]. In our present formal-
ism it has a simple and straightforward solution. We follow roughly the treatment of
[CSK94] adapted to the powerful interpolation results described earlier in this chap-
ter. The problem is amenable to various interesting extensions, but we limit ourselves
to the standard, basic case. It is an extension of the Nehari problem in section 10.6 to
block-partitioned matrices for which only the (1,1) block is allowed to be modified.
Our treatment here uses an ancillary result from the orthogonal embedding theory of
chapter 12, but we give it here nonetheless because of its strong connection to classical
interpolation theory. There is also a connection to the Schur-Takagi type interpolation
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theory, and we give a discussion of that connection and a resulting algorithm for the
one-block case in section 10.6.

We will assume that T is locally finite, and that it has a left inner coprime factoriza-
tion (cf. theorem 6.8):

T := B(Z −V)−1C =U∗∆ (9.58)

with ∆ ∈ U and U inner, U∗ = DU +B(Z −V)−1CU for some DU ; CU which make U
inner. Inserting (9.57) and (9.58) in (9.56) after premultiplication with U, we find that
(9.57) is equivalent to � ∆11 +U11R ∆12

∆21 +U21R ∆22

�< 1: (9.59)

A necessary condition is certainly k[∆12
∆22

]k< 1. Let us write

X := �
∆11 +U11R
∆21 +U21R

� ; H := �
∆12

∆22

�
and define G to be the left outer factor in U satisfying the “embedding” relation

GG∗ = I − HH∗ :
(Orthogonal embedding is treated in detail in chapter 12, viz. theorem 12.14.) Equation
(9.59) transforms to I − HH∗ − XX∗ = GG∗ − XX∗ � 0 and hence we must have

XX∗ � GG∗:
This inequality implies that there exists S ∈ U , kSk< 1, such that

X = GS (9.60)

(see e.g., theorem 12.6 due to Douglas [Dou66]). In particular, since G is left outer, it
will have a left pseudoinverse G† on a dense subset of U , and we can take S := G†X.
Premultiplying (9.60) with U∗ we find�

T11

T21

�+�
R
0

�=U∗GS (9.61)

in which R ∈ U is unknown. A necessary condition for (9.61) to be satisfied is

B(Z −V)−1C1 = P0(U∗GS) ; (9.62)

in which C is decomposed as C = [C1 C2] conformal to the block structure of T . This
condition is also sufficient. Indeed, if it is satisfied and X := GS, then R follows from
R = [I 0]U∗GS − T11 ∈ U , and [0 I]U∗X = T21 automatically. It turns out that (9.62)
actually defines a left interpolation problem. To see this we evaluate the right hand
side:

P0(U∗GS) = P0[B(Z −V)−1CUGS]= BP0[(Z −V)−1CUGS]= B(Z −V)−1(CUGS)∧(V) : (9.63)
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From the chain rule for the W-transform of section 9.1, we have(CUGS)∧(V) = ((CUG)∧(V)S)∧(V) ;
hence writing η :=C1 and ξ = (CU G)∧(V), we find that

P0(U∗GS) = (Z −V)−1[η − ξS] ∈ U : (9.64)

Hence a necessary and sufficient condition for the solution of the (suboptimal) four
block problem is that S ∈ U , kSk < 1 and S satisfies the left interpolation condition
(9.64), in which the “data” (V;ξ;η) comes from the original problem. A necessary and
sufficient condition for the existence of a solution is then that the Gramian

P0((Z −V)−1[ξξ∗ − ηη∗](Z∗ −V∗)−1)� 0 :
The reachability pair (V∗; [ ξ∗

−η∗ ]) defines a J-inner Θ-matrix, and all possible solutions
for S are given by S = TΘ[SL] with SL ∈ U and strictly contractive. With a little more
effort one shows that all solutions of the non-strict problem are given by the same ho-
mographic transformation, but now with the condition kSLk ≤ 1.



10 HANKEL-NORM MODELREDUCTION

In the previous chapters, we assumed that a given upper operator or matrix T has a
computational model of a sufficiently low order to warrant the (possibly expensive)
step of deriving its state realization. Once a state model is known, we showed how
multiplication by T or its inverse can be done efficiently, using the model rather than
the entries of T . We also derived some useful factorizations, such as the external and
inner-outer (∼ QR) factorization. A spectral factorization/Cholesky factorization result
is given in chapter 13.

However, if the ranks of the sequence of Hankel matrices of T are not sufficiently
low, then the system order of the computational model will be large. This can already
happen if T is modified only slightly, e.g., caused by numerical imprecisions, as the
rank of a matrix is a very sensitive (ill-conditioned) parameter. Hence one wonders
whether, for a given T ∈ U , there is an approximating system Ta close to it such that Ta

has a low system order. Such an approximation is useful also when T is known exactly,
but if for analysis purposes one would like to work with a low complexity, yet accurate
approximating model.

In this chapter, we derive a suitable model approximation theory, using a norm which
generalizes the Hankel norm of classical LTI systems. We obtain a parametrization of
all solutions of the model order reduction problem in terms of a fractional represen-
tation based on a non-stationary J-unitary operator constructed from the data. In the
stationary case, the problem was solved by Adamyan, Arov and Krein in their paper
on Schur-Takagi interpolation [AAK71]. Our approach extends that theory to cover
general, non-Toeplitz upper operators or matrices. 263
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One standard way to find an approximantof a matrix (A, say) goes via the singular value
decomposition (SVD). This decomposition yields a diagonal matrix of singular values.
Setting those singular values that are smaller than some tolerance level ε equal to zero
produces an approximant Â such that kA− Âk< ε and rank(A) is equal to the remaining
number of non-zero singular values. One can show that the approximant thus obtained
is optimal in the operator norm (matrix 2-norm), and also in the Hilbert-Schmidt norm
(matrix Frobenius norm). Since the state complexity of the operator/matrix T is given
by the rank sequence of HT rather than the rank of T itself (corollary 5.7), it seems
logical to approximate each Hk by some Ĥk of lower rank. However, the Hankel ma-
trices have many entries in common, and approximating one of them by a matrix of low
rank might make it impossible for all other Ĥk to acquire a low rank: a local optimum
might prevent a global one. In this respect, the approximation error norm used is also
of importance: the Hilbert-Schmidt (Frobenius) norm is rather strong:

min
rank Â≤d

kA − ÂkHS

has only one (unique) solution Â, obtained by setting all but the first d singular values
equal to zero, and keeping the first d untouched. The operator norm approximation
problem

min
rank Â≤d

kA − Âk
has many solutions, since only the largest singular value of the difference E = A − Â is
minimized, and d − 1 others are free, as long as they remain smaller. For sequences of
Hankel matrices, the extra freedom in each of the Ĥk can be used to reduce the rank of
the other Hk. The problem can be described in two ways: by

min
rank Ĥk≤dk

kHk − Ĥk k ; (for all k) ;
which is the model error reduction problem for given target ranks dk, and by

min{rankĤk : kHk − Ĥk k ≤ εk} ; (for all k) ; (10.1)

the model order reduction problem for given tolerance levels εk. The latter problem
description is the one which we take up in this chapter. The error criterion (10.1) leads
to the definition of the Hankel norm, which is a generalization of the Hankel norm for
time-invariant systems: kT kH = kHT k : (10.2)kT kH is the supremum over the operator norm of each individual Hankel matrix Hk. It
is a reasonably strong norm: if T is a strictly upper triangular matrix and kT kH ≤ 1, then
each row and column of T has vector norm smaller than 1. The main approximation
theorem that we derive can be stated as follows.

Theorem 10.1 Let T ∈ U , and let Γ = diag(γi) ∈ D be a Hermitian operator. Let Hk

be the Hankel operator of Γ−1T at stage k, and suppose that an ε > 0 exists such that,
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for each k, none of the singular values of Hk are in the interval [1−ε;1+ε]. Then there
exists a strictly upper triangular operator Ta with system order at stage k at most equal
to the number of singular values of Hk that are larger than 1, such thatkΓ−1(T − Ta)kH ≤ 1 : (10.3)

The error tolerance diagonal Γ parametrizes the problem. As ε in (10.1), it can be used
to influence the local approximation error: if Γ= γ I, then kT −TakH ≤ γ and the approx-
imation error is uniformly distributed over T . If one of the γi is made larger than γ, then
the error at the i-th row of T can become larger also, which might result in an approxi-
mant Ta of lower system order. Hence Γ can be chosen to yield an approximant that is
accurate at certain points but less tight at others, and whose complexity is minimal.

Although we have seen that, given the same tolerance level, the operator norm al-
lows more freedom than the Hilbert-Schmidt norm, the computational task still seems
formidable: there is an infinity of minimization problems, all coupled to each other. It
is remarkable that the problem allows a clean and straightforward solution (as we show
in this chapter), which can even be obtained in a non-iterative way. The clue is in the
fact that the condition (10.3) translates to the computation of contractive operators E,
which, as we saw in chapter 8, are linked to the computation of a J-unitary operator
Θ, “loaded” by a contractive operator SL. This is the way that J-unitary systems enter
into the picture. The general solution using this approach was originally published in
[DvdV93], and specializations to finite matrices were made in [vdVD94b].

Hankel norm approximation theory originates as a special case of the solution to the
Schur-Takagi interpolation problem in the context of complex function theory. Sup-
pose that a number of complex values are given at a set of points in the interior of the
unit disc of the complex plane, then this problem consists in finding a complex func-
tion (a) which interpolates these values at the given points (multiplicities counted), (b)
which is meromorphic with at most k poles inside the unit disc, and (c) whose restric-
tion to the unit circle (if necessary via a limiting procedure from inside the unit disc)
belongs to L∞ with minimal norm. The Schur-Takagi problem can be seen as an ex-
tension problem whereby the “conjugate-analytic” or anti-causal part of a function is
given, and it is desired to extend it to a function which is meromorphic with at most k
poles inside the unit disc, and belongs to L∞ with minimal norm. (Translated into our
context, the objective would be to determine an extension of an operator T ∈LZ−1 to an
operator T 0 ∈X , such that T 0 is contractive and has an upper part with state dimension
sequence smaller than a given sequence.) The L∞ problem was studied by Adamjan,
Arov and Krein (AAK)[AAK71], based on properties of the SVD of infinite dimen-
sional Hankel matrices with Hankel structure, and associated approximation problems
of bounded analytical functions by rational functions. (See e.g., [CC92] for a more
recent introduction to this class of problems.)

It was remarked by Bultheel and Dewilde [BD80] and subsequently worked out by
a number of authors (Kung-Lin [KL81], Genin-Kung [GK81a], Ball-Helton [BH83],
Glover [Glo84]) that the procedure of AAK could be utilized to solve the problem of
optimal model-order reduction of a dynamical time-invariant system. The computa-
tional problem with the general theory is that it involves an operator which maps a
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Hilbert space of input sequences to a Hilbert space of output sequences, and which
is thus intrinsically non-finite. In [BD80] it was shown that the computations are fi-
nite if one assumes the context of a system of finite (but possibly large) degree, i.e.,
an approximant to the original system of high order. The resulting computations in-
volve only the realization matrices {A;B;C;D} of the approximating system and can
be done using classical matrix calculus. They can also be done in a recursive fash-
ion, see Limebeer-Green [LG90] as a pioneering paper in this respect. The recursive
method is based on the interpolation theory of the Schur-Takagi type.

For time-invariant systems, the Hankel-norm model reduction method may be com-
pared with another popular method for model reduction, known as the balanced model
reduction method. In this method, a reduced-order model is obtained by setting all
small singular values of the Hankel matrix equal to zero, and using the resulting trun-
cated column space and row space in the construction of a state model [KL81]. Alterna-
tively, one may start from a high-order balanced model (one for which the reachability
and observability Gramians are diagonal and equal to each other), and delete all states
variables that correspond to small entries in the Gramians [PS82, Moo81]. These meth-
ods also give good approximation results, although no tight upper bounds on the mod-
eling error have been derived. An extensive study on error bounds was made by Glover
[Glo84], and by Glover-Curtain-Partington [GCP88] for the infinite-dimensional time-
invariant case.Numerical example
As an example of the use of theorem 10.1, we consider a matrix T and determine an
approximant Ta. Let the matrix to be approximated be

T = 26666664 0 :800 :200 :050 :013 :003
0 0 :600 :240 :096 :038
0 0 0 :500 :250 :125
0 0 0 0 :400 :240
0 0 0 0 0 :300
0 0 0 0 0 0

37777775 :
The position of the Hankel matrix H4 is indicated. Taking Γ = 0:1 I, the non-zero sin-
gular values of the Hankel operators of Γ−1T are

H1 H2 H3 H4 H5 H6

8:26 6:85 6:31 5:53 4:06
0:33 0:29 0:23

0:01

Hence T has a state-space realization which grows from zero states (i = 1) to a maxi-
mum of 3 states (i= 4), and then shrinks back to 0 states (i> 6). The number of Hankel
singular values of Γ−1T that are larger than one is 1 (i = 2; · · · ;6). This is to correspond
to the number of states of the approximant at each point. Using the technique detailed
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in this chapter, we obtain

Ta = 26666664 0 :790 :183 :066 :030 :016
0 0 :594 :215 :098 :052
0 0 0 :499 :227 :121
0 0 0 0 :402 :214
0 0 0 0 0 :287
0 0 0 0 0 0

37777775
with non-zero Hankel singular values (scaled by Γ)

H1 H2 H3 H4 H5 H6

8:15 6:71 6:16 5:36 3:82

The number of non-zero singular values indeed corresponds to the number of Hankel
singular values of Γ−1T that are larger than 1. The modeling error is

T − Ta = 26666664 0 :010 :017 −:016 −:017 −:013
0 0 :006 :025 −:002 −:014
0 0 0 :001 :023 :004
0 0 0 0 −:002 :026
0 0 0 0 0 :013
0 0 0 0 0 0

37777775
and indeed, the Hankel norm of Γ−1(T − Ta) is less than 1:kΓ−1(T − Ta)kH = sup{0:334; 0:328; 0:338; 0:351; 0:347} = 0:351

The realization algorithm (algorithm 3.9) yields as realization for T

T1 = "
· ·

−:826 0

#
T2 = " :246 −:041 −:968

−:654 −:00 0

#
T3 = 264 :397 −:044 :000 −:917:910 :140 :040 :388

−:573 :00 :00 0

375 T4 = 26664 :487 :037 −:873:853 −:237 :465:189 :971 :147

−:466 :00 0

37775
T5 = 264 −:515 −:858:858 −:515:300 0

375 T6 = "
· 1

· 0

# :
A realization of the approximant is determined via algorithm 10.5 in section 10.3 as

Ta;1 = "
· ·

−:993 0

#
Ta;2 = " :293 −:795

−:946 0

#
Ta;3 = " :410 −:629

−:901 0

#
Ta;4 = " :525 −:554

−:837 0

#
Ta;5 = "

−:651 −:480:729 0

#
Ta;6 = "

· :393

· 0

# :
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(a) Figure 10.1. Computational scheme (a) of T and (b) of Ta.
The corresponding computational schemes are depicted in figure 10.1, to show the ef-
fect that a small change in T can lead to a significant reduction in the complexity of the
computations.Hankel norm
As mentioned in the introduction, we compute approximants which are optimal in the
Hankel norm, defined as kT kH = kHT k :
It is a norm on U , a semi-norm on X . Since this is not such a familiar norm as, for
example, the operator norm of T , we first determine its relation to the latter. The Hankel
norm can also be compared to another norm, which we call for simplicity the diagonal
2-norm. Let Ti be the i-th row of a block matrix representation of T ∈ X , then

D ∈D : kDkD2 = kDk= supi kDi k;
T ∈X : kT k2D2 = kP0(TT∗)kD2 = supi kTiT∗

i k :
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For diagonals, it is equal to the operator norm, but for more general operators, it is the
supremum over the `2-norms of each row of T .

Proposition 10.2 The Hankel norm satisfies the following ordering:

T ∈ X : kT kH ≤ kT k (10.4)

T ∈ ZU : kT kD2 ≤ kT kH : (10.5)

PROOF The first norm inequality is proven bykT kH = supu∈L2Z−1;kukHS≤1 kP(uT)kHS

≤ supu∈L2Z−1;kukHS≤1 kuT kHS

≤ supu∈X2;kukHS≤1 kuT kHS = kT k :
For the second norm inequality, we first provekT k2D2 ≤ supD∈D2;kDkHS≤1 kDTT∗D∗ kHS :
Indeed, kT k2D2 = kP0(TT∗)k2D2= supD∈D2;kDkD2≤1 kDP0(TT∗)D∗ kD2= supD∈D2;kDkHS≤1 kDP0(TT∗)D∗ kHS

≤ supD∈D2;kDkHS≤1 kDTT∗D∗ kHS :
Then (10.5) follows, with use of the fact that T ∈ ZU , bykT k2D2 ≤ supD∈D2;kDkHS≤1 kDTT∗D∗ kHS= supD∈D2;kDkHS≤1 kDZ∗TT∗ZD∗ kHS= supD∈D2;kDkHS≤1 kP(DZ∗T) [P(DZ∗T)]∗ kHS

≤ supu∈L2Z−1;kukHS≤1 kP(uT) [P(uT)]∗ kHS= kT k2
H : 2

We see that the Hankel norm is not as strong as the operator norm, but is stronger
than the row-wise uniform least square norm.10.2 APPROXIMATION VIA INDEFINITE INTERPOLATIONApproximation recipe
In the present section we outline a procedure to obtain a reduced-order approximant,
and put the various relevant facts in perspective. Details are proven in subsequent sec-
tions.

Let T ∈ U be a given bounded, locally finite, strictly upper operator. The decision
to assume that T is strictly upper is made for convenience and is without serious con-
sequences: D = P0(T) has no influence on the Hankel (semi-)norm, so that there are
no conditions on the D operator of the approximant. Let Γ ∈D be a diagonal and Her-
mitian operator. As discussed in the introduction, the objective is to determine an op-
erator Ta ∈ U such that kΓ−1(T − Ta)kH ≤ 1. Instead of working with Ta directly, we
look for a bounded operator T 0 ∈ X such thatkΓ−1(T − T 0)k ≤ 1 ; (10.6)
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and such that the strictly upper part of T 0 has state-space dimensions of low order —
as low as possible for a given Γ. Let Ta be the strictly causal part of T 0. Proposition
10.2 showed that kΓ−1(T − Ta)kH = kΓ−1(T − T 0)kH

≤ kΓ−1(T − T 0)k ≤ 1 ; (10.7)

so that Ta is a Hankel-norm approximant of T (parametrized by Γ) whenever T 0 is an
operator-norm approximant. T 0 can be viewed as an extension of Ta which is such thatkΓ−1(T − Ta)kH ≤ kΓ−1(T − T 0)k. A generalization of Nehari’s theorem to the present
setting would state that infkE k over all possible extensions E ∈X of a given part Ea ∈U actually equals kEa kH (see section 10.6).

The construction of an operator T 0 satisfying (10.6) consists of three steps, speci-
fied in the following lemma. (The definitions and notation in this lemma will be kept
throughout the rest of the section.)

Lemma 10.3 (recipe for a hankel-norm approximant) Let T ∈U(M;N ) be strictly
upper, and let Γ ∈D(M;M) be a given diagonal Hermitian operator. Then, provided
the indicated factorizations exist, an operator T 0 ∈ X such that kΓ−1(T − T 0)k ≤ 1 is
obtained by performing the following steps:

1. an external factorization (inner-coprime factorization; theorem 6.8):

T = ∆∗U (U;∆ ∈ U ;U unitary) ; (10.8)

2. a J-inner coprime factorization (corollary 8.18):[U∗ − T∗Γ−1]Θ = [A0 − B0] ∈ [U U ] (Θ ∈ U ; J-unitary) ; (10.9)

3. with a block-decomposition of Θ as in (8.5),

T 0∗ = B0Θ−1
22Γ : (10.10)

PROOF If the factorizations exist, then Θ22 is boundedly invertible so that Σ12 = −Θ12Θ−1
22

exists and is contractive (theorem 8.2). From (10.9) we have B0= −U∗Θ12+T∗Γ−1Θ22 :
Substitution of (10.10) leads to

T 0∗Γ−1 = T∗Γ−1 −U∗Θ12Θ−1
22= T∗Γ−1 −U∗Σ12

and it follows that (T∗ − T 0∗)Γ−1 = −U∗Σ12. Because Σ12 is contractive and U unitary,k(T∗ − T 0∗)Γ−1 k = k −U∗Σ12 k= kΣ12 k ≤ 1 ;
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so that T 0 = �

B0Θ−1
22Γ

�∗
is indeed an approximant with an admissible modeling error.2

In anticipation of a proof of theorem 10.1, it remains to show that the strictly upper
part Ta of T 0 has at most the specified number of states, and to verify the relation with
the Hankel singular values of Γ−1T . This is done in the remaining part of this section.
The definition of T 0 in (10.10) can be generalized by the introduction of a contractive
operator SL that parametrizes the possible approximants, which is the subject of section
10.4. The crucial step in the procedure is step 2. The computation of Θ can be viewed
as the solution of an interpolation problem

U∗[I S]Θ ∈ [U U ] ; S = −UT∗Γ−1 = −∆Γ−1 ; (10.11)

where the interpolation subspace is determined by U. If Θ−1
22 ∈ U , then an exact repre-

sentation of S in Θ is obtained as S = −Θ12Θ−1
22. In this case, the interpolation problem

is definite: the relevant J-Gramian is positive definite, which happens if Γ−1T is strictly
contractive. In addition, T 0∗ = B0Θ−1

22Γ is upper, and the approximant Ta is zero, which
matches one’s expectation in view of kΓ−1T k< 1. If Γ−1T is not contractive then Θ−1

22
is not upper, and this is the situation which leads to approximations and which is con-
sidered in this chapter.Construction of Θ
We now determine sufficient conditions on a state-space realization {A;B;C;0} of T
for the existence of the two factorizations in the above lemma. Assuming `A < 1, the
external factorization in the first step can be computed from the given realization if
it is uniformly observable (theorem 6.8). Without loss of generality, we can (and do)
assume that such a realization has been normalized, so that AA∗ +CC∗ = I. Then, a
realization for the inner factor U of the external factorization is given by

U = �
A C

BU DU

�
where BU and DU are obtained by locally completing [Ak Ck] to a square and unitary
matrix.

The second step is to derive expressions for Θ to satisfy the interpolation condition
(10.9). [U∗ − T∗Γ−1]∗ has a realization�

U
−Γ−1T

� = �
DU

0

� + �
BU

−Γ−1B

�
Z(I − AZ)−1C ;

so that, according to corollary 8.18, there is a J-unitary operator Θ mapping [U∗ −T∗Γ−1]
to upper if the relevant J-Gramian Λ := ΛJ (as defined in (8.10)) is boundedly invert-
ible. With the above realization of [U∗ −T∗Γ−1]∗, Λ satisfies the J-Lyapunov equation
(cf. equation (8.36))

Λ(−1) = A∗ΛA+B∗
UBU − B∗Γ−2B :

Substituting the relation A∗A+B∗
UBU = I yields I − Λ(−1) = A∗(I − Λ)A+B∗Γ−2B.

With the additional definition of M = I − Λ, it is seen that M satisfies

M(−1) = A∗MA+B∗Γ−2B
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so that M is the reachability Gramian of the given realization of Γ−1T . It follows that
the J-inner coprime factorization exists if I − M is boundedly invertible, that is, if 1 is
a regular point for the operator M [AG81]. With M known (and hence Λ), Θ is deter-
mined along the lines of the proof of theorem 8.17. In particular, the input state space
of Θ is defined by H(Θ) = DB2 (I − Z∗A∗)−1Z∗

h
B∗

U B∗Γ−1
i : (10.12)

Let Λ = R∗JBR be a factorization of Λ, then�
AΘ
BΘ

� = 24 R
I

I

3524 A
BU

Γ−1B

35R−(−1)
is J-isometric, and a J-unitary realization for Θ is of the form

ΘΘΘ = �
AΘ CΘ
BΘ DΘ

� = 24 R
I

I

3524 A C1 C2

BU D11 D12

Γ−1B D21 D22

3524 R−(−1)
I

I

35
(10.13)

and is obtained by completing AΘ and BΘ with certain diagonal operators CΘ and DΘ
to a square J-unitary matrix. Corollary 8.18 claims that this is always possible under
the present conditions (Λ boundedly invertible), and the procedure to do so is given in
lemma 8.16. Since the realization ΘΘΘ is J-unitary, the corresponding transfer operator
Θ is also J-unitary and has the specified input state space. The third step in lemma 10.3
is always possible (cf. theorem 8.2).

We have proven the following lemma:

Lemma 10.4 Let T ∈ U(M;N ) be a strictly upper locally finite operator, with out-
put normal realization {A;B;C;0} such that `A < 1, and let Γ be a Hermitian diagonal
operator. If the solution M of the Lyapunov equation

M(−1) = A∗MA+B∗Γ−2B (10.14)

is such that Λ = I −M is boundedly invertible, then the conditions mentioned in lemma
10.3 are satisfied: there exists an external factorization T = ∆∗U, a J-unitary block
upper operator Θ such that [U∗ − T∗Γ−1]Θ ∈ [U U ] ;
and an operator T 0 ∈X such that kΓ−1(T − T 0)k ≤ 1, according to the recipe in lemma
10.3.

Let M, N and B be the input, output and state space sequences of T and its real-
ization, and letMU be the input space sequence for U: its index sequence is specified
by

#MU = #B(−1) − #B+#N :
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In: T (model in output normal form for a strictly

upper matrix T)
Γ (approximation parameters)

Out: ΘΘΘ (realization for Θ satisfying (10.9))

M1 = [ · ]
R1 = [ · ]
JB1 = [ · ]
for k = 1; · · · ;n266666666666666666666666664

Mk+1 = A∗
kMkAk +B∗

kΓ−2
k Bk

R∗
k+1JBk+1Rk+1 := I − Mk+1[BU;k DU;k] = [Ak Ck]⊥�
α
β

� = 264 RkAk

BU;k
Γ−1

k Bk

375R−1
k+1�

c
d

� = �
JBk α
J1β

�⊥

r∗J2r := [c d]∗� JBk

J1

��
c
d

��
γ
δ

� = �
c
d

�
r−1

ΘΘΘk = �
α γ
β δ

�
endFigure 10.2. Inde�nite interpolation: step 1 and 2 of lemma 10.3.

The signature JB of Λ determines a decomposition ofB intoB=B+×B−. Let Θ∗J1Θ=
J2, ΘJ2Θ∗ = J1, where J1 and J2 are shorthand for J1 = JMΘ and J2 = JNΘ . The space
sequenceMΘ is equal to MΘ =MU ×M, and the corresponding signature operator
J1 follows this partitioning. The dimensions of the positive and negative parts of the
output sequence space of Θ, and hence the signature J2, are then given by inertia rules
as (cf. corollary 8.18)

#(NΘ)+ = #B+ − #B(−1)+ +#MU

#(NΘ)− = #B− − #B(−1)
− +#M

Algorithm 10.2 summarizes the construction in lemma 10.4 and can be used to com-
pute Θ satisfying equation (10.9). The inner factor U of T is computed en passant.
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We continue by establishing the link between the Lyapunov equation (10.14) and the
Hankel operator of Γ−1T .

Lemma 10.5 Let T ∈ U be a locally finite strictly upper operator, with u.e. stable re-
alization {A;B;C;0} in output normal form. Let Hk be the Hankel operator of Γ−1T
at stage k, and suppose that an ε > 0 exists such that, for each k, none of the singular
values of Hk are in the interval [1 − ε;1+ ε]. Let Nk be equal to the number of singular
values of Hk that are larger than 1. Then the solution M of the Lyapunov equation

M(−1) = A∗MA + B∗Γ−2B (10.15)

is such that Λ = I − M is boundedly invertible and has a signature operator JB with Nk

negative entries at point k.

PROOF The solutions of the two Lyapunov equations associated to the realization of
Γ−1T (corresponding to the reachability and observability Gramians),

M(−1) = A∗MA+B∗Γ−2B
Q = AQ(−1)A∗ +CC∗

may be expressed in terms of the reachability and observability operators of Γ−1T ,C := 26664 (Γ−1B)(+1)(Γ−1B)(+2)A(+1)(Γ−1B)(+3)A(+2)A(+1)
...

37775 O := h
C AC(−1) AA(−1)C(−2) · · ·

i
as M = C∗C ; Q =OO∗ : The Hankel operator Hk of Γ−1T at time instant k satisfies the
decomposition Hk = CkOk : Hence

HkH∗
k = CkOkO∗

kC∗
k :

The state realization of T is assumed to be in output normal form, so that Qk =OkO∗
k =

I. With the current locally finiteness assumption, the non-zero eigenvalues of HkH∗
k =CkC∗

k are the same as those of C∗
kCk = Mk. In particular, the number of singular values

of Hk that are larger than 1 is equal to the number of eigenvalues of Mk that are larger
than 1. Writing Λk = I −Mk, this is in turn equal to the number of negative eigenvalues
of Λk. 2

Figure 10.3 shows a simple instance of the application of the theory developed in
this section, emphasizing the dimensions of the input, output and state space sequences
related to the Θ operator. We assume in the figure that one singular value of the Hankel
operator of Γ−1T at time 1 is larger than 1, so that the state signature JB of Θ has one
negative entry in total. We know from equation (8.20) that the negative entries of JB
determine the number of upward arrows in the diagram of the unitary scattering op-
erator ΣΣΣ. We show, in the following subsection, that this number also determines the
number of states of the Hankel-norm approximant Ta of T .
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(a) (b) (c)Figure 10.3. (a) State-space realization scheme for T and (b) for U. (c) State-spacerealization scheme for a possible Θ, where it is assumed that one singular value of theHankel operator of Γ−1T at time 1 is larger than 1, and (d) for the corresponding scatteringoperator Σ.Complexity of the approximant
At this point we have proven the first part of theorem 10.1: we have constructed a J-
unitary operator Θ and from it an operator T 0 with strictly upper part Ta which is a
Hankel-norm approximant of T . It remains to verify the complexity assertion, which
stated that the sequence of dimensions of the state space of Ta is at most equal to the
sequence N: the number of Hankel singular values of Γ−1T that are larger than 1. In
view of lemmas 10.4 and 10.5, N is equal to the number of negative entries in the state
signature JB of Θ. We now show that the state dimension sequence of Ta is smaller than
or equal to N. (Later, we will show that equality holds.) The proof is, again, based on
the determination of the natural input state space for Ta, which can be derived in terms
of the realization of the scattering operator Σ that is connected to Θ.

Suppose that the conditions of lemma 10.3 are fulfilled so that Θ satisfies[U∗ − T∗Γ−1]Θ = [A0 − B0]
with A0, B0 ∈ U . Let T 0∗Γ−1 = B0Θ−1

22 as in lemma 10.3. The approximating transfer
function Ta is, in principle, given by the strictly upper part of T 0 (see lemma 10.3 for the
summary of the procedure). It might not be a bounded operator, since operators in X
do not necessarily have a decomposition into an upper and lower part in X . However,
its extension T 0 is bounded, and hence its Hankel operator HTa = HT 0 is well defined
and bounded. We have the following lemma.

Lemma 10.6 Under the conditions of lemma 10.4, the natural input state space of Γ−1Ta

satisfies H(Γ−1Ta) ⊂ H(Θ−∗
22) : (10.16)
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PROOF From the definition ofH in equation (5.3) and the operators we haveH(Γ−1Ta) = P0(U2T∗

a Γ−1 )= P0(U2T 0∗Γ−1 )= P0(U2B0Θ−1
22 )

⊂ P0(U2Θ−1
22 ) [since B0 ∈ U ]= H(Θ−∗

22) : 2
Hence the sequence of dimensions of the subspaceH(Θ−∗

22) is of interest. According
to proposition 8.14, this dimension sequence is equal to N = #(B−), i.e., the number
of negative entries in the state signature sequence JB of Θ. Combining this result with
the lemmas in this section proves the model reduction theorem, theorem 10.1, repeated
below:

Theorem 10.7 Let T ∈ U be a locally finite strictly upper operator with a uniformly
observable u.e. stable realization, and let Γ = diag(γi) ∈ D be a Hermitian operator.
Let Hk be the Hankel operator of Γ−1T at stage k, and suppose that an ε > 0 exists such
that, for each k, none of the singular values of Hk are in the interval [1 − ε;1+ ε]. Then
there exists a strictly upper triangular operator Ta with system order at stage k at most
equal to the number of singular values of Hk that are larger than 1, such thatkΓ−1(T − Ta)kH ≤ 1 :
PROOF Under the present conditions on T , lemma 10.3 can be applied. Indeed, lemma
10.5 claims that the reachability Gramian M of the realization (normalized to output
normal form) is such that Λ = I −M is boundedly invertible, where Λ satisfies the same
J-Lyapunov equation as in lemma 10.4. This lemma showed that the necessary condi-
tions to apply the procedure in lemma 10.3 are satisfied. Thus construct T 0 and Ta using
lemma 10.3, so that kΓ−1(T −Ta)kH ≤ 1. According to lemma 10.6, the state dimension
sequence of Ta is less than or equal to the state dimension sequence of the causal part
of Θ−∗

22, which is equal to the number of negative entries of the state signature sequence
JB (proposition 8.14), in turn equal to N (lemma 10.5). Hence Ta has the claimed state
complexity, so that it is a Hankel norm approximant of T for the given Γ. 210.3 STATE REALIZATION OF THE APPROXIMANT
Theorem 10.7 shows the existence of a Hankel norm approximant Ta under certain con-
ditions. The proof uses a construction of this approximant (lemma 10.3), but this con-
struction is at the operator level. However, it is also possible to obtain a state realization
for Ta directly. We will derive this result in the present section.

Throughout this section, we take signals a1, a2, b1, b2 to be elements of X2, gener-
ically related by [a1 b1]Θ = [a2 b2]
where Θ is as constructed in the previous section. In particular, Θ is a bounded oper-
ator, and Θ−1

22 exists and is bounded. In section 10.2 we constructed Θ via a J-unitary
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realization ΘΘΘ, with state signature matrix JB. ΘΘΘ is bounded by construction (because of
the assumption that none of the Hankel singular values of Γ−1T are equal or “asymp-
totically close” to 1), and is u.e. stable because T is assumed to be so. As before, the
part of an operator u ∈X2 that is in L2Z−1 is denoted by up = P0(u), and the part in U2
is u f = P(u). Associated to the transfer operator Θ is the scattering operator Σ which
relates [a1 b1]Θ = [a2 b2] ⇔ [a1 b2]Σ = [a2 b1] :
We have derived in theorem 8.2 a representation ΣΣΣ = {F;G;H;K} in terms of entries
{AΘ;BΘ;CΘ;DΘ} in ΘΘΘ, according to the relation[x+ x− a1 b1]ΘΘΘ = [x+Z−1 x−Z−1 a2 b2][x+ x−Z−1 a1 b2]ΣΣΣ = [x+Z−1 x− a2 b1] :
The above realizations act on operators in X2. Taking the k-th diagonal of each oper-
ator yields the following state recursions on diagonals, which we use throughout the
section: [x+[k] x−[k] a1[k] b1[k]]ΘΘΘ = [x(−1)+[k+1] x(−1)

−[k+1] a2[k] b2[k]][x+[k] x(−1)
−[k+1] a1[k] b2[k]]ΣΣΣ = [x(−1)+[k+1] x−[k] a2[k] b1[k]] :

In order to compute a realization of Ta, we first determine a model for the strictly
upper part of Θ−∗

22 from the model ΣΣΣ. It is given in terms of operators S and R defined
as1

x−[0]S = x+[0] when a1p = 0; b2p = 0
x+[0]R = x−[0] when a1 f = 0; b2 f = 0 ; (10.17)

which can be obtained from ΣΣΣ in terms of two recursive equations. S is, for example,
obtained as the input scattering matrix of a ladder network consisting of a semi-infinite
chain of contractive (i.e., lossy) scattering matrices Fi j.

Lemma 10.8 The relations

x−[0]S = x+[0] when a1p = 0; b2p = 0
x+[0]R = x−[0] when a1 f = 0; b2 f = 0 ; (10.18)

define bounded maps which are strictly contractive: kSk< 1, kRk< 1.

PROOF S exists as a partial map of Σp, taking a1p = 0, b2p = 0. In this situation,[0 b1p]Θp = [x+[0] x−[0] a2p 0] ;
and we have kx−[0]k2 = kx+[0]k2 +kb1pk2 +ka2pk2 :
According to proposition 8.13, there is an ε, 0 < ε ≤ 1, such that kb1pk2 ≥ ε2 kx−[0]k2,
and hence kx−[0]k2 ≥ kx+[0] k2 + ε2kx−[0]k2 :
1Here, S is not the same as S in (10.11), and no connection is intended.
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(a)
x(−1)+[1] S(−1) b2[0] = 0

b2p = 0S

ΣΣΣ p ΣΣΣ p

R

x(−1)+[1]ΣΣΣF11 F22
ΣΣΣ F22F11

R(−1)
a1[0] = 0

0
0

b2[0] = 0

x+[0] x−[0]
x(−1)

−[1]
F12F12

F21 F21

a1[0] = 0

a1p = 0

x+[0] x−[0]
x(−1)

−[1]
(b)Figure 10.4. (a) The propagation of S, (b) the propagation of R.
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Consequently, there is a constant µ (0 ≤ µ < 1) such that kx+[0]k2 ≤ µ2 kx−[0] k2 (take

µ =p1 − ε2). This shows that kSk< 1. A similar argument holds for R. 2
Proposition 10.9 The operators S and R defined in (10.18) are determined in terms of
ΣΣΣ (with block entries as in (8.21)) by the following recursions:

S = �
F21 +F22(I − SF12)−1SF11

�(+1)
R = F12 +F11(I − R(−1)F21)−1R(−1)F22 : (10.19)

A state-space model {Aa;Ba;Cr} of the strictly upper part of Θ−∗
22 is given in terms of

S, R by

Aa = �
F22(I − SF12)−1

�∗

Ba = �
H22 +F22(I − SF12)−1SH12

�∗

Cr = (I − SR)−∗
h
G22 +G21(I − R(−1)F21)−1R(−1)F22

i∗ : (10.20)

This model is uniformly minimal, with contractive reachability and observability Grami-
ans.

PROOF The existence and contractivity of S ∈ D and R ∈ D has already been deter-
mined (lemma 10.8). First observe that although S satisfies by definition x−[0]S = x+[0]
(a1p = b2p = 0), it also satisfies x−[1]S = x+[1] (a1p = b2p = 0 and a1[0] = b2[0] = 0),
etc. This is readily obtained by applying inputs Z−1a1, etc., so that we get states Z−1x+
and Z−1x−. If (Z−1a1)p = Z−1a1p + Z−1a1[0] = 0, then (Z−1x−)[0]S = (Z−1x+)[0]. But(Z−1x−)[0] = x−[1], and likewise (Z−1x+)[0] = x+[1]. Hence x−[1]S = x+[1].

To determine a state realization for the strictly upper part of Σ∗
22 = Θ−∗

22, we start
from the definition of ΣΣΣ (8.20), and specialize to the 0-th diagonal to obtain[x+[0] x(−1)

−[1] a1[0] b2[0]]ΣΣΣ = [x(−1)+[1] x−[0] a2[0] b1[0]] :
Taking a1 = 0 throughout this proof, inserting the partitioning of ΣΣΣ in (8.21) gives8>><>>: x(−1)+[1] = x+[0]F11 + x(−1)

−[1] F21 + b2[0]G21

x−[0] = x+[0]F12 + x(−1)
−[1] F22 + b2[0]G22

b1[0] = x+[0]H12 + x(−1)
−[1] H22 + b2[0]K21

(10.21)

With b2p = 0 and b2[0] = 0, these equations yield an expression for S(−1):(
x(−1)+[1] = x(−1)

−[1] S(−1) = x−[0]SF11 + x(−1)
−[1] F21

x−[0] = x−[0]SF12 + x(−1)
−[1] F22

⇔ (
x−[0] = x(−1)

−[1] F22(I − SF12)−1

x(−1)
−[1] S(−1) = x(−1)

−[1] �F22(I − SF12)−1SF11+F21
	 (10.22)



280 TIME-VARYING SYSTEMS AND COMPUTATIONS
(note that (I − SF12)−1 is bounded because kSk < 1 and kF12k ≤ 1), and hence S sat-
isfies the indicated recursive relations (see also figure 10.4). The recursion for R is
determined likewise.

In view of proposition 8.13, we can take x− as the state of a minimal realization of
the strictly upper part of Θ−∗

22. Let {Aa;Ba;Cr} be a corresponding state realization, so
that the strictly lower part of Θ−1

22 has an anti-causal state realization(
x−[0] = x(−1)

−[1] A∗
a + b2[0]C∗

r

b1[0] = x(−1)
−[1] B∗

a :
The unknowns Aa, Ba and Cr can be expressed in terms of F, G, H by substitution in
equations (10.21), and using S and R as intermediate quantities. Doing so with b2 =
0, the first equation in (10.22) yields the expression for Aa in (10.20) and Ba can be
determined in terms of S from the last equation in (10.21). C∗

r is obtained as the transfer

b2[0] 7→ x−[0] for a1 = 0 and b2 = b2[0] ∈D2, so that x−[0]S= x+[0] and x(−1)
−[1] = x(−1)+[1]R(−1).

Inserting the latter expression into the first equation of (10.21) twice yields

x(−1)
−[1] = x+[0]F11(I − R(−1)F21)−1R(−1) + b2[0]G21(I − R(−1)F21)−1R(−1) :

Inserting this in the second equation of (10.21), and using x+[0] = x−[0]S results in

x−[0] = x−[0]SF12 + x−[0]SF11(I − R(−1)F21)−1R(−1)F22+ b2[0]G21(I − R(−1)F21)−1R(−1)F22 + b2[0]G22

⇒
x−[0](I − SR) = b2[0](G22 +G21(I − R(−1)F21)−1R(−1)F22)

which gives the expression for Cr.
We have defined, in equation (8.28), the conjugate-Hankeloperator H0=P0( ·Θ−1

22)��U2
.

In proposition 8.13 we showed that H0 has a factorization H0 = στ, where the maps
σ : b2 f 7→ x−[0] and τ : x−[0] 7→ b1p are onto and one-to-one, respectively, and both con-
tractive. In particular, we can write H0=P0( ·F∗

r )Fa, where τ=Fa = [BaZ(I−AaZ)−1]∗
(if `Aa < 1) and σ = P0( ·F∗

r ) with Fr = (I − AaZ)−1Cr (if `Aa < 1). The properties of σ
and τ imply that the derived model {Aa;Ba;Cr} is uniformly minimal, with contractive
reachability/observability Gramians. 2

The second step in the construction of a realization for Ta is to determine a state
realization for B0. This is done by evaluating [U∗ − T∗Γ−1]Θ = [A0 − B0]. This has
already been done in equation (8.37), which gives, with the state model for Θ written
as

ΘΘΘ = �
AΘ CΘ
BΘ DΘ

� = "
R

I

#264 A C1 C2

BU D11 D12

Γ−1B D21 D22

375" R−(−1)
I

# ;
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U 0]DΘ +C∗Λ[C1 C2]	 ++ �[D∗

U 0]� BU

Γ−1B

�+C∗ΛA

�
Z(I − AZ)−1[C1 C2]= �[D∗

U 0]DΘ + C∗Λ[C1 C2]	 ++C∗(Λ − I)AZ(I − AZ)−1[C1 C2]
(in which we used C∗A+D∗

UBU = 0). Since this expression is equal to [A0 − B0] and
M = I − Λ, we obtain a state-space model for B0 as

B0 = �
−D∗

UD12 −C∗(I − M)C2
	 + C∗MAZ(I − AZ)−1C2 : (10.23)

We are now in a position to determine a state realization for Ta.

Theorem 10.10 Let T , Γ, U and Θ be as in lemma 10.3, so that [U∗ − T∗Γ−1]Θ =[A0 − B0]. Let {A;B;C;0} be an output normal u.e. stable state realization for T , let
M satisfy the Lyapunov equation (10.14), and let {A;BU ;C;DU} be a realization for
U. Denote the block entries of ΘΘΘ as in (10.13), and let ΣΣΣ corresponding to ΘΘΘ have a
partitioning (8.21).

Then the approximant Ta, defined as the strictly upper part of T 0 = ΓΘ−∗
22B0∗, has a

state realization {Aa;ΓBa;Ca;0}, where Aa, Ba ∈ D are defined by (10.20), and Ca is
given by

Ca =Cr
�
−D∗

12DU −C∗
2(I − M)C�+AaY (−1)A∗MC ; (10.24)

where Cr is defined in (10.20), and Y ∈D satisfies the recursion Y = AaY (−1)A∗+CrC∗
2

.

PROOF The state realization for Ta is obtained by multiplying the model for B0 in
(10.23) by the model {Aa; Ba;Cr} of the strictly upper part of Θ−∗

22 as obtained in propo-
sition 10.9. From this proposition, we have a state model of Θ−1

22 as

Θ−1
22 = [upper]+C∗

r Fa :
Fa is the selected basis representation of H(Θ−∗

22), satisfying Fa = (I − AaZ)−∗Z∗B∗
a ∈LZ−1 when `Aa < 1, and more in general the recursive equation

Fa = Z∗B∗
a +Z∗A∗

aFa :
The model of B0 is given in (10.23) as B0 = D0+C∗MAZ Fo ; where

D0 = −D∗
12DU −C∗

2(I − M)C ;
Fo = (I − AZ)−1C2 ; Fo =C2 +AZ Fo :

Hence Ta is given by

T∗
a Γ−1 = P0(B0Θ−1

22)= D0C∗
r Fa + C∗MAP0(Z FoΘ−1

22) :
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It remains to evaluate P0(Z FoΘ−1

22). Because P0(D2FoΘ−1
22) ∈ H(Θ−∗

22), we can write
P0(FoΘ−1

22) = Y∗Fa, for some Y ∈D. Consequently,

P0(ZY∗Fa) = Y∗(−1)P0(Z Fa)= Y∗(−1)A∗
aFa :

Because also P0(ZY∗Fa) = P0(Z P0(Y∗Fa)) = P0(Z FoΘ−1
22), we obtain

T∗
a Γ−1 = n

D0C∗
r +C∗MAY∗(−1)A∗

a

o
Fa ;

which gives the expression for Ca in (10.24). Finally, the indicated recursion for Y fol-
lows via

AP0(Z FoΘ−1
22) = P0(AZ FoΘ−1

22)= P0(FoΘ−1
22)− P0(C2Θ−1

22)
⇔ AY∗(−1)A∗

aFa = Y∗Fa −C2C∗
r Fa

⇔ AY∗(−1)A∗
a = Y∗ −C2C∗

r ;
where in the last step we used that Fa is a strong basis representation (proposition 10.9).2

A check on the dimensions of Aa reveals that this state realization for Ta has indeed
a state dimension sequence given by N = #(B−): at each point in time it is equal to
the number of singular values larger than 1 of the Hankel operator of T at that point.
The realization is given in terms of four recursions: two for M and S that run forward
in time, the other two for R and Y that run backward in time and depend on S. One
implication of this is that it is not possible to compute part of an optimal approximant
of T if the model of T is known only partly, say up to time instant k. Based on theorem
10.10, the algorithm in figure 10.5 computes a model {Aa;Ba;Ca;0} for the Hankel
norm approximant Ta in terms of Γ and a model {A;B;C;0} for T .

There are a few remaining issues. Ta, as the strictly upper part of some operator inX , is possibly unbounded. This occurs if the strictly upper part of Θ−∗
22 is unbounded.

We do not know whether this can actually occur. The realization of Ta is well defined,
because Θ−1

22 is bounded, as well as projections of the kind P0( ·Θ−1
22), so that in par-

ticular the Hankel operator H0 which defines that realization is bounded. (In fact, one
could probably set up a realization theory for unbounded operators with bounded Han-
kel operators.) A related second issue is that possibly `Aa = 1. Although this seems
unlikely in view of the assumptions on `A and the singular values of HT that we have
made, we have no proof yet that this cannot occur. Note that the proof of theorem 10.10
is not dependent on `Aa being strictly smaller than 1. Finally, an alternative derivation
of a model for Ta is possible via an inner-outer factorization of Θ22. This gives rise to
different expressions but still produces a two-directional recursive algorithm.10.4 PARAMETRIZATION OF ALL APPROXIMANTS
At this point, we can study the description of all possible solutions to the Hankel norm
approximation problem that have order at most equal to N, where N = sdim H(Θ−∗

22) is
the sequence of dimensions of the input state space of Θ−∗

22. We determine all possible
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In: T (model in output normal form for a strictly upper matrix

T)
Γ (approximation parameters)

Out: Ta (model for Hankel norm approximant Ta)

do algorithm 10.2: gives Mk; ΘΘΘk; JBk ;C2;k; D12;k; DU;k (k = 1; · · · ;n)
S1 = [ · ]
for k = 1; · · · ;n�

Compute ΣΣΣk from ΘΘΘk using (8.19): gives Fi j;Gi j;Hi j

Sk+1 = F21;k +F22;k(I − SkF12;k)−1SkF11;k
end

Rn+1 = [ · ]
Yn+1 = [ · ]
for k = n; · · · ;12666666664 Rk = F12;k +F11;k(I − Rk+1F21;k)−1Rk+1F22;k

C∗
r;k = �

G22;k +G21;k(I − Rk+1F21;k)−1Rk+1F22;k	 (I − SkRk)−1

Aa;k = �
F22;k(I − SkF12;k)−1

	∗

Ba;k = �
H22;k +F22;k(I − SkF12;k)−1SkH12;k	∗

Yk = Aa;kYk+1A∗
k +Cr;kC∗

2;k
Ca;k = Cr;kn−D∗

12;kDU;k −C∗
2;k(I − Mk)Ck

o+Aa;kYk+1A∗
kMkCk

end Figure 10.5. The approximation algorithm.
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bounded operators of mixed causality type T 0 for which it is true that(1) kΓ−1(T − T 0)k= kS∗U k ≤ 1 ;

and (2) the state dimension sequence of Ta = (upper part of T 0)
is at most equal to N :

(Note that we do not assume boundedness of Ta.) As we show in theorem 10.17 be-
low, there are no Hankel norm approximants satisfying (1) and (2) with state dimension
lower than N. The result is that all solutions are obtained by a linear fractional trans-
form (chain scattering transformation) of Θ with an upper and contractive parameter
SL. That this procedure effectively generates all approximants of locally finite type of
s-degree at most equal to the sequence N can be seen from the fact that if kΓ−1(T −
Ta)kH ≤ 1, then an extension T 0 of Ta must exist such that kΓ−1(T − T 0)k ≤ 1. This is
a consequence of a theorem on the Nehari problem (see section 10.6).

The notation is as in the previous sections. We started out with an operator T ∈ ZU ,
and we assumed it to be locally finite, with a state realization in output normal form and
related factorization T =∆∗U, where ∆ ∈U andU ∈U , unitary and locally finite. Then
we proceeded to solve the interpolation problem [U∗ −T∗Γ−1]Θ = [A0 −B0] ∈ [U U ],
and we saw that the problem was solvable provided a related Lyapunov-Stein equation
had a boundedly invertible solution. The solution was given in terms of an operator
T 0 =Γ−1Θ−∗

22B0∗ inX of mixed causality type, and the approximant Ta of low order was
given by the strictly upper part of T 0. In the present section we shall first show that a
large class of Hankel-norm approximants can be given in terms of the same J-unitary
operator Θ and an arbitrary upper, contractive parameter SL. Our previous result is the
special case SL = 0. Then we move on to show that all approximants of s-degree at
most N are obtained in this way.

We first derive a number of preliminary facts which allow us to determine the state
dimension sequence of a product of certain matrices.Preliminary facts
Proposition 10.11 Let B = I − X, where X ∈ X and kX k < 1. Then P( ·B)��U2

and

P( ·B−1)��U2
are Hilbert space isomorphisms onU2. Likewise, P0( ·B)��L2Z−1 and P0( ·B−1)��L2Z−1

are isomorphisms on L2Z−1.

PROOF B is invertible because kX k< 1. Since also

Xp := P0( ·X)��L2Z−1 ; X f := P( ·X)��U2

are strictly contractive: kXpk< 1, kX f k< 1, it follows that Bp = I−Xp =P0( ·B)��L2Z−1

is invertible in L, and B f = I − X f is invertible in U . In particular, for u ∈ L2Z−1, the
decomposition uB =: y1 +u1 (with y1 ∈ U2, u1 = uBp ∈ L2Z−1) satisfiesku1k ≥ εkuk ; some ε > 0 : (10.25)

Take y ∈U2; y 6= 0. To show that P( ·B−1)��U2
is one-to-one, we will show that the norm

of the upper part of yB−1 is uniformly bounded from below: y2 := P(yB−1) has ky2 k ≥
ε1kyk (with ε1 > 0).
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Indeed, put yB−1 =: y2 + u2 (y2 ∈ U2, u2 ∈ L2Z−1). Since u2B = y − y2B, and Bp

is invertible, we can apply the relation (10.25) proven above, in the form P0(u2B) ≥
ε2ku2k, to obtainkP0(y2B)k= kP0(u2B)k ≥ ε2ku2k (ε2 > 0) :
Because B is bounded: kBk< 2, it follows that ky2k> 1=2ky2Bk> 1=2ε2ku2k, orky2 k> ε3ku2k ; ε3 = 1=2ε2 > 0 :
Hence, at this point we have yB−1 = y2 + u2 with ky2k > ε3 ku2 k (ε3 > 0). Because
B−1 is boundedly invertible, there exists ε4 > 0 such that kyB−1 k ≥ ε4kyk, and we haveky2 k(1+ 1

ε3
) > ky2 k+ku2k > ky2 +u2k > ε4kyk :

We finally obtain that ky2k > ε4

1+1=ε3
kyk =: ε1kyk

so that P( ·B−1)��U2
is one-to-one.

To show that P( ·B−1)��U2
is onto: P(U2 B−1) = U2, we have to show that for all y2 ∈U2, there exists an y ∈ U2 such that

P(yB−1) = y2 ;
i.e., given y2 ∈ U2 find y ∈ U2 such that yB−1 = y2 +u2 (some u2 ∈ L2Z−1), or equiv-
alently, y2B = y+ u2B. We will use the fact that Bp = P0( ·B)��L2Z−1 is invertible so

that P0(u2B) = u2Bp uniquely determines u2. Indeed, given y2, u2 is computed as u2 =
P0(y2B)B−1

p , and then y ∈ U2 is given by y = (u2 + y2)B.
The property on P0( ·B−1)��L2Z−1 is proven in a similar manner. 2
Proposition 10.11 allows us to conclude, in particular, that ifA is a sliced subspace

in U2 and B is as in the proposition, then

sdim P(AB−1) = sdim A
and if B is another sliced subspace in U2, then B ⊂A ⇔ P(BB−1) ⊂ P(AB−1) :
Proposition 10.12 If B = I − X, X ∈ X and kX k< 1, and if B = P(L2Z−1 B), then

P(BB−1) = P(L2Z−1 B−1) :
PROOF We show mutual inclusion.(1) P(BB−1) ⊂ P(L2Z−1B−1). Let y ∈ P(BB−1). Then there exist u ∈ L2Z−1 and
u1 ∈ L2Z−1 such that y = P

� (uB+u1)B−1
�= P(u1B−1) : Hence y ∈ P(L2Z−1B−1).



286 TIME-VARYING SYSTEMS AND COMPUTATIONS(2) P(L2Z−1B−1) ⊂ P(BB−1). Assume y = P(u1B−1) for some u1 ∈ L2Z−1. Since
Bp = P0( ·B)��L2Z−1 is an isomorphism (proposition 10.11), a u ∈L2Z−1 exists such that

P0(uB) = −u1. It follows that

y = P(u1B−1)= P
�(uB+u1)B−1

�= P
�(uB − P0(uB))B−1

�= P
�

P(uB)B−1
�

∈ P(BB−1) : 2
Proposition 10.13 If A ∈ L and A−1 ∈X and if A= P(L2Z−1A−1), thenL2Z−1A−1 = A ⊕ L2Z−1 :
PROOF (Note thatA, as the range of a Hankel operator, need not be closed.) The left-
to-right inclusion is obvious. To show the right-to-left inclusion, we show first thatL2Z−1 ⊂ L2Z−1A−1. Assume that u ∈ L2Z−1. Then u = (uA)A−1. But since A ∈ L, we
have uA ∈ L2Z−1, and u ∈ L2Z−1A−1. The fact that A is also in the image follows by
complementation: L2Z−1A−1	L2Z−1 = P(L2Z−1A−1). 2
Theorem 10.14 Let A ∈ L, A−1 ∈ X , and suppose that the space A = P(L2Z−1 A−1)
is locally finite of s-dimension N. Let B = I − X with X ∈ X and kX k< 1. Then

sdim P(L2Z−1 A−1B−1) = N+ p ⇒ sdim P(L2Z−1 BA) = p :
PROOF

P(L2Z−1A−1B−1) = P
�(L2Z−1 ⊕A)B−1

�
[prop. 10.13]= P(L2Z−1B−1) + P(AB−1) [linearity]= P(BB−1) + P(AB−1) [prop. 10.12]

where B = P(L2Z−1 B).
In the sequel of the proof, we use the following two properties. The closure of a

D-invariant locally finite linear manifoldH yields a locally finite D-invariant subspaceHwith the same sdim . Secondly, letM be another locally finite D-invariant subspace
and let X be a bounded operator on X2, thenHX = [PM(H)]X if M⊥X = 0.

SinceA andB are spaces inU2, and since according to proposition 10.11, P( ·B−1)��U2

is an isomorphism mappingA andB to P(AB−1) and P(BB−1), respectively, we obtain
that sdim (A+B) =N+ p. WithA⊥ = U2	A, it follows that PA⊥(B) has sdim equal
to p, because sdimA= N. The proof terminates by showing that(1) P(L2Z−1 BA) = P(PA⊥(B)A), for

P(L2Z−1 BA) = P(P(L2Z−1B)A)= P(BA)= P(PA⊥(B)A) ;
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becauseAA ⊂ L2Z−1.(2) P(PA⊥(B)A) is isomorphic to PA⊥(B), which follows from the fact that the map
P( ·A) ��A⊥ is one-to-one, for P(xA) = 0 ⇒ x ∈A⊕L2Z−1, and the kernel of P( ·A) ��A⊥

is thus just {0}.
Consequently, sdim P(L2Z−1 BA) = sdim P(PA⊥(B)A) = sdim PA⊥(B) = p. 2
In the above theorem, we had A ∈L. A comparable result for A ∈U follows directly

by considering a duality property, and yields the corollary below.

Corollary 10.15 Let A ∈ U , X ∈X , B = I −X and kX k< 1, and let A be invertible inX . Suppose that A= P0(U2A−1) has s-dimension N. Then

sdim P0(U2B−1A−1 ) = N+ p ⇒ sdim P0(U2AB) = p :
PROOF For any bounded operator, the dimension of its range is equal to the dimension
of its co-range. Hence for T ∈X , we have that sdim ran(HT ) = sdim ran(H∗

T ), or

sdim P(L2Z−1T ) = sdim P0(U2T∗ ) : 2Generating new solutions of the interpolation problem
Throughout the remainder of the section we use the notion of causal state dimension
sequence of an operator T ∈ X as the s-dimension N of the space H(T) = P0(U2T∗).
N is thus a sequence of numbers {Ni : i ∈Z} where all Ni in our case are finite. Dually,
we call the s-dimension of P0(U2T) the anti-causal state dimension sequence. We use
the following lemma, in which we must assume that Θ is constructed according to the
recipe given in corollary 8.18, so that its input state space H(Θ) is generated by (viz.
equation (10.12)) H(Θ) = DB2 (I − Z∗A∗)−1Z∗

h
B∗

U B∗Γ−1
i :

Lemma 10.16 Let T , Γ and Θ be as in lemma 10.4, such that T = ∆∗U is a factoriza-
tion of T with ∆ ∈ U and U ∈ U is inner, and Θ is the J-unitary operator with input
state space given by (10.12) and defined by the realization (10.13). Then[U∗ 0]Θ ∈ [L L][−∆∗ Γ]Θ ∈ [L L] :
PROOF We prove this by brute-force calculations on the realizations of U and Θ, as in
(10.13):[U∗ 0]Θ = �

D∗
U + C∗(I − Z∗A∗)−1Z∗B∗

U

	�[D11 D12] + BUZ(I − AZ)−1[C1 C2]	= D∗
U [D11 D12] + D∗

UBUZ (I − AZ)−1[C1 C2] ++C∗(I − Z∗A∗)−1Z∗B∗
U [D11 D12] ++C∗(I − Z∗A∗)−1Z∗B∗
UBUZ (I − AZ)−1[C1 C2] :
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Upon using the identities D∗

UBU +C∗A = 0, B∗
UBU +A∗A = I, and(I − Z∗A∗)−1Z∗ (I − A∗A)Z(I − AZ)−1 = AZ(I − AZ)−1 +(I − Z∗A∗)−1 ;

it is seen that the terms with (I − AZ)−1 cancel each other, so that[U∗ 0]Θ = D∗
U [D11 D12] + C∗[C1 C2] ++C∗(I − Z∗A∗)−1Z∗�A∗[C1 C2] + B∗

U [D11 D12]	
∈ [L L] :

In much the same way,[−∆∗ Γ]Θ = [�−DD∗
U − BB∗

U − (DC∗ +BA∗)Z∗ (I − A∗Z∗)−1B∗
U

	
Γ] ×

×
��

D11 D12

D21 D22

�+�
BU

Γ−1B

�
Z(I − AZ)−1[C1 C2]�= (lower) +�(−DD∗

U − BB∗
U)BU +B

	
Z (I − AZ)−1[C1 C2] ++ (−DC∗ − BA∗)Z∗(I − A∗Z∗)−1B∗

UBUZ (I − AZ)−1[C1 C2]= (lower) +�
−DD∗

UBU − BB∗
UBU +B − DC∗A − BA∗A

	
Z(I − AZ)−1[C1 C2]= (lower) +�

DC∗A − B+BA∗A+B − DC∗A − BA∗A
	

Z(I − AZ)−1[C1 C2]= (lower) +0 : 2
Theorem 10.17 Let T ∈ ZU be a locally finite operator with u.e. stable output normal
realization {A;B;C;0}, let Γ be an invertible Hermitian diagonal operator. Let Hk be
the Hankel operator of Γ−1T at time point k, and suppose that an ε > 0 exists such that,
for each k, none of the singular values of Hk are in the interval [1 − ε;1+ ε]. Let N be
the sequence of the numbers Nk of singular values of Hk that are larger than 1.

Define U to be the inner factor of an external factorization (theorem 6.8), with uni-
tary realization {A;BU ;C;DU }, and let Θ be a J-unitary block-upper operator such that
its input state spaceH(Θ) is given by (10.12).(1) If SL ∈ U is contractive, then Θ22 − Θ21SL is boundedly invertible, and

S = (Θ11SL − Θ12)(Θ22 − Θ21SL)−1 (10.26)

is contractive.(2) Let, furthermore, T 0 = T +ΓS∗U. Then(a) kΓ−1(T − T 0)k= kS∗U k ≤ 1 ;(b) the causal state dimension sequence of Ta = (upper part of T 0)
is precisely equal to N :

That is, Ta is a Hankel norm approximant of T .
PROOF (1) By the J-unitarity of Θ, Θ22 is boundedly invertible and kΘ−1

22Θ21k < 1,
whence Θ22 − Θ21SL = Θ22(I − Θ−1

22Θ21SL) is boundedly invertible. Hence S exists as
a bounded operator. Its contractivity follows by the usual direct calculations on scat-
tering operators (see e.g., [DD92]).



HANKEL-NORM MODEL REDUCTION 289(2a) follows immediately since Γ−1(T − T 0) = S∗U and U is unitary.(2b) The proof uses the following equality:

T 0∗Γ−1 = [U∗ − T∗Γ−1]� S
−I

�= [U∗ − T∗Γ−1]� Θ11 Θ12

Θ21 Θ22

��
SL

−I

�(Θ22 − Θ21SL)−1= [A0 − B0]� SL

−I

�(Θ22 − Θ21SL)−1= (A0SL +B0)(Θ22 − Θ21SL)−1 :
Since (A0SL +B0) ∈ U , the anti-causal state dimension sequence of T 0∗ is at each point
in time at most equal to the anti-causal state dimensions of (Θ22 −Θ21SL)−1 at that point.
Because the latter expression is equal to (I − Θ−1

22Θ21SL)−1Θ−1
22, and kΘ−1

22Θ21SLk < 1,
application of corollary 10.15 with A = Θ22 and B = I − Θ−1

22Θ21SL shows that this se-
quence is equal to the anti-causal state dimension sequence of Θ−1

22, i.e., equal to N.
Hence sdim H(T 0) ≤ N (pointwise).

The proof terminates by showing that also sdim H(T 0) ≥ N, so that in fact sdim H(T 0)=
N. Define �

G2 = (Θ22 − Θ21SL)−1

G1 = SLG2

so that �
S
−I

� = Θ
�

G1

−G2

� :
Because Θ is J-inner: Θ∗JΘ = J, this equality is equivalent to [G∗

1 G∗
2] := [S∗ I]Θ ;

and using S = −∆Γ−1 +UT 0∗Γ−1 we obtain

Γ[G∗
1 G∗

2] = T 0[U∗ 0]Θ + [−∆∗ Γ]Θ : (10.27)

However, according to lemma 10.16,[U∗ 0]Θ ∈ [L L][−∆∗ Γ]Θ ∈ [L L] :
This implies H(G∗

2) ⊂ H(T 0) (same proof as in lemma 10.6). Hence sdim H(T 0) ≥
sdim H(G∗

2) = N. 2
Thus, all S of the form S = (Θ11SL − Θ12)(Θ22 − Θ21SL)−1 with SL ∈ U , kSLk ≤ 1

give rise to Hankel norm approximants of T . We encountered this expression earlier
in chapter 8: it is a chain-scattering transformation of SL by Θ. Consequently, S is the
transfer of port a1 to b1 if b2 = a2SL, as in figure 10.6.

The reverse question is: are all Hankel norm approximants obtained this way? That
is, given some T 0 whose strictly upper part is a Hankel norm approximant of T , is there
a corresponding upper and contractive SL such that T 0 is given by T 0 = T +ΓS∗U, with
S as in equation (10.26) above. This problem is addressed in the following theorem.
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SL

b1

a2

Σ12 Σ21

Σ11

Σ22 b2

a1
U∗

U∗SFigure 10.6. Θ (or Σ) generates Hankel norm approximants via S and parametrized by
SL.
The main issue is to prove that SL as defined by the equations is upper; the proof is
an extension of the proof that SL generated all interpolants in the definite interpolation
problem in section 9.2 (theorem 9.6), although some of the items are now more com-
plicated.Generating all approximants
Theorem 10.18 Let T , Γ, U and Θ be as in theorem 10.17, and let N be the number of
Hankel singular values of Γ−1T that are larger than 1. Let be given a bounded operator
T 0 ∈X such that(1) kΓ−1(T − T 0)k ≤ 1 ;(2) the state dimension sequence of Ta = (upper part of T 0) is at most equal to N :
Define S =U(T 0∗ −T∗)Γ−1. Then there is an operator SL with (SL ∈ U ;kSL k ≤ 1) such
that

S = (Θ11SL − Θ12)(Θ22 − Θ21SL)−1

( i.e., Θ generates all Hankel-norm approximants). The state dimension of Ta is pre-
cisely equal to N.

PROOF The proof parallels in a certain sense the time-invariant proof as given e.g. in
[BGR90], but differs in detail. In particular, the “winding number” argument to deter-
mine state dimensions must be replaced by theorem 10.14 and its corollary 10.15. The
proof consists of five steps.

1. From the definition of S, and using the factorization T = ∆∗U, we know thatkSk = kU(T 0∗ − T∗)Γ−1 k = kΓ−1(T 0 − T)k ≤ 1

so S is contractive. Since S = −∆Γ−1+UT 0∗Γ−1, where ∆ and U are upper, the anti-
causal state dimension sequence of S is at most equal to N, since it depends exclu-
sively on T 0∗, for which N is the anti-causal state dimension sequence.

2. Define [G∗
1 G∗

2] := [S∗ I]Θ : (10.28)
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ThenH(G∗

1) ⊂H(T 0) andH(G∗
2) ⊂H(T 0).

PROOF Using S = −∆Γ−1 +UT 0∗Γ−1, equation (10.28) can be rewritten as

Γ[G∗
1 G∗

2] = T 0[U∗ 0]Θ + [−∆∗ Γ]Θ :
According to lemma 10.16, [U∗ 0]Θ ∈ [L L][−∆∗ Γ]Θ ∈ [L L] :
As in the proof of theorem 10.17, this impliesH(G∗

1) ⊂H(T 0) andH(G∗
2) ⊂H(T 0).

3. Equation (10.28) can be rewritten using Θ−1 = JΘ∗J as�
S
−I

� = Θ
�

G1

−G2

� : (10.29)

G2 is boundedly invertible, and SL defined by SL = G1G−1
2 is well defined and con-

tractive: kSL k ≤ 1. In addition, S satisfies S = (Θ11SL − Θ12)(Θ22 − Θ21SL)−1 as
required.

PROOF As in the proof of theorem 9.6, step 2, we have, for some ε > 0,

G∗
1G1 +G∗

2G2 ≥ ε I ; G∗
1G1 ≤ G∗

2G2 : (10.30)

Together, this shows that G∗
2G2 ≥ 1=2ε I, and hence G2 is boundedly invertible (but

not necessarily in U). With SL = G1G−1
2 , equation (10.30) shows that S∗

LSL ≤ 1, and
hence kSL k ≤ 1. Evaluating equation (10.29) gives

G−1
2 = Θ22 − Θ21SL

SG−1
2 = Θ11SL − Θ12

(10.31)

and hence S = (Θ11SL − Θ12)(Θ22 − Θ21SL)−1.

4. G−1
2 ∈U , the spaceH(T 0) has the same dimension asH(Θ−∗

22), andH(G∗
1)⊂H(G∗

2).
PROOF According to equation (10.31), G−1

2 satisfies

G−1
2 = Θ22 (I − Θ−1

22Θ21SL)
G2 = (I − Θ−1

22Θ21SL)−1Θ−1
22 :

Let p be the dimension sequence of anti-causal states of G−1
2 , and N2 ≤ N be the

number of anti-causal states of G2, with N the number of anti-causal states of Θ−1
22.

Application of corollary 10.15 with A = Θ22 and B = (I − Θ−1
22Θ21SL) shows that

N2 = N+ p, and hence N2 = N and p = 0: G−1
2 ∈ U , andH(G∗

2) has dimension N.
Step 2 claimedH(G∗

2) ⊂H(T 0), and because T 0 has at most N anti-causal states, we
must have that in factH(G∗

2) =H(T 0), and henceH(G∗
1) ⊂H(G∗

2), by step 2.

5. SL ∈ U .
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Figure 10.7. Trivial external factorization of T .
PROOF This can be inferred from G−1

2 ∈U , andH(G∗
1)⊂H(G∗

2), as follows. SL ∈U
is equivalent to P0(U2SL) = 0, and

P0(U2SL) = P0(U2G1G−1
2 )= P0(P0(U2G1)G−1

2 )
since G−1

2 ∈ U . UsingH(G∗
1) ⊂H(G∗

2), or P0(U2G1) ⊂ P0(U2G2) we obtain that

P0(U2SL) ⊂ P0(P0(U2G2)G−1
2 )= P0(U2G2G−1

2 ) (since G−1
2 ∈ U)= 0 : 210.5 SCHUR-TYPE RECURSIVE INTERPOLATION

The global state-space procedure of the previous sections constructs, for a given T ∈U ,
an inner factor U and an interpolating operator Θ. The procedure can be specialized
and applied to the case where T is a general upper triangular matrix without an a pri-
ori known state structure. The specialization produces a generalized Schur recursion,
which we derive for an example T .

Consider a 4 × 4 strictly upper triangular matrix T ,

T = 2664 0 t12 t13 t14

0 t23 t24
0 t34

0

3775 ;
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where the (1;1) entry is indicated by a square and the main diagonal by underscores.
For convenience of notation, and without loss of generality, we may take Γ= I, and thus
seek for Ta (a 4×4 matrix) such that kT −Ta k ≤ 1. A trivial (but non-minimal) state real-
ization for T that has AA∗+CC∗ = I is obtained by selecting {[0 0 1]; [0 1 0]; [1 0 0]}
as a basis for the row space of the second Hankel matrix H2 = [t12 t13 t14], and likewise
we select trivial bases for H3 and H4. Omitting the details, the realizations for T and
an inner factor U that result from this choice turn out to be

T1 = "
· · · ·

t14 t13 t12 0

#
U1 = 2666664 · · · ·

1
1

1
1

3777775
T2 = 26664 1

1
1

t24 t23 0

37775 U2 = 26664 1
1

1

· · ·

37775
T3 = 264 1

1

t34 0

375 U3 = 264 1
1

· ·

375
T4 = "

· 1

· 0

#
U4 = "

· 1

· ·

#
(‘·’ stands for an entry with zero dimensions). The corresponding matrices U and ∆ =
UT∗ are

U = 2664 1
1

1
1

3775 ; ∆ = 2664 0
t∗
12 0

t∗
13 t∗

23 0
t∗
14 t∗

24 t∗
34 0

3775
with input space sequence C 4 × C 0 × C 0 × C 0 , and output space sequence C 1 × C 1 ×C 1 × C 1 . All inputs of U and ∆ are concentrated at point 1, and hence the causality
requirement is always satisfied: U ∈U and ∆ ∈U . The structure of ∆ and U is clarified
by figure 10.7.

The global realization procedure would continue by computing a sequence M

Mk+1 = A∗
kMkA+B∗

kBk ; M1 = [ · ]
and using this to derive Θ as demonstrated in section 10.2. Note that it is not necessary
to have a minimal realization for T (or U). The extra states correspond to eigenvalues
of M that are zero, and hence are of no influence on the negative signature of Λ = I −M
(independently of Γ). Hence our non-minimal choice of the realization for T does not
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influence the complexity of the resulting approximant Ta. For a recursive derivation of
an interpolating matrix Θ, however, we proceed as follows. The (trivial) state realiza-
tions T and U are not needed, but the resulting U is used. The interpolation problem
is to determine a J-unitary and causal Θ (whose signature will be determined by the
construction) such that [U∗ − T∗]Θ ∈ [U U ] :
Assume that Θ ∈ U(MΘ;NΘ). The signature matrix J1 := JMΘ is known from the
outset and is according to the decomposition [U∗ − T∗]. Although the signature J2 :=
JNΘ is not yet known at this point, the number of outputs of Θ (i.e., the space sequenceNΘ) is already determined by the condition that each ΘΘΘk is a square matrix. With the
above (trivial) realizations of T and U, it follows that Θ has a constant number of two
outputs at each point in time. The signature of each output (+1 or −1) is determined in
the process of constructing Θ, which is done in two steps: Θ = Θ̃Π. Here, Θ̃ is such
that [U∗ −T∗]Θ̃ ∈ [U U ], where the dimension sequences of each U are constant and
equal to 1 at each point; for example

−t∗
12

−t∗
12

−t∗
11

−t∗
14

−t∗
22

−t∗
23 −t∗

33

−t∗
34−t∗
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1

1

1

+ + + +

Θ̃ = + + – –

∗
∗∗

∗ ∗ ∗
∗∗∗∗

+ + – –

∗
∗∗

∗ ∗ ∗
∗∗∗∗

−t∗
44

where the first upper triangular matrix at the right-hand side corresponds to the first
output of each section of Θ̃, and the second to the second output. At this point, the
signature of each column at the right-hand side can be positive of negative: the output
signature matrix of Θ̃ is J̃2, which is an unsorted signature matrix such that Θ̃J̃2Θ̃∗ = J1

(the signature of the right-hand side in the equation above is just an example). See
also figure 10.8. The second step is to sort the columns according to their signature,
by introducing a permutation matrix Π ∈ D, such that J2 = Π∗J̃2Π is a conventional
(sorted) signature matrix. The permutation does not change the fact that [U∗ −T∗]Θ ∈[U U ], but the output dimension sequences of each U are different now, and are in
general no longer constant. For the above example signature, [A0 −B0] has the form
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·

·
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·
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·
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·
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24
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−t∗
12

−t∗
12

−t∗
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−t∗
14

–

1

+

1

+

1

+

1

+

Θ == [A0 − B0]
where A0 has as output sequence C 2 ×C 2 ×C 0 ×C 0 , and B0 has as output sequence C 0 ×C 0 × C 2 × C 2 . We now consider these operations in more detail.
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−B0
A0

Θ̃

+
+
+
+
–

–

–

–

+

+

+

+

–

–

–

–

−T∗

U∗

Figure 10.8. Computational structure of Θ̃, with example signature at the outputs.Computational structure
Θ̃ can be determined recursively in n steps: Θ̃= Θ̃(1)Θ̃(2) · · ·Θ̃(n), in the following way.
The columns of Θ̃ act on the columns of U∗ and −T∗. Its operations on U∗ are always
causal because all columns of U∗ correspond to the first point of the recursion (k = 1).
However, for Θ to be causal, the k-th column of Θ can act only on the first k columns
of T∗. Taking this into consideration, we are led to a recursive algorithm of the form[A(k) B(k)]Θ̃(k) = [A(k+1) B(k+1)]
initialized by A(1) =U∗, B(1) = −T∗, and where Θ̃(k) involves

using columns n;n − 1; · · · ;k+ 1 of A(k) in turn, make the last (n − k) entries of the
k-th column of A(k) equal to 0. In particular, the (k+ i)-th column of A(k) is used to
make the (k+ i)-th entry of the k-th column of A(k) equal to zero.

The operations required to carry out each of these steps are elementary J-unitary rota-
tions that act on two columns at a time and make a selected entry of the second column
equal to zero. The precise nature of a rotation depends on the corresponding signature
and is in turn dependent on the data — this will be detailed later. We first verify that
this recursion leads to a solution of the interpolation problem.
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k = 1: using 3 elementary rotations, the entries t∗

14; t∗
13; t∗

12 are zeroed in turn. This
produces

⇒

2664 1 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ 0 −t∗

22
0 0 ∗ ∗ 0 −t∗

23 −t∗
33

0 0 0 ∗ 0 −t∗
24 −t∗

34 −t∗
44

3775
k = 2:

⇒

2664 1 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗
0 0 ∗ ∗ 0 0 −t∗

33
0 0 0 ∗ 0 0 −t∗

34 −t∗
44

3775
k = 3:

⇒

2664 1 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗
0 0 ∗ ∗ 0 0 ∗
0 0 0 ∗ 0 0 0 −t∗

44

3775
k = 4: no rotations are required.

The resulting matrices are upper triangular. The signal flow corresponding to this com-
putational scheme is outlined in figure 10.9(a). Note that the computations have intro-
duced an implicit notion of state, formed by the arrows that cross a dotted line between
two stages, so that a (non-minimal) realization of Θ can be inferred from the elemen-
tary operations.Elementary rotations: keeping track of signatures
We now consider the elementary operations in the above recursions. An elementary
rotation θ such that θ∗ j1θ = j2 ( j1 and j2 are 2 × 2 signature matrices) is defined by[u t ]θ = [∗ 0 ] ;
where u; t are scalars, and where ‘∗’ stands for some resulting scalar. Initially, one
would consider θ of a traditional J-unitary form:

θ = �
1 −s

−s∗ 1

�
1
c∗ ; cc∗ + ss∗ = 1 ; c 6= 0

which satisfies

θ∗
�

1
−1

�
θ = �

1
−1

� :
However, since |s | < 1, a rotation of this form is appropriate only if |u | > | t |. In the
recursive algorithm, this is the case only if TT∗ < I which corresponds to a ‘definite’



HANKEL-NORM MODEL REDUCTION 297
1 0 0 0
0 1 0 0
0 0 1 0

(k = 1)

0 0 0 1

−t∗
11 − t∗

12 − t∗
13 − t∗

14

* * 0 0

* 0 0 0

* 0 0 0

+

-

+
+
+

+++
++ **00***0

***0 **00****

0 − t∗
22 − t∗

23 − t∗
24

* * * 0

* * 0 0

-

- **00

***0

***0

***0-
+-

+

+

+

+

-
* * * 0

* * * *

- ***0
-

-

-

* * * *0 0 0 − t∗
44

- -(a) (k = 4)(k = 3)0 0 − t∗
33 − t∗

34

(k = 2)(k = 1)

(k = 4)(b) (k = 3)(k = 2)
Figure 10.9. Computational structure of a recursive solution to the interpolating problem.(a) Θ̃, with elementary rotations of mixed type (both circular and hyperbolic); (b) onepossible corresponding Σ, with circular elementary rotations. The type of sections in (a)and the signal ow in (b) depend on the data of the interpolation problem. The rotationswhich cause an upward arrow (ultimately: a state for Ta) are shaded.
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interpolation problem and leads to an approximant Ta = 0. Our situation is more gen-
eral. If |u | < | t |, we require a rotational section of the form

θ̃ = �
−s 1
1 −s∗

�
1
c∗ ;

resulting in [u t ] θ̃ = [∗ 0 ]. θ̃ has signature pairs determined by

θ̃∗
�

1
−1

�
θ̃ = �

−1
1

� :
This shows that the signature of the ‘energy’ of the output vector of such a section is
reversed: if [a1 b1]θ2 = [a2 b2], then a1a∗

1 − b1b∗
1 = −a2a∗

2 +b2b∗
2. Instead of ordinary( j1; j2)-unitary elementary rotations, we thus have to work with J-unitary rotations θ̃

with respect to unsorted signature matrices ( j̃1; j̃2).
Because the signature can be reversed at each elementary step, we have to keep track

of it to ensure that the resulting global Θ-matrix is J-unitary with respect to a certain
signature. Thus assign to each column in [U∗ − T∗] a signature (+1 or −1), which
is updated after each elementary operation, in accordance to the type of rotation. Ini-
tially, the signature of the columns of U∗ is chosen +1, and those of −T∗ are chosen
−1. Because Θ̃ = Θ̃(1)Θ̃(2) · · ·Θ̃(n), where Θ̃(i) is an embedding of the i-th elementary
rotation θ̃(i) into one of full size, it is seen that keeping track of the signature at each
intermediate step ensures that

Θ̃∗
�

I
−I

�
Θ̃ = J̃2 ;

where J̃2 is the unsorted signature matrix given by the signatures of the columns of the
final resulting upper triangular matrices. The types of signatures that can occur, and the
appropriate elementary rotations θ̃ to use, are listed below. These form the processors
in figure 10.9(a).

1: [ +
u

−
t ]� 1 −s

−s∗ 1

�
1
c∗ = [ +

∗
−
0 ] ; if |u | > | t |

2: [ +
u

−
t ]� −s 1

1 −s∗

�
1
c∗ = [ −

∗
+
0 ] ; if |u | < | t |

3: [ −
u

+
t ]� −s 1

1 −s∗

�
1
c∗ = [ +

∗
−
0 ] ; if |u | < | t |

4: [ −
u

+
t ]� 1 −s

−s∗ 1

�
1
c∗ = [ −

∗
+
0 ] ; if |u | > | t |

5: [ +
u

+
t ]� c s

−s∗ c∗

� = [ +
∗

+
0 ]

6: [ −
u

−
t ]� c s

−s∗ c∗

� = [ −
∗

−
0 ]
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(k = 1)0 − t∗

12 − t∗
13 − t∗

14

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0 − t∗
23 − t∗

24 − t∗
25

0 0 0 1

0 − t∗
34 − t∗

35 − t∗
36

0 0 0 1

0 0 0 1

0 − t∗
45 − t∗

46 − t∗
47

0 0 − t∗
57 − t∗

57

0 0 − t∗
67

0 0 0 0 (k = 7) (k = 6) (k = 5) (k = 4) (k = 3) (k = 2)

Figure 10.10. Computational network of an interpolating Σ-matrix of a band-matrix (7×7matrix, band width 3).
(The case |u| = |t| could occur, which leads to an exception.) We can associate, as
usual, with each J-unitary rotation a corresponding unitary rotation, which is obtained
by rewriting the corresponding equations such that the ‘+’ quantities appear on the left-
hand side and the ‘−’ quantities on the right-hand side. The last two sections are already
circular rotation matrices. By replacing each of the sections of Θ by the correspond-
ing unitary section, a unitary Σ matrix that corresponds to Θ is obtained. A signal flow
scheme of a possible Σ in our 4×4 example is depicted in figure 10.9(b). The matching
of signatures at each elementary rotation in the algorithm effects in figure 10.9(b) that
the signal flow is well defined: an arrow leaving some section will not bounce into a
signal flow arrow that leaves a neighboring section.

Finally, a solution to the interpolation problem [U∗ − T∗]Θ = [A0 − B0] is obtained
by sorting the columns of the resulting upper triangular matrices obtained by the above
procedure according to their signature, such that all positive signs correspond to A0 and
all negative signs to B0. The columns of Θ are sorted likewise. The solution that is ob-
tained this way is reminiscent of the state-space solution in the previous section, and in
fact can be derived from it by factoring Θ into elementary operations as above. Again,
the network of Σ is not computable since it contains loops.
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To give an example of the foregoing, suppose that T is a band matrix. It may be

verified that computations on entries off the band reduce to identity operations and can
therefore be omitted. The corresponding computational scheme is, for a typical ex-
ample, depicted in figure 10.10. A number of ‘0’ entries that are needed to match the
sequences in the correct way have been suppressed in the figure: as many trailing ‘0’s
as needed must be postpended to make each sequence have length 7. The recursive pro-
cedure can be specialized even further to handle staircase matrices as well, for which
even more of the elementary computations are rendered trivial and can be omitted. The
structure of the diagram will reflect the structure of the staircase.

The recursion and the resulting computational network is a further generalization
(to include indefinite interpolation) of the generalized Schur algorithm introduced in
[DD88]. However, the formalism by which the matrices are set up to initiate the algo-
rithm is new.Computation of the approximant
With Θ and B0 available, there are various ways to obtain the Hankel norm approximant
Ta. The basic relations are given in terms of T 0 (the upper triangular part of which is
equal to Ta) and the operator Σ associated to Θ:

T 0∗ = T∗ +U∗Σ12

T 0∗ = B0Θ−1
22 ; Θ−1

22 = Σ22 :
Ideally, one would want to use the computational network of Σ to derive either U∗Σ12

or B0Θ−1
22. However, the network that has been constructed in the previous step of the

algorithm is not computable: it contains delay-free loops, and hence it cannot be used
directly. A straightforward alternative is to extract Θ22 from the network of Θ (by ap-
plying an input of the form [0 I]), and subsequently use any technique to invert this
matrix and apply it to B0. A second alternative is to work with the (non-causal) state
realization for Σ which is available at this point. From this one can derive a realization
for the upper triangular part of Θ−∗

22, by using the recursions given in section 10.3.
The first solution can be made more or less ‘in style’ with the way Θ has been con-

structed, to the level that only elementary, unitary operations are used. However, the
overall solution is a bit crude: after extracting the matrix Θ22, the computational net-
work of Θ is discarded, although it reveals the structure of Θ22 and Θ−1

22, and the algo-
rithm continues with a matrix inversion technique that is not very specific to its current
application. The state-space technique, on the other hand, uses half of the computa-
tional network structure of Θ (the ‘vertical’ segmentation into stages), but does not use
the structure within a stage. The algorithm operates on (state-space) matrices, rather
than at the elementary level, and is in this respect ‘out of style’ with the recursive com-
putation of Θ. It is as yet unclear whether an algorithm can be devised that acts directly
on the computational network of Θ using elementary operations.10.6 THE NEHARI PROBLEM
The classical Nehari problem is to determine the distance — in the infinity norm — of
a given scalar function in L∞ to the space of bounded analytical functions H∞ [Neh57,
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AAK71]. Put in another way, it asks to extend a given analytic function to a function
in L∞ such that the norm of the result is as small as possible. Usually, a sub-optimal
version of the problem is defined: the norm of the result should be smaller than a given
bound.

For time-invariant systems, the solutions are well-known and derived using interpo-
lation or Beurling-Lax representation theory. For time-varying systems, an early state-
ment and proof appears in the work of Arveson [Arv75, thm. 1.1] on operators in a nest
algebra. A comparable result has been obtained by Gohberg, Kaashoek and Woerde-
man [Woe89, GKW89, GMW91] in the context of block matrix and operator matrix
extensions. Their solutions are recursive on the entries of the block matrix: it is possi-
ble to work from top to bottom, adding rows to the extension found so far, in such a way
that the resulting matrices remain contractive. The time-varying Nehari problem was
perhaps first solved in [DvdV93]. An independent solution appears in [HI94], which
however assumes the invertibility of A.

Placed in our context, the Nehari problem is to find, if it exists, an extension to a
given operator T ∈ U to T 0 ∈ X such that the norm of T 0 is as small as possible, or
smaller than a given bound. The theorems given in section 10.2 contain an implicit
solution of such a problem, for operators T which have a u.e. stable, uniformly observ-
able realization. If Γ in (10.7) is chosen such that all local Hankel singular values are
uniformly smaller than 1, then T 0= (B0Θ−1

22Γ)∗ obtained through lemma 10.3 is a lower
(∈ L) operator and the state sequence x− is of dimension zero: #(B−) = 0 and JB = I.
Such a T 0 is known as the Nehari extension of T : it is such that kΓ−1(T − T 0)k ≤ 1 so
that, when kΓ−1T kH < 1, there exists an extension E ∈ X such that the upper part of
E is equal to Γ−1T and E is contractive. The Nehari problem is to find E or, equiva-
lently, T 0. This problem can also be viewed as a distance problem: given T ∈ ZU , find
an operator T 0 ∈ L that is closest to it, in the sense that kT − T 0 k is minimized.

Theorem 10.19 If T is a bounded upper operator which has a locally finite u.e. stable
and uniformly observable realization, thenkT kH = inf

T 0∈L kT − T 0 k : (10.32)

PROOF Let d = kT kH and consider the operator (d + ε)−1T for some ε > 0. Then,
with Γ = d+ε, r := k(d+ε)−1Γ−1T kH < 1 and lemma 10.4 applies. Since the largest
singular value of any local Hankel operator of (d + ε)−1T is majorized by r, we have
that the sequence of singular values larger than one is zero, so that Θ−1

22 ∈ U and T 0 =(B0Θ−1
22(d+ ε))∗ is a lower operator. Lemma 10.4 ensures thatk(d+ ε)−1(T − T 0)k ≤ 1

by construction, and hence kT − T 0 k ≤ d+ ε :
Letting ε ↓ 0 achieves (10.32). The reverse inequality is obvious from proposition 10.2.2
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All possible Nehari extensions are parameterized by the set of contractive upper op-

erators SL, as a special case of theorem 10.18.
A state-space realization of the “maximum entropy” or “central” Nehari extension

T 0 for which SL = 0 can be obtained as a special instance of the method presented in
section 10.3, and does not need the upward recursions because the dimension of x− is
zero. The result is a closed-form solution: it is specified solely in terms of the given
state realization operators of T .

Theorem 10.20 Let T ∈ U be a strictly upper locally finite operator with realization
{A;B;C;0} in output normal form. If kT kH < 1 then T has a Nehari extension E =
T −T 0 ∈X such that E is contractive and the strictly upper part of E is equal to T ( i.e.,
T 0∗ ∈ U). A realization of T 0∗, i.e., the upper part of −E∗, is given by

Ae = A(I − (I − A∗MA)−1B∗B)
Be = C∗MA(I − (I − A∗MA)−1B∗B)
Ce = A(I − A∗MA)−1B∗

De = C∗MA(I − A∗MA)−1B∗

(10.33)

where M satisfies M(−1) = A∗MA+B∗B :
PROOF The existence of the Nehari extension has already been proven: with Γ = I, it
suffices to take T 0∗ = B0Θ−1

22, where B0 and Θ are as in lemma 10.3 and 10.4. Let BU

and DU be such that

U = �
A C

BU DU

�
is a unitary realization of the inner factor U of the external factorization of T . The
realization ΘΘΘ has the general form of equation (10.13) (with Γ = I), but since JB =
I, all negative signature is associated with D22, which implies that D−1

22 exists and is
bounded, and also that D21 can be chosen equal to zero (as in [DD92, thm. 3.1]). Hence
we consider a realization of Θ of the form

ΘΘΘ = 24 R
I

I

35264 A C1 C2

BU D11 D12

B 0 D22

37524 R−(−1)
I

I

35
where the first column of the operator matrix in the middle is specified, and an exten-
sion by a second and third column is to be determined, as well as a state transformation
R, such that ΘΘΘ is J-unitary. We use the fact that U is unitary to derive expressions for
entries in ΘΘΘ. Let, as before, Λ be the J-Gram operator, which is here equal to Λ = R∗R
(recall that JB = I). The remainder of the proof consists of 6 steps.

1. C1 = Λ−1Cα ;
D11 = DUα ; where α = (C∗Λ−1C+D∗

UDU)−1=2 :
PROOF The J-unitarity relations between the first and second block column of ΘΘΘ
lead to

A∗ΛC1 +B∗
UD11 = 0

C∗
1ΛC1 +D∗

11D11 = I :
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The first equation shows that, for some scaling α,�

ΛC1
D11

� = �
A

BU

�⊥
α = �

C
DU

�
α :

The scaling α follows from the second equation.

2. C∗
2C+D∗

12DU = 0.

PROOF The J-unitarity conditions between the second and third column lead to

C∗
1ΛC2 +D∗

11D12 = 0
⇒ α∗C∗C2 +α∗D∗

UD12 = 0 :
3. B0 =C∗M(I − AZ)−1C2.

PROOF A state-space model of B0 was given in equation (10.23) as

B0 = �
−D∗

UD12 −C∗(I − M)C2
	+C∗MAZ(I − AZ)−1C2 :

Using the result of step 2 gives the intended simplification.

4. T 0∗ = B0Θ−1
22 =C∗M (I − [A −C2D−1

22B]Z)−1 C2D−1
22 .

PROOF Let Ae = A −C2D−1
22B. Then, because Θ−1

22 ∈ U ,

T 0∗ = B0Θ−1
22 = [C∗M(I − AZ)−1C2] [D−1

22 − D−1
22BZ(I − AeZ)−1C2D−1

22]= C∗M(I − AZ)−1
�
I −C2D−1

22BZ(I − AeZ)−1
�
C2D−1

22= C∗M(I − AZ)−1
�(I − AeZ)−C2D−1

22BZ
�(I − AeZ)−1C2D−1

22= C∗M(I − AZ)−1(I − AZ)(I − AeZ)−1C2D−1
22 :

5. C2D−1
22 = A(I − A∗MA)−1B∗.

PROOF The J-unitarity conditions imply24 A C1

BU D11
B 0

35∗24 Λ
I

−I

3524 C2

D12
D22

35 = 0

⇒
�

A C1

BU D11

�∗� Λ
I

��
C2

D12

� = �
B∗

0

�
D22

⇒
�

C2D−1
22

D12D−1
22

� = �
Λ−1

I

��
A C1

BU D11

�−∗�
B∗

0

�= �
Λ−1

I

��
ΛA Cα
BU DUα

��(Λ(−1)+B∗B)−1

I

��
B∗

0

�= �
A(Λ(−1)+B∗B)−1B∗

BU(Λ(−1)+B∗B)−1B∗

�
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where we have used the fact that�

A∗ B∗
U

C∗
1 D∗

11

��
ΛA Cα
BU DUα

� = �
Λ(−1)+B∗B

I

�
Finally, using M = I − Λ, where M satisfies M(−1) = A∗MA + B∗B gives Λ(−1) +
B∗B = I − A∗MA.

6. T 0∗ = De +BeZ(I − AeZ)−1Ce, where {Ae;Be;Ce;De} are as in equation (10.33).

PROOF From step 4,

T 0∗ = C∗M(I − AeZ)−1C2D−1
22= C∗MC2D−1

22 +C∗MAeZ(I − AeZ)−1C2D−1
22

where Ae = A−C2D−1
22B. It remains to substitute C2D−1

22 = A(I −A∗MA)−1B∗. 2Numerical example
We illustrate theorem 10.20 with a numerical example. Let T be given by the strictly
upper matrix

T = 266666666664
0 :326 :566 :334 :078 −:008 −:012 −:003
0 0 :326 :566 :334 :078 −:008 −:012
0 0 0 :326 :566 :334 :078 −:008
0 0 0 0 :326 :566 :334 :078
0 0 0 0 0 :326 :566 :334
0 0 0 0 0 0 :326 :566
0 0 0 0 0 0 0 :326
0 0 0 0 0 0 0 0

377777777775 :
The norm of T is computed as kT k= 1:215, and T has Hankel singular values equal
to

H1 H2 H3 H4 H5 H6 H7 H8:7385 :9463 :9856 :9866 :9856 :9463 :7385:2980 :3605 :3661 :3605 :2980:0256 :0284 :0256

so that kT kH = :9866 < 1. The objective is to extend T with a lower triangular part
such that the operator norm of the result is less than 1.
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A realization for T is obtained via algorithm 3.9 as

T1 = "
· ·

−:739 :000

#
T2 = " :733 −:517 −:442

−:738 :000 :000

#
T3 = 264 :733 −:517 :000 −:442:508 −:012 −:084 :857

−:738 −:000 :000 :000

375 T4 = 26664 :733 −:517 −:000 −:442:508 −:012 −:084 :857:430 :836 −:212 −:265

−:738 −:000 :000 :000

37775
T5 = 26664 :738 −:509 :000 −:442:509 −:005 :076 :857:424 :845 :192 −:264

−:734 :000 :000 :000

37775 T6 = 26664 :780 :441 −:444:506 −:026 :862
−:369 :897 :244

−:654 −:000 :000

37775
T7 = 264 −:867 −:499:499 −:867:326 :000

375 T8 = "
· 1:000

· :000

#
Theorem 10.20 gives a realization of T 0∗ as

T01 = "
· ·:000 :000

#
T02 = " :021 −:517 −:965

−:005 :125 :233

#
T03 = 264−:124 −:517 :000 −1:161:025 −:012 −:084 −:654:074 :281 −:018 :494

375 T04 = 26664−:130 −:517 −:000 −1:168:023 −:012 −:084 −:657:296 :836 −:212 −:183:084 :306 −:024 :519

37775
T05 = 26664−:121 −:509 −:000 −1:171:027 −:005 :076 −:656:295 :845 :192 −:176:080 :303 :021 :519

37775 T06 = 26664 :062 :441 −1:098:114 −:026 −:601
−:289 :897 :122

−:006 −:272 :494

37775
T07 = 264 −:702 −:504:404 :290:324 :233

375 T08 = "
· :000

· :000

#
and the resulting Nehari extension follows as

E = T − T 0 = 266666666664
0 :326 :566 :334 :078 −:008 −:012 −:003
0 −:233 :326 :566 :334 :078 −:008 −:012
0 :076 −:494 :326 :566 :334 :078 −:008
0 :003 :267 −:519 :326 :566 :334 :078
0 −:011 −:050 :295 −:519 :326 :566 :334
0 :003 −:013 −:050 :267 −:494 :326 :566
0 :000 :003 −:011 :003 :076 −:233 :326
0 0 0 0 0 0 0 0

377777777775
E is indeed contractive: kE k= :9932.
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In this chapter, we have presented an approximation scheme to derive, for a given up-
per triangular matrix T , a Hankel-norm approximant Ta of lower complexity. A model
of Ta can be computed starting from a high-order model of T (obtained e.g., by algo-
rithm 3.9) by applying algorithm 10.5. However, the derivation of a model for T can be
computationally intensive: it involves a sequence of SVDs to compute the relevant sub-
spaces. An alternative approach is via the algorithm discussed in section 10.5, which
acts directly on the entries of T . Only local computations are needed to obtain Θ and
B0. Further research is required to efficiently compute Ta as the upper part of (B0Θ−1

22)∗:
a direct computation is not really satisfactory in view of the fact that Θ is obtained in
a factored form.

A second open problem is the selection of a suitable error tolerance matrix Γ. At
present, one has to choose some Γ, which then results in an approximant with a cer-
tain complexity. It is, as yet, unclear how to obtain the reverse, i.e., how to derive, for
a given desired complexity of the approximant, the tolerance Γ that will achieve this
complexity.



11 LOW-RANK MATRIXAPPROXIMATION AND SUBSPACETRACKING

The usual way to compute a low-rank approximant of a matrix H is to take its singular
value decomposition (SVD) and truncate it by setting the small singular values equal
to 0. However, the SVD is computationally expensive. Using the Hankel-norm model
reduction techniques in chapter 10, we can devise a much simpler generalized Schur-
type algorithm to compute similar low-rank approximants. Since rank approximation
plays an important role in many linear algebra applications, we devote an independent
chapter to this topic, even though this leads to some overlap with previous chapters.

For a given matrix H which has d singular values larger than γ, we find all rank d
approximants Ĥ such that H − Ĥ has operator norm (matrix 2-norm) less than γ. The
set of approximants includes the truncated SVD approximation. The advantages of the
Schur algorithm are that it has a much lower computational complexity (similar to a
QR factorization), and directly produces a description of the column space of the ap-
proximants. This column space can be updated and downdated in an on-line scheme,
amenable to implementation on a parallel array of processors.11.1 INTRODUCTION
Fast adaptive subspace estimation plays an increasingly important role in modern sig-
nal processing. It forms the key ingredient in many sensor array signal processing algo-
rithms, system identification, and several recently derived blind signal separation and
equalization algorithms (e.g., [MDCM95, Slo94, vdVP96, vdVTP97]). 307
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The generic subspace estimation problem in these applications might be stated as

follows. Suppose that we are given a matrix H : m×n, consisting of measurement data
which becomes available column-by-column. Furtermore, suppose that it satisfies the
model H = H̃+ Ñ, where H̃ is a low rank matrix and Ñ is a disturbance. Knowing only
H, we can try to estimate H̃ by solving

min
Ĥ
kH − Ĥk s.t. rank(Ĥ) = d (11.1)

where k · k denotes the matrix 2-norm (largest singular value). The value of the rank
d is either given or is estimated from the singular values of H. The usual truncated
SVD (TSVD) solution is to set all but the largest d singular values of H equal to zero.
In subspace estimation, we are primarily interested in the column span of H̃. For the
TSVD solution, this space is estimated by the span of the first d left singular vectors of
H, the so-called principal subspace.

Continuing efforts on SVD algorithms have reduced its computational complexity
to be mainly that of reducing a matrix to a bidiagonal form: not much more than the
complexity of a QR factorization. However, a remaining disadvantage of the SVD in
demanding applications is that it is difficult to update the decomposition for a growing
number of columns of H. Indeed, there are important applications in signal processing
(e.g. adaptive beamforming, model identification, adaptive least squares filters) that re-
quire on-line estimation of the principal subspace, for growing values of n. A number
of other methods have been developed that alleviate the computational requirements,
yet retain important information such as numerical rank and principal subspaces. Some
of these techniques are the URV decomposition [Ste92], which is a rank revealing form
of a complete orthogonal decomposition [GV89], and the rank revealing QR decom-
position (RRQR), [Fos86, Cha87, CH90, CH92, BS92, CI94], see [CI94] for a review.
Both the RRQR and the URV algorithms require estimates of the conditioning of cer-
tain submatrices at every step of the iteration. This is a global and data-dependent oper-
ation: not a very attractive feature. The SVD and URV decomposition can be updated
[BN78, Ste92], which is still an iterative process, although it has been shown recently
that a simpler scheme is feasible if the updating vectors satisfy certain stationarity as-
sumptions [MVV92, MDV93]. An initial computation of the RRQR consists of an or-
dinary QR, followed by an iteration that makes the decomposition rank revealing. As
a one-sided decomposition, the RRQR is easier to update than an SVD, but also re-
quires (incremental) condition estimations at each updating step. Alternatively, there
are efficient subspace tracking algorithms which under stationary conditions gradually
converge towards the principal subspace, e.g., [Yan95].

As an alternative, we consider a technique based on the Hankel-norm approximation
theory of chapter 10. It is based on the knowledge of an upper bound to the noise,k Ñk ≤ γ, and gives a parametrization for all Ĥ that satisfy

min
Ĥ

rank(Ĥ) s.t. kH − Ĥk ≤ γ : (11.2)

It is readily shown that the resulting approximants Ĥ have rank d, where d is equal to
the number of singular values of H that are larger than γ. The TSVD is within the class,
but it is not explicitly identified. The prime advantage of the resulting technique is that
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it gives subspace estimates that have the correct dimension and a known performance
(projecting H onto the estimated subspace gives an Ĥ such that kH − Ĥ k ≤ γ), but are
substantially easier to compute and update than the TSVD.

The connection to the theory in chapter 10 is obtained by looking at a special case
of our usual operator T ∈ U(M;N ), in whichM = · · · ⊕ ; ⊕ M1 ⊕ ; ⊕ ; ⊕ · · ·N = · · · ⊕ ; ⊕ ; ⊕ N2 ⊕ ; ⊕ · · · :
A matrix T ∈ U has the form

T = 2664 · · · ·
· T12 ·

· ·
·

3775 ≡ [T12] ;
that is, T =T12 is just any matrix of any size. Its only nonzero Hankel matrix is H = T12.
In this chapter, we work out the implications of this specialization.

The computation of the “Schur subspace estimators” (SSE) that result from this tech-
nique is based on an implicit signed Cholesky factorization

HH∗ − γ2I =: BB∗ − AA∗

where A; B have minimal dimensions. Thus, the spectrum of HH∗ is shifted such that
the small eigenvalues become negative, which enables their separation from the large
eigenvalues. It is readily shown from inertia considerations that, even though A and B
are not unique, if H has d singular values larger than γ and m − d less than γ, then B
has d columns and A has m−d columns. The main result in this chapter is that, for any
such pair (A;B), all principal subspace estimates leading to approximants Ĥ satisfying
(11.2) are given by the column span of B − AM, where M is any matrix of compatible
size with kMk ≤ 1. The factorization can be computed via a hyperbolic factorization[γI H]Θ = [(A 0) (B 0)]
where Θ is a J-unitary matrix.

Straightforward generalizations are possible. Suppose that instead of kÑk< γ, we
know ÑÑ∗ ≤ γ2RN, where RN could be an estimate of the noise covariance matrix.
An implicit factorization of HH∗ − γ2RN leads to minimal rank approximants Ĥ such

that kR−1=2
N (H − Ĥ)k ≤ γ. The subspace estimates are computed from [N H]Θ =[(A 0) (B 0)] where N is any matrix such that NN∗ = γ2RN, and are still given by the

range of B − AM, for any kMk ≤ 1. Hence, without extra effort, we can take knowl-
edge of the noise covariance matrix into account. Note that, asymptotically, a suitable
N simply consists of scaled sample vectors of the noise process. If we have access to
this process (or can estimate noise vectors via subtraction of the estimated H̃), then it
is interesting to consider updating schemes for N as well as for H.11.2 J-UNITARY MATRICES
At this point, we review and specialize some material on J-unitary matrices from earlier
chapters. A square matrix Θ is J-unitary if it satisfies Θ∗JΘ= J ; ΘJΘ∗ = J ;where J is
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In: [r x] with signature j̃1; out: θ̃, j̃2 such that [r x]θ̃ = [r0 0], θ̃ j̃2θ̃∗ = j̃1:

case 1: j̃1 = �
1

−1

� ;|r| > |x| ⇒ j̃2 = �
1

−1

� ; s = x=r ; θ̃ = �
1 −s

−s∗ 1

�
1
c

case 2: j̃1 = �
1

−1

� ;|r| < |x| ⇒ j̃2 = �
−1

1

� ; s = r=x ; θ̃ = �
−s∗ 1
1 −s

�
1
c

case 3: j̃1 = �
−1

1

� ;|r| < |x| ⇒ j̃2 = �
1

−1

� ; s = r=x ; θ̃ = �
−s∗ 1
1 −s

�
1
c

case 4: j̃1 = �
−1

1

� ;|r| > |x| ⇒ j̃2 = �
−1

1

� ; s = x=r ; θ̃ = �
1 −s

−s∗ 1

�
1
c

case 5: j̃1 = �
1

1

�
⇒ j̃2 = �

1
1

� ; s = xp
|r|2+|x|2

; θ̃ = �
c∗ −s
s∗ c

�
case 6: j̃1 = �

−1
−1

�
⇒ j̃2 = �

−1
−1

� ; s = xp
|r|2+|x|2

; θ̃ = �
c∗ −s
s∗ c

�
where c =p

1 − |s|2Figure 11.1. Elementary J-unitary zeroing rotations
a signature matrix which follows some prescribed (p+q)× (p+q) block-partitioning
of Θ:

Θ = � p q

p Θ11 Θ12

q Θ21 Θ22

� ; J = �
Ip

−Iq

� : (11.3)

If Θ is applied to a block-partitioned matrix [A B], then [A B]Θ = [C D] ⇒ AA∗ −
BB∗ =CC∗ −DD∗ : Hence, J associates a positive signature to the columns of A;C, and
a negative signature to those of B;D.

For updating purposes, it is necessary to work with column permutations of [A B]
and [C D], which induces row and column permutations of Θ. Thus we introduce matri-
ces Θ̃ that are J-unitary with respect to unsorted signature matrices J̃ (the tilde reminds
of the absence of sorting), satisfying Θ̃∗J̃1Θ̃ = J̃2 ; Θ̃J̃2Θ̃∗ = J̃1 ; where J̃1 and J̃2 are di-
agonal matrices with diagonal entries equal to ±1. If MΘ̃ = N, then MJ̃1M∗ = NJ̃2N∗,
so that J̃1 associates its signature to the columns of M, and J̃2 associates its signature to
the columns of N. By inertia, the total number of positive entries in J̃1 has to be equal
to that in J̃2, and likewise for the negative entries.

A 2×2 matrix θ̃ is an elementary J-unitary rotation if it satisfies θ̃∗ j̃1θ̃= j̃2, θ̃ j̃2θ̃∗ =
j̃1, for unsorted signature matrices j̃1, j̃2. Similar to Givens rotations, it can be used to
zero specific entries of vectors: for a given vector [r x] and signature j̃1, we can find
θ̃, r0, and j̃2 such that [r x]θ̃ = [r0 0]. The precise form that θ̃ assumes depends on j̃1
and whether |r| > |x| or |r| < |x|, as listed in figure 11.1. Cases 5 and 6 in the table occur
when j̃1 is definite and lead to ordinary circular (unitary) rotations. Situations where
|r| = |x| with an indefinite signature j̃1 are degenerate (c = 0): the result [0 0] is well
defined but θ must be considered unbounded.
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A matrix A is said to be J̃-nonsingular, with respect to a certain signature matrix J̃,

if AJ̃A∗ is nonsingular. It is immediate that if A is J̃1-nonsingular and Θ̃ is a (J̃1; J̃2)-
unitary matrix, then AΘ̃ is J̃2-nonsingular. The following basic result claims that J-
nonsingular matrices can be factored (cf. corollary 8.18):

Theorem 11.1 A matrix A : m × (m+n) is J̃1-nonsingular if and only if there exists a
signature matrix J̃2 and a (J̃1; J̃2)-unitary matrix Θ̃ such that

AΘ̃ = [X 0m×n] ; X : m × m; invertible. (11.4)

PROOF Sufficiency is obvious. As to necessity, assume that A is J̃-nonsingular. Then
we can factor AJ̃1A∗ as

AJ̃1A∗ = XJ̃0X∗ ; X : m × m; invertible,

for some m × m signature matrix J̃0. This factorization exists and can in principle be
computed from an LDU factorization with pivoting, or from an eigenvalue decompo-
sition of AJ̃1A∗. Since A is J̃1-nonsingular, it is also nonsingular in the ordinary sense,
so that there exists a matrix T : (m+n)×m, such that AT =X. T is not unique. Because
X is invertible, we can take

T = J̃1A∗(AJ̃1A∗)−1X :
Using (AJ̃1A∗)−1 =X−∗J̃0X−1, it is directly verified that this T satisfies T∗J̃1T = J̃0. The
remainder of the proof is technical: we have to show that T can be extended to a square,
J-unitary matrix. For this, see the proof of lemma 8.16. 2
Corollary 11.2 Let A : m × (m+n) be J̃1-nonsingular. Denote by A1::i;� the submatrix
of A, consisting of its first i rows. Then there exists a signature matrix J̃2, and a (J̃1; J̃2)-
unitary matrix Θ̃ such that

AΘ̃ = [R 0m×n] ; R : m × m; lower triangular, invertible

if and only if A1::i;� is J̃1-nonsingular, for i = 1; : : : ;m. If the diagonal entries of R are
chosen to be positive, then R is unique.

Such a factorization was proven in [BG81] for square matrices A and upper triangular
R, but this result extends directly to the rectangular case. In [BG81], it was called the
HR-decomposition, and it is also known as the hyperbolic QR factorization [OSB91].11.3 APPROXIMATION THEORYCentral approximant
For a given m × n data matrix H and threshold γ, denote the SVD of H as

H =UΣV∗ = [U1 U2]� Σ1
Σ2

��
V∗

1
V∗

2

�(Σ1)ii > γ ; (Σ2)ii ≤ γ : (11.5)
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Here, U and V are unitary matrices, and Σ is a diagonal matrix which contains the sin-
gular values σk of H. The matrices are partitioned such that Σ1 contains the singular
values that are strictly larger than γ, and Σ2 contains those that are equal to or smaller
than γ.

Suppose that d singular values of H are larger than γ, and that none of them are equal
to γ. Our approximation theory is based on an implicit factorization of

HH∗ − γ2I = BB∗ − AA∗ : (11.6)

This is a Cholesky factorization of an indefinite Hermitian matrix. A and B are cho-
sen to have full column rank. They are not unique, but by Sylvester’s inertia law, their
dimensions are well-defined. Using the SVD of H, we obtain one possible decompo-
sition as

HH∗ − γ2I = U1(Σ2
1 − γ2I)U∗

1 + U2(Σ2
2 − γ2I)U∗

2 ;
where the first term is positive semidefinite and has rank d, and the second term is nega-
tive semidefinite and has rank m−d. Hence, B has d columns, and A has m−d columns.

To obtain an implicit factorization which avoids computing HH∗, we make use of
theorem 11.1.

Theorem 11.3 Let H : m × n have d singular values larger than γ, and none equal to γ.
Then there exists a J-unitary matrix Θ such that[γIm H]Θ = [A0 B0] (11.7)

where A0 = [A 0m×d] ; B0 = [B 0m×n−d] ; A:m × (m − d), B:m × d, and [A B] is of full
rank.

PROOF The matrix [γIm H] is J-nonsingular: by assumption, γ2I−HH∗ has d negative,
m − d positive, and no zero eigenvalues. Hence theorem 11.1 implies that there exists
Θ̃ : [γIm H]Θ̃ = [X 0m×n]. The columns of X are the columns of [A;B], in some per-
muted order, where A;B correspond to columns of X that have a positive or negative
signature, respectively. After sorting the columns of [X 0] according to their signature,
equation (11.7) results. 2

Note that, by the preservation of J-inner products, equation (11.7) implies (11.6).
From the factorization (11.7), we can immediately derive a 2-norm approximant satis-
fying the conditions in (11.2). To this end, partition Θ according to its signature J into
2 × 2 blocks, like in (11.3).

Theorem 11.4 Let H : m × n have d singular values larger than γ, and none equal to γ.
Define the factorization [γIm H]Θ = [A0 B0] as in theorem 11.3. Then

Ĥ = B0Θ−1
22 (11.8)

is a rank d approximant such that kH − Ĥk< γ.

PROOF Ĥ is well-defined because Θ22 is invertible (cf. theorem 8.2). It has rank d
because B0= [B 0] has rank d. By equation (11.7), B0= γIΘ12+HΘ22, hence H −Ĥ =
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−γΘ12Θ−1

22. The proof follows from the fact that Θ12Θ−1
22 is contractive (theorem 8.2).2

We mentioned in the introduction that the column span (range) of the approximant
is important in signal processing applications. From theorem 11.4, it is seen that this
column span is equal to that of B: it is directly produced by the factorization. How-
ever, remark that [A B] in (11.7) is not unique: for any J-unitary matrix Θ1, [A1 B1] =[A B]Θ1 also satisfies γ2I − HH∗ = A1A∗

1 − B1B∗
1, and could also have been produced

by the factorization. E.g., for some choices of Θ1, we will have ran(B) = ran(U1), and
ran(A) = ran(U2). Using Θ1, we can find more approximants.Parametrization of all approximants
We will now give a formula of all possible 2-norm approximants Ĥ of H of rank equal
to d; there are no approximants of rank less than d. As usual, the set of all minimal-
rank 2-norm approximants will be parametrized by matrices SL : m×n, with 2×2 block
partitioning as

SL = � d n−d

m−d (SL)11 (SL)12

d (SL)21 (SL)22

� ; (11.9)

and satisfying the requirements(i) contractive: kSL k ≤ 1 ;(ii) block lower: (SL)12 = 0 : (11.10)

The first condition on SL will ensure that kH − Ĥk ≤ γ, whereas the second condition
is required to have Ĥ of rank d.

Theorem 11.5 With the notation and conditions of theorem 11.4, all rank d 2-norm
approximants Ĥ of H are given by

Ĥ = (B0 − A0SL)(Θ22 − Θ21SL)−1 ;
where SL satisfies (i): kSL k ≤ 1, and (ii): (SL)12 = 0. The approximation error is

S := H − Ĥ = γ(Θ11SL − Θ12)(Θ22 − Θ21SL)−1 : (11.11)

PROOF The proof is a special case of the proof of theorem 10.18. See also [vdV96].2
By this theorem, an estimate of the principal subspace of H is given by R(Ĥ) =R(B0 − A0SL) = R(B − A(SL)11), for any valid choice of SL. Note that (SL)11 ranges

over the set of all contractive (m−d)×d matrices, so that all suitable principal subspace
estimates are given by

ran(B − AM) ; kMk ≤ 1 :
The distance of a subspace estimate with the actual principal subspace, ran(U1), is mea-
sured only implicitly, in the sense that there exists an approximant Ĥ with this column
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span that is γ-close to H. Actually, for each subspace estimate there are many such ap-
proximants, since the subspace estimate only depends on (SL)11, whereas the approx-
imant also depends on (SL)21 and (SL)22.

The choice of a particular approximant Ĥ, or subspace estimate ran(Ĥ), boils down
to a suitable choice of the parameter SL. Various choices are interesting:

1. The approximant Ĥ in theorem 11.4 is obtained by taking SL = 0. This approximant
is the simplest to compute; the principal subspace estimate is equal to the range of
B. The approximation error is given by γkΘ12Θ−1

22 k. Note that, even if all nonzero
singular values of H are larger than γ so that it is possible to have Ĥ = H, the choice
SL = 0 typically does not give zero error. Hence, this simple choice of SL could lead
to ‘biased’ estimates.

2. As the truncated SVD solution satisfies the requirements, there is an SL which yields
this particular solution and minimizes the approximation error. However, comput-
ing this SL requires an SVD, or a hyperbolic SVD [OSB91].

3. It is sometimes possible to obtain a uniform approximation error. First write equa-
tion (11.11) in a more implicit form,�

γ−1SG
−G

�= �
Θ11 Θ12
Θ21 Θ22

��
SL

−In

� ;
where G is an invertible n × n matrix. This equation implies

G∗(γ−2S∗S − In)G = S∗
LSL − In :

Suppose m ≤ n. If we can take SL to be an isometry, SLS∗
L = Im, then rank(S∗

LSL −
In) = n−m. It follows that γ−1S must also be an isometry, so that all singular values
of S = H − Ĥ are equal to γ: the approximation error is uniform. SL can be an isom-
etry and have (SL)12 = 0 only if d ≥ m−d, i.e., d ≥ m=2. In that case, we can take for
example SL = [Im 0]. This approximant might have relevance in signal processing
applications where a singular data matrix is distorted by additive uncorrelated noise
with a covariance matrix σ2Im.

4. If we take SL = Θ−1
11Θ12, then we obtain Ĥ = H and the approximation error is zero.

Although this SL is contractive, it does not satisfy the condition (SL)12 = 0, un-
less d = m or d = n. Simply putting (SL)12 = 0 might make the resulting SL non-
contractive. To satisfy both conditions on SL, a straightforward modification is by
setting

SL = Θ−1
11Θ12

�
Id

0n−d

�= � (Θ−1
11Θ12)11 0(Θ−1
11Θ12)21 0

� : (11.12)

The corresponding approximant is

Ĥ(1) := (B0 − A0Θ−1
11 Θ12[ I 0

0 0 ])(Θ22 − Θ21Θ−1
11Θ12[ I 0

0 0 ])−1 ; (11.13)

and the corresponding principal subspace estimate is given by the range of

B(1) := B − A(Θ−1
11Θ12)11 : (11.14)
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The subspace estimate is “unbiased” in a sense discussed below, and is usually quite
accurate when σd is not very close to γ. Its efficient computation is discussed in
section 11.5.

The approximation error is determined by

S = H − Ĥ(1) = γΘ12

�
0d

−In−d

�(Θ22 − Θ21Θ−1
11Θ12[ I 0

0 0 ])−1 : (11.15)

This shows that the rank of S is at most equal to min(m;n − d). If m = n, then the
rank of S is m−d, i.e., the error has the same rank as a truncated SVD solution would
give.

5. To improve on the approximation error, we propose to take (SL)11 = (Θ−1
11Θ12)11, as

in the previous item, and use the freedom provided by (SL)21 and (SL)22 to minimize
the norm of the error. The subspace estimate is only determined by (SL)11 and is the
same as before. Instead of minimizing in terms of SL, which involves a non-linear
function and a contractivity constraint, we make use of the fact that we know already
the column span of the approximant: we are looking for Ĥ = B(1)N, with B(1) given
by (11.14) and N : d × n a minimizer of

min
N
kH − B(1)Nk :

A solution is given by N = B(1)†H, and the resulting approximant is

Ĥ = B(1)B(1)†H=: Ĥ(2) ; (11.16)

the projection of H onto ran(B(1)). Although we do not compute the SL to which this
approximant corresponds, the residual error is guaranteed to be less than or equal
to γ, because it is at most equal to the norm of S in (11.15). Hence, there will be
some SL that satisfies the constraints, although we never compute it explicitly. For
this SL, the rank of the residual error is always at most equal to m − d, the rank of
Im − B(1)B(1)†.

One other important feature of the subspace estimate B(1) in (11.14) is that it is un-
biased, in the following sense.

Lemma 11.6 ran(B(1)) ⊂ ran(H).
PROOF From [(A 0) (B 0)] = [A0 B0] = [γI H]Θ, we have� [A 0] = γΘ11 +HΘ21[B 0] = γΘ12 +HΘ22

Hence[B(1) 0] = [B 0] − [A 0]Θ−1
11Θ12

�
I

0

�= (γΘ12 +HΘ22) − (γΘ11 +HΘ21)Θ−1
11Θ12

�
I

0

�= H(Θ22 − Θ21Θ−1
11 Θ12)�I

0

� + HΘ22

�
0

I

� + γΘ12

�
0

I

�
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so that

B(1) = H(Θ22 − Θ21Θ−1
11Θ12)� I

0

� : 2
We also have kB(1) k ≤ kHk : (11.17)

This shows that, although norms of J-unitary matrices may be large, this particular sub-
space estimate is bounded in norm by the matrix it was derived from.

Because they will be used throughout the chapter, we will give names to the two
“Schur subspace estimates” B and B(1):

SSE-1 : USSE1 = B (11.18)

SSE-2 : USSE2 = B − AMΘ ; MΘ = [Im−d 0]Θ−1
11Θ12

�
Id

0

� : (11.19)11.4 HYPERBOLIC QR FACTORIZATION
In this section, we consider the computation of the SSE-1 subspace estimate, i.e., the
actual construction of a J-unitary matrix Θ such that[γI H]Θ = [A0 B0] ; J = �

Im

−In

� :
We are looking for algorithms that do not square the data and that allow easy updating
of the factorization as more and more columns of H are included (growing n). Θ will
be computed in two steps: Θ = Θ̃Π, where Θ̃ is a (J; J̃2)-unitary matrix with respect to
J and an unsorted signature J̃2 and is such that� + −

γIm H
�
Θ̃ = � ± ±

R 0m×n
� ; R : m × m : (11.20)

Π is any permutation matrix such that ΠJ̃2Π∗ = J is a sorted signature matrix. The lat-
ter factorization can be viewed as a hyperbolic QR factorization, in case R has a trian-
gular form, and can be computed in a number of ways. Hyperbolic Householder trans-
formations have been employed for this purpose [BG81, OSB91], zeroing full rows at
each step, but the most elementary way is to use elementary rotations to create one zero
entry at a time, like Givens rotations for QR factorizations. Such techniques are known
as (generalized) Schur algorithms, because of their similarity to the Schur method for
Toeplitz matrices.Inde�nite Schur algorithm
To compute the factorization (11.20), elementary rotations θ̃ as in figure 11.1 are em-
bedded in plane rotations Θ̃(i;k) which are applied to the columns of [γI H] in the same
way as Givens rotations are used for computing a QR factorization. Each plane rota-
tion produces a zero entry in H; specifically, Θ̃(i;k) annihilates entry (i;k). A difference
with QR is that we have to keep track of the signatures associated to the columns of the
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J̃ := �

Im

−In

�
Θ̃ = Im+n

for k = 1 to n and i = 1 to m ;[a b] := [X(i; i) Y(i;k)]
j̃1 := �

J̃(i; i) 0
0 J̃(m+ k;m+ k) �

Compute θ̃; j̃2 from a;b; j̃1 s.t. [a b]θ̃ = [∗ 0]
Embed θ̃ into Θ̃(i;k)[X Y ] := [X Y ]Θ̃(i;k)
Θ̃ := Θ̃Θ̃(i;k)
J̃(i; i) := ( j̃2)1;1
J̃(m+ k;m+ k) := ( j̃2)2;2

end

J̃2 := J̃Figure 11.2. Schur algorithm to compute the factorization [γI H]Θ̃ = [X 0] from H.
matrix to determine which type of rotations to use. The general scheme, however, goes
as follows: [γI H] = 24+ + + − − − −

γ × × × ×
γ × × × ×

γ × × × ×

35 Θ̃(1;1)
→24 − + + + − − −

× 0 × × ×
× γ × × × ×
× γ × × × ×

35 Θ̃(2;1)
→24 − + + + − − −

× 0 × × ×
× × 0 × × ×
× × γ × × × ×

35 →

· · ·
Θ̃(m;n)
→

24 − + − + + − −

× 0 0 0 0
× × 0 0 0 0
× × × 0 0 0 0

35= [R 0] ;
Θ̃ = Θ̃(1;1)Θ̃(2;1) · · ·Θ̃(m;1) · Θ̃(1;2) · · ·Θ̃(2;2) · · · Θ̃(m;n) :
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0

col.2col.1col.3

− − −

θ̃[x1 x2] = [a b]θ̃
θ̃

x1;( j̃2)11

x2;( j̃2)22

a;( j̃1)11
b;( j̃1)22

θ̃

R

θ̃3

θ̃2

θ̃1

H

0

0

Figure 11.3. Signal ow graph of the Schur algorithm. Associated to every matrix entryis also its signature (+ or −). R contains a permutation of [A B] and is initialized by γI.The shaded processors compute rotation parameters as in �gure 11.1.
(Except for the first matrix, the signatures of the columns in the above matrices are ex-
amples, as they are data dependent.) The pivot elements at each step are underlined;
these entries, along with the signatures of the two columns in which they appear, de-
termine the elementary rotation θ̃ that will be used at that step, as well as the resulting
signature j̃2. This signature is the new signature of these two columns, after application
of the rotation. The algorithm is summarized in figure 11.2.

The nulling scheme ensures that [γI H]Θ̃ = [R 0], where R is a resulting lower
triangular invertible matrix; it contains the columns of A and B in some permuted order.
The columns of R with a positive signature are the columns of A, the columns with a
negative signature are those of B. Hence, the final step (not listed figure 11.2) is to sort
these columns, such that [R 0]Π = [A 0 B 0] = [A0 B0]. Then Θ = Θ̃Π is J-unitary
with respect to J, and [γI H]Θ = [A0 B0].

The complexity of the algorithm is similar to that of the QR factorization: about
1=2m2n rotations, or 2m2n flops. The Schur algorithm has a direct implementation on
a systolic array of processors. This array is entirely similar to the classical Gentleman-
Kung triangular Givens array [GK81b], except that, now, all data entries have a signa-
ture associated to them, and the processors have to perform different types of rotations,
depending on these signatures. The corresponding array is shown in figure 11.3.Updating and downdating
The Schur method is straightforward to update as more and more columns of H become
known. If [γI Hn]Θ̃(n) = [Rn 0] is the factorization at point n and Hn+1 = [Hn hn+1],
then, because the algorithm works column-wise,[γI Hn+1]Θ̃(n+1) = [Rn+1 0] ⇒ [Rn 0 hn+1] θ̃(n+1) = [Rn+1 0 0]

Θ̃(n+1) = Θ̃(n)θ̃(n+1) ;
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for some J-unitary matrix θ̃(n+1) acting on the columns of Rn and on hn+1. Hence, we
can continue with the result of the factorization that was obtained at the previous step.
Each update requires about 1=2m2 rotations.

The downdating problem is to compute the factorization for Hn with its first column
h1 removed, from a factorization of Hn. It can be converted to an updating problem,
where the old column h1 is now introduced with a positive signature,[ ±

Rn
+
h1] θ̃(n+1) = [Rn+1 0] :

This is possible because, implicitly, we factor γ2I −HnH∗
n +h1h∗

1 = RnJ̃R∗
n+h1h∗

1. The
uniqueness of the hyperbolic QR factorization into triangular matrices with positive
diagonals ([BG81], viz. corollary 11.2) implies that the result Rn+1 is precisely the same
as if h1 had never been part of Hn at all.Breakdown
In section 11.4, we had to assume that the data matrix H was such that at no point in the
algorithm [a b] j̃1[a b]∗ is equal to zero. If the expression is zero, then there is no J-
unitary rotation θ̃ such that [a b]θ̃ = [∗ 0]. Note that the condition in theorem 11.3 that
none of the singular values of H are equal to γ does not preclude this case, but merely
ascertains that there exists a Θ̃ which will zero H. One simple example is obtained by
taking H = [1 1]T , γ = 1. It is straightforward to show that there is no J-unitary Θ̃ such
that �

1 1
1 1

�
Θ̃ = �

× 0 0
× × 0

�
(11.21)

as the J-norms of the first row will not be equal. Hence Θ cannot be obtained by the
recursive algorithm. However, a more general Θ̃ does exist, such that�+ + −

1 1
1 1

�
Θ̃ = 1p

2

� + − +
1 1 0

−1 1 0

�
viz.

Θ̃= 1p
2

24 1 −1
p

2
−1 −1

p
2

0 2 −
p

2

35 ; J̃1 =24 1
1

−1

35 ; J̃2 =24 1
−1

1

35 :
The difference is that, in this factorization, the resulting matrix R is no longer lower tri-
angular. Theorem 11.7 gives necessary and sufficient conditions on the singular values
of H and a collection of submatrices of H, so that the Schur algorithm does not break
down.

Theorem 11.7 Let H : m × n be a given matrix, and γ ≥ 0. Denote by H1::i;1::k the sub-
matrix, consisting of the first to the i-th row and the first k columns of H. The Schur
algorithm does not break down if and only if none of the singular values of H1::i;1::k] is
equal to γ, for i = 1; : : : ;m and k = 1; : : : ;n.



320 TIME-VARYING SYSTEMS AND COMPUTATIONS
PROOF (Necessity) When processing the k-th column of H by the Schur algorithm,
we are in fact computing a triangular factorization of [γIm H1::m;1::k]]. Corollary 11.2
claims that a suitable J-unitary operator exists if and only if [γIi H[i;k]] is J-nonsingular,
for i = 1; : : : ;m, i.e., if and only if none of the singular values of H1::i;1::k] is equal to 1.
The triangularization is done for k = 1;2; : : : ;n in turn.

(Sufficiency) Sufficiency at stage (i;k) follows recursively from the factorization at
the previous stage and the existence and uniqueness of the factorization at the current
stage. 2

Similar results are known for the case where the factorization is computed via hyper-
bolic Householder transformations where all zeros in a row are generated at the same
time. In this case there are less conditions [BG81], viz. theorem 11.2. It should be noted
that the conditions in theorem 11.7 are quite elaborate, as only one condition (none of
the singular values of H are equal to γ) suffices for the existence of Θ. Numerically, we
might run into problems also if one of the singular values is close to γ, in which case the
corresponding hyperbolic rotation has a large norm. How serious this is depends on a
number of factors, and a careful numerical analysis is called for. One example where a
large rotation is not fatal is the case where the singularity occurs while processing the
last entry of a column (i = m). Although the rotation will be very large, the resulting
R remains bounded and becomes singular: Rm;m = 0. Hence, the subspace informa-
tion is still accurate, and R varies in a continuous way across the γ-boundary; only its
signature is necessarily discontinuous. Pivoting schemes could in principle be used to
prevent large hyperbolic rotations. A more attractive scheme results in the computation
of the SSE-2, as discussed in section 11.5.Comparison of SSE-1 and SSE-2
We demonstrate some of the properties of the approximation scheme by means of a
simple example. We take H(σ2) =UΣ(σ2)V∗ to be a sequence of 3 × 4 matrices, with
U and V randomly selected constant unitary matrices, and with singular values equal
to (20; σ2; 0:5) ; σ2 = 0; 0:01; : : : ; 3:99;4 :
The approximation tolerance is set to γ = 1. We compare the approximants Ĥ(0) given
by SL = 0, Ĥ(1) given by equation (11.13), Ĥ(2) given by (11.16), and Ĥ(1) when the
factorization is computed with pivoting. The pivoting scheme consists of column per-
mutations, except when processing the last column, in which case we switch to row
permutations. The pivoting is applied in its extreme form, i.e., whenever this leads to
elementary rotation matrices with a smaller norm. The approximants are compared on
the following aspects: (a) kΘk, with and without pivoting; (b) kH −Ĥk, for each of the
mentioned approximants; (c) the accuracy of the subspace estimates, compared to the
principal subspace of H (the column span of the singular vectors with corresponding
singular values larger than 1). The distance between two subspacesA and B is defined
as dist(A;B) = kPA − PB k ; where PA is the orthogonal projection ontoA [GV89].

Figure 11.4(a) shows kΘk as a function of σ2. Without pivoting, there are a num-
ber of peaks, corresponding to the values of σ2 where one of the submatrices H[i;k] has
a singular value equal to 1. In the range 0 ≤ σ2 ≤ 4, this occurred for (i;k) = (3;4),
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Figure 11.4. (a) Norm of Θ. kΘk → ∞ for certain values of σ2 when the indicatedentry (i; j) of H is processed. (b) The norm of the �rst and second column of B and B(1).(c) Norm of the approximation error. (d) Distance between the principal and estimatedsubspaces.



322 TIME-VARYING SYSTEMS AND COMPUTATIONS(3;3), (3;2) and (2;4), respectively. When pivoting is applied, the peak at σ2 = 1 is,
necessarily, still present, but the other peaks are mostly smoothed out. Figure 11.4(b)
shows the norm of the columns of B, in the scheme without pivoting. For σ2 < 1, the
rank of the approximant is 1. At σ2 = 1, the dimension of B increases, although at first,
the new column has a very small norm. For larger values of σ2, the norm grows and the
subspace becomes better defined. Figure 11.4 also shows that no peak occurs for the
norm of the columns of the SSE-2 subspace estimate B(1) of equation (11.14), on which
both Ĥ(1) and Ĥ(2) are based. This is as predicted by lemma 11.6: kB(1)k ≤ kH k= 20.
Instead of having a peak, the norm of the first column of B(1) dips to about 0:12.

In figure 11.4(c), the norm of H − Ĥ is shown, for the various choices of Ĥ that we
discussed in section 10.4. The lowest line corresponds to the truncated SVD solution,
which gives the lowest attainable error. It is seen that, for all approximants, the ap-
proximation error is always less than γ ≡ 1. The approximation error for Ĥ(0) is in this
example always higher than the error for Ĥ(1), Ĥ(2), and the error for Ĥ(1) is always
higher than the error for Ĥ(2), since the latter approximant minimizes this error while
retaining the same subspace estimate. The approximation error for Ĥ(2) is almost iden-
tically close to the theoretical minimum, except in a small region 1 ≤ σ2 ≤ 1:5. The er-
rors for Ĥ(0) and Ĥ(1) touch a number of times on the (γ = 1)-line. For Ĥ(0) this can be
explained as follows. The error for SL = 0 is given by equation (11.11) as −γΘ12Θ−1

22 .
Because the J-unitarity of Θ implies Θ−∗

22Θ−1
22 +(Θ−∗

22Θ∗
12)(Θ12Θ−1

22) = I, it follows that
whenever kΘ22k→ ∞, necessarily kΘ12Θ−1

22 k→ 1.
Figure 11.4(d) depicts the distance between the principal and estimated subspaces.

For σ2 < 1, this distance is very close to zero (< :0002) for each of the methods. The
distance jumps up when σ2 crosses 1: the subspace increases in dimension but is at first
only weakly defined. For B(1), the distance goes down again quickly, whereas for B, it
stays constant for a while before going down.11.5 HYPERBOLIC URV DECOMPOSITION
Let N : m × n1 and H : m × n2 be given matrices. (Previously, we had N = γI.) We
consider implicit factorizations of HH∗ − NN∗ as

HH∗ − NN∗ = BB∗ − AA∗ ; (11.22)

where A and B together have m columns. A and B follow from the factorization� n1+ n2
−

m N H
�
Θ = � n1+ n2

−
m A0 B0 � ; A0 = � m−d n1−m+d

m A 0
� ; B0 = � d n2−d

m B 0
�

(11.23)
where Θ is a J-unitary matrix partioned conform the equation. According to theorem
11.1, the factorization always exists although Θ will be unbounded when HH∗ − NN∗

is singular. However, the factorization is not unique.
In section 11.4, we computed the factorization (11.23) by means of a hyperbolic QR

factorization [+N −
H]Θ̃ = [±

R
±

0m×(n1+n2−m)] ; (11.24)

in which R is a lower or upper triangular m × m matrix. Although this factorization is
simple to update, it has the drawback that it does not always exist: the triangular form
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of R is too restrictive (corollary 11.2, theorem 11.7). The set of exceptions is finite, but
in the neighborhood of an exception it may happen that A and B are unbounded with
nearly collinear column spans.

To get around this, introduce a QR factorization of [A B]: R= [RA RB] =Q∗[A B] ;
where R is triangular and Q is unitary. This leads to the more general two-sided decom-
position

Q∗[+N −
H]Θ = [ +RA

+
0 |

−
RB

−
0] : (11.25)

Note that still [A 0 | B 0] = [N H]Θ. This two-sided decomposition always exists. We
can choose to have R upper triangular or lower triangular, or even permute the columns
of [A B] before introducing the QR factorization. It is convenient to take R lower tri-
angular: if we split Q = [QA QB] accordingly, then

ran(B) = ran(QB) :
Hence, for this choice, QB is an orthonormal basis of the (central) principal subspace
estimate. If our objective is to estimate a null space basis, then we would swap (A;B)
or take R upper triangular so that ran(A) = ran(QA).

We are interested in SSE-2 subspace estimates, as defined in (11.19). This definition
involves the inversion of submatrices of Θ, which is not attractive, also because the size
of these submatrices is not constant but grows with n1 and n2. We will now show how
this can be avoided by posing additional structural restrictions on Θ, which is possible
because A;B and Θ are not unique. We can use this freedom to transform MΘ in (11.19)
to zero, as shown in the following lemma.

Lemma 11.8 For given A;B;Θ, consider a transformation by a J-unitary matrix ΘM:[A 0 | B 0]ΘM = [A0 0 | B0 0] (11.26)

ΘΘM = Θ0 (11.27)

where ΘM only acts on the columns of A;B (and corresponding columns of Θ).
Then ran(B − AMΘ) = ran(B0 − A0MΘ0), i.e., the SSE-2 subspace is invariant under

ΘM. Furthermore, there exists a ΘM such that MΘ0 = 0, i.e., such that ran(B0) is the
SSE-2 subspace.

PROOF The proof is rather technical and is given in the appendix. 2
Hence, there is a matrix ΘM which transforms Θ to Θ0 = ΘΘM, such that after the

transformation we simply take B0 and have the desired SSE-2 subspace basis. Knowing
this, there are easier ways to find this transformation. Suppose [Θ11 Θ12] is partitioned
as [Θ11 Θ12] = � m−d n1−(m−d) d n2−d

m−d (Θ11)11 (Θ11)12 (Θ12)11 (Θ12)12
n1−(m−d) ∗ ∗ ∗ ∗

� :
From the definition of MΘ in (11.19), it is seen that to have MΘ0 = 0, it suffices to find a
transformation on Θ such that Θ0−1

11 Θ0
12 has a zero (11)-block. This will be the case, for

example, if both (Θ0
11)12 = 0 and (Θ0

12)11 = 0. The latter can always be effected by a
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suitably chosen ΘM which cancels (Θ12)11 against (Θ11)11. However, to apply lemma
11.8, ΘM is not allowed to change the columns of (Θ11)12. To zero this block, we may
apply any invertible transformation Te to the rows of [Θ11 Θ12]:[Θ0

11 Θ0
12] = Te[Θ11 Θ12]

because Θ0−1
11 Θ0

12 = Θ−1
11Θ12 is invariant under Te. This leads to a new characterization

of SSE-2 estimates:

Theorem 11.9 The following factorization provides an SSE-2 subspace estimate. For
given N : m × n1, H : m × n2, with n1 ≥ m, find the subspace dimension d, Q (unitary),
Θ (J-unitary), R = [RA RB] (lower triangular), T : (m − d)× n1 (full rank) such that

Q∗ � n1+ n2
−

N H
�
Θ = h m−d+ n1−(m−d)+ d

−
n2−d

−
RA 0 RB 0

i ; (11.28)

T
� n1+ n2

−
I 0

�
Θ = h m−d+ n1−(m−d)+ d

−
n2−d

−
I 0 0 ∗

i : (11.29)

With the partitioning Q = [QA QB], an orthonormal basis for the SSE-2 subspace esti-
mate is given by QB.

PROOF We only have to show that MΘ = 0. Let Te be an extension of T to a full rank
n1 × n1 matrix, then

T [In1 0]Θ = [(TeΘ11)11 (TeΘ11)12 (TeΘ12)11 (TeΘ12)12] = [Im−d 0 0 ∗] :
Hence MΘ = [Im−d 0]Θ−1

11Θ12[ Id
0 ] = [Im−d 0]Θ−1

11T−1
e TeΘ12[ Id

0 ] = [∗ 0][0
∗ ] = 0. 2

By virtue of theorem 11.1, the above factorization always exists. If HH∗ − NN∗ is
singular, then certain columns of Θ are unbounded and corresponding columns of R are
identically zero. Note that the factorization, and hence the SSE-2 subspace, is still not
unique: some freedom is remaining in the generation of the zero entries. With proper
choices for Q, Θ and T in terms of the left and right singular vectors of H, one can show
that the TSVD (principal) subspace is within the class of SSE-2 subspaces, and has R
diagonal as distinctive feature (see the appendix at the end of this chapter).

The factorization in (11.28) is reminiscent of the URV decomposition [Ste92], but
with a J-unitary Θ. The following corollary shows that the factorization has certain
desirable norm properties as well.

Corollary 11.10 The factorization (11.28)-(11.29) is such that

ran(QB) ⊂ ran(H) ; kRBk ≤ kH k ; kRAk ≤ kNk :
PROOF Using the fact that MΘ = 0, lemma 11.6 implies BB∗ ≤ HH∗, AA∗ ≤ NN∗. It
remains to apply the definition [A B] = [QA QB][RA RB] where Q is unitary and R is
lower. 2
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col: 1. Compute θ̃ and j̃2 s.t. [Ri;i ci]θ̃ = [∗ 0] ; with j̃1 = diag[Ji; jc]

2. Apply θ̃ to the i-th column of R and c; update signatures Ji; jc

row: 1. Determine q s.t. q∗[ ci
ci+1

] = [ 0
∗ ] :

2. Apply q∗ to rows (i; i+1) of R; apply q to columns (i; i+1) of Q
3. Compute θ̃ and j̃2, as in figure 11.1, s.t. [Ri;i Ri;i+1]θ̃ = [∗ 0]
4. Apply θ̃ to columns (i; i+1) of R; update signatures Ji;Ji+1Figure 11.5. Two ways to zero ci11.6 UPDATING THE SSE-2

Now that we have identified (11.28)-(11.29)as a factorization which provides an SSE-2
subspace, we investigate how this factorization can be updated when new columns for
H and N become available. The update consists of two phases, one to update (11.28),
and a second to restore the zero structure of (11.29).

Several updating algorithms are possible, depending on one’s objectives. The di-
rection taken here follows from an interest in parallel and pipelined multi-processor
architectures for high-throughput signal processing applications. A very desirable as-
pect then is to have a localized, data-independent and one-directional computational
flow, perhaps at the expense of some additional operations. At the same time, we would
like to minimize the number of hyperbolic rotations, since these are a potential source
of numerical instability. This induces a tradeoff.Updating Q∗[N H]Θ
Suppose we have already computed the decomposition Q∗[N H]Θ̃= [R 0], where R =[RA RB] is lower triangular and sorted according to signature. In principle, updating
the factorization with new columns of H or N is straightforward. Indeed, let us say that
we want to find a new factorization Q

0∗[N0 H0]Θ̃0 = [R0 0] ; where either N0 = [N n],
H0 = H if we want to add a new column to N, or N0 = N, H0 = [H h] if we augment
H. Making use of the previously computed decomposition, it suffices to find Qc and
Θ̃c such that

Q∗
c

h m−d+ d
−

1
jc

RA RB c
i
Θ̃c = h m−d0+ d0

−
1
j0c

R0A R0B 0
i

(11.30)

Q0 := QQc ;
where c = Q∗n if we add a column n to N or c =Q∗h if we add a column h to H. (Note
that we need to store and update Q to apply this transformation. Storage of Θ̃ will not be
needed.) In the first case, c has a positive signature jc = 1; in the second case, jc = −1.
Denote the signature of R by J = Im−d ⊕−Id, and let Ji denote the i-th diagonal entry of
J.
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Figure 11.6. Order in which zero entries are created by algorithm zero-c. Only columnoperations (rotations 3 and 7) are possibly hyperbolic and may lead to signature changes
To compute the factorization (11.30), the entries c1;c2; · · · ;cm of c are zeroed in turn.

As listed in figure 11.5, there are two possibilities to do this: by elementary column
rotations θ̃ or by elementary row rotations q. The “col” scheme to zero entry ci is the
most natural and efficient, and directly zeros ci against Ri;i. The “row” scheme first
computes an elementary circular (unitary) rotation q to zero ci against ci+1, and then a
θ̃-rotation to zero the resulting fill-in in Ri;i+1 against Ri;i.

For reasons of numerical stability, it is desirable to minimize the number of hyper-
bolic rotations, i.e. rotations θ̃ that act on columns with unequal signatures. Such hy-
perbolic rotations also might lead to an interchange of signatures, thus destroying the
sorting of the columns of R. Hence, we propose to zero most entries ci using row op-
erations, in spite of the added complexity, and to use column operations only for the
zeroing of cm−d and cm.

A graphical representation of this scheme is given in figure 11.6. Hyperbolic ro-
tations and signature changes are only possible in steps m − d and m. The θ-rotations
in the row stages act on columns of equal signatures, so that they are circular rotations
without signature changes. The resulting signature of R depends on the initial and final
signature of c, i.e., jc and j0c. A list of possibilities is given in figure 11.7.

The second phase is to restore the sorting of the columns of R according to their
signature. This is only necessary in cases (b) and (d2) of figure 11.7, and it suffices to
move the last column of R by a series of d swaps with its right neighbors. After each
permutation, the resulting fill-in in Ri;i+1 has to be zeroed by a q-rotation. If desired,
this phase can be made data-independent by always performing the permutations, in-
dependent of the signatures.

At this point, c0 = 0, and R0 is lower triangular and sorted into R0 = [ +R0A −
R0B], so that

we have obtained the updated factorization (11.30). The number of columns d0 of R0B,
i.e., the principal subspace dimension after the update, depends on jc and j0c: d stays
constant if j0c = jc, it increases if ( jc = −1; j0c = 1) and decreases if ( j0c = −1; jc = 1),
i.e., d0= d+ 1

2 ( j0c − jc). The columns of the matrix block QB form an orthonormal basis
for the updated subspace estimate B.
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Figure 11.7. The four possible signature changes of c, c0, and the resulting possiblesignatures J0 (after zero-c, before sorting). Only columns m − d and d of R may havechanged signature.Updating the structure of Θ
The next step is to modify the candidate Qc and Θ̃c by some QM and Θ̃M in order to
satisfy the structural conditions (11.29) on Θ. Equation (11.29) shows that we do not
have to keep track of T and Θ at all: we only have to update a matrix [Im−d 0m−d×d].
The columns marked ‘∗’ in (11.29) never change, so we do not have to track them.
Obviously, we do not have to store [Im−d 0]. Hence, updating is possible by only storing
matrices Q and R = [RA RB]. In update notation, the structural requirements take the
following form:

Q∗
MQ∗

c

h m−d+ d
−

1
jc

m RA RB c
i
Θ̃cΘ̃M = h m−d+ d

−
1
j0c

R0A R0B 0
i

(11.31)

Q0 := QQcQM (11.32)

if jc =+1 : TM

� m−d+ d
−

1
jc

m−d I 0 0
1 0 0 1

�
Θ̃cΘ̃M = " m−d0+ d0

−
1
j0c

m−d0 I 0 e0c
1+d0−d ∗ ∗ ∗

#
(11.33)

if jc = −1 : TM

h m−d+ d
−

1
jc

m−d I 0 0
i
Θ̃cΘ̃M = " m−d0+ d0

−
1
j0c

m−d0 I 0 e0c
d0−d ∗ ∗ ∗

#
(11.34)

where e0c =�
0; j0c =+1
∗; j0c = −1
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The last set of equations (11.33)-(11.34) represent (11.29). Let us summarize (11.33)-
(11.34) by TMEΘ̃cΘ̃M =E0 ; where the structure of E and E0 depends on jc, j0c. We thus
have to investigate four cases ( jc = ±1, j0c = ±1). Depending on the case at hand, we
have to ensure that selected parts of E0 are zero. We can use TM and additional rotations
Θ̃M for this purpose, i.e., E0 = TM(EΘ̃c)Θ̃M, and we try to minimize the number of
rotations in Θ̃M since they might be hyperbolic and create fill-ins in R that have to be
zeroed by additional rotations QM (viz. step 5). Note that Θ̃M is not allowed to act on the
last column of E (by definition, and because such an operation would destroy c0 = 0).
Also note that the fill-in in EΘ̃c is caused only by the two (hyperbolic) rotations that
are present in Θ̃c because of algorithm zero-c, hence consists only of 6 entries.

The following investigation of each of the cases separately is technical, but the result
is simple: only in one case a specific action is required. This covers steps 2-4 from the
outline in the previous section. The labeling of the cases follows figure 11.7, but we
also assume that the sorting by sort-R has been carried out at this point.(a) jc =+1, j0c =+1 (d0 = d):+

0
0

m − d − 1 1+
0
∗
∗

0
0
0

−

EΘ̃c = 0
∗
∗

1
−

0
∗
∗

1+d − 1

1

1

∗m − d − 1 +
0
0

m − d − 1 1+
0 0

0
0

−
0

∗ ∗

1
−

0

1+
1
0

0 0

d − 1

Im − d − 1

1

1

⇒ E0 = TMEΘ̃cΘ̃M =
The first col-rotation from algorithm zero-c is in fact circular, and can be undone by
choosing a similar rotation for TM. Because matrix multiplication is associative, this
automatically clears the fill-in in the top part of the last column as well. After the
second θ-rotation, no fill-in in top part of the last column is created, and since the last
row is unconstrained, we end up with the required structure. No extra rotations Θ̃c

result in this case, so that it is not necessary to actually perform the TM-operations.(b) jc =+1, j0c = −1 (d0 = d − 1): after sorting, we have, respectively,

∗
∗

1+
0
0
0

−
d − 1+

0
0

0
EΘ̃c = m − d − 1 1+

0
∗
∗

0
∗
∗

1
−

m − d − 1

1

1

∗ +
0
0

m − d − 1 1+
0 0

0
0 0

1

1⇒ E0 =
0

0

+ −
d − 11

−

∗1 0

m − d − 1

1

1

I
0

In this case, the fill-in by the first rotation in Θ̃c is removed by a single circular ro-
tation for TM, as in the previous case. The second rotation only calls for a scaling
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of the last row by TM; the last column has a negative signature ( j0c = −1) so is not
constrained. Again, no extra Θ-operations are generated, so that it is not necessary
to actually compute TM.(c) jc = −1, j0c =+1 (d0 = d+1):+

0

m − d − 1 1

0
∗

0
0

−
0∗

1
−

0
∗

1+−
d − 1

m − d − 1

∗EΘ̃c = 1 +
0

m − d − 1 1

0 0
0

−
0

1

⇒ E0 = −
0

1+−
d − 1

∗∗
Im − d − 1

1 ∗

In this case, d0= d+1, hence the last row of E0 is unconstrained. No operations are
required.(d) jc = −1, j0c = −1 (d0 = d). This case covers two possibilities: one in which no sign-
changes occurred during the hyperbolic rotations, and one in which there was a dou-
ble sign-change. After sorting, we have

+
0

0
∗

0
−

00
−

1 1m − d − 1

∗or EΘ̃c = + −
d − 1

0∗1

∗m − d − 1

1

EΘ̃c = ∗

+
0

0
∗

0
+ −

0
−

0
−

1 1m − d − 1 d − 1

0

1

∗1

m − d − 1 ∗

+
0

0 0
0

−
0
−

0
1⇒ E0 = 0 ∗

+m − d − 1 1 1
−

1 d − 1

1

Im − d − 1

The last column is unconstrained ( j0c = −1), but the fill-in in the second block of the
last row has to be zeroed, after which the row has to be scaled properly. This creates
a situation that cannot be handled using TM only: we need a (hyperbolic) column
rotation θ̃ to zero the selected entry. Before we can do this, the first possibility for
EΘ̃c requires us to place the two columns that are involved right next to each other,
by column permutations. This will generate extra q-rotations as well, to keep R0B
lower triangular. After sorting, a single hyperbolic rotation Θ̃M = θ̃ suffices. The
resulting signature of the two columns involved in this rotation is sorted as [+1 −1]
automatically, because the total J-norm of this row is invariant: it is still +1, and the
only other nonzero entry has a negative signature. After this rotation, the +-entry
can be scaled by TM to become 1. Again, this scaling need not be actually carried
out. However, θ̃ has to be applied to R0 as well, and the resulting fill-in has to be
zeroed using an additional q-rotation.
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In: c, jc; R (lower), J = diag[J1; · · · ;Jm] (sorted), Q (unitary); d
Out: updated versions of R, J, Q, d, according to (11.31)-(11.34)

Algorithm SSE2-update:
zero-c: c := Q∗c

ec = 0; em−d = 1; em = 0;
for i = 1 to m

if i = m − d or i = m
zero ci using col (θ̃)[ei ec] := [ei ec]θ̃

else
zero ci using row

end

sort-R: for i = m − 1 down to m − d +1
permute columns i and i+1 of R (and Ji, Ji+1)
compute q to zero the fill-in Ri;i+1 against Ri+1;i+1
apply q to rows (i; i+1) of R and columns of Q

end

MΘ-trans.: if Jm−d = −1 and Jm−d+1 =+1, (case (d))
compute θ̃; j̃2 s.t. [em−d em]θ̃ = [∗ 0]; j̃1 = diag[Jm−d;Jm−d+1]
apply θ̃ to columns (m − d;m − d +1) of R, update signatures
compute q to zero fill-in Rm−d;m−d+1 against Rm−d+1;m−d+1
apply q to rows (m − d;m − d +1) of R and columns of Q

end
update d : d := d + 1

2 ( j0c − jc)Figure 11.8. SSE-2 updating algorithm
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Hence, only in case (d) do we have to perform an additional θ-rotation to effect the
MΘ-transformation. Note that we never have to act on the Im−d−1 matrix, only three
entries of the last row of E are needed.

The resulting algorithm is summarized in figure 11.8, where the entries of E that we
need to keep track of are denoted by em−d , em, ec. The MΘ-transformation, if needed,
consists of a single θ-rotation on the columns of R, followed by a q-rotation on the rows
of R to zero the fill-in. The sorting stage is slightly different than before: for simplicity,
it now sorts unconditionally, and only up to column m−d+1. Possibly, one additional
permutation is required (in case (d2)). This permutation is a side effect of the MΘ-
transformation (i.e., the sorting effect of the hyperbolic rotation of case (d)).

The last column is unconstrained ( j0c = −1), but the fill-in in the second block of the
last row has to be zeroed, after which the row has to be scaled properly. This creates
a situation that cannot be handled using TM only: we need a (hyperbolic) column ro-
tation θ̃ to zero the selected entry. Before we can do this, the first possibility for EΘ̃c

requires us to place the two columns that are involved right next to each other, by col-
umn permutations. This will generate extra q-rotations as well, to keep R0B lower tri-
angular. After sorting, a single hyperbolic rotation Θ̃M = θ̃ suffices. It can be shown
from inertia considerations that the resulting signature of the two columns involved in
this rotation will be sorted as [+1 − 1] automatically. Θ̃M has to be applied to R0 as
well, and the resulting fill-in has to be zeroed using an additional q-rotation. A final
observation is that we never have act on the Im−d−1 matrix, only three entries of the last
row of E are needed.

The updating algorithm can be initialized by R = 0, d = 0, Q = Im. The compu-
tational complexity is assessed as m2 multiplications (for the initial transformation of
c by Q), and about 2m2 +2md elementary rotations. This is four times more than the
original HQR scheme for computing the SSE-1.11.7 NOTES
The updating algorithm which we derived has the following properties. Its main fea-
ture is a localized, piecewise regular, data-independent computational flow using plane
J-unitary rotations. The algorithm consists of two phases: a forward phase to zero the
update vector, and a backward phase to restore the sorting and at the same time satisfy
a structural constraint. Each phase is fully pipelineable, but unfortunately the combi-
nation is not, unless they can be meshed together (with some effort, this is sometimes
possible, cf. [MDV93]). Per update vector, there are at most 3 hyperbolic rotations,
which is not minimal, but significantly less than the HQR updating algorithm. Updat-
ing and downdating uses the same computational structure, since downdating H by a
vector h can be done by updating N by h. Exponential windowing and several inter-
esting updating/downdating schemes are possible.

Two closely related subspace tracking algorithms are RRQR and URV. These are
similar to SSE in that they update non-iteratively a rank-revealing factorization with
respect to a specified threshold level. The tolerance for RRQR is a (soft) upper bound
on the approximation error in matrix 2-norm, as in (11.2). URV on the other hand puts
an upper bound on the error in Frobenius norm. All three algorithms roughly have the
same number of operations, but RRQR and URV use only circular rotations and are
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numerically stable. The main distinctive feature is that RRQR and URV rely on a con-
dition estimation to detect changes in rank, which can be regarded as their Achilles
heel. The condition estimation results in a long critical path and makes the computa-
tional flow data-dependent. Also, the condition estimate is not perfect: in critical cases
with a singular value close to the threshold, the rank decision is observed to become
erratic.Appendix 11.A: Proof of lemma 11.8
PROOF of lemma 11.8. Equation (11.27) implies [Θ11 Θ12]ΘM = [Θ0

11 Θ0
12], which

implies

ΘM

�
−Θ0−1

11 Θ0
12

In2

�= �
−Θ−1

11Θ12

In2

�
T

where T is some invertible matrix. Moreover, since ΘM only acts on the columns of
A;B, it is seen that T has to be block upper. Using this result and equation (11.26), we
obtain

B0 − A0MΘ0 = [A 0 | B 0]ΘM

�
−Θ0−1

11 Θ0
12

I

��
I
0

�= [B − AMΘ ∗]T �I
0

� :
Since T is block upper, ran(B − AMΘ) = ran(B0 − A0MΘ0). To show the second part,
i.e., there exists ΘM such that MΘ0 = 0, it suffices to compute a J-unitary matrix ΘM

(compatible in size with Θ) such that� + + − −

Im−d 0 MΘ 0
�
ΘM = �+ + − −

∗ 0 0 0
� :

As kMΘk< 1, such a matrix which does not change signatures exists and is bounded.
Premultiplying with A, it follows that [A 0 | AMΘ 0]ΘM = [∗ 0 | 0 0] ; so that[A 0 | B 0]ΘM = [0 0 | B − AMΘ 0]ΘM + [A 0 | AMΘ 0]ΘM= [∗ 0 | B0 0] + [∗ 0 | 0 0] =: [A0 0 | B0 0] :
It is clear that ran(B0) = ran(B−AMΘ). Since ran(A0) complements ran(B0), the invari-
ance of ran(B − AMΘ) implies MΘ0 = 0. 2Appendix 11.B: The principal subspace is an SSE-2
We show that for a given matrix H, there is a decomposition (11.28)–(11.29) such that
SSE-2 subspace QB is equal to the left principal subspace of H. Suppose for simplicity
of notation that H is square, with SVD H = U1Σ1V∗

1 +U2Σ2V∗
2 , where Σ1 > γI and

Σ2 < γI. Define Q;Θ;T as

Q = [U2 U1]
Θ = "

U2γ U1Σ1 −U1γ −U2Σ2

−V2Σ2 −V1γ V1Σ1 V2γ

#26664γ2 − Σ2
2
Σ2

1 − γ2

Σ2
1 − γ2

γ2 − Σ2
2

37775−1=2

T = (γ2 − Σ2
2)1=2γ−1U∗

2
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It is readily verified that Q is unitary, Θ is J-unitary, and that

Q∗[γI H]Θ = � (γ2 − Σ2
2)1=2 0 0 0

0 0 (Σ2
1 − γ2)1=2 0

�
T [I 0]Θ = [I 0 0 γ−1I] :

so that (11.28)–(11.29) hold. Since QB =U1, the SSE-2 subspace is equal to the prin-
cipal subspace.





III FACTORIZATION





12 ORTHOGONAL EMBEDDING

In chapter 5, we saw how a state realization of a time-varying transfer operator T can be
computed. The realizations which we obtained were in principle either in input normal
form (A∗A+B∗B = I) or in output normal form (AA∗ +CC∗ = I). In chapter 6, we
considered unitary systems V with unitary realizations. Such realizations are both in
input normal form and in output normal form, and satisfy the additional property that
both kV k = 1 and kVk = 1, while for T in either normal form, we have kTk ≥ 1,
whether kT k is small or not. Since kTk tells something about the sensitivity of the
realization, i.e., the transfer of errors in either the input or the current state to the output
and the next state, it is interesting to know whether it is possible to have a realization
of T for which kTk ≤ 1 when kT k ≤ 1. This issue can directly be phrased in terms
of the problem which is the topic in this chapter: the orthogonal embedding problem.
This problem is, given a transfer operator T ∈ U , to extend this system by adding more
inputs and outputs to it such that the resulting system Σ, a 2 × 2 block operator with
entries in U ,

Σ = �
Σ11 Σ12

Σ21 Σ22

� ;
is inner and has T as its partial transfer when the extra inputs are forced to zero: T =
Σ11. See figure 12.1. Since the unitarity of Σ implies T∗T +T∗

c Tc = I, (where Tc =Σ21),
it will be possible to find solutions to the embedding problem only if T is contractive:
I − T∗T ≥ 0, so that kT k ≤ 1. Since Σ is inner, it has a unitary realization ΣΣΣ, and a
possible realization T of T is at each point k in time a submatrix of ΣΣΣk (with the same
Ak, and smaller dimensional Bk;Ck;Dk), and hence T is a contractive realization. 337
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Tc

I

0

Σ

T
Σ11

Σ21 Σ12
Σ22Figure 12.1. Embedding of a contractive time-varying operator T .

The orthogonal embedding problem, and algorithms to solve it, are the central issues
in this chapter. The orthogonal embedding problem is known in other fields as well: it
is called the unitary extension problem in operator theory, and the equations governing
its solution (in a state-space context) are known in control theory as the discrete-time
bounded real lemma.12.1 INTRODUCTION AND CONNECTIONS
In this chapter, we present a constructive solution to the embedding problem, under
the assumption that the number of states of T is finite at any point in time (locally fi-
nite systems). The construction is done in a state-space context and gives rise to (again)
a time-varying Riccati equation. While it is clear that the contractivity of T is a nec-
essary condition for the existence of an embedding, we show in the sequel that this
condition is, also in the time-varying context, sufficient to construct a solution when T
is locally finite and u.e. stable. (It is known that not all contractive transfer operators
have an orthogonal embedding, see chapter 7 where we show this negative result for
isometric operators. This generalizes what already happens in the time-invariant case
[Dew76].) We first derive such a solution for the case where T is strictly contractive.
The extension to the boundary case invokes some mathematical complications but in
the end, almost the same algorithm is obtained [vdVD94a].

Besides the above application, the orthogonal embedding problem is typically the
first step in digital filter synthesis problems in which filters (contractive operators) are
realized as the partial transfer operator of a lossless multi-port filter Σ. Once such a Σ is
obtained, it can be factored into various kinds of “ladder” or “lattice” cascade realiza-
tions consisting of elementary lossless degree-1 sections. Such a factorization is known
in classical (time-invariant) circuit theory as a Darlington synthesis [Dar39, AV73], and
provides a structured way to realize a given operator (‘filter’) in elementary compo-
nents (in the circuit case, gyrators and a single resistor). In our case, each section is
constructed with two elementary (Givens) rotors which have time-varying rotation an-
gles, and the network that is obtained can, for example, be of the form depicted in figure
1.4. In this figure, the transfer function T is from (block) input u1 to output y1 if the
secondary input u2 is made equal to zero (the secondary output y2 is not used). The
structural factorization is the topic of chapter 14.

An application of the embedding problem in an operator or linear algebra context
is the (Cholesky or spectral) factorization of a positive definite operator Ω into factors
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Ω =W∗W , where W is an upper operator. The transition to the embedding problem is
obtained by a Cayley transformation, which transforms Ω > 0 to an upper strictly con-
tractive operator T : a scattering operator. From the orthogonal embedding Σ, a factor
W can be derived via a few straightforward manipulations. This subsumes the general-
ized Schur method [DD88] that has also been used for this application, and in which an
embedding Σ is obtained in cascaded form. However, the Schur method is order recur-
sive, and can indeed give rise to a fairly large order, whereas the embedding procedure
in this chapter can be used to obtain an embedding Σ and a factor W of minimal order.
This connection is described in chapter 13.

The time-invariant orthogonalembedding problem in its simplest form acts on trans-
fer functions T(z) and uses a spectral factorization: with

T(z) = h(z)
f (z) ; Tc(z) = g(z)

f (z) (12.1)

where f ;g;h are polynomials of finite degree, it is derived that g(z) (and hence Tc(z))
can be determined from a spectral factorization of

g(z)g∗(z) = f (z) f∗(z)− h(z)h∗(z)
where f∗(z) = f (z̄−1) [Bel68]. The solution of the spectral factorization problem in-
volves finding the zeros of g(z)g∗(z). Note that in equation (12.1) we use the knowl-
edge that Tc can have the same poles as T .

Polynomial spectral factorization for multi-input/multi-outputsystems is rather com-
plicated, see e.g., [Dew76]. A solution strategy that is easier to handle (and that carries
over to the time-varying case too) is obtained when the problem is cast into a state space
context. Such an approach is discussed in [AV73] for continuous-time systems, and
implies what is called the bounded real lemma. This lemma states that T(s) is con-
tractive if and only if certain conditions on the state-space matrices are fulfilled. If
this is the case, the conditions are such that they imply a realization for Tc(s) such that[T(s) Tc(s)] is lossless and has the same A and C matrices as the realization of T . To
determine this solution, a Riccati equation has to be solved. The bounded real lemma
can without much effort be stated in the discrete-time context by means of a bilinear
transformation [AHD74]. A derivation based on the conservation of energy appears in
[GS84], and a proof independent of a continuous-time equivalent is given in [Vai85a].
A Riccati equation which describes the problem is stated in [Des91], which forms the
basis of a cascade factorization. Control applications of the bounded real lemma in-
clude H∞-optimal state regulation and state estimation [YS91].

In the present chapter, the aim is to extend the above classical time-invariant theory
to the time-varying context. To introduce the strategy for solving the time-varying em-
bedding problem in a state-space context, consider the following simplified problem.
Just for the moment, let T be a single-input, single-output system, with state-space re-
alization T of constant dimensions. The objective is to determine a lossless embedding
system Σ, having two inputs and two outputs, and with state-space realization ΣΣΣ of the
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form

ΣΣΣ = 24 R
I

I

3524 A C C2
B D D12

B2 D21 D22

35264 h
R(−1)i−1

I
I

375 ;
(all entries in this expression are diagonals). ΣΣΣ contains the given realization T, suit-
ably state-space transformed by some boundedly invertible R = diag(Ri), which does
not alter the input-output characteristics, hence Σ11 is equal to the given T . ΣΣΣ is ex-
tended by matrix operators B2, C2, D21, D12, D22 corresponding to the second input
and output. If Σ is to be inner, it must have a unitary realization ΣΣΣ (theorem 6.3). Con-
versely, if ΣΣΣ is unitary and `A < 1, then the corresponding transfer operator Σ is inner;
see theorem 6.4), and hence a way to solve the embedding problem using state-space
methods is to require ΣΣΣ to be unitary.

The embedding problem is thus reduced to finding the state transformation R, and
the embedding matrices B2 etc., such that ΣΣΣ is unitary. The problem can be split into
two parts:

1. Determine R, B2, D21 to make the columns of ΣΣΣa isometric and orthogonal to each
other, with

ΣΣΣa = 24 R
I

I

35264 A C
B D

B2 D21

375" h
R(−1)i−1

I

# :
That is, (ΣΣΣa)∗ΣΣΣa = I.

2. Add one orthonormal column ΣΣΣb to ΣΣΣa to make ΣΣΣ = [ΣΣΣa ΣΣΣb ] unitary. The realiza-
tion ΣΣΣ that is obtained consists of a diagonal sequence of square finite-dimensional
matrices, hence this can always be done.

The key step in the above construction is step 1. With proper attention to the dimen-
sions of the embedding, it is always possible to find solutions to step 2 since in general,
ΣΣΣb is just the orthogonal complement of the columns of ΣΣΣa.

The orthonormality conditions of step 1 translate to a set of equations whose so-
lution depends at each time instant i on the (strict) positivity of a matrix Mi = R∗

i Ri,
which, as we will show, can be computed recursively from the given state-space real-
ization as

Mi+1 = A∗
i MiAi + B∗

i Bi +[A∗
i MiCi +B∗

i Di] (I − D∗
i Di −C∗

i MiCi)−1 [D∗
i Bi +C∗

i MiAi] : (12.2)

This recursion is again a Riccati-type recursion. The problem with such recursions is
the term (I − D∗

i Di −C∗
i MiCi), which can potentially become negative and cause Mi+1

to become negative (or indefinite) too. The main contribution of the theory given in
the rest of the chapter is to show that the recursion does not break down (i.e., all Mi

are uniformly positive, hence we can find a sequence of invertible state-space transfor-
mations Ri), under the condition that T is strictly contractive and the given realization
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H0 = 26664T−1;0 T−1;1 T−1;2 · · ·

T−2;0 T−2;1 T−2;2
T−3;0 T−3;1 T−3;2
· · ·

. . .

37775 V0 = 2664T−1;0
T−2;0
T−3;0
· · ·

3775T =
T[1]
T[0]T[2]

0

-3,-3 -3,-2 -3,-1 -3,0 -3,1

-2,-2 -2,-1 -2,0 -2,1

-1,-1 -1,0 -1,1

K0 = 26664T−1;−1 0
T−2;−1 T−2;−2
T−3;−1 T−3;−2 T−3;−3

· · ·
. . .

37775
Figure 12.2. Ki, Hi and Vi are submatrices of T .

for T is uniformly reachable. Subsequently, we show in section 12.3 that a slightly al-
tered recursion also does not break down if T is contractive (but not necessarily in the
strict sense), but then we have to impose more requirements on T, for example that it
be uniformly observable. These requirements are sufficient but possibly too restrictive.Preliminary relations
We recall some notations and definitions from chapters 2, 4 and 5, and define some
additional ones as well. Let T ∈U . We will use the following partial transfer operators
on a restricted domain and range (cf. equation (5.2)):

HT : L2Z−1 → U2 ; uHT = P(uT)
KT : L2Z−1 → L2Z−1 ; uKT = P0(uT)
VT : L2Z−1 →D2 ; uVT = P0(uT) :

For u ∈ L2Z−1 we have that uT = uKT +uHT . VT is a further restriction of HT .
We have already used the fact that HT is a left D-invariant operator, and hence has

“snapshots” Hi (definition 4.1), which can be viewed as a sequence of time-varying
matrices that would have a Hankel structure in the time-invariant case. In the same
way, matrix representations are obtained for Ki and vector representations for Vi:

Hi = 26664 Ti−1;i Ti−1;i+1 Ti−1;i+2 · · ·
Ti−2;i Ti−2;i+1
Ti−3;i . . .

...

37775
Vi = 26664 Ti−1;i

Ti−2;i
Ti−3;i

...

37775 Ki = 26664 Ti−1;i−1 0
Ti−2;i−1 Ti−2;i−2

Ti−3;i−1 Ti−3;i−2 Ti−3;i−3
...

...
. . .

37775 :
Again because HT , KT and VT are D invariant, they also have diagonal expansions

H̃T , K̃T and ṼT , as follows. Define the diagonal expansions of signals u in L2Z−1 and
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y in U2 as

u = Z−1u[−1]+Z−2u[−2]+ · · · = u(+1)[−1] Z−1 +u(+2)[−2] Z−2 + · · ·

ũ = h
u(+1)[−1] u(+2)[−2] · · ·

i
∈ `−

2(D) :
y = y[0]+Zy[1]+Z2y[2]+ · · · = y[0]+ y(−1)[1] Z+ y(−2)[2] Z2 + · · ·

ỹ = h
y[0] y(−1)[1] y(−2)[2] · · ·

i
∈ `+2 (D) :

Induced by this isomorphy, the definitions

y f = uHT ∈ U2 ⇔ ỹ f = ũH̃T

yp = uKT ∈ L2Z−1 ⇔ ỹp = ũK̃T

D = uVT ∈ D2 ⇔ D = ũṼT :
lead to

H̃T = 2666664 T[1] T (−1)[2] T (−2)[3] · · ·

T[2] T (−1)[3]
T[3] . . .

...

3777775
ṼT = 26664 T[1]

T[2]
T[3]

...

37775 K̃T = 2666664 T (+1)[0] 0
T (+1)[1] T (+2)[0]
T (+1)[2] T (+2)[1] T (+3)[0]

...
...

. . .

3777775 : (12.3)

The connection of H̃T with Hi is obtained by selecting the i-th entry of each diagonal
in H̃T and constructing a matrix from it. Similarly, the sequence Ki forms a matrix
representation of the operator KT and likewise Vi is the vector representation of the
operator VT , obtained by selecting the i-th entry of each diagonal in the representation
of ṼT .

Recall from chapter 5 that Hi has a factorization Hi = CiOi, where Ci and Oi are
the reachability and observability matrices as defined in (3.23). In terms of diagonal
expansions, it is straightforward to show that H̃T has a decomposition H̃T = CO, whereC and O are defined asC := 26664 B(1)

B(2)A(1)
B(3)A(2)A(1)
...

37775 O := h
C AC(−1) AA(−1)C(−2) · · ·

i :
Note that C and O are diagonal expansions of the reachability and observability op-
erators P0( ·F∗) = P0( ·BZ(I − AZ)−1 and ·Fo = ·(I − AZ)−1C. In turn, Ci and Oi are
snapshots of these operators.
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Since ṼT is the first column of H̃T , we have that ṼT has a decomposition

ṼT = C ·C : (12.4)

Finally, it is clear from equation (12.3) that K̃T satisfies the relation

K̃(−1)
T = "

T[0] 0

ṼT K̃T

# : (12.5)

This relation is seen to correspond to a recursive relation: it specifies that

Ki+1 = "
Tii 00· · ·

Vi Ki

#
for all time instants i. Ki ‘grows’ when i increases as the history of the system grows
— in particular, K∞ is just a mirrored version of T .12.2 STRICTLY CONTRACTIVE SYSTEMS
As indicated in the introduction, an orthogonal embedding of a transfer operator T ∈U
is possible only if T is at least contractive. In this section, we explore the consequences
of assuming the strict contractivity of T , which leads to sufficient conditions for an em-
bedding to exist if T is strictly contractive. This is done in two steps. Lemma 12.3
derives a general relation in terms of ṼT and K̃T which is a direct consequence of the
strict contractivity of T . Theorem 12.4 uses this relation to show that some quantity
M ∈ D, defined by M = C∗(I − K̃T K̃∗

T )−1C, is strictly positive definite, and gives a re-
cursion for this M in terms of state-space quantities of T . The point is that this recursion
is precisely the same as the recursion for M in the embedding problem (viz. equation
(12.2)). This proves the essential step in the embedding problem for strictly contractive
operators (section 12.4). The case where T is contractive, but not necessarily strictly
contractive, is deferred to section 12.3.Contractivity of a transfer operator
Recall proposition 4.3 on the positivity, respectively the strict positivity of a Hermitian
operator A ∈ X :

A ≥ 0 ⇔ {uA;u} ≥ 0 ; (all u ∈X2)
A � 0 ⇔ ∃ ε > 0 : {uA;u} ≥ ε{u;u} ; (all u ∈X2) :

Let T be a transfer operator in U . We have defined, in section 4.2, to call T contractive,
respectively strictly contractive, if

I − TT∗ ≥ 0 ; resp. I − TT∗ � 0 :
In the latter case, I−TT∗ is boundedly invertible. In this section, our focus is on the case
that T is strictly contractive. The more general case is treated in section 12.3. I−TT∗�
0 implies that I − T∗T � 0, because of the identity I+T∗(I − TT∗)−1T = (I − T∗T)−1.
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Lemma 12.1 If T is strictly contractive, then KT and K̃T are strictly contractive.

PROOF Let u ∈L2Z−1, and y = uKT . Since T is strictly contractive, we have from the
above definition that

P0(uu∗)− P0(yy∗) = P0 [u(I − KTK∗
T )u∗]

≥ P0 [u(I − TT∗)u∗]
≥ εP0(uu∗) (some ε > 0) :

Since, by definition of the diagonal expansion, P0(uu∗) = ũũ∗ and P0(yy∗) = ỹỹ∗, and
by definition of K̃T , ỹ = ũK̃T , we obtain that

ũ(I − K̃T K̃∗
T ) ũ∗ = ũũ∗ − ỹỹ∗= P0(uu∗)− P0(yy∗)

≥ εP0(uu∗) = ε ũũ∗ (some ε > 0) ;
which shows that we also have that K̃T is strictly contractive: I−K̃T K̃∗

T � 0; I−K̃∗
T K̃T �

0. 2
The fact that KT is strictly contractive implies in turn that all Ki are strictly contrac-

tive.Strict contractivity in terms of a state-space realization
The purpose of this section is to find conditions in state-space quantities on the contrac-
tivity of a transfer operator T . To this end, we use KT rather than T , and in particular the
fact that I − KT K∗

T is boundedly invertible and strictly positive when T is contractive.

Since K̃(−1)
T can be specified in terms of K̃T and an extra column of diagonals (equa-

tion (12.5)), it is possible to derive a (recursive) formula for (I − K̃T K̃∗
T )(−1) in terms

of K̃T and the newly introduced column. The following lemma is standard and will be
instrumental.

Lemma 12.2 (Schur complements/inversion formula) Let X be a block-partitioned
operator,

X = �
A B∗

B C

� ;
where A, B and C are bounded operators on Hilbert spaces, and let A and C be self-
adjoint. Then

X � 0 ⇔
� (1) C� 0(2) A − B∗C−1B� 0 :

If X � 0, then�
A B∗

B C

�−1 = �
I 0

−C−1B I

�� (A − B∗C−1B)−1 0
0 C−1

��
I −B∗C−1

0 I

�= �
0 0
0 C−1

�+�
I

−C−1B

�(A − B∗C−1B)−1
�
I − B∗C−1

� :
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PROOF X � 0 implies that C� 0. If C� 0, then C−1 exists, and�

A B∗

B C

�= �
I B∗C−1

I

��
A − B∗C−1B

C

��
I

C−1B I

�
Because the first and third factors in this decomposition are invertible,�

A B∗

B C

�� 0 ⇔
�

A − B∗C−1B
C

�� 0

⇔
� (1) C� 0(2) A − B∗C−1B� 0 :

This proves the first part of the lemma. The second part is immediate from the above
factorization of X. 2
Lemma 12.3 Let be given a transfer operator T ∈ U . If T is strictly contractive, then

I − T∗[0]T[0] − Ṽ∗
T (I − K̃T K̃∗

T )−1 ṼT � 0 :
PROOF Since T is strictly contractive, lemma 12.1 ensures that K̃T and K̃(−1)

T are also
strictly contractive. Using equation (12.5), we have that

I − K̃(−1)∗
T K̃(−1)

T = "
I − T∗[0]T[0] − Ṽ∗

T ṼT −Ṽ∗
T K̃T

−K̃∗
TṼT I − K̃∗

T K̃T

# : (12.6)

Now apply lemma 12.2. It is seen that this expression is strictly positive definite if and
only if � (1) I − K̃∗

T K̃T � 0(2) I − T∗[0]T[0] − Ṽ∗
TṼT − Ṽ∗

T K̃T (I − K̃∗
T K̃T )−1 K̃∗

TṼT � 0 :
The first condition is satisfied because T is strictly contractive. The second condition
is equal to the result, because of the equality I+ K̃T (I − K̃∗

T K̃T )−1 K̃∗
T = (I − K̃T K̃∗

T )−1.2
Theorem 12.4 Let T ∈ U be a locally finite transfer operator with state realization
{A;B;C;D}, where A ∈D(B;B(−1)) is u.e. stable (`A < 1). If T is strictly contractive,
then M ∈D(B;B), defined by

M = C∗(I − K̃T K̃∗
T )−1C ; (12.7)

satisfies the relations I − D∗D −C∗MC� 0 ; and

M(−1) = A∗MA+B∗B + �
A∗MC+B∗D

�(I − D∗D −C∗MC)−1 �D∗B+C∗MA
� :

If in addition the state-space realization is uniformly reachable, then M� 0.

PROOF M is well defined if T is strictly contractive, which also implies that M ≥ 0.
If in addition the state-space realization is uniformly reachable, C∗C � 0, then M� 0
and hence M is invertible.
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With the definition of M and using the fact that D = T[0] and ṼT = C ·C (equation

(12.4)), the positivity of I − D∗D −C∗MC follows directly from lemma 12.3.
The recursive relation for M is obtained by an application of Schur’s inversion for-

mula (lemma 12.2) to equation (12.6), which givesh
I − K̃(−1)∗

T K̃(−1)
T

i−1 = �
0 (I − K̃∗

T K̃T )−1

� ++ �
I(I−K̃∗

T K̃T )−1K̃∗
TṼT

�
Φ−2

�
I Ṽ∗

T K̃T (I−K̃∗
T K̃T )−1

�
(12.8)

with
Φ2 = I − T∗[0]T[0] − Ṽ∗

T ṼT − Ṽ∗
T K̃T (I − K̃∗

T K̃T )−1K̃∗
TṼT= I − D∗D −C∗MC :

The invertibility of Φ2 was already shown. Inserting this expression into the definition
of M(−1), and using the relations that have been summarized above, M(−1) is obtained
as

M(−1) = C(−1)∗ hI − K̃(−1)
T K̃(−1)∗

T

i−1C(−1)= C(−1)∗�I+ K̃(−1)
T

�
I − K̃(−1)∗

T K̃(−1)
T

�−1
K̃(−1)∗

T

�C(−1)= �
B∗ A∗C∗�� BCA

� + �
B∗ A∗C∗�� T[0]

ṼT K̃T

�
·

·

��
0 (I − K̃∗

T K̃T )−1

�+�
I(I−K̃∗

T K̃T )−1K̃∗
TṼT

�
Φ−2

h
I Ṽ∗

T K̃T (I−K̃∗
T K̃T )−1

i�
·

·

�
T[0]
ṼT K̃T

�∗�
BCA

�= B∗B+A∗C∗CA + A∗C∗K̃T (I−K̃∗
T K̃T )−1 K̃∗

T CA ++ �
B∗D+A∗C∗

h
I+ K̃T (I−K̃∗

T K̃T )−1K̃∗
T

iCC
�

· Φ−2 ·

·
�

D∗B+C∗C∗
h
I+ K̃∗

T (I−K̃∗
T K̃T )−1K̃T

iCA
�= B∗B+A∗MA + (A∗MC+B∗D)Φ−2 (D∗B+C∗MA) : 2

The equation (12.20) for M is actually a recursive equation, which becomes appar-
ent if we write M = diag[Mi] and take the i-th entry of every diagonal in the equation:
this produces the Riccati recursion (12.2). Theorem 12.4 claims that for a strictly con-
tractive system, the Riccati recursion has a positive solution M, which is given in ex-
plicit form. In section 12.4 this M plays a crucial role in the construction of such an
embedding. It also furnishes part of the proof of the bounded real lemma.
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We will now derive an equivalent of theorem 12.4 for the case where T is contractive
but not necessarily strictly contractive: I −TT∗ ≥ 0. While the mathematical derivation
is more complicated now, the resulting theorem is only slightly altered. It will turn out
that KT is not strictly contractive, and that, instead of (I − K̃T K̃∗

T )−1, we will have to use
the pseudo-inverse of (I − K̃∗

T K̃T ). Mathematical complications arise because the range
of (I − K̃∗

T K̃T ) is not necessarily closed, so that its pseudo-inverse can be unbounded.Schur inversion formulas for positive semi-de�nite operators
Let be given some operator A on a Hilbert space H. For better correspondence with
results from other papers, as well as for historical reasons, we work in this section
with operators written from the right to the left, and thus denote the ‘left’ range of A asR(A) = {Ax : x ∈H}, and its nullspace is as N (A) = {x : Ax = 0}, which is a closed
subspace. An orthogonal complement is denoted by ⊥. The operator pseudo-inverse
of A is defined as follows (following Beutler and Root [BR76]).

Definition 12.5 LetH be a Hilbert space, and A be a bounded linear operator defined
onH. The linear operator A† :H→H is a pseudo-inverse of A if and only if it is defined
onR(A)⊕R(A)⊥ (which is dense inH) and satisfies the following conditions:(1) N (A†) = R(A)⊥(2) R(A†) = N (A)⊥ ( =R(A∗) )(3) AA†x = x for all x ∈R(A).
It is proven in [BR76] that (A†)† = A, (A†)∗ = (A∗)†, (A∗A)† = A†A∗†, and that A† is
bounded if and only ifR(A) is closed. We will also apply a result of Douglas [Dou66]
on majorization of operators on Hilbert spaces:

Theorem 12.6 Let A and B be bounded operators on a Hilbert spaceH. The following
are equivalent:(1) AA∗ ≤ λ2 BB∗ (some λ > 0) ;(2) R(A) ⊂ R(B) ;(3) A = BC for some bounded operator C onH :
If (1)-(3) are valid, then a unique operator C exists such that(a) kCk = inf{µ : AA∗ ≤ µBB∗ } ;(b) N (A) = N (C) ;(c) R(C) ⊂ R(B∗) :
The ‘unique operator C’ in this theorem is in fact C = B†A, since also B† is uniquely
defined and B†A qualifies forC. Consequently, if AA∗ ≤ BB∗, then this C satisfies kCk<
1.

1This section may be skipped without loss of continuity.
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Using pseudo-inverses, the Schur inversion formula (lemma 12.2) can be extended

to the case where X is not uniformly positive.

Lemma 12.7 With H1 and H2 Hilbert spaces, let A : H1 → H2, B : H1 → H2, C :H2 →H2 be bounded operators, and let A and C be self-adjoint. Then

X := �
A B∗

B C

�
≥ 0 ⇔

8<: (1) C ≥ 0 ;(2) R(B)⊂R(C1=2) ; i.e. B1 =C†=2B is bounded,(3) A − B∗
1B1 ≥ 0 :

Lemma 12.8 Let A;B;C;X be as in lemma 12.7. Let X ≥ 0 and write B1 = C†=2B.
Define the operator W‡:

W‡ = � (A − B∗
1B1)†=2

I

��
I −B∗

1
I

��
I

C†=2

� :
Then W‡ is well-defined and bounded onR(X1=2). If v is some bounded operator with
range inR(X1=2), and if

v1 = X†=2v ; v2 = W‡v

then v1 and v2 are bounded, and v∗
1v1 = v∗

2v2.

The proof of both lemmas appears as an appendix at the end of the chapter. Note that
W‡ 6= X†=2, but rather W‡ =UX†=2 onR(X1=2), where U is some Hilbert space isom-
etry such that U∗U = I. The point is that W‡ is specified in terms of A;B;C, whereas it
is hard to do so for X†=2.Contractivity in terms of a state space realization
We are now ready to derive a solution to the embedding problem along the lines of
section 12.2 for the case where T is contractive, but not necessarily strictly contractive.
Recall the definition of HT and KT of section 12.1.

Lemma 12.9 Let T be an input-output operator in U . If T is contractive, then

I − KTK∗
T ≥ HT H∗

T ≥ 0 ; (12.9)

and hence KT and K̃T are contractive.

PROOF Let u ∈ L2Z−1, and put y = uT = uKT +uHT . The contractivity of T implies

P0(uu∗ )− P0(yy∗ ) ≥ 0
⇔ P0 (u[I − TT∗]u∗ ) ≥ 0
⇔ P0 (u[I − KTK∗

T − HT H∗
T ]u∗ ) ≥ 0

⇔ P0 (u[I − KTK∗
T ]u∗ ) ≥ P0 (uHT H∗

T u∗ ) ≥ 0 :
Hence I − KT K∗

T ≥ 0 on L2Z−1. K̃T is isometrically isomorphic to KT and is also con-
tractive. 2



ORTHOGONAL EMBEDDING 349
Corollary 12.10 If T is a uniformly observable realization of T , thenR(K̃∗

T C) ⊂ R(I−
K̃∗

T K̃T )1=2 and hence C1 defined byC1 = (I − K̃∗
T K̃T )†=2 K̃∗

T C (12.10)

is bounded.

PROOF Apply theorem 12.6 to (12.9). From I − KT K∗
T ≥ HT H∗

T it follows that HT =(I − KT K∗
T )1=2N, for some operator N with kNk ≤ 1. Taking diagonal expansions, we

have that H̃T = (I − K̃T K̃∗
T )1=2Ñ, and with H̃T = CO such that OO∗ � 0, we obtain

K̃∗
T C = K̃∗

T COO∗(OO∗)−1= K̃∗
T H̃TO∗(OO∗)−1= K̃∗
T (I − K̃T K̃∗

T )1=2ÑO∗(OO∗)−1= (I − K̃∗
T K̃T )1=2C1

where C1 = K̃∗
T Ñ ·O∗(OO∗)−1 is bounded. 2

For C1 defined in (12.10), define the operator M ∈D by

M = C∗C+C∗
1C1 : (12.11)

M is bounded, and M � 0 if C∗C � 0, i.e., if the realization is uniformly reachable.
This definition of M is compatible with the definition of M in (12.7) if T is strictly con-
tractive, viz. M = C∗(I − K̃T K̃∗

T )−1C, because then C∗
1C1 = C∗K̃T (I − K̃∗

T K̃T )−1K̃∗
T C, and

I+ K̃T (I − K̃∗
T K̃T )−1K̃∗

T = (I − K̃T K̃∗
T )−1. The latter relation is however not necessarily

valid if a pseudo-inverse is used.
The following theorem subsumes theorem 12.4.

Theorem 12.11 Let T ∈ U be an input-output operator with a u.e. stable state space
realization {A;B;C;D}. If T is contractive and the realization is uniformly observable,
then M defined by (12.10) and (12.11) is bounded, M ≥ 0, and

M(−1) = A∗MA+B∗B + �[A∗MC+B∗D]Φ†� ·
�
Φ†[D∗B+C∗MA]� (12.12)

with Φ = (I − D∗D −C∗MC)1=2 and I − D∗D −C∗MC ≥ 0. If, in addition, the state space
realization is [uniformly] reachable then M > 0 [M� 0].

PROOF The proof uses the expressions for ṼT , K̃T and C as given by equations (12.4)
and (12.5). To find an expression for M(−1), put

X = (I − K̃∗
T K̃T )(−1) = �

I − T∗[0]T[0] − Ṽ∗
T ṼT −Ṽ∗

T K̃T

−K̃∗
TṼT I − K̃∗

T K̃T

� :
According to lemma 12.9, X ≥ 0. Lemma 12.7 then implies that R(K̃∗

TṼT ) ⊂ R(I −
K̃∗

T K̃T )1=2 so that (I −K̃∗
T K̃T )†=2 K̃∗

TṼT = C1C is bounded. (This result would also follow
from corollary 12.10 becauseR(K̃∗

TṼT ) =R(K̃∗
T CC) ⊂R(K̃∗

T C).) Let

Φ = h
I − T∗[0]T[0] − Ṽ∗

T ṼT −C∗C∗
1C1C

i1=2= [I − D∗D −C∗(C∗C+C∗
1C1)C]1=2= (I − D∗D −C∗MC)1=2 :
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The third item of lemma 12.7 implies that I − D∗D −C∗MC ≥ 0. Put

W‡ = �
Φ†

I

��
I C∗C∗

1
I

��
I (I − K̃∗

T K̃T )†=2

�
v = �

K̃∗
TC�(−1) = K̃∗(−1)

T

�
BCA

�= �
D∗B+C∗C∗CA

K̃∗
TCA

� :
Then lemma 12.8 yields that the operator v1 =X†=2v = C(−1)

1 is bounded, and v2 =W‡v
is such that v∗

1v1 = v∗
2v2. Evaluation of v2 gives

v2 =W‡v = �
Φ†

I

��
I C∗C∗

1
I

��
I (I − K̃∗

T K̃T )†=2

��
D∗B+C∗C∗CA

K̃∗
TCA

�= �
Φ†

I

��
I C∗C∗

1
I

��
D∗B+C∗C∗CAC1A

�= �
Φ†(D∗B+C∗MA)C1A

� :
Hence [C∗

1C1](−1) = v∗
1v1 = v∗

2v2= A∗C∗
1C1A+ �[B∗D+A∗MC]Φ†

�
·
�
Φ†[D∗B+C∗MA]�

and with C(−1) = h
BCA

i
we finally obtain

M(−1) = [C∗C](−1)+[C∗
1C1](−1)= B∗B+A∗C∗CA+A∗C∗

1C1A+ �[B∗D+A∗MC]Φ†
�

·
�
Φ†[D∗B+C∗MA]�= A∗MA+B∗B+ �[B∗D+A∗MC]Φ†

�
·
�
Φ†[D∗B+C∗MA]� : 2

The result of this section is thus a relatively simple extension of theorem 12.4: in
the case that T is not strictly contractive, we can use the recursion

Φ = (I − D∗D −C∗MC)1=2

M(−1) = A∗MA+B∗B + [A∗MC+B∗D]Φ† · Φ† [D∗B+C∗MA]
although we need the given realization to be uniformly observable. This condition is
sufficient, but too strong: we only need “observability at the boundary”, but this is hard
to express (for time-invariant systems, the usual condition is that the realization should
be ‘stabilizable’). The recursion for M is very close to (and encompasses) the expres-
sion that we have obtained before in the strictly contractive case. Note that we know
only that Φ†(D∗B+C∗MA) is bounded, but not necessarily Φ†Φ†(D∗B+C∗MA): we
have to evaluate Φ†(D∗B+C∗MA), and then square this expression in order to get a
correct answer.

The above theorem will allow the embedding theorems in the next section to include
contractive systems that need not be strictly contractive. It also gives part of the proof
of the Bounded Real Lemma.
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We are now ready to solve the embedding problem as defined in the introduction: given
a bounded causal transfer operator of a locally finite system T , determine a lossless
system Σ such that Σ11 = T . The strategy is as outlined in the introduction: the prime
quantity to be determined is a state transformation operator R such that the transformed
realization of T is part of the realization of Σ.

We start with an intermediate result.Isometric embedding
Theorem 12.12 (Isometric embedding) Let T ∈ U(M;N ) be a locally finite input-
output operator with u.e. stable state realization T = {A;B;C;D}. If I − T∗T � 0, or
I−T∗T ≥ 0 and T is uniformly observable, then T has an extension Σa ∈U(M×N ;N ),

Σa = �
T

Σ21

�
such that Σ∗

aΣa = I and AΣa = A. A realization for Σ21 is

ΣΣΣ21 = �
A C
B2 D21

�= �
A C

−Φ†(D∗B+C∗MA) Φ

�
(12.13)

where Φ = (I − D∗D −C∗MC)1=2 and M is as defined in (12.11).

PROOF Let ΣΣΣa be of the form

ΣΣΣa = 24 A C
B D
B2 D21

35 (12.14)

in which B2 and D21 are to be determined such that Σ∗
aΣa = I. Using corollary 6.5 in

section 6.1, this is the case if there is an M ≥ 0 such that8<: A∗MA + B∗B + B∗
2B2 = M(−1)

A∗MC + B∗D + B∗
2D21 = 0

C∗MC + D∗D + D∗
21D21 = I : (12.15)

We will show that M given by equation (12.11) is a positive semidefinite solution to
these equations. Indeed, under the conditions imposed on T , theorem 12.4 [theorem
12.11] ensures that this M satisfies M ≥ 0, I − D∗D −C∗MC� 0 [I − D∗D −C∗MC ≥ 0],
and

M(−1) = A∗MA+B∗B + �[A∗MC+B∗D]Φ†� ·
�
Φ†[D∗B+C∗MA]� ; (12.16)

where Φ = (I − D∗D −C∗MC)1=2. With B2 and D21 as in (12.13), it immediatedly fol-
lows that equations (12.15) are satisfied. 2
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In the above theorem, M can be interpreted as the reachability Gramian of Σ, and

since M = C∗C + C∗
1C1 with C1 as in (12.10), it is seen that C∗

1C1 is the reachability
Gramian of Σ21. (A more detailed analysis shows that −C1 is its reachability operator.)

Suppose that kT k < 1 so that I − T∗T is invertible. A result of Arveson [Arv75],
which is applicable in the present context, claims that there is a factor Σ21 of I − T∗T
which is outer, i.e., such that Σ−1

21 ∈U . We will show that our choice for Σ21, as defined
by the realization ΣΣΣ21 in (12.13), is in fact outer. To this end, we will look at a possible
realization for Σ−1

21, viz. proposition 7.7 in section 7.3,

ΣΣΣ×
21 = �

A× C×

B× D×

�= �
A −CD−1

21B2 −CD−1
21

D−1
21B2 D−1

21

�
(12.17)

and will show that this realization is u.e. stable: `A× < 1. In that case, we can conclude
that Σ−1

21 ∈ U .

Proposition 12.13 Suppose kT k < 1. Define ΣΣΣ×
21 as in (12.17) and theorem 12.12.

Then `A× < 1, and Σ21 is outer.

PROOF We first assert that the reachability operator of ΣΣΣ×
21 is given by C× = −(I −

K̃∗
T K̃T )−1K̃∗

TC. It is sufficient to show that the given formula of C× satisfies the recursionC×(−1) = [ B×C×A× ]. Indeed, with equations (12.4), (12.5), (12.8),C×(−1) = −(I − K̃∗
T K̃T )−(−1)K̃∗(−1)

T C(−1) == −(� 0 (I − K̃∗
T K̃T )−1

�+�
I(I−K̃∗

T K̃T )−1K̃∗
TṼT

�
·

·Φ−2
h
I Ṽ∗

T K̃T (I−K̃∗
T K̃T )−1

i)� D∗ Ṽ∗
T

0 K̃∗
T

��
BCA

�= −
�

0(I − K̃∗
T K̃T )−1K̃∗

TCA

�
−
�

I(I − K̃∗
T K̃T )−1K̃∗

TCC

�
Φ−2(D∗B+C∗MA)= �

−Φ−2(D∗B+C∗MA)
−(I − K̃∗

T K̃T )−1K̃∗
TC[A+CΦ−2(D∗B+C∗MA)] �= �

D−1
21B2C×(A −CD−1

21B2) � :
The reachability Gramian of ΣΣΣ×

21 is Λ× = C∗K̃T (I − K̃∗
T K̃T )−2K̃∗

TC, which is bounded
because the inverse is bounded and C∗C is bounded. According to a result of Anderson
and Moore [AM81, thm. 4.3] (see also [Nic92]), if Λ× is bounded and `A < 1, then`A× < 1.2 It follows that Σ−1

21 ∈ U , so that Σ21 is outer. 2
2The actual condition in [AM81] is that (A −CD−1

21B2;D−1
21B2) is uniformly stabilizable, but it is also shown

that this is the case if and only if (A;D−1
21B2) is uniformly stabilizable. For this, it is sufficient that `A < 1.



ORTHOGONAL EMBEDDING 353Orthogonal embedding
Using theorem 12.12, it is straightforward to solve the lossless embedding problem.

Theorem 12.14 (Orthogonal embedding) Let T ∈U(M1;N1) be a locally finite input-
output operator with u.e. stable state realization T = {A;B;C;D}. If I − T∗T � 0, or
I − T∗T ≥ 0 and T is uniformly observable, and if the realization T is uniformly reach-
able, then the lossless embedding problem has a solution Σ ∈ U(M1 ×N1;N1 ×N2)
such that Σ is inner, Σ11 = T , Σ21 is outer, and Σ has a unitary realization ΣΣΣ where AΣ
is state equivalent to A. If A ∈ D(B;B(−1)), then N2 is specified by #(N2) = #(B) −
#(B(−1))+#(M1).
PROOF The proof is by construction. Let ΣΣΣ be of the form[ΣΣΣa ΣΣΣb] = 24 A C C2

B D D12

B2 D21 D22

35
ΣΣΣ = 24 R

I
I

35 [ΣΣΣa ΣΣΣb]24 [R(−1)]−1

I
I

35 = [ΣΣΣ 0a ΣΣΣ 0b] ; (12.18)

in which R ∈D(B;B) is a boundedly invertible state transformation. R, B2, D12, D21,
D22 are to be determined such that ΣΣΣ is unitary, in which case Σ is inner (theorem 6.4
in section 6.1).

First, determine M, B2, D12 and hence ΣΣΣa as in theorem 12.12. Because T is uni-
formly reachable, M� 0. If we define the state transformation R by M =R∗R, then R is
invertible, and ΣΣΣ 0a is an isometry (ΣΣΣ0∗a ΣΣΣ 0a = I). The extension of a rectangular isometric
matrix to a square unitary matrix by adding columns is a standard linear algebra proce-
dure that always has a solution. The same holds for diagonals of matrices. Hence, we
can extend ΣΣΣ 0a to a unitary matrix ΣΣΣ, which is the realization of an inner system Σ. The
resulting dimension sequence of ΣΣΣ is given by [#(B)+#(M1)+#(N1)], and the num-
ber of columns of each diagonal entry of ΣΣΣ 0a is the sequence [#(B(−1))+#(N1)], hence
the number of columns to be added is equal to #(N2) = #(B)−#(B(−1))+#(M1). This
number is non-negative because the columns of ΣΣΣ 0a are linearly independent. 2

As was the case with the inner-outer factorization in chapter 7, one difference with
the time-invariant situation is that the solution of the embedding problem gives rise
to a time-varying number of added extra outputs if the number of states of T is time-
varying (B 6= B(−1)), even if the number of inputs and outputs of T is fixed. Another
difference is that, for the boundary case, we need both uniform reachability and uni-
form observability in order to construct an embedding. From chapter 5 we know that
not every time-varying system admits such a realization, not even if it has a finite state
dimension; the condition is that the range of HT must be closed.Bounded real lemma
A reformulationof theorem 12.12 and proposition 12.13 leads to the bounded real lemma
which appears in system and control theory.
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Theorem 12.15 (Time-varying bounded real lemma, I)
Let T ∈ U(M;N ) be a bounded causal locally finite input-output operator, with u.e.
stable state realization T = {A;B;C;D}, and A ∈D(B;B(−1)).kT k< 1 if and only if there exists M ∈D(B;B), B2 ∈D(N ;B(−1)), D21 ∈D(N ;N )

solving 8<: A∗MA + B∗B + B∗
2B2 = M(−1)

C∗MC + D∗D + D∗
21D21 = I

A∗MC + B∗D + B∗
2D21 = 0

(12.19)

with M ≥ 0, I − D∗D −C∗MC� 0 and `A−CD−1
21B2

< 1.

If T is uniformly observable, then kT k ≤ 1 if and only if (12.19) has a solution M,
B2, D21 such that M ≥ 0.

PROOF The ‘only if’ part is directly derived from theorem 12.12 and proposition 12.13.
The ‘if’ part is a corollary of theorem 12.12: given such M, it follows that there exists
an isometric embedding Σa such that Σ∗

aΣa = T∗T +Σ∗
21Σ21 = I, so that Σ∗

21Σ21 = I −
T∗T ≥ 0. If in addition D21 is invertible and `A−CD−1

21B2
< 1, then by proposition 12.13

we can conclude that Σ21 is invertible, so that I − T∗T � 0, i.e., kT k< 1. 2
An alternative version of this theorem is given in 13.5, where the connection be-

tween unitary embedding and spectral factorization is explored.12.5 NUMERICAL ISSUESInitial point for the recursion
Suppose that we are given a realization of a system T that meets the requirements of
the embedding theorem. How do we go about determining a realization of Σ? The
embedding theorem is constructive, and ΣΣΣ i (the realization of Σ at time instant i) can be
determined from knowledge of Ti and both Mi and Mi+1. In addition, equation (12.16)
can be used to determine Mi+1 from Mi:

Mi+1 = A∗
i MiAi +B∗

i Bi + �
A∗

i MiCi +B∗
i Di

�(I − D∗
i Di −C∗

i MiCi)−1 �D∗
i Bi +C∗

i MiAi
� ;

(12.20)
and this is the only recursive aspect of the procedure. The single missing item is the
initial point of this recursion: the value of M−∞, or rather Mk0 , where k0 is the point in
time at which the solution of the embedding problem starts to be of interest.

As was the case before in the solution of the Lyapunov equation and the inner-outer
factorization (section 7.2), it is possible to find an initial value for the recursion for cer-
tain specific time-varying systems. In fact, the Riccati equation (12.20) is very similar
to the one which occurred in the inner-outer factorization (cf. equation (7.19)), so that
also the solutions are obtained in similar ways.

The first (and simplest) class is the case where the state dimension of T is zero at a
certain point in time k0. Consider, for example, a finite n × n upper triangular (block)-
matrix T , then the input space sequence isM1 = · · · ×;×;× C × C × · · · × C| {z }

n

×;×;× · · ·



ORTHOGONAL EMBEDDING 355
and output space sequence N1 =M1. A reachable realization of T obviously has a
state-space sequence B also with Bi = ; for (i < 0; i ≥ n), and hence an initial value of
the recursion for M is M0 = [ · ].

A second example is the case where T is time invariant before a certain point in time
(i = 0 say). T has a time-invariant realization {a;b;c;d} for i < 0, and there is a time-
invariant solution for M also: Mi+1 = Mi =: m (i < 0). The recursion (12.20) becomes
an eigenvalue (Riccati) equation

m = a∗ma+b∗b + �
a∗mc+b∗d

�(I − d∗d − c∗mc)−1 �d∗b+ c∗ma
� : (12.21)

This equation has exact solutions m which can be obtained analytically as in section 7.2,
or numerically by using a Newton-Raphson iteration. An overview of these and other
methods can be found in the collection [BLW91]. It is well known that the analytical
(eigenvalue) methods usually provide more than one solution that satisfies the Riccati
equation; the solution M = C∗(I − K̃T K̃∗

T )−1C corresponds to the “stable” solution, for
which M ≥ 0. The stable solution is also the only solution of the Riccati equation that
is stable to a small perturbation when it is plugged in the Riccati recursion (12.20).
In fact, one way to solve (12.21) is to use the recursion (12.20) for an initial value of
M−∞ = 0, and to iterate till convergence. It is known that this occurs if the eigenvalues
of a are strictly smaller than 1, and that the recursion will monotonically converge to
the stable solution of the Riccati equation.

We can do the same for time-varying systems, which will then apply to other specific
situations as well, such as periodic systems. The claim is that if M0

0 = 0 is taken as
the initial value of the recursion (12.20) which gives a sequence M0

i, then M0
i → Mi as

i → ∞. An elegant proof is possible, not based on numerical properties of the Riccati
equation but rather on the knowledge that M = C∗(I − K̃T K̃∗

T )C is the solution of the
recursion that we are looking. Details of this proof are however cumbersome because
many time indices will appear, but we give an outline of it below. (A formal proof of
convergence of a related Riccati equation appears in section 13.4.

Proposition 12.16 Let {A;B;C;D} be a u.e. stable realization (`A < 1) of a locally
finite strictly contractive transfer operator T ∈ U . Let Mi = C∗

i (I −KiK∗
i )Ci be the exact

solution of the Riccati equation (12.20), and let M0
i be the solution, obtained by starting

the recursion with M0
0 = 0. Then M0

i → Mi for i → ∞ (strong convergence).

PROOF (outline). The initial value M0
0 = 0 is the exact initial point of a recursion

for M0 of a system T 0 which is related to T : T 0i j = 0 for i < 0, and T 0i j = Ti j for i ≥ 0.
The sequence Mi corresponds to T and is at each point i in time given by Mi = C∗

i (I −
KiK∗

i )−1Ci. For i ≥ 0, we can define a partitioning of Ki and Ci as

Ki = �
K0i 0
Hr

0 K0

� Ci = � C0iC0A[0::i−1] �
where K0i is an (i × i) matrix, C0i is equal to the first i rows of Ci,

A[0::n−1] := A0A1 · · ·An−1 ;
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and Hr

0 is related to the Hankel operator H0, but has a finite number (i) of columns,
which are in reversed order in comparison with H0. In terms of these quantities, M0 is
given at time i ≥ 0 by M0

i = C0∗i (I − K0iK0∗i)−1C0i . Using this decomposition of Ki, and
a variant of Schur’s inversion lemma (lemma 12.2), one can derive that, for i ≥ 0,(I − KiK∗

i )−1 = � (I − K0iK0∗i)−1

0

� ++ � (I − K0iK0∗i)−1K0i(Hr
0)∗

I

�
Φ−2

�
Hr

0K0∗i(I − K0iK0∗i)−1 I
�

where
Φ2 = I − K0K∗

0 − Hr
0(I − K0∗iK

0
i)−1(Hr

0)∗ � 0

and hence its inverse is bounded. Inserting the expression for Ci and defining Hr
0 =C0Or

0 yields

Mi = M0
i + hC0∗i (I − K0iK0∗i)−1K0i(Or

0)∗ +(A[0::i−1])∗
iC∗

0 Φ−2C0 ·

·
hOr

0K0∗i(I − K0iK0∗i)−1C0i +A[0::i−1]i :
An examination of the termOr

0K0∗i(I − K0iK0∗i)−1C0i that is more detailed than we wish
to include at this point reveals that it consists of a summation of i terms, each of which
has a factor A[0::k−1] and A[k+1::i−1] (for 0 ≤ k ≤ i). The stability condition `A < 1 implies
that ε > 0 exists such that, in the limit, products of the form A[k::k+n] are bounded in
norm by (1 − ε)n which goes to 0 strongly and uniformly in k as n → ∞. Since Φ−2 is
bounded, this equation gives M0

i → Mi as i → ∞. 2\Square-root" solution of the Riccati equation
The embedding algorithm can be implemented along the lines of the proof of the em-
bedding theorem. However, as was the case with the solution of the inner-outer fac-
torization problem in chapter 7, the Riccati recursions on Mi can be replaced by more
efficient algorithms that recursively compute the square root of Mi, i.e., Ri, instead of
Mi itself. The square-root algorithm is given in figure 12.3. The algorithm acts on data
known at the k-th step: the state matrices Ak, Bk, Ck, Dk, and the state transformation
Rk obtained at the previous step. This data is collected in a matrix Te;k:

Te = 24 R
I

I

3524 A C
B D
0 I

35 (12.22)

The key of the algorithm is the construction of a J-unitary operator Θ ∈D3×3, satisfying
Θ∗JΘ = J, where

Θ = 24 Θ11 Θ12 Θ13
Θ21 Θ22 Θ23

Θ31 Θ32 Θ33

35 J = 24 I
I

−I

35 ;
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In: {Tk} (a reachable realization of T, kTk< 1)
Out: {ΣΣΣk} (a unitary realization of embedding Σ)

R1 = [ · ]
for k = 1; · · · ;n26666666666666666664

Te;k = 24 Rk

I
I

3524 Ak Ck

Bk Dk

0 I

35
T0e;k := ΘkTe;k ; Θk such that T0e;k(2;2) = T0e;k(1;2) = T0e;k(2;1) = 0

T0e;k =:

24 Rk+1 0
0 0

B2;k D21;k 35
ΣΣΣ1;k = 24 Rk

I
I

35264 Ak Ck

Bk Dk

B2;k D21;k 375� R−1
k+1

I

�
ΣΣΣk = h

ΣΣΣ1;k ΣΣΣ⊥
1;ki

end Figure 12.3. The embedding algorithm for �nite n × n matrices.
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such that certain entries of T0e := ΘTe are zero. (General J-unitary operators are the
subject of chapter 8.) It turns out that, because Θ is J-unitarity, we have that T0∗e J Te =
T∗

eJ Te; writing these equations out, it follows that the remaining non-zero entries of
T0e are precisely the unknowns R(−1), B2 and D21.

Proposition 12.17 Let T ∈ U be a strictly contractive operator, and let {A;B;C;D} be
a uniformly reachable realization of T . Define Te as in equation (12.22).

Then there is a J-unitary operator Θ ∈ D3×3 such that T0e := ΘTe has zeros at the
entries (2;2), (1;2) and (2;1). T0e is of the form

T0e = ΘTe = 24 R(−1) 0
0 0

B2 D21

35
where M = R∗R, B2, D21 satisfy the embedding equations (12.15).

PROOF Assume first that such an operator Θ exists. A direct computation reveals that
(with M = R∗R)

T∗JT = �
A∗MA+B∗B A∗MC+B∗D(A∗MC+B∗D)∗ −(I − D∗D −C∗MC) �

T0∗JT0 = �
M(−1) − B∗

2B2 −D∗
21B2

−B∗
2D21 −D∗

21D21

�
Since Θ is J-unitary, we must have T∗JT=T∗0JT0, which produces the relations (12.15):8<: A∗MA+B∗B+B∗

2B2 = M(−1)
C∗MC+D∗D+D∗

21D21 = I
A∗MC+B∗D+B∗

2D21 = 0

i.e., the equations that constituted the Riccati equations. It remains to verify the ex-
istence of a J-unitary Θ such that T0e has zeros at the entries (2;2), (1;2) and (2;1).
Choose Θ of the form

Θ = Θ3Θ2Θ1 = 24 Θ3
11 Θ3

12 0
Θ3

21 Θ3
22 0

0 0 I

3524 Θ2
11 0 Θ2

13
0 I 0

Θ2
31 0 Θ2

33

3524 I 0 0
0 Θ1

22 Θ1
23

0 Θ1
32 Θ1

33

35
where the submatrix {Θ3

i j}2
i; j=1 is unitary, while the submatrices {Θ2

i j} and {Θ1
i j} are

J-unitary with with signature matrix J1 = [ I 0
0 −I ] : The submatrices are determined by

the requirements �
Θ1

22 Θ1
23

Θ1
32 Θ1

33

��
D
I

� = �
0(I − D∗D)1=2

��
Θ2

11 Θ2
13

Θ2
31 Θ2

33

��
RC(I − D∗D)1=2

� = �
0(I − D∗D −C∗MC)1=2

��
Θ3

11 Θ3
12

Θ3
21 Θ3

22

��
Θ2

11 0 Θ2
13

0 I 0

�24 I 0
0 Θ1

22
0 Θ1

32

35�RA
B

� = �
∗
0

� :
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Hence necessary requirements are I − D∗D ≥ 0 and I − D∗D −C∗MC ≥ 0, respectively.
In the present case, because T is strictly contractive, we know that I − D∗D � 0 and
I −D∗D−C∗MC� 0, and these conditions ensure that the J-unitary submatrices {Θ1

i j}
and {Θ2

i j} are well defined, and for example, of the form of a Halmos extension [DD92]

H(K) = � (I − KK∗)−1=2 0
0 (I − K∗K)−1=2

��
I K

K∗ I

� :
The unitary submatrix {Θ3

i j} is always well defined. 2
It is also a standard technique to factor Θ even further down into elementary (J)-

unitary operations that each act on only two scalar entries of Te, and zero one of them
by applying an elementary J-unitary rotation of the form

θ = 1
c

�
1 s
s 1

� ; c∗c+ s∗s = 1 :
With B2 and D21 known, it is conjectured that it is not really necessary to apply the
state transformation by R and to determine the orthogonal complement of ΣΣΣ1 if, in the
end, only a cascade factorization of T is required, much as in [LK92]. Cascade factor-
izations are the subject of chapter 14.12.6 NOTES
Many control applications give rise to the Riccati equation (12.2). Usually, the exis-
tence of a stabilizing solution is of importance. In the context of our embedding prob-
lem, this would be a solution for which A −CD−1

21B2 is u.e. stable, or Σ21 is outer. The
uniqueness of such a solution is a standard result which is straightforward to prove.

More is known on time-varying Riccati equations, and on its connection to em-
bedding, positivity, and spectral factorization. We mention in particular the papers
[Nic92], in which detailed attention is paid to the convergence of the recursion to max-
imal/minimal solutions, and [HI93], where the solution of a Kalman-Szegö-Popov-
Yakubovich (KSPY) system of equations is presented. (See also [HI94] for further de-
tails.) The equations (12.19) can be viewed as a particular instance of these equations.
Although [HI93] gives solutions to a more general class of problems, the boundary
case is not considered. A major difference with [HI93] is in the proofs of the results:
whereas the latter heavily relies on insights gained in optimal control theory, the ap-
proach taken in this chapter is more based on first principles: I − T∗T = Σ∗

21Σ21 ⇔
I − K̃∗

T K̃T = K̃∗
Σ21

K̃Σ21 . The analysis of the latter equation directly leads to a recursion
in which the given expressions for M, D21, B2 turn up, along with an explicit expres-
sion for the reachability operator of the realization for Σ21. Similar analysis of K̃Σ−1

21
=(K̃Σ21)−1 leads to the realization of the inverse, the given expression for the reachability

operator, and the fact that our choice for Σ21 is outer.
In an operator-theoretic setting, additional research on the existence of isometric

extensions was done by Feintuch and Markus [FM96b, FM96a], in the context of a
nest algebra.



360 TIME-VARYING SYSTEMS AND COMPUTATIONSAppendix 12.A: Derivation of lemmas 12.7 and 12.8
The contents of lemmas 12.7 and 12.8 are well known for finite matrices (see e.g.,
[CHM74, BCHM74]) for generalized inverse formulas involving Schur complements).
The matrix case is readily extended to operators if the operators are assumed to have
closed range. Without this condition, complications arise because the pseudo-inverses
that are involved are unbounded operators.

We will repeatedly use theorem 12.6 in the following form. Let X ≥ 0 be a bounded
operator on a Hilbert spaceH. If v is a bounded operator whose range is inR(X), then
v = Xv1, for some bounded v1 ∈R(X∗) for which we can take v1 = X†v.

A second fact that is used in the proof of lemma 12.8 is that X†X =PX ∗ : the orthog-
onal projector ontoR(X∗), with domainH [BR76].Proof of lemma 12.7
Suppose first that X ≥ 0; we show that (1), (2), (3) hold. It is immediate that A ≥ 0,
C ≥ 0.R(B) ⊂R(C1=2) is proven by showing that there exists λ such that BB∗ ≤ λC; Dou-
glas’ theorem then implies the result. The proof is by contradiction. Suppose that there
is not such a λ. Then there exists a sequence {xn : n ∈ N} such that(BB∗xn;xn) ≥ n(Cxn;xn) > 0 : (12.A.1)

where ( ·; ·) denotes the inner product inH. In particular, kB∗xn k> 0 (all n). For any
un, X ≥ 0 implies (� A B∗

B C

��
un

xn

� ;� un

xn

�) ≥ 0

i.e., (Aun;un)+(B∗xn;un)+(Bun;xn)+(Cxn;xn) ≥ 0. Choose un = − 1p
n B∗xn. Using

(12.A.1), we obtain (B�A
n

−
2p
n
+ I

n

�
B∗xn;xn) ≥ 0 :

But if n > k I+Ak2, the term in braces is smaller than −1=pn, which gives a contra-
diction. HenceR(B) ⊂R(C1=2).

Define L =C1=2 (although L = L∗, we will not use this), and let B1 = L†B. Then B1
is bounded, and B = LB1 withR(B1) ⊂R(L∗), which impliesN (B∗

1) ⊃ N (L) : (12.A.2)

To prove A − B∗
1B1 ≥ 0, we will show that

X = �
A B∗

1L∗

LB1 LL∗

�
≥ 0 ⇒

�
A B∗

1
B1 I

�
≥ 0 (12.A.3)

from which A − B∗
1B1 ≥ 0 follows directly by applying vectors of the form

h
I

−B1

i
a.
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Thus for x ∈H1 ⊕H2, take x of the form

x = �
u

x1 + x2

�
∈
� H1N (L)⊕R(L∗) �

where x1 ∈ N (L) and x2 ∈ R(L∗). Note that N (L) ⊕R(L∗) is dense in H2. ThenN (B∗
1) ⊃ N (L) implies B∗

1x1 = 0, while x2 ∈R(L∗) implies that x2 = L∗x02, for some
bounded x02. Using these observations, it follows that(� A B∗

1
B1 I

��
u

x1 + x2

� ;� u
x1 + x2

�)= (Au;u)+(B∗
1x1;u)+(B1u;x1)+(x1;x1)+(B∗

2x2;u)+(B1u;x2)+(x2;x2)
≥ (Au;u)+(B∗

1x2;u)+(B1u;x2)+(x2;x2)= (Au;u)+(B∗x02;u)+(B1u;x02)+(x02;x02)= (X �
u
x02 � ;� u

x02 �) ≥ 0 :
Hence relation (12.A.3) holds on a dense subset of H1 ⊕H2. By continuity, it holds
everywhere, and consequently A − B∗

1B1 ≥ 0.
It remains to prove the reverse implication: X ≥ 0 if the three conditions are satisfied.

Because C ≥ 0 a decomposition of C as C = LL∗ is defined. Using this decomposition
and B = LB1,

X = �
A B∗

1L∗

LB1 LL∗

�= �
I B∗

1
L

��
A − B∗

1B1

I

��
I

B1 L∗

� :
Under the stated conditions, the operator

W = �
I

L

��
I B∗

1
I

�� (A − B∗
1B1)1=2

I

�
(12.A.4)

is well defined, and is a factor of X such that X =WW∗. Hence X ≥ 0. 2Proof of lemma 12.8
Let X ≥ 0 have a factorization X = WW∗, then R(X1=2) = R(W) (again by theorem
12.6). It can be inferred from Beutler and Root [BR76] that

X† = W∗†W† = X†=2X†=2 ;
hence if R(v) ⊂R(X1=2) =R(W), then v1 and v2 defined by

v1 = X†=2v ; R(v1) ⊂R(X1=2)
v2 = W†v ; R(v2) ⊂R(W∗)

are bounded, and3 v∗
1v1 = v∗

2v2.

3We are careful here not to write X†v. AlthoughR(X) =R(X1=2), we only have thatR(X)⊂R(X1=2), and
hence X†v can be unbounded with R(v) ∈R(X1=2).
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Let L = C1=2, B1 = L†B and put W as in (12.A.4), so that X = WW∗. Define the

operator W‡ by

W‡ = � (A − B∗
1B1)†=2

I

��
I −B∗

1
I

��
I

L†

� :
We prove that W‡ = W† on R(W). The result will be, for a bounded operator v withR(v) ⊂ R(X1=2) = R(W), that W†v = W‡v, so that v1 := X†=2v and v2 := W‡v are
bounded and satisfy v∗

1v1 = v∗
2v2.

For any v with range in R(W) we have that the operator v1 =W†v is bounded and
such that v=Wv1. HenceW‡v=W‡Wv1 =W†Wv1 =W†v ; so that W‡ =W† onR(W)
if and only if

W‡W =W†W onR(W∗) :
To analyze W‡W , we first prove that B∗

1 − B∗
1L†L = 0. Indeed, if x ∈ N (L) then x ∈N (B∗

1) (by equation (12.A.2)), and hence both B∗
1x = 0 and Lx = 0. If, on the other

hand, x ∈ N (L)⊥, then L†Lx = x since L†L is the projector onto N (L)⊥, and hence
B∗

1L†Lx = B∗
1x.

With the definition of W‡ and the above result,

W‡W = � (A − B∗
1B1)†=2

I

��
I −B∗

1
I

��
I

L†

�
·

·

�
I

L

��
I B∗

1
I

�� (A − B∗
1B1)1=2

I

�= � (A − B∗
1B1)†=2

I

��
I B∗

1 − B∗
1L†L

L†L

�� (A − B∗
1B1)1=2

I

�= � (A − B∗
1B1)†=2(A − B∗

1B1)1=2

L†L

�=:

�
P1

P2

�
P1 and P2 are projectors ontoR(A − B∗

1B1)1=2 andR(L∗), respectively. Now, using

W∗ = � (A − B∗
1B1)1=2

I

�
·

�
I

B1 L∗

�
andR(B1) ⊂R(L∗), we have thatR(W∗) ⊂R� (A − B∗

1B1)1=2

L∗

�
Since W†W is the projector ontoR(W∗), and W‡W is the projector onto the range at the
right-hand side of the expression, this proves thatW‡W =W†W onR(W∗), as required.
Hence W‡ =W† onR(W), which also implies that W‡ is well defined onR(W). 2



13 SPECTRAL FACTORIZATION

In this chapter we give a simple and straightforward treatment of the spectral factoriza-
tion problem of a positive operator Ω ∈X into Ω =W∗W , where Wi ∈ U is outer. We
only consider the case where Ω is a strictly positive operator and where its causal part
is bounded and has a u.e. stable realization. This leads to a recursive Riccati equation
with time-varying coefficients for which the minimal positive definite solution leads
to the outer factor. The theory also includes a formulation of a time-varying (strictly-)
positive real lemma. In addition, we provide connections with related problems dis-
cussed in previous chapters in which Riccati equations appear as well, such as inner-
outer factorization and orthogonal embedding. The results can no doubt be formulated
in a more general way where strict positivity is not assumed, but we consider these
extensions as laying outside the scope of the book.13.1 INTRODUCTION
The term “spectral factorization” as commonly used refers in its most simple form to
the problem of splitting a polynomial p(s) in two factors p(s) = p1(s)p2(s) so that the
zeros of p1(s) are within a given open region of the complex plane and the zeros of
p2(s) strictly in the complement of its closure. The problem has a solution if and only
if p(s) has no zeros on the boundary. One could extent the problem by allowing zeros
on the boundary and counting them with one or the other region (or both). More inter-
esting is the matrix function extension, which necessitates a definition of a “zero” con-
sistent with Smith-McMillan theory. Spectral factorization became a hot topic when363
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it was seen to be an essential step towards the solution of estimation and embedding
problems. The standard problem then became: given a matrix function M(s) which
is positive definite on the imaginary axis, find a causal and causally invertible T(s) so
that M( jω) = T( jω)∗T( jω). This more specific case became identified as the generic
one, and a splitting of the necessarily even number of zeros on the imaginary axis be-
came a part of the factorization as well. If M(s) is rational, then T(s) can be found by
splitting both the zeros and the poles of M(s) with the imaginary axis as boundary. It
is remarkable that this is always possible. The first (complicated) algorithm to do so
is due to Oono and Yasuura [OY54], based on the properties of the Smith-McMillan
form [CC92]. Much more attractive schemes came later, e.g., based on the state space
description of the causal part of M(s), and resulting in an algebraic Riccati equation
and a criterion for positivity known as the positive real lemma. (A later extension to
a more general metric is known as the Kalman-Yacubovitch-Popov lemma, for a very
nice introduction to the topic and its ramifications, see [AV73].

In the very general and abstract context of “nest algebras” of operators on a Hilbert
space, Arveson [Arv75] studied spectral factorization as the factorization of a posi-
tive operator Ω =W∗W in which W has a causality property related to the nest algebra.
Arveson shows that in this very general set-up, the factorization is always possible pro-
vided that the original operator Ω is invertible. In the traditional special case of opera-
tors belonging to Ln×n

∞ , (the LTI case), it is known that a spectral factorization for M(s)
with Hermitian M( jω) ≥ 0 will exist if and only if the so-called Szegö conditionZ ∞

−∞
logdetM( jω) dω

1+ω2 > −∞

is satisfied (see [Hel64] for a general treatment). For example, the power spectrum of
an ideal low pass filter will not qualify because it will have large intervals on which
M( jω) = 0 and hence logdetM( jω) = −∞. An extension of this famous result to the
time-varying case is not available, at least not to the knowledge of the authors. There-
fore we shall adopt Arveson’s result and put ourselves squarely in the situation where
Ω is a bounded and invertible operator in X , a case which is subsumed by the Szegö
condition, but considerably less general. Still, a further word of caution is needed.
The boundedness and invertibility of Ω does not entail the boundedness of the pro-
jection P(Ω) as we already know from counterexamples in chapter 2. So, and in order
to achieve finite computations, we introduce a further assumption, namely that Ω =
T +T∗ in which T is a causal and u.e. stable operator.

In our discussion on the inner-outer factorization problem and the embedding prob-
lem (see chapters 6, 7, 12), we have obtained solutions governed by Riccati equations.
In many other problems in time-invariant system and H∞-control theory, for example
linear quadratic optimal control, optimal filtering and sensitivity minimization, Ric-
cati equations play an important role as well. There is a family of related forms of this
equation, and the precise form depends on the application. Underlying these problems
is typically a spectral factorization problem. The equation usually has more than one
solution, and important issues are the existence and computation of solutions which
are Hermitian and maximally positive or negative, as these conditions imply minimal-
phase properties of spectral factors, or the stability of closed-loop transfer operators
constructed from the solution. Such solutions are, for time-invariant systems, obtained
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by an analysis of the eigenvalues and invariant subspaces of an associated Hamiltonian
matrix.

For general time-varying systems, the Riccati equation becomes a recursion with
time-varying coefficients that can also have time-varying dimensions. For such equa-
tions, much less is known on the structure of solutions. One reason for this is that the
usual eigenvalue analysis to classify stable and unstable systems is no longer applica-
ble: Ak need not even be square. Some results, e.g., on the convergence of solutions
starting from an approximate initial point, have already been obtained in the solution
of the embedding problem (chapter 12).

In this chapter, we approach the time-varying Riccati equation from a different an-
gle, by starting from the spectral factorization problem. The same approach is followed
in [SA73] although, in that paper, the starting point is the existence of the Cholesky fac-
tor of a positive definite, finite size matrix. The Riccati recursion in these factorization
problems emerges once a state realization for the operator is assumed.

The spectral factorization problem is treated in section 13.2, where also a (related)
time-varying version of the positive real lemma is formulated. Some computational
issues are discussed in section 13.3. It is argued in section 13.4 that under certain con-
ditions the Riccati recursion converges to the exact solution even if the recursion is
started from an approximate initial point. This allows us to compute spectral factors
of more general time-varying positive operators, even if they are not constant or peri-
odically varying before some point in time. Finally, in section 13.5, we discuss some
connections of the spectral factorization theory with related problems in which a Ric-
cati equation occurs, in particular the orthogonal embedding problem of contractive
operators and the inner-outer factorization problem.13.2 SPECTRAL FACTORIZATION
We recall the definitions of outer operators from section 7.2. An operatorW` ∈U(M;N )
is defined to be left outer if UM2 W` = UN2 :
Wr is right outer if L2Z−1W∗

r = L2Z−1 :
Arveson [Arv75] has shown, in the general context of nest algebras which also applies
to our model of time-varying systems, that if Ω ∈ X is a positive invertible operator,
i.e. if Ω is a strictly positive operator, then an operator W ∈ U exists such that

Ω = W∗W :
W can be chosen to be outer, in which case the factorization is called a spectral factor-
ization, in the strict sense described in the introduction. Related to this fact is another
theorem by Arveson in the same paper, which claims that operators in a Hilbert space
have an inner-outer factorization

W = UWr
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where U is a co-isometry (U∗U = I) and Wr is right outer.1 Hence, if Ω is uniformly
positive definite, then Ω has the factorization Ω=W∗

r Wr where Wr is both left and right
outer and invertible, and henceL2Z−1W∗

r =L2Z−1 (no closure is needed) and W−1
r ∈U .

Any other invertible factor W can be written as W =UWr, where U is now invertible
and hence inner.

In this section, we derive an algorithm to compute a time-varying spectral factor-
ization of operators with a state-space realization. The computation amounts to the
(recursive) solution of a Riccati equation. Such equations have in general a collection
of solutions. We show that in order to obtain an outer spectral factor, one must select
a uniformly positive solution of the Riccati equation, and we show that this solution is
unique. We need a number of preliminary results.Realization for T∗T

We first derive a formula to compute a realization of the upper part of the operator T∗T ,
when a realization of T ∈ U is given.

Lemma 13.1 Let T ∈ U be given by the state realization T = D + BZ(I − AZ)−1C,
where `A < 1. Then a state realization of the upper part of T∗T is�

A C
D∗B+C∗ΛA D∗D+C∗ΛC

�
where Λ ∈D is the (unique) operator satisfying the Lyapunov equation Λ(−1)=A∗ΛA+
B∗B.

PROOF Evaluation of T∗T gives

T∗T = �
D∗ +C∗(I − Z∗A∗)−1Z∗B∗� �D+BZ(I − AZ)−1C

�= D∗D + C∗(I − Z∗A∗)−1Z∗B∗D + D∗BZ(I − AZ)−1C ++C∗(I − Z∗A∗)−1Z∗B∗BZ(I − AZ)−1C :
The expression (I − Z∗A∗)−1Z∗B∗BZ(I − AZ)−1 evaluates as(I − Z∗A∗)−1Z∗B∗BZ(I − AZ)−1 = (I − Z∗A∗)−1Z∗X + Λ(I − AZ)−1

where X = A∗Λ, and Λ is given by the Lyapunov equation Λ(−1) = A∗ΛA+B∗B. Λ is
unique if `A < 1, and

T∗T = [D∗D+C∗ΛC] + [D∗B+C∗ΛA]Z(I − AZ)−1C+C∗(I − Z∗A∗)−1Z∗ [A∗ΛC+B∗D] : 2
1Actually, Arveson uses a slightly different definition of outerness (not requiring ker( ·Wr)��L2Z−1= 0), so
that U can be chosen inner. The resulting inner-outer factorizations are the same when W is invertible. See
chapter 7.)
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The input and output state spaces of an outer factor in a spectral factorization of a
strictly positive definite operator have certain characteristic properties, which we for-
mulate in proposition 13.4. The recursive version of these properties then produces a
Riccati equation, and the existence of the outer factor implies the existence of a (pos-
itive) solution to this equation. Other properties of the equation can be derived from
the link with outer factors as well.

Proposition 13.2 Let T ∈ U(M;M) be an outer invertible2 operator, with state re-
alization T = {A;B;C;D}. Then S = T−1 ∈ U(M;M) has a state realization given
by

S = �
A −CD−1B −CD−1

D−1B D−1

� : (13.1)

Moreover, T is [uniformly] reachable if and only if S is [uniformly] reachable, T is
[uniformly] observable if and only if S is [uniformly] observable. Let A× =A−CD−1B.
If `A < 1 and T is reachable or observable, then `A× < 1.

PROOF Since T is outer and invertible, T−1 ∈ U , so S = T−1 has a realization which is
causal. Let y = uT , where u;y ∈ XM

2 . Then u = yS, and(
x(−1)[k+1] = x[k]A+u[k]B
y[k] = x[k]C+u[k]D ⇔

(
x(−1)[k+1] = x[k](A −CD−1B) + y[k]D−1B

u[k] = −x[k]CD−1 + y[k]D−1

so that S has a state realization as in (13.1). To prove the remaining properties, let, as
in (5.1), T be decomposed as

·T
��L2Z−1 = KT + HT : ·HT = P( ·T

��L2Z−1) ; ·KT = P0( ·T
��L2Z−1)

·T
��U2

= ET

Since ·T
��X2

is an invertible operator, the same is true for KT , because a decomposition

of ·T |X2 along X2 = L2Z∗ ⊕U2 in the input and output spaces gives

·T
��X2

= �
KT HT

0 ET

� :
The Hankel operator HT has a factorization in terms of the reachability and observabil-
ity operators F and Fo defined as HT = P0( ·F∗)Fo. Partition u ∈ XM

2 into a past and
a future part: u = up +u f ∈ L2Z−1 ⊕U2, and partition y likewise. Then

y = uT ⇔

8<: yp = upKT

x[0] = P0(upF∗)
y f = u f T + x[0]Fo :

2Thus, both left and right outer.
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Because T is invertible in U , KT is invertible, and hence, the above set of equations is
equivalent to

u = yS ⇔

8<: up = ypK−1
T

x[0] = P0(ypK−1
T F∗)

u f = y f T−1 − x[0]FoT−1 :
It follows that S has reachability and observability operators given by

FS = FK−∗
T ; Fo;S = −FoT−1 :

These operators inherit the one-to-one and onto properties of the reachability and ob-
servability operators of T .

Finally, to show that `A× < 1 if `A < 1 and ΛF > 0 or ΛFo > 0, we invoke the fol-
lowing extension of proposition 5.14: if ΛF > 0, then

F is bounded on X2 ⇔ `A < 1 :
Applying this result twice yields, if ΛF > 0,`A < 1 ⇒ F bounded on X2 ⇒ FS bounded on X2 ⇒ `×

A < 1 :
A similar result holds if ΛFo > 0. 2
Proposition 13.3 Let W ∈ U be boundedly invertible (in X ), with inner-outer factor-
izationW =UWr, and suppose thatW andWr have u.e. stable realizations with the same(A;C): W = D+BZ(I − AZ)−1C, Wr = Dr +BrZ(I − AZ)−1C, `A < 1. Let Λ and Λr be
the reachability Gramians of W and Wr, respectively. Then

Λ ≥ Λr ; Λ = Λr iff U ∈D :
PROOF Since Wr is outer, a realization of W−1

r ∈ U is given by

W−1
r = D−1

r − D−1
r BZ(I − A×Z)−1C ; A× = A −CD−1B ;

so that U =WW−1
r has main diagonal P0(U) = DD−1

r . Since U∗U = I, this implies that
D−∗

r D∗DD−1
r ≤ I.

Using W∗W =W∗
r Wr and evaluating each term by means of lemma 13.1 yields the

equalities
D∗D+C∗ΛC = D∗

r Dr +C∗ΛrC
D∗B+C∗ΛA = D∗

r Br +C∗ΛrA

where the reachability Gramians Λ and Λr are specified (uniquely) by

Λ(−1) = A∗ΛA+B∗B

Λ(−1)
r = A∗ΛrA+B∗

rBr :
The first equation is equivalent to

D−∗
r C∗(Λ − Λr)CD−1

r = I − D−∗
r D∗DD−1

r

and since D−∗
r D∗DD−1

r ≤ I, it follows that Λ ≥ Λr.
The proof that Λ = Λr ⇔ U ∈ D is also a straightforward consequence of these

equations. 2
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The following proposition is of crucial importance in proving that there is a solution
to the Riccati equation associated to the time-varying spectral factorization problem
which gives an outer factorW , and in characterizing this solution. Recall the definitions
of input and output state spaces of T as H(T) = P0(U2T), Ho(T) = P(L2Z−1T), viz.
equations (5.3) and (5.5).

Proposition 13.4 Let T ∈ U(M;M) be such that T∗ +T � 0. In addition, let W ∈U(M;M) be an invertible factor of T∗ +T = W∗W . Then Ho(T) ⊂Ho(W). If W is
outer,Ho(T) =Ho(W). In particular, there exists a realization of an outer W that has
the same (A;C) pair as a realization of T .

PROOF Arveson’s theorem on spectral factorization[Arv75] is applicable in this case,
so we may infer the existence of an invertible operator W ∈ U such that

T∗ +T = W∗W :
In general, L2Z−1W∗ ⊂ L2Z−1, and L2Z−1W∗ = L2Z−1 if and only if W is outer. ThusHo(T) = P(L2Z−1T)= P(L2Z−1[T +T∗]) [since T∗ ∈ L]= P(L2Z−1W∗W)

⊂ P(L2Z−1W) = Ho(W) :
IfW is outer, thenL2Z−1W∗ =L2Z−1 and the inclusion in the above derivation becomes
an identity: W outer ⇒ Ho(T) = Ho(W). If {A;B;C;D} is a realization of T with`A < 1, then Ho(T) = D2(I − AZ)−1C (if the realization of T is uniformly reachable)
or, more generally,Ho(T) ⊂ D2(I − AZ)−1C. Hence, it is clear that a realization of an
outer W can have the same (A;C)-pair as a realization of T . 2

Note that not necessarily Ho(T) =Ho(W) ⇒ W outer , as a simple time-invariant
example shows. The proposition, along with lemma 13.3, assures that a minimal de-
gree factor W of T +T∗ � 0 is obtained by taking a realization of W to have the (A;C)-
pair as a realization of T , and that this factor is outer if the reachability Gramian of this
realization is as small as possible. This observation forms the main part of the proof of
the following theorems, which can be used to actually compute the realization of the
outer factor if a realization of T is given.

Theorem 13.5 Let T ∈U(M;M) be a locally finite operator with an observable state
realization {A;B;C;D} such that `A < 1. Then T∗ + T � 0 if and only if a solution
Λ ∈D ; Λ ≥ 0 exists of

Λ(−1) = A∗ΛA + �
B∗ − A∗ΛC

�(D+D∗ −C∗ΛC)−1 �B −C∗ΛA
�

(13.2)

such that D+D∗ −C∗ΛC� 0.
If T∗ +T � 0, let W ∈ U(M;M) be an invertible factor of T∗+T =W∗W . A real-

ization {A;BW ;C;DW } for W such that W is outer is then given by the smallest solution
Λ ≥ 0, and �

DW = (D+D∗ −C∗ΛC)1=2

BW = D−∗
W [B −C∗ΛA] :
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The realization of W is observable and [uniformly] reachable, if T is so.

PROOF Let the realization of T satisfy the given requirements, and suppose that T +
T∗� 0. Then T +T∗ =W∗W , where W is outer. According to proposition 13.4, W can
have the same (A;C) pair as T . Hence assume that W = DW +BW Z(I − AZ)−1C, and
denote its reachability Gramian by Λ. Then, with help of lemma 13.1, this realization
satisfies

D+D∗ = D∗
W DW +C∗ΛC ; D∗

W DW � 0
BZ(I − AZ)−1C = [D∗

W BW +C∗ΛA]Z(I − AZ)−1C
Λ(−1) = A∗ΛA+B∗

WBW ; Λ ≥ 0 :
Because the realization of T is observable, the operator ·(I − AZ)−1C is one-to-one by
definition, and the above set of equations reduce to

D+D∗ = D∗
W DW +C∗ΛC ; D∗

W DW � 0
B = D∗

W BW +C∗ΛA
Λ(−1) = A∗ΛA+B∗

WBW ; Λ ≥ 0 :
⇒ DW = (D+D∗ − C∗ΛC)1=2

BW = D−∗
W [B −C∗ΛA]

Λ(−1) = A∗ΛA + [B∗ − A∗ΛC] (D+D∗ −C∗ΛC)−1 [B −C∗ΛA] ;
(DW , and hence BW , are determined up to a left diagonal unitary factor), so that Λ sat-
isfies the given Riccati equation. In fact, we showed that if T +T∗ � 0, the existence
of an outer factor implies that there is a solution Λ of the Riccati equation which is
positive semi-definite, and such that also D+D∗ −C∗ΛC� 0. The converse, to show
that T +T∗ � 0 if these quantities are positive semi-definite, resp. uniformly positive,
follow almost directly from the construction, since it specifies a realization of an in-
vertible factor W of T +T∗. If this solution Λ is the smallest possible solution, then,
by lemma 13.3, W is outer. 2

The above theorem can be extended to observable realizations without reachability
constraint.

Theorem 13.6 Theorem 13.5 holds also if the realization of T is not observable.

The proof of this theorem is technical and given in the appendix at the end of the chap-
ter.

Theorems 13.5 and 13.6 can also be specified in two alternate forms, familiar from
the time-invariant context [AV73, Den75]:

Corollary 13.7 (The time-varying positive real lemma) Let T ∈ U be a locally fi-
nite operator with state realization {A;B;C;D} such that `A < 1.

Then T∗ +T � 0 if and only if there exist diagonal operators Λ;Q;B0W with Λ ≥ 0
and Q� 0 satisfying

Λ(−1) = A∗ΛA+B0∗WQB0W
B0∗W Q = B∗ − A∗ΛC

Q = D+D∗ −C∗ΛC :
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PROOF In view of theorems 13.5 and 13.6, it suffices to make the connection Q =
D∗

W DW and BW = DW B0W . 2
Corollary 13.8 (Time-varying spectral factorization) Let Ω ∈X be a Hermitian op-
erator whose upper part is locally finite with state realization {A;B;C;D} satisfying`A < 1, i.e.,

Ω = D + BZ(I − AZ)−1C + C∗(I − Z∗A∗)−1Z∗B∗ :
Then Ω� 0 if and only if there exists a solution Λ ∈D;Λ ≥ 0 of

Λ(−1) = A∗ΛA + �
B∗ − A∗ΛC

�(D −C∗ΛC)−1 �B −C∗ΛA
� ; (13.3)

such that D −C∗ΛC� 0.
If Ω� 0 and Λ is the smallest positive solution, then a realization {A;BW ;C;DW }

for an outer factor W of Ω is given by

DW = (D − C∗ΛC)1=2

BW = D−∗
W [B −C∗ΛA] :

If the realization {A;B;C;D} is observable and reachable resp. uniformly reachable,
then Λ > 0 resp. Λ� 0: the realization for W is observable and [uniformly] reachable.13.3 COMPUTATIONAL ISSUES
We now consider some computational issues that play a role in actually computing a
spectral factorization of a uniformly positive operator Ω with a locally finite observ-
able realization given as in (13.3). First, note that by taking the k-th entry along each
diagonal of (13.3), we obtain the Riccati recursion

Λk+1 = A∗
kΛkAk + �

B∗
k − A∗

kΛkCk
�(Dk −C∗

k ΛkCk)−1 �Bk −C∗
kΛkAk

� ; (13.4)

and with Λk known, (BW )k, (DW )k also follow locally:(DW )∗
k(DW )k = Dk − C∗

k ΛkCk(BW )k = (D−∗
W )k

�
Bk −C∗

kΛkAk
� :

Hence all that is needed in practical computations is an initial point for the recursion of
Λk. Special cases where such an initial point can indeed be obtained are familiar from
previous chapters.

One general observation is that, since there may be more than one positive solu-
tion Λ, there also may be more than one initial point Λk. Outer factors are obtained
by choosing the smallest positive solution, which implies taking the smallest positive
initial point: since Λ ≤ Λ0 ⇒ Λk ≤ Λ0k(∀k), a single Λk is part of the smallest solution
if and only if the corresponding Λ is the smallest.Finite matrices
Exact initial conditions can be obtained in the case where Ω ∈ X (M;M) is actually
a finite matrix, i.e., whereM = · · · ×;×;×M1 ×M2 × · · ·×Mn ×;× · · · :
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In this case, Ω is a finite n × n (block) matrix, and a realization for Ω can start off with
no states at point 1 in time. Since the dimension of Λ follows that of A, an exact initial
point for the recursion is Λ1 = [ · ] (a 0 × 0 matrix). The spectral factorization reduces
for finite matrices to a Cholesky factorization, and the resulting algorithm is an efficient
way to compute Cholesky factorizations for (large) matrices with a sparse state space.Initial time-invariance
A second class of systems are systems which are time invariant before some point in
time, say k= 1. Then, before point k= 1, all Λk are equal to each other, and in particular
Λ0 = Λ1. Hence the recursion for Λ reduces to an algebraic equation

Λ0 = A∗
0Λ0A0 + �

B∗
0 − A∗

0ΛC0
�(D0 −C∗

0Λ0C0)−1 �B0 −C∗
0Λ0A0

� ;
which is the classical time-invariant Riccati equation. A solution to this equation can
be obtained in one of the classical ways, e.g., as the solution of a Hamiltonian equation.
Multiple solutions exist, and in order to obtain an outer spectral factor W , the smallest
positive solution of the above equation must be chosen. Because the Λk for k > 0 are
determined without freedom by Λ0 via the recursion (13.4), the resulting Λ will also
be the smallest positive solution for all time.Periodic systems
If Ω is periodically time varying, with period n say, then one can apply the usual time-
invariance transformation, by considering a block system consisting of n consecutive
state realization sections. Since the block-system is time invariant, one can compute
the smallest positive solution Λ1 from the resulting block-Riccati equation with the
classical techniques, and Λ1 is an exact initial condition to compute the realization of
the spectral factor for time points 2; · · · ;n. As usual, such a technique may not be at-
tractive if the period is large.Unknown initial conditions
Finally, we consider the more general case where Ω is not completely specified but
only, say, its “future” submatrix [Ωi; j]∞0 is known. The unknown “past” of Ω is as-
sumed to be such that Ω � 0. In this case, the exact initial point for the recursion of
Λk is unknown. It is possible to start the recursion (13.4) from an approximate initial
point, for which typically Λ̂0 = 0 is chosen. The convergence of this choice is investi-
gated in the following section. It is shown in proposition 13.10 that when the realiza-
tion {A;B;C;D} is observable and has `A < 1, then Λ̂k (corresponding to the recursion
(13.4) with initial point Λ̂0 = 0) converges to Λk, the exact solution obtained with the
correct initial point Λ0.13.4 CONVERGENCE OF THE RICCATI RECURSION
We study the convergence of an approximate solution Λ̂k (k ≥ 0) to the Riccati recursion
(13.4), if the recursion is started with Λ̂0 = 0 rather than the exact initial point Λ0. It
is shown that Λ̂k → Λk for k → ∞, when Ω � 0, `A < 1 and the given realization is
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observable. Similar results are well known for the time-invariant case, and for the time-
varying case some results are known from the connection of the Riccati recursion with
Kalman filtering (cf. [AK74, AM79]). However, the derivation given below is more
general because state dimensions are allowed to vary, and hence Ak cannot be assumed
to be square and invertible, as required in [AK74].

Consider the following block decomposition of the matrix representation of Ω =
W∗W , and a related operator Ω̂ = Ŵ∗Ŵ :

Ω = 264 Ω11 Ω12 Ω13

Ω∗
12 Ω22 Ω23

Ω∗
13 Ω∗

23 Ω33

375 ; W = 264 W11 W12 W13

W22 W23

W33

375
Ω̂ = 264 Ω11 0 0

0 Ω22 Ω23
0 Ω∗

23 Ω33

375 ; Ŵ = 264 Ŵ11 0 0

Ŵ22 Ŵ23

Ŵ33

375 : (13.5)

In these decompositions,3 Ω11 corresponds to [Ωi; j]−1
−∞, Ω22 = [Ωi; j]n−1

0 is a finite n × n
matrix (where n is some integer to be specified later), and Ω33 corresponds to [Ωi; j]∞n .
The point of introducing the operator Ω̂ is that Λ̂0 is the exact (and smallest positive)
initial point of the Riccati recursion (13.4) for a spectral factorization of the lower right
part of Ω̂, and leads to an outer spectral factor Ŵ such that Ω̂ = Ŵ∗Ŵ , of which only
the lower right part is computed. This is seen by putting A−1 = 0, B−1 = 0 in the Riccati
recursion for Λ, which leads to Λ̂0 = 0. The convergence of Λ̂k to Λk is studied from
this observation.

As a preliminary step, the following lemma considers a special case of the above Ω.

Lemma 13.9 Let be given an operator Ω ∈ X , Ω� 0, with block decomposition

Ω = 24 Ω11 Ω12 0
Ω∗

12 Ω22 Ω23
0 Ω∗

23 Ω33

35
where Ω22 is an n × n matrix. Let the upper triangular part of Ω be locally finite and
u.e. stable. Then (Ω−1)

33
→ (Ω33 − Ω∗

23Ω−1
22Ω23)−1 as n → ∞

(strong convergence). Hence (Ω−1)
33

→ (Ω̂−1)
33

, where Ω̂ is equal to Ω, but with

Ω̂12 = 0.

3The underscore is used in this section to denote that we take block submatrices rather than entries of Ω.
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PROOF Let {A;B;C;D} be a realization of the upper triangular part of Ω with `A < 1.
Let Ω12 = C1O1, Ω23 = C2O2, whereC1 = 26664 ...

B−3A−2A−1

B−2A−1
B−1

37775 ; C2 = 2666664 B0A1 · · ·An−1
...

Bn−3An−2An−1
Bn−2An−1

Bn−1

3777775 ;O1 = [C0 A0C1 A0A1C2 · · · A0 · · ·An−2Cn−1 ]O2 = [Cn AnCn+1 AnAn+1Cn+2 · · · ] :
ThenO1C2 is a summation of n terms, each containing a product A0 · · ·Ai−1 and a prod-
uct Ai+1 · · ·An−1. Because `A < 1 implies that products of the form Ak · · ·Ak+n → 0 as
n → ∞ strongly and uniformly in k, we obtain O1C2 → 0 if n → ∞.

Write X3 = (Ω−1)33. By repeated use of Schur’s inversion formula (lemma 12.2),
X3 is given by the recursion

X1 = Ω−1
11 ; Xk+1 = (Ωk+1;k+1 − Ω∗

k;k+1 Xk Ωk;k+1)−1 : (13.6)

We first consider a special case, where Ωk;k = I (k= 1;2;3). In the derivation below, for
ease of discussion it is assumed that also OkO∗

k = I, i.e., the realization is uniformly
observable and in output normal form, although this is not an essential requirement.
The recursion (13.6) becomes

Yk = C∗
kXkCk

Xk+1 = (I −O∗
kYkOk)−1 = I+O∗

k

�
Yk +Y2

k + · · ·
�Ok ;

so that, in particular,

Y2 = C∗
2C2 +C∗

2O∗
1

h
Y1(I −Y1)−1

iO1C2 :
For large n, Y2 → C∗

2C2 and becomes independent of Y1 and C1, and

X3 → (I −O∗
2C∗

2C2O2)−1 = (Ω33 − Ω∗
23Ω−1

22Ω23)−1

independently of C1. The expression on the right-hand side is the same as the value
obtained for C1 = 0, i.e., Ω12 = 0.

The general case reduces to the above special case by a pre- and post-multiplication
by 264 Ω−1=2

11

Ω−1=2
22

Ω−1=2
33

375 :
This maps Ωk;k to I, Ck to Ω−1=2

k;k Ck, and Ok to OkΩ−1=2
k+1;k+1. The latter two mappings

lead to realizations with different Bi and Ci, but the Ai remain the same, and in particu-
lar the convergence properties of C2O1 remain unchanged. It follows that (Ω−1)

33
→(Ω33 − Ω∗

23Ω−1
22Ω23)−1 also in the general case. 2
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We now return to the spectral factorization problem, with Ω given as in (13.5).

Proposition 13.10 Let Ω ∈ X , Ω� 0 have an upper triangular part which is locally
finite and given by an observable realization {A;B;C;D} where `A < 1. Let Λ ∈D be
the unique solution of (13.3) so that its entries Λn satisfy the recursive Riccati equation
(13.4). Let Λ̂n (n ≥ 0) be the sequence obtained from the same recursion, but starting
from Λ̂0 = 0.

Then Λ̂n → Λn as n → ∞ (strong convergence).

PROOF Let Ω; Ω̂ have block decompositions as in (13.5), where Ω22 is an n×n matrix.
Let Ω = W∗W , Ω̂ = Ŵ∗Ŵ , where W;Ŵ are outer spectral factors, then Λ, Λ̂ are the
reachability Gramians of the realization of W , Ŵ given in corollary 13.8. Denote

W12 = CW;1O1
W23 = CW;2O2
W13 = CW;1A0A1 · · ·An−1O2 :

Because `A < 1, we have that W13 → 0 as n → ∞ (strongly), so that for large enough n,
Λn ≈ C∗

W;2CW;2 and hence

Ω33 = W∗
33W33 +W∗

23W23 +W∗
13W13

≈ W∗
33W33 +O∗

2ΛnO2 :
Consequently,O∗

2(Λn − Λ̂n)O2 ≈ Ŵ∗
33Ŵ33 −W∗

33W33.
The next step is to show that Ŵ∗

33Ŵ33 −W∗
33W33 → 0 for large n, so that, if the real-

ization is observable, Λ̂n → Λn. Let X3 = (W∗
33W33)−1, and X̂3 = (Ŵ∗

33Ŵ33)−1. Since
Ω−1 = W−1W−∗, and W is outer so that W−1 ∈ U , it follows that X3 = (Ω−1)33 and
X̂3 = (Ω̂−1)33. Lemma 13.9 proves that, if `A < 1, then (Ω−1)33 → (Ω̂−1)33 as n → ∞,
so that X3 → X̂3, and hence Λ̂n → Λn. 2

Finally, we remark that always Λ̂k ≤ Λk. This is a consequence of the fact that

Λ̂k ≤ Λk ⇒ Λ̂k+1 ≤ Λk+1 ; (13.7)

which is proven directly from the Riccati recursion (13.4) in a way similar to [AM79,
ch. 9]. Indeed, let the matrix GX;Λk be given by

GX;Λk = �
X − A∗

kΛkAk Bk −C∗
kΛkAk

B∗
k − A∗

kΛkCk Dk −C∗
kΛkCk

�= �
X Bk

B∗
k Dk

�
−
�

A∗
k

C∗
k

�
Λk [Ak Ck ] ;

parameterized by some matrix X = X∗. Using Schur’s complements, it follows that, if
Dk −C∗

kΛkCk > 0, then

GX;Λk ≥ 0 ⇒ X − A∗
kΛkAk −

�
B∗

k − A∗
kΛCk

�(Dk −C∗
kΛkCk)−1 �Bk −C∗

kΛkAk
�

≥ 0 :
Hence Λk+1 = min{X : GX;Λk ≥ 0}. But if Λ̂k ≤ Λk, then GΛk+1;Λ̂k

≥ GΛk+1;Λk ≥ 0. It

follows that Λk+1 ≥ Λ̂k+1, since Λ̂k+1 is the smallest matrix X for which GX;Λ̂k
≥ 0. This

proof also supplements the remark made in section 13.3 that the “smallest solution” is
well defined: if Λk is the smallest solution at one point, the resulting diagonal operator
Λ is the smallest solution at all points.
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Spectral factorization is intimately connected to the various incarnations of the time-
varying Riccati equation that we encountered earlier, in the solution of the orthogonal
embedding problem (chapter 12) and inner-outer factorizations (chapter 6).Orthogonal embedding
Recall the orthogonal embedding problem: given a transfer operator T of a bounded
causal discrete-time linear system, extend this system by adding more inputs and out-
puts to it such that the resulting system Σ,

Σ = �
Σ11 Σ12

Σ21 Σ22

� ;
is inner and has T = Σ11 as its partial transfer operator when the extra inputs are forced
to zero. One way to solve the embedding problem is to start out from a spectral factor-
ization of Σ∗

21Σ21 = I − T∗T , which gives Σ21, and next to follow the embedding pro-
cedure for isometric operators of chapter 7 (we know already that even in very simple
cases the embedding may not lead to an inner operator, but it certainly will under the
additional assumption that `A < 1 for the transition operator of T . Hence, the solution
of the embedding problem can also be obtained starting from the spectral factorization
theorems 13.5 and 13.6. This leads to a variant of the embedding theorems (theorem
12.12 and 12.14) and the bounded real lemma (theorem 12.15).

Theorem 13.11 (Time-varying bounded real lemma, II) Let T ∈ U(M1;N1) be a
locally finite operator with a state realization {A;B;C;D} such that `A < 1. Then I −
T∗T � 0 if and only if there exists a solution M ∈D(B;B) ; M ≥ 0 of

M(−1) = A∗MA+B∗B + �
A∗MC+B∗D

�(I −D∗D−C∗MC)−1 �D∗B+C∗MA
�

(13.8)

such that I − D∗D −C∗MC � 0. If in addition the realization of T is observable and
[uniformly] reachable, then M is [uniformly] positive.

If I − T∗T � 0, let W ∈ U(N1;N1) be a factor of I − T∗T = W∗W . A realization
{A;BW ;C;DW } for W such that W is outer is then given by the smallest solution M ≥ 0
of the above equation, and�

DW = (I − D∗D −C∗MC)1=2

BW = −D−∗
W [D∗B+C∗MA] : (13.9)

PROOF Since `A < 1, the Lyapunov equation

Λ(−1) = A∗ΛA+B∗B

has a unique solution Λ ≥ 0. By lemma 13.1, an expression for I − T∗T is

I − T∗T = (I − D∗D −C∗ΛC) − [D∗B+C∗ΛA]Z(I − AZ)−1C
− C∗(I − Z∗A∗)−1Z∗ [B∗D+A∗ΛC] :
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The implied realization for the upper part of I − T∗T need not be reachable. Theorem
13.6 claims that I − T∗T � 0 if and only if there exists a solution P ∈D of

P(−1) = A∗PA+ �
B∗D+A∗(Λ+P)C�(I − D∗D −C∗(Λ+P)C)−1 �D∗B+C∗(Λ+P)A�

such that I−D∗D−C∗(Λ+P)C� 0 and P ≥ 0. We can add the equation Λ(−1)=A∗ΛA+
B∗B to obtain(Λ+P)(−1) = A∗(Λ+P)A+B∗B ++ [B∗D+A∗(Λ+P)C] (I − D∗D −C∗(Λ+P)C)−1 [D∗B+C∗(Λ+P)A] :
As a consequence, the operator M = Λ+P is positive semi-definite and satisfies equa-
tion (13.8). If the realization of T is observable and [uniformly] reachable, then Λ > 0[Λ� 0], and the same holds for M.

Theorem 13.6 in addition shows that the realization {A;BW ;C;DW }, with DW ;BW

as given in (13.9), defines an outer factor W of I − T∗T = W∗W if M is the smallest
positive semi-definite solution. 2Inner-outer factorization
A realization of the right outer factor Tr in an inner-outer factorization of T can also
be computed via a Riccati equation, as was shown in theorem 7.4. A realization of the
outer factor followed from a observable realization {A;B;C;D} of T as

Tr = �
I

R∗

��
A C

C∗MA+D∗B C∗MC+D∗D

�
(13.10)

where M ≥ 0 is the solution of maximal rank of

M(−1) = A∗MA+B∗B −
�
A∗MC+B∗D

�(D∗D+C∗MC)† �D∗B+C∗MA
�

(13.11)

and R is a minimal (full range) factor of RR∗ = (D∗D+C∗MC)†. Let Tr be invertible,
so that the pseudo-inverse becomes an ordinary and bounded inverse. Using lemma
13.1 and assuming T∗T � 0, one can verify that, indeed, T∗T = T∗

r Tr, by deriving that
the realizations of the upper parts are equal. With lemma 13.1, the realization of the
upper part of T∗

r Tr is obtained from (13.10) as�
A C(D∗B+C∗MA)+C∗Λ0A (D∗D+C∗MC)+C∗Λ0C �

(13.12)

where Λ0 is the unique operator satisfying the Lyapunov equation

Λ0 = A∗Λ0A + �
B∗D+A∗MC

�(D∗D+C∗MC)−1 �D∗B+C∗MA
� :

Consequently, (Λ0 +M)(−1) = A∗(Λ0 +M)A +B∗B, so that Λ = Λ0+M satisfies the
Lyapunov equation Λ(−1) = A∗ΛA+B∗B. With Λ, the realization (13.12) becomes�

A C
B∗D+C∗ΛA D∗D+C∗ΛC

� ;
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which is the same realization as that of T∗T in lemma 13.1. Conversely, one can try
to derive theorem 7.4 from the spectral factorization theorem in this manner, for the
special case where T∗T is invertible (theorem 7.4 is more general).

In other words, if Λ is the reachability Gramian of the realization of T , and Λ0 is the
smallest positive solution of (13.2) so that it is the reachability Gramian of a realization
of the right outer factor of T∗T , then M = Λ−Λ0 is the solution of (13.11) to obtain the
inner-outer factorization. This gives some interpretation of M in that equation. From
lemma 13.3 we know that of all factors of T∗T with the same (A;C), the right outer
factor Tr provides the smallest reachability Gramian. Hence it follows that M ≥ 0.Cholesky factorization and Schur recursions
As noted before, the spectral factorization of a finite-sized positive matrix reduces to
Cholesky factorization. For time-invariant systems (Toeplitz operators), one efficient
technique to compute a Cholesky factorization makes use of Schur recursions [Sch17,
Kai86]. The Schur algorithm can be generalized in various ways to apply to triangular
factorizations of general matrices [ADM82], structured operators which have a dis-
placement structure [KKM79, LK84, LK86, LK91], cf. section 3.6, and approximate
factorizations on a staircase band [DD88]. See [Chu89] for an overview.

The key step in the traditional and also generalized Schur and Levinson algorithms
is the translation of the original context (Ω, with Ω > 0) to a scattering context (con-
tractive operators). A standard transition to the scattering context is obtained by finding
upper triangular operators Γ, ∆, such that Ω = ΓΓ∗ − ∆∆∗. Using P(Ω), the upper tri-
angular part of Ω, and assuming Ω has been scaled such that P0(Ω) = I, a suitable Γ
and ∆ are defined by

Ω1 = 2P(Ω)− I
Γ = 1

2 (Ω1 + I) = P(Ω)
∆ = 1

2 (Ω1 − I) = P(Ω)− I

It is readily verified that, indeed, Ω = ΓΓ∗ − ∆∆∗. In general there is no guarantee that
Γ is bounded (see counterexamples in chapter 2) so it is necessary to put the additional
assumption that P(Ω) is bounded, but it will certainly be boundedly invertible, since
Ω is strictly positive definite. Then S := Γ−1∆ = (Ω1 + I)−1(Ω1 − I) is a well-defined
and contractive operator: kSk< 1. The definition of S may be recognized as a Cayley
transformation of Ω1. It has a direct relation with Ω:

P(Ω) = (I − S)−1 ; S = I − [P(Ω)]−1 :
Since S is strictly contractive and P(Ω) is upper triangular, the first expression ensures
that S is upper triangular. S is even strictly upper triangular because ∆ is so. Also the
state structure is preserved: S has the same number of states as P(Ω), and its model can
be directly derived from the model of P(Ω) using equation (1.3).

The standard way to obtain a Cholesky factorization of Ω continues as follows. Com-
pute any J-unitary matrix Θ such that[Γ ∆]Θ = [A1 0] ; (13.13)
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A consequence of the J-unitarity of Θ is that

A1A∗
1 = [Γ ∆]ΘJΘ

�
Γ∗

∆∗

�= ΓΓ∗ − ∆∆∗ = Ω :
Hence A1 is a factor of Ω: Ω=A1A∗

1. With Θ, a factor of Ω−1 is obtained by computing[I I]Θ = [A2 B2] ; (13.14)

as it is readily verified using (13.13) and the J-unitarity of Θ that Ω−1 = A2A∗
2 = B2B∗

2.
Hence knowledge of Θ provides both a factorization of Ω and of its inverse. Θ can be
computed recursively using a generalized Schur algorithm (as e.g., in [DD88]) which
amounts to a repetition of (i) shifting the rows of Γ one position to the right to align with
∆ (i.e., post-multiplication by Z), and (ii) using an elementary Θ “section” to cancel the
front diagonal of ∆ against the correspondingdiagonal of Γ. It is thus an order-recursive
algorithm. For finite upper triangular matrices of size n×n, the algorithm can be carried
out in a finite number of steps and yields a Θ-matrix having at most n − 1 states. It is
possible to obtain an approximate factor by making ∆ zero only on a staircase band.
This leads to approximate factors A02 of Ω−1 that are zero outside the staircase band,
and whose inverse matches the factor A1 of Ω on the band [DD88, Nel89].

The above algorithm is just one way to compute a Cholesky factorization of a given
positive matrix Ω. Efficient (“fast”) algorithms are based on exploiting knowledge on
the structure of Ω. For example, if Ω is a Toeplitz matrix, then Θ can be computed
using the same algorithm but now acting only on the top row of Γ and the top row
of ∆ (the “generators” of Γ and ∆). This yields the traditional Schur method. More
general displacement structures obeying a relation of the form “G−F∗

1 GF2 has rank α”
are treated in much the same way [Chu89, LK91].

Using the embedding technique given in chapter 12, one other possibility to com-
pute the Cholesky factor via Θ is the following. Assume that a computational model
for P(Ω), the upper triangular part of Ω, is known. We have already noted that, since
S is also upper triangular, a computational model for the associated scattering operator
S follows without special effort. The next step is to do an embedding: using theorem
12.14, construct a lossless embedding matrix Σ for S, which is a unitary (2 × 2) block
matrix computed such that Σ12 = S. The J-unitary Θ-matrix associated to Σ is defined
as usual by

Θ = �
Σ11 − Σ12Σ−1

22Σ21 −Σ12Σ−1
22

Σ−1
22Σ21 Σ−1

22

�
Σ22 is outer, so that Σ−1

22 and hence Θ are again upper. Σ and Θ satisfy by construction
the relations (for some A01 ∈ U)[I 0]Σ = [A01 S] ⇔ [I S]Θ = [A01 0]
and since S = Γ−1∆, multiplication by Γ shows that Θ indeed satisfies[Γ ∆]Θ = [A1 0] :
From the model of Θ, factors B2 and W = B−1

2 of Ω−1 and Ω, respectively, follow using
equation (13.14). The whole algorithm can be put into a single recursion. Not surpris-
ingly, the resulting recursion for W is precisely the Riccati equation in corollary 13.8.
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The discrete-time Riccati equation corresponding to the spectral factorization problem
was originally studied in [And67, AHD74] in the LTI context. Recent overviews of
solution methods, as well as many references to older literature, can be found in the
collection [BLW91] and in [LR95]. The time-varying case has only been studied re-
cently. The present chapter is based on [vdV93b], although several of the results are
reported in the book by Halanay and Ionescu as well [HI94].Appendix 13.A: Proof of theorem 13.6
The proof of theorem 13.6, i.e., theorem 13.5 without the observability constraint, uses
properties of outer operators given in proposition 13.2.
PROOF of theorem 13.6. We will first transform the given realization into one that is
observable. Factor the observability Gramian ΛFo of the given realization as

ΛFo = X∗
�

Λ11

0

�
X ;

where X is an invertible state transformation and Λ11 > 0. Applying X−1 as state trans-
formation to T leads to a realization T0 = {A0;B0;C0;D} given by�

A0 C0
B0 D

�= �
X−∗

I

��
A C
B D

��
X∗(−1)

I

� :
Partition A0;B0;C0 conformably to the partitioning of Λ. It follows that

A0 = �
A11 A12

0 A22

� ; B0 = [B1 B2 ] ; C0 = �
C1

0

� :
The subsystem {A11;B1;C1;D} is an observable realization of T , with `A11 < 1.

Suppose P is a Hermitian solution of

P(−1) = A0∗PA0 + �
B0∗ − A0∗PC0�(D+D∗ −C0∗PC0)−1 �B0 −C0∗PA0� (13.A.1)

Partition P conformably to the partitioning of A: P = [P11 P12
P∗

12 P22
]. Then equation (13.A.1)

is equivalent to the three equations(a) P(−1)
11 = A∗

11P11A11 + [B∗
1 − A∗

11P11C1] (D+D∗ −C∗
1P11C1)−1 [B1 −C∗

1P11A11](b) P(−1)
12 = (A×

11)∗P12A22 + A∗
11P11A12++ [B∗

1 − A∗
11P11C1] (D+D∗ −C∗

1P11C1)−1 [B2 −C∗
1P11A12](c) P(−1)

22 = A∗
22P22A22 + A∗

12P11A12 +A∗
12P12A22 +A∗

22P∗
12A12++ [B∗

2 − (A∗
12P11 +A∗

22P∗
12)C1] (D+D∗ −C∗

1P11C1)−1 [B2 −C∗
1(P11A12 +P12A22)]

where A×
11 := A11 −C1(D+D∗ −C∗

1P11C1)−1 [B1 −C∗
1P11A11].

According to theorem 13.5, the first equation has solutions P11 ≥ 0 such that D+D∗ −
C∗

1P11C1 � 0, if and only if T +T∗ � 0. Take P11 to be the smallest positive solution,
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then W is outer and the has an observable realization {A11;BW1;C1;DW } with DW and
B1W given by

D∗
W DW = D+D∗ −C∗

1P11C1

B1W = D−∗
W [B1 −C∗

1P11A11] :
According to proposition 13.2, W−1 has a realization with A-operator given by A×

11 =
A11 −C1D−1

W B1W =A11 −C1(D+D∗ −C∗
1P11C1)−1 [B1 −C∗

1P11A11], and satisfying `A×
11
<

1 (since `A11 < 1 and the realization of W is observable). The second equation is a kind
of Lyapunov equation in P12, as only the first term of the right-hand side is dependent
on P12. Given P11, it has a unique bounded solution since `A×

11
< 1 and `A22 < 1. The

last equation is a Lyapunov equation in P22, and also has a unique bounded solution.
Also note that D+D∗ −C∗

1P11C1 = D+D∗ −C0∗PC0. Hence we showed

T +T∗ � 0 ⇔ ∃ P satisfying (13.A.1), such that D+D∗ −C0∗PC0� 0 :
The latter also implies P ≥ 0. With Λ=X−1PX−∗, Λ is in fact independent of the chosen
state transformation X and satisfies the statements of the theorem.

The realization of W can be extended to a non-minimal one that is specified in terms
of P as {A0;B0W ;C0;DW }, where the newly introduced quantity B0W is given by B0W =
D−∗

W [B0 −C0∗PA0] = [B1W B2W ], for a certain B2W . Upon state-transforming this real-
ization by X, we obtain a realization of W as {A;BW ;C;DW }, where DW is as before,
and BW is specified in terms of Λ as BW = B0W X−∗(−1) = D−∗

W (B −C∗ΛA). 2





14 LOSSLESS CASCADEFACTORIZATIONS

In chapter 12, we showed how a contractive u.e. stabletransfer operator T can be em-
bedded into an inner operator Σ. We now derive minimal structural factorizations of
locally finite inner transfer operators into elementary inner operators of degree one.
The resulting lossless cascade networks provide a canonical realization of T into a net-
work of minimal degree and with a minimal number of coefficients. For a better un-
derstanding of the problem, we first review some aspects of cascade factorizations for
time-invariant systems.14.1 TIME-INVARIANT CASCADE FACTORIZATIONSOverview
An important and recurring subject in network theory concerns the synthesis (imple-
mentation, or actual realization) of a desired transfer function using elementary com-
ponents. For continuous-time systems, these components would be resistors, capac-
itances, inductors and transformers. In the discrete-time context, the elementary op-
erator is the basic processor which performs the actual calculations on the digital sig-
nals: typically a multiplier-adder, but other elementary processors are certainly possi-
ble. While one can directly use the given {A;B;C;D} realization as the actual realiza-
tion of the transfer operator, doing so is often unsatisfactory. The number of multiplica-
tions in an arbitrary state realization of the given system is not minimal: a single-input
single output system with n states would require (n+ 1)2 multiplications. Typically,
such an implementation is also rather sensitive to small changes in the values of the383
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coefficients: a small change (e.g., because of finite word length effects) can sometimes
even make the modified system unstable. For digital filters, a third issue is the occur-
rence of limit cycles and register overflow. The above-mentioned effects are mitigated
by a deliberate use of the freedom of state transformations on the given state realiza-
tion. By selecting certain canonical forms of the A matrix, such as a companion form or
a diagonal form (which is not always possible), filters specified by a minimal number
of coefficients are obtained [Kai80].

The coefficient sensitivity issue is a more complicated matter. The central idea is
that one of the few ways to make the locations of poles and zeros of the resulting system
well defined is to factor the given transfer function into a cascade of elementary (degree
one) transfer functions:

T(z) = T1(z) · T2(z) · · ·Tn(z) : (14.1)

Each elementary transfer function realizes a pole and a zero of T(z). For an n-th order
system T(z), the factorization is minimal if it consists of n degree one sections. In this
case, the factorization into n elementary factors is canonical and leads to a minimum of
coefficients, for SISO systems 2n+1, i.e., n coefficients for the poles, n for the zeros,
and one coefficient for the overall scaling.

The synthesis of passive transfer functions via cascade factorizations has a long his-
tory in classical network theory. The first results were concerned with the factorization
of a lossless (inner) transfer function of degree n into a product of n degree-1 lossless
transfer functions, by recursively extracting a degree-1 subnetwork. This procedure
is known as Darlington synthesis of lossless multiports [Dar39], and produces ladder
filters with well-known properties [Bel68]. The use of a lossless (unitary) state real-
ization of the inner operator gave the synthesis procedures by Youla and Tissi [YT66],
while the synthesis of more general J-unitary operators was considered by Fettweis
[Fet70] in connection to wave-digital filters.

The cascade realization of inner operators leads to a realization procedure of any
passive (contractive) rational transfer function, via a lossless embedding of the con-
tractive transfer function T(z). Thus, one obtains a realization of T(z) in which either
the poles or the zeros of T(z) are localized in the elementary sections. State-space ver-
sions of this procedure are discussed in Roberts and Mullis’ book [RM87].

Although it is more general, Darlington synthesis is closely connected to the Levin-
son algorithm used in estimation filter theory of stationary stochastic processes [DVK78].
The estimation filters are prediction (AR) filters with their transmission zeros at infin-
ity, but the filter structure that is obtained is also a ladder filter which can be derived
recursively from the covariance matrix of the stochastic process. The synthesis proce-
dure thus constitutes a recursive Cholesky factorization of positive Toeplitz matrices.
The Toeplitz matrices can be generalized to include the covariance matrices of more
general α-stationary processes [KKM79, FMKL79], and leads to a generalized Schur
parametrization of structured (α-stationary) matrices, i.e., matrices with a low displace-
ment rank [LK84]. The paper by Genin et al.[GDK+83] explored the relation between
lossless state realizations and the characterization of structured matrices via a cascade
of elementary lossless sections. Finally, there are many parallel results in operator the-
ory: Potapov [Pot60] obtained a complete description of (not necessarily rational) J-
unitary and J-contractive matrix functions in terms of general cascade decompositions,
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while the lossless embedding and subsequent factorization of contractive functions in
the setting of colligations was considered by Livsic and Brodskii [BL58, Liv72]. The
Darlington synthesis procedure is also closely connected, via the Lossless Inverse Scat-
tering problem, to classical interpolation problems of the Nevanlinna-Pick type; see
[DVK78, DD81b, DD81a, DD84].

Besides a factorization of a lossless embedding of T , it is also possible to determine
a direct factorization (14.1) [DBN71, VD77, BGK79, DD81c, Rak92]. Such factor-
izations realize both a zero and a pole of T in each elementary section, which makes
them attractive in some applications, but they are also more complicated to derive. One
can act directly on the transfer function T(z), and in this case the complication is that
non-square factors can occur [VD77], giving rise to a plethora of possible elementary
sections. The situation is easier to describe in state-space terms. Let T(z) be a bounded
system, and suppose that it has a factorization T = T1T2, where T1;T2 are again bounded
systems, with minimal realizations T1 = {A1;B1;C1;D1};T2 = {A2;B2;C2;D2}. A re-
alization for T is thus given by

T = 264 A1 C1
I

B1 D1

375264 I
A2 C2

B2 D2

375= 264 A1 C1B2 C1D2
0 A2 C2

B1 D1B2 D1D2

375 : (14.2)

Note that A = AT is block upper triangular. If D1 and D2 are both invertible, then T−1

has a realization given by the product of the realizations of T−1
1 and T−1

2 , which turns
out to have

A× = AT−1 = �
A×

1 0
−C2D−1

2 D−1
1 B1 A×

2

� ;
(where A× := A − BD−1C is the A-matrix of the inverse system, whose eigenvalues are
the zeros of T). This matrix is block lower triangular. It can be shown, e.g. [BGKD80,
DD81c], that T can be factorized minimally into factors T1;T2 if and only if it has a
minimal realization T in which AT is block upper triangular and A×

T is block lower tri-
angular. The factorization problem is thus reduced to finding a state-space transfor-
mation acting on a given realization of T and a partitioning into 2 × 2 blocks such that
AT and A×

T have the required forms. To this end, one has either to determine the solu-
tions of a certain Riccati equation (this replaces the Riccati equation that occurs in the
embedding step), or to compute eigenvalue decompositions (Schur decompositions) of
both A and A×, describing the poles and zeros of the given transfer function. However,
in the subsequent factorization procedure, the conditioning of certain inverses can be
problematic [BGKD80]. Such problems do not occur with the factorization of inner or
J-inner functions, as in this case the poles of the system also determine the zeros: for
inner functions Σ with unitary realizations, ΣΣΣ∗ is a realization of Σ−1 = Σ∗, and hence
A× = A∗. We only consider the cascade realization of inner functions Σ from now on.

Repetition of the above factorization into two systems leads to a factorization of
a degree-n system into n systems of degree 1: the elementary sections. A particular
realization of the elementary sections produces orthogonal digital filters. Here, the el-
ementary operator is not a multiplication, but a plane rotation, where the rotation angle
is the coefficient of the section. The advantage of such filters is that (with ideal rotors)
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they are inherently lossless and stable, even if the coefficients are imprecise, and that
no limit cycles or overflow oscillations can occur. Another advantage is that the filters
are typically cascade arrays of identical processors with only nearest neighbor connec-
tions, which allows for VLSI implementation. Some other issues to be considered are
the pipelinability and computability of the array, which are not always guaranteed. A
number of orthogonal filter structures are possible, depending on the precise factoriza-
tion of the inner transfer operator, and on whether a factorization of Σ, or its associated
J-unitary operator Θ is performed. The factorization can also be done directly on the
transfer function T(z), if it is specified as a ratio of two polynomials, or on the state-
space matrices. In both cases, a preliminary embedding step is necessary. The main ref-
erence papers on orthogonal filter realizations are by Deprettere, Dewilde, P. Rao and
Nouta [DD80, DDR84, DDN84, Dew85], S.K. Rao and Kailath [RK84], Vaidyanathan
[Vai85b], Regalia, Mitra and Vaidyanathan [RMV88], and Roberts and Mullis’ book
[RM87]. More recent references are [JM91, Des91].Givens rotations
We say that Σ̂ is an elementary orthogonal rotation if Σ̂ is a 2 × 2 unitary matrix of the
form

Σ̂ = �
e jφ1

e jφ2

��
c −s
s c

� ; (14.3)

with c2 + s2 = 1. If we operate in the real domain, then the first factor is of course
omitted. An important property of elementary rotations is that they can be used to zero
a selected entry of a given matrix: for given a and b, an elementary orthogonal rotation
Σ̂ exists such that

Σ̂∗
�

a
b

�= �
a0
0

� ; (14.4)

In this case, Σ̂ is called a Givens rotation, and we write Σ̂ = givens[a;b] in algorithms.
We do not need φ1 for zeroing entries.

Givens rotations are used to factor a given state realization into elementary rotations,
or certain generic groups of rotations called elementary sections. Acting on state real-
izations, the 2×2 elementary rotation matrix is typically extended by identity matrices,
say

ΣΣΣ i = 26664 Ii−1

× ×
In−i

× ×

37775 ; (14.5)

where the four ‘×’-s together form the 2 × 2 unitary matrix. We use a hat symbol to
denote this elementary 2 × 2-matrix, i.e., we write it as Σ̂ΣΣ i.

An elementary J-unitary rotation Θ̂ can be obtained from Σ̂ in (14.3) if c 6= 0 as

Θ̂ = �
e jφ1

1

��
1 s
s 1

�
1
c

�
1

e− jφ2

�
It can also be used to zero entries of vectors,[a b]Θ̂−1 = [a0 0] ;
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but only if a∗a − b∗b = a0∗a0 > 0.Orthogonal digital �lter synthesis
Assume that Σ is known, along with a unitary realization ΣΣΣ. As was shown in equation
(14.2), a necessary condition for factorization of Σ is that AΣ is upper triangular. From
the given realization, this can be ensured via a unitary state-space transformation Q
obtained from a Schur decomposition of the given A-matrix:

QAΣ Q∗ = R ;
where R is upper triangular. This decomposition always exists (in the complex do-
main), and amounts to a computation of the poles of the system. With AΣ upper tri-
angular, the second phase of the factorization procedure is the factoring of ΣΣΣ into a
minimal number of elementary (degree-1) factors. Here, one makes use of the fact that
the product of two unitary matrices is again unitary. A consequence of this fact is that,
in equation (14.2) (where all matrices are unitary now), any ΣΣΣ1 such that ΣΣΣ∗

1ΣΣΣ has zero
block entries (2;1) and (3;1) leads to ΣΣΣ2 of the required form. Since the (2;1) entry is
already equal to zero, it follows that ΣΣΣ1 can be of the form indicated in (14.2): using
ΣΣΣ∗

1, one only has to cancel entry (3;1) using entry (1;1). The unitarity of the product
ΣΣΣ∗

1ΣΣΣ ensures that also its entries (1;2) and (1;3) are zero. Upon factoring ΣΣΣ down to the
scalar level, it follows that the elementary unitary factors have the form ΣΣΣ i in (14.5). If
Σ is of degree d, then the factorization consists of d degree-1 factors and is of the form
ΣΣΣ = ΣΣΣ1 · · · ΣΣΣd , where

ΣΣΣ = 26664 a11 × × ×
a22 × ×

add ×

× × × ×

37775= 26664 a11 ×
1

1

× ×

3777526664 1
a22 ×

1

× ×

37775 · · ·

26664 1
1

add ×

× ×

37775 :
(14.6)

The aii are the diagonal entries of AΣ, which are the poles of the system. Hence, each
elementary section realizes a pole of Σ. In (14.6), we assumed that Σ is a SISO system.
For multi-input multi-output systems, the procedure is an extension of the above, and
gives (for an example of a system with two inputs and two outputs)

ΣΣΣ = [ΣΣΣ1;1ΣΣΣ2;1] · [ΣΣΣ1;2ΣΣΣ2;2] · · ·�ΣΣΣ1;d ΣΣΣ2;d�ΣΣΣ 0 (14.7)= 2666664× ×
1

1

× ×
1

37777752666664× ×
1

1

1
× ×

377777526666641
× ×

1

× ×
1

377777526666641
× ×

1

1
× ×

3777775 · · ·



388 TIME-VARYING SYSTEMS AND COMPUTATIONS

z z z z

z z z z

(b)
u1

x1 x2 xd

y1

u2

u1

u2

x1 x2 xd

y1u

0

u

∗

y

∗

y

0

y2

2,1 2,2

1,21,1

2,1 2,2

1,21,1 1,d

2,d

2,d

1,d

y2

(a)
Figure 14.1. (a) Σ-based cascade factorization, based on a Schur decomposition of AΣ.
Σ is a unitary embedding of T : u → y which is the transfer of u1 to y1 if u2 = 0. (b)
Θ-based cascade factorization, based on a Schur decomposition of AΘ, where Θ is the
J-unitary chain scattering operator associated to Σ.

· · ·

2666664 1
1

× ×

× ×
1

37777752666664 1
1

× ×

1
× ×

37777752666664 1
1

1

× ×
× ×

3777775 :
ΣΣΣ 0 is the terminating section of degree 0. It is in general a unitary matrix itself, which

can also be factored into elementary Givens rotations, and finally a unit-norm scaling.
The network structure that is obtained is drawn in figure 14.1, which is straightfor-
wardly derived from (14.7) by considering how a vector [x1 x2 · · ·xd u1 u2] is trans-
formed in elementary steps to [x01 x02 · · ·x0d y1 y2]. The network is pipelinable: the
signal flow is strictly unidirectional (from the left to the right). It is also computable:
given the current values of the inputs and of the states, the outputs and the next states
can be computed. The network is specified by a minimal number of 2d + 1 Givens
rotations (parametrized by rotation angles and complex phase rotations). Any strictly
contractive LTI system T can be realized in this way, by embedding T into an inner
system Σ such that T = Σ11. As a matter of fact, it is not necessary to compute the
embedding completely: if Σ has a realization as in (12.18), viz.

ΣΣΣ = 24 R
I

I

3524 A C C2

B D D12

B2 D21 D22

3524 R−1

I
I

35 ;
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zz z z

y1 xn x2 x1

∗

u
u1

y u2 0
y2 Figure 14.2. Hessenberg lossless �lter structure.

where {A;B;C;D} is the given realization of T , and R, B2, D21 are computed via a Ric-
cati equation, then only A, B and B2 determine the factors ΣΣΣ i; j (i = 1; · · · ;d, j = 1;2),
and C2, D12 and D22 are not needed. As far as the cascade factorization is concerned,
it is even possible to omit the state transformation by R [LK92], although this is at the
expense of a number of other matrix inversions, and we still have to compute R to de-
termine the extension by B2, D21 anyway. As an alternative to the above factorization
of Σ, one can convert Σ to a J-unitary Θ operator with realization ΘΘΘ (cf. theorem 8.2),
factor ΘΘΘ in a comparable way as done for ΣΣΣ, and convert the factors back to the scat-
tering domain. This gives network structures as depicted in figure 14.1(b).

In the above two solutions to the factorization problem, the trick to determine a min-
imal factorization was to compute a Schur decomposition of AΣ (or AΘ), which intro-
duced as many zero entries in ΣΣΣ as possible. The remaining 2d + 1 non-zero entries
below the main diagonal of ΣΣΣ induced a factorization of ΣΣΣ into 2d+1 elementary fac-
tors. There are other structures of ΣΣΣ, not requiring an (expensive) Schur decomposition
step, which still result in a factorization of ΣΣΣ into 2d+1 elementary factors. However,
this time we do not obtain a factorization of Σ itself into a product Σ1 · · ·Σd , so that the
individual elementary sections do not realize poles and zeros of Σ, and the implementa-
tion is not truly a cascade factorization in the sense used before. One possible structure
that can be obtained via a unitary state transformation is a Hessenberg structure of A
and the first row of B, which can be computed non-recursively:

ΣΣΣ = 266666664 × × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× × × × × ×

377777775 :
ΣΣΣ can be be brought into the same form (14.7) as before, by a simple row permu-

tation operation. This does not induce any mathematical operations, but will change
the apparent structure of the filter. After the permutations, the factorization proceeds
in the same way. The resulting network structure is as depicted in figure 14.2 (viz.
[RK84, Dew85, Des91, vdVV96]). The network is again pipelinable. If the realiza-
tion is real-valued, then a Hessenberg structure can keep all parameters real. (A Schur
structure needs more complicated sections to handle complex pole pairs.)



390 TIME-VARYING SYSTEMS AND COMPUTATIONS14.2 PARSIMONIOUS PARAMETRIZATION OF CONTRACTIVE LTISYSTEMS
The preceding technique can be further refined. As can be shown, the Hessenberg
structure has a minimal number of parameters. However, without further constraints on
the Givens rotations (14.3), there is a continuum of equivalent parameter values that all
give the same transfer operator T . For the purpose of identification, which often rely on
nonlinear optimization schemes for parameter fitting, it is interesting to have a canon-
ical parametrization, where there is a one-to-one relation between the parameters and
the transfer operator. Thus, there has been an active search for canonical system rep-
resentations, i.e., minimal parametrizations by which any dynamical system T(z) of a
given class and order may uniquely be represented. For multi-input multi-output sys-
tems, a number of canonical forms are known, based e.g., on the observer or controller
canonical forms or on balanced realizations [Obe91, Cho94].

For optimization purposes, an important deficiency in most canonical representa-
tions for real-valued systems is that they require both continuously varying parameters
(in a subset of R), and discrete parameters (in a subset of N). The latter parameters
are extra parameters that specify the structure of the system, such as the Kronecker in-
dices or the number of equal Hankel singular values (for balanced parametrizations).
Alternatively, one can say that the space of all real-valued rational LTI systems cannot
be covered by a single continuous parametrization, but at best by a set of overlapping
parametrizations (indexed by the discrete parameters), each of which on itself does not
cover the whole set. For model identification, these “structural” parameters are a nui-
sance, since they have to be selected a priori, and modified if the resulting continu-
ous parametrization is not sufficiently accurate. In fact, since they have little physical
meaning, the only way to solve the optimization problem is to enumerate over a suffi-
cient range of structural parameter values to cover all systems of a given order, and to
perform a non-linear search for each such choice. Obviously, this is not a very attrac-
tive solution.

The purpose of this section is to further refine the Hessenberg structure and derive
that the class of contractive asymptotically stable rational LTI systems is covered by
a minimal representation without any structural parameters. The representation is not
unique, but for each system T(z) there is only a finite number of equivalent descriptions
(unless the system is overparametrized). Because the solutions are isolated, this should
not pose a problem for numerical optimization techniques.

Both the realvalued and the complex case can be treated by the same procedure, but
with slightly different elementary rotations.

In the real-valued case, define for −1 ≤ s ≤ 1, c =p1 − s2, and integers d;m;n, the
plane rotations

Qi j(s) = 266664 i d+ j

I
c −s

I
s c

I

377775 ∈ R(d+m+n)×(d+m+n) ; (14.8)
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Zi j(s) = 266664 d+ i d+n+ j

Id

c −s
I

s c
I

377775 ∈ R(d+n+m)×(d+n+m) : (14.9)

In the complex-valued case, we take −1 ≤ s ≤ 1, c=p1 − s2, and − π
2 ≤ φ ≤ π

2 , and define

Qi j(s) = 266664 i d+ j

I
c −s

I
se jφ ce jφ

I

377775 ∈ C (d+m+n)×(d+m+n) ; (14.10)

Zi j(s) = 266664 d+ i d+n+ j

Id

c −s
I

se jφ ce jφ

I

377775 ∈ C (d+n+m)×(d+n+m) : (14.11)

Also define permutations Π1;d+1 and ΠD by

Π∗
1;d+1

26666664 x1
...

xd+1
xd+2

...

37777775= 2666666664 x2
...

xd+1
x1

xd+2
...

3777777775 ; Π∗
D = 24 Id

0 In

Im 0

35 : (14.12)

Theorem 14.1 There is a minimal continuous parametrization with d(m + n) + mn
bounded [real or complex] coefficients which covers the set of all [real or complex]-
valued rational stable contractive LTI systems with m inputs, n outputs and d states.

In particular, every such system may be specified in terms of two matrices S(1) :(m+n)× d, S(2) : m × n with entries |s(·)i j | ≤ 1 as T(z) = D+Bz(I − Az)−1C where� d n

d A C
m B D

�= [Id+m 0(d+m)×n] ·Π1;d+1Q11Q21 · · ·Qm+n;d ·ΠD ·Z11Z21 · · ·Zm;n � Id+n

0m×(d+n)�
(14.13)

for Qi j := Qi j(s(1)i j );Zi j := Zi j(s(2)i j ). The parametrization is not unique, but for strictly
contractive systems which are reachable via the first input, only a finite (discrete) set
of parameter matrices lead to the same T(z).
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a1

b2s

c =p1 − s2[a2 b2] = [a1 b1]�c −s
s c

�b1

a2
u1;k

zzz z

1d

21

11

1n

11 m1

mn

12

mdm1

y1;k...
yn;k

x1;k+1 x2;k+1 · · · xd;k+1

m

S(2)S(1)0...
0

n

u2;k...
um;k

x1;k x2;k · · · xd;k

Figure 14.3. Hessenberg structure (m inputs, n outputs, d states)
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In the real-valued case, each parameter specifies a rotation as in (14.8) or (14.9). In

the complex case, the parameter is se jφ, which specifies both s and φ for a complex
rotation. This is possible since φ is restricted to − π

2 ≤ φ ≤ π
2 .

The structure of this parametrization is perhaps better understood from figure 14.3,
which shows the state space mapping[xk+1 yk] = [xk uk]� A C

B D

�
in terms of the factorization (14.13). This is a generalization of the structure in figure
14.2 to multiple inputs and outputs.

The proof of theorem 14.1 is by construction, in three steps.Step 1: Lossless embedding Assume that T(z) is specified in terms of a min-
imal realization (A;B;C;D). Step 1 is to find an invertible state transformation R, and
state matrices B2, D12 such that

ΣΣΣ1 = 24 R
I

I

35 24 d n

d A C
m B D
n B2 D21

35� R−1

I

�
(14.14)

is isometric: ΣΣΣ∗
1ΣΣΣ1 = I. Upon defining M = R∗R, the condition ΣΣΣ∗

1ΣΣΣ1 = I is equivalent
to solving

A∗MA + B∗B + B∗
2B2 = M

C∗MA + D∗B + D∗
21B2 = 0

C∗MC + D∗D + D∗
21D21 = I : (14.15)

Under the conditions of theorem 14.1, the embedding theorem (theorem 12.12) claims
that solutions M > 0 exist, and that for each solution I − D∗D −C∗MC ≥ 0 (> 0 holds if
T is strictly contractive). M is not unique but solutions are isolated.

Take any solution M. Then D21 and B2 follow from

D∗
21D21 = I − D∗D −C∗MC

B2 = −D†
21(C∗MA+D∗B) : (14.16)

D21 is a square root of a positive semidefinite matrix. We choose D21 to be upper tri-
angular with diag(D21) ≥ 0 (and real-valued). If T is strictly contractive, then this D21

is unique and diag(D21)> 0, otherwise D∗
21D21 might be singular with a continuum of

suitable factors.Step 2: Transformation into Hessenberg form Suppose at this point that
we have

ΣΣΣ1 =:

24 d n

d A C
m B D
n B2 D21

35
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where ΣΣΣ∗

1ΣΣΣ1 = I, D21 is upper triangular and diag(D21) ≥ 0. Step 2 is to find a unitary
state transformation Q such that

ΣΣΣ 01 = 24 Q∗

I
I

35ΣΣΣ1

�
Q

I

�= 0

i.e., denoting by b1 the first row of B,�
A0
b01 �= �

Q∗

1

��
A
b1

�
Q =

0

is in upper Hessenberg form. Some freedom is left; we can use it to guarantee that all
entries on the sub-diagonal are nonnegative and real (a “positive upper Hessenberg”
form). This is always possible by scaling these entries in turn, starting with the lower-
right entry.

The entries of the sub-diagonal of [ A0
b01 ] are strictly positive and Q is unique if and

only if the system is reachable via its first input. Indeed, consider the (finite and re-
versed) reachability matrix of (A0;b01),2666664 b01(A0)d−1

...
b01(A0)2

b01A0
b01

3777775= 2666664 b1Ad−1

...
b1A2

b1A
b1

3777775Q =: R :
The structure of [ A0

b01 ] ensures that R is upper triangular with nonnegative main diagonal.
The system is reachable via the first input if and only if R is nonsingular; also, the QR
factorization is unique if and only if R is nonsingular; in that case there can be no other
Q that will produce an upper-triangular R.

On the other hand, suppose that the system is not reachable via its first input, i.e.,
suppose an entry (k+1;k) of the sub-diagonal of [ A0

b01 ] is zero, then Q is not unique: for

k > 1 any 2 × 2 rotation acting on columns and rows k − 1 and k of [ A0
b01 ] will keep the

Hessenberg structure invariant, for k = 1, the freedom is a ±1 scaling of the first row
and column. Hence if k > 1 a continuum of suitable Q is obtained.Step 3: Factorization of ΣΣΣ1 Suppose at this point that we have an embedding
ΣΣΣ1, isometric, in the required positive Hessenberg form, and with D21 upper triangular
with nonnegative real-valued main diagonal. The final step is to factor ΣΣΣ1 into ele-
mentary Givens rotations, producing the actual parameters of the state space model. It
suffices for our purposes to consider rotations of the form

q(s) = �
c −s
s c

� ; c =p1 − s2 ; −1 ≤ s ≤ 1 ;



LOSSLESS CASCADE FACTORIZATIONS 395
or

q(s̃) = �
1

e jφ

��
c −s
s c

� ;
−1 ≤ s ≤ 1 ; − π

2 ≤ φ ≤ π
2 ; c =p1 − s2 ; s̃ = se jφ :

For ease of description, we move column 1 of ΣΣΣ1 behind column n+1, giving

Φ = Π∗
1;d+1ΣΣΣ1 = 0

d n

d

m

n

=:

24 d n

d A C
m B D
n B2 D21

35
where the permutation Π1;d+1 is defined in equation (14.12). (Note that we redefined
A;B; · · · for ease of notation.) Subsequently, we apply a sequence of rotations to the
rows of Φ to reduce it to a submatrix of the identity matrix, taking care that A and D21

remain upper triangular with nonnegative diagonal entries throughout the transforma-
tions.

Apply a Givens rotation q∗
11 to rows 1 and d+1 of Φ, to cancel b11 against a11, i.e.,

q∗
11[ a11

b11
] = [ a011

0 ]. In the real-valued case, the rotation is specified by

s = b11(a2
11 +b2

11)1=2
; c =p1 − s2 :

(If both a11 = 0 and b11 = 0, then we may select any s in the range [−1;1].) Because
a11 ≥ 0, c ≥ 0 and sign(s) = sign(b11), we have a011 ≥ 0, so that the positivity property
of the main diagonal of A is invariant.

In the complex-valued case, φ is used to map b11 to the real domain first. a11 is
already real, and this property is retained by the rotation.

In the same way, use the transformed a11 to zero all entries of the first column of[ B
B2
]. This defines a sequence of Givens rotations q∗

21; · · · ;q∗
m+n;1 which are applied

in turn to Φ. Because Φ is isometric, the norm of each row is 1. This property is
retained by the rotations, so that after the transformations we must have a11 = 1 (and
not −1 since the property a11 ≥ 0 is invariant).

It is clear that A remains upper triangular during the rotations. We have to show that
D21 also remains upper triangular, with nonnegative main diagonal, and that the first
row ofC is zero. This nontrivial fact follows from the orthonormality of the columns
of Φ, which is invariant under the transformations. Indeed, after the first column of
B has been zeroed, a11 > 0 because the realization is reachable. After (B2)11 has
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been zeroed, we have for the transformed Φ,

col d+1:

0

0

n 0

0

d

m

col 1:

(14.17)

Since the rows are orthonormal, the first entry of the d + 1-st column, the trans-
formed c11, must be zero at this point. Hence, subsequent rotations of the first row
and rows 2 to n of [B2 D21] do not destroy the zeros on the d + 1-st column. The
same holds for columns d+2; · · ·, so that D21 stays upper triangular while B2 is made
zero. The fact that (D21)11 ≥ 0 after rotation qm+1;1 follows directly from the small
lemma below. Thus, the property diag(D21) ≥ 0 is invariant under the transforma-
tions as well.

Lemma 14.2 Suppose �
c s

−s c

��
a
b

�= �
0
r

�
where b ≥ 0, c =p1 − s2 ≥ 0. Then r ≥ 0.

PROOF The two solutions to ca+ sb = 0, s2 + c2 = 1 are

s = a(a2 +b2)1=2
; c = −

b(a2 +b2)1=2

and

s = −
a(a2 +b2)1=2

; c = b(a2 +b2)1=2
:

Since both b ≥ 0 and c ≥ 0, the first solution cannot occur. The second solution has
sign(s) = −sign(a). Hence, r = −sa+ cb ≥ 0. 2
At this point, we have obtained

Q∗
m+n;1 · · ·Q∗

11Π1;d+1ΣΣΣ1 = 1

0

0

00
d

n

d n

m

0
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where each Qi j is an embedding of qi j , as defined in (14.8). The zeroing of the sec-
ond through the d-th column of [ B

B2
] proceeds similarly. This gives

Φ0 = Q∗
m+n;d · · ·Q∗

11Π∗
1;d+1ΣΣΣ1 = 24 d n

d I 0
m 0 D0
n 0 D0

21

35 (14.18)

where D0
21 is upper triangular with nonnegative main diagonal. In similar ways, we

now use the main diagonal entries of D0
21 to zero the entries of D0. For notational

convenience, first permute [ D0
D021

] to [D021
D0 ],

Π∗
DΦ0 = 24 d n

d I 0
n 0 D0

21
m 0 D0 35

where ΠD is defined in (14.12). Use (D0
21)11 to zero the top column of D0, by a

sequence of Givens rotations z∗
11; · · · ;z∗

1m. By orthonormality of the columns, after
the transformations we must have (D0

21)11 = 1, and the entries at the right of (D0
21)11

have become zero as a side effect. Hence, we can continue with using (D0
21)22 to

zero the second column of D0, etcetera. In the end, we obtain

Z∗
mn · · ·Z∗

21Z∗
11Π∗

DΦ0 = �
Id+n

0

�
where each Zi j is an embedding of zi j as defined in (14.9). Conversely, after substi-
tuting (14.18) and inverting all rotations, we have

ΣΣΣ1 = [Id+m 0(d+m)×n)] · Π1;d+1Q11Q21 · · ·Qm+n;d · ΠD · Z11Z21 · · ·Zm;n :
Since T(z) is specified by the first m + n columns of ΣΣΣ1, it follows that equation
(14.13) holds. 214.3 TIME-VARYING Σ-BASED CASCADE FACTORIZATION

The time-invariant cascade factorization results are readily extended to the context of
time-varying systems. The procedure is roughly the same three-stage algorithm:

1. Embed a given realization for T into a lossless system Σ.

2. Using unitary state transformations, bring ΣΣΣ into a form that allows a minimal fac-
torization. We choose a Schur form, in which the A matrix of ΣΣΣ is upper triangular.

3. Using Givens rotations, factor ΣΣΣ into a product of such elementary sections. From
this factorization, the lossless cascade network follows directly.
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For time-invariant systems, we considered a state transformation to Hessenberg form
to avoid eigenvalue computations and to lead to a parsimonious parametrization even
in case of real systems with complex pole pairs. In the time-varying setting, eigenvalue
computations are in a natural way replaced by recursions consisting of QR factoriza-
tions of the Ak, so this seems no longer to be an issue. The actual factorization is similar
to the time-invariant procedure, and can be carried out locally. The main difference is
that for time-varying systems the dimensions of the state-space matrices need not be
constant, and a distinction has to be made between shrinking and growing state-space
dimensions.

It is shown that it is still possible to obtain a factorization Σ = Σ1 · · ·ΣnΣ0, where
n = maxdk is the maximal local state dimension over all stages, and each Σi is a sec-
tion of local degree at most equal to 1. In a sense, the result is evident: by adding extra
inputs and outputs, it is possible to expand the realization of Σ to a non-minimal real-
ization which has d states at each point. However, the theorem is more specific: the
local state dimensions of the factors add up to the local degree of Σ, and we obtain a
cascade network with a minimal number of coefficients as well.Time-varying embedding
Let T ∈ U(M1;N1) be a locally finite input-output operator with u.e. stable state re-
alization T = {A;B;C;D}. Assume that T is strictly contractive (this can always be
obtained by a suitable scaling) and that T is uniformly reachable. Then the embed-
ding theorem (theorem 12.14) claims that T admits a lossless embedding Σ ∈ U(M1 ×N1;N1 ×N2) such that Σ11 = T , and with unitary realization of the form

ΣΣΣ = 24 R
I

I

3524 A C C2

B D D12

B2 D21 D22

3524 [R(−1)]−1

I
I

35 :
D21 is a diagonal of square matrices, and we can arrange it such that each of these ma-
trices is upper triangular, with nonnegative main diagonal.Time-varying \Schur decomposition"
We continue by working on the unitary realization ΣΣΣ. Let A = AΣ ∈ D(B;B(−1)) be
the A-operator of ΣΣΣ. The factorization algorithm continues by finding a locally square
unitary state transformation Q ∈D(B;B) such that

QAQ(−1)∗ = R ; (14.19)

where R ∈D(B;B(−1)) has Rk upper triangular. If Ak is not square, say of size dk ×dk+1,
then Rk will be of the same size and also be rectangular. In this case, “upper triangular”
is to be made more precise: it means (Rk)i; j = 0 for i > j +(dk − dk+1) (figure 14.4).
In the case where dk+1 > dk (figure 14.4(c)), and if the increase in the number of states
is 2 or more, it is possible to introduce extra zero entries in B too, as indicated in the
figure. These play a role later in this chapter. Note that, for minimal realizations, the
growth in state dimension is at most equal to the number of inputs at that point in time,
so that the extra zero entries only appear in B and not in B2.
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In the time-invariant case, expression (14.19) would read QAQ∗ = R, and the solu-

tion is then precisely the Schur decomposition of A. In this context, the main diagonal
of A consists of its eigenvalues, which are the (inverses of the) poles of the system.
In the present context, relation (14.19) is effectively the (unshifted) QR iteration al-
gorithm that is sometimes used to compute the eigenvalues of A = Ak, if all Ak are the
same [GV89]. The iteration (or rather recursion) is obtained by expanding the diagonal
relation into its entries: QkAkQ∗

k+1 = Rk, or

...
Q1 A1 =: R1Q2 → Q2; R1

Q2 A2 =: R2Q3 → Q3; R2

Q3 A3 =: R3Q4
...

(14.20)

Each step in the computation amounts to a multiplication by the previously computed
Qk, followed by a QR factorization of the result, yielding Qk+1 and Rk. Given an initial
Qk0 , e.g., Qk0 = I, the above recursion can be carried out in two directions, both forward
and backward in time. For example, take k0 = 1, then the forward recursion is given
by (14.20), while the backward decomposition is

A0 Q∗
1 = Q∗

0R0 → Q0; R0

A−1 Q∗
0 = Q∗

−1R−1 → Q−1; R−1

A−2 Q∗
−1 = Q∗

−2R−2
...

Since we can start at any k0 with any unitary Qk0 , the decomposition (14.19) is not
unique, although it always exists. For later reference, we formulate this result in the
following proposition.

Proposition 14.3 Let A ∈ D(B;B(−1)) be locally finite. Then there is a unitary state
transformation Q ∈D(B;B) such that QAQ(−1)∗ = R is a diagonal operator with all Rk

upper triangular matrices with nonnegative main diagonals: if Ak has size dk × dk+1,
then (Rk)i; j = 0 for i > j+(dk − dk+1).

In the context of finite upper triangular matrices whose state realization starts with 0
states at instant k = 1, we can take as initial transformation Q1 = [ · ]. If the Ak are equal
to each other, then the above recursion is precisely the (unshifted) QR iteration for com-
puting the eigenvalues (or Schur decomposition) of A. It is known (see [GV89]) that
the unshifted QR iteration will converge if the absolute values of the eigenvalues of A
are unequal to each other, and that the rate of convergence is dependent on the small-
est ratio between those absolute eigenvalues. For periodically time-varying systems,
with period n say, an initial state transformation Q1 such that Qk = Qn+k is also peri-
odical can be computed by considering the conjunction of n consecutive stages. Writ-
ing Ap = A1A2 · · ·An, the Schur decomposition of Ap (Q1ApQ∗

1 = Rp) gives Q1, while
(14.19) gives Q2; · · · ;Qn in turn. Recent investigations show that one can compute the
Schur decomposition of a product of matrices without ever explicitly evaluating the
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(c) 000(a) (b)Figure 14.4. Schur forms of Σk. (a) Constant state dimension, (b) shrinking state di-mension, (c) growing state dimension.

product [BGD92]. The procedure is called the periodic QR algorithm, and consists ba-
sically of an implicit shifted QR algorithm acting over a sequence of matrices, rather
than just one matrix.Structure of a factored lossless stage
A single stage ΣΣΣk of ΣΣΣ has, after transformation to Schur form, one of the three struc-
tures displayed in figure 14.4, depending on whether the state dimension of ΣΣΣ is con-
stant, shrinking or growing at point k. The factorization procedure is to factor each
stage into elementary Givens rotations of the general type in (14.3). As before in the
time-invariant case, it suffices to consider parsimonious rotations�

1
e jφ

��
c −s
s c

�
− π

2 ≤ φ ≤ π
2 ; −1 ≤ s ≤ 1 :

If the state dimension of Σk is constant, then its factorization is precisely the same as
in the time-invariant case. E.g., suppose

ΣΣΣk = 266666664 a × × × × ×
× × × × ×

× × × ×
× × ×

b1 × × × × ×
b2 × × × × ×

377777775
then two rotations factor ΣΣΣ into(ΣΣΣ∗

1)k ΣΣΣk = 266666664 1 0 0 0 0 0
× × × × ×

× × × ×
× × ×

0 × × × × ×
0 × × × × ×

377777775 :



LOSSLESS CASCADE FACTORIZATIONS 401

(a) zzzz

x1;k x2;k x3;k x4;k
x1;k+1 x2;k+1 x3;k+1 x4;k+1

y2;ky1;ku1;k
u2;kuk

0 yk

∗

(b) zzz

x1;k x2;k x3;k x4;k
x1;k+1 x2;k+1 x3;k+1

y1;ku1;k
yk
∗
∗

uk

0

y3;ky2;ku2;k

(c) z zzzz

x1;k+1 x2;k+1 x3;k+1 x4;k+1 x5;k+1

yk

x2;k x3;k x4;k x5;k
u1;kuk

0
u2;k

Figure 14.5. Lossless cascade realizations of a contractive system T , stage k. (a) Con-stant state dimension, (b) shrinking state dimension, (c) growing state dimension.
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Continuing recursively, we obtain a factorization as ΣΣΣk = ΣΣΣ1;k · · · ΣΣΣdk;kΣΣΣ 0k. ΣΣΣ 0k is the

residue

"
I

D0
k

#
where D0

k is a unitary matrix and can also be factored into elemen-

tary operations. The corresponding network structure of a single stage is depicted in
figure 14.5(a).

In the case of a shrinking state dimension, we have for example

ΣΣΣk = 266666664 · × × × × × ×
× × × × × ×

× × × × ×
× × × ×

· × × × × × ×
· × × × × × ×

377777775 :
We first perform a row permutation, which produces

Π∗
k ΣΣΣk = 266666664 × × × × × ×

× × × × ×
× × × ×

× × × × × ×
× × × × × ×
× × × × × ×

377777775 ;
so that, effectively, the first state has become an input of the subsequent factors. At this
point, the factorization is equivalent to the factorization of a realization with constant
state dimension. The resulting network structure of the lossless stage is shown in figure
14.5(b). More in general, if the state dimension of ΣΣΣk shrinks by n states, then a number
of n states are permuted to become inputs.

Finally, if the state dimension of Σk grows, for example

ΣΣΣk = 2666664 0 × × × ×
× × ×

× ×

b1 × × × ×
b2 × × × ×

3777775 ;
then a permutation of the first row of B produces

Π∗
k ΣΣΣk = 2666664 b1 × × × ×

0 × × × ×
× × ×

× ×

b2 × × × ×

3777775 :
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The first input u1;k has effectively been mapped to a new state. Φ∗

kΣk can subsequently
be factored as a section with constant state dimensions:(ΣΣΣ∗

1)kΣΣΣk = 2666664 1 0 0 0 0
× × × ×

× × ×
× ×

0 × × × ×

3777775 :
The corresponding network is depicted in figure 14.5(c). If, more in general, the first n
columns of A would have been zero, then the first n rows of B are permuted to become
states. For minimality of the factorization, we must require that the top left n × n sub-
matrix of BΣ has been made upper triangular by suitable unitary state transformations,
in the process of the transformation to Schur form (as indicated in figure 14.4(c)).

With the three types of stages shown in figure 14.5, we can describe all possible
stages that can occur in locally finite unitary realizations that are in Schur form. It has
already been mentioned that the stages can be factored independently of each other.
The cascade network structure of the complete state realization ΣΣΣ then follows by piec-
ing together the results of the individual stages. An example network is shown in figure
14.6(a). In the example, we consider a 10×10 strictly contractive upper triangular ma-
trix T , with 1 input and 1 output at each point, and a state dimension sequenceB given
by

#B = [0;1;2;3;3;3;2;3;2;1;0] :
T has an embedding into an inner operator Σ. Hence T is the partial transfer operator
of Σ from the first input to the first output when the secondary input is put to zero.

In the time-invariant case, the Schur form produces a factorization of the realization
into a cascade of elementary sections, each of degree 1. The question at this point is
whether the time-varying cascaded network obtained in figure 14.6(a) also produced
such a factorization. Obviously, with time varying state dimensions, the elementary
sections now have to be time-varying. In the remainder of the section, we show that T
is realized by a cascade of d = maxdk elementary time-varying sections, each of local
degree 0 or 1. We start by making a few more general observations.Factorization into two factors
The factorization result (equation (14.2)), which stated that a time-invariant rational
transfer operator T has a factorization T =T1T2 if and only if its realization has a certain
structure, admits a straightforward generalization to time-varying inner systems.

Proposition 14.4 Let ΣΣΣ ∈D(B×M;B(−1) ×N ) be unitary, with locally finite dimen-
sions, and have a block partitioning as

ΣΣΣ = 264 A11 A12 C1

0 A22 C2

B1 B2 D

375 (14.21)
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where A11 ∈ D(B1;B(−1)

1 ) for some state-space sequence B1 ⊂ B. Define the space

sequencesN1 and B2 by the relations B1 ×M= B(−1)
1 ×N1, and B = B1 ×B2.

1. Then unitary operators Σ̂ΣΣ1; Σ̂ΣΣ2 exist, with Σ̂ΣΣ1 = {A11;B1;C01;D1} ∈D(B1 ×M;B(−1)
1 ×N1), Σ̂ΣΣ2 = {A22;B02;C2;D2} ∈D(B2 ×N1;B(−1)

2 ×N ), such that

ΣΣΣ = 264 A11 C01
I

B1 D1

375264 I
A22 C2

B02 D2

375=: ΣΣΣ1ΣΣΣ2 : (14.22)

2. If Σ is an inner operator with unitary realization ΣΣΣ of the form (14.21), with `AΣ < 1,
then Σ = Σ1Σ2, where Σ1;Σ2 are inner operators with unitary realizations given by
Σ̂ΣΣ1; Σ̂ΣΣ2, with `A11 < 1, `A22 < 1. The sequence of state dimensions of Σ1, Σ2 add up
to the sequence of state dimensions of Σ: the factorization is minimal.

PROOF

1. Consider [A∗
11 B∗

1]∗. It is an isometry in D because A∗
11A11 +B∗

1B1 = I. Choose
C01;D1 ∈D such that, for each point k,(ΣΣΣ1)k = � (A11)k (C01)k(B1)k (D1)k

�
is a unitary matrix. Then ΣΣΣ1 is a unitary operator in D as required, and the number
of added outputs is #(N1) = #(B1)− #(B(−1)

1 )+#(M). Because [A∗
11 0 B∗

1]∗ is also
the first column of ΣΣΣ, it directly follows that ΣΣΣ∗

1ΣΣΣ = ΣΣΣ2 has the form specified in
(14.21).

2. The fact `AΣ < 1 ⇒ `A11 < 1; `A22 < 1 is straightforward to show. With `A11 <
1; `A22 < 1, the unitary realizations Σ̂ΣΣ1, Σ̂ΣΣ2 define inner operators Σ1;Σ2 (theorem
6.4). The cascade Σ1Σ2 has a realization ΣΣΣ1ΣΣΣ2 = ΣΣΣ as in (14.21), and hence Σ =
Σ1Σ2. The factorization is minimal because (with `A < 1) Σ̂ΣΣ1, Σ̂ΣΣ2 are minimal real-
izations, whose degrees add up to the degree of ΣΣΣ. 2
Some remarks are apposite here. First note that if `AΣ = 1, and ΣΣΣ is a unitary realiza-

tion with reachability and observability Gramians equal to the identity, then Σ̂ΣΣ1 inherits
the fact that the reachability Gramian is I, but if `A11 = 1, then nothing can be said, at
first sight, of its observability Gramian, and hence the fact that Σ1 is inner is not proven
in this case. Second, note that all computations can be carried out locally (separately)
for each stage k. The state dimension sequenceB1 determines the degree of the factors,
and also the number of outputs (inputs) of Σ1 (Σ2). The choice of B1 is restricted by
the required form of (14.21), i.e., the fact that A21 = 0.

The above proposition can be formulated in a different way that provides some ad-
ditional (more fundamental) insight.
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Proposition 14.5 Let Σ be a locally finite inner operator. Then

Σ = Σ1Σ2 ⇒ H(Σ) =H(Σ1)⊕H(Σ2)Σ∗
1 ;

where Σ1 and Σ2 are inner operators. Conversely, let Σ1 be an inner operator, thenH(Σ1) ⊂H(Σ) ⇒ Σ = Σ1Σ2 ;
where Σ2 is an inner operator.

PROOF For an inner operator Σ2, we have that U2Σ∗
2 = U2 ⊕H(Σ2) (proposition 6.1).

Consequently, U2Σ∗ = U2Σ∗
1 ⊕H(Σ2)Σ∗

1, and because Σ∗
1 ∈ L,H(Σ) = PL2Z−1(U2Σ∗)= H(Σ1) ⊕ PL2Z−1(H(Σ2)Σ∗

1)= H(Σ1) ⊕ H(Σ2)Σ∗
1 :

Conversely, the fact that Σ2 = Σ∗
1Σ is a unitary operator is clear, and we have to show

that it is in fact upper. Indeed, since Σ ∈ U ,

PL2Z−1(U2Σ2) = PL2Z−1(U2Σ∗
1Σ)= PL2Z−1(H(Σ1)Σ)

⊂ PL2Z−1(H(Σ)Σ) = 0 [prop. 6.1]

so that the lower triangular part of Σ2 is zero. 2
Hence, in order to obtain a factorization of Σ, we can select any inner Σ1 such thatH(Σ1) ⊂H(Σ). A suitable Σ1 is again obtained from equation (14.21): a minimal re-

alization based on A11 and B1 hasH(Σ1) =D2

h
B1Z(I − A11Z)−1

i∗ = [D2 0]h[B1 B2]Z(I − AZ)−1
i∗

because A21 = 0, so that indeedH(Σ1)⊂H(Σ). Σ1 is obtained, as in the proof of propo-
sition 14.4, by extending [A∗

11 B∗
1]∗ to a unitary state-space operator. Special cases oc-

cur if (B1)k = 0 for some k, although the propositions remains valid. The following
two situations are typical.

If #(B1)k+1 = 0, with #(B1)k = n ≥ 0, then (A11)k is a (n × 0)-matrix. In this case,
ΣΣΣk has the form

ΣΣΣk = 264 · A12 C1

· A22 C2

· B2 D

375
(as before, ‘·’ stands for an entry of zero dimensions) so that(Σ̂ΣΣ1)k = "

· In 0

· 0 I

# ; (ΣΣΣ1)k = 264 · 0 In 0
· I 0 0

· 0 0 I

375 :
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(d)(b)Figure 14.7. Elementary sections in a stage. (a) C(0) constant section with zero states,(b) S section, going from 1 state to 0, (c) C(1) section with a constant number of 1 states,(d) G section, going from 0 to 1 state. The number of inputs/outputs have arbitrarily beenset to 2.
ΣΣΣ1 is a trivial state-space operator mapping its first n states to n outputs. If n = 0,
then (ΣΣΣ1)k = I.

If #(B1)k = 0, #(B1)k+1 = n ≥ 0, then (Σ̂ΣΣ1)k is obtained as the extension of (B1)k to
a unitary matrix: (Σ̂ΣΣ1)k = "

· ·(B1)k (D1)k

# :
Note that this case can only happen if (AΣ)k has its first n columns equal to zero:(AΣ)k = �

· ·
0 (A22)k

� ;
that is, in view of figure 14.4, this can only happen at points where the state dimen-
sion of Σ grows with at least n states.Elementary lossless stage sections

We apply proposition 14.4 to the most elementary type of state dimension sequenceB1: B1 with entries having dimensions #(B1)k ∈ {0;1}. In a later section, we discuss
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the choice of B1; here, we consider the factorization of a single stage of ΣΣΣ, and pay
detailed attention to the fact that input/output and state dimensions can be time varying.
With a partitioning of ΣΣΣ as before in (14.21), a factor Σ̂ΣΣ1 of ΣΣΣ is determined by finding
a unitary extension of the matrices (A11)k and (B1)k. The purpose of this section is
to show how an extension can be obtained in factored form using elementary Givens
rotations. With #(B1)k ∈ {0;1} and #(B1)k+1 ∈ {0;1}, the submatrix (A11)k can have
only the following sizes:�

C(0) : 0 × 0 ; S : 1 × 0 ;
C(1) : 1 × 1 ; G : 0 × 1 :

The cases C(0) and C(1) describe sections with a constant state dimension, while G;S
stand for sections with growing and shrinking state dimensions, respectively. We dis-
cuss these sections in turn.

C(0): (Σ̂ΣΣ1)k has the form (Σ̂ΣΣ1)k = "
· ·

· I

#
. See figure 14.7(a). Obviously, a C(0)

section can always be extracted, but doing so does not lead to a degree reduc-
tion. Nonetheless, it plays a role as padding section in the description of a global
factorization of Σ into a constant number of sections, later in this chapter.

S: (Σ̂ΣΣ1)k has the form (Σ̂ΣΣ1)k = "
· 1 0

· 0 I

#
. See figure 14.7(b).

C(1): Let a = (A11)k, and suppose that Σ has n inputs at point k, so that b = (B1)k is
an n × 1 vector. Then (Σ̂ΣΣ1)k is a unitary extension of the vector [a∗ b∗

1 · · · b∗
n]∗.

Of the many possible extensions, one that results in a minimal number of coef-
ficients is obtained using Givens rotations, which gives the extension directly
in factored form: (Σ̂ΣΣ1)k = (Σ̂ΣΣ1)1;k · · ·(Σ̂ΣΣ1)n;k (14.23)

where (Σ̂ΣΣ1)i;k is used to zero entry (i+ 1) of the vector (Σ̂ΣΣ1)∗
i−1;k · · ·(Σ̂ΣΣ1)∗

1;k �a
b

�
against the first entry. The computational structure (for n= 2) is shown in figure
14.7(c).

G: In this case, (A11)k = [ · ], and (Σ̂ΣΣ1)k is a unitary extension of the vector b =(B1)k. Again, the extension can be found in factored form, now requiring n − 1
Givens rotations. See figure 14.7(d).

The four types of elementary stage sections in figure 14.7 form the building blocks
of the cascade network realizations based on the Schur form. General structures are
obtained by connecting these sections horizontally (realizing a single stage in factored
form) and vertically (realizing an elementary degree-1 factor of Σ). The result of hori-
zontal connections into stages has already been discussed before, see figure 14.6(a). It
remains to discuss the connection into vertical elementary degree-1 factors.Factorization into degree-1 lossless sections
Let be given a locally finite inner operator Σ, with state dimension sequenceB. The ob-
jective is to compute a factorization Σ = Σ1 · · ·ΣnΣ0 into a minimal number of n degree-
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1 sections, and a terminating diagonal unitary operator Σ0 (a ‘constant’ section). A re-
lated question is: what is the minimal value of n? It is clear that n is at least equal to
the maximal number maxk #(B)k of states of Σ that are present at any stage. We show
that n can in fact be equal to this number.

In view of proposition 14.4, it remains to determine a possible state sequence B1 of
the first factor Σ1. The other factors are then obtained recursively, by factoring Σ∗

1Σ, un-
til the state dimension has been reduced to zero. The remainder Σ∗

n · · ·Σ∗
1 is then equal

to the constant section Σ0. The number of states #(B1)k of the first factor is allowed to
be at most equal to 1 at each stage k, in order to obtain a degree-1 section. The other
constraint on B1 is the fact that (A21)k in (14.21) must be equal to zero (or have van-
ishing dimensions) for each k. The discussions in the previous paragraph have shown
that, as a consequence, within a stage it is not possible to extract a C(1) section before
an S section or a G section. A trivial C(0) section can always be extracted.

The following choice of B1 satisfies the constraints. Let n = maxk #(B)k. Then B1

is given by

#(B1)k =�
1; if #(B)k = n ;
0; otherwise : (14.24)

Indeed, with this B1, we extract as many stages with C(0) sections as possible (which
do not have constraints), and only extract other sections where factors Σ2 till Σn must
have states anyway. At the same time, B1 is such that it reduces the degree of Σ: Σ∗

1Σ
has a maximal state dimension n−1. Acting recursively, we obtain a factorization of Σ
into n sections, each of which has local degree at most 1. The results are summarized
in the following theorem.

Theorem 14.6 Let Σ be an inner operator which is locally finite with state dimension
sequence B, and u.e. stable. Let n = maxk #(B)k. Then Σ has a factorization

Σ = Σ1 · · ·ΣnΣ0 ;
where each Σi is a u.e. stable inner section of local degree at most 1 (maxk #(Bi)k = 1),
and whose local degrees add up to the local degree of Σ (∑i #(Bi)k = #(B)k). Σ0 is a
unitary diagonal operator.

PROOF According to theorem 6.3, Σ has a unitary realization ΣΣΣ. The realization can be
put into Schur form by unitary state transformations (proposition 14.3). Next, chooseB1 according to equation (14.24). We first show that B1 generates a partitioning of
A = AΣ such that, for all k, (A21)k = 0 or has vanishing dimensions. Indeed, as long as
#(B)k < n and #(B)k+1 < n, we have #(B1)k = 0 and #(B1)k+1 = 0 so that (A21)k = [ · ].
At a certain point k, #(B)k < n and #(B)k+1 = n, and figure 14.4(c) shows that in this
case we can put #(B1)k+1 = 1, which makes (A21)k equal to the first column, consisting
only of zero entries. While #(B)k = n and #(B)k+1 = n, Ak is an upper triangular ma-
trix, so that we can put #(B1)k = 1, #(B1)k+1 = 1 to obtain (A21)k = 0. Finally, when
#(B)k = n and #(B)k+1 < n, Ak has the form shown in figure 14.4(b), so that we have
to put #(B1)k+1 = 0, which gives (A21)k = [ · ]. Hence B1 satisfies the requirements, so
that, according to proposition 14.4, we can extract a factor Σ1. We can continue in the
same way with Σ∗

1Σ, which has a maximal state dimension equal to n − 1. This degree
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reduction is because we had #(B1)k = 1 whenever #(B)k = n. Acting recursively, we
end with Σ0 = Σ∗

n · · ·Σ∗
1Σ having 0 states, and hence Σ0 is a unitary diagonal constant.2

We can write the 10×10 example in figure 14.6(a) in factored form, as obtained by
the above theorem. The resulting cascade factorization is displayed in figure 14.6(b).
The actual structure is the same as given in figure 14.6(a), but the elementary stage
sections are now grouped vertically into sections, rather than horizontally into stages.Computational complexity
The computational complexity of the cascade network is, at each stage, linear in the
number of elementary operations. This is in contrast to a direct network realization of
a given state realization {A;B;C;D}, which would have quadratical complexity. If the
network consists of N stages and if the average number of states in a stage is d, then
the number of elementary operations required for a vector-matrix multiplication using
the cascade network is of order O(2dN) rotations, rather than O( 1

2 N2) multiplications
for a direct vector-matrix multiplication. (The complexity of a rotation operation is 4
multiplications for a direct implementation). Hence, if d�N, a considerable reduction
in the number of operations is achieved. In addition, the network is numerically stable.
All elementary operations are rotations, which means that the network is lossless and
does not amplify numerical errors introduced at any point in the computation.14.4 TIME-VARYING Θ-BASED CASCADE FACTORIZATION
In the previous section, we embedded the given contractive operator T in a unitary op-
erator Σ, and subsequently factored this operator into elementary sections. The result
was a computational network consisting of unitary Givens rotations, with a data flow
strictly from the left to the right, and from the top to the bottom. An alternative cascade
factorization is obtained by computing the J-unitary operator Θ associated with Σ,1 fac-
toring Θ into elementary J-unitary sections Θi, and converting each of the sections to
their unitary equivalent. The result is again a minimal factorization of the unitary re-
alization ΣΣΣ of Σ into degree-1 realizations, although the factorization is different from
the one we obtained earlier. The order of the computations in this factorization is such
that the corresponding cascade factorization of Σ can no longer be written as a product
of elementary unitary sections.

The reason for studying Θ-based factorizations is at least twofold. Firstly, they lead
to different realizations of unitary operators Σ, also specified by a minimal number of
parameters. These realizations may have different numerical properties with respect
to parameter sensitivity (although we do not go to that level of detail). Secondly, the
same type of networks are obtained in the solution of a number of other problems.
For example, the solution of certain constrained interpolation problems, such as the
Nevanlinna-Pick interpolation problem in chapter 9, or the solution of the Nehari prob-
lem and (more in general) the model approximation problem in chapter 10, leads to

1In this section, we assume that the reader has knowledge of the contents of section 8.1.
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Θ-based cascade networks. This is of course not coincidental: the description of the
solution of these interpolation problems also gives rise to J-unitary operators Θ. Upon
factorization of Θ, each factor implements a single interpolation constraint of the orig-
inal problem. Other problems where networks of the same type occur are in the Gener-
alized Schur algorithm for inverse Cholesky factorization [Dep81, DD88], and (time-
varying) prediction-error filters and RLS adaptive filters [Hay91].

We will first derive some factorization results for J-unitary upper operators, and then
specialize to the case where the state signature sequence equals JB = I. Subsequently,
we derive the corresponding factorization of ΣΣΣ, and the computational network that this
factorization of ΣΣΣ represents.Factorization into J-unitary elementary sections
The J-unitary factorization into elementary sections is again straightforward once a
general factorization into two J-unitary factors has been derived. The latter is formu-
lated in the following proposition, comparable to proposition 14.4.

Proposition 14.7 Let ΘΘΘ ∈D(B×M;B(−1)×N ) be J-unitary with state signature JB =
I, and with a block partitioning as

ΘΘΘ = 264 A11 A12 C1

0 A22 C2

B1 B2 D

375 (14.25)

where A11 ∈ D(B1;B(−1)
1 ) for some state-space sequence B1 ⊂ B. Define the space

sequencesN1 and B2 by the relations B1 ×M= B(−1)
1 ×N1, and B = B1 ×B2.

1. J-unitary operators Θ̂ΘΘ1; Θ̂ΘΘ2 exist, with Θ̂ΘΘ1 = {A11;B1;C01;D1} ∈D(B1 ×M;B(−1)
1 ×N1), Θ̂ΘΘ2 = {A22;B02;C2;D2} ∈D(B2 ×N1;B(−1)

2 ×N ), such that

ΘΘΘ = 264 A11 C01
I

B1 D1

375264 I
A22 C2

B02 D2

375= ΘΘΘ1ΘΘΘ2 : (14.26)

2. If Θ ∈ U is a J-unitary operator with a J-unitary realization ΘΘΘ of the form (14.25),
and if `AΘ < 1, then Θ =Θ1Θ2, where Θ1;Θ2 are J-unitary operators with J-unitary
realizations given by Θ̂ΘΘ1, Θ̂ΘΘ2, with `A11 < 1, `A22 < 1. The factorization is minimal.

PROOF The proof is the same as in proposition 14.4, except that now a J-unitary ex-
tension of [A∗

11 B∗
1]∗ must be found. The existence of such an extension was proven in

lemma 8.16. The extension yields Θ̂ΘΘ1, and Θ̂ΘΘ2 then follows from ΘΘΘ−1
1 ΘΘΘ = ΘΘΘ2, which

has the form specified in (14.25). 2
In order to obtain a factorization into elementary sections of local degree ≤ 1, we

choose B1 as in equation (14.24), viz.

#(B1)k =�
1 if #(B)k = n ;
0 otherwise :
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With this choice, theorem 14.6 can be adapted to J-unitary operators:

Theorem 14.8 Let Θ ∈ U be a J-unitary operator which is locally finite with state di-
mension sequenceB, u.e. stable, and with positive state signature. Let n=maxk #(B)k.
Then Θ has a factorization

Θ = Θ1 · · ·ΘnΘ0 ;
where each Θi is a u.e. stable J-unitary section of local degree ≤ 1 (maxk #(Bi)k = 1),
and the local degrees of the Θi add up to the local degree of Θ (∑i #(Bi)k = #(B)k). Θ0
is a J-unitary diagonal operator.

PROOF The proof is the same as that of theorem 14.6, but now refers to proposition
14.7. 2

It remains to investigate the structure of an elementary J-unitary section.Elementary Θ sections
We now describe the factorization of an elementary J-unitary section of local degree at
most equal to 1 into (J-unitary) Givens rotations. The resulting structure of the factored
section is the same as in the unitary case, because the same sequence of operations is
used to do the factorization. However, the type of each elementary operation is now
either a unitary or a J-unitary Givens rotation. To keep the discussion manageable, we
assume from now on that all state signatures are positive, as this will be the case in our
future application.

As in the unitary case, we assume that a J-isometric column [A∗
11 B∗

1]∗ ∈D is given,
where each matrix (A11)k of the diagonal has dimensions at most equal to 1. This col-
umn is extended to a J-unitary realization Θ̂ΘΘ1, to be obtained in factored form. It is
sufficient at this point to look only at the factorization of a single stage of the degree-1
section. With #(B1)k ∈ {0;1} and #(B1)k+1 ∈ {0;1}, the four possible sections in a
stage are again described by the dimension of (A11)k as�

C(0) : 0 × 0 ; S : 1 × 0 ;
C(1) : 1 × 1 ; G : 0 × 1 :

The cases C(0) and S result in the same (trivial) sections as before:(Θ̂ΘΘ1)k = "
· ·

· I

#
resp. (Θ̂ΘΘ1)k = "

· 1 0

· 0 I

#
(see figure 14.8(a),(b)). The case C(1) is more interesting and follows from a factor-
ization with Givens rotations of vectors of the form264 a

b+
b−

375= � (A11)k(B1)k

� ;
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where a is a scalar and b = [ b+
b−
] is partitioned according to the signature of the inputs

at that point. The factorization is obtained in two steps,(Θ̂ΘΘ−1
1;1)k

264 a

b+
b−

375= 264 a0
0
b−

375 ; (Θ̂ΘΘ−1
1;2)k

264 a0
0
b−

375= 264 a00
0
0

375 :
Here, (Θ̂ΘΘ1;1)k consists solely of unitary Givens rotations, used to cancel the entries
of b+ against a, while (Θ̂ΘΘ1;2)k consists only of J-unitary Givens rotations. See fig-
ure 14.8(c). Note that the unitary scattering operator (Σ̂ΣΣ1;1)k corresponding to (Θ̂ΘΘ1;1)k

is the same because it is already unitary: (Σ̂ΣΣ1;1)k = (Θ̂ΘΘ1;1)k. The factorization of a
G section obviously results in a comparable structure, and can also be described as(Θ̂ΘΘ1)k = (Θ̂ΘΘ1;1)k(Θ̂ΘΘ1;2)k = (Σ̂ΣΣ1;1)k(Θ̂ΘΘ1;2)k. As the same can obviously be done for the
C(0)- and the S sections, the overall result is as follows.

Lemma 14.9 Let [A∗
11 B∗

1]∗ ∈D(B1 ×M;B(−1)
1 ) be {I;JM}-isometric:[A∗

11 B∗
1]� I

JM ��
A11

B1

�= I ;
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and assume that its state dimension sequence B1 has dimension at most equal to 1 at
each point. Then this column has a J-unitary extension to Θ̂ΘΘ1 ∈D(B1 ×M;B(−1)

1 ×N )
such that

Θ̂ΘΘ1 = Θ̂ΘΘ1;1Θ̂ΘΘ1;2 = Σ̂ΣΣ1;1Θ̂ΘΘ1;2= 264 × ×

× ×
I

375264 × ×

I
× ×

375
(where partitionings are according to JM).

With theorem 14.8, the result is that if Θ is a J-unitary operator which has a J-unitary
realization ΘΘΘ with state signature sequence JB = I, then ΘΘΘ has a factorization into uni-
tary and J-unitary factors as

ΘΘΘ = [ΣΣΣ1;1ΘΘΘ1;2] · [ΣΣΣ2;1ΘΘΘ2;2] · · · [ΣΣΣn;1ΘΘΘn;2] · ΘΘΘ0 : (14.27)

Lemma 14.10 If ΘΘΘ has factorization (14.27), then the corresponding ΣΣΣ has factoriza-
tion

ΣΣΣ = [ΣΣΣ1;1ΣΣΣ2;1 · · · ΣΣΣn;1] ΣΣΣ 0 [ΣΣΣn;2 · · · ΣΣΣ2;2ΣΣΣ1;2] (14.28)

in which ΘΘΘi;2 ↔ ΣΣΣ i;2, ΘΘΘ0 ↔ ΣΣΣ 0.
PROOF We first argue that ΘΘΘ in (14.27) can be written as

ΘΘΘ = [ΣΣΣ1;1ΣΣΣ2;1 · · · ΣΣΣn;1] · [ΘΘΘ1;2ΘΘΘ2;2 · · · ΘΘΘn;2] · ΘΘΘ0 (14.29)

Indeed, because ΣΣΣ i;1 and ΘΘΘ j;2, for i 6= j, act on different state variables and on different
inputs, their order of application may be reversed: ΘΘΘ j;2ΣΣΣ i;1 = ΣΣΣ i;1ΘΘΘ j;2. This allows to
transform (14.27) into (14.29). Omitting the details, we note that the transition from
a Θ-representation to a Σ-representation is obtained by reversing the computational
direction of the secondary inputs and outputs. This does not affect [ΣΣΣ1;1ΣΣΣ2;1 · · · ΣΣΣn;1]
as only the primary inputs and outputs are involved, while [ΘΘΘ1;2ΘΘΘ2;2 · · · ΘΘΘn;2] · ΘΘΘ0 ↔
ΣΣΣ 0 · [ΣΣΣn;2 · · · ΣΣΣ2;2ΣΣΣ1;2]. This leads to equation (14.28). 2

The structure of Θ according to the above factorization of ΘΘΘ is depicted in figure
14.9(a). It is the same as the structure of the network of Σ given in figure 14.6(b),
but contains both unitary and J-unitary rotations (represented by shaded circles). The
structure of Σ corresponding to this factorization of ΘΘΘ (figure 14.9(b)) is again the same,
but the order in which computations are done is not only from left to right, but partially
also from right to left. Within a single stage, suppose that the inputs and the current
state variables are known. In order to compute the next states and the outputs, first all
rotations going from left to right have to be performed, and only then the next state
variables and the output at the left can be computed. The network is said to be non-
pipelinable, and the computational dependency, going from the left to the right and
back to the left again, is said to be the computational bottleneck. This bottleneck is not
present in the network in figure 14.6, and hence, from a computational point of view,
a direct factorization of ΣΣΣ yields a more attractive network.
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Note that this network of Σ is a special case of the type of networks that has been

obtained in the model reduction problem (cf. figure 10.10). In chapter 10, more gen-
eral networks were obtained because the state signature of Θ was allowed to contain
negative entries too.

Θ-based cascade factorization of T

Let T ∈ U be a given strictly contractive locally finite transfer operator. The process
of realizing T via a Θ-based cascade starts with the orthogonal embedding of T in a
unitary operator Σ, such that

Σ = �
Σ11 T
Σ21 Σ22

�
(14.30)

where we have set Σ12 = T . The next step is to convert Σ to Θ, which requires the
invertibility of Σ22:

Θ = �
Σ11 − Σ12Σ−1

22Σ21 −Σ12Σ−1
22

Σ−1
22Σ21 Σ−1

22

�
Θ is an upper operator only if Σ−1

22 is upper. As the factorization of Θ in the previous
subsection required Θ to be upper (so that it has a causal realization), we see that Σ22

should be outer and invertible in order to obtain a Θ-based cascade factorization of Σ.
If this requirement is satisfied, then a J-unitary realization ΘΘΘ of Θ is obtained in terms
of a unitary realization ΣΣΣ of Σ as

ΣΣΣ = 264 A C1 C2

B1 D11 D12
B2 D21 D22

375 ⇒ ΘΘΘ = 264 A −C2D−1
22B2 C1 −C2D−1

22D21 −C2D−1
22

B1 − D12D−1
22B2 D11 − D12D−1

22D21 −D12D−1
22

D−1
22B2 D−1

22D21 D−1
22

375 :
(14.31)

Note that if Σ−1
22 would not be upper, then we would by necessity obtain `AΘ > 1 at this

point. The factorization proceeds with a state transformation to make AΘ upper trian-
gular at each stage, which requires the time-varying Schur decomposition discussed in
section 14.3. ΘΘΘ is subsequently factored into elementary sections, and conversion to
scattering operators finally produces a factorization of ΣΣΣ as in equation (14.28), and in
a computational network as in figure 14.9(b). In this figure, T is the transfer operator
u → y if the inputs at the right are put to zero.

However, the above is only possible when Σ−1
22 is outer and invertible. With Σ given

as (14.30), when is this the case? A necessary condition for invertibility is that Σ∗
22Σ22�

0, and since Σ∗
22Σ22 = I − T∗T , it follows that T must be strictly contractive. In this

case, proposition 12.13 has shown that the embedding algorithm yields Σ22 as an outer
spectral factor of I − T∗T . Hence, if T is strictly contractive, Σ22 is outer and invert-
ible automatically, and T has a Θ-based cascade realization. This is the reason why we
have put Σ12 = T in equation (14.30).

The Θ-based cascade network of Σ represents a filter structure which is well known
in its time-invariant incarnation. In this context, one typically chooses Σ11(z) = T(z),
because then the transmission zeros of Σ(z), the zeros of Σ11(z), are equal to those of
T(z). Simultaneously, the zeros of Σ22(z) are directly related to those of Σ11(z) (they are
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Figure 14.9. (a) a J-unitary cascade factorization has the same structure as a unitary cas-cade factorization, but contains J-unitary rotations (shaded circles), (b) Lossless embeddingand Θ-cascade factorization of a strictly contractive upper operator T : u → y.



LOSSLESS CASCADE FACTORIZATIONS 417
‘reflected’ in the unit circle). The point of using this filter structure is that these zeros
appear as the zeros of the individual sections of the cascade, and hence they are individ-
ually determined directly by the parameters of the corresponding section, rather than by
the combined effect of all parameters. It follows that the zeros of T(z) are highly insen-
sitive to parameter changes of the cascade, which makes the construction of filters with
a well-defined stopband possible, even if approximate parameters (finite word-length
implementations) are used.

However, note that in the time-varying case, using the above-described procedure,
it is not possible to choose Σ11 = T , because Σ22 will in general not be outer and in this
case AΘ in (14.31) is not stable: `AΘ > 1. In the time-invariant case, this does not pose
real problems: even with the eigenvalues of AΘ larger than 1, it is possible to factor
Θ in the same way as before, which ultimately results in a stable cascade filter back
in the scattering domain. There is no apparent reason why the same would not work
in the time-varying domain: currently, the limitation seems to lie in the fact that we
always require our realizations to be stable, in order to associate a transfer operator to
it via (I −AZ)−1. The foregoing factors provide reason to investigate (in other research)
cases where the A-matrix contains both a stable and an anti-stable part. Because of state
transformations, these parts can become mixed, and one of the first issues to address
would be, given an A operator, to decouple it into stable and anti-stable parts.





15 CONCLUSION

As a concluding chapter of this book we offer some thoughts on the likeness and the
differences between linear time invariant and linear time varying systems, and a short
summary of possible applications beyond the realm of the computational theory that
we have presented.On the likeness and di�erence between LTI and LTV
It is sometimes said that “linear time-varying system theory is but a slight extension
of the time-invariant case”. Such a sweeping proposition has only a very partial claim
to truth! While it is true that a number of methods carry over from an LTI to an LTV
context, it is also true that central (and fairly deep) properties of LTI systems do not
hold in the LTV case—in other words: the LTV case is considerably richer. Having
got to the end of this book we can appreciate the similarities and the differences and
give a reasoned account of them.

Let us start with realization theory. In both LTI and LTV theory, the Hankel operator
plays a central role. Its minimal factorization into a reachability and an observability
operator allows to derive the state realization operators {A;B;C}. In the LTI case, the
Hankel operator has a classical Hankel structure: its matrix representation has the form2664 h1 h2 h3 · · ·

h2 h3
h3...

. . .

3775 : 419
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In the LTV case, the Hankel operator is actually a tensor with three indices, the third
index being necessary because of its time-varying nature. The typical Hankel structure
is not any more a simple algebraic condition of equality between specific entries in a
matrix but among entries of the tensor. At the same time, a factorization of the “snap-
shots” of the operator, obtained by keeping one of the indices of the tensor fixed, gives
rise to range conditions from which a realization can be derived. Range properties are
capable of characterizing a Hankel operator also in the LTI case, a fact that has been
exploited to great advantage in modern system identification theory under the name
4SID: state space subspace system identification (see e.g., [Vib95]). In the LTV case,
however, it is this property that really counts and whose exploitation yields the desired
realization, as was shown in chapters 3 and 5. An interesting corollary is the fact that if
an u.e. stable LTI system has a minimal realization of a certain degree, then there will
not exist an LTV realization for it of lower degree (not even locally). In this respect,
LTV does not provide much more freedom as far as realization theory is concerned!

Moving to the realization theory for inner and J-inner operators (chapters 6, 7 and
8), significant differences between LTI and LTV appear. In the LTV case it is conceiv-
able, even quite common, to find a transfer operator with finite state space and a unitary
realization, but which is not inner. This situation cannot occur in the LTI case where we
can show that systems with a finite dimensional orthogonal state space realization are
necessarily inner. Defective cases show up much more easily in the LTV case. A case
in point is an example where the finite-degree LTV system starts out as an LTI system
(for large, negative values of t), changes around t = 0, and finally stabilizes again to
LTI for large positive values of t. If the number of zeros inside the unit circle of the
two extreme LTI systems are different, then the isometric operator in an inner-outer
factorization will not be inner. The reason is the presence of a doubly shift invariant
subspace (see chapter 7). The situation is not at all exotic and manifests itself already in
simple examples. The corresponding LTI case involves the notion of “full range” shift
invariant spaces, with great system theoretic and analytic importance, but of a very dif-
ferent nature: the defective case necessarily entails systems with infinite dimensional
state spaces which in the discrete time context will be rather exotic. Be that as it may,
it turns out that the lack of doubly invariant defect spaces plays an important role in
inner embedding theory in both cases equally.

Most of the approximation theory for systems is based on constrained interpolation
theory—see chapters 9 and 10. It turns out that here LTI and LTV parallel each other. In
fact, LTV throws a new light on the LTI theory which was previously based on analytic
properties of transfer functions (as in the classical paper of Adamyan, Arov and Krein).
Much to our surprise when we developed the theory originally, the time-varying ver-
sion of the Schur-Takagi theory (and of course all the other versions of much simpler
classical interpolation problems) appears to be completely and exclusively algebraic.
No analytic property has to be used to derive all the pertinent results. This makes inter-
polation a smooth and transparent piece of theory of great import for many problems
in system theory such as optimal control and model reduction theory.

Spectral factorization theory offers an interesting piece of comparison between the
two cases. Although the W-transform provides for a kind of surrogate spectral theory in
the LTV case, it is a rather weak tool, mainly of use in interpolation theory. LTV theory
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thus misses a strong notion of spectrum on which a splitting of “time-varying poles”
and zeros with regard to stability can be founded. On the other hand, if calculations are
based on inner-outer and spectral factorizations, and expressed in state space terms,
then the two have an obvious parallel, as seen from the resulting Riccati equations.
In chapters 12 and 13 we have given a closed form solution to the Riccati equation
which arises in embedding, directly in terms of the transfer operator to be embedded.
In the LTI case, solving the algebraic Riccati equation leads directly to an eigenvalue
problem for the related Hamiltonian. No such luxury exists in the LTV case, where
the Riccati equation is in name recursive but can be partially recursive and partially
algebraic, or even completely algebraic as in the LTI case, which is anyway a special
case. The existence of a closed form solution is of great help not only to show existence
of a solution, but also to prove convergence of the recursion to the true solution when
started from an approximate initial point.

Finally, parametrization of state space representations works equally well for the
LTI case as for the LTV case, and according to the same principles. Since the LTI theory
is the most contentious, we have worked it out in detail in chapter 14, but the technique
applies equally well to the LTV case, and has been inspired by it.

We have presented the development in such a way that the LTI case appears as a
special case of the LTV theory—as it should be. Likewise, classical matrix algebra
can be viewed as another special case of the LTV theory (disjoint from the LTI case,
of course). It is remarkable that a single theory is capable to cover all cases. Special-
izing LTV to LTI gives sharper results in some key instances, especially when external
or inner-outer factorizations are considered, but in many other cases, LTV works just
as well and yields much more general properties. Yet, there are other cases where a
specialization to LTI from LTV does not give all results, e.g., in Hankel-norm model
reduction for LTI Hankel matrices, the LTV theory applies but one would still have to
show that the resulting approximant is LTI.Applications
A relatively weak point of LTV theory has been the presumed lack of major appli-
cations. Two major reasons for this are (i) the impossibility of identification from a
single input-output pair, thus precluding adaptive (tracking) applications unless fur-
ther assumptions are made, and (ii) the absence of a spectral theory (no convenient
z-transform). Major results such as a generalized interpolation theory and the corre-
sponding model reduction techniques give new directions but are still very new. Thus,
LTV theory has been slow in coming of age, and quite a few related problems were
considered intractable by people working in control, signal processing or numerical
algebra. Gradually, major applications are now appearing, and we expect many more
to come. A short summary:

model reduction for finite element models of large scale integrated circuits using
“Schur type interpolation” [ND91, DN90];

precalculated control for minimal sensitivity of switched networks, e.g., power dis-
tribution systems [Yu96, SV96];
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new preconditioners for calculating eigenvalues of large sparse matrices using Krylov
subspace methods (e.g., [Saa96]);

subspace estimation and tracking; stable large matrix inversion; low complexity in-
version of matrices with (multiple) thin bands or other forms of sparseness;

the design of time-varying filter banks and appropriate inverses for image coding,
especially in high quality applications such as medical images [Heu96].

However, many applications are still to be developed, even for the cases just men-
tioned. Given the present high level of understanding of LTV theory, we believe that
many new applications will arise in the coming years, and that they will be based on
the sound system theoretical principles that we have tried to develop in this book.



Appendix AHilbert space de�nitions and properties

This appendix contains a brief review of those Hilbert space definitions and results that
are relevant to this book. The material in this chapter is basic and can be found in text-
books such as Akhiezer-Glazman [AG81] (which we follow here), Halmos [Hal51],
and Fuhrmann [Fuh81, chap. 2]. The main focus is on the properties of subspaces of a
Hilbert space.Linear manifolds
In this section, we consider complex vector spaces whose elements (‘vectors’) are not
further specified (they could, for example, be vectors in the usual n-dimensional Euclid-
ean space C n , or more in general, be infinite-dimensional vectors). In a complex vector
space H two operations are defined: the addition of two elements of H and the mul-
tiplication of an element of H by a complex number, and H should contain a unique
null element for addition. Elements f1; f2; · · · ; fn inH are called linearly independent
if (for complex numbers αi)

α1 f1 +α2 f2 + · · ·αn fn = 0 ⇔ α1; · · · ;αn = 0 :H is finite dimensional (say n-dimensional) if at most a finite number of n elements
are linearly independent. Such spaces are studied in linear algebra and yield a special-
ization of Hilbert space theory. A set M of elements of a complex vector space H is
called a linear manifold if for all complex scalars α;β,

f ∈M; g ∈M ⇒ α f +βg ∈M
A setM is called the direct sum of a finite number of linear manifoldsMk ⊂H,M=M1 +̇ · · · +̇Mn ; (A.1)

if for every g ∈M there is one and only one expression in the form of a sum

g = g1 +g2+ · · ·+gn 423
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where gk ∈Mk, and if any sum of this form is inM. M is a linear manifold itself. A
set of n linear manifolds {Mk}n

1 is called linearly independent if

f1 + f2 + · · ·+ fn = 0 ( fi ∈Mi) ⇒ f1; · · · ; fn = 0 :
Linear independence is both a necessary and a sufficient condition for the construction
of the direct sum in (A.1).Metric space
A metric space is a setH for which a distance d( f ;g) is defined, which satisfies(i) d( f ;g) = d(g; f ) > 0 when f 6= g(ii) d( f ; f ) = 0(iii) d( f ;g) ≤ d( f ;h)+d(g;h) (triangle ineq.)

A sequence of elements fn inH has a strong limit the point f ∈H if

lim
n→∞

d( fn; f ) = 0 : (A.2)

We write fn → f , and say that { fn} converges to f in norm. This is called strong or
norm convergence. From (iii) it follows that (A.2) implies

lim
m;n→∞

d( fn; fm) = 0 : (A.3)

A sequence { fn} that satisfies (A.3) is called a Cauchy sequence. There are metric
spaces H in which a Cauchy sequence { fn} does not necessarily converge to an ele-
ment of the set: (A.3) does not imply (A.2). If it does, thenH is called complete.

A limit point of a set M ⊂ H is any point f ∈ H such that any ε-neighborhood
{g : d( f ;g)< ε} (ε > 0) of f contains infinitely many points ofM. A set that contains
all its limit points is said to be closed. The process of adding to M all its limit points
is called closure, the set yielded is denoted byM: the closure ofM. A set is dense in
another set if the closure of the first set yields the second set. As an example, the set
of rational numbers is dense in R, for the usual notion of distance.

If in a metric space there is a countable set whose closure coincides with the whole
space, then the space is said to be separable. In this case, the countable set is every-
where dense.Inner product
A complex vector spaceH is an inner product space if a functional ( · ; ·) :H×H→ C
is defined such that, for every f ; g ∈H and α1;α2 ∈ C ,(i) (g; f ) = ( f ;g)(ii) (α1 f1 +α2 f2;g) = α1( f1;g)+α2( f2;g)(iii) ( f ; f ) ≥ 0; ( f ; f ) = 0 ⇔ f = 0 :
The overbar denotes complex conjugation. The norm of f ∈H, induced by the inner
product, is defined by k f k2 = ( f ; f )1=2 :
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Some properties that follow from the definitions (i)–(iii) arekα f k2 = |α | ·k f k2 (α ∈ C )

|( f ;g)| ≤ k f k2 ·kgk2 (Schwarz’s inequality)k f +gk2 ≤ k f k2 +kgk2 (triangle inequality) :Orthogonality
Two vectors f ; g are said to be orthogonal, f ⊥ g, if ( f ; g) = 0. Given a set M, we
write f ⊥M if for all m ∈M, f ⊥ m. A set of vectors { fi} is an orthogonal set if for
i 6= j, ( fi; f j) = 0. A vector f is normalized if k f k2 = 1. An orthonormal set is an
orthogonal set of normalized vectors.Hilbert space
A Hilbert space is an inner product space that is complete, relative to the metric defined
by the inner product. The prime example of a Hilbert space is the space `2 of sequences
f = [ · · · f0 f1 f2 · · · ] = [ fi ]∞−∞ of complex numbers fi such that k f k2 < ∞. The inner
product in this space is defined by1( f ;g) = ∞

∑
−∞

fi gi :
This space is separable: a countable set whose closure is equal to `2 is for example the
set of all vectors with a finite number of non-zero rational components fi. The space`2 is complete, and it is infinite dimensional since the unit vectors

...
e0 = [ · · · 0 1 0 0 · · · ]
e1 = [ · · · 0 0 1 0 · · · ]
e2 = [ · · · 0 0 0 1 · · · ]

...

(A.4)

are linearly independent.
A closed linear manifold in a Hilbert space H is called a subspace. A subspace is

itself a Hilbert space. An example of a subspace is, given some vector y ∈H, the set
{x ∈H : (x;y) = 0}. (The main issue in proving that this set is a subspace is the proof
that it is closed; this goes via the fact that xn → x ⇒ (xn;y) → (x;y). See [AG81].)
Given a setM ⊂H, we defineM⊥ = {x ∈H : (x;y) = 0;∀y ∈M} :
Again,M⊥ is a subspace. IfM is a subspace, thenM⊥ is called the orthogonal com-
plement ofM. Given a subspaceM and a vector f ∈H, there exists a unique vector

1The meaning of the infinite sum is defined via a limit process of sums over finite sets, in case these sums
converge. See Halmos [Hal51, §7].



426 TIME-VARYING SYSTEMS AND COMPUTATIONS
f1 ∈M such that k f − f1 k2 < k f −gk2 for all g ∈M (g 6= f1). This vector f1 is called
the component of f inM, or the orthogonal projection of f onto the subspaceM. The
vector f2 = f − f1 is readily shown to be orthogonal toM, i.e., f2 ∈M⊥. With respect
toH, we have obtained the decompositionH = M⊕M⊥ ; (A.5)

where ‘⊕’ denotes the direct sum (+̇) of orthogonal spaces. The orthogonal comple-
mentM⊥ is likewise written as M⊥ = H	M :Projection onto a �nite-dimensional subspace
Let {ei}n

1 be a set of n orthonormal vectors in a Hilbert space H, and let M be the
finite-dimensional subspace spanned by linear combinations of the {ei}:M= {m : m = α1e1 +α2e2 + · · ·+αnen ; all αi ∈ C } :
Because the {ei} are linearly independent, any m ∈M can be written as a unique linear
combination of the {ei}. It immediately follows that (m;ei) = αi, so that

m = n

∑
1
(m;ei)ei

where (m;ei)ei can be regarded as the projection of m onto ei. Let f ∈H, then there is
a unique decomposition f = f1 + f2, with f1 ∈M, f2 ∈M⊥. Since ( f2;ei) = 0, we
have ( f ;ei) = ( f1;ei) and hence

f = n

∑
1
( f ;ei)ei + f2 ( f2 ∈M⊥) :

Hence the projection of f onto M is obtained explicitly as ∑n
1( f ;ei)ei. The projec-

tion formula can be extended to infinite dimensional subspaces which are spanned by
a countable sequence of orthonormal elements {ei}∞

1 .Basis
For a given separable Hilbert space H and sequence of vectors {φi}∞

1 in H, if every
subset of {φi} is linearly independent and the span of the {φi} is dense inH, then {φi}
is called a basis. This means that every vector f ∈H can be expanded in a unique way
in a series

f = ∞

∑
1

αiφi = lim
n→∞

n

∑
1

αiφi

which converges in the norm ofH. Such a basis is complete [AG81]: a set of vectors
in H is said to be complete if there is no non-zero vector in H which is orthogonal to
every vector in the set.
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In a separable Hilbert space, any complete sequence of orthonormal vectors {ei}

forms a basis. In addition, the cardinalities of two orthonormal bases of a separable
Hilbert space are equal: they are at most countably infinite, and if there is a finite or-
thonormal basis {ei}n

1, then any other orthonormal basis has also n elements. The di-
mension ofH is defined as the number of elements in any complete orthonormal basis.
Any subspace of a separable Hilbert space is again separable; the dimension of a sub-
space is defined in the same way. The dimension of a linear manifold L is defined to
be the dimension of its closure L.

If two Hilbert spacesH andH0 have the same dimension, then they are isomorphic
in the sense that a one-to-one correspondence between the elements of H and H0 can
be set up, such that, if f ;g ∈H and f 0;g0 ∈H0 correspond to f ;g, then

1. α f 0+βg0 corresponds to α f +βg;

2. ( f 0;g0)H0 = ( f ;g)H.

In fact, the isometry is defined by the transformation of a complete orthonormal basis
inH into such a basis inH0.Non-orthogonal basis; Gram matrix
Let { f1; · · · ; fn} be a set of n vectors in a Hilbert space H. Consider the matrix Λn =[( fi; f j) ]ni; j=1 of inner products of the fi, i.e.,

Λn = 26664 ( f1; f1) ( f1; f2) · · · ( f1; fn)( f2; f1) ( f2; f2) ( f2; fn)
...

. . .
...( fn; f1) ( fn; f2) · · · ( fn; fn) 37775 :

The set is orthonormal if Λn = I. It is linearly independent if and only if Λn is non-
singular (i.e., invertible). This can readily be shown from the definition of linear inde-
pendence: let f =α1 f1+α2 f2+ · · ·+αn fn be a vector in the linear manifold generated
by the fi, and suppose that not all αi are equal to zero. By definition, the set of vectors
is linearly independent if f = 0 ⇒ αi = 0 (i = 1; · · · ;n). Because f = 0 ⇒ ( f ; fi) =
0 (i = 1; · · · ;n), we obtain upon substituting the definition of f the set of linear equa-
tions 8><>: α1 ( f1; f1) + α2 ( f1; f2) + · · · + αn ( f1; fn) = 0

...
...

α1 ( fn; f1) + α2 ( fn; f2) + · · · + αn ( fn; fn) = 0

and hence αi = 0 (i = 1; · · · ;n) follows if and only if Λn is invertible.
Λn is called the Gram matrix of the set of vectors. Gram matrices play an impor-

tant role in the analysis of non-orthogonal bases, as is illustrated by the following. Let
{ fk}∞

1 be a complete system of vectors in a Hilbert spaceH, and let Λn be the sequence
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of Gram matrices Λn = [( fi; f j) ]ni; j=1. If

limn→∞ kΛnk < ∞
and

limn→∞ kΛ−1
n k < ∞

(where k · k denotes the matrix 2-norm), then { fk}∞
1 is a basis in H [AG81]. Such a

basis is called a Riesz basis. It is said to be equivalent to an orthonormal basis because
there is a boundedly invertible transformation (based on Λ) of { fk} to an orthonormal
basis. We use only such bases.

Let { fi}∞
1 be a non-orthogonal basis inH, and let {qi}∞

1 be an orthonormal basis ofH. Then the { fi} can be expressed in terms of the {qi} as

fi = ∑
j

Ri jq j ; where Ri j = ( fi;q j) : (A.6)

Define R = [Ri j]∞i; j=1. The Gram matrix Λ = [( fi; f j)] can be written in terms of R,
using the expansion (A.6), as

Λi j = ∑
k

Rik(R∗)k j

so that Λ = RR∗. Suppose that both R and R−1 are bounded. Then Λ and Λ−1 are
bounded as well, so that { fi} is a Riesz basis, and the expression ∑k(R−1)ikRk j = δi j

shows, with (A.6), that each qi can be written in terms of the { f j}:

qi = ∑
j

(R−1)i j f j :
Hence { fi} can be orthonormalized by R−1, where R is a boundedly invertible factor of
Λ.Bounded linear operators
LetH1 andH2 be Hilbert spaces, and let D denote a set inH1. A function (mapping)
T which associates to each element f ∈ D some element g = f T in H2 is called an
operator. D=D(T) is called the domain of T , while ran(T) = { f T : f ∈ D} is its range.
T is linear if D is a linear manifold and (α f +βg)T = α f T +βgT for all f ;g ∈ D and
all complex numbers α;β. The norm of a linear operator T iskT k = sup

f ∈D; f 6=0

k f T k2k f k2

and T is bounded if kT k < ∞. A bounded linear operator is continuous: for every
f0 ∈ D,

lim
f → f0

f T = f0T ( f ∈ D) :
If S is another bounded linear operator such that the product ST is defined, then kST k ≤kSk ·kT k.
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A linear operator T is finite dimensional if it is bounded and if ran(T) is a finite-

dimensional subspace of H. Let {hk} be a basis in ran(T), then the operator can be
expressed as

f T = n

∑
1
( f ;gk)hk

where {gk} is a finite system of vectors, not depending on f .
Let T : H1 → H2 be a bounded linear operator defined on the whole of H1. The

adjoint of T is the unique operator T∗ :H2 →H1 with the property that for all f ;g ∈H1,( f T;g) = ( f ;gT∗) :
T∗ always exists and is unique, (T∗)∗ = T , (ST)∗ = T∗S∗, and if T−1 exists then (T−1)∗ =(T∗)−1 =: T−∗. T is called self-adjoint if T = T∗; a self-adjoint operator is called pos-
itive if ( f T; f ) ≥ 0 for all f ∈H1.

Let {ek}∞
1 be an orthonormal basis inH. Suppose that the sum ∑∞

k=1 (ekT;ek) con-
verges absolutely. Then T is said to be a nuclear operator whose trace is given by

trace(T) := ∞

∑
1

(ekT;ek) ;
It can be shown that the property and the value of the trace does not depend on the basis
chosen [AG81].

The null-space or kernel of a bounded linear operator T : H1 → H2 is the linear
manifold

ker(T) = { f ∈H1 : f T = 0} :
This linear manifold is actually closed, hence ker(T) is a subspace. On the other hand,
the range of T is a linear manifold which is not necessarily closed; it is closed if and
only if the range of its adjoint is closed. H1 andH2 satisfy an orthogonal decomposi-
tion as H1 = ker(T) ⊕ ran(T∗)H2 = ker(T∗) ⊕ ran(T) : (A.7)

T is said to be injective (one-to-one) if f T = gT ⇒ f = g, which reduces for linear
operators to the condition f T = 0 ⇒ f = 0, i.e., T is injective if and only if ker(T) = 0.
Hence if the range of T∗ is dense inH1, then T is one-to-one. T is surjective (onto) if its
range is all ofH2. T with domain restricted to ker(T)⊥ maps one-to-one to the closure
of its range, but is not necessarily surjective. If T is both injective and surjective, then
(by the closed graph theorem [DS63]) it is boundedly invertible.

An operator P is a projection if it satisfies P2 = P. It is called an orthogonal pro-
jection if, in addition, P∗ = P. If M is a subspace in H, then H =M⊕M⊥. The
orthogonal projector PM onto the subspaceM is unique.

The following theorem gives necessary and sufficient conditions for the range of an
operator to be closed (cf. [Hal51, §21], [Dou66]):

Theorem A.1 Let T be a bounded operator on a Hilbert space.

ran(T∗) is closed ⇔ ∃ ε > 0 : kxT k ≥ εkxk for all x ∈ ran(T∗) : (A.8)
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A linear manifold (subspace) M is called an invariant manifold (subspace) for an

operator T if MT ⊂M. M is invariant for T if and only if PMTPM = TPM.
An operator U is called an isometry if it satisfies UU∗ = I, a co-isometry if U∗U =

I, and unitary if it satisfies both. If U is unitary, then it is invertible, and U−1 = U∗.
Two Hilbert spacesH1 andH2 are isometrically isomorphic if there exists an invertible
transformation U such that( fU;gU)2 = ( f ;g)1 (for all f ;g ∈H1) :
In this case, U is unitary.Transfer function theory
In closing this chapter, let us give some ingredients of classical function theory and
harmonic analysis. Consider a causal, time invariant and time discrete system with
impulse response [· · · 0 T0 T1 T2 · · ·], starting at time k = 0. We assume that all Tk

are m × n matrices (for easy reading, assume them scalar). The corresponding transfer
function is defined by the formal series

T(z) = T0 + zT1 + z2T2 + · · · (A.9)

where z denotes the unit delay (in engineering literature the causal unit delay is usu-
ally denoted z−1, for the present discussion the definition given is more convenient.)
The purely formal representation allows for formal multiplication of the transfer func-
tion with a one-sided input series. If u = [u0 u1 u2 · · ·] is an input sequence, and
y = [y0 y1 y2 · · ·] the corresponding output sequence such that y = uT , then

yk = k

∑
i=0

uiTk−i ;
The same would be obtained if we look at the series U(z) = u0 + zu1 + z2u2 + · · · and
Y(z) = y1 + zy1 + z2y2 + · · ·, and formally equate Y(z) =U(z)T(z).

In the linear time invariant (LTI) case, the transfer operator corresponding to T(z)
is actually given by the Toeplitz operator

T (T(z)) = 26666666664
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 T0 T1 T2 T3
. . .

. . . 0 0 T0 T1 T2
. . .

. . . 0 0 0 T0 T1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

37777777775 :
However, T(z) can also be interpreted as a m×n matrix function of a complex vari-

able z. The convergence of the series representation for T(z) in the complex plane can
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then be studied and related to input/output properties of the system whose transfer func-
tion is T(z). From the theory of Maclaurin series, we know that if the growth in mag-
nitude of the series [Tk]∞0 is sufficiently restricted, then the series will converge to an
analytic function inside a disc around the origin, which is also denoted by T(z) but
now has the meaning of a complex matrix function. Of course, formal multiplication
of series in a symbol z is consistent with the multiplication of Maclaurin series in the
intersection of their domains of convergence.

For the benefit of the reader, we recall a few relevant facts from the theory of com-
plex series. For an extensive treatise on the subject, see [WW92], a more compact ac-
count of properties is found in [Rud66].

For a one sided series as given in equation (A.9), there exists a positive number ρ
called the convergence radius which is such that the series converges absolutely in
the open disc {z : |z| < ρ} of the complex plane. The series will diverge outside the
closed disc {z : |z| ≤ ρ} (on the circle convergence is dubious). ρ is given by the
expression

ρ = lim
k→∞

kTkk 1
k

in which kTkk indicates the Euclidean (induced matrix 2-norm) of the matrix Tk.

Inside the open circle of convergence, T(z) is an analytic function of T(z), meaning

that the derivative dT(z)
dz exists as a complex matrix at each point {z : |z|< ρ} (a single

complex matrix independent of the direction of dz). The series has a converging
termwise derivative in that region as well, i.e.,

dT(z)
dz

= ∞

∑
k=1

kzk−1Tk :
The region of analyticity of T(z) can extend much beyond the radius of convergence,
thanks to analytic extension. For example, the series 1+z+z2+ · · · has convergence
radius 1 but its analytic extension is given by 1=(1−z), which is analytic in the whole
complex plane except the point z = 1. The convergent series corresponding to this
T(z) outside the closed unit disc is given by

T(z) = −
∞

∑
k=1

z−k

which is also of the Maclaurin type, but now in the complex variable z−1. None of
these two series converge on the unit circle in the usual sense, but they may do so
in an extended sense.

In particular, if T(z) is analytic in the open unit disc D = {z; |z| < 1}, then it has a
onesided series representation T(z) = ∑∞

0 zkTk which converges in D.

A one sided input sequence U(z) = u0 + zu1 + z2u2 + · · · of the `2-type is analytic
in the open unit circle and is such that the integral

1
2π

Z π

−π
kU(ρeiθ)k2dθ
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is uniformly bounded for ρ < 1 (the integral is a monotonously increasing function
ρ). Its limit for ρ → 1 is given by

1
2π

Z π

−π
kU(eiθ)k2dθ

which is known to exist and to equal the `2-norm of the sequence [uk]∞0 . This is a
special case of the celebrated Parseval theorem:kuk`2 = [ ∞

∑
k=0

kukk2] 1
2 = [ 1

2π

Z π

−π
kU(eiθ)k2dθ] 1

2 = kU(eiθ)kL2(T)
in which the last quantity is by definition the L2-norm for functions on the unit circle
T = {z : z = eiθ} whose squared norm is integrable in the measure dθ

2π . Such one-
sided functions U(z) are said to belong to the Hardy space H2(T), which can be
viewed as the subspace of L2(T) functions with vanishing Fourier coefficients of
strictly negative index. Indeed, such L2-functions have a unique analytic extension
to the open unit disc D, uniquely defined by the corresponding one-sided Fourier
expansion. For more information see the introductory survey of [Hof62] and the
treatment of Hardy spaces in [Rud66].

H∞(D) is the space of functions T(z) which are uniformly bounded in D:kT(z)kH∞(D) := sup
z∈D
kT(z)k < ∞ :

On the unit circle, H∞(T) is a subspace of the space of essentially bounded, mea-
surable matrix functions L∞(T) on the unit circle T of the complex plane.

A system is uniformly stable in the “bounded input bounded output” (BIBO) sense
for the `2-norm, if kTk= sup

u∈`2

kuTkkuk < ∞

By using Parsevals theorem, it follows that this operator norm is equal to the L∞(T)-
norm.

Harmonic analysis shows that a causal system T is BIBO stable if and only if T(z) is
analytic inside the unit disc and uniformly bounded: T(z) is in H∞(D) (for the original
proof, see [BC49]). In this case, sup−π<θ≤πkT(ρeiθ)k is a monotonously increasing
function of ρ and its norm as a transfer operator is given by

sup
ρ<1; −π<θ≤π

kT(ρeiθ)k= sup
−π<θ≤π

kT(eiθ)k
so that kT(z)kH∞ = kT(eiθ)kL∞ = kTk :
We see that in this case, the norm of T = T (T(z)) as an input-output operator over`2-spaces equals the L∞-norm of the Fourier transform T(eiθ) of T(z) on the unit cir-
cle, which, for causal systems described by one-sided transfer functions, is actually the
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supremum of the norm of T(z) over the open disc {z : |z|< 1}. The fact that in this case
we have sup|z|≤1 kT(z)k = supθ kT(eiθ)k, i.e., the H∞ norm of T(z) on the unit disc is
equal to the L∞ norm of T(eiθ) on the unit circle actually follows from the celebrated
maximum modulus theorem valid in a domain of analyticity. Much more is known
about these functions, see e.g., [Hof62].

The danger of misinterpretation resides in partial reversals of this result. It is not true
that the conditions “T(z) is analytic in the unit disc” and “supθ kT(eiθ)k<∞” entail that
T(z) ∈ H∞, i.e., T causal and kTk< ∞. The standard and elementary counterexample
is given by

T(z) = exp(1+ z
1 − z

) :
T(eiθ) = exp(icot θ

2 ) so that for all θ, kT(eiθ)k = 1. However, for 0 < ρ < 1, we see

that T(ρ) = exp 1+ρ
1−ρ → ∞ as ρ → 1! Note that quite the opposite is true for T(z) =

exp( z+1
z−1 ) which does correspond to a BIBO stable system. T(z) = exp( 1+z

1−z ) should be
interpreted as a bounded but anticausal transfer function.

Projections of L∞-functions of the unit circle onto their causal or anticausal parts
may produce similar kinds of problems. Suppose that T(eiθ) = ∑∞

k=−∞ Tkeikθ is some
(double sided) Fourier series and consider the “projection to causal” given by

P(T)(eiθ) = ∞

∑
k=0

Tkeikθ:
It is not true that kT(eiθ)kL∞ < ∞ ⇒ kP(T)(eiθ)kL∞ < ∞. This fact is fundamental to
harmonic analysis and symptomatic for the relation between the time domain and the
frequency or spectral domain. The most classical example is perhaps the ideal low pass
filter. Assume that T(eiθ) is real and specified by T(eiθ) = 1 for − π

2 ≤ θ ≤ π
2 and zero

for other values of θ. We have T0 = 1
2 and for k 6= 0

Tk = Z π

−π
T(eiθ)e−ikθ dθ

2π
= Z π=2

−π=2
e−ikθ dθ

2π
= 1

πk
sin(πk

2
):

In matrix form, the corresponding transfer operator is

T = 1
π

266666666666666664
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 1 π
2 1 0 − 1

3 0 1
5 0

. . .
. . . − 1

3 0 1 π
2 1 0 − 1

3 0 1
5

. . .
. . . 0 − 1

3 0 1 π
2 1 0 − 1

3 0
. . .

. . . 1
5 0 − 1

3 0 1 π
2 1 0 − 1

3
. . .

. . . 0 1
5 0 − 1

3 0 1 π
2 1 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

377777777777777775 :
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The projection P(T) is given by the series

P(T)(z) = 1
2 + 1

π (z − 1
3 z3 + 1

5 z5 − · · ·)= 1
2 + 1

π arctan z

since d
dz (z − 1

3 z3 + 1
5 z5 + · · ·) = 1

1+z2 . It has an essential singularity at the points z = ±i

on the unit circle (i =p−1), and hence neither belongs to L∞ nor to H∞, although it is
analytic in the unit disc. Hence we see that P(T) is unbounded in the operator norm,
while T is perfectly bounded.
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Glossary of notation

Diagonal algebraN = C N : space of (non-uniform) sequences with i-th entry in C Ni (p. 20).

N = #N : the sequence of dimensions ofN (p. 20).`N2 : space of bounded (non-uniform) sequences inNX (M;N ): space of bounded operators `M2 → `N2 and XM
2 → X2N (p. 22).U ;L;D: upper/lower/diagonal bounded operators in X (p. 23).X2;U2;L2;D2: (Hilbert) spaces of operators in X ;U ;L;D with bounded HS-norm

(p. 25).

πi: sequence constructor. A ∈X has entries Ai j = πiAπ∗
j (p. 22).

Z: bilateral causal shift operator (p. 26).

T (k) : diagonal shift of T ∈X over k positions into south-west direction (p. 27).

r(X): spectral radius of X (p. 24).

PH: projection onto a subspaceH ⊂ X2 (p. 25).

P;P0;P0: projection onto U2, D2, L2Z−1 (p. 25).

{A;B} = P0(AB∗): diagonal inner product (p. 77).

{A;B}J = P0(AJB∗): indefinite diagonal inner product (p. 200).

A� 0: A is uniformly strictly positive definite (p. 77).

A{k} = A(k)A(k−1) · · ·A(1) (p. 27).

A[k] = AA(1) · · ·A(k−1) (p. 26).

T[k] =P0(Z−kT): the k-th diagonal above the main (0-th) diagonal of T (p. 28).

ΛF =P0(FF∗): the Gram operator associated to a basis representation F (p. 84).

sdim ( ·): the sequence of dimensions of a left D-invariant subspace (p. 78).`D2 : the space of bounded sequences with entries in D( ·)†: the pseudo-inverse (Moore-Penrose generalized inverse) 453
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T: realization matrix. T= {A;B;C;D} stands for the matrix T= h

A C
B D

i
(p. 37).`A: the spectral radius of AZ (p. 38).H(T);Ho(T);K(T);Ko(T): input state space, output state space, input null space,

output null space of an operator T ∈ X (p. 89).

Q;F;G;F0: typically, Q and G are orthonormal basis representations of the input and
output state space. F, F0 are strong basis representations of these spaces
(p. 105 ff.).C;O: controllability, observability operators (p. 54).

HT ;KT ;ET : the operator T on restricted domains and ranges. HT :L2Z−1 → U2 is the
Hankel operator. KT : L2Z−1 → L2Z−1, ET : U2 → U2 (p. 88).

TΘ[SL] = (Θ11SL − Θ12)(Θ22 − Θ21SL)−1 (p. 199).
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time invariant, 383–397
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cascade factorization, 410–417
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371, 378–379
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J-orthogonal, 201
orthogonal, 78, 425

Complete orthogonal decomposition, 150
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265, 268, 383, 410
Computational linear algebra

approximation, 263, 266–268
Cholesky factorization, 371, 378–379
complexity, 2, 5, 9, 13, 51, 71, 167, 265,

268, 383, 410
concepts, 1–7
inversion, 5, 145–186
multiplication, 2–4, 383
QR factorization, 142, 170, 175

Computational model, see realization
Computational network, 2
Conjugate-Hankel operator, 213, 280
Conjugation of interpolation problem, 245, 257
Conjugation of J-inner operator, 220, 246
Contractive operator, 77, 343 455
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conditions on realization, 344, 348

Convergence
of Lyapunov equation, 97–98
of Riccati recursion, 355–356, 372–375

Coprime
inner-coprime factorization, 126–132
J-inner-coprime factorization, 218

Crout-Doolittle, 69

Darlington synthesis, 338, 384
Defect space, 179
Deflated interpolation problem, 246, 257
Dense set, 424
Diagonal

algebra, 76–85
expansion, 341
inner product, 76
J-inner product, 200
operator, 23
representation (decomposition), 28
shift, 27

Dichotomy, 24, 156, 186
Dimension sequence, 78
D-invariance, 75
D-invariant subspace, 78
Direct sum, 423
Displacement structure, 13, 44–46, 65–71
Domain, 428
Doubly shift-invariant subspaces, 138–141, 153

Elementary rotation, 296–299, 310, 359, 386–
387, 390, 412

Embedding, 337–362
algorithm, 357
connection with spectral fact., 376–377
finite matrix, 354
for minimal parametrization, 393, 398
of isometric operator, 128, 136, 139–142,

157
of J-isometric operator, 215, 225, 253

Equivalent minimal realization, 98
External factorization, 126–132, 165, 170, 270

Factorization
cascade, 383–417
external, inner-coprime, 126–132, 165,

170, 270
inner-outer, 149–165, 171
J-inner-coprime, 215–218, 270
J-unitary causal-anticausal, 224
spectral, 371

Filter
based on Hessenberg, 389, 392
based on Σ, 397–410
based on Θ, 410–417
LTI orthogonal filter synthesis, 387–397

Finite-dimensional operator, 429

Finiteness
finite matrix computations, see computa-

tional linear algebra
locally finite state dimensions, 40
locally finite subspace, 78
subspace dimension, 423

Four block problem, 260–262
Fractional transformations, 199
Frobenius norm, 25
Full range system, 138
Future operator, 93, 210
Future part of signal, 35, 88

Givens rotation, 412
Givens rotation, 296–299, 310, 359, 386–387,

390
Gram operator (Gramian), 83, 84, 427

Halmos extension, 359
Hankel operator, 88–95

definition, 53, 88
diagonal expansion, 341
factorization, 92, 103, 107, 113, 168
matrix, 6, 59
snapshot, 90

Hankel-norm, 264, 268–269
Hankel-norm model reduction, 9, 263–306

application to matrices, 307–333
order-recursive algorithm, 292–300
parametrization, 290
realization of approximant, 281
recipe, 270
Schur recursion, 292–300
theorem, 276

Hardy space, 432
Hermite-Fejer interpolation, 242–245
Hessenberg form, 159, 389, 392, 393
Hilbert space, 425
Hilbert-Schmidt operators, 25
Ho-Kalman realization algorithm, 117
Hyperbolic QR, 311, 316–322
Hyperbolic URV, 322–324

Identification, 62–64
Indefinite interpolation, 269–292
Indefinite spaces, 201
Index sequence, 20
Inertia signature, 45, 203, 205, 209, 310
Injective operator (one-to-one), 429
Inner coprime, 126, 132, 165, 170
Inner extension, see embedding
Inner operator, 121–143, 195

cascade factorization, 394, 400–403, 408–
410

external, inner-coprime fact., 126–132,
165, 270

inner-outer fact., 149–165, 171, 377
realization, 123–126
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Inner product, 424

diagonal, 76
Hilbert-Schmidt, 25
indefinite, 200
non-uniform, 21

Inner product space, 424
Inner-outer factorization, 149–165, 171

algorithm, 158, 159
theorem, 150
zero structure, 179

Input
normal form, 98
sequence, 20, 34, 73
state space, 89

Input-output map, see transfer operator
Interpolation, 233–260

basic problem, 238, 242, 244
connection to cascade fact., 410
deflated problem, 246, 257
Hermite-Fejer, 242–245
indefinite, 269–292
Nevanlinna-Pick, 237–241
non-degeneracy condition, 246
Nudel’man, 250, 255
regularity condition, 246, 257
Schur-Takagi problem, 260, 265
tangential Nevanlinna-Pick, 242
two sided, 250

Invariance
doubly shift-invariance, 138–141
left D invariance, 78
shift invariance, 59

Invariant manifold, 430
Inverse

generalized (Moore-Penrose), 150, 165
of general matrix, operator, 165–172
of outer matrix, operator, 169, 367
of upper matrix, operator, 2, 24, 146–149
system order, 168, 169
zero structure, 179

Isometric system, 122, 132–136
Isometry, 430
Isomorphy, 430
Isotropic vector, 201

J-external factorization, 215–218, 270
J-Gram operator, 202, 238, 271
J-inner operator, 191–231
J-inner product, 200
J-isometric operator, 195

conditions, 227
embedding, 215, 225, 253

J-lossless operator, 196, 218–231
J-Lyapunov equation, 218
J-nonsingular matrix, 311
J-orthogonal complement, 201
J-positive, negative, neutral subspace, 201

J-unitary operator, 195
anticausal J-inner, 219
causal-anticausal factorization, 224
connection with unitary, 196, 207, 412
fractional transformations, 199
J-inner-coprime factorization, 215–218,

270
mixed causality J-inner, 223, 252
realization, 205–209

Kernel, 429
Krein space, 202, 210, 224, 228
Kronecker’s theorem, 55, 94, 111, 168`A, 38
Left interpolation problem, LIP, 245
Levinson recursion, 13, 164, 384
Linear fractional transformation, 284
Linearly independent, 423
Locally finite

basis, 79
realization, 40
subspace, 78

Lossless operator, 121, 195, 218
Lower operator, 23
Lyapunov equation, 67, 68, 96–98, 131

connection with Hankel operator, 274
convergence, 97–98

Lyapunov equivalent, 41

Manifold, 423
Matrix approximation, 307–333
Matrix representation, 22, 74
Metric space, 424
Minimal parametrization, 390–397
Minimal realization, 54, 59, 93, 168
Minimal system order, 95
Mixed causality, 165–168, 175, 252, 284
Model reduction, 9, 60, 263–306
Multiband matrix, 50

Nehari problem, 260, 300–305
Nerode equivalence, 89
Nevanlinna-Pick interpolation, 237–241
Nevanlinna-Pick tangential interpolation, 242
Non-degenerate interpolation problem, 246
Non-degenerate subspace, 202
Non-uniform sequence, 20
Norm, 424

diagonal 2-norm, 268
Hankel-norm, 264, 268–269
Hilbert-Schmidt (Frobenius) norm, 25
of non-uniform sequence, 21
of operator, 22, 76, 428

Normalized realization, 98
Nudel’man interpolation, 250, 255

Observability Gramian, 95
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Observability operator, 54, 93
Observable realization, 59, 93
One-to-one, 429
Onto, 429
Operator

adjoint, 21, 82, 429
bounded, 22, 428
conjugation, 220, 246
contractive, 77, 343
domain, 428
kernel, 429
positive, 77
range, 428
shift, 26
state space model, 103
upper, lower, diagonal, 23

Order of system, 40, 168, 275
Orthogonal projection, 429
Orthogonal complement, 78, 425
Orthogonal projection, 25, 84, 202, 426
Orthogonality, 425
Outer operator or matrix, 5, 149, 365

factorization algorithm, 158, 159
inversion, 169, 367
properties, 367–370

Output
normal form, 98
null space, 89, 90
sequence, 20, 34, 73
state space, 58, 90

Overbar, 424

Parametrization of LTI system, 390–397
Passive layered medium, 195
Passive medium, 193
Past operator, 93, 210
Past part of signal, 35, 88
Periodic systems, 43, 97, 158, 161, 372
Persistently exciting, 62
Pick matrix, 239
Positive operator, 77
Positive real lemma, 370
Projection, 25, 84, 426, 429

boundedness, 28, 433
formula, 85
J-orthogonal, 202
snapshots, 75, 180

Projectively complete subspace, 202

QR factorization, 13, 175
QR iteration, 399
QZ iteration, 158, 161

Range, 428
Rank revealing QR, 60, 308
Reachability Gramian, 95
Reachability operator, 54, 93

Reachable realization, 59, 93
Realization

algorithm, 56, 101
anomalies, 113
balanced, 112
canonical

controller realization, 104
observer realization, 110
operator realization, 103, 108

definition, 35–40
input normal form, 98
Kronecker’s theorem, 55, 94, 111, 168
locally finite, 40
minimal, 54, 168
of a product, 48
of a sum, 47
of approximant, 281
of band matrix, 46
of displacement structures, 44–46, 65–71
of finite matrices, 42, 52–62
of inner operators, 125
of isometric operators, 133
of J-isometric operators, 209–210
of J-unitary operators, 205–209
of mixed causality, 51, 165–168
of multiband matrix, 50
of operators, 87–119
of periodic systems, 43
of upper (outer) inverse, 2, 48, 169
order, 40, 168, 275
output normal form, 98
similarity/equivalence, 40
SVD-based, 112, 113
uniform exponential stability, 39
unitary, 124–126

Recursion
Lyapunov, 97
Riccati, 159–162, 354, 371
state, 36

Regular interpolation problem, 246
Regular subspace, 202, 204
Representation

basis, 79
matrix, 22, 74

Riccati equation, 159–162, 345, 369, 371
convergence, 355–356, 372–375
initial point, 354–355, 371–372
square-root algorithms, 356–359

Riesz basis, 83, 428
Right interpolation problem, RIP, 245
Roomy system, 127, 138
Rotation, elementary (Givens), 296–299, 310,

359, 386–387, 390, 412
Row of an operator, 23

Scattering operator, 191
Schur complement, 344
Schur decomposition, 398–400
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Schur recursion, 13, 164, 292–300, 316–318,

378–379, 384
breakdown, 319–320

Schur subspace estimator (SSE), 309
Schur’s inversion lemma, 169
Schur-Takagi interpolation problem, 260, 265
sdim (sequence of dimensions), 78
Section

elementary cascade section, 408–411, 414–
415

elementary lossless stage section, 407–
408, 412–414

Separable space, 424
Sequence

index, 20
non-uniform, 20
of dimensions, 78
of spaces, 20

Shift invariance, 54, 59, 102
Shift operator, 26
Signal, 34
Signature matrix, operator, 194, 202
Similarity of realizations, 40
Slice, 78, 79
Sliced basis, 79–84
Snapshots, 74–76, 81, 90
Spectral factorization, 363–381

theorem, 371
Spectral radius, 24, 38
Square-root algorithm, 158, 159, 356–359
Stability, 39, 106, 113, 367
Stage, 2
State transformation, 40
Strict

contractivity, 77, 343
positivity, 77

Strong basis, 83
Strong convergence, 424
Subspace, 425

canonical J-orth. decomposition, 203
J-positive, negative, neutral subspace, 201
left D-invariant, 78
locally finite, 78
non-degenerate, 202
projectively complete, 202
regular, 202, 204

Subspace tracking, 307–333

Surjective operator (onto), 429
SVD, singular value decomposition, 60, 264,

307
System

causal (upper), 35
full range, 138
inner, 122
isometric, 122
J-inner, 196
J-isometric, 195
J-lossless, 196
J-unitary, 195
lossless, 195
order, 40, 168, 275
outer, 149
properties

contractivity, 77
minimality, 93
observability, 93
positivity, 77
reachability, 93
u.e. stability, 39

realization, 37
transfer operator, 34
unitary, 122

System identification, 62–64

Toeplitz operator, 23, 43, 45, 97, 115, 131, 149,
171, 178, 236, 430

Transfer operator, 34
TSVD, truncated SVD, 60, 308
Two sided interpolation, 250

Uniform
exponential stability, 39
observability, 93
reachability, 93
sequence, 20

Unitary extension, see embedding
Unitary operator, 122
Unitary realization, 124–126
Upper operator, 23
URV decomposition, 60, 308, 324

W-transform, 235–237, 259

Zero structure, 179




