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Abstract—The existence of a “Darlington embedding” has
been the topic of vigorous debate since the time of Darlington’s
original attempts at synthesizing a lossy input impedance through
a lossless cascade of sections terminated in a unit resistor. This
paper gives a survey of present insights in that existential ques-
tion. In the first part it considers the multiport, time invariant
case, and it gives the necessary and sufficient conditions for
the existence of the Darlington embedding, namely that the
matrix transfer scattering function considered must satisfy a
special property of analyticity known as “pseudomeromorphic
continuability” (of course aside from the contractivity condition
which ensures lossiness). As a result, it is reasonably easy to
construct passive impedances or scattering functions which do
not possess a Darlington embedding, but they will not be rational,
i.e. they will have infinite dimensional state spaces. The situation
changes dramatically when time-varying systems are concerned.
In this case also Darlington synthesis is possible and attractive,
but the anomalous case where no synthesis is possible already
occurs for systems with finite dimensional state spaces. We give
precise conditions for the existence of the Darlington synthesis
for the time-varying case as well. It turns out that the main
workhorse in modern Darlington theory is the geometry of the
so called Hankel map of the scattering transfer function to be
embedded. This fact makes Darlington theory of considerably
larger importance for the understanding of systems and their
properties than the original synthesis question would seem to
infer. Although the paper is entirely devoted to the theoretical
question of existence of the Darlington embedding and its system
theoretic implications, it does introduce the main algorithm
used for practical Darlington synthesis, namely the ‘square root
algorithm’ for external or inner-outer factorization, and discusses
some of its implications in the final section.

I. INTRODUCTION

T RADITIONAL Darlington synthesis [1] is concerned
with the realization of a rational and ‘bounded real’

transfer function with bound 1 as a partial transfer
operator of a ‘lossless’ transfer matrix , which then has
the form

(1)

and in which the Smith–McMillan degree of is equal to
that of (it is equal to the dimension of the state space of
a minimal system theoretical realization for). In addition to
the embedding, a cascade realization of, which can always
be performed in the rational case, results in an attractive
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Fig. 1. The Darlington problem consists in the first place in embedding a
contractive andcausal transfer functionS in a unitary and causal�. For a
discussion of the meaning of the symbols used, see Section II.

realization of as well, especially from the point of view
of selective behavior, i.e., bandpass and bandstop properties.
Fig. 1 shows the Darlington set up. Signals on input and output
wires carry the interpretation of incident and reflected waves
in which the energy is measured as the norm squared quantity
integrated over time.

In this paper we consider two important generalizations
of the Darlington theory, one in the transform domain for
systems with nonrational transfer functions and the other in
the discrete time domain, for time-varying systems. We shall
discover a striking parallel between these two cases, but some
major and interesting differences as well. Generalizations of
the Darlington theory to nonrational functions was a popular
topic in the early seventies, and gave rise to contradictory
results. For example, it has been stated that any contractive
and causal transfer function has a Darlington synthesis

. If is required to be unitary on the imaginary axis
, the statement is certainly not true. Necessary and suf-

ficient embedding conditions were discovered independently
by the author [2] and D. S. Arov [3]. On the other hand,
if the requirement is simply that be embedded in an
isometric with a finite number of ports, then necessary
and sufficient conditions are also known, and closely related
to the classical Szegö condition for the existence of a ‘spectral
factorization’, a particularly nice exposition of which is given
in [4].

In recent times, the author and his collaborators have spent
quite some effort in extending the Darlington theory to the
discrete time, time-varying case, say a case that covers and
extends classical linear algebra. It turns out that embedding
anomalies which in the time-invariant case only occur for
systems with infinite dimensional state space, already take
place in time-varying systems with very low state dimensions.
We shall report on these results further on in this paper.
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It turns out that the state-space formalism is the most effec-
tive vehicle to discuss Darlington synthesis. Darlington himself
was working strictly with rational functions in the transform
domain. Anderson and Vongpanitlerd [5] have demonstrated
convincingly the power of the state space approach in their
landmark book. More recent work on time-varying systems
shows that Darlington theory does not need an analytical
framework, it suffices with a purely algebraic theory. Darling-
ton was working strictly with a scalar function , which he
was embedding in a 2 2 matrix function of the variable.
Darlington’s work was duly generalized by Belevitch [6], [7]
and put in a practical context by Neirynck e.a. [8] leading to
the effective and popular ‘parametric methods’ to synthesize
lossless selective cascade filters. Subsequent to this work there
were attempts to generalize it to multiple input multiple output
systems ([7] and [9]) but these were not really successful, due
to the lack of a good degree reduction criterion for multiport
factorization. Such a criterion was first presented in [10] and
lead to a new and effective method for multiport Darlington
synthesis [11]. It turns out that the latter method actually
generalizes to the nonrational case. We shall give a survey
of these results later on.

For the sake of uniform treatment, and ease of relating
to analytic properties, we shall put the theory in the-
domain, where the symbol can be interpreted as a causal
shift operator (for mathematical ease we useinstead of the
“ ” that is more common in the engineering literature),
or just as , where is the variable in the Laplace
transform of continuous time functions. The theory remains
in this way applicable to the ‘’-domain through the bilinear
transformation, whose inverse is , and which maps
the unit circle of the complex-plane on the imaginary axis
of the -plane and the open unit disc of the-plane onto
the open right half plane of the-plane (it is also the so-
called Smith transform). The reason why it does not matter
too much in which variable we work is precisely the algebraic
nature of the Darlington theory, and the the fact that the
bilinear transformation conserves the degree of polynomials
after transformation.

II. THE BASIC DARLINGTON SYNTHESIS PROBLEM

We now work toward a general formulation of the basic
Darlington synthesis problem in the-plane context. There
is some ambiguity in the literature concerning what is really
‘Darlington synthesis’, which we will explain further on. We
start out considering an transfer function which can
be thought of as representing a causal, discrete time system,
although that interpretation could be a little strenuous when
it concerns a continuous-time signal—but it does exist. If the
system represented by is stable in some sense (we already
assumed it to be causal), then will be analytic inside
the unit disc and have some boundedness associated with it.
There are several contexts appropriate for studying stability,
we choose one which is natural to Darlington theory as it
is concerned with propagation of energy, the Hilbert space
context. The impulse response corresponding to
defines bounded map of the convolution type between two

spaces of time series whose energy is bounded. Such spaces
are called ‘of type’. As input space we take time series of
the type where each belongs
to a (possibly complex) vector space of the type , in which

indicates the complex numbers. (As a rule, we take vectors
in the ‘row convention’, i.e. we write the multiplication of
a vector with a matrix as . When we handle infinite
series or infinite matrices, we single out the zero-th element by
surrounding it with a box, for orientation purposes.) We write
the Euclidean norm of a vector as and it equals

in which is the -th (scalar) component of . A time
series which is bounded in energy then has
the norm

The space of such bounded time series is traditionally called
. A simple matrix which maps a vector to a

vector will have an ‘operator’ norm given by

This norm isnot a Euclidean norm on the space of
entries of , such a norm would be called a ‘Frobenius norm’:

A bounded input—bounded output (BIBO) transfer operator
between an input space and an output space will have the
property that its Fourier transfer function is uniformly
bounded on the open unit disc of the
complex plane in the sense that the collection of Euclidean
matrix norms has a finite upper bound when .
It is known in complex function theory (for a good textbook,
see [12]) that such functions have radial limits
to values on the unit circle of
the complex plane, whose norms are also uniformly bounded
with the same bound. The space of such uniformly bounded
matrix-functions on the unit disc is traditionally called the
Hardy space . It is actually the subspace of measurable
and uniformly bounded functions on the unit circle ,
which have a uniformly bounded analytic continuation to the
open unit disc . It turns out that the bound, which is denoted

or equivalently , is actually a least upper bound
on the energy magnification between the input and the output
of [12], [13]. Hence, will be BIBO stable for the energy
norm on the input and output spaces iff . If,
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in addition, the bound is actually equal or less than 1, then
the system with transfer function will not amplify the
input energy, it will have a passive input/output behavior,
and should be realizable by a physically passive system. We
say that in that case is contractive (in the engineering
literature, the term “bounded real’ is also used, but we prefer
the mathematical term because of the ambiguous connotation
of the former). Such an is characterized by the properties:
‘ is analytic in and ’.
In particular we have that is a causal transfer function
and on the unit circle (in which indicates the
positive square root of ). Note that the conditions ‘
analytic in the open unit discand ’ are not
sufficient to guarantee that is in (i.e. -BIBO
stable)—a counterexample is given by ,
which is analytic but unbounded in , and of unit modulus
a.e. on the unit circle.

We need a few additional notions from matrix or operator
theory. The hermitian transform of a matrix is the matrix

whose elements are defined by in which the
bar indicates complex conjugation. We say thatis hermitian,
if it is square and equals its hermitian transform, . We
say that is positive definite if it is hermitian and for all
(row-)vectors of the right dimension we have .

is strictly positive definite if . An
matrix actually defines a linear map from a (complex)

-dimensional vector space to a (complex)-dimensional
vector space through the assignment . We
shall assume that on an-dimensional vector space an inner
product is defined as . The hermitian conjugate
then defines what is called an adjoint map through the rule

.
Since a transfer function also maps an input space, now of

type , to an output space, now of type, we may extend the
definitions to the natural in-product in -type spaces. In the
‘time domain’ we have here an abstract map
given by convolution, while in the transfer domain the map is
given by -transform multiplication: . The
relevant in-product in the input space (and likewise in the
output space) is expressed in the time domain by

and, via Parseval’s theorem, in the transform domain by

The adjoint of a transfer operator will then be defined
by the rule: . If is the
transfer function that corresponds to and the are
the matrix values that takes on the unit circle, then the
transfer function corresponding to its adjoint takes the values

on the unit circle. The corresponding
transfer function (i.e. function of) is then the so-calledpara-
Hermitian conjugate , which is anticausal
when is causal. It turns out that this transfer function
defines an output-input map that produces an energy in-product
related to the original by adjunction.

If corresponds to a passive system, then it is contrac-
tive, i.e. . This will be the case iff

. (Notice that in general
except on the unit circle —we must carefully
distinguish the upper star, which indicates pointwise Hermitian
conjugation, from the lower star, which denotes the analytical
continuation of the hermitian conjugate on the unit circle.) We
shall say that is “isometric” if
or, equivalently, . In that case, the energy
in the output is in all circumstances equal to the
energy in the input , and the system producing it must then
be physically lossless. A transfer function characterization
of this condition is obtained by analytic extension from the
unit circle as for whatever region in the
complex plane wherein the extension is well-defined. We say
that is ‘unitary’ if, in addition to , also

. This will be the case when is isometric
and square. If is at the same time causal and unitary
(i.e. it is in and it is unitary), then it is calledinner in the
mathematical literature, a term that we shall adopt. The term
‘Darlington synthesis’ of can then just as well be termed
‘inner embedding’ of . Given a contractive, it
is not at all obvious that there exists an such
that the combined is isometric. Nor is it obvious
that has an embedding into a unitary . In the next
section we shall summarize the results known on these matters.

As the reader will have noticed, we avoid a physical
terminology to indicate mathematical properties. The reason
should be clear: there are many ways to describe a given
physical situation mathematically. In our treatment, we use a
‘scattering’ framework throughout. This means that the signals
carry energy in the form of a quadratic norm. That is, for
example, the case when the input and output quantities of
a circuit are incident or reflected waves. If, at a given port,
the input quantity would be a voltage and the output
quantity a current , then the corresponding power transport
would be measured by the real part of the mixed voltage-
current product, . Given a normalizing resistance
value we can transform and to the wave quantities

and the power transport
becomes , the difference between the power
carried by an “incident wave” taken as input signal and the
power carried by the “reflected wave”taken as output signal
[14]. These power quantities are now strictly represented by
quadratic norms (the energy then becomes the integral over
time). It is known in filter theory that this is indeed a pertinent
way of representing selective filters connected between lossy
sources and loads [15].

Before proceeding to our main results, we need a few
more notions from analytical function theory. Any (scalar)
function in can be factorized as in
which is inner (i.e. a causal transfer function of constant
modulus 1 or pure phase function) and which has the
property of beingouter. Although outerness has some nice
analytical characterizations, which require some more theory
than needed for this paper, we shall suffice here by stating that
it is characterized by the property that it has an approximate
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causal inverse, i.e. that there exists a sequence of causal
bounded functions so that in the
quadratic sense on the unit circle. For all engineering purposes,

has a causal inverse, it is a “minimal phase function”.
The property extends to matrix functions: if ,
then in which is inner, and
outer—see the discussion further on.

III. I SOMETRIC AND UNITARY EMBEDDING—THE LTI CASE

In the next three sections we give a number of results
on isometric and unitary embedding for the LTI case. We
start with some general considerations and then focus on
systems with a finite dimensional state space, those are systems
represented by a rational transfer function.

Suppose that an causal and contractive transfer
function is given (we may assume to be square,
if that would not be the case the addition of extra zero
rows or columns would be adequate). Then the matrix
function is positive definite
on the unit circle of the complex plane. We search for
an causal transfer function such that

—a spectral factorizationof
. A first, fundamental, but

not constructive, result was given by Masani and Wiener
[16]—for a very nice treatment of the Masani Wiener theory,
see Helson [4]. It states:

Theorem 1 (Masani–Wiener):Let the positive definite
matrix function be invertible almost anywhere on

the unit circle of the complex plane. Then is factorable
as if and only if

(2)

There is a (fairly straightforward) extension of the theorem to
the case where is not invertible a.e., but here we stick to the
generic case. The important point isthat the factorization does
not necessarily exist. The existence condition (2) for the matrix
function case is an extension of the famous Szegö condition
for the scalar case [17], and it states, loosely speaking, that
the spectrum cannot be zero on more than a very
thin set. For example, if has the behavior of an ideal
low pass filter, then there would be an interval in which it is
identically zero, and the condition would certainly be violated.
The integral in (2) is known as theentropyof the process for
which is the spectral density, and the property that it
is larger than corresponds to a stochastic property known
as ‘indeterminatedness’ of the process. Be that as it may, if

is rational, then the Szegö condition will certainly be
satisfied and the desired will also exist. The point to be
considered is the construction of so that it has at most
the same Smith–McMillan degree as . In the section on
time-varying systems we shall given such a construction based
on a state space representation for, a construction, which is
equally valid for the LTI case as a special case.

Of all the of minimal degree, which satisfy
, there is one of special interest,

namely the one which isouter or minimal phase. This is the

one that we would normally construct if we use the algorithms
presented later (actually it does not matter which minimal one
is chosen for the embedding construction to follow next). Let
us assume that this is the selected, but at this point we do
not yet assume rationality. Consider next the transfer function

(3)

which is isometric on . As the following endeavor, we wish
to find causal transfer functions and so that the
overall transfer function

(4)

is unitary on .
It has been claimed in the literature that this can always be

done [18]. This is not true. One obvious property of is
that its elements have a special kind of analytic extension to
outside the closed unit disc. Expressed in terms of the complex
variable , the unitarity of (3) says that

(5)

As an analytic function in the open unit disc is
uniquely defined by its boundary values , and it will
have only discrete zeros in , as points where its
rank drops from (this uniticity is a result of complex
function analysis applied to , see [12].) Since for

, and from (3) one sees that there will exist
a continuation for to the whole region outside the closed
unit disc (the region ) as ,
which certainly exists as a matrix of meromorphic entries in.
We see that if there exists a unitary embedding for , then
also the entries of must have a meromorphic continuation
to the complete region . Such functions are called
pseudo-meromorphically continuable, and they form a class of
transfer functions with special analyticity properties, namely
the pseudo-meromorphic extension is unique and it has radial
limits a.e. to the unit circle from points in . Surely, rational
transfer functions are such, but it is easy to cook up functions
which do not satisfy the condition and necessarily will not
be rational. An interesting example is
which is obviously contractive in (its maximum modulus in
that region is ), it is analytically continuable everywhere
across the unit circle, but not to the whole of, since the
square root will have an essential singularity at the point

from which a branch cut will extend to . It follows
that this hasno unitary embedding, there isno Darlington
synthesis for this !

The previous reasoning, convincing as it is, does not yet
give a system or circuit theoretical clue as to why the em-
bedding should not exist when the transfer function has no
pseudomeromorphic continuation. We explore this point in the
next section.

IV. REMEMBRANCE OF THINGS PAST

In [2], [19] the author showed that the existence of a
Darlington synthesis for a contractive scattering matrix

is closely related to a basic system theoretical property
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of . The property is of a geometric nature and carries over
to situations where there is no transform available anymore,
such as time-varying systems. In general terms (we shall make
things more precise soon), the system’s geometry viewed from
an input–output point of view is characterized by four related
spaces and a system induced map between them which is
called the”Hankel map”. Let be the space of input signals
and the space of output signals (in our framework, both
spaces will consist of vector time series which are bounded in
energy, they are Hilbert spaces). Classical dynamic System
Theory (for an original description see [20]) decomposes
each space in a strict past and a future: (
indicates decomposition in orthogonal subspaces—and
are Hilbert spaces of the -type). For example, with

we have
and . Let indicate the projection of
a signal on his future part (i.e. ), then theHankel
map maps by definition to through the recipe:

(6)

It connects the (strict) past of the system to its future. This
connection happens concretely through the state of the system,
in the situation whereby nonzero input is only provided in
the past (i.e. the input signal is zero from on): from
its past, the system gleans information which it subsumes
in its state, and then it uses this state to generate its future,
under the assumption that future inputs are zero (in case the
system is not linear a more sophisticated definition must be
given, see [20], but we stick to the linear case here). Fig. 2
illustrates the situation. We can expect that the Hankel map
yields important information on the structure of the system.
Its kernel , consisting of the signals
consists of all the (strict) past input signals whose information
the system does not retain: its future response to such a signal
is zero. The orthogonal complement to in the past input
space we call , and it is a space characteristic
for the information that the systemdoes retain. It is also
the range of . We call it the natural input state space
or reachability spaceof the system. At the output side there
are the duals of these spaces. The range of the Hankel map,

is the space of natural responses, those are
the responses of the system when the input is kept equal to
zero. It is anatural output state spaceor observability space
for the system. Its orthogonal complement is
actually the kernel of the adjoint map , i.e. the set of outputs

. All the spaces defined in this section have of
course Fourier transforms, and their orthogonality relationships
are preserved thanks to the Parseval theorem. We denote these
Fourier transforms by a , e.g. is the Fourier transform
of (for readers familiar with Fourier theory we mention that a
space like transforms to the celebrated Hardy space

of the unit disc , so that and are subspaces of it.
then transforms to the orthogonal complement

of in ).
The nullspace has the property that it is ‘shift invariant’

for the backward shift: , i.e. if some input
in the strict past generates the zero state, then so does

Fig. 2. The Hankel operator maps inputs in the strict past to outputs in the
future.

. Such shift invariant spaces have remarkable math-
ematical properties described by the famous Beurling–Lax
theorem [12], [4], [13] which we now introduce. It states that
there exists a transfer function so that is
isometric i.e. and all inputs in
are right multiples of in the sense that for
all with an auxiliary -dimensional space of the

type, (in the next section we shall meet rational
examples which should make the present, general discussion
less abstract). If we look at inputs in , then we see that for
each point of the unit circle, they form a -dimensional
subspace of the (pointwise) -dimensional input space (in
analytical function theory it is proven that the dimension
is constant a.e.). Because is co-isometric, we necessarily
have . If then the nullspace is defective
in dimension, and the corresponding input state space (the
orthogonal complement of ) will have to be very large, it
cannot be a finite dimensional space since it must contain a
space isomorphic to . For example, if

, the scalar case, thenis either or 1. In the first case, the
nullspace is trivial and the natural input state space

becomes the entire input space, the system ‘remembers’
its complete input space, or, to put it differently, the state of
the system is but a tampered version of the complete input.
If, on the other hand, , then
in which is a scalar function of unit modulus. The
natural input space becomes , which will
be a finite dimensional space whenis rational, and even
otherwise it is still a very ‘small’ space, the system forgets
almost everything from its past.

We say that a system isroomy [2], [19], iff , i.e. iff
the system has a pointwise fully dimensional nullspace.is
in that case not only co-isometric, but unitary as well. Then
we have that in which is a causal transfer
function, and we obtain theleft external factorization

(7)

which displays the causal as a ratio of two anticausal
transfer functions. Hence , which is analytic in the open
unit disc, has an extension (in the sense of radial pointwise
limits) to a function which is meromorphic outside the unit



46 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 1, JANUARY 1999

disc, i.e. it is pseudo-meromorphically continuable (as stated
before, such an extension is necessarily unique). The external
factorization (7) is actually a “left coprime factorization”
because it is minimal in the sense that every other such
anticausal factorization will involve left multiples of and

(this fact needs some proof, see e.g. [19]). Hence, the
coprime factorization involves automatically the existence of
a pseudomeromorphic continuation for as explained
before. The converse is true as well: if possesses a
pseudomeromorphic continuation, then it also possesses a
coprime factorization of the type (7). This fact can fairly
easily be proven through the observation that if is
pseudomeromorphically continuable, then its nullspace
necessarily has full dimension, since it will contain at least
the space of all -dimensional vectors with entries in the
strict past that belong to the intersection of all the scalar input
nullspaces of the entries .

A dual theory, now on the output nullspace, is of course
also possible. In this case the Beurling–Lax theorem states that
there exists an integer and a causal and isometric
function such that for all belonging
to an auxiliary input space of the type . If the
system is roomy then it will be meromorphically continuable,
and it will follow that . In that case we have that

for a causal and a unitary ,
and aright coprime external factorization

(8)

follows, again exhibiting the pseudomeromorphic continua-
tion. It is not too hard to prove that ,
a quantity which can be used as a kind of ‘generalized degree’
[19].

V. GENERALIZED LTI DARLINGTON SYNTHESIS

We are now ready to perform the general linear time
invariant (LTI) Darlington synthesis in abstract terms. The
method that we shall use can, however, easily be converted
into a constructive or algorithmic technique, at least for the
rational case, see the later sections of this paper. Let us assume
that we are given an isometric and roomy . It can be
obtained as , result of a spectral factorization, or
else directly be given as an isometric transfer function.
Because of the roominess assumption, will have a left
coprime factorization:

(9)

in which decomposes as in accordance
with . We see that and can share
the same factor, it is in fact not too hard to prove that
if is roomy with left coprime unitary factor ,
then the minimal outer spectral factor has an external
factorization with left factor as well. We formulate the
generalized Darlington synthesis as a theorem.

Theorem 2: Let be a causal and isometric transfer
function. If is roomy, then the right coprime factoriza-

tion

(10)

is such that is constant and can be chosen and
is a (minimal) unitary embedding for (and also for

which is part of ). Conversely, suppose that
or has a minimal unitary embedding, then it is roomy,
and the Darlington embedding is actually a right external inner
factor for .

Proof—Sketch:The proof makes use of a special property
of coprime factorizations borrowed from standard Euclidean
factorization theory and adapted to the case. In the
standard theory we have that two polynomials and

are coprime iff there exist polynomials and
such that the Bezout equation is
satisfied. The property extends to polynomial matrix functions,
and with some effort also to our present case, where some
added difficulties may occur because of the possible presence
of zeros on the unit circle which actually do not participate in
the division theory. The precise statement is [19]:two causal
and bounded transfer functions and are left coprime
(in the sense) iff there exist sequences and
of causal and bounded transfer functions such that

for the entrywise quadratic norm on the unit circle.
(The difference with the standard case is that the and
do not necessarily have a bounded limit themselves.) Two

additional mathematical remarks are in order: 1) the limiting
procedure given has as a consequence uniform convergence
on compact subsets of the open unit disc and in particular
pointwise convergence and 2) the property actually expresses
the ‘right outerness’ of ). If we apply this principle
on the coprime right external factors for we
deduce the existence of series of causal and bounded transfer
matrices and which are such that

Premultiplying with and using the fact that
we find

This expression asserts the existence of the limit in quadratic
norm on the entries of from a series of elements which
are all causal. Complex function theory then produces the
result that must be causal as well. Since it is actually by
definition anticausal, it can only be constant since this is the
only type of transfer function that can be causal and anticausal
at the same time. Hence, if the isometric has an external
factorization, which happens iff it is pseudomeromorphically
continuable, then it will have a Darlington embedding. The
converse was already evident from the discussion in the
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previous section in which we showed that an embedded
is necessarily pseudomeromorphically continuable.

A final remark for this section will provide the link with
the time-varying theory to be treated furtheron. It seems
that pseudomeromorphic continuability is the central property
of transfer functions which allows for Darlington synthesis,
but there is a time-domain criterion that is equivalent and
more general. From the Darlington construction by external
factorization given in Theorem 2, it follows that will
have a Darlington synthesis iff its corresponding has the
full range property, i.e. its constituent functions span the space
IC at each point of the unit circle (a.e.). In the time
domain, however, this property expresses an invariance which
is of crucial importance, namely that does not contain a
subspace that is doubly invariant, i.e. for which
and . It is this property that will determine the
possibility for Darlington synthesis of time-varying systems
for which there is no useful Laplace or-transform.

VI. THE TIME-VARYING CASE

Now we consider a system , which is time-varying,
and given by a contractive transfer map (the distinction
between and is not relevant anymore). The Darlington
synthesis problem will consist in the solution of the question
whether can be embedded in a causal unitary transfer
function

(11)

The input and output spaces are, as before, spaces of quadrat-
ically summable series, but because of the time variance we
now have more freedom in allowing time variations from one
time point to another. For example, we allow time varying
dimensions for the vectors in the input and output spaces. We
suppose that at a pointin time the input vector belongs to
a vector space , dependent on, and likewise, belongs to
a . has dimension while has dimension . The
sequence of dimensions of the input sequence is then given
by . We assume that each input
sequence considered is bounded in quadratic norm:

We do allow that any number of spaces is actually empty,
i.e. has dimension zero. Such a space then simply corresponds
to a ‘place holder’ for which no value is available, i.e. at
a certain time point there is no input data. In this way we
can easily embed finite matrix theory in our framework: we
take inputs as non existent up to and from some positive
time point e.g. For higher precision of notation we shall
henceforth denote the base input space as—in the sequel
we shall have to extend it. The transfer operatormaps an
input to an output and can hence be represented by

Fig. 3. The time-varying state space realization represents the calculation at
at given pointt in the time sequence.

a (doubly infinite) matrix

...

...

in which each is a block matrix of dimensions .
Causality is now expressed by a (block) upper triangular
property: when .

Connected to an upper transfer operator, there is a state
space realization possible, based on the assumption that at
each point in time the system uses a state that it has
remembered from its past history, inputs a vector, computes
a new state and an output , and then moves on to the
next time point. Because of the linearity of the computation,
the local state space representation takes the form

(12)

in which the ‘realization’ is a collection
of linear operators (acting possibly on an infinite dimen-
sional state space). The (time) series of states
then belongs to a not yet defined series of spaces

—see Fig. 3.
On the various spaces of time sequences we can define

standard operators as is also done in the time invariant case,
but now we have to be a little more careful because of
the changing dimensions, and the fact that operators which
commute in the time invariant case may not commute anymore
now. First there is the nondynamical operator of performing
an instantaneous transformation on each entry of a time series:

which corresponds to a diagonal operator

will be bounded iff there is a uniform bound on its entries:
, and it will be boundedly invertible iff

each is square invertible, and there is a uniform bound
on the collection of inverses . Next there
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is the causal shift operator
. will then be the anticausal shift. If

we collect the states of a computation in a series, then we can
express the state space realization in terms of the four diagonal
operators , etc...,
a

(13)

and we find, at least formally, the following expression for the
corresponding transfer operator:

the expression will make sense if a precise meaning to the
operator can be given (depending on the context,
see further). An important remark at this point is that the
causal shift does notcommute with the diagonal operators

except when is Toeplitz, i.e. when all its entries
on the main diagonal are equal (and then necessarily square
of equal dimensions). Somewhat less is true, there is a kind of
pseudocommutation, and we have to introduce a new notation
for this:

(14)

in which is by definition adiagonal shiftof the matrix
in the South–East direction. We can apply further shifts,

and, with some abuse of notation because the dimensions of
the shift operator vary along the main diagonal, we write
applications of the diagonal shift as

is a diagonal operator equal to a version of, shifted
notches in the South–East direction. The causal operator

can be represented by a collection of diagonal operators:

in which . It turns
out that most of the time varying theory parallels the time in-
variant theory when one treats diagonals as ordinary ‘scalars’,
respecting noncommutativities.

It is to be expected that the time-varying equivalent of
the ‘Hankel operator’ will play a central role in a Darlington
theory for time varying transfer operators. As we saw in the
time invariant theory, the Hankel operator connects the ‘strict
past’ of the system to its future, and therefore characterizes
the structure of its state. However, a time-varying system may
have a different state structure at each of its time points,
so we have to define a Hankel operator at each point.

—the Hankel map at point—will be defined by the map
and it will be

given by the matrix representation (dropping unneeded zero
entries):

...
...

... ..
.

(15)

The collection of the ’s actually form the overall Hankel
operator for the system under consideration. We build a
system’s map for which this collection is a natural operator.
The trick is to consider not only one input time series at a
given time point , but to consider an appropriate sequence
for each and every time point. Stacking these input (and the
resulting output) time series as one input object produces the
desired result. In this way, the input space becomes a space
of objects of the type

...
...

...
...

...
... ..

.

..
. ...

...
...

...
...

. . .
(16)

In addition, we require that the complete scheme be bounded
in energy, hence

The space so obtained we call , it is again a (somewhat
complicated) Hilbert space of quadratically summable time
series. Since each row in this scheme corresponds to a simple
time series for time point, we have that can be decomposed
in a strict past and a strict future so that
when , and otherwise zero, while when

and otherwise zero. The space of the (i.e. the
‘future’) we shall now call , while the space of the
(i.e. the ‘strict past’) we shall call . We shall denote
the projection of on by and the projection on
the orthogonal complement (these are genuine
orthogonal projections on the extended input and output spaces
and ).

The action of a causal operatoron such a scheme is easy
to tally, we just have to stack inputs and outputs:

...
...

...
...

... ..
.

. . .
. . .
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Fig. 4. The time-varying Hankel operator consists in a collection of matrices each of which maps an input in the strict past to an output in the
future relative to a pointt.

We are now able to define the global Hankel operator for
as

(17)

It consists in applying to elements of which are restricted
to the strict past, and looking at the effect only from time
on, for each , in one global operator. Since maps a two
dimensional scheme to another two dimensional scheme, it is
actually a tensor. At each time point specializes to a
‘snapshot’ which is obtained by looking at its effect on the
-th row of the input and looking at how it produces the-

th row of the output—this turns out to be the local Hankel
matrix . A graphical representation of the Hankel operator
is shown in Fig. 4.

Just as in the LTI case, the Hankel operator will generate the
system’s state geometry. The following spaces are important:

• Natural Input State Space
• Natural Output State Space
• Input Nullspace
• Output Nullspace

The crucial property of these nullspaces are their invariances.
We see that is invariant for the left application of a diagonal

and of the anticausal shift :

(18)

Dually, is invariant for the application of a diagonal
and the causal shift:

(19)

We call a -invariant space asliced space, because if
belongs to it, then any row of with all other rows put to zero
also belongs to it. A sliced space has a basis which consists
of time slices: for each time index there is a basis for the
corresponding row. A generalized Beurling–Lax theorem in
this setting is as follows:

Theorem 3 (Generalized Beurling–Lax):Any left DZ-
invariant subspace of has the form

(20)

for some causal and isometric operator(i.e. ).
Sketch of Proof:One considers the (so called wandering)

subspace and realizes that it is a sliced
space as well. An orthonormal sliced basis forproduces
the operator as the collection of these base vectors itself.
This construction is identical to the construction used in the
classical case. For details see [21].

The (generalized) Beurling–Lax theorem leads, just as in the
classical case, to the construction of external factorizations for
the operator and to Darlington synthesis, and will provide
the conditions under which it is possible. The time-varying
case is considerably more involved than the LTI case, and
although we are able to formulate in abstract form necessary
and sufficient conditions for the Darlington embedding to
exist (Theorem 6), to treat the embedding concretely let us
assume at this point that we dispose of a concrete stable state
space description for , i.e. we assume that (1) is locally
finite, that is, it has a realization based on a collection
of finite dimensional local state spaces for each time point
and which is given, as explained above, by diagonal operators

consisting of diagonals of finite matrices and (2)
the realization is such that the spectral radius of the
operator is strictly less than one. The spectral radius is
defined as

(21)

We denote this positive number as . It is actually
equal to

which follows from working out the power product .
When we say that the system has auniformly
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exponentially stable or ue-stable realization. When
then left and right external factorizations for are easy to
produce. They are based on the construction of so called
normal formsfor the realization . We say that the
realization is inoutput normal formif is isometric, i.e.
if , i.e. for all . Dually,
it will be in input normal form, if is isometric, i.e.

. Given a ue-stable realization, both the output
and input normal forms can easily be constructed through
a state transformation. Such a state transformation takes the
character of a bounded and boundedly invertible diagonal map

which transforms the state to so that for each
. If one applies this transformation on the state,

then one obtains a new, equivalent realization:

(22)

in other words, the realization transforms to the
new equivalent realization
(in which represents the diagonal shift upward in the
North-West direction, of course). To obtain, say, the output
normal form, we must find so that
is isometric. Writing , this amounts to solving the
equation:

(23)

or, in component form,

(24)

These recursive equations are called ‘Lyapunov-Stein’ equa-
tions. When is ue-stable, then they have a unique solution,
which with, for

and , is found by solving (23) as a fixed point
equation:

(25)

If we define as
the observability operator, then we see that is actually
a generalized Gramian . To find the needed for
the output normal form, we next have to factor ,
which of course should be possible, since all the individual
matrices are positive semi-definite and can be factored as

.
So far so good, but to achieve the output normal form,

we need the bounded invertibility of . This means that the
individual must be invertible, and that their inverses must
have a uniform upper bound. Alternatively, must have a
definite lower bound, i.e. there must exist an such that

. In other words, the system must be what we call
uniformly observable. It should be clear that this is not always
the case, and we obtain the result:a locally finite system which
is ue-stable will have a ue-stable output normal form if it is
uniformly observable. (There is a somewhat more involved
converse to this property, which we skip for technical reasons.)

When a ue-stable system is uniformly observable, then it
will have a right external factorization. The construction of
the factorization is based on the output normal form. We saw
in the preceeding paragraph that the system will have such a
ue-stable form if it is uniformly observable. Suppose now that

is in output normal form, that is
. This means that each is actually isometric. Let us

now define two new diagonal operators so that the
realization

(26)

is unitary, and let be the corresponding operator,

To assess the properties of we need the following lemma,
which plays a central role in the subsequent discussion on
Darlington realizations:

Lemma 1: Suppose that is
a transfer operator which is ue-stable and for which the
realization operator

is unitary. Then is unitary as well, i.e. and
.

Sketch of Proof:The lemma can fairly easily be checked
by direct calculation, the crucial point in the verification is the
existence and boundedness of the inverse , which
is assured by the ue-stable assumption.

Hence , as defined, will be unitary if is ue-stable.
It turns out to be the right inner factor for the right ex-
ternal, coprime factorization of . This we see simply by
computing . During the computation one needs
the (generalized) partial fraction decomposition of the product

, which, because of
is easily seen to equal
. Hence (we write ‘ ’ for )

The last term in this expression is zero, because of the unitarity
of the realization for . Hence, a realization for is given
by

Together these relations produce

or, if the original realization for would not have been in
output normal form (and further explicited per time point):

(27)

in which now and . At
each time point , this equation has the form of the famous
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Jacobi - factorization of numerical linear algebra. If we
assume that at time pointwe know from the previous
calculation, then the matrix

is known, and is transformed by the unitary (-type) matrix

to upper-triangular form (at least to block-upper form, but
nothing prevents a further transformation to fully upper). The
transformation produces which can then be used in the
calculation at the next time point , etc recursively.

We have obtained the following result:
Theorem 4: Suppose that is a ue-stable, locally finite

transfer function which is uniformly observable, then it has
a right coprime external factorization given by

in which is inner. and can be found by the square
root algorithm of (27).

A kind of converse of the theorem is fairly easily demon-
strated by construction of ‘counterexamples’, namely by con-
structing an with a ue-stable realization which is not
uniformly observable. Such an will normally not have an
external factorization. The author does not know whether
the case where has a ue-stable realization which is not
uniformly observable and for which a Darlington embedding
exists actually do exist (he thinks they do), but normally the
singularity of the Gramian will give rise to the existence of
what we shall call a defect space, and we shall see in Theorem
5 that then a Darlington embedding does not exist.

Of course, there is a dual to the previous theorem, based on
the input normal form. For that we need the notion of ‘uniform
reachability’ which will involve the reachability operator
and the reachability Gramian . We shall say that
the realization is uniformly reachable if there exists ansuch
that . We obtain:

Theorem 5: Suppose that is a ue-stable, locally finite
transfer function which is uniformly reachable, then it has a
left coprime factorization given by

(28)

in which is inner. and can be found by an appropriate
square root algorithm.

In contrast to what happens in the LTI case, it is possible
that a ue-stable time-varying system possesses a left external
factorization but not a right one and vice versa. This will
be the case,in general, when the system has a uniformly
reachable ue-realization which is not uniformly observable or
vice-versa, and this can already easily happen with systems
that are locally finite. In the time invariant case all systems
with finite dimensional state spaces have right and left coprime
factorizations. In contrast to the claim that ‘time-varying
system theory is but a small extension of time invariant theory’
we see that the two types of systems have very different
properties indeed!

We terminate this section by showing how Darlington
synthesis works for isometric systems, the more general (con-
tractive) case is treated in the next section. Suppose thatis
isometric, i.e. and that it is locally finite, i.e. that
it has a finite dimensional state space realization at each time
point. We proceed by constructing a particular realization
for , which is itself isometric, and by trying to embed it in
a larger realization which is unitary and hence a candidate for
an inner transfer function that embeds as

(29)

As we saw before in the LTI case, the properties of the
output state space of will be crucial to the Darlington
embedding theory and we may encounter some possibly very
strange behavior here. An important property of an isometric
system like is the fact that its output nullspace actually
contains the space (this is the space of outputs to
causal inputs under the action of the isometric operator).
Hence, . But may be larger. It
will also contain the kernel , by definition, and
clearly . The ‘algebraic’ (i.e.
unqualified) nullspace of will not only contain

, which is a left -invariant space, but also the
latter’s left shifts , and hence their
closed union, which we denote as

The space turns out to be the characteristic output
nullspace of the complementary entry

for an appropriate sequence of input spacescom-
plementary to . There is more the matter, however. The
‘algebraic nullspace’ may be larger than . We
denote that remaining space as

(30)

and will call it the right defect space of . The possible
existence of this space has sometimes been overlooked in the
literature, but its properties appear to be crucial to the existence
of the Darlington embedding.

The following theorem (which does not assume local finite-
ness) gives, in addition to the essential properties needed, the
Darlington theory for isometric systems in abstract form.

Theorem 6: Let be a causal isometric transfer operator
and let be its natural output state space and its
right defect space. The output space then decomposes as

(31)

There exists an isometric operator with the same output
state space and defect space and such that, for
some input space sequence

(32)

The operator
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will then be isometric as well, and such that
. will be unitary (hence inner) iff the defect space

.
Sketch of Proof:The theorem is a direct consequence of

the generalized Beurling–Lax representation theorem applied
to the left DZ-invariant subspace :

. Furthermore, it is known from
functional analysis that an isometric operator will actually be
unitary iff it has full range, in the present case iff .
For a complete, formal proof we refer to the book [21].

In the case of ues locally finite systems, the theorem leads
to the following construction for the embedding. First, an iso-
metric realization for can be obtained from an orthonormal
basis for the natural output state space . Let, at time
point be an orthonormal basis for the range of the
Hankel matrix , which is assumed to be of finite dimension

. Assembling all these bases as slices of an overall operator
, we see that has the form of an upper operator. The

next step is the assertion that there exist diagonal operators
and so that can be represented as

This fact is basic to state space realization theory and follows
directly from the shift-invariance property of which
states that . Hence, given the choice of
basis, we may recover corresponding diagonal operatorsand

by the recipe: and , in
which we have used the orthonormality . The
corresponding will automatically be isometric, but is
not necessarily ue-stable. An isometric realization foris next
found by determining and from the relation

, specifically, . The
point is that, in contrast to traditional realization theory, we
may not be able to expressdirectly as
because the inverse of may not exist.

Since is a DZ-invariant subspace, we have
from the generalized Beurling–Lax theorem that there will
be an isometric and causal transfer operatorand an input
sequence such that . A state space
realization for is easily derived from the realization for,
we just have to complete the local isometric matrices so that
they become unitary:

(33)

shares with , and remarkably, also the defect space
.

The isometric will hence possess a Darlington embedding
iff its defect space is zero. This abstract condition translates to
a concrete criterion, in the following important special case:

Theorem 7: The locally finite and causal isometric transfer
operator will have a Darlington embedding if it has an
isometric ue-stable realization.

Proof: An isometric realization has automatically a unit
(and hence strictly nonsingular) observability Gramian. If,
on top of that, also , then the embedding given by (33)

actually produces

with invertible and its unitarity can be verified
by direct calculation as before in Lemma 1.

As in the LTI case, the Darlington synthesis is produced via
a right coprime factorization for :

and the algorithm is a version of the square root algorithm
presented before.

VII. D ARLINGTON EMBEDDING OF A CONTRACTIVE

TIME-VARYING TRANSFER FUNCTION

We start out with a strictly contractive time-varying operator
in state space form:

(34)

and we assume, in addition, that the realization is ue-stable,
. We try to find a solution to the Darlington

embedding problem, i.e. a such that is inner and embeds
:

Before formulating the realization theorem, we search for the
solution by following an inductive approach partly inspired
by [22]. The Darlington idea is to augment input and output
spaces so that the resulting operator becomes unitary. A unitary
operator will have a unitary realization, so let us try to
construct a realization for of the form:

(35)

and which has the additional property that there is a state
transformation which makes the transformed realization

(36)

unitary. The diagonal matrix together with the
entries and must then satisfy at least the following
equations:

(37)

(The other entries will follow easily once these equations
are solved, see further.) Observe that and can be
eliminated further when is invertible,
to produce the famous discrete time Riccati equation:

(38)
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We shall not handle this equation directly, but the theory that
we shall give produces a positive definite solution to it and
gives conditions for the required invertibility as well. For an
extensive study of Riccati equations and means to solve them
directly, see the book [23]).

Remarkably, the solution to (37), if it exists, has a closed
form for the positive definite and the related and ,
which is found by a physical analysis of the properties of
the Darlington embedding. The secret lays in the study of the
‘future operator’ connected to the embedded system which will
have to be unitary when the Darlington embedding exists, and
which we introduce now. Thefuture operatorof a system is
found by decomposing inputs as and outputs
as , according to the decomposition of spaces

. When presented with the input , the
system produces a state given by—a diagonal operator
and the output , as given by the ‘map of the past’:

(39)

in which is the reachability map, and , the map ,
a restriction of to signals ‘in the past’. These expressions can
be made concrete by decomposing the signals and operators
in diagonals, see Appendix A for information and details. The
state is in this case also a diagonal, which collects the
states obtained at each time point. Next, together with

produce the output according to the ‘relations for the
future’:

(40)

in which

and

The resulting maps look as in Fig. 5. Now we want to augment
inputs and outputs, and allow for a bounded and boundedly
invertible state transformation, so that the resulting system
becomes unitary. We call the additional inputs and
and the state transformation and obtain the arrangement of
Fig. 6 and the equations:

(41)

in which and are new operators (an
observability operator and three restriced transfer operators
respect.) to be determined and wherebyis the transformed
state.

Suppose now that a solution does exist indeed, and let us
compute the consequences. Unitarity requires at the least that

(42)

Fig. 5. The decomposition of the operatorS as a past and a future operator
connected by the state.

Fig. 6. The augmented system has a unitary map linking the state and the
future input to the future output.

Hence, in particular, with

(43)

Since we assumed thatis strictly contractive, the same holds
true for , because it is a restriction of, and is
an invertible operator. Since

we may conclude that will be an invertible operator as
well (it still has to be determined), and one must have
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and

Finally, we obtain the expression for :

(44)

in terms of originally known data!
Returning to the original embedding equations (37), we see

(with some calculations, see [21]) that

will be isometric, if given by (44) is invertible.
In that case, the transformed will be ue-stable
together with , and the realization can be augmented point-
wise to a locally unitary realization with a ue-stable transition
operator. will be invertible iff the system is uniformly
observable, i.e. iff has a bounded inverse. If, on the other
hand, the system is not uniformly observable, then, although
a unitary embedding for the realization can be derived,it will
usually not correspond to an inner embedding, because there
will be nontrivial defect spaces. In that case, the transformed
transition matrix will not be ue-stable.
This defective case is considerably more difficult to analyze
than the straight case where the given systemis ue-stable
and uniformly observable. Nonetheless, we have obtained a
Darlington theorem for time-varying systems:

Theorem 8: If is a strictly contractive transfer operator
with ue-stable locally finite realization which is uniformly
observable, then possesses an inner embedding. If the
ue-stable realization for is given by , then
the embedding has the unitary realization given by (36), in
which the state transformation operator is obtained from

as , which is also a
positive definite solution of the Riccati equation (38).

Proof—Sketch:Suppose that is strictly positive definite,
then it can be factored as in which is a bounded
and boundedly invertible operator. Then the state realization
as given in Eqs. (36) turns out be orthogonal, which is verified
by writing Eqs. (43) out in terms of the realizations. Sinceis
bounded and boundedly invertible, the orthogonal realization
given by (36) is ue-stable and is therefore, as stated in Lemma
1, the realization of an inner transfer operator.

Square root algorithms to solve equations of the type (37)
and the connected Riccati equation (38) have been known
for a long time (for a literature survey, see [24]). Their
interpretation as representative for factorization problems of
the external or inner-outer type have been well documented
also in the recent literature, see [22], [25]. In the context of
the Darlington theory they get a particularly nice interpretation,
since, as we have argued, the Darlington embedding problem
reduces to a factorization problem. Conversely, to solve the
Darlington embedding problem numerically, a square root
algorithm would provide for the appropriate means. We derive
the algorithm in Appendix B, further information on its
numerical properties can be found in the book [21].

VIII. D ISCUSSION

The focus of the present paper is the existence of the
Darlington embedding, and we have seen that it is depended on
the absence of a nontrivial ‘defect’ space in the input or output
nullspace of the Hankel operator connected to the transfer
operator of the system to be embedded. This is an unexpected
conclusion, if one considers that the original problem statement
as given by Darlington and the early researchers on the
topic, Belevitch [6], Oono-Yasuura [26] and Youla [27], all
considered it to be a problem in rational matrix factorization.
The import of system theory for Darlington theory was most
clearly realized by Vongpanitlerd and Anderson in their book
[5], which gives a systematic account of the solution of clas-
sical circuit synthesis problems using state space formalism.
However, only in the early 1970’s some insight in the role
played by external factorization and/or the Hankel operator
(the two are closely related) in the problem started to dawn,
and necessary and sufficient conditions for the existence of the
Darlington or inner embedding appeared [2], [3], [19]. Later,
a fairly complete picture for the time-varying case emerged
along the same lines of reasoning, but the time-varying theory
is considerably more delicate that the time invariant [21].

To conclude this paper, I want first to make the connection
of the abstract embedding theory as presented in this paper
with the classical cascade multiport synthesis problem, which
is based on the factorization of the Chain Scattering Matrix,
and has considerable interest in its own right. I conclude
the discussion with some remarks concerning the practical
use of Darlington theory. Darlington’s original goal was to
extend the cascade synthesis theory for a connecting network
by factoring out a transmission zero at a point in the-
plane which was not located on the imaginary (for which an
extraction theory already existed known as ‘extraction of a
Brune section’). This gave rise to the so-called ‘Darlington
section’ [28], [29]. The cascade extraction theory can fairly
easily be generalized to the LTI-multiport and even time-
varying case. A recursive factorization theory as well as an
equivalent cascade state space realization theory are available
for each. In each instance, the most appealing way is to
invoque thechain scattering matrixrelated to the embedding

, and either to factor it directly into elementary sections
in the -plane or the -plane, or to consider its state space
description in an algebraically reduced form. If the inner
scattering operator is given by the input-output description

(45)

then the chain scattering description is defined by

(46)

Theta will be well defined if or, equivalently, is
boundedly invertible, and it is then given by

(47)
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Fig. 7. A multiport cascade realization is obtained through the factorization
of the Chain Scattering Matrix, whereby each section realizes one transmission
zero.

We see that, in case of an LTI system, the poles ofare the
conjugates of the poles of . When is inner, then has
important properties, some of which are:

• for the signature matrix:

is para- -unitary, meaning that:

(in the LTV-case, a similar property will hold but with a
more complex signature operator);

• inside the unit disc of the complex plane, will be
-contractive, i.e.

(remember that denotes the Hermitian transform).
This relation follows from the relation (dropping the

-dependence):

obtained from the connection betweenand .

From the para--unitarity of , we see that the zeros of
(i.e. the poles of its inverse) are actually the conjugates of its
poles, and vice versa. Hence, shares zeros with . This
point may be exploited for algebraic benefit, by writing the
embedding formula for as

(48)

A cascade synthesis of will now consist in extracting
elementary sections from , since in practical problems
it is usually the transfer scattering matrix that is
given. It turns out that such a multiport, recursive extraction
of elementary zeros using-contractive, lossless sections is
always possible [30], [31] and results in a cascade synthesis
as shown in Fig. 7.

Alternatively, one can produce a formula with , in
which case an attractive embedding formula follows from the
expression for

(49)

We shall exploit this formula in Appendix B to obtain a square
root algorithm for the embedding in state space formalism.

The elementary sections for to be used here have the
following general forms—see in this respect the general work
on multiport inner and Blaschke factors by Potapov [32], we
give them for the sake of completeness:

• If the zero of is located in and (multiport
Darlington section):

in which is a coefficient of modulus one and is a
constant matrix such that for some integer

(the Smith–McMillan degree of such a section
is exactly ).

• If the zero of is located at (multiport Schur
section):

• if the zero of is located at (multiport Brune
section):

(50)

in which is a strictly positive real number and is
a nonsingular, so called neutral matrix: (the
columns of span a so called isotropic space, i.e. a space
of elements that are all -orthogonal to each other);

• if the zero of is located at a point outside the
unit disc:

(51)

in which and now for some
integer ;

• and, finally, if the zero of is at infinity:

(52)

where and for some integer
such that .

The network-theoretical literature has been very much con-
cerned with the properties of these various sections and certain
cascades of them. If a strict, minimal degree synthesis is
desired, then at each elementary extraction, the degree should
go down by a number equal to the degree of the section that
is being extracted, for the sections given above. However,
it is also possible to extract sections without the degree
reduction, but respecting the passivity of the remainder circuit.
In that case, correct approximating networks are obtained when
appropriate interpolation conditions are satisfied. There is an
extensive literature on the properties of the approximations
obtained, it is of interest for circuit reduction in the VLSI
modeling context [33].

I finish with a brief discussion of three important practical
problems which have found elegant solutions thanks to the
generalized Darlington theory, but whose discussion falls
outside the context of this paper.
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Broadband Matching:Darlington theory provides the key
ingredient in broadband matching theory, as it succeeds in rep-
resenting both the source impedance and the load impedance as
a Darlington connecting network, and the broadband matching
problem then is converted to the design of a connecting
section. See the literature for various approaches [34], [35],
[36].

Minimal Algebraic Computations and Canonic Represen-
tations of Systems:Darlington synthesis leads to numerical
realizations of operators withminimal algebraic complexity,
see [21] for an extensive discussion of this topic. The key
ingredient here is the fact that a unitary representation can be
realized with a number of elementary rotations which is alge-
braically minimal, i.e. equal to the number of free algebraic
parameters. Although other methods of obtaining algebraically
minimal realizations are possible, the one based on unitary
realizations and elementary rotations is particularly attractive
because it combines algebraic minimality with numerical
operations that have minimal error propagation. Algebraic
minimality can be very important at least for two reasons.
One is that a variation of a parameter in an algebraically
minimal realization will not change the class of the realization
(for example: a lossless circuit will stay lossless). This fact
has been extensively exploited by the very elegant realization
theory for Wave Digital Filters discovered and pioneered by
A. Fettweiss [37]. The second reason is that algebraically
minimal realizations can be build in such a way that they form
a continuum for all possible realizations of a given degree and
hence can be used for circuit optimalization by continuous
variation of parameters.

Inversion of Systems:Recently, numerical inversion theory
of systems of equations has been extended to handle a pretty
general type of infinite systems which are described with
a finite set of parameters. The class for which the best
solution have been obtained consists of systems which are
time invariant for but are varying in between. It
appears that inner-outer factorization, the main mechanism for
Darlington synthesis, again plays the key role in solving the
inversion problem.

APPENDIX A
PAST-FUTURE DECOMPOSITION OF ACAUSAL OPERATOR

The concrete representation of operators such as
and in (39) and (40) hinge on the choice of bases in the
input and output spaces of these operators. In our case, the
handiest choice for the input spaceand the output space
are decompositions in diagonals as

in which is the -th diagonal of , properly positioned. Let
us also represent the operatorby its diagonal decomposition:

This is a basis decomposition in which the constituting ele-
ments are diagonal operators. Hence, viewed as series,and

can now be represented by series of diagonals:

The operator maps to
and, taking notice of the rule

, it will be represented by

...
...

...
...

Likewise, maps to , and will also be represented,
in the diagonal bases chosen, by an operatorconsisting of
diagonals. Using the rule , it will be given
by:

...
...

...
. . .

The connecting operators and generate the state
through the action of the Hankel operator, which, as expected,
factors out, since

, as

...
...

... ..
.

...

Hence, ‘concrete’ representations forand in the diagonal
algebra are given by

...

It should be clear, then, that is indeed given by the diagonal:
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APPENDIX B
SQUARE ROOT ALGORITHM FOR

THE DARLINGTON EMBEDDING

The square root algorithm for the Darlington embedding as
derived by [22] can be interpreted as a state space expression
of the Darlington embedding equation (49), which itself is a
special instance of an inner-outer factorization equation. If the
original scattering operator has a realization ,
then the outer spectral factor of will share
the with , and will have and determined by
the condition that there should exist a bounded and boundedly
invertible state transformation operatorsuch that

is co-isometric (this is the dual case of the factorization case
considered in the main text of this paper, for good reason,
see the brief discussion at the end of this section). Expressing
the embedding (49) in terms of these diagonal state space
operators now takes the form

(53)

in which is actually a -unitary realization matrix for the
anticausal transfer function . These equations form the
basis of the square-root algorithm to compute the embedding.
They state that, given the original state space realization for
and the value of at a given point in the recursion, one
finds and by annihilating the middle rows of

using a -unitary transformation matrix, with

to produce

The existence of the Darlington embedding actually insures the
existence of the transformation matrix (if it had been unitary,
it would always exist, but -unitarity is a different case). For
further details on implementation and numerical properties,
see [21].

The square-root algorithm shown here computes an outer
companion and a causal embedding to . This cor-
responds to the traditional Darlington embedding method

whereby a transfer scattering operator is first converted
to an input scattering operator , which is then further
realized using cascaded sections with the correct transmission
zeros. The dual factorization method given in Section VIII
is in a sense more interesting: it proceeds directly with the
factorization of the given , and produces both and
doing so.
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