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Abstract
The main objects of this chapter are “semi-separable systems,” sometimes called
“quasi-separable systems.” These are systems of equations, in which the operator
has a special structure, called “semi-separable” in this chapter. By this is meant
that the operator, although typically infinite dimensional, has a recursive structure
determined by sequences of finite matrices, called transition matrices. This type

P. Dewilde (�)
Technische Universität München, Institute for Advanced Study, München, Germany
e-mail: p.dewilde@me.com

A.-J. Van der Veen
Circuits and Systems Section, Delft University of Technology, Delft, The Netherlands
e-mail: a.j.vanderveen@tudelft.nl

© Springer Basel 2015
D. Alpay (ed.), Operator Theory,
DOI 10.1007/978-3-0348-0667-1_52

901

mailto:p.dewilde@me.com
mailto:a.j.vanderveen@tudelft.nl


902 P. Dewilde and A.-J. Van der Veen

of operator occurs commonly in Dynamical System Theory for systems with a
finite dimensional state space and/or in systems that arise from discretization of
continuous time and space. They form a natural generalization of finite matrices
and a complete theory based on sequences of finite matrices is available for them.
The chapter concentrates on the invertibility of such systems: either the compu-
tation of inverses when they exist, or the computation of approximate inverses of
the Moore–Penrose type when not. Semi-separable systems depend on a single
principal variable (often identified with time or a single dimension in space).
Although there are several types of semi-separable systems depending on the
continuity of that principal variable, the present chapter concentrates on indexed
systems (so-called discrete-time systems). This is the most straightforward and
most appealing type for an introductory text. The main workhorse is “inner–outer
factorization,” a technique that goes back to Hardy space theory and generalizes
to any context of nest algebras, as is the one considered here. It is based on the
definition of appropriate invariant subspaces in the range and co-range of the
operator. It translates to attractive numerical algorithms, such as the celebrated
“square-root algorithm,” which uses proven numerically stable operations such
as QR-factorization and singular value decomposition (SVD).

Introduction

What is the inverse of the (singly infinite dimensional) lower bi-diagonal (so-called
Toeplitz) matrix

2
6664

1

�1=2 1

�1=2 1
: : :

: : :

3
7775‹ (36.1)

Using analogy to the inversion of doubly infinite Toeplitz matrices and their well-
known z-transform theory, one easily finds for the inverse (a direct check is
immediate):

2

666664

1

1=2 1

1=4 1=2 1

1=8 1=4 1=2 1
:::

: : :
: : :

: : :
: : :

3

777775
: (36.2)

What about
2

6664

1

�2 1

�2 1
: : :

: : :

3

7775‹ (36.3)
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It turns out that this matrix is not invertible, it has a co-kernel found by left
multiplication with

�
1 1=2 1=4 � � � 	, as can be checked directly. Yet, it also has a

(bounded) left inverse given by

2

6666664

0 �1=2 �1=4 �1=8 � � �
0 0 �1=2 �1=4 : : :

0 0 0 �1=2 : : :

:::
: : :

: : :
: : :

: : :

3

7777775
: (36.4)

The matrix actually has a nice Moore–Penrose pseudo-inverse (given at the end of
this chapter). So far, the examples just given are all half-infinite Toeplitz (meaning
elements on diagonals are equal), but this turns out not be essential at all, the only
really important thing about these infinite-dimensional matrices is boundedness.
This chapter deals with matrices that represent operators between “`2” spaces. Also,
scalar entries are not important, all entries can be matrices, provided dimensions
remain consistent, i.e., all matrices on the same (block-)row must have the same
row dimension, and all matrices on the same (block-)column must have the same
column dimension. Dimensions may change from row to row or column to column.
In this way a sequence of indices arises: m WD fmkgkD�1W1 (using a MATLAB-
like notation) for the columns and n WD fnkgkD�1W1 for the rows, the matrix in
position .j; k/ having dimensions nj � mk. Zero dimensions are allowed (in that
case the entry at that index point just disappears) and the indexing may run from�1
to C1. In the case of doubly infinitely indexed objects, one needs to identify the
entry of index zero, which one does with a surrounding box: T0;0 for the entry with

indices .0; 0/ in a doubly infinite operator matrix T . Typically, a bounded operatorT
will map an “input space” `m

2 to an “output” space `n
2 , where `m

2 is, e.g., the natural
Hilbert space of real or complex sequences of type fukgkD�1W1 with uk 2 Rmk

(respect. 2 Cmk ) and R the real (respect. C the complex) numbers. Matrix transpose
(respect. hermitian transpose) is denoted with an accent: ŒA0
j;k D A0

k;j . Zero-
dimensional indices indicate just a “place-holder” at the respective index. Some
new calculus rules with zero-indexed entries consistent with regular matrix calculus
is therefore called for. A zero-row, one column matrix is denoted by a horizontal
dash (—), while a zero-column, one-row matrix is represented by a vertical dash
(j) and a zero row, zero column matrix by a dot (�). (New) multiplication rules with
dashes then work as follows (“WD” is used throughout to define a quantity, “�” to
indicate multiplication explicitly):

j � � WD Œ0
; � � j WD � (36.5)

With these simple rules, finite and half infinitely indexed matrices are naturally
embedded in doubly infinitely indexed ones. The following sections will soon
demonstrate the necessity for such conventions.



904 P. Dewilde and A.-J. Van der Veen

Semi- or Quasi-Separability

A lower block-triangular system of equations T u D y with bounded operator T 2
`m
2 ! `n

2 is semi-separable iff there exist a series of indices b D fbkg1kD�1, a
uniformly bounded sequence of (complex) vectors xk 2 Cbk (or Rbk in case of real
arithmetic) and sequences of uniformly bounded matrices fAk;Bk; Ck;Dkg such
that the following recursion holds for all indices k:



xkC1 D Akxk C Bkuk

yk D Ckxk CDkuk

(36.6)

or in matrix notation:

�
xkC1

yk

�
D
�
Ak Bk

Ck Dk

� �
xk

uk

�
: (36.7)

This is called a (causal) state space realization of the operator T , with state
transition matrix Ak , input operator Bk , output operator Ck and feed-through Dk .
All these matrices have variable dimensions depending on the sequences m;n,
and b. An issue is whether the recursive representation actually defines a bounded
operator. Sufficient for this (but there are important exceptions, see further) is that
not only the matrices Ak;Bk; Ck;Dk are uniformly bounded but that the sequence
of the so-called state transitions Ak is also uniformly exponentially stable (denoted
u.e.s.), i.e., that for k,

� D lim supkŒsup
`

kAkC`�1 � � �A`C1A`/k
1=k < 1 (36.8)

i.e., the continuous product AkC`�1 � � �A`C1A` gets eventually majorized by �kC�

in norm for any small � > 0, uniformly over `.
The operator T then has the matrix representation

T D

2

6666666664

: : :
: : :

: : :
: : :

: : :
: : :

: : :

: : : C�1A�2B�3 C�1B�2 D�1 0 0
: : :

: : : C0A�1A�2B�3 C0A�1B�2 C0B�1 D0 0
: : :

: : : C1A0A�1A�2B�3 C1A0A�1B�2 C1A0B�1 C1B0 D1

: : :

: : :
: : :

: : :
: : :

: : :
: : :

: : :

3

7777777775

(36.9)

the general term of which is, for j > k: Tj;k D CjAj�1 � � �AkC1Bk . In this
term the increasing continuous product of state-transition matrices appears, which
is sometimes denoted as A>�

j;k WD Aj�1 � � �AkC1. This chapter adopts a different and
more compact notation: for a sequence of matrices fAkgkD�1���1 the constructor
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“diag” threads them into a block-diagonal operator: A D diagŒAk
. Let, in addition,
Z be the forward or “causal” shift: .Zx/k WD xk�1, with of course .Z�1x/k D
xkC1, then the global, now anti-causal, state-space equations simply become:



Z�1x D Ax C Bu
y D Cx CDu

: (36.10)

These equations can formally be solved to produce T D D C C.I �ZA/�1ZB , a
form that certainly makes sense when the operator .I �ZA/ is bounded invertible.
One verifies that this is the case when A is u.e.s., by Neumann series expansion
(� is the spectral radius of ZA). However that be, one may always write T as a
unilateral expansion of diagonals: T D D C CZB C CZAZB C � � � , the general
term C.ZA/k�2ZB; k � 2 of which defines the kth sub-diagonal of T with a finite
product, an expression that makes sense whenever the matrix representation of T
does – a strategy that can be used to represent unbounded or numerically unstable
operators.

The shift operator Z does not normally commute with other operators. Let
T <C1> WD ZTZ�1 denote the diagonal shift in the South-East direction. Then
ZT D T <C1>Z. Similarly, T <�1> D Z�1TZ is a diagonal upward shift. A word
of caution: the dimensions of Z are variable, e.g., one has ZkC1;k D Imk

in the
product Zx with x 2 Rm, and Zj;k D 0 for j ¤ k C 1 (the symbol Z actually
represents a collection of operators). In the present theory, adjoints will coincide
with matrix transposition (for real matrices), or hermitian transposes (for complex
matrices).

Since operators act on a Hilbert space, they have adjoints. Abstract operator
adjoints are typically denoted by a ��. As most operations in this chapter are
matrix operations, there is no need here to consider more general adjoints and most
operations are in real arithmetic, the notion of matrix transpose suffices. It is simply
denoted with a prime: ŒT 0
j;k D T 0

j;k – in particular Z0 D Z�1. For the case of
complex arithmetic, the prime denotes the hermitian conjugate. (The theory is even
valid for more general fields, but that will not be of concern in this chapter.) Upper
operators are dual to lower operators, and in a similar vein as before, an upper semi-
separable operator has a representation



xk�1 D Akxk C Bkuk

yk D Ckxk CDkuk

;



Zx D Ax C Bu
y D Cx CDu

; (36.11)

in which case (upper or anti-causal) T D D C C.I � Z0A/�1Z0B (notice that
the “incoming” state has index k in both the lower and the upper realization, hence
takes place at different locations). This leads to the final definition:

Definition 1. A semi-separable operator T W `m
2 ! `n

2 is a (bounded) operator that
possesses (potentially different) state-space realizations for its lower (causal) and its
upper (anti-causal) part:
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T D Cc.I �ZAc/
�1ZBc CD C Ca.I �Z0Aa/

�1Z0Ba (36.12)

in which the operators fAc;Bc; Cc;D;Aa; Ba;Dag (sometimes called “generators”)
are all bounded block diagonal operators and the inverses in the expression are
unilateral expansions in respect. Z and Z0. It is called u.e.s. when Ac as well as
Aa are u.e.s.

The boundedness conditions stated in the definition can be relaxed, but that
goes beyond the present chapter. Finite (block-)matrices are automatically semi-
separable (see the next section and the notes at the end), but for them the definition
only makes sense when the respective state dimensions are small compared to the
overall dimension of the matrix.

Realization Theory

Many state-space realizations are possible for a given semi-separable transfer
operator T . An important class of realizations are the minimal. This is obtained
when the state dimension at each index point is minimal. Realization theory (which
is only summarized here) states that this minimal dimension is actually equal to
the rank of the so-called Hankel operator at that index point. An arbitrary minimal
factorization of that Hankel operator produces moreover a specific realization. Here
is how that works.

Definition 2. Let T be a lower semi-separable operator. Its kth Hankel operator is
the matrix

Hk D

2

6664

‘Tk;k�1 Tk;k�2 Tk;k�3 � � �
TkC1;k�1 TkC1;k�2 TkC1;k�3 � � �
TkC2;k�1 TkC1;k�2 TkC1;k�3 � � �

:::
:::

:::
: : :

3

7775 : (36.13)

Hk maps the “strict past” of the input vector to the “present and future” of the
output vector at index point k. In any realization one has

Hk D

2

6664

Ck

CkC1Ak

CkC2AkC1Ak

:::

3

7775
�
Bk�1 Ak�1Bk�2 Ak�1Ak�2Bk�3 � � �

	
(36.14)

hence Hk factors into a reachability operator

Rk WD �
Bk�1 Ak�1Bk�2 Ak�1Ak�2Bk�3 � � �

	
(36.15)
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and an observability operator (using the “col” constructor that makes a column out
of the list of matrices)

Ok WD col
˚
Ck CkC1Ak CkC2AkC1Ak � � �� : (36.16)

The converse works equally well and is the basis for realization theory: every (rea-
sonably bounded) factorization of the Hankel operator will produce a realization.
Minimal realizations are obtained when each factorization (i.e., for each index k) is
minimal, i.e., when the rows of each Rk and the columns of each Ok form a basis
(are linearly independent). The columns of Ok then form a basis for the range of
Hk , while the transpose of the rows of Rk form a basis for the co-range of Hk – i.e.,
the range of H 0

k . It also follows that the vectors in any such base belong to `2 (of
appropriate dimensions) and form bounded operators Ok and R0

k with closed range
and zero co-kernel.

From any minimal factorization one can derive a realization, as follows. Using
a Matlab-like notation to single out sub-matrices, one chooses Bk�1 D ŒRk
1 and
Ck D ŒOk
1. Furthermore:

ŒOk
2W1 D ŒOkC1
Ak (36.17)

and, if the columns of OkC1 form a basis, then it has a (actually many) left bounded
(pseudo-) inverse O�

kC1 (one can take O�

kC1 D .O0
kC1OkC1/

�1O0
kC1) and one

must have Ak D O�

kC1ŒOk
2W1. It turns out that this definition of Ak is actually
independent of the choice of left pseudo-inverse, and whether one has worked on
the observability or reachability operators.

Canonical Forms

In particular, one can select an orthonormal basis for all the observability operators,

and put Ak D O0
kC1ŒOk
2W1. In that case each

�
Ak

Ck

�
is isometric (i.e., A0

kAk C
C 0
kCk D I ) for all k. The realization is then in output normal form. Dually, one

can choose an orthonormal basis for each reachability operator, in which case the
realization will be in input normal form and

�
Ak Bk

	
is co-isometric for all k (i.e.,

AkA
0
k C BkB

0
k D I ). Another interesting form is when a realization is chosen

balanced. To obtain it, one performs a reduced Singular Value Decomposition of
each Hankel (Hk D Uk†kV

0
k) with Uk and Vk isometric and †k square non-

singular, and puts Ok WD Uk†
1=2

k , Rk WD †
1=2

k V 0
k . Corresponding to these choices

of basis, there are gramians, which typically are then called observability, respect.
reachability gramians. In the case of the balanced realization, both are diagonal and
equal to †k at index k. Minimal realizations are both reachable and observable.
Reachability means that any state xk can be generated by an input in the strict
past of the system, i.e., some up in `

m�1Wk�1

2 . Observability, on the other hand,



908 P. Dewilde and A.-J. Van der Veen

means that there is a one-to-one relation between a state xk and the zero-input
future response yf 2 `

nkW1

2 it produces (alternatively, it is reachability of the adjoint
system realization).

State Equivalence

All minimal realizations define bases for both the reachability and observability
operators at each point k. As a result, they all relate to each other via a basis
transformation, which is actually a basis transformation on the state. Let xk D Rk Oxk
be such a transformation with each Rk square non-singular, then the realization (of
a lower system) transforms as

�
Ak Bk

Ck Dk

�
7!
�
R�1

kC1AkRk R�1
kC1Bk

CkRk Dk

�
: (36.18)

One can of course use such a transformation to convert a system to any of
the canonical forms described above. In particular, if one has a realization with
reachability data

�
Ak Bk

	
, which one wants to convert to input normal form,

then one has to find Rk’s such that the transformed realization has
� OAk

OBk

	 WD�
R�1

kC1AkRk R�1
kC1Bk

	
co-isometric. Putting Mk WD RkR

0
k , this means finding

(non-singular) Mk’s such that

MkC1 D AkMkA
0
k C BkB

0
k: (36.19)

This is a famous forward-recursive Lyapunov–Stein equation, and it will have a
numerically stable solution when the operator A is u.e.s. All Mk will be non-
singular, provided the original system is reachable, because Mk is actually the
reachability gramian of the original realization at index k. It is numerically not
advisable to solve the Lyapunov–Stein equation directly, because the numerical
conditioning of M is square that of R. A direct method to compute the Rk is the
so-called square-root algorithm, which in this case is the recursion:

�
AkRk Bk

	 D �
RkC1 0

	
Vk; (36.20)

in which RkC1 is square non-singular and Vk an orthogonal matrix (the columns of
RkC1 form a basis for the range of

�
AkRk Bk

	
). The recursion assumes knowledge

of Rk and then computes RkC1 and Vk by column reduction. This is an example
of a so-called R-Q factorization; RkC1 can typically be obtained either in lower
triangular or in upper triangular form, and because of the minimality conditions,
it is guaranteed to be square non-singular (in the case of balanced realizations one
would resort to SVDs). The unknown RkC1 and orthogonal matrix Vk are computed
from the left-hand side data (this is “array processing”: a lot of new data directly
computed from a source, without a closed mathematical formula). As an added
benefit, Vk contains the new reachability data, i.e.,



36 Semi- and Quasi-separable Systems 909

Vk D
� OAk

OBk

CV;k DV;k

�
(36.21)

in which CV;k and DV;k complete the orthogonal matrix (see further the discussion
on canonical factorizations for their significance). The transformed realization for

T at stage k is then

� OAk
OBk

CkRk Dk

�
, which, with OCk D CkRk and using the diagonal

notation, can be written globally as a matrix of diagonal operators

� OAk
OBk

OCk Dk

�
, with

T D D C OC.I �Z OA/�1Z OB as well. Several issues are now in order.
First, there is the tricky question of the boundedness of R and R�1. For good

results, the global operator R D diagRk should be restricted to being bounded with
bounded inverse, whenever possible. This is achieved by requiring the existence
of semi-separable realizations in which both the reachability and the observability
gramians are strictly positive (i.e., the inverse M�1 of the respective gramian M is
bounded). In that case, both the input and the output normal forms of the system
at hand have state transition matrices that are u.e.s. This is certainly not always the
case and is important for how the system behaves at infinity. Under the condition of
a strictly positive reachability gramian, there exists a semi-separable output normal
form with state transition matrix OA that is u.e.s. (and conversely). Dually, the output
normal form representation will also possess a state transition matrix that is u.e.s.
iff the observability gramian is strictly positive definite.

Next, there is the issue of starting the recursion, in the case of the input normal
form discussed so far, the recursion goes forward (from k to k C 1). An initial
value is needed. This requires some knowledge of the system around �1. For
example, the system may be originally time-invariant, in which case there is a
fixed-point solution to the recursion that can be obtained directly. In many cases
the behavior at earlier times is unknown. One may then assume an arbitrary initial
value to start up the recursion. It turns out that because of the u.e.s. property, the
error made will die out, at a rate given by �k (see the u.e.s. definition (36.8)).
This is true for numerical errors made during the computation as well, both the
Lyapunov–Stein and the square-root recursion are extremely stable numerically.
The counterpart of this is that the Lyapunov–Stein equation cannot be inverted:
the inversion will be extremely unstable and will produce incorrect results. The
observability recursion starts at C1 and runs backwards (from k to k � 1). Also
this recursion can not be reversed, for the same numerical stability reasons, now in
reverse order.

The operatorV D DV CCV .I�Z OA/�1Z OB has a unitary realization with OA u.e.s.
(which will be the case if the original operator has a uniformly reachable realization
that is also u.e.s). One shows easily that V is then a (global) unitary operator as
well. The converse is also true: a unitary and lower semi-separable operator has a
unitary realization with A u.e.s. One word of caution here: the qualification OA u.e.s.
is essential. It is easy to produce unitary realizations that do not lead to a unitary
operator, but this is only possible with state transition matrices that are not u.e.s.
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Canonical (Co-prime) External Forms

Let T and V be as in the previous subsection, and consider the product

T V 0 D .D C OC.I �Z OA/�1Z OB/ � .D0
V C OB 0Z0.I � OA0Z0/�1C 0

V /: (36.22)

One checks easily that

.I �Z OA/�1Z OB OB 0Z0.I � OA0Z0/�1 D .I �Z OA/�1Z OAC I C OA0Z0.I � OA0Z0/�1

(36.23)
(because OA OA0 C OB OB 0 D I ), so that

T V 0 D .DDV C OCCV /C OC.I �Z OA/�1Z. OAC 0
V C OBD0

V /

C. OC OA0 CD OB 0/Z0.I � OA0Z0/�1C 0
V

: (36.24)

Next, OAC 0
V C OBD0

V D 0, again because of orthogonality of the realization for V ,
and

�0 WD T V 0 D .DD0
V C OCC 0

V /C . OC OA0 CD OB 0/Z0.I � OA0Z0/�1C 0
V (36.25)

turns out to be upper (anti-causal). Finally, as V is unitary, one has T D �0V .D
�0.V 0/�1/, and a representation for (causal) T results as the ratio of two anti-causal
operators. Such a factorization will be called a right external factorization – the case
considered here is where the right factor is unitary. It turns out that it is also co-prime
(see further the section on geometry), with as a consequence that it cannot be further
reduced. � and V are uniquely determined by T , up to left unitary equivalence by
a unitary diagonal operator (these are the units of the present theory). In the section
on geometry, it will appear that V characterizes the kernel of the global Hankel
operator.

Dually, the output normal form leads to an external co-prime factorization of the
type T D W�0

r again with �0
r anti-causal and W unitary.

Isometric and Unitary Operators

Proposition 1. A semi-separable causal isometric (respect. co-isometric) operator
V has an isometric (respect. co-isometric) realization.

Proof. A realization in output normal form derived from an orthonormal basis for

each observability operator Ok already has

�
AV k

CVk

�
isometric. Remains to show that

the resulting realization

�
AVk BV k

CV k DV k

�
is isometric as well. This follows from the

isometry of V . At any index k, any input or output can be orthogonally decomposed
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into a strict past component up;k (respect. yp;k) with support .�1 W k � 1
 and
a “future” component uf;k (respect. yf;k with support Œk W 1/: u D up;k C uf;k

(respect. y D yp;kCyf;k ). The isometry then forces kup;kk2Ckuf;kk2 D kyp;kk2C
kyf;kk2 for all inputs u and y D V u. Consider now an input with support .�1; kC
1
, but otherwise arbitrary. At index point k, and with the given output normal form
realization, it generates the state xu;k and at index point kC1, the state xkC1. Let y D
V u. Because of the isometry of the observability operator Ok, we have kxu;kk2 D
kyf;kk2 and kxu;kC1k2 D kyf;kC1k2. Because also up;kC1 D up;k Cuk , kup;kC1k2 D
kup;kk2 C kukk2, yf;k D yk C yf;kC1, kyf;kk2 D kykk2 C kyf;kC1k2 it follows that
kxu;kk2 C kukk2 D kxu;kC1k2 C kykk2, and the state-space realization is isometric
for any reachable state xu;k and any input uk. As the realization is minimal, any
state xk is reachable, because the Hankel operator Hk D OkRk , the factorization
is minimal, the co-kernel ker.R0

k/ D 0, and hence Rk is onto as a consequence (it
being finite dimensional and hence necessarily closed). ut

Much more tricky is whether the resulting realization is u.e.s. A semi-separable
causal unitary operator V has of course a (causal) unitary realization, and it turns
out to be automatically u.e.s. The proof is pretty technical and given in the literature
(see e.g., Dewilde and Van der Veen [6]). An important element in the proof is the
fact that the range and co-range of a unitary operator are closed spaces. When V is
merely isometric (respect. co-isometric), there is no guarantee that its range (respect.
co-range) is indeed closed. When V is (causal) semi-separable and isometric, then
its isometric realization is uniformly observable by construction, but there is no
reason why its state transition operator AV should be u.e.s. One shows (again a
technical proof) that AV is u.e.s. iff the range of V is closed. Suppose now that"
AV BV

CV DV

#
is an isometric realization for V . Such a realization can always be

completed to unitary: compute
�
CW DW

	
such that

2

4
AV BV

CV DV

CW DW

3

5 (36.26)

is unitary, and it will be the realization of a unitary operator

�
V

W

�
with W D

DW C CW .I � ZAV /
�1ZBV iff AV is u.e.s. When AV is not u.e.s., the resulting

operator will not be unitary, even though it has a unitary realization. There is a good
“physical” interpretation of what happens. When square norms on inputs, outputs,
and states are interpreted as “energy,” then some of it may leak to infinity. When AV

is u.e.s., then this guarantees that all inputed energy is eventually transferred to the
output.
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Hankel Geometry

Each Hankel operatorHk related to a lower semi-separable operator T at index point
k maps `m�1Wk�1

2 to `
nkW1

2 (in the matrix notation of Eq. (36.13) the input vector is
put in reverse order so that Hk looks like a regular matrix, here the normal order
of the input vector is assumed). The global Hankel map can then be viewed as the
direct sum of these maps. This is consistent with the fact that information on the
system’s behavior is needed at each index to determine its “internal state structure”
at that index from its input–output behavior. More precisely, let Xm

2 DLC1
kD�1 `m

2

be the space of “stacks of inputs,” one for each index point, endowed with a Hilbert–
Schmidt inner product (one has U 2 Xm

2 when U D rowŒuj;W
jD�1WC1; uj;W 2 `m
2

and
PC1

kD�1 kuj;kk2 < 1). Each column of U provides an input, for each index
point one. As inputs to the global Hankel map, one restricts the input U at index k

to `
m�1Wk�1

2 (the strictly upper part of Xm
2 ) and the output Y D HU to the lower

part of X n
2 . Let Um

2 denote the natural embedding of
L1

kD�1 `
m�1Wk

2 into Xm
2 (i.e.,

the upper part of Xm
2 ), then the strictly upper part of Xm

2 , Um
2 Z0, carries the input

space of the global Hankel operator, and it maps to Ln
2 WD L1

kD�1 `
nkW1

2 , which
also naturally embeds in X n. Similarly, let Dm

2 WD Um
2 \Lm

2 denote the diagonals in
Xm

2 .
The operator T itself extends in a natural way to stacks: (formally T U WD

ŒT uW;k 
1kD�1 where uW;k is the input sequence of the kth system) and using
(Hilbert–Schmidt) orthogonal projection operators …�, the (embedded) global
Hankel operator connected to T becomes

H D …Ln
2
T…Um

2 Z0 (36.27)

mapping strictly upper stacks of inputs to lower stacks of outputs. The interesting
(geometric) properties of H concern its kernel, range, co-kernel, and co-range (the
latter being the kernel and the range of H 0). Consider first the kernel K. Let D be
an arbitrary bounded diagonal operator (consisting of scalar elements), if U 2 K,
then evidently also UD 2 K, one says that K is right D-invariant. Moreover, K is
invariant for shifts Z0, indeed, if U 2 Um

2 , then also UZ0 2 Um
2 and HUZ0 D 0

whenever HU D 0, hence K is right-Z0-invariant. Shift-invariant spaces have
special properties, and that is the case even for semi-separable matrices, although
they do not fit traditional algebraic structures like Hardy spaces or modules.
Traditionally one likes to work with Z-invariant spaces, and the generalization of
the classical Beurling–Lax theorem to the present case (it is actually an example of
a nest algebra) is:

Theorem 1. For any right D-Z-invariant subspace K of Lm
2 there exists an index

sequence k with for each j kj � mj and an isometric semi-separable operator
V 2 Lk

2 such that K D V Lk
2 .
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The construction of V in the proof of the theorem (which is in [6]) follows the
classical Beurling–Lax argument: one considers the “wandering subspace” K	KZ

and constructs an orthonormal basis for it.
This generalized Beurling–Lax theorem provides for a geometric interpretation

of the external factorization of the previous subsection. Consider the Hankel
operator H related to T , and let K be its kernel. As indicated before, it is a right
D-Z0-invariant subspace of Um

2 Z0, hence there is a sequence k and an isometric V 0
such that K D V 0Uk

2 Z
0. It follows, because of the definition of the Hankel operator,

that T V 0 D �0 for some lower �. From the computation in the previous section we
already had a unitary and lower V such that T V 0 is upper, it follows immediately
that V 0Um

2 Z0 2 K, and hence that k D m as well.
However, the main application of the Hankel geometry is in the next section and

will give the key to system inversion theory.

Inner–Outer Factorization

Let T be a lower semi-separable operator, and consider M D TLm
2 , i.e., the range

of T for lower (causal) inputs, and N WD Ln
2T . The notation M indicates closure

of the space M in the Hilbert–Schmidt metric.

Definition 3. T is right-outer (has a lower right inverse) iff M D Ln
2 . It is left-outer

(has a lower left inverse) iff N D Lm
2 . It is outer when both are the case.

(M and N are not necessarily closed!) Remark that T (lower) is right-outer iff
ker.T 0/ D 0 and left-outer iff ker.T / D 0.

When T is outer, then necessarily n D m (the proof is based on arguing that
D has to be square and invertible). When it is left-outer, then only ker.DT / D 0,
i.e., each diagonal block DTk of T has a left inverse, but DT may only have dense
co-range. Outerness is a tricky property, because the respective spaces M or N
are not necessarily closed. When M is actually a closed subspace, then T has a
bounded right lower (pseudo-)inverse. When M is not closed, then one can only
assert the existence of an approximate right lower (pseudo-)inverse, as the inverse
only exists on the dense range of T , and is then also necessarily unbounded. In the
semi-separable case, a lower semi-separable representation of such inverses exists
(see further how it is computed in the section on the square-root algorithm), but it
may produce an unbounded result for some inputs, and will be unstable in a weak
sense (its analysis goes beyond this treatment). This situation is unavoidable: e.g., an
operator such as I �Z is outer with unbounded inverse. Unbounded outer inverses
are very common and have important implications.

Clearly, M is right D-Z-invariant. Because of the generalized Beurling–Lax
theorem, there is a sequence k and a lower, isometric V such that M D V Lk

2 .
Hence, V Lk

2 D TLm
2 . Let To WD V 0T , then V To D V V 0T . It turns out that

V V 0T D T , because TLm
2 D M, so that for all lower U ’s, T U 2 M and V V 0
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is a projection operator on M. Hence V To D T on Lm
2 . This argument extends to

the full space Xm
2 , because it is also evidently true that TXm

2 D VXm
2 . Moreover,

To will be right-outer, because Lk
2To D V 0TLM

2 D V 0M D Lk
2 . This development

gives rise to further definitions:

Definition 4. A lower (causal) isometric operator V is said to be left-inner
(V 0V D I ). A lower (causal) co-isometric operator is said to be right-inner
(V V 0 D I ). A lower (causal) operator is said to be inner (equivalently: bi-inner),
when it is unitary.

Such definitions are of course also valid in the context of the upper shift (here
Z0), and even in more general nest algebras, but the context should always
be clearly defined. The treatment in this section then leads to the next theo-
rem.

Theorem 2. Given a lower (causal) semi-separator operator T , then there exist a
left-inner operator V and a right-outer operator To such that T D V To (inner–
outer factorization). These operators are uniquely defined except for a unitary
diagonal left factor on To (right factor on V ).

The inner–outer factorization T D V Tor already produces a pseudo-inverse
V 0T �

or in which T
�
or is a right inverse of Tor . This is not yet a Moore–Penrose

inverse, except in the case where ker.T 0/ D 0. Another factorization, this time an
outer–inner factorization on Tor is needed to produce the Moore-Penrose inverse:
Tor D ToW for a right-inner W and a left-outer To (the dual case of before). It
turns out that To is fully outer, T D V ToW and the Moore–Penrose inverse is
T � D W 0T �1

o V 0.
An additional benefit of the inner–outer factorization is the fact that kerT 0jLn

2
D

kerV 0jLn
2

as well as kerT 0jX n
2
D kerV 0jX n

2
, an important property for inversion

theory. This follows immediately from T D V To and V D T T
�
o , where T

�
o is any

pseudo-inverse of To (the property remains valid even when T
�
o is unbounded with

dense domain).
Consider now K WD ker.T jLm

2
/. Trivially, K 2 ker.T jXm

2
/, as well as all

its anti-causal right shifts: K.Z0/k 2 ker.T jXm
2
/ for any k � 0. Let Kin D

span.K.Z0/k/1kD0, then also Kin 2 ker.T jXm
2
/. Remarkably, it may happen (and

often happens) that ker.T jXm
2
/ ¤ Kin. In that case ker.T jXm

2
/ D Kin ˚ K00

in, where
K00

in is a (doubly) right-invariant D-Z-Z0 subspace of Xm
2 – i.e., K00

inZ � K00
in as well

as K00
inZ

0 � K00
in. K00

in cannot belong to L2 nor to U2 except in very trivial contexts.
This issue is the topic of the chapter on invertibility, where also an example is given.

Finally, suppose that an isometric realization has been chosen for V and let OT

and OV be the observability operators of respect. T and V , then also ker.O0
T OV /

0 D
0, because xO0

V OT D 0 H) xO0
V 2 ker.T 0jLn

2
/ D ker.V 0jLn

2
/. But V has an

isometric realization, and hence O0
V OV D I and x D 0. It follows that M<C1> WD
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O0
V OT (which plays an important role in the next section) is a locally left-invertible

diagonal operator.

The Square-Root Algorithm

An outer–inner factorization (respect. inner–outer) is easy to compute in the semi-
separable case. The strategy followed here is somewhat heuristic: the approach is to
find the solution by induction and then to check it to be correct. It has the advantage
to be intuitive and computational, for a more formal approach one should check the
literature (see the notes at the end of the chapter). The expression V 0T D To may
be seen as defining a maximal left-inner V whose transpose “pushes” T to upper
(anti-causal) without destroying its causality. A first consequence of the relation
is that the reachability space of To must be contained in the reachability space of
T , since the reachability space of To is the range of the Hankel operator related
to T 0

o D T 0V . Hence one may look for a (potentially non-minimal) realization for
To that borrows the reachability data

�
A B

	
from T . Posing realizations for the

unknowns V WD DV CCV .I �ZAV /
�1ZBV and To WD Do CCo.I �ZA/�1ZB ,

with

�
AV BV

CV DV

�
isometric, V 0T D To translates to

To D Do C Co.I �ZA/�1ZB D .D0
V CB 0

V Z
0.I �A0

V Z
0/�1C 0

V /

�.D C C.I �ZA/�1ZB: (36.28)

As in the section on external factorizations, the main difficulty with this expression
is the occurrence of a “quadratic term” in the product, and as before, one checks that
it can be split:

Z0.I �A0
V Z

0/�1C 0
V C .I �ZA/�1Z D Z0.I �A0

V Z
0/�1A0

VM

CM CMA.I �ZA/�1Z (36.29)

in which M satisfies a forward Lyapunov–Stein equation

M<C1> D A0
VMAC C 0

V C (36.30)

the difference with before being that the equation now contains the unknowns AV

and BV as well as M . Introducing the split, one obtains

.D0
V D CB 0

VMB/C B 0
V Z

0.I � A0
V Z

0/�1.C 0
V D C A0

VMB/

C.D0
V C C C 0

VMA/.I �ZA/�1ZB

‹ D‹Do C Co.I �AZ/�1ZB

: (36.31)
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A first requirement is: keeping V 0T lower; hence one must require C 0
V D C

A0
VMB D 0. Next, the expression confirms the contention that V 0T shares the

reachability data with T . Finally: Do D D0
V DCB 0

V MB and Co D D0
V C CB 0

V MA

suffice to satisfy the equation. Summarizing:

�
A0

V C 0
V

B 0
V D0

V

�
�
�
MA MB

C D

�
D
�
M<C1> 0

Co Do

�
: (36.32)

At index k the equation produces the forward recursion

�
A0

V k C 0
V k

B 0
V k D0

V k

�
�
�
MkAk MkBk

Ck Dk

�
D
�
MkC1 0

Cok Dok

�
: (36.33)

To solve this recursion, knowledge of Mk is assumed, and the computation of the
local realizations of V and To is attempted, as well as the computation of the next
MkC1. The right outerness of To requires coker.Dok/ D 0, or, in words, the rows
of Dok have to be linearly independent. Similarly, the fact that M<C1> D O0

V OT

forces MkC1 to have a right inverse (see the previous subsection). If V has to be as
large as possible, then the best one can do is have the rows of the right-hand side

span the co-range of

�
MkAk MkBk

Ck Dk

�
. This observation connects immediately with

QL-factorization. Suppose Q and L are such that

�
MkAk MkBk

Ck Dk

�
D
�
Q11 Q12 Q13

Q21 Q22 Q23

�2

4
0 0

L21 0

L31 L32

3

5 (36.34)

with Q unitary and L right invertible. The columns of

�
Q13

Q23

�
then form an

orthonormal basis for the range of

�
MkBk

Dk

�
, and L32 a basis for its co-range.

Hence one identifies L32 D Dok . The next step produces

�
Q12

Q22

�
as a basis for

ran

�
MkAk

Ck

�
	 ran

�
MkBk

Dk

�
, for whose co-range the rows of L21 then provide a

basis. Hence L21 D MkC1. Finally,

�
Q11

Q21

�
will span the co-kernel of the original.

(The QL-factorization starts out with reducing the last column to the right-bottom
element and then proceeds to the next column to the left.).

One easily identifies the block entries in Q and L with the realizations of V , W ,
and To, here is the final result:
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Proposition 2. The Q-L factorization of

�
MkAk MkBk

Ck Dk

�
produces realizations for

V , W and To as follows:

�
MkAk MkBk

Ck Dk

�
D
�
BW k AVk BV k

DW k CVk DV k

�2

4
0 0

MkC1 0

Cok Dok

3

5 (36.35)

for which

V D DV C CV .I �ZAV /
�1ZBV

W D DW C CW .I �ZAV /
�1ZBV

To D Do C Co.I �ZA/�1ZB

: (36.36)

(the check has to be done, but it is straightforward). This is the square-root
algorithm, and as before, it is numerically stable, meaning that both an erroneous
choice for Mk to start up the recursion and numerical errors incurred during the
recursion will die out exponentially fast.

TheMoore–Penrose Inverse of a General Semi-separable
Operator

If T is lower (causal) semi-separable, then a Moore–Penrose inverse for T is
obtained from an inner–outer and an outer–inner factorization, as explained in the
previous section. T D V ToW and hence T � D W 0T �1

o V 0. In this expression V is
semi-separable isometric, W is semi-separable and co-isometric, and To is outer.
T �1
o is not necessarily bounded, but it has a causal realization and exists on a

dense subset of the output space for To. The state-space dimensions of all these
operators are equal or smaller than the state-space dimension of the original T at
each index point k. Typically, one would not execute the product to find a solution
to the Moore–Penrose minimization problem, which formulates briefly as: given y

find

x D argminu2argminv .kT v�yk2/kuk2; (36.37)

whose solution is x D T �y; but one would leave T � as a product of three operators,
two of which are semi-separable (V 0 and W 0) and one (To) may have an unbounded
inverse, which has a more or less decent state-space representation. If T is known to
have a bounded inverse, then To will of course have a bounded inverse as well, and
with some operator theoretic arguments one can show that the realization obtained
through inner–outer factorizations is u.e.s.

The next step is how to handle a full semi-separable operator, given by the
realization
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T D Cc.I �ZAc/
�1ZBc CD C Ca.I �Z0Aa/

�1Z0Ba (36.38)

(in which Ac and Aa are u.e.s.). Assume the realizations to be minimal (if not:
make them minimal!) and put the anti-causal (upper) part in input normal form –
i.e.

�
Aa Ba

	
is co-isometric. Let then BW and DW form a unitary completion:

�
A0

a BW

B 0
a DW

�
(36.39)

is unitary. Let W D DW CB 0
a.I �ZA0

a/
�1ZBW , then, as in the section on external

factorization, T W will be lower. As in that section, a realization for Tu WD T W is
obtained as Tu D Du C Cu.I �ZAu/

�1ZBu with

�
Au Bu

Cu Du

�
D
2

4
Ac BcB

0
a BcDW

0 A0
a BW

Cc CaA
0
a CDB 0

a DDW C CaBW

3

5 : (36.40)

This realization may not be minimal (e.g., if T D W 0 one would have Tu D I ),

but it is reachable, the reachability gramian is simply

�
Gc

I

�
, in which Gc is the

reachability gramian of the lower part. The next step is now to perform inner–outer
decompositions on Tu D V1ToV2, potentially after a minimalization of Tu (and then,
later, of To). This then produces T D V1ToV2W

0 and finally the Moore–Penrose
inverse

T � D W V 0
2T

�1
o V 0

1 (36.41)

in which all factors have realizations that are smaller than the original, and can hence
be called “efficient.”

LU and Spectral Factorization

An interesting question with many applications is whether there exists a factoriza-
tion T D LU with L a lower and lower invertible operator (i.e., L outer) and
U an upper and upper invertible operator (i.e., U outer in the Z0-context). This is
generally calledspectral factorization, a key step in solving Fredholm equations.
The problem is hard to solve when T itself is not bounded-invertible, so the
assumption of such invertibility is commonly made. In the Hardy space context
of the unit complex disc it is called dichotomy: no “zeros” of the system lie on the
unit circle. If the collections of zeros and poles strictly inside the unit disc as well
as that strictly outside are finite and the numbers of poles and zeros in the respective
domains match (multiplicities counted), then the factorization exists. This would
certainly be the case when T is a (strictly) positive rational operator, for in that case
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T is bounded-invertible, and the matching condition necessarily holds. In the case of
LU-factorization of finite matrices, the factorization does not necessarily exist, even
when T has a bounded inverse. In this section, necessary and sufficient conditions
for the existence of the LU-factorization will be derived under the condition of
(bounded) invertibility of T , and it will be given in terms of characteristic inner
factors that generalize the notion of “poles” and “zeros” to the semi-separable case.

The starting point is again a realization for a general semi-separable operator:

T D Cc.I �ZAc/
�1ZBc CD C Ca.I �Z0Aa/

�1Z0Ba (36.42)

with the additional assumption that the anti-causal part has a uniformly reachable
and u.e.s. realization. Hence it can be assumed in input normal form (AaA

0
a C

BaB
0
a D I ), with Aa u.e.s.

Two preliminary remarks are in order: (1) the factorization is not unique, but it
is unique up to a right diagonal unitary factor on L and its conjugate as a left factor
on U . This allows normalization of one of the factors to have unit main diagonal.
Here, the main diagonal of U is taken to be DU D I ; (2) an LU-factorization
is necessarily minimal, i.e., the minimal state space realization of U will have the
same dimension as that of the upper part of T (i.e., Ta WD Ca.I �ZAa/

�1ZBa), and
likewise with L and the lower part of T . Actually, U may borrow the reachability
pair

�
Aa Ba

	
of Ta.

The first step is as before: let W D DW C CW .I � ZA0
a/

�1B 0
a be an inner

operator, obtained after unitary completion of
�
Aa Ba

	
, and consider now Tu D

T W with realization given by Eq. (36.40). Let Tu D ToV be an outer–inner
factorization of Tu, on the basis of the given realization of Tu, which may be
non-minimal, but, as shown in the previous section, is uniformly reachable. Under
the given hypotheses, To is outer, but V may merely be right-inner (i.e., causal
and co-isometric). It turns out that the LU-factorization exists if V is (fully) inner
with appropriate dimensions. The full result, including formal expressions, is in the
following theorem. The resulting algorithm to compute the factorization, with some
further motivation, is given thereafter.

Theorem 3. Let T be a semi-separable operator with bounded inverse and minimal
realization given by (36.42), in which

�
Aa Ba

	
is co-isometric and Aa is u.e.s. Let

W be a minimal inner operator that makes Tu WD T W causal, and let Tu D ToV be
an outer–inner factorization of Tu. Let then a unitary realization for W be given by
W D DW C CW .I �ZA0

a/
�1ZB 0

a and a co-isometric one for V D DV CCV .I �
ZAV /

�1ZBV , and let R satisfy the Lyapunov–Stein recursion

R<�1> D A0
aRA0

V C B 0
aB

0
V : (36.43)

Then the LU-factorization T D LU exists iff R is bounded invertible (and hence
square). In that case V is inner and the (normalized) upper factor U is given by
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U D I C F .I �Z0Aa/
�1ZBa; (36.44)

with

F D �.CW RA0
V C CWB 0

V /.R
<�1>/�1: (36.45)

Furthermore, a realization for the (anti-causal) inverse of U is given by

U�1 D I � FR<�1>.I �Z0A0
V /

�1Z0R�1Ba (36.46)

and for the outer left factor L by

L D .D C CcM1R
�1C 0

W /C Cc.I �ZAc/
�1Z.AcM1R

�1C 0
W CBc/: (36.47)

It takes a bit of work to give full proof of the theorem (it is originally in
Dewilde [5]), but the algorithm to compute U is straightforward. Since W is
already known, one has to compute V as the right inner factor of Tu and solve the
forward recursion for R. U is then expressed in these quantities. The outer–inner
factorization of Tu follows the schema of the square-root algorithm established in
the section “Inner–Outer Factorization,” rewritten here in terms of Tu:

2

4
AcM1 C BcB

0
aM2 BcDW

A0
aM2 BW

CcM1 C .CaA
0
a CDB 0

a/M2 DDW C CaBW

3

5
�
A0

V C 0
V

B 0
V D0

V

�
D
2

4
M<�1>

1 Bo1

M<�1>
2 Bo2

0 Do

3

5

(36.48)
in which one remarks that M splits into two blocks (because of the dimensions of
Tu). The second block-row reduces to the recursion for R: R WD M2.

A further observation (this is the crucial element of the proof) concerns UW .
This quantity happens to be a so-called maximal phase operator, i.e., a causal invert-
ible operator, whose inverse is anti-causal. A (minimal) realization of W �1U�1 is
easily determined by direct calculation (using the unknown F ) and is W �1U�1 D
D0

W C .B 0
W �D0

W F /ŒI �Z0.A0
W �C 0

W F /
�1Z0C 0
W . Since V W �1U�1 D T �1

o L�1

is upper, V has to be a (minimal) external left factor of W �1U�1 and V 0 therefore
shares observability data with it (in the Z0-context). Hence there must be a state
transformation R such that

�
RA0

V R
�<�1>

B 0
V R

�<�1>

�
D
�
A0

W � C 0
W F

B 0
W �D0

W F

�
D
�
A0

W C 0
W

B 0
W D0

W

� �
I

�F
�
: (36.49)

Inverting the unitary realization of W 0 produces the equations for R and F sought.
Once U is computed, the realization for L follows as well by direct calculation on
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L D Tu.W
�1U�1/. Much of the proof of the theorem consists in checking all these

contentions.
The main diagonal of L has an interesting interpretation as subsequent “pivots”

in the LU-factorization (which they would indeed be in the case that T is a
matrix with scalar elements). As can be seen from its expression, these pivots
are obtained from a ratio of two quantities (M1M

�1
2 D M1R

�1) which are
computed from intrinsic orthogonal operations in the square root algorithm. It
turns out that these quantities also exist, even when R is not invertible. This
leads to potential extensions of the result, beyond the scope of the present
chapter.

Example: Block-Tridiagonal System

An interesting new question is what happens when the system is more complex than
just semi-separable, for example when it has a block-band structure, in which the
blocks themselves are semi-separable. To conclude the section with a nice example,
consider a half-infinite case of the form

T D

2

66664

D0 N 0
0

N0 D1 N 0
1

N1 D2 N
0
2

: : :
: : :

: : :

3

77775
; (36.50)

in which all Dk and Nk are square and banded matrices themselves (e.g., with
three bands) and such that the Nk are non-singular (e.g., this would be the case
in a simple 2D finite difference discretization of Poisson’s equation). The previous
theory clearly applies with the Dk and Nk blocks as the entries of the matrix. (A
further issue is whether the sub-band structure of the entries in T can be exploited
to achieve a higher order of numerical efficiency, it is discussed at the end of the
section.) Using the previous notation and with the Nk’s non-singular, the W operator
is trivial, it is just W D Z (with Z matching the dimensions of the blocks). A
realization for Tu in input normal form is then given by

diag

0
B@
� j I
: �

�
;

2

4
I 0

0 0

M0 N 0
0

3

5 ;

2

4
0 I 0

0 0 I

N0 M1 N 0
1

3

5 ; : : :

1
CA : (36.51)
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Hence the square-root recursion to be solved (general term) becomes:

2

4
Mk2 0

0 I

Nk�1Mk1 CDkMk2 N 0
k

3

5 D
2

4
MkC1;1 Bok1

MkC1;2 Bok2

0 Dok

3

5
�
AV k BV k

CV k DV k

�
: (36.52)

After inverting V , it holds that

�
MkC1;1

MkC1;2

�
D
�
Mk2A

0
V k

B 0
V k

�
(36.53)

and, in particular, BV must be invertible for the factorization to exist. Once the
recursion is obtained, it also follows from Eq. (36.49) that

�
R<�1>

�FR<�1>

�
D
�
0 I

I 0

� �
RA0

V

B 0
V

�
D
�

B 0
V

RA0
V

�
: (36.54)

This defines all quantities needed, since in particular Rk D Mk2 and F D
�RA0

V R
�<�1> in this case. Hence also Fk D �RkA

0
V kR

�1
kC1 D �MkC1;1M

�1
kC1;2,

while the pivot is given by d D D CNM1M
�1
2 D M �NF<C1>. All this reduces

to the key equation

�
NkMk1 CDkMk2 N

0
k

	 �A0
V

B 0
V

�
D 0 (36.55)

with the latter factor isometric and RkC1 D B 0
V k square non-singular. This in turn

requires NkMk1 CDkMk2 non-singular and

A0
V kB

�0
V k D �.NkMk1 CDkMk2/

�1N 0
k D �R�1

k .Dk �NkFk�1/
�1N 0

k: (36.56)

It follows directly that

Fk D �RkA
0
V kB

�0
V k D .Dk �NkFk�1/

�1N 0
k (36.57)

as could be expected from the classical Schur-complement formula, and one
recognizes the pivots d D D � NF<C1> (which in this simple case can easily be
computed directly). As only ratios appear in the recursion for Fk , an unnormalized
recursion is maybe more comfortable. From the last equations it follows that

�
MkC1;1

MkC1;2

�
D
� �Mk2

N�0
k .NkMk1 CDkMk2/

�
xk (36.58)
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for some xk , hence the following, linear recursion will produce the same ratios:

� OMkC1;1

OMkC1;2

�
D
�

0 �I
N�0

k Nk N�0
k Dk

� � OMk1

OMk2

�
(36.59)

(i.e., Fk�1 D �Mk1M
�1
k2 D � OMk1

OM�1
k2 ). In the most simple instance N 0

k D Nk, in
which case the linearized recursion simply becomes

� OMkC1;1

OMkC1;2

�
D
�
0 �I
I N�0

k Dk

� � OMk1

OMk2

�
: (36.60)

When both Nk and Mk are tri-banded, then N�0
k Mk will have semi-separable

order at most six at each sub-index. At each step in the recursion, the overall
semi-separable order increases roughly with six, and after a few steps in the
main recursion the low sub-order is destroyed. This phenomenon can easily be
analyzed in detail, from which it appears that the recursion does not preserve
the sub-band structure. This means that an exact solution of the LU-factorization
that preserves the sub-band structure does not exist. Not only the sparsity in the
entries is lost, but the entries of the blocks in the factorization do not even remain
semi-separable. However, it remains possible to find low degree semi-separable
approximate factorizations, which in many applications may suffice, in particular
when a pre-conditioner is desired, which would allow to solve the system of
equations iteratively and efficiently as well.

Limit Behavior

The term “limit behavior” concerns ranges and kernels of semi-separable operators
as it differs from classical finite matrix theory. Let T D Cc.I �ZAc/

�1ZBc CDC
Ca.I �Z0Aa/

�1Z0Ba be a (double-sided) semi-separable operator as considered in
the previous two sections, in which the realizations are just assumed to be minimal,
but not necessarily uniformly reachable and observable (as was assumed in the last
section). Without impairing generality, the anti-causal part may be assumed to be in
input normal form (if not, it can be put in that form, using a backward recursion).
Hence

�
Aa Ba

	
is co-isometric (but Aa is not necessarily u.e.s.), and W D DW C

CW .I �ZA0
a/ZB

0
a is an isometric realization as well such that T D TuW , with Tu

lower, as before. Furthermore, let Tu D ToV be an outer–inner factorization of Tu,
also as before. The kernel of T is described in terms of V and W by the following
proposition:

Proposition 3.

kerT D kerW ˚W 0 kerV: (36.61)
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Proof. Clearly kerW � kerT . As To is left-outer, kerTu D kerV . Let y 2 kerV \
ranW , then there is an input u such that u D W 0y and y D W u because WW 0 D I ,
and requiring y 2 kerV 0 puts u 2 W 0 kerV . Orthogonality between kerW and
W 0 kerV follows from ran W 0 ? kerW . ut

As a right inner factor, V is co-isometric as well. It follows that kerV 0 D 0. Let
V W Xm

2 ! X k
2 , and Let Kin D kerV jLm

2
. Then (as before)

kerV D span1iD0.KinZ
0i /� CK00

in; (36.62)

in which Kin is a right D-Z invariant subspace of Lm
2 (it is the co-kernel of HV and

given by ULk1
2 for a co-isometric U D DU C CU .I � ZAV /

�1ZBV with CU and
DU complementing the co-isometric realization for V and k1 D m � k), and K00

in is
a right D-Z-Z0 invariant subspace.

The kernel of T (and dually of T 0) can therefore be evaluated completely from
the properties of W and V (respect. similar operators related to T 0), which in turn
follow mainly from the behavior of their transition operators AV and AW . In many
applications the kernels of type Kin, which are by definition infinite dimensional, are
zero and only doubly invariant subspaces remain as kernels, one for T and one for
T 0. In the case of semi-separable systems, these kernels are finite dimensional and
such systems are therefore of “Fredholm” type, with Fredholm index the difference
between the two dimensions. Although a full treatment of this case is beyond the
scope of this chapter, the dimensionality theorem is stated here and an example
related to the introduction of the chapter is given.

Theorem 4. For any semi-separable, co-isometric, and causal V whose state space
dimensions are uniformly bounded, K00

in has finite dimension.

Proof. Let V1 D
�
V

U

�
, with U as just define above, and let H D ranH 0

V1
2 Um

2

– the co-range of the Hankel operator HV1 . Then H D ranH 0
V as well because the

co-range of HV is determined by the reachability pair
�
AV BV

	
. In addition, Um

2 D
H˚ V 0

1U2, by construction of V1. Let now uin 2 K00
in, and let …� be the orthogonal

projection of Xm
2 onto Um

2 . Then u WD …�uin 2 H, because u ? V 0
1Um

2 , as can be
checked directly (one has V1uin D 0 and uin � u is in Lm

2 Z and hence orthogonal
on V 0

1Um
2 ). Let Hk D ran.H 0

V k/ be the range of the kth Hankel operator of V 0. Hk

is isomorphic to the minimal state space (by the realization theory). Let, moreover,
�k�

be the projection of any `2.�1 W 1/ on `2.�1 W k/. Then �k�K00
in 2 Hk ,

by specialization of the relation H D ranH 0
V1

to the index k, and there is a natural
embedding of �k�K00

in in �j�K00
in when j > k. As the dimension of �k�K00

in is
uniformly bounded by assumption, and limk!1 �k�.uin/ D uin, the dimension of
K00

in cannot be larger than the bound (standard proof by contradiction). ut
The construction in the proof of the theorem provides, with some work, for a

concrete way to compute �k�K00
in, directly from AV and BV . Although this goes

beyond the present chapter, it concludes with the calculation for one of the examples
given in its introduction.
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Example
Possibly the simplest (and very instructive) example is given by the half-infinite
Toeplitz matrix (36.3). It clearly has a co-kernel (kernel of T 0) spanned by

col
h

1 1=2 1=4 � � �
i
, hence the matrix is not invertible. What is its Moore–Penrose

inverse? The matrix has a left inverse given by (36.4) which is not the Moore–
Penrose inverse, as its range is not orthogonal on the co-kernel. The answer is
produced by the square-root algorithm for an outer–inner factorization (the left inner
factor will be unity because there is a left inverse) – this is the dual of the case treated
above and it will involve an “output” Fredholm space K00

o . Before determining it and
looking at its properties, we remark that the co-kernel of T in the relevant Hilbert–
Schmidt space X2 is given by

K00
o D

2
6666664

� � � — — — � � �
� � � 1 1 1 � � �
� � � 1=2 1=2 1=2 � � �
� � � 1=4 1=4 1=4 � � �
� � � :::

:::
::: � � �

3
7777775
D2 (36.63)

which is obviously a right DZ and DZ0 invariant subspace (it belongs neither
to U2 nor L2!). The situation is in sharp contrast with the doubly infinite indexed
Toeplitz case from classical LTI or Hardy space theory. With “ToŒ� � � 
” a constructor
that produces a doubly infinite block Toeplitz matrix out of the series in the
argument, ToŒ� � � ; 0;�2; 1 ; 0; � � � 
 has a full, bounded, anti-causal inverse, namely

ToŒ� � � ; 0; 0 ;�1=2;�1=4;�1=8; � � � 
. Doubly invariant subspaces cannot occur in
the LTI rational case (e.g., see Helson [11]). This has great consequences for
embedding and interpolation theory.

The inner–outer factorization for this example now proceeds as follows. First, as
T has a causal and bounded left-inverse, it must have a trivial right inner factor:
in T D TorV one may put V D I (V is unique except for a diagonal unitary
operator). This is because L2 D L2T

�T � L2V � L2, hence L2V D L2 and V

must be unitary diagonal. Remains the left inner–outer factorization: T D UTo (To

will now be both left and right outer, i.e., it has a causal (approximate) inverse). This
factorization follows from a square root backward recursion. A causal realization of
T is

diag

 � � �
� �
�
;

� j 1
j 1
�
;

�
0 1

�2 1

�
;

�
0 1

�2 1

�
; : : :

!
; (36.64)

where the series continues as a future LTI system with realization

�
0 1

�2 1

�
. The

fixed point solution for the inner–outer factorization of the LTI system can be

easily computed directly and is simply

�
AU BU

CU DU

�
D
�

1=2
p
3=2

�p3=2 1=2

�
for U and
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�
Ao Bo

Co Do

�
D
�

0 1

�1 2

�
for To, with M D p

3 (for stable numerical methods to

compute the fixed point solution, see e.g., Dewilde and van der Veen [7]). At step 0

we have (now in the variant

�
MkAk MkBk

Ck Dk

�
D
�
Bak AUk BUk

Dak CUk DUk

�2

4
00000 00000
Mk�1 0

Cok Dok

3

5 (36.65)

of the square-root algorithm, where the quoted zeros may disappear and with row
compression to the South-East quarter):

�
1=2 �p3=2p
3=2 1=2

� � j p3

j 1

�
D
� j 0
j 2
�

(36.66)

giving M�1 D j and then from index �1 the recursion proceeds to �1 just

matching dimensions:

� j j
� �
�
D
� j j
� �
� � � �

� �
�

. The result is in state space models:

diag

�
AUk BUk

CUk DUk

�
D diag

 � j j
� �
�
;

�
1=2

p
3=2

�p3=2 1=2

�
;

�
1=2

p
3=2

�p3=2 1=2

�
; : : :

!

diag

�
Aok Bok

Cok Dok

�
D diag

 � � �
� �
�
;

� j 1
j 2
�
;

�
0 1

�1 2

�
; : : :

!

(36.67)
and as input–output operators:

U D

2
6664

1/2
�3=4 1=2

�3=8 �3=4 1=2
:::

: : :
: : :

: : :

3
7775

To D

2

6664

2
�1 2

0 �1 2
:::

: : :
: : :

: : :

3

7775

: (36.68)
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This produces the Moore–Penrose inverse as T � D T �1
o U 0:

T � D 1

4

2

666664

1 �3=2 �3=4 �3=8 � � �
1=2 1=4 �15=8 �15=16 � � �
1=4 1=8 1=16 �63=32 � � �
1=8 1=16 1=32 1=64 � � �
:::

:::
:::

:::
: : :

3

777775
(36.69)

a form for whose entries one can easily derive a closed form expression. More
interesting than such an expression is to see that there is an efficient, be it mixed
form state space realization for it, when one wants to compute T �y, one computes
the intermediate v D U 0y via a simple stable backward recursion, and then the
resulting u D T �1

o v via an equally stable forward recursion (conversion to the
additive form is straightforward and interesting as well). Realizations for U 0 and
T �1
o are simply given by

diag

�
AU 0k BU 0k

CU 0k DU 0k

�
D diag

 �
– �
– �
�
;

�
1=2 �p3=2p
3=2 1=2

�
;

�
1=2 �p3=2p
3=2 1=2

�
; : : :

!

diag

�
Aok � BokD

�1
ok Cok BokD

�1
ok

�D�1
ok Cok D�1

ok

�
D diag

 � � �
� �
�
;

� j 1=2
j 1=2

�
;

�
1=2 1=2

1=2 1=2

�
; : : :

!:

(36.70)
The resulting U is not unitary, but merely isometric. Lacking is a basis for the co-

kernel of T , namely the vector
p
3
2

col
n

1 1=2 1=4 � � �
o
. When this column is added

to U , e.g., as a first column, a unitary operator appears, showing the uni-dimensional
co-kernel. This T has therefore Fredholm index: dim.kernel/ � dim.co-kernel/ D
�1.

Notes

The idea behind solving discretized Fredholm equations by approximating the
kernel with a vector outer product and then using that representation to derive an
efficient numerical inverse goes back to, e.g., [10]. It gave rise to the term “semi-
separable” operators and matrices, whereby, given the Fredholm kernel K.t; s/, the
semi-separability refers to different (vector outer product) representations for the
upper part of the kernel where t < s and its lower part, where t > s (usually the
diagonal term where t D s is just used as it is – K.t; s/ is often a matrix). The
authors just mentioned realized that such an outer representation would give rise to
“efficient” numerical calculations, where the numerical complexity is not any more
cubic in the dimensions of the overall matrix (N3, with N is the number of points
in the discretization), but linear in N and at most cubic in the number of terms
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in the outer representation – a great gain in efficiency when the realizations have
small dimensions. The main problem with this approach is its heavy emphasis on
Gaussian elimination, which is not always applicable and struggles with numerical
instabilities even in cases where it is.

In parallel to this, state space theory developed in the wake of Kalman’s seminal
papers on estimation and control theory (Kalman [12]), giving rise to full blown
“state space models” and input–output operators of the Fredholm type derived
from them. The connection between state space realizations, the semi-separable
decomposition of a Fredholm operator and the potential for efficient matrix or
operator inversion was not fully realized at first. A complete theory of time-varying
systems, which parallels most of the results of time-invariant theory came into being
(Alpay et al. [1]), a comprehensive treatment can be found in Dewilde and van der
Veen [6]. A key element of this theory is the use of “canonical factorizations” with
inner factors, both of the co-prime type (here called “external factorizations”) and
of the inner–outer type.

Numerically, such factorizations consist of sequences of orthogonal transforma-
tions, known as a "QR-algorithm" or an SVD. Such operations are intrinsically
numerically stable, are applicable even when Gaussian elimination is not possible
and can be used to compute generalized inverses as well. They have been exploited
by a great number of authors to solve matrix problems and kernel problems both
efficiently and accurately.

As in the case of a semi-separable decomposition, a different state space
representation (usually called a “realization”) would be used for the upper part
of the kernel or the matrix and its lower part. It turns out that a semi-separable
representation can be considered to be a non-minimal state space representation
in which the state transition operator is restricted to being a unit matrix, but the
opposite is not true, the state space representation is more general as it allows
general state transition operators, so that it is easily possible that a system has a
good state-space realization but no (meaningful) outer product representations (that
is the case when the kernel has a band structure and the state transition operator is
hence nilpotent). To deal with this situation, Gohberg and Eidelman [8] introduced
the term “quasi-separable” system to characterize the more general type. However,
there is a problem going that path. Most of the theory concerns finite dimensional
matrices and efficient inversion methods for them, and a matrix would be called
“semi-separable” if there is a low dimensional semi-separable representation for
it, and of course similarly “quasi-separable” in the more general case. But any
semi-separable matrix in this sense is also trivially quasi-separable, and, under
some conditions, a quasi-separable matrix can be converted into a low order semi-
separable one. It follows that the terms “semi-separable” or “quasi-separable” do
not actually refer to the matrix but only to a representation for it.

In the infinite dimensional case, the situation is even more complex, and it
may happen that matrices have a low degree quasi-separable representation but
not a semi-separable one, while vice versa there will always be a quasi-separable
representation when there is a semi-separable one. To make matters more complex,
some authors make the distinction between the two and others use the term semi-
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separable indiscriminately for the whole class, as it is a logical extension of the
original notion, and the original authors were not aware of the existence of the
generalization. In the case of the inversion of matrices and Fredholm kernels,
one would always go for the general representation, as it provides flexibility and
numerical stability. However, there are cases where the existence of a semi-separable
representation has an important meaning in itself, namely in the so-called factor
analysis, where a minimal number of terms in a semi-separable (outer vector)
representation corresponds to a minimal number of sources – namely the matrix
representing the correlation of sources in a signal detection environment. As this
case is not of interest here, and as the original problems that lead to the semi-
separable methodology which is best implemented using state space models (as this
chapter tries to exemplify!), the terms semi-separable and quasi-separable are used
indiscriminately here.

After the establishment of the basic theory, a wealth of contributions came
into being exploring various aspects and extensions of the semi- and quasi-
separable approach. The method to find Moore–Penrose inverses using inner–outer
decomposition was first presented in van der Veen [14]. The connection with
standard QR-factorization for finite matrices is in Chandrasekaran [4]. The case
of Gaussian elimination for the quasi-separable case is in Eidelman and Gohberg
[9]. Spectral factorization is a method of choice to solve the special case of time-
invariant Fredholm equations, often referred to as “Volterra equations,” originally
attributed to Wiener and Hopf [15]. Gohberg and Ben-Artzi extended this notion
to the so-called dichotomy (Ben-Artzi and Gohberg [3]), applicable to the more
general quasi-separable type. The method to do Gaussian elimination and spectral
factorization using inner–outer decomposition came only pretty late (Dewilde [5]),
but was preceded by a direct solution to the spectral factorization problem for the
positive definite case (van der Veen [14]).

The great impact of inner–outer factorization deserves special mention. It goes
back to Hardy space theory and the theory of invariant subspaces, see in particular
(Helson [11]) for an attractive modern treatment of the classical approach. These
results were greatly extended by Arveson to the so-called Nest Algebras (Arveson
[2]). Semi- or quasi-separable operators form a special case of Nest Algebras. In
parallel to these developments, Kailath and Morf discovered a particularly attractive
way of dealing with the Kalman filter, called the “square-root algorithm” (Morf
and Kailath [13]), which turns out to be an inner–outer decomposition of a special
case, a fact that was only realized much later; see in this respect (Dewilde-van der
Veen [7]).
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