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Abstract. Preconditioned iterative solvers are considered to be one of the
most promising methods for solving large and sparse linear systems. It has
been shown in the literature that their impact can be fairly easily extended to
semi-separable systems or even larger classes build on semi-separable ideas.
In this paper, we propose and evaluate a new type of preconditioners for the
class of matrices that have a two level deep ‘symbolically hierarchical semi-
separable form’ meaning that the matrices have a semi-separable like block
structure with blocks that are (sequentially) semi-separable themselves. The
new preconditioners are based on approximations of Schur complements in
a sequential or hierarchical decomposition of the original block matrix. The
type of matrices considered commonly occur in 3D modeling problems.
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1. Introduction

The importance of preconditioners to solve large systems of sparse equations has
been amply demonstrated in the literature, an excellent survey is to be found in
[3]. However, in a number of crucial cases, finding good preconditioners has proved
to be very difficult, if not impossible, lacking a systematic method to construct
them either from basic principles or from the physical circumstances leading to the
system to be solved. In this paper we propose a method based on algebraic prin-
ciples, but which can also accommodate physical considerations to some extent.
The proposed method is adequate to handle systems that extend in 2 dimensions
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(2D-systems) but we want to show that the ideas will extent to 3D systems as well.
Although the method applies to a fairly general class of systems, we are only able
to validate it on systems that can be solved explicitly. In this paper we consider
one type of such systems: positive definite, Hermitian of the block-Toeplitz-block-
Toeplitz (BTBT) kind and we consider two cases: purely Toeplitz and circulant.
Validation to larger classes has necessarily to be experimental, but the physical
connotations of the method makes it a very good candidate for future use in 3D
systems in general.

The generic system solver solves a set of equations

Φu = b (1)

in which Φ is a square matrix, b a conformal vector of data and u is the solution
vector to be found. We assume that Φ is non-singular and even that it can be
LU-factored (the method can be extended to the Moore-Penrose case, but that is
beyond our present scope). We put further assumptions on the structure of Φ that
make the class considered adequate for fairly general modeling problems that lead
to 3D sparse matrices.

A good preconditioner P is a matrix of the same dimensions as Φ such that (1)
I − ΦP is small and (2) multiplication with P is computationally cheap. Iterative
solvers are adequate when (1) also the multiplication with Φ is cheap and (2) a
good P is known or can easily be determined. The iterative solver will then iterate
on the error residue and converge quickly when the eigenvalues of I−ΦP are close
to zero – we refer to the literature for more details [3].

Solvers based on preconditioners are obviously attractive when Φ is a sparse
matrix, for then the condition of ‘cheap multiplication with Φ’ is automatically
fulfilled. However, this is certainly not the only class that leads to cheap multi-
plication. Another is the class of ‘sequentially semi-separable matrices’ [5, 7], or
the class of ‘hierarchically semi-separable matrices’ [1]. These classes are distinct,
sparse matrices are not semi-separable in general (only banded matrices are). Hi-
erarchically semi-separable matrices can be transformed into specific classes of
sparse matrices, making it an attractive class because the extra structure allows
for efficient solving, either in a direct or a preconditioned way. The problem with
general classes of sparse matrices is the difficulty of finding a good preconditioner.
Our approach is to extend the class of structured matrices of the semi-separable
type so that it covers a wider collection of sparse matrices and transformations
thereof. The extension that we consider in this paper (and that is described in
the next paragraph) is able to cover most, if not all, 2D type modeling problems,
whether of the sparse type or the so-called ‘multipole’ type.

The matrix structure that we consider in this paper can be termed ‘symbol-
ically semi-separable’. We shall treat the semi-separable structure extensively in
a further section. A semi-separable matrix is characterized by a so-called ‘realiza-
tion’, i.e., an ordered sets of seven (small) diagonal block-matrices denoted, e.g., as
{A,B,C,D,A ′, B ′, C ′}. We say that the structure is ‘symbolical’ if the character-
ization has the same form, but the characterizing set of matrices has further struc-
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ture, namely all the submatrices are themselves either sequentially semi-separable
or symbolically semi-separable again. E.g., if A = diag[· · ·Ak · · · ] where each Ak

is sequentially semi-separable (and hence characterized again by a realization at a
lower hierarchical level) then the symbolical hierarchy will have two layers.

Hence, our goal will be the construction of preconditioners, assuming the
underlying matrix structure to be given in terms of blocks that themselves have a
sequential or symbolical semi-separable structure. We shall formulate the theory
and the results at a ‘medium complexity level’ – to keep things as simple as possible
without endangering the generality needed to handle significant 3D modeling cases.
In particular, we shall assume a block tri-diagonal form for the top level hierarchy.
This structure is less general than full blown symbolic semiseparability, but it does
cover the main application, namely systems originating from 3D finite element
modeling. A special case is obtained when second-order 3D partial differential
equation is considered on a regular (finite 3D) grid. We shall develop this case for
Laplace’s (or Poisson’s) equation in the next section and carry it as a test case
throughout the paper, comparing the performance of the various preconditioners
proposed. In particular, we use a 27-point stencil to discretized the PDF, basic cells
of dimension 8 × 8 resulting in an overall matrix of dimension 83 × 83. Measures
for performance of the preconditioner P are norm differences between I and ΦP
and the largest eigenvalue of the matrix I − ΦP because it determines the rate of
convergence (we wish it typically smaller than 0.1).

2. Prototype example

As prototype example and to fix ideas, we consider Poisson’s equation in a ho-
mogeneous medium, discretized on a uniform 3D grid. A formulation of Poisson’s
equation requires the solution of

−
(
∂2

∂x
u(x, y, z) +

∂2

∂y
u(x, y, z) +

∂2

∂z
u(x, y, z)

)
= f(x, y, z)

for (x, y, z) ∈ Ω where Ω = [0, 1]× [0, 1]× [0, 1] with boundary conditions that after
discretization with a 27 point stencil results in either a hierarchical n3 ×n3 block-
tridiagonal block-Toeplitz or block circulant system of equations. Let us define a
parameter ε = 0 for the block-tridiagonal case and ε = 1 for the circulant case,
then the discretized equations to be solved take the form

Φu = b (2)⎛⎜⎜⎜⎜⎜⎜⎝

M −LH −εL
−L M −LH

−L M
. . .

. . . . . . −LH

−εLH −L M

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

u0

u0

...
um−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
b0
b1
...

bm−1

⎞⎟⎟⎟⎠
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where we have assumed that ui are the discretized unknowns along the ith column
of the n × n × n grid. Φ is a symmetric positive definite matrix with n block
columns, and has the same sub-blocks on each of the tri-diagonal given by

M =

⎛⎜⎜⎜⎜⎜⎝
O −PH −εP
−P O −PH

−P O −PH

. . . . . . . . .
−εPH −P O

⎞⎟⎟⎟⎟⎟⎠ (3)

L =

⎛⎜⎜⎜⎜⎜⎝
R QH εQ
Q R QH

Q R QH

. . . . . . . . .
εQH Q R

⎞⎟⎟⎟⎟⎟⎠ (4)

O =
1
30

⎛⎜⎜⎜⎜⎜⎝
128 −14 −14ε
−14 128 −14

−14 128 −14
. . . . . . . . .

−14ε −14 128

⎞⎟⎟⎟⎟⎟⎠ (5)

P =
1
30

⎛⎜⎜⎜⎜⎜⎝
14 3 ε3
3 14 3

3 14 3
. . .

. . .
. . .

ε3 3 14

⎞⎟⎟⎟⎟⎟⎠ (6)

Q =
1
30

⎛⎜⎜⎜⎜⎜⎝
3 1 ε1
1 3 1

1 3 1
. . . . . . . . .

ε1 1 3

⎞⎟⎟⎟⎟⎟⎠ (7)

R =
1
30

⎛⎜⎜⎜⎜⎜⎝
14 3 ε3
3 14 3

3 14 3
. . . . . . . . .

ε3 3 14

⎞⎟⎟⎟⎟⎟⎠ (8)

The example exhibits a strong hierarchical structure. At the top level we have a
tri-diagonal or circulant block structure, whereby each of the component blocks
again has a tri-diagonal or circulant block structure of scalar entries. The overall
resulting matrix is therefore very sparse with a sparsity pattern characterized by
small bunches of non-diagonals clustered in bands. Such a situation is typical for
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3D systems in which there is only local interaction between the quantities (as is
the case with a differential equation). The regularity produces a Toeplitz or at
least a block-Toeplitz structure, but in the more general case the sparsity pattern
keeps the same general structure in which many diagonals are zero, with big gaps
between significant diagonals. It is those big gaps that make the elimination pro-
cedures tricky because of the systematic occurrence of fill ins in the gaps. In the
next section we propose a strategy that consists in forcing only partial or approx-
imated elimination steps so that an explosion of fill ins is avoided and replaced by
approximations based on a small amount of data.

3. The basic procedure: decoupling

The preconditioners we propose in this paper are based on partitioning the set of
equations and decoupling them by estimating (approximating rather than calcu-
lating) the perturbation one set exerts on the other. This approach is somewhat
similar to what has been termed incomplete LU factorization in the literature [9].
The difference with this traditional ad hoc approach is in how the perturbation is
gauged. An efficient realization of the perturbed matrix (actually a Schur comple-
ment) is the key in the reduced modeling. In this section we review the basis for the
decoupling strategy and introduce some notation that will allow for hierarchical
recursion of the procedure.

Assume that we split the set of unknowns u ∈ V into two nonintersecting
subsets u1 ∈ V(1) of size n1 and u2 ∈ V(2) of size n2, V(1) ∩ V(2) = ∅ and
n = n1 + n2, as

u =
(
u1

u2

)
.

This splitting induces in a natural way a 2-by-2 block splitting of the matrix Φ,

Φ =
(

Φ11 Φ12

Φ21 Φ22

)
.

Then the matrix can be decomposed into a two level structure by a block LU
factorization, (

Φ11 Φ12

Φ21 Φ22

)
=
(

I 0
Φ21Φ−1

11 I

)(
Φ11 Φ12

0 S

)
where I and 0 are generic identity and zero matrices of appropriate dimensions
and

S = Φ22 − Φ21Φ−1
11 Φ12

is the Schur complement of Φ11 in Φ (as stated already, we assume existence of all
relevant Schur complements).
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Suppose the right-hand side vector b partitioned as above then the linear
system decouples in two systems of reduced dimensions

Φ11 u
′
1 = b ′1

S u ′2 = b ′2
(9)

with b ′1 = b1, b ′2 = b2 − Φ22Φ−1
11 b1, u1 = u ′1 − Φ−1

11 Φ12u
′
2 and u2 = u ′2.

Our strategy for preconditioning consists in setting up a recursive schema of
partitioning the variables and then decoupling the respective linear systems, and
we do this not only at the top level of the hierarchy (as is discussed here), but
recursively at lower levels as well. At each step in the procedure we approximate
(or if one wishes, model reduce) the Schur complement systematically. The moti-
vation for this is that the determination of the Schur complement is the step in the
procedure where the fill ins are produced and the model complexity of the system
hence increases. In many cases (and in particular the model case we are consid-
ering) approximating at this point is both physically and numerically justifiable,
provided the partitioning is done in a justifiable way.

The recursive procedure can be set up in either a linear or a hierarchical
manner. The linear recursion is of course the same as in the common LU factor-
ization. In the block tri-diagonal case it reduces to a recursive determination of
Schur complements, e.g., in the kth step written as{

S0 = M0,

Sk+1 = Mk+1 − LkS
−1
k LH

k .
(10)

In our model case, the recursion starts out with a block tridiagonal matrix. In the
2D case each of these blocks is again a tri-diagonal matrix. After the first step, the
Schur complement then already has nine diagonals and at every step the number
more than doubles, filling up the matrix quickly. It is not difficult to show that
also the more general ‘degree of semi-separability’ [4] increases at the same rate,
but at the same time it can be shown that there is a system with a low degree of
semi-separability close by in operator norm. It is this model reduction that allows
the determination of a low complexity approximant (in the semi-separable sense)
in the 2D case. In the 3D case, however, one more level of hierarchy has to be
dealt with – we discuss how to do this further on.

As discussed in the previous paragraph, a partitioning of the network (data
and unknowns) leads to decoupling. This procedure can of course be repeated
on each of the two sets, and then again, leading to a hierarchical decomposition
tree representing the partitioning (still at this top level of the original hierarchy).
Attached to each node of the tree there is the decoupled system of equations
(and, of course, the corresponding primed and unprimed data sets which can be
converted to each other according to the elimination formulas of the previous
section). We use a level ordering notation as in the papers on ‘HSS = Hierarchical
Semi Separable’ decompositions: the ordered index pair (k, �) indicates node � at
level k (� ∈ (1 · · · 2k)). Node (k, �), if it is not a leaf node, gets decomposed in two
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nodes (k + 1, 2�− 1) and (k + 1, 2�). To such a level decomposition there is a four
block decomposition of the system attached to the node being decomposed. The
decoupled system attached to the uneven child node is the 11 block of the parent
system, while the system attached to the even child node is the Schur complement
of that 11 block within the system defined by the parent node. In the sequel we
shall mark the (eventually approximate) Schur complements with the index pairs
indicating the level at which they define the decoupled system.

Because of the block triangular structure of the original system (and even-
tual semi separable generalizations thereof not considered here) there is a further
hierarchical relation between Schur complements at various levels of the hierarchy.

Let Φα be a block triangular matrix at any given level α < logm higher
than the bottom level, dropping the index α for a simple notation and applying
the two-by-two LU factorization on Φ we obtain Φ11 and Φ22 as block triangular
matrices and Φ12 and Φ21 as low rank matrices with only one block at the left
lower corner and the right upper corner respectively.

Φ =
(

Φ11 Φ12

Φ21 Φ22

)
.

Factorizing the matrix one more level we get:

Φ =

⎛⎜⎜⎝
Φ1111 Φ1112 0 0
Φ1121 Φ1122 Φ1221 0

0 Φ2112 Φ2211 Φ2212

0 0 Φ2221 Φ2222

⎞⎟⎟⎠
with Φ11 and Φ22 the matrix decomposition for the next level. Then the Schur
complement S of matrix Φ11 in Φ is

S = Φ22 − Φ21Φ−1
11 Φ12

=
(

Φ2211 − Φ2112(Φ
−1
11 )22Φ1221 Φ2212

Φ2221 Φ2222

)
.

Let us put temporarily
E = Φ11

then with the two-by-two factorization block structure we find

E−1 =
(
E−1

11 + E−1
11 E12S

−1
E E21E

−1
11 −E−1

11 E21S
−1
E

−S−1
E E21E

−1
11 S−1

E

)
,

which shows that
(E−1)22 = S−1

E .

We substitute
(Φ−1

11 )22 = S−1
Φ11

back, where SΦ11 is the Schur complement of block Φ1111 in Φ11. Therefore the
Schur complement S of Φ11 in Φ becomes:

S =
(

Φ2211 − Φ2112S
−1
Φ11

Φ1221 Φ2212

Φ2221 Φ2222

)
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in which the (11)-entry is actually the Schur complement of SE in the submatrix(
SE Φ1221

Φ2112 Φ2211

)
.

Hence, the higher level Schur complement is constituted of lower level Schur com-
plements and other lower level matrices.

In this fashion, the causality relations get to be very simple when the recursion
is spun out to the bottom decomposition level, no calculations are needed to move
to higher levels in the tree, only assembly of submatrices. In an exact calculation,
a chain of Schur complements only involving local matrices is obtained at the
bottom level of the hierarchy – see Fig. 3 – typically the level of the size of the
block entries in the original tri-diagonal matrix, but any higher level may serve
as bottom level just as well. The recursion starts out with a tridiagonal matrix
and then doubles in theoretical semi-separable complexity at each step. Keeping
this complexity increase under control is the key to the systematic construction of
preconditioners based on Schur complementation. That is the topic of Section 7.

Figure 1. Causality relations for the Schur elimination schema. Only
the bottom line requires computations, all the upward arrows only in-
volve assembly of matrices.

4. Algorithms for sequentially semi-separable matrices

In this section we treat the case in which the Schur complement is approximated
by a low-order semi-separable representation. This would be the method to be
followed in the 2D case, or at the bottom level of the hierarchy in the 3D case. In
[4, 7] it is shown that subsequent Schur complements occurring in the solution of
the regular 2D Poisson problem are close to a low degree semi-separable matrix. In
particular, in [7] the convergence in terms of the ε-rank of Hankel blocks is shown
to be bounded with some low bound. These bounds are confirmed by experiments,
which actually exhibit very close approximation even at low semi separable degree.
The precise results for the regular Poisson equation are of course due to the fact
that in this case the system can be solved in closed form. We start out with a brief
summary of the basic properties of semi-separable representations we use. For a
comprehensive treatment of the basics we refer to [5].
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Matrices that have the following structure, defined through a set of small
matrices {Ak, Bk, Ck, Dk, A

′
k, B

′
k, C

′
k}⎛⎜⎜⎜⎜⎜⎝

D1 B1C2 B1A2C3 . . . B1A2 . . . An−1Cn

B ′
2C

′
1 D2 B2C3 . . . B2A3 . . . An−1Cn

B ′
3A

′
2C

′
1 B ′

3C
′
2 D3 . . . B3A4 . . . An−1Cn

. . . . . . . . .
B ′nC

′
n−1 Dn

⎞⎟⎟⎟⎟⎟⎠
are called matrices with sequentially semi-separable structure, and the sequence of
matrices is called the state realization of the sequentially semi-separable structure
of the matrix [5]. Let T be such a matrix, then the realization matrices correspond
to a computational schema for the input-output product y = uT involving a set
of intermediate so-called state vectors {xk, x

′
k} that are computed recursively⎧⎨⎩

xk+1 = xkAk + ukBk

x ′k−1 = x ′kA
′
k + ukB

′
k

yk = xkCk + x ′kC
′
k + ukDk.

Rewritten in global operator form by assembling the matrices Ak, Bk etc. . .
as diagonal operators on spaces of sequences of appropriate dimensions

A =

⎡⎢⎢⎣
. . . 0

Ak

0
. . .

⎤⎥⎥⎦B =

⎡⎢⎢⎣
. . . 0

Bk

0
. . .

⎤⎥⎥⎦
etc. . . and defining the shift-operator Z as (uZ)i = ui−1 we obtain a compact
representation of T in terms of its structural matrices as

T = D +BZ(I −AZ)−1C +B ′Z−1(I −A ′Z−1)−1C ′.

Of course, all dimensions of matrices and vectors have to match wherever needed.
The structural matrices are often brought together in view of this as

Tc =
[
A C
B D

]
, Ta =

[
A ′ C ′

B ′ 0

]
, (11)

which is a 4× 4 block matrix with diagonal entries. We now briefly discuss matrix
operations using the semi separable structure. We first concentrate on upper trian-
gular matrices for which the accented quantities are zero. Let us, for convenience,
define the diagonal shift operator T (1) by

ZMT (1) = TZN

that is, T (1) = Z−1TZ, then T (1) is the operator T whose representation is shifted
one position into the South-East direction: (T (1))i,j = Ti−1,j−1. More generally,
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the kth diagonal shift of T into the southeast direction along the diagonals of T
is defined by

T (k) = (Zk)−1TZk.

Equivalently, (T (k))i,j = Ti−k,j−k.

4.1. State transformations

Two realizations {A1, B1, C1, D} and {A2, B2, C2, D} are called equivalent if their
respective state vectors are related through an invertible transformation R. We
have then [

A2 C2

B2 D

]
=
[
R

I

] [
A1 C1

B1 D

] [
[R(−1)]−1

I

]
R(−1) = ZRZ−1.

We say that a realization is minimal if none of the dimensions of the state vec-
tors can be reduced further. It is known [5] that these minimal dimensions form a
unique sequence and that two minimal realizations are related through an invert-
ible transformation matrix.

4.2. Sum of two realizations

let T1, T2 be two upper triangular matrices, with realizations A1, B1, C1, D1 and
A2, B2, C2, D2, respectively. Then the sum of these two operators, T = T1 + T2,
has a realization given directly in terms of these two realizations as[

A C
B D

]
=

⎡⎣ A1 0 C1

0 A2 C2

B1 B2 D1 +D2

⎤⎦ .
The state dimension sequence of this realization is equal to the sum of the state
dimension sequences of T1 and T2. It is, however, not necessarily minimal even if
the component dimensions are.

4.3. Product of two realizations

The product of T = T1T2 can also be obtained using realizations by[
A C
B D

]
=

⎡⎣ A1 C1B2 C1D2

0 A2 C2

B1 D1B2 D1D2

⎤⎦ .
In this case also the dimension of the given product realization is the sum of
the dimensions of the components. It is not necessarily minimal even though the
realizations of the factors are – there may be cancellations between the factors.

4.4. Realization of an upper inverse

Let T be an invertible upper triangular matrix, and suppose that it is known that
T−1 is also upper, then the D matrix in the realization has to be square invertible
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and a realization for T−1 is given by [5][
A ′ C ′

B ′ D ′

]
=
[
A− CD−1B −CD−1

D−1B D−1

]
.

This realization for T−1 will be minimal if the realization for T is.

4.5. Cholesky factorization

We now return to the mixed upper-lower case. Given T > 0 and let the upper
triangular part of T have a minimal state space realization Ak, Bk, Ck, Dk. Let
T = FHF where F is upper triangular. The main property of relevance here is that
the upper factor F has a minimal state space realization of the same dimensions
as the upper part of T . It is given by
Then a realization AF,k, BF,k, CF,k, DF,k of F is given by (superscript ·H indicates
Hermitian conjugation) ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

AF,k = Ak

CF,k = Ck

DF,k = (Dk − CH
k ΛkCk)−1/2

BF,k = D−1
F,k(Bk − CH

k ΛkAk)

where Λk is given by the recursion

Λk+1 = AH
k ΛkAk +BH

F,kBF,k.

T has to be positive definite for this recursion to work out. In case that turns out
not to be so, then at a certain point k in the recursion Dk − CH

k ΛkCk will turn
out to be non-positive definite, leading to a non positive square root.

5. Efficient Schur reduction: the semi-separable case

In this section we consider the rather more general case where the matrix to be
reduced has the form

Φ =

⎛⎜⎜⎜⎜⎜⎜⎝
M1 −LH

1

−L1 M2 −LH
1

. . . . . . . . .
. . . Mm−1 −LH

m−1

−Lm−1 Mm

⎞⎟⎟⎟⎟⎟⎟⎠ (12)

5.1. State space realizations of matrices M and L

Φ consists of block matrices Mk and Lk. Dropping the index k whenever clear
from the context, we assume further that the matrices M and L have general
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sequentially semi-separable realizations of the type

Mk = {AMc , AMa , BMc , BMa , CMc , CMa , DM}
= DM +BMcZ(I −AMcZ)−1CMc

+BMaZ
−1(I −AMaZ

−1)−1CMa

Lk = {ALc , ALa , BLc , BLa , CLc , CLa , DL}
= DL +BLcZ(I −ALcZ)−1CLc

+BLaZ
−1(I −ALaZ

−1)−1CLa .

The realization of a sequentially semi-separable structure matrix can be computed
by a low rank factorizations of some off-diagonal blocks called Hankel blocks, as
described in [8]. In the tri-diagonal case the derivation is trivial.

5.2. Schur complements in the state space formalism

Because of the Hermitian structure of Φ, M and L, we may assume the realizations
of M and L to have

AMa = AH
Mc
,

BMa = CH
Mc
,

CMa = BH
Mc
,

and

ALa = AH
Lc
,

BLa = CH
Lc
,

CLa = BH
Lc
.

From equation (10), each Sk will be Hermitian matrix as well, and hence can be
Cholesky factorized as Sk = FH

k Fk.
Assuming that the upper triangular matrix Fk has a realization

{AFc, BFc, CFc, DF },
we now try to find the realization of upper triangular matrix Fk+1 using only state
space data.

Sk+1 = FH
k+1Fk+1

= Mk+1 − Lk(FH
k Fk)−1LH

k

= Mk+1 − LkF
−1
k F−H

k LH
k .

Let Ek = F−1
k and let us factorize Lk to be Lk = L1k

L2k
and let the Cholesky

factorization of Mk be Mk = XkX
H
k , with Ek and L2k

upper triangular matrices
and L1k

and Xk lower triangular. We get

FH
k+1Fk+1 = Xk+1X

H
k+1 − L1k

L2k
EkE

H
k L

H
2k
LH

1k

Let Gk = L2k
Ek, which is an upper triangular matrix. To make the computation

simple, we convert eachGk matrix to a lower triangular matrixHk, whereGkG
H
k =

HkH
H
k . We get

FH
k+1Fk+1 = Xk+1X

H
k+1 − L1k

GkG
H
k L

H
1k

= Xk+1X
H
k+1 − L1k

HkH
H
k L

H
1k
.
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Let Yk = L1k
Hk (lower triangular), then

FH
k+1Fk+1 = Xk+1X

H
k+1 − YkY

H
k .

Dropping the index k in the following sections for simplification, and assuming the
realization of any upper matrix O to be

O = {AO, BO, CO, DO}
= DO +BOZ(I −AOZ)−1CO

and the realization of any lower matrix P

P = {AP , BP , CP , DP }
= DP +BPZ

−1(I −APZ
−1)−1CP .

The following subsections explain how to get the state space of

Fk+1 = {A ′F , B ′
F , C

′
F , D

′
F } from Fk = {AF , BF , CF , DF }

using the basic steps explained above.

5.2.1. From Fk−1 to Ek. As Fk−1 is an upper triangular matrix, we can get the
realization of Ek = F−1

k−1 directly by time varying system theory as:

AE = AF − CFD
−1
F BF

BE = D−1
F BF

CE = −CFD
−1
F

DE = D−1
F .

5.2.2. Factorize Lk to L1k
and L2k

. where each L1k
is an lower triangular matrix

and L2k
is a upper triangular matrix.

Al1 = ALa ;
Al2 = ALc ;
Bl1 = BLa ;
Cl2 = CLc ;
Dl2 = I;

Dl1 = (DL −BLaΛCLc)D
−1
l2

Bl2 = D−1
l1

(BLc −BLaΛALc)

Cl1 = (CLa −ALaΛCLc)D
−1
l2

Λ(1) = Cl1Bl2 +Al1ΛAl2

where Λ(1) stands for Λk+1 and Λ(−1) stands for Λk−1.
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5.2.3. Gk = L2k
Ek. Both L2k

and Ek are upper triangular matrices, so does Gk.

AG =
[
Al2 Cl2BE

0 AE

]
BG =

[
Bl2 Dl2BE

]
CG =

[
Cl2DE

CE

]
DG = Dl2DE.

5.2.4. From Gk to Hk. Gk are upper triangular matrices while Hk are lower tri-
angular matrices with GkG

H
k = HkH

H
k .

AH = AH
G ;

BH = DGC
H
G +BGΛAH

G ;

DH = (DGD
H
G +BGΛBH

G −BHΓBH
H )1/2

CH = (BH
G −AH

G ΓBH
H )D−1

H

where
Λ(−1) = CGC

H
G +AGΛAH

G

Γ(1) = CHC
H
H +AHΓAH

H .

5.2.5. Yk = L1k
Hk. Yk, L1k

, and Hk are all lower triangular matrices,

AY =
[

AH 0
Cl1BH Al1

]
BY =

[
Dl1BH Bl1

]
CY =

[
CH

Cl1DH

]
DY = Dl1DH .

5.2.6. Factorize Mk = XkX
H
k . We can get lower triangular matrix Xk from Mk

by Cholesky factorization again.

AX = AH
M

BX = CH
M

DX = (DM − CH
MΓCM )1/2

CX = (BH
M −AH

MΓCM )D−1
X

where
Γ(1) = CXC

H
X +AH

MΓAM .
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5.2.7. Get Fk+1 from FH
k+1Fk+1 = Xk+1X

H
k+1 −YkY

H
k . Compute lower triangular

matrix Wk = X−1
k Yk,

AX−1 = AX − CXD
−1
X BX

BX−1 = −D−1
X BX

CX−1 = CXD
−1
X

DX−1 = D−1
X

AW =
[

AY 0
CX−1BY AX−1

]
BW =

[
DX−1BY BX−1

]
CW =

[
CY

CX−1DY

]
DW = DX−1DY .

Let lower triangular matrix Δ satisfy ΔΔH = I − WWH , and after Cholesky
factorization, we obtain

AΔ = AW

BΔ = −BW

DΔ = I −DWDH
W −BW ΛBH

W −BW ΓBH
W )1/2

CΔ = (CWDH
W +AW ΛBH

W +AW ΓBH
W )D−1

Δ

where
Λ(1) = CWCH

W +AW ΛAH
W

Γ(1) = CΔC
H
Δ +AW ΓAH

W .

Multiply F = XΔ. We finally get the lower triangular matrix F ′k+1 and upper
triangular matrix Fk+1 = F ′k+1 as

AF =
[
AH

Δ BH
ΔC

H
X

0 AH
X

]
BF =

[
CH

Δ DH
ΔC

H
X

]
CF =

[
BH

ΔD
H
X

BH
X

]
DF = DH

ΔD
H
X .

5.3. Model reduction

The resulting Schur complement factor Fk at each step in the recursion can
be model reduced by reduction on both reachability Gramian and observability
Gramian in the state space. Let us assume that the realization of Fk obtained
in the recursion step is {A,B,C,D}, and do the model reduction on reachability
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Gramian Λc first, which results the reduced realization {A ′11, B ′1, C ′1 , D ′}. Then
we reduce it again on observability Gramian Λo on {A ′11, B ′

1, C
′
1 , D

′}, resulting
the final reduced realization {A ′ ′11, B

′ ′
1 , C

′ ′
1 , D

′ ′}. More details can be found in [2].

5.3.1. On reachability Gramians. Let Λc be the reachability Gramian of the given
realization {A,B,C,D} of T , then it has the eigenvalue decomposition:

Λc = RH
c

[
Λ̃c 0
0 0

]
Rc, Rc =

[
R̃c

∗

]
,

where Λ̃c is a diagonal matrix containing the nonzero eigenvalues of Λc, while
Rc can be chosen unitary, and R̃c contains the columns of Rc corresponding to
the entries in Λ̃c. Apply Rc as a state transformation to T , we get an equivalent
realization T ′ = {A ′, B ′, C ′, D ′},[

A ′ C ′

B ′ D ′

]
=
[
Rc 0
0 I

] [
A C
B D

] [
R

(−1)H
c 0
0 I

]
=

[
RcAR

(−1)H
c RcC

BR
(−1)H
c D

]

Λ ′c =
[

Λ̃c 0
0 0

]
where Λ ′c is the reachability Gramian of T ′, and satisfies the Lyapunov equation
Λ ′(−1)

c = A ′HΛ ′cA
′ +B ′HB ′. Partition A ′, B ′, and C ′ according to that of Rc,

A ′ =
[
A ′11 0
A ′21 A ′22

]
, C ′ =

[
C ′1
C ′2

]
,

B ′ =
[
B ′

1 0
]
, D ′ = D.

Because B ′H2 B ′
2 +A ′H12 Λ11A

′
12 = 0 and Λ11 > 0, we have B2 = A12 = 0.

Then the model reduced realization is[
A ′11 C ′1
B ′1 D ′

]
=

[
R̃cAR̃

(−1)H
c R̃cC

BR̃
(−1)H
c D

]
.

5.3.2. On observability Gramians. Similarly, the observability Gramian Λo of re-
alization {A ′11, B ′1, C ′1 , D ′} can be decomposed as:

Λo = R−1
o

[
Λ̃o 0
0 0

]
R−H

o , Ro =
[
R̃o ∗

]
,
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Apply the unitary matrix Ro to the realization {A ′11, B ′1, C ′1 , D ′}, we get realiza-
tion, [

A ′ ′ C ′ ′

B ′ ′ D ′ ′

]
=
[
Ro 0
0 I

] [
A ′11 C ′1
B ′1 D ′

] [
R

(−1)H
o 0
0 I

]
=

[
RoA

′
11R

(−1)H
o RoC

′
1

B ′1R
(−1)H
o D ′

]

Λ ′ ′o =
[

Λ̃o 0
0 0

]
and

A ′ ′ =
[
A ′ ′11 A ′ ′12

0 A ′ ′22

]
, C ′ ′ =

[
C ′ ′1

0

]
,

B ′ ′ =
[
B ′ ′1 B ′ ′2

]
, D ′ ′ = D.

So the final reduced realization is[
A ′ ′11 C ′ ′1

B ′ ′
1 D ′ ′

]
=

[
R̃oA

′ ′
11R̃

(−1)H
o R̃oC

′ ′
1

B ′ ′1 R̃
(−1)H
o D ′ ′

]
.

6. Exact solutions for the 3D model cases

In this section we present the exact solutions (in closed form) for the two regular
3D-cases announced earlier. The method we use extends the method presented
in [4, 7] to the 3D case. In particular, we compute the exact value of the Schur
complements and their limiting fixed point. In the next section we shall use these
results to evaluate pre-conditioners in a number of situations.

Reverting back to the notation of Section 2 we have that the sequence of
Schur complements from the top-left subblock to the down-right subblock is given
by equation (10).

Because of the positive definiteness of the Poisson matrix, all subsequent
Schur complements are positive definite as well, and the recursion will converge, as
we shall see, to a fixed point matrix S∞, which we shall evaluate. It turns out that
the latter is actually a very good approximant of the actual Schur complements
for larger values of k, the convergence being pretty fast.

6.1. Block symmetric tri-diagonal Toeplitz matrix

In this section we consider only real symmetric (block-) tri-diagonal Toeplitz ma-
trices, in which the blocks themselves are real symmetric (block) tri-diagonal and
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Toeplitz. For brevity, we introduce the shorthand tridiag(A,B) for the matrix

tridiag(A,B) =

⎛⎜⎜⎜⎜⎜⎜⎝
A BH

B A BH

B A
. . .

. . . . . . B
B A

⎞⎟⎟⎟⎟⎟⎟⎠ . (13)

In this hierarchy we indicate the depth d by a super-index, and the corresponding
size of the matrices by nd. At level 0 we then have

A(0) = tridiag(A(1), B(1)). (14)

The hierarchy terminates when a certain depth d = D − 1 is reached, where each
of the sub-blocks is a symmetric tri-diagonal Toeplitz matrix having the form

A(D−1) = tridiag(a, b) (15)

with scalar entries.

Theorem 1. Given a block real symmetric tri-diagonal Toeplitz matrices T =
tridiag(A,B) at a hierarchical depth d with nd number of sub-blocks on its di-
agonal, and let the d − 1 depth sub-block matrices A and B have eigenvalues
ΛA = diag(λA;1, . . . , λA;p) and ΛB = diag(λB;1, . . . , λB;p) respectively, with di-
mension p× p and the same normalized eigenvector matrix U , then the matrix T
has eigenvalues ΛT = ΛA + 2ΛB cos kπ

nd+1 , where 1 ≤ k ≤ nd with corresponding
normalized block eigenvectors given by

Vk =

⎛⎜⎜⎜⎝
U sin( 1kπ

nd+1 )/σ
U sin( 2kπ

nd+1 )/σ
...

U sin( ndkπ
nd+1 )/σ

⎞⎟⎟⎟⎠ where σ =

√√√√ nd∑
i=1

sin2

(
ikπ

nd + 1

)
.

The theorem generalizes a result of [6] about tri-diagonal Toeplitz matrices
reproduced hereunder.

Theorem 2. If C is an n× n tri-diagonal Toeplitz matrix with

C =

⎛⎜⎜⎜⎜⎜⎜⎝

a b
c a b

c a
. . .

. . .
. . . b
c a

⎞⎟⎟⎟⎟⎟⎟⎠ (16)

then the eigenvalues of C are given by

λj = a+ 2b
√
c

b
cos(

jπ

n+ 1
), (17)
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where 1 ≤ j ≤ n, and corresponding eigenvectors are given by

xj =

⎛⎜⎜⎜⎜⎜⎜⎝
( c

b )
1/2 sin( 1jπ

n+1 )
( c

b )
2/2 sin( 2jπ

n+1 )
( c

b )
3/2 sin( 3jπ

n+1 )
...

( c
b )

n/2 sin( njπ
n+1 )

⎞⎟⎟⎟⎟⎟⎟⎠ . (18)

Proof of Theorem 1. The theorem follows from the fact that all matrices involved
commute. This is true at the bottom level D−1 of the hierarchy since at that level
the off-diagonal entries of the matrices are equal resulting in eigenvectors that can
be chosen equal. Moving up the hierarchy, the constitutive block-matrices keep
commuting. We may assume recursively that A and B are diagonalized by the
same eigenvector matrix U ,

A = UΛAU
H

B = UΛBU
H

then

T =

⎛⎜⎜⎜⎝
U

U
. . .

U

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ΛA ΛB

ΛB ΛA

. . . ΛB

ΛB ΛA

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

UH

UH

. . .
UH

⎞⎟⎟⎟⎠ .

Let us denote

T ′ =

⎛⎜⎜⎜⎝
ΛA ΛB

ΛB ΛA

. . . ΛB

ΛB ΛA

⎞⎟⎟⎟⎠ (19)

and apply Theorem 2 on T ′, (notice that after proper permutation P , T ” = PT ′P
is block diagonal matrix with each sub-block a symmetric tri-diagonal Toeplitz
matrix,) we get the eigenvalues of T ′:

ΛT ′
k

= ΛA + 2ΛB cos
(

kπ

nd + 1

)
, (20)

where 1 ≤ k ≤ nd, and the corresponding eigenvector block is

V ′j =

⎛⎜⎜⎜⎜⎜⎜⎝
Ip×p sin( 1kπ

nd+1 )/σ
Ip×p sin( 2kπ

nd+1 )/σ
Ip×p sin( 3kπ

nd+1 )/σ
...

Ip×p sin( nkπ
nd+1 )/σ

⎞⎟⎟⎟⎟⎟⎟⎠ . (21)
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where

σ =

√√√√ nd∑
i=1

sin2

(
ikπ

nd + 1

)

T =

⎛⎜⎜⎜⎝
U

U
. . .

U

⎞⎟⎟⎟⎠V ′ΛT ′V
′H

⎛⎜⎜⎜⎝
UH

UH

. . .
UH

⎞⎟⎟⎟⎠ .

Therefore, the eigenvalues and eigenvectors of T are: ΛT = ΛA + 2ΛB cos kπ
nd+1 ,

where 1 ≤ k ≤ nd. The corresponding block eigenvector is

Vk =

⎛⎜⎜⎜⎝
U sin( 1kπ

nd+1 )/σ
U sin( 2kπ

nd+1 )/σ
...

U sin( ndkπ
nd+1 )/σ

⎞⎟⎟⎟⎠ .

The block eigen-structure can hence be applied hierarchically in this case
leading to a diagonalized matrix at the top level of the hierarchy. From this it
follows that subsequent Schur complements and the fixed point solution of the
Schur-complement equation can be found explicitly. On the diagonalized matrix
all the Schur complements are diagonal as well, as well as the fixed point solution.
This is stated in the following (almost obvious) theorem.

Theorem 3. Let Φ be given by (2), and assume that for any block-dimension n, Φ
is strictly positive definite. Then ΛM > 2ΛL and the fixed point solution for the
Schur complement S∞ is given by

S∞ =
1
2
V

(
ΛM +

√
Λ2

M − 4Λ2
L

)
V H . (22)

where

ΛMj = ΛO + 2ΛP cos
(

jπ

n+ 1

)
,

ΛLj = ΛR + 2ΛQ cos
(

jπ

n+ 1

)
,

λOi = aO + 2bO cos
(

iπ

n+ 1

)
,

λPi = aP + 2bP cos
(

iπ

n+ 1

)
,

λQi = aQ + 2bQ cos
(

iπ

n+ 1

)
,
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λRi = aR + 2bR cos
(

iπ

n+ 1

)
,

vj =
1√∑n

k=1 sin2( kjπ
n+1 )

⎛⎜⎜⎜⎝
U sin( 1jπ

n+1 )
U sin( 2jπ

n+1 )
...

U sin( njπ
n+1 )

⎞⎟⎟⎟⎠ .

ui =
1√∑n

k=1 sin2( kiπ
n+1 )

⎛⎜⎜⎜⎝
sin( 1iπ

n+1 )
sin( 2iπ

n+1 )
...

sin( niπ
n+1 )

⎞⎟⎟⎟⎠
and 1 ≤ j ≤ n, 1 ≤ i ≤ n.

Proof. In this case the hierarchical decomposition is just two levels deep (corre-
sponding to the 3D case) and the matrices involved can easily be written down
explicitly. It is easy to tell from the theorem that M and L share the same eigen-
vector matrix V and M = V ΛMV H , L = V ΛLV

H . Hence we have S0 = UΛ0U
H

and Sk = UΛkU
H for the same collection of normalized eigenvectors assembled in

U . The Schur recursion then becomes a collection of scalar recursions given by{
Λ0 = ΛM ,

Λk+1 = ΛM − ΛLΛ−1
k ΛH

L (k = 0, 1, . . . ).

The intermediate matrices at the hierarchical level 2 have a diagonalization rep-
resented by Φ ′ = tridiag(ΛM ,ΛL) which transforms, by reordering of rows and
columns into a direct sum of Toeplitz matrices of the form tridiag(mk, �k). Since
all these are strictly positive definite for any dimension by assumption, it must be
that mk > 2�k, by a well-known property of Toeplitz matrices (corresponding to
the fact that the limiting spectrum must be (strictly) positive definite – see [6]).
The scalar iteration

xk+1 = m− �x−1
k � with m > 2� > 0

converges to

x =
1
2
(m+

√
m2 − 4l2).

Since ΛM > 2ΛL, the iteration converges for each entry in the recursion, leading
to the result claimed in the theorem. �

6.2. The block-circulant case

A theory similar to the block triangular Toeplitz case can be set up for (block-)
circulant matrices. It covers the case of a regular grid on which periodic bound-
ary conditions are in effect. The eigenvalue analysis in this case leads to Fourier
transformation. We briefly summarize the results.
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A block circulant matrix is completely determined by its first block row. This
we denote as follows

circ(Ak : k = 0 · · ·n− 1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A0 A1 A2 . . . An−1

An−1 A0 A1 . . .
...

An−2 An−1 A0 . . .
...

... . . . . . .
. . . A1

A1 A2 . . . An−1 A0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We consider a hierarchy of such matrices, meaning that at each level we dispose of
a circulant block matrix with blocks that are themselves circulant block matrices
up to a level where the components are just scalar circulant matrices – this corre-
sponds to a physical situation in which periodic boundary conditions are in effect
in every dimension. We shall indicate the hierarchical level with a super-index.
Assuming the overall hierarchical depth is D, A(0) indicates the top matrix in the
hierarchy. Then

A(0) = circ(A(1)
k : k = 1 · · ·n1)

in which

A
(1)
k = circ(A(2)

k;� : � = 1 · · ·n2)

etc. . . This keeps going until depth d = D − 1, where each of the sub-blocks is a
regular circulant matrix with scalar entries.

Theorem 4. Given a one depth block circulant matrix with n× n sub-blocks

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A0 A1 A2 . . . An−1

An−1 A0 A1 . . .
...

An−2 An−1 A0 . . .
...

... . . . . . .
. . . A1

A1 A2 . . . An−1 A0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Assume that every sub-block Ak, k = 1, . . . , n has the same dimension p × p
and the same complete set of orthonormal eigenvectors assembled in the matrix
U . Let the eigenvalue matrix of sub-block matrix Ak be Γk = diag(γk;1, . . . , γk;p).
Then the matrix A has eigenvalue Λm = diag(λm;1, . . . , λm;p), with corresponding
eigenvector block x(m), where

λm;i =
n−1∑
k=0

γk;ie
−2πjmk

n ,

x(m) =
1√
n

[U,Ue
−2πjmk

n , . . . , Ue
−2πj(n−1)k

n ]T .
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Proof. The equation Ax = λx for the eigenvalues and eigenvectors of A specializes
to⎛⎜⎜⎜⎜⎜⎜⎜⎝

A0 A1 . . . An−1

An−1 A0 . . .
...

An−2 An−1 . . .
...

... . . .
. . . A1

A1 . . . An−1 A0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
�x1

�x2

...
�xn

⎞⎟⎟⎟⎠ =

⎛⎜⎝ Λ1

. . .
Λn

⎞⎟⎠
⎛⎜⎜⎜⎝

�x1

�x2

...
�xn

⎞⎟⎟⎟⎠ (23)

where

�xm =

⎛⎜⎜⎜⎝
xm;1

xm;2

...
xm;p

⎞⎟⎟⎟⎠ (24)

Λm =

⎛⎜⎝ λm;1

. . .
λm;p

⎞⎟⎠ (25)

n−1−m∑
k=0

Ak�xk+m +
n−1∑

k=n−m

Ak�xk−n+m = �xmΛm (26)

for m = 1, . . . , n.
Because

Ak = UΓkU
∗. (27)

Let

�ym = U∗�xm =

⎛⎜⎜⎜⎝
ym;1

ym;2

...
ym;p

⎞⎟⎟⎟⎠ (28)

then

�xm = U�ym, (29)
n−1−m∑

k=0

Γk�yk+m +
n−1∑

k=n−m

Γk�yk−n+m = �ymΛm, (30)

n−1−m∑
k=0

γk;iyk+m;i +
n−1∑

k=n−m

γk;iyk−n+m;i = ym;iλm;i, (31)

where m = 1, . . . , n and i = 1, . . . , p.
As this system of equations involves a scalar circulant matrix, namely

circ(γk;i : k = 0 · · ·n− 1),
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the solution can be written down directly (the discrete Fourier transform of order
n diagonalizes the matrix)

yk;i = ρk, (32)

with ρ = e−
2mπj

n . Furthermore

λm;i =
n−1∑
k=0

γk;ie
−2πjmk

n ; (33)

yi =
1√
n

[1, e
−2πjm

n , . . . , e
−2πjm(n−1)

n ]T . (34)

Thus, for the sub-blocks,

Λm =

⎛⎜⎝ λm;1

. . .
λm;p

⎞⎟⎠ ; (35)

x(m) =

⎛⎜⎜⎜⎝
Uyi,1

Uyi,2

...
Uyi,n

⎞⎟⎟⎟⎠ (36)

where I is the p× p identity matrix.
Therefore,

Λm =

⎛⎜⎝ λm;1

. . .
λm;p

⎞⎟⎠ , (37)

λm;i =
n−1∑
k=0

γk;ie
−2πjmk

n , (38)

x(m) =
1√
n

[UT , UT e
−2πjmk

n , . . . , UT e
−2πjm(n−1)k

n ]T . (39)
�

6.2.1. Application to the 3D Poisson equation on a regular grid. Using the nota-
tion of Section 2 we take the circulant version of the matrices Φ,M,L, . . . , i.e.,
the case ε = 1. Application of Theorem 4 immediately provides the eigenvalues as
samples of the Fourier transforms (it is just as convenient to handle the transforms
directly):

F(O) = −64
15

+
14
15

cos θ

F(P ) =
7
15

+
1
5

cos θ

F(R) =
7
15

+
1
5

cos θ
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F(Q) =
1
10

+
1
15

cos θ

F(M) = F(O) + 2F(P ) cosnθ

= −64
15

+
14
15

cos θ + 2
(

7
15

+
1
5

cos θ
)

cosnθ

F(L) = F(R) + 2F(Q) cosnθ

=
7
15

+
1
5

cos θ + 2
(

1
10

+
1
15

cos θ
)

cosnθ.

As in the previous schema, we can approximate the Schur complement sequence
by calculating S∞,

S∞ =
M +

√
M2 − 4LLH

2
(40)

with Fourier transform of S∞

F(S∞) = F
(
M +

√
M2 − 4LLH

2

)
(41)

=
1
2
(F(M) +

√
F2(M) − 4F2(L))

=
1
15

[−32 + 7 cos θ + 7 cosnθ + 3 cos θ cosnθ

+ [5(−5 + 2 cos θ + 2 cosnθ + cos θ cosnθ)

· · · (−39 + 4 cos θ + 4 cosnθ + cos θ cosnθ)]
1
2 ].

This explicit representation of the fixed point for the Schur complement recursion,
although interesting in its own right, allows us to evaluate various approximation
schemas that lead to candidate pre-conditioners. We report on a number of re-
sults in the next section. Looking at the spectrum (formula 41) it is obvious that
it oscillates strongly with a period π/m – in contrast to the 2D-case where the
spectrum is very smooth with just a discontinuity in the first derivative at zero
frequency [4]. As a consequence, any reasonable rational (finite state space) ap-
proximation of such a spectrum will need an order that is at least m. This shows
that the 3D case is essentially different from 2D, where low order semi-separable
approximation yield very good results. Hence, a different pre-conditioning strategy
will have to be used in 3D and higher dimensions. The following section presents
a preliminary investigation of this issue.

7. Decoupling strategies for matrices with 3D sparsity patterns

The goal of this section is to obtain insight in the possibilities of constructing
pre-conditioners through decoupling, whereby the Schur complements that have
to be introduced are being approximated by simpler matrices. This can happen
at various positions in the schema, as we shall indicate further on in this section.
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Since we dispose of exact inverses for special types of matrices (Poisson’s equation
on a regular grid) as presented in the previous sections, we can evaluate the various
strategies on this very well-conditioned example. The idea behind this approach is
that a pre-conditioning strategy should at least work well on simple straight exam-
ples, for there would be no hope for it to work in more complex cases if it already
breaks down on the most well-conditioned realistic examples. We first describe the
general strategies and then apply them on the Poisson case. The chapter has a
very preliminary nature, as many possibilities have yet to be investigated.

As explained in the section “Hierarchical Decoupling Structure”, the matrix
on one layer of the symbolic hierarchy can be decoupled into several levels (all
within that layer):

Figure 2. Level decomposition: level 0, level 1 and level 2 are shown

To keep terminology consistent we use the term ‘layer’ systematically to
indicate the position in the symbolic hierarchy, while the term ‘level’ will be used
for subdivisions within one layer as indicated by the diagrams above.

Positioning ourselves at a given layer of the hierarchy (say the top layer), if it
consists of n×n sub-blocks from its next layer, then we dispose of log2 n levels for
decoupling totally at the given layer. Consider a point k+ 1 where an approxima-
tion of a Schur inverse has to be introduced. The exact solution is of course given
by equation (10). The simplest approximant would of course be Sk+1 = M , which
would amount to putting L = 0. This we would refer to as a ‘Jacobi step’. Notice
that doing so, the resulting decoupled matrices remain positive definite (they are
in fact more positive than the exact ones, as the difference is a semi-positive oper-
ator). This amount to a ‘zero’th order’ approximation. One step more (first order)
would take Sk+1 = M −LM−1LH , which again would produce a positive definite
decoupling as can be seen from considering the positive definite block submatrix
with rows and columns indexed by k, k + 1, . . . . This we would call a ‘first-order
approximant’. This process can of course be continued leading to second, third
etc. . . order approximants. We show later that for the example the approximation
error decreases quickly when higher orders are involved - the approximation error
at the top layer of the hierarchy will appear to be the most significant factor.

The first-order approximation involves the inverse M−1. This is a matrix
at the next layer of the hierarchy. We may denote it as S−1

k+1;−1 as we regress
one stage in the Schur recursion. Similarly, the second order will involve a matrix
Sk+1;−2, which would be obtained by regressing two stages – we have not studied



Model Reduction in Symbolically Semi-separable Systems 125

this case yet. As these inverses involve a lower layer of the hierarchy, again a
Schur approximation can be introduced, but now involving matrices with a lower
hierarchical structure. In the case of hierarchical depth D = 3, this may already
involve a semi-separable approximation – we do present numerical results for this
case where we restrict ourselves to a one-stage recursion (i.e., we approximate the
relevant Sk+1 as M − LM−1LH).

Matrix Φ is then first decoupled in the middle, where k =  n
2 !. The process

can then be repeated at the next levels on the same layer. We specify a level
number lvl1 and decouple matrix Φ into 2lvl1 matrices as in the picture above, and
approximate the Schur complement by Sk+1 = M − LM−1LH at the decoupling
points while performing the exact recursion in between:⎧⎨⎩

S0 = M,
Sk+1 = M − LM−1LH , k =  n

2lvl1 !,  2n
2lvl1 !, . . .

Sk+1 = M − LS−1
k LH , k = else.

(42)

Let us now specialize these ideas to our prototype example, the matrix representing
the 3D regular Poisson problem with discretization based on the 27 points stencil.
It has the form given in Fig. 3 (here specialized to n = 8). Each block in the matrix

Figure 3. Structure of matrix Φ

represents a 2D plane, while each row corresponds to an array of points in the x-
direction. The interactions in the y-direction take place within the blocks while
the interactions in the z-direction create entries between blocks in the top layer.
These interactions are shown in Fig. 4. where each of the xy-plane corresponds
to a diagonal 2D block, each x line corresponds to a diagonal 1D block, and
the lines between these points correspond to the off-diagonal blocks or entries,
representing their relations. Introducing a cut in the top layer matrix (e.g., in the
middle as shown in Fig. 5) forces the elimination of the cross dependencies between
the layers, which are then incorporated as a (Schur-) correction (−LS−1

k LH) on
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Figure 4. Physical model of matrix Φ

the next diagonal block. Our strategy hence consists in estimating rather than
calculating that correction.

Figure 5. Cut on 3D layer (0 order)

Figure 6. Matrix cut on 3D layer (0 order)
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Figure 7. Cut on 3D layer (1 order)

Figure 8. Matrix cut on 3D layer (1 order)

The first layer steps (up to a certain level) hence consist in the estimation of
the Schur correction term, which in the first-order approximation is −LM−1LH in
which M and L again have structure, in our example they are block tridiagonal,
with blocks that are tridiagonal with scalar entries. A central step is then the
computation of M−1 with such a structure. One way of proceeding is to assume
semi-separability for this layer of computation, motivated by the fact that the
2D case is (extremely) well approximated by such systems, in contrast to 3D
systems. Assuming low-order semi-separability, Sk for k = 1, . . . , n will also be
semi-separable, and we can calculate the Schur complements Sk using the state
space theory expounded in Sections 4 and 5. In the experiments we report on here,
we use a rather global semi-separable strategy, restricting the semi-separable order
to nkp = rm (i.e., the size of a block) with a low value of r (called MRsize for
‘Model Reduction Size’). It turns out that with very low values the approximation
error is already negligible.
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Simulation results

To characterize the various experiments we introduce the notation
‘3D(level,order)2D(level,order,MRsize)’

to indicate an experiment in which the indicated levels and orders have been used
in the 3D block matrix, respect. 2D block submatrices, with an eventual semi
separable model order reduction size in the 2D case. Figure 9 shows ‖I − ΦP‖F

for a number of situations (if a 2D specification is not shown, it means that the
2D calculation has been done on the full matrix without approximations). Each
schema is carried out on orders from 0 to 3 (the latter meaning a regression of 3
layers). The X-axis shows the 3D level, while y-axis shows ‖I − ΦP‖F , where the
preconditioner P ≈ Φ−1 is computed as

P =
(

I 0
Φ21Φ−1

11 I

)(
Φ11 Φ12

0 S(3D)

)

Figure 9. ‖I − ΦP‖F for decoupling approximation on 3D layer and
3D & 2D layers, where 3D(level, order) is by only decoupling on 3D
layer with decoupling level level and approximation order order, while
3D(level, order)2D(level, order) is by decoupling on 2D layer when the
level and order on 3D layer is 3 and 1
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in which S(3D) is the approximated Schur complement by the difference approxi-
mation schemas described above. The order on the 3D layer in this figure is just
one, and three levels approximation are shown as explained before. So the x-axis
shows the level used on the 2D submatrices. We compare the different approxi-
mation orders on 2D taking the one without 2D approximation as a reference. As
expected, cutting on both the 2D and 3D layers gives more error, but the influence
of the approximation on the lower layer is much smaller compared with that on
the 3D layer. This means that for a good preconditioner, the top layer must use
a higher order of approximation than the lower layers. This situation is expected
and it is quite pronounced.

Figure 10 shows the approximations in Frobenius norm, if in addition model
order reduction with sizes 1 and 2 are applied on the 2D submatrices, and it shows
the comparison with the no model reduction case. Here r = 1 means the realization
matrices considered size 8 × 8, while they are 16 × 16 when r = 2.

Figure 10. ‖I − ΦP‖F for state space approximation on 3D layer,
where 3D(level, order) is by matrix computation and

3D(level, order, reduction rate)state space

is by state space realization with model reduction rate state space
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Eigenvalues of the preconditioning error. the preconditioner P is supposed to
approximate Φ−1. Its performance can be checked by evaluating the maximum
eigenvalue λmax of (I−ΦP ) for all the proposed cases. These are listed below from
table 1 to 5 for approximation schemas “Fixed point”, “Cutting on 3D layer”,
“Cutting on 3D layer in state space with model reduction rate r = 2”, “Cutting on
3D layer but keeping the diagonal values on off-diagonal 3D blocks”, and “Cutting
on both 2D and 3D layer”. In these tables level stands for the number of level cut
in 3D/2D layer; and order stands for the approximation order.

λmax(I − ΦP )
0.16

Table 1. Fixed point

λmax(I − ΦP )
Order level=1 level=2 level=3

0 0.3636 0.4420 0.5413
1 0.1304 0.1629 0.2154
2 0.0440 0.0554 0.0754
3 0.0119 0.0178 0.0244

Table 2. Cutting on 3D layer

λmax(I − ΦP )
Order level=1 level=2 level=3

0 0.3636 0.4420 0.5413
1 0.1304 0.1629 0.2154
2 0.0440 0.0554 0.0754
3 0.0119 0.0178 0.0244

Table 3. Cutting on 3D layer with rate r = 2

λmax(I − ΦP )
Order level=1 level=2 level=3

0 0.3205 0.3935 0.4884
1 0.1145 0.1428 0.1902
2 0.0381 0.0485 0.0658
3 0.0098 0.0153 0.0212

Table 4. Partially cutting on 3D layer

If we require the preconditioner to produce error eigenvalues smaller than
0.1, then schemas that qualify are “Cutting on 3D layer”, “Cutting on 3D layer
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λmax(I − ΦP )
Order level=0 level=1 level=2 level=3

0 0.2154 0.2218 0.2292 0.2419
1 0.2154 0.2157 0.2160 0.2165
2 0.2154 0.2155 0.2155 0.2155
3 0.2154 0.2154 0.2154 0.2155

Table 5. Cutting on both 2D and 3D layer

λmax(I − ΦP )
Order level=1 level=2 level=3

0 0.3636 0.4420 0.5413
1 0.1304 0.1629 0.2154
2 0.0440 0.0554 0.0754
3 0.0119 0.0178 0.0244

Table 6. Cutting 3D layer & 2D≈ SSS

in state space with model reduction” and “Cutting on 3D layer but keeping the
diagonal values on off-diagonal 3D blocks” when the approximation order is larger
than one.

8. Discussion

Many more numerical results are available than those presented in this paper. We
have tried in particular to use the fixed point solution as preconditioner with ex-
cellent results (almost no approximation error). If such a strategy is desired, then
an efficient method must be devised to compute the fixed point solution – a ques-
tion that is solvable using the exact solutions presented here, but it goes beyond
the purposes of the present paper. The numerical results that we do present show
that there exist very good schemas in which the preconditioning error (defined as
λmax(I − ΦP )) is below .1 or .2, resulting in very good low complexity precondi-
tioners. This is to some extent due to the good conditioning of the Poisson matrix
Φ. In future work we wish to investigate whether these properties can be extended
to system matrices that are much less well conditioned, such as matrices resulting
from full Maxwell equations. This will be the next effort on the program.
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