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ABSTRACT
We consider a wired network of analog sensors in one di-
mension. Each sensor measures some physical quantity and
“communicates” with its adjacent neighbors. The base sta-
tion can access the network by communicating with the sen-
sors at the boundaries. We show that by making measure-
ments at the boundary (i.e. from the first sensor) we can
determine the values of the unknown field values along the
entire network stably. The method is based on building
an analogy with classical one dimensional inverse scattering
(Helmholtz equation) for which the Chen-Rokhlin algorithm
provides a highly surprising stable method for recovering
the scattering parameters. Simulation results validating the
scheme for thousands of sensors are presented.

Categories and Subject Descriptors
H.1.1 [Systems and Information Theory]: General Sys-
tems Theory

General Terms
Algorithms, Measurement

Keywords
Sensor Networks, Inverse Scattering, Helmholtz Equation,
Chen-Rokhlin algorithm

1. INTRODUCTION
Sensors are devices which measure a certain physical quan-

tity (e.g. temperature) and convert them into an electrical
signal (e.g. voltage). The idea of a sensor network is to de-
ploy many such sensors in a field, and through local measure-
ments from each sensor, gather/interpolate/decipher global
information about the whole field. The measurements from
each of the sensors are collected and sent to a base station,
where the local information is assimilated. The collection of
information from each sensor is achieved in different ways
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(i.e. using different protocols). The sensors for these pur-
poses need to have more capabilities besides sensing. They
also need to collect and (maybe) store data, and transmit
data to either the neighbors or a base station, where the
global processing is being carried out. The sensors available
today are quite small in size with wide range of capabilities
([1],[2]). But, there is a power constraint for each of the sen-
sor, since the battery on each of them will last for a finite
time interval. There are few good survey papers ([3], [4],
[5]), which give an overview on the sensor network problem
and describe active research areas in the field.
Our objective for the sensor network in this paper is to

make the sensors as inexpensive as possible by limiting their
capabilities and transferring the cost of processing to the
base station.
We consider a logically one dimensional, network of sen-

sors as shown in figure (1). Here rectangular box j represents

Figure 1: Schematic diagram of the proposed sensor
network model

a sensor, which takes in the physical parameter f(xj) and
converts it into an appropriate electrical signal. Each sensor
in turn is capable of transmitting this electrical signal to its
adjacent neighbors. Also, it can receive signals from its two
adjacent neighbors. The base station, by sending some input
signal, communicates with the first sensor at the boundary
and makes some independent measurements I1(ω). The goal
of the base station is to figure out the unknowns f(xj)’s from
these measurements.
One way to achieve this goal would be to construct sen-

sors so that each one of them is capable of transmitting data
at unique or maybe orthogonal frequencies. But this precise
carrier frequency requirement would prevent mass produc-
tion and hence increase the cost of sensors. To circumvent
this problem we propose a wired network of all identical
sensors, each requiring only a transducer. The wired con-
nection enables us to do away with communication costs,
power constraints and localization issues. Making the base
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station do most of the signal processing allows the sensor
to be fabricated cheaply without any processor or memory
requirement.
We have proposed the wired network with some specific

applications in mind. Some of them are:

• Border/Fence monitoring ([6],[5]);

• Monitoring stress patterns in civil structures like build-
ings and bridges ([7]);

• Monitoring underwater cables and pipelines carrying
oil/water ([6]);

Note that in all of the above applications, the fact that
our sensors are wired together is not a disadvantage and
it provides a low power “always on” capability. Further, ex-
tremely long bridges and pipes can require the use of thou-
sands of sensors, and we present simulation results showing
that our sensor network performs well at this scale and be-
yond. Furthermore the ideas that we present in this paper
can be generalized to wireless networks also. Although the
proposed network is logically one dimensional, we do not
require that the wires run in straight lines and they can
be curved to provide coverage of two dimensional areas and
three dimensional volumes.
To realize such a wired network, we have taken ideas from

inverse scattering theory. In particular we have modeled
the one dimensional sensor network by a continuous string
of unknown varying mass. It is known that if the motion
of one end of such a string is observed when excited by a
known force, then the unknown mass density of the string
can be recovered. This was first observed by Gelfand and
Levitan, who proposed an algorithm in 1955 ([8]). Chen and
Rokhlin ([9]) proposed the first stable algorithm in 1992 and
it is the algorithm that we use in this paper.
The paper is organized as follows: We first give a brief

overview of inverse scattering theory along with a short de-
scription of the Chen-Rokhlin algorithm [9], and its rela-
tion with the proposed sensor network model. Then we give
detailed simulation results showing the performance of the
sensor network model for a wide variety of situations. In
particular, we show that our proposed sensor network can
operate with thousands of sensors and recover complicated
field profiles from measurements carried out at the first sen-
sor alone.

2. INVERSE SCATTERING AND ITS RE-
LATION TO THE SENSOR NETWORK
PROBLEM

Inverse scattering refers to the technique of identifying an
object or some characteristics of an object by bombarding
it with waves and then observing the reflected and scattered
waves. There are several different research areas in the field
of inverse scattering and [10] is a good survey paper. The
inverse scattering problem that is closely related to our set-
ting is the one proposed by Chen and Rokhlin in [9]. A
brief description of the problem and its relevance to the sen-
sor network problem now follows.

2.1 Inverse Scattering for the Helmholtz equa-
tion in one dimension

Consider an infinitely long string with variable mass per
unit length (q(x)) for x ∈ [0, 1] as shown in figure (2). The

Figure 2: Inverse Scattering in One Dimension: An
infinitely long string with variable mass per unit
length q(x) for x ∈ [0, 1]

displacement of each particle in the string is governed by
the wave equation, which in the frequency domain (obtained
after taking Fourier Transform) is the Helmholtz equation

φ′′(x, ω) + ω2(1 + q(x))φ(x, ω) = 0, (1)

where φ(x, ω) is the displacement of particle at position x,
and q(x) is the unknown mass per unit length profile. Here
q(x) = 0 for x /∈ [0, 1]. The boundary conditions satisfied
by φ(x, ω) are simply the outgoing radiation boundary con-
ditions [9]

φ′(0, ω) + iωφ(0, ω) = i2ω, (2)

φ′(1, ω)− iωφ(1, ω) = 0. (3)

The goal is to observe φ(0, ω) (for different frequencies ω),
at the boundary (at x = 0) and extract the unknown profile
q(x).
To obtain q(x) from the scattered data, Chen and Rokhlin

solve the following non-linear system of differential equations

p′
+(x, ω) = −iω(p2

+(x, ω)− (1 + q(x))), (4)

p′
−(x, ω) = iω(p2

−(x, ω)− (1 + q(x))), (5)

q′(x) =
2

π
(1 + q(x))

∫ ∞

−∞
(p+(x, z)− p−(x, z))dz,(6)

with the initial conditions

p+(0, ω) =
2

φ(0, ω)
− 1, (7)

p−(0, ω) = 1, (8)

q(0) = 0, (9)

where p+(x, ω) and p−(x, ω) are termed as “impedances”.
Here φ(0, ω) is the measured data and p+(0, ω) (from 7) is
a function of the measured data used to solve the inverse
problem.
In [9] Chen and Rokhlin established that this algorithm

would reconstruct q(x) in a stable manner. By stable we
mean that small changes in the measured “impedance” cause
small changes in the potential reconstructed by the algo-
rithm. The only other stable algorithm for this problem
that we are aware of is the one proposed by Sylvester et. al.
([11]).
The string problem and the sensor network model are sim-

ilar at a higher level, where there is some unknown function
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(along the length) to be determined by making observations
at the boundary. The only difference is that the string prob-
lem is continuous, whereas the sensor network problem is
discrete. We now provide a method to convert the continu-
ous string problem to a discrete electrical network problem.

2.2 Helmholtz Equation and Sensor Networks
We need a circuit which closely resembles a string. To

construct the electrical circuit we do the following:

1. Show that the current in a lossless transmission line
obeys the Helmholtz equation,

2. Discretize the Helmholtz equation and obtain a lumped
parameter model for the transmission line,

3. Use the lumped parameter model to construct our sen-
sor network with an electrical circuit.

It is known that the current and voltage in the transmission
line obey the Telegrapher’s equation ([12]),

∂V (x, t)

∂x
= −L(x)

∂I(x, t)

∂t
, (10)

∂I(x, t)

∂x
= −C

∂V (x, t)

∂t
. (11)

Here the capacitance C is assumed to be constant along the
line, while inductance L is a function of x. Differentiat-
ing equation (10) with respect to t and equation (11) with
respect to x we obtain

∂2V (x, t)

∂x∂t
= −L(x)

∂2I(x, t)

∂t2
, (12)

∂2V (x, t)

∂x∂t
= − 1

C

∂2I(x, t)

∂x2
. (13)

Comparing equations (12) and (13) we obtain the wave equa-
tion

L(x)
∂2I(x, t)

∂t2
=

1

C

∂2I(x, t)

∂x2
. (14)

Putting L(x)C = 1 + q(x) in the above equation we get

∂2I(x, t)

∂x2
− (1 + q(x))

∂2I(x, t)

∂t2
= 0. (15)

Taking Fourier Transform of the above equation we have

∂2Î(x, ω)

∂x2
+ ω2(1 + q(x))Î(x, ω) = 0, (16)

where, Î(x, ω) is the transform of I(x, ω).
To obtain the electrical circuit, we discretize the Helmholtz

equation (1) using the centered difference formula

Î ′′(xi, ω) ≈ Î(xi − h, ω)− 2Î(xi, ω) + Î(xi + h, ω)

h2
,

we get

Î(xi − h, ω)− 2Î(xi, ω) + Î(xi + h, ω)

h2
+

ω2(1 + q(xi))Î(xi, ω) = 0. (17)

At the boundaries, we discretize the outgoing radiation con-
ditions 2 and combine it with the discrete helmholtz equa-

tion at the boundary. At x = 0 we get

Î(h, ω)− Î(−h, ω)

2h
+ iωÎ(0, ω) = 2iω,

Î(−h, ω)− 2Î(0, ω) + Î(h, ω)

h2
+

ω2(1 + q(0))Î(0, ω) = 0.

Eliminating Î(−h, ω) from the above two equations, we get

(−2+i2hω+ω2h2(1+q(0)))Î(0, ω)+2Î(h, ω) = i4hω. (18)

Similarly at x = 1 we get,

Î(1 + h, ω)− Î(1− h, ω)

2h
− iωÎ(1, ω) = 0,

Î(1− h, ω)− 2Î(1, ω) + Î(1 + h, ω)

h2
+

ω2(1 + q(1))Î(1, ω) = 0.

Eliminating Î(1 + h, ω) from the above two equations, we
get

−2Î(1−h, ω)+(2−i2hω−ω2h2(1+q(1)))Î(1, ω) = 0. (19)

After some algebraic manipulation, equations (17), (18)
and (19) can be rewritten as

(
2

iωh
− 2 + iωh(1 + q(0)))Î(0, ω)− 2

iωh
Î(h, ω) = −4, (20)

− 2

iωh
Î(xj − h, ω) + (

4

iωh
+ iω2h(1 + q(xj)))Î(xj , ω) −

2

iωh
Î(xj + h, ω) = 0 ,(21)

− 2

iωh
Î(1−h, ω)+(

2

iωh
−2+iωh(1+q(1)))Î(1, ω) = 0. (22)

Equations (20), (21), (22) are the Kirchoff’s Voltage law
(KVL) equations for the first, jth and the last loop re-
spectively. LC ladder circuit obeying the KVL can now
be formed (figure (3)). We now adapt the circuit for our

Figure 3: Electrical Circuit Realization of the 1D
sensor Network Model

sensor network by identifying each inductor with a sensor,
and make the special requirement that the sensed field value
determines the inductor’s inductance. In particular, the
jth inductor with a sensed value of q(xj) has inductance
2h(1 + q(xj)). Such inductors can be realized using active
RC circuits ([13]). To operate the sensor network, we need to
make certain measurements. We supply input signals Vs(ω)
(constant voltage source in frequency domain) for different
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frequencies, and measure the current in the first loop, I1(ω).
Then the function p(ω) (“impedance”) is calculated as

p(ω) =
2

I1(ω)
− 1. (23)

To find the unknown field values q(xj), we need to find the
unknown inductances from the p(ω) obtained at different
frequencies. For this we can follow Chen and Rokhlin al-
gorithm and solve equations (4)-(9). To make this feasi-
ble, Chen and Rokhlin approximated the infinite integral
(6) with

q′(x) =
2

π
(1 + q(x))

∫ ωm

−ωm

(p+(x, z)− p−(x, z))dz, (24)

and then use the Trapezoidal rule to discretize the integral
equation.

3. IMPLEMENTATION DETAILS
We simulate figure (3) in MATLAB [14]. For the forward

problem, we choose different profiles for q(x), send an in-
put voltage signal, which is an impulse in time (and hence a
constant in frequency), and measure the current (I1(ω)) in
the first loop. It is equivalent to solving a linear system of
equations obtained by writing the KVL equations. To add
noise, we simply put a resistor in each loop. The value of
the resistor is a uniform random number in [0, .1], which is
of the order of (or greater than) the product of LC(= h2).
Once we have I1(ω), we form the “impedance” function as in
(23), and solve the system of ODE’s (4) - (9), with (6), and
(7) replaced by (24), and (23) respectively. We use MAT-
LAB’s ode23s solver for solving the system of differential
equations. The integration in (24) is approximated using
the trapezoidal sum.
Once we have the reconstructed profile q̂(x), we calculate

the error as

e(x) = q(x)− q̂(x).

In the captions of each figure, we show two different norms
of errors:

• ||e(x)||∞ = maxi e(xi), which is the maximum recon-
struction error made by a sensor.

• ||e(x)||2 =
(

1√
N

) √(∑
i e(xi)2

)
, which is the root mean

squared reconstruction error.

4. RESULTS
Our goal is to show that it is possible to recover the un-

known sensed profile by making measurements at the bound-
ary. According to [9], the inverse algorithm works the best
when the unknown profile is smooth, and the error tends to
zero as one takes samples at higher frequencies. The follow-
ing observations are verified through plots:

• The reconstruction error decreases up to a point as
we increase the maximum frequency (ωmax). Beyond
that the error persists, which is due to the fact that we
have used different models for the forward and inverse
problem.

• The algorithm scales quite well with the number of sen-
sors, and the error does not blow up with the increase
in the number of sensors.

• The reconstruction algorithm is able to resolve two
peaks separated by some distance.

• Although [9] does not have proof for detecting non-
smooth profiles, the algorithm does a good job recon-
structing it. We show this by using profiles, which are
piecewise smooth, and piecewise non-smooth.

For all the plots shown below, the x-axis represents the spa-
tial axis along which the sensors are aligned, and the y-axis
is the sensed field value, as well as the absolute value of the
reconstructed potential.

4.1 Smooth Profile
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Figure 4: Smooth q(x): 1,000 sensors, ωmax = 30
rad/sec. Noisy resistor is uniformly chosen from the
interval [0,0.1]. ||error||2 = 0.0295, ||error||∞ = 0.0552.
The solid line corresponds to the reconstructed pro-
file and the area plot corresponds to the original
profile.

Here we show that if the Li’s (the spatially distributed
sensed value) vary smoothly then it is possible to recover
them to a high degree of accuracy. We show experimental
results for different ωmax and show that the recovered profile
follows the original profile closely as we increase ωmax. We
choose q(x) as

q(xi) = exp

(
−

(
xi − .5

σ

)2
)

where σ = 1
8

√
log10(e) and L(xi) is obtained from q(xi) as

shown in figure (3). In most practical situation, one would
expect high correlation between adjacent sensed values and
hence the smoothness requirement would be satisfied most
of the time. As can be seen in figure (4), the inverse
algorithm is successful in reconstructing the q(x); i.e. it
follows the original profile quite closely. Figure (5) shows
the plot of impedance (as a function of frequency), which is
supplied to inverse algorithm (equation (23)).
We don’t see significant improvement when the frequency

is raised from 30 to 60 rad/sec (figures (4) and (6)). This
is due to the fact that, the forward problem (i.e. collecting
the data I1(ω)) is in discrete domain (i.e. obtained through
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Figure 5: Impedance profile for figure (4). 1,000
sensors, ωmax = 30 rad/sec.
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Figure 6: Smooth q(x): 1,000 sensors, ωmax = 60
rad/sec. Noise is a uniform random number be-
tween [0,0.1]. ||error||2 = 0.0291, ||error||∞ = .0543.
The solid line corresponds to the reconstructed pro-
file and the area plot corresponds to the original
profile.
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Figure 7: Smooth q(x): 1,000 sensors, ωmax = 5
rad/sec. Noise is a uniform random number be-
tween [0,.1]. ||error||2 = 0.1695, ||error||∞ = .4242. The
solid line corresponds to the reconstructed profile
and the area plot corresponds to the original pro-
file.

a lumped parameter model), whereas the reconstruction al-
gorithm (the inverse problem - equations (4), (5), and (6))
is in continuous domain.
On other hand figure (7) indicates that if we decrease the

maximum frequency of experiments, the performance of the
inverse algorithm deteriorates.

4.2 Step profile
In practice, step profile would correspond to a case, where

the sensed value is among a few quantized levels. Although
Chen-Rokhlin algorithm requires smooth potential, it is able
to reconstruct a piecewise smooth profile to great accuracy.
Figure (8) corresponds to the case where the number of
quantization level is more than two, whereas figure (9) corre-
sponds to the case where only one bit of information (either
0 or 1) is transmitted. The reconstructed profile for both the
cases give a reasonable picture of the quantized field values.
As shown in figure (10), when the maximum frequency is in-
creased to 75 rad/sec, we see that the error in reconstruction
further decreases.

4.3 Resolution
To test the inverse algorithm for its resolution ability we

considered two cases. Figure (11) indicates successful res-
olution of two peaks separated by some distance, and the
inverse algorithm works quite well even when the distance
between the two peaks is reduced (figure (12).
Figure (13) indicates successful resolution of a highly lo-

calized peak.

4.4 Scalability
The number of sensors is increased to 10,000 now. As

shown in figures (14) and (15), the inverse algorithm was
able to detect the profile successfully, thereby indicating the
scalability of the algorithm. Also, the noise level for figure
(15) is reduced by an order of magnitude resulting in a better
reconstruction.
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Figure 8: Step profile: 300 sensors, ωmax = 50
rad/sec. Noise is a uniform random number be-
tween [0,.1]. ||error||2 = 1.6127, ||error||∞ = 7.7227.
The solid line corresponds to the reconstructed pro-
file and the area plot corresponds to the original
profile.
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Figure 9: Step profile: 300 sensors, ωmax = 100
rad/sec. Noise is a uniform random number be-
tween [0,.1]. ||error||2 = .2118, ||error||∞ = 1.0033. The
solid line corresponds to the reconstructed profile
and the area plot corresponds to the original pro-
file.
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Figure 10: Step profile: 300 sensors, ωmax = 75
rad/sec. Noise is a uniform random number be-
tween [0,.1]. ||error||2 = .6508, ||error||∞ = 3.9715. The
solid line corresponds to the reconstructed profile
and the area plot corresponds to the original pro-
file.
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Figure 11: Resolution: 1,000 sensors, ωmax = 50
rad/sec. Noise is a uniform random number be-
tween [0,.1], ||error||2 = 0.0487, ||error||∞ = 0.1913.
The solid line corresponds to the reconstructed pro-
file and the area plot corresponds to the original
profile.
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Figure 12: Resolution: 1,000 sensors, ωmax = 50
rad/sec. Noise is a uniform random number be-
tween [0,.1], ||error||2 = 0.0426, ||error||∞ = 0.1393.
The solid line corresponds to the reconstructed pro-
file and the area plot corresponds to the original
profile.
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Figure 13: Resolution: 1,000 sensors, ωmax = 100
rad/sec. Noise is a uniform random number be-
tween [0,.1]. ||error||2 = 0.0481, ||error||∞ = 0.32. The
solid line corresponds to the reconstructed profile
and the area plot corresponds to the original pro-
file.
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Figure 14: Scalability: 10,000 sensors, ωmax = 50
rad/sec. Noise is a uniform random number be-
tween [0,.1]. ||error||2 = 0.0395, ||error||∞ = 0.178. The
solid line corresponds to the reconstructed profile
and the area plot corresponds to the original pro-
file.
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Figure 15: Scalability: 10,000 sensors, ωmax = 50
rad/sec. Noise is a uniform random number be-
tween [0,.01], ||error||2 = 0.0101, ||error||∞ = 0.0497.
The solid line corresponds to the reconstructed pro-
file and the area plot corresponds to the original
profile.
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4.5 Non-smooth profiles
Although for most practical cases, the sensed profile will

be smooth, we would like to see if the inverse algorithm
is able to reconstruct non-smooth profiles. We used the
function

q(xi) = |0.5(sin(2kπxi))
.25|

which has infinite derivative (and hence not piecewise smooth)
for finite values of x. The parameter k controls the number
of lobes. As shown in figure (16), Chen-Rokhlin algorithm is
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Figure 16: Piecewise non-smooth: q(xi) =
|0.5(sin(4πxi))

.25|, 1,000 Sensors, ωmax = 100 rad/sec.
Noise is a uniform random number between [0,.1].
||error||2 = .1643, ||error||∞ = .3629. The solid line cor-
responds to the reconstructed profile and the area
plot corresponds to the original profile.

able to detect the shape of the potential along with number
of lobes.

5. CONCLUSION AND FUTURE WORK
In this paper we have proposed a novel model of sensor

networks. Using an inverse scattering algorithm, we were
able to recover the unknown field values by making mea-
surements only at the boundary. This method enables us
to construct sensors cheaply and transfer the cost of signal
processing to the base station. The simulation results indi-
cate a stable recovery of different profiles and a high degree
of scalability. The algorithm is stable in the sense that the
error does not blow up either due to increasing the number
of sensors or due to noise in the network.
In future we will address the following issues:

• Although, here the noise is modeled as resistors in se-
ries with the sensors, other possibilities also exist. Ide-
ally a noise model should include all possible sources of
noise, e.g. measurement noise of each sensor, measure-
ment noise of the impedance measuring device, noise
causing attenuation in the signal etc.

• The plots for the case of smooth field values show a
presence of a finite error between the actual field val-
ues and the recovered field values. The error does not

decrease by taking samples of impedance at higher fre-
quencies as predicted by the inverse scattering algo-
rithm [9]. It is due to the discrepancy in the two (for-
ward and inverse) models, i.e. (in the forward model)
impedance is calculated using a discrete circuit, while
(in the inverse model) the impedance data is supplied
to a continuous inverse scattering algorithm. We be-
lieve that this error can be reduced by developing an
inverse algorithm in discrete domain.

• In the paper, the simulations are performed in fre-
quency domain. In real world applications, it is more
likely that the experiment is performed in time do-
main. Hence one needs to consider other issues like
the settling time of the circuit, operation of the circuit
in stable fashion, etc.

• Although the algorithm described in the paper can be
used for two dimensional area and three dimensional
volume, we will consider better models for sensing in
two dimensional field.
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