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ABSTRACT

Sochastic signal processing has reached the age of ’ar-

ray processing’, where the various properties of the rel-

evant system matrix play a predominant role in the ef-

ficiency of the filtering or estimation algorithm. Clas-

sical is the Toeplitz structure, and structures that are

derived from it such as ’quasi-stationarity’. In this pa-

per we focus on a different structure of equally great

importance, namely ’quasi-separabilty’. We start out

with an introduction to basic properties and algorithms,

foremost of which is an extension of the square root

algorithm known from Kalman filtering. Although ex-

tremely important and useful when applicable, in many

applications the notion of quasi-separability has to be

extended. We discuss two main classes of extensions,

which both deal with hierarchy but in very different

ways. One has been called ’Hierarchical Semi-Separable’

or HSS, the other is of more recent date and can be

termed ’hierarchies of quasi-separable form’ - they look

like quasi-separable but lack the main properties. We

give ways of dealing with this situation which occurs

in many systems characterized by partial differential

equations. An example taken from image processing

(optic flow analysis) puts the problem squarely in the

realm of stochastic signal processing.

1. THE NOTION OF QUASI-SEPARABILITY

In this presentation we take it for granted that a signal

processing algorithm has a global (functional) repre-

sentation T as a matrix acting on an input space and

delivering data to an output space. Where needed we

assume that this spaces are of the Euclidean type - they

possess a inner product and a norm derived from it. In

particular they can consist of time series of vectors or

spatial series of vectors, e.g. what would happen if

video data were sequencialised. The matrix may have

infinite dimensions, as would happen when it acts on

time sequences existing from t = −∞ to t = ∞.

In case the system is time-invariant, then T would be

Toeplitz or block-Toeplitz (when the input space re-

spect. output space consist of sequences of vectors). It

is possible to incorporate finite matrices in the frame-

work as well as infinite ones, by accepting non-uniform

sequences for the input and output spaces, namely se-

quences of vectors of variable dimensions. When the

dimension becomes zero, then we assume that it re-

duces to a ’placeholder’ - there is no vector at that point

in time. The calculus of block matrices has to be ex-

tended to cover that case, one simply assumes e.g. that

the product of a m × 0 matrix with an 0 × n matrix is

a zero matrix of dimensions m × n.

Suppose now that we dispose of a linear computation

that ’runs forward in time’. If the vector of data that the

computer has remembered at stage n of the computa-

tion is x(n), and the input at that point is u(n), while

the output to be produced is y(n), then the computa-

tion can be modeled as follows (notice that we apply

matrices to row vectors, an easy convention in signal

processing):
{

x(n + 1) = x(n)A(n) + u(n)B(n)
y(n) = x(n)C(n) + u(n)D(n)

(1)

in which {A(n), B(n), C(n), D(n)} are matrices. Let

us collect these matrices in diagonal operators A =
diag[A(n)] etc... and define the shift operator Z on

(non-uniform) sequences as [xZ]n = xn−1. Then the

operator corresponding to this computation is block

upper triangular (indicative of the forward motion of

the computation on row vectors) and given by:

T = D + BZ(I − AZ)−1C. (2)



1437

We recognize a state space representation of a system,

now in a rather general, ’time varying’ setting. The

computation will be efficient if the dimension of the

state vector is not too large. Let the sequence of state

dimensions be {δn}, and let δ = sup
n

δn, then we say

that T is quasi-separable of order δ (δn can be consid-

ered a ’local’ order of semi-separability.)

More generally, an operator T will be called quasi-

separable (of certain orders) if for both its upper and

lower parts there exists such a local computation. In

that case, there will exist ’state realizations’ for both

the upper and the lower part and T can be represented

as

T = BℓZ
∗(I−AℓZ

∗)−1Cℓ +D+BuZ(I−Au)−1Cu

(3)

Interesting is how, given an operator T one arrives at a

quasi-separable representation. This topic is called ’re-

alization theory’ and its solution goes back to the work

of Kronecker, Hankel and later Ho-Kalman, Silverman-

Meadows, and for the time-varying case Dewilde-van

der Veen [9, 7, 11, 4]. Connected to the upper (re-

spect. lower) triangular parts of a system there are

collections of matrices which are characteristic for the

’state behaviour’ of the system. These matrices factor

into controllability and observability operators, from

which realizations can be derived. The Hankel matri-

ces play an essential role in ’model reduction theory’,

the theory that describes how an operator can be ap-

proximated by another one of much lower complexity.

In many cases, quasi-separable realizations of an op-

erator are given or can be inferred from the physics of

the problem - see the examples below.

Quasi-separability helps very much in reducing the com-

plexity of matrix computations. In fact, if δ is a num-

ber indicative of the overall state complexity, then ma-

trix inversion can be done in nδ3 operations (in sev-

eral important cases even nδ2). The same holds for

other important algorithms such as Cholesky decom-

position (spectral factorization), QR-factorization and

even eigenvalue decompositions.

The notion of quasi-separability has known less com-

plex predecessors. These were introduced in by Gohberg-

Kailath-Koltracht [6] in the study of integral equations

of the Helmholz type. There one is interested in solv-

ing an equation of the type

y(t) =

∫
K(t, s)u(s)ds (4)

and assumes that the kernel K(t, s) has (possibly dif-

ferent) low rank outer decompositions for t > s re-

spect. s > t. When discretized these decompositions

amount to a special type of quasi-separable represen-

tation, namely one in which the ’state transition oper-

ators’ Aℓ and Au are zero. It was remarked by these

authors that solving the system of equations (and the

derived discretized system) can be done with a number

of operations that is linear in the number of equations

(and square or cubic in the dimensions of the outer rep-

resentation). The rather special semi-separable repre-

sentation as compared to the one mentioned earlier re-

stricts the applicability of the method and lays at the

origin of numerical difficulties that can only be solved

in the more general setting.

2. HIERARCHICAL QUASI-SEPARABILITY

Quasi-separability is a very nice notion for systems in

which there is only one relevant dimension of evolu-

tion, often time. What to do if there are more dimen-

sions? The approach we take is what we could call

’hierarchical quasi-separability’. We distinguish two

types. One type, pioneered by Chandrasekaran and

Gu [2] has been termed ’HSS’, and assumes a hier-

archical structure in which each level of the hierarchy

gets decomposed in four subblocks (2 × 2 blocks) and

whereby the next level of the hierarchy is only de-

fined on the two blocks on the main diagonal. Fur-

thermore, the off diagonal blocks are assumed of low

quasi-separable dimension, and even such that their

rows and columns can be generated in a simple way

from the off-diagonal blocks that lay deeper in the hi-

erarchy. This structure is exemplified in the following

picture. The indexing scheme goes as follows: the first

index indicates the level of hierarchy, the second the

position of the columns (for the B matrices) respect.

rows (for the C matrices) in the row, respect. column

subdivision of the original matrix. It is thus assumed

that e.g. B1,2 can be generated from B2,1 and B2,2,

more precisely, there are matrices W2,1 and W2,2 so

that

B1,2 =

[
B2,1W2,1

B2,2W2,2

]

the philosophy being that the lower level (and larger)

off diagonal blocks are much more sparse than those
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of the deeper levels.

D2,1

D2,2

D2,3

D2,4

B1,2C1,1

B1,1C1,2

B2,1C2,2

B2,2C2,1

B2,3C2,4

B2,4C2,3

It turns out that such HSS systems can be solved

in an especially efficient way. A recent survey of the

method, with many examples, can be found in the the-

sis of T. Pals (UC Santa Barbara). This type of struc-

ture has an independent interest in another context. In

[1] it has been shown that an invariant multi-resolution

system is in fact equivalent to a time-varying quasi-

separable system.

Another hierarchical structure (type II) is one that orig-

inates easily in systems that satisfy partial differential

equations, e.g. in two or three dimensions. In the next

section we discuss a nice example in signal processing

to some extent. For ease of discussion, let us consider a

prototype case here, originary from optical flow anal-

ysis, known as the Horn-Chunck algorithm (see fur-

ther). We assume that the operator C has the following

hierarchical structure: at the top level of the hierarchy,

C is a matrix of block dimension N ×N such that the

blocks Ci,j = 0 for |i − j| > 1, in other words, it is

block triangular, e.g. as in:

C =





M −U

−U M −U

−U M −U

−U
. . .

. . .

. . .
. . . −U

−U M





(5)

The matrices M and U are defined as

M =





1 −
1

6

−
1

6
1 −

1

6

−
1

6

. . .
. . .

. . .
. . .



 , U =
1

12





2 1
1 2 1

1
. . .

. . .

. . .
. . .





(6)

Each of the non-zero blocks in the original matrix has

the same structure, and that further down one (or more)

levels. Such a system does not merit the qualification

’quasi-separable’, although the lowest level blocks are

quasi-separable of order 3, and the next level has a

block-quasi-separable structure of order 3, the overall

quasi-separable rank at that next level is actually N +3
- although the system is extremely sparse, the order

of sparsity per row (or column) being just 9, a con-

stant. One level higher things really get out of hand,

the quasi-separable order becomes now of O(N2), in

fact, it stays just one order less than the overall size

of the matrices at that level. Can such a complex sys-

tem be solved efficiently? The approach we propose is

to lower the level of quasi-separability every time one

makes a move to the next level of the hierarchy (in a

LU or QR factorization) through model order reduc-

tion. The big question is whether that approach does

work indeed, and results in a numerical accurate proce-

dure. In the next section we show that that is indeed the

case in a major application for stochastic signal analy-

sis, namely optical flow analysis.

3. APPLICATION TO OPTICAL FLOW

ANALYSIS

’Optical flow’ is informally defined as the minimal trans-

formation needed to map a picture on another one. It is

most useful in analyzing video streams, because then

the transformation of one frame into the next one is

presumably a transformation of low complexity and it

contains relevant information on the sequence of trans-

formations. In fact, it has been shown that from it most

of the relevant ’semantic information’ can be deduced,

for a quick survey we refer to [5]. While motion esti-

mation in current standards is based on block match-

ing, flow analysis is able to produce information on

many other important aspects of the image sequence

in a video stream, namely aspects relating to inter-
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polation, restauration, the determination of the focus

point, the identification of image content etc... For

those types of applications the optic flow computa-

tion according to e.g. Horn and Schunk [8] is an at-

tractive and effective alternative. The basic assump-

tion underlying all methods of motion estimation is

that changes in the image intensity originate from lo-

cal translations of the pixels, i.e. motion of objects,

but not from changes in lighting or from object occlu-

sions or innovation. This leads to what is known as the

’optical flow constraint’. This constraint is then aug-

mented with equations aiming at overcoming its inde-

terminacy. Horn and Schunk assume that the motion

of pixels in a sequence (characterized by pixel depen-

dent 2D motion vectors with components {vx, vy}) are

varying in a smooth way. This is expressed by stating

that the sum of squares of the Laplacian of the motion

fields vx and vy has to be minimized. Hence, the optic

flow problem becomes an optimization problem. To

summarize a long story, the resulting equations have

the following form:

(
α2

[
C 0
0 C

]
+

[
I1

I2

]
[ I1 I2 ]

) [
x1

x2

]
=

[
I1

I2

]
It

(7)

where:

- C is a positive definite, block tridiagonal matrix with

blocks that are themselves tridiagonal, see its defini-

tion earlier.

In addition, C is Toeplitz block Toeplitz with fixed

(data independent) entries. It represents the negative of

the Laplace operator (we give details in the next para-

graph);

- α is a scalar constant;

- Ik are (stochastic) diagonal matrices with light inten-

sities as its entries;

- the unknowns xk are the sought after components of

the flow vector;

- It is also a (stochastic) matrix with intensities.

Hence, the optical flow problem reduces to solving a

system of hierarchical quasi-separability type, the type

II case discussed above. Because of the hierarchical

nature, the system is not quasi-separable in the strict

and the classical URV type algorithm derived for it

[13, 4] will not produce a satisfactory solution, it has to

be augmented with a model reduction procedure. How

this is done is presented in [3]. There, arguments are

given why the model order reduction procedure will

give good results in this case. The arguments run as

follows:

1. The Toeplitz block Toeplitz case of finite dimen-

sions can be thought as being embedded in an

infinite dimensional case. As far as the inver-

sion procedure is concerned, this will only af-

fect the image boarders, due to the fact that the

infinite dimensional system and its inverse are

stable systems. Once the systems have infinite

Toeplitz representations, they can be Fourier trans-

formed. For the block infinite dimensional sys-

tem, the top Fourier representation is

C = −Ue−iθ + M − Ueiθ

in which U and M are themselves Toeplitz op-

erators. Proceeding to a spectral factorization

C = LL∗ we find L = m∗

− Um−1e−iθ with

µ = m∗m a solution of the Riccati equation

µ = M − Uµ−1U.

2. The inverse of this hierarchical multidimensional

system can be explicitly computed:

L−∗ = m−1+µ−1Um−1eiθ+(µ−1U)2m−1e2iθ+· · ·

3. The computation hence requires the solution of

a Riccati equation in the transform domain. This

can be explicitly computed. Let U = uT u (here

U happens to be positive definite), and let ν =
u−T µu−1, Mu = u−T Mu−1, then

ν + ν−1 = Mu.

Moving to the transform domain (we are han-

dling Toeplitz operators!), we find

ν̃(θ) + ν̃(θ)−1 =
˜

Mu(θ)

where the tildes are now just functions of θ, and

ν̃ =
1

2

[
˜

Mu +

√
˜
Mu

2
− 4

]
.

4. As the resulting spectrum has become transcen-

dental, with a discontinuity in the first deriva-

tive at the origin, there is no exact, finite dimen-

sional state space representation for it that would
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correspond to a quasi-separable representation.

Hence, the result has to be approximated with

a rational (positive definite) spectrum. Such ap-

proximations can indeed be explicitly computed

and high accuracies can be obtained with low

order approximations (linear in the order, each

additional order gains one order of magnitude in

the approximation);

5. In the non-infinite case, the Riccati equation is

replaced by a recursion of the Riccati type,

{
m∗

i
mi = µi

µi+1 = M − Uµ−1

i
U

whose fixed point is the solution to the infinite

case.

As the recursion turns out to be extremely stable (due

to the specific values), it is a reasonable assumption

that an order of approximation equal to what works

in the infinite case would be acceptable. This con-

clusion is confirmed numerically for the Horn-Chunck

case considered here.

4. OTHER APPLICATIONS AND THE

CONNECTION WITH KALMAN FILTERING

There are quite a few more applications in which quasi-

separable systems appear, some of them are related

to stochastic signal processing [12], others to optimal

control (as a dual problem to optimal filtering) and to

the modeling of systems governed by (partial) differ-

ential or integral equations such as the problem of in-

verse scattering in Electromagnetism or the modeling

of (leaky) interconnects in modern VLSI systems. The

main workhorse in solving quasi-separable systems is

a recursive version of the QR-algorithm known as the

’square root algorithm’, which can be viewed as a gen-

eralization of the Kalman algorithm in its square root

version [10]. Expanding a little on these ideas, a num-

ber of observations are in order:

1. The factorization C = LL∗ already considered

earlier for the Horn-Chunck case would lead to

the square-root algorithm for Kalman filtering, if

C turns out to be a covariance matrix resulting

from a process described by state space equa-

tions of the form

{
xn+1 = Fxn + Gun

yn = Hxn + wn

in which u, w stand for white noise and xn is

an internal state variable. In the Horn-Chunck

case the C matrix plays a rather special role and

the noise comes in a different way than in the

Kalman case, but the underlying matrix factor-

ization ideas are similar.

2. The square root algorithm is an embodiment of

some fundamental properties of dynamical sys-

tems. Suppose that T is a causal (time-varying)

transfer operator. Then we know that there is a

factorization T = UTo in which U is a causal

isometric operator and To is causally right in-

vertible. U captures the ’zero’s’ of the system,

or, to put it differently, the (anticausal) dynam-

ics of an inverse to T . The square-root algo-

rithm precisely produces this characterization of

T . We have to refer to the literature for the sig-

nificance of this fact, let us suffice to state here

that it is the expression in our context of the cel-

ebrated Beurling-Lax theorem of Hardy space

theory.

3. Besides the square root algorithm, model reduc-

tion theory plays an important role in keeping

computational complexity down. Unfortunately,

quasi-separability is not hierarchically stable, which

means that a higher level quasi-separable struc-

ture does not translate down the hierarchy. Model

reduction is the technique allowing to restrict

complexity at each level of the computations.

The Horn-Schunck example shows that the tech-

nique is very promising. Because of its recent

discovery, it has not been used very much yet,

but it holds the promise that we soon will be able

to come up with new and powerful pre-conditioners

allowing us to solve ever more ambitious, multi-

dimensional systems of partial differential equa-

tions steered with stochastic quantities.
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