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Abstract

RationalJ-inner-valued functions which atkeinner with respect to the unit circld peing
a matrix which is both self-adjoint and unitary) play an important role in interpolation theory
and are extensively utilized in signal processing for filtering purposes and in control for min-
imal sensitivity (Ho, feedback). Any such function is a product of three kinds of elementary
factors, each of them having a unique singularity outside the unit disk, inside the unit disk
and on the unit circle, respectively. Counterparts of the first kind have already been studied
in the context of non-stationary systems, when analytic functions are replaced by upper tri-
angular operators. The purpose of the present work is to study the non-stationary analogues
of the factors of the third kind. One main difficulty is that one leaves the realm of bounded
upper triangular operators and considers unbounded operators. Yet, as is the case for a number
of special clases of non-stationary systems, all the systems under consideration are finitely
specified, and the computations are done recursively on a finite set of state space data. We
consider the particular case, where the operator given is of the VI type (that is, it is time-
invariant both for small and large indices, and is time-varying in between). The theory results
in a rather general factorization theorem that generalizes the time-invariant case to finitely
specified, time-varying systems. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let us first recall that the classical inverse scattering problem consists in finding
all representations

s 1= To(0) = (0110 + 012) (6210 + 622) 1

of a given functiors analytic and contractive in the open unit diBk(a Schur func-
tion), whereo is still a Schur function and where

011 012
O =
(921 922>
is meromorphic irD andJ-contractive:®(z)J O (z)* < J forall zin D, where® is
analytic, with

(9.

The inequality means that the differente- @(z)J©(z)* is a positive semidefinite
matrix. If it also holds thai®(z)JO(z)* = J a.e. onT, it is called J-inner. The
inverse scattering problem is closely related to the theory of linear time-invariant
dissipative systems, and has numerous ramifications (see [1] for a survey). Two key-
stones in obtaining suc® are the works of Schur in 1917 (the celebrated Schur
algorithm; see [18]) and of Brune in 1930s (see [6, p. 14]). The resulting elementary
(that is, of McMillan degree 1®'s are of the form

_(1 O (1-2) 1 —k
0" <0 1> S e-(l-zaM(l-a) (k* _1> ' 1.1

In the case of the sections introduced by Schur (and later more generally by Nevanl-
inna), we have

1— [k|?

1—lal?’

while in the case of Brune sectiorssandk are of modulus 1 (witla # 1) ande is

a strictly positive number. In the first cas@,is also called a Blaschke factor (the

matrix analogue ofz — a)/(1 — za™)) and its entries are bounded functions in the

open unit disk. This boundedness property does not hold wahisron or outside

the unit circle. In particular, Brune factors are not bounded in the open unit disk.
When one considers non-stationary systems, Schur functions are replaced by up-

per (or lower, depending on the convention) doubly infinite contractive matrices; see

e.g., [4]. The analogue of the Blaschke factor is known (see e.g., [4]), but up to now,

there was no known analogue of the Brune section. This is the problem we address

aeD, keD, e=
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in this paper. One of the main difficulties is that the definition of an upper triangular
unbounded operator is not so clear in the present setting. For instamgéasithe
canonical basis of2(Z) andZ is the bilateral shift o2(Z): Ze,, = e,+1, then one

has (in the weak topology and for gl

00 -1
(Z Z") (ej—ej-) == Z"(ej = ej-),
0 —00

where the operator on the left is unbounded and “upper triangular” while the operator
on the right is unbounded and “lower triangular”. These operators are of course the
analogues of the two Laurent expansions gflt-z) centred at the origin. To remedy
that difficulty, we will use the Zadeh extension (for the definition, see Section 3).

The outline of the paper is as follows: the paper consists of eight sections includ-
ing this introduction. We review in Section 2, the notions of Blaschke and Brune
factors in the case of analytic functions. A common formula defines both factors,
although some of their properties are fundamentaly different. In Section 3, we review
the non-stationary setting and recall the notion of Blaschke factor. The formula we
use is taken from [8]. In contrast with the discrete case, this formula cannot be used
right away to define Brune sections and we first introduce the Zadeh extension. Brune
sections are studied in Section 4, and the non-stationary counterparts of points of
local losslessness are studied in Section 5. Section 6 is devoted to a reproducing
kernel approach to these problems. Section 7 deals with the question of factorization
of the non-stationary (unboundedjnner functions and some concluding remarks
are given in Section 8.

Part of the results presented in this paper has been announced in [2].

2. Thestationary case

In this section, we recall how Blaschke factors and Brune sections appear in the in-
verse scattering problem. The section is given to provide motivation for the analysis
in the non-stationary setting.
2.1. J-inner rational functions

For simplicity we first focus on the scalar case and recall the following one-dimen-
sional version of a general structure theorem. The general case is given in Theorem

2.2.

Theorem 2.1. Leta, k € C and letk be a strictly positive number. Le#/ be the
one-dimensional Hilbert space spanned by the function

Fo = () /- (2.1)
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endowed with the normiF||., = +/k. Then the reproducing kernel o is of the
form

J—0@)JOw)*

2.2
p— (2.2)

for some J-inner rational functio® if and only if
k(1—lal®) =1— [k|% (2.3)

The function® is defined uniquely up to a multiplicative J-unitary constant on the
right.

It follows from (2.3) thatk can be chosen arbitrarily & is on the unit circle and
it has to be equal t¢l — |k|%)/(1 — |a|?) otherwise.
The function® can be chosen to be normalized such that

mm=@ %

at any pre-assigned poipt# a on T. Then

(1 0 T 1 &k
wn_@ J+Q—MWWWWQ*1) @

wherex is a solution of (2.3).
Note that formula (2.4) follows from

1
J —0(()JO(w)* (k*> S F()F(w)*
1—zw* T k(1 =za®) (1 — w*a) K
with w = pand@(u) = I.

Let us briefly discuss Eq. (2.3) and formula (2.4)alf T, « is uniquely defined
andis equal tol — |k|2)/(1 — |a|?). Whena € D, we also havé € D (sincex > 0)
and@ is a Blaschke factor (also called the Potapov factor of the first kind) and, after
multiplication by an appropriat&unitary constant on the right, it can also be written
in the more familar form

1 1 k* i 0
@a(z)z—(k 1) 1-2 .
V1= k2 0o 1

On the other hand, whane T, Eq. (2.3) has a solution if and onlykfe T. Then
any « > 0 is a solution (in fact, anx € C but these are not relevant for our
exposition), and the correspondir@® is a Brune section (also called Potapov
factor of the third kind; the factors of the second kind correspond to the case, where
lal > 1).

A general characterization of rationkinner functions has been given in [5]. In
the statement and throughout the pahestands for the identity x n matrix.

(2.5)
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Theorem 2.2. Let(C, A) € C2"*" x C"*" be an observable paif 3 kerCA/ =
{0}, and letP be a strictly positive matrix. Lef (z) = C(I, — zA)~* and let.# be
the vector space spanned by the columns of F with the inner product

[F(z)c, F(z)d]hﬁ =d*Pc.

Then.# is a reproducing kernel Hilbert space and its reproducing kernel is of the
form

J —0()JOw)* J (1m 0)

1— zw* ’ 0o -I,
for a J-inner rational functior® if and only if P is a solution of the Stein equation
P — A*PA = C*JC. (2.6)

In the latter case® may be chosen to be normalizedity at a pre-assigned point
uw#FaonT:

O@) = Iam — (L= ') C Iy — 2A) P M1, — pA)~*C*J 2.7)
and is defined uniquely up to a right J-unitary factor.

This result is the finite-dimensional version of a theorem of de Branges. We
present an analogue of this theorem in the non-stationary setting in the sequel; see
Theorem 6.1.

We have the formulas:

J —0(2)JOw)*

C(l, — zA) P11, —wA)*C* = (2.8)
1— zw*
and
O@)=1—CP X1, — pA)~1c*J
+z2C(W L, — AU, — zA) P, — nA)TFC* . (2.9)
Furthermore, the matrix
A P11, — pA)~*C*J
(C(,u*[n —A) I-CcP YU, —ua)tc*y (2.10)

PO -unitar
0o J Y

So, the reproducing kernel Hilbert space with reproducing kernel of the form (2.2) is
really determined by the first block column of the matrix (2.10).

2.2. Points of local losslessness

We recall the following theorem:
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Theorem 2.3. Leta, k € D and let® be the corresponding Blaschke factor. The
formula s = Tg (o) describes the set of all Schur functions s such #a) = k
wheno runs through the family of all Schur functions.

For the non-stationary analogue of this result, see Theorem 3.2.

Theorem 2.3 shows that it is possible to “extract” a Blaschke factor at any interior
point (at least in the scalar case). A main difference with Brune sections is that it is
not possible to extract a Brune section at any boundary point. One obvious reason for
that is that the given Schur function need not have a non-tangential limit at a given
point onT, but the whole story is more subtle, as we now recall. Let us start with a
Schur functiors, fix a (la| = 1) and apply Theorem 2.3 to the pojt € D and to
k = s(pa) with 0 < p < 1. The Blaschke section is equal to

1 0 . 1-2) 1 —s(,oa))
(0 1) %ﬁg”z (1 = zpa®)(1 — pa) (S(,Oa)* _1 . (2.11)

Proposition 2.4. The pointwise limitim,_,1 ©@(p, z) exists for allz € D and is not
identically equal to the identity if and only if the following two conditions hold
1. The limitlim ,_,1 s(pa) exists and is unitaryWe will denote the limit by(a).)

2. The limitlim,_.1 (1 — |s(pa)|?) /(1 — p?) exists and is strictly positive.

Definition 2.5. Let s be a Schur function. A point € T for which the conditions
of the previous proposition hold is callegaint of local losslessnegsr s.

The main problem we address in this paper is, as already mentioned, the study of
the analogues of Brune sections in the non-stationary case.

2.3. The interpolation problem associated to a Brune section
There is no straightforward analogue of Theorem 2.3 for Brune section.

Theorem 2.6. Letu, a, k € T, let p > 0and let®(z) be a Brune section defined in
(2.4) and normalized tds at the pointu # a. Then the formula = Ty (o) describes
the set of all Schur functions s such that

. .1 2
lim s(pa) =k and lim M
p—1 p—1 1-— p2

< p. (2.12)
Proof. It was shown in [17] thasis a Schur function and satisfies conditions (2.12)
if and only if the following inequality

PR

1-ks(z)*  1—|s(2)|?
1-az* 1-1zP?

>0
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holds at every point € D. Using the Schur complement one can conclude that the
last inequality is equivalent to
o 11— s(2)k*|?

—Is@> = 1~z )7*220.
|1 —za*|<p

Representing the latter inequality in the form

) A—1z1® (1) 4 o 1
1, —s(2)J (1s(2)*) — (4, —S(Z))m (k) (1, k%) (—S(Z)*) >0

and taking (2.5) (witht = w) into account, we obtain

(1 —5(2))0(2) T O(2)* (_S%Z)*> > 0. (2.13)

Thus,sis a Schur function and satisfies conditions (2.12) if and only if (2.13) holds
at every pointz € D. Since® is J-inner, the latter is equivalent (for the proof see
e.g., [11]) to a representatian= Ty (o) of sfor some Schur function. O

Note that Theorem 2.6 was proven in [17] for matrix valued Schur functions and
a point of local losslessness of higher order. For further tangential and multipoint
generalizations see [15,16]. The proof of Theorem 2.7 is in much the same as the
proof of Theorem 2.6. In what follows the set of alix ¢ Schur functions is denoted
by P>,

Theorem 2.7. Letu, a € T, letP € C**" be a strictly positive matrixdet
Cl crn * * *
C= C € | paxn be suchthat C*JC = CjC1— C5C2 =0 (2.14)

and let®(z) be a Brune section defined {@.7) and normalized td> at the point
i # a. Then the formulad = Te (o) (o € ¥P*?) describes the set of all Schur func-
tionsS € .9P*4 such that
- ~ I,—S N *
= lim CIS(pa) = €3 and B := lim crlp =3O
p—1 p—1 1-— p2
(2.15)

Let S € #P*9 be a given Schur function and lete T and C; € CP*". We
shall say that® of the form (2.7) (for some choice of® and C») is a (C1, a)-
solution of the lossless inverse scattering proble# Ty (o) for some choice of
o€ PPxa,

Theorem 2.8. LetS € #7*9, leta € T and letC1 € CP*" withrankC1 = p < n.
Then the functior® of the form(2.7) is a(Cy, a)- -solution of the Iossless inverse
scattering problem if and only if the limits andP in (2. 15) exist and the parameters
C»o andP in the definition of® meet the condition§, = C* andP < P.
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3. Somepreliminaries
3.1. The non-stationary stationary setting

For the setting described here, we refer to [4,9]. We denotetby {47} a
sequence of separable Hilbert spaces indexed by the integers, Qf(dfipy the set
of bounded linear operators from the Spaié,eof square summable sequences with
jth component intj into itself. We shall often drop the dependence tirand write
Z. The spacde is taken with the standard inner product. L&t~ be the bilateral
backward shift operator

(Zif)l = ﬁ+17 i=... 5 _la 07 15 RN

where f = (..., f-1, fo, f1,...) € £3.. The operatorZ i is unitary on¢?., i.e.,
Zy Zj» = Zj,,~ZU,V =1, and

[.,/1'”0 if ] = 07
0y, ifj#0,

whererg denotes the injection map

ﬂékZii,JTo = {

fo=u,
fi=0, i40.

We define the space of upper triangular operators by

no:ueﬂoafeﬁf,», where{

w() =4 ex(?)

742 AZ e =0 fori > j}
and the space of lower triangular operators by
z(e%) = {A e (%) ‘ﬂf?Zfir»AZj,’»'n,w =0 fori <j } _

The space of diagonal operatc%zﬁ,) consists by definition of the operators which
are both upper and lower triangular. We denote these spac#s ByandZ. Simi-
larly, we writeZ instead ofZ ,- andl instead off ;.

Letting AY) = Z*/ AZJ for A € 2 andj € Z, note that AV)),, = A,_;,—; and
that the mapsA — A) take the space¥’, Z, % into themselves. In [4] it was
shown that for every e %, there exists a unique sequence of operafpfse 7
(j = 0) such that

n—1
F-Y ZIFez'u.
j=0
In fact, (Fj;)i; = F;—;,; and we can formally represeit € % as the sum of its
diagonals

o0
F =Y ZFu.
n=0
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We now define the left W-transform

o0 oo
FrWy =) WMEF, =Y (WZY' 2" Fu
n=0 n=0
with
Wi =7 and WU = wwlhH® for(j > 0)
forany W € 2 for which
Ly = lim ”W[n] ”l/n <1,
ntoo

where the last limit is the spectral rading(WZ*) of WZ*. This transform was
introduced in [3].
We recall thatF'”* (W) is the unique diagonal operatDrsuch that

(Z-W) Y F-D)eu.
The following theorem is proved in [8, Theorem 7.3, p. 212]. Before stating the
theorem we recall that in [8, p. 160] the following class was introduced.

Definition 3.1. The operator matri®© = (@j) with @j € % belongs to the class/
if @22 is invertible in% and if ® is J-unitary, where

I 0
i~ %)
Theorem 3.2. LetVp € 2 and such thaty, < 1. Moreover leta, 8 € 2 be such
that the sum

oo
A=Y v aa* — VY (3.1)
0
converges in the operator norm to a strictly positive and invertible diagonal operator

A. Then there exist diagonal operatagg and g2 and an operator® = (0)jj—1,2
defined by

Ou=qz2+a*Z(I — Vi Z) 1 (A 3 WVgy, 3.2
O =a*(I - ZV)) AU + prA71p) Y2, (3.3)
O =p*Z(I — Vi Z) LA AWy, (3.4)
Oz =+ B*(I — ZVH) A7) - (I + pra~1p) =2 (3.5)

such that® € .« and the linear fractional transformation
S = (0110 + 012) (0210 + @2~ * (3.6)
describes the set of all contractiec % such that(aS)" (Vp) = B.
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The operator block matri® defined by (3.12)—(3.15) is the analogue of the
Blaschke factors (Potapov factor of the first kind). The operatosatisfies the
equation

A= VodVV§ = aa* — BB*. (3.7)
We note that we can write
©@=D+CZ(I —ZA) !B, (3.8)
where
(& 5)
C D
is given by
(A2 Vék/rl/z a1 (A2 VS‘Ail,B(I 1 prALg) 12
a* A2 q2 AR + pr ATy 12 (3.9)
g*A~12 0 (I + B*A~1p)12

with (‘1;) a vector of two block diagonals, whose columns form an orthonormal basis
comp(fementary, for each diagonal index, to the space spanned by the columns
of the block diagonal entries in
A1/2 (l)V*A—l/Z
4 9 (3.10)
a*A™Y
at the same diagonal index. _
We also note that the operator block matrix (3.9 isnitary, where

I 0 O
J=|o 1 o0]. (3.11)
0 0 -1
It is tempting to putVy € 2 with £y, = 1 in these formulas and call the result a
Brune section with being a solution of (3.7). Unfortunately, the operator ZVj;
is then non-invertible (note that it has a dense range). We will deal with this problem
in the next section using the Zadeh extension of an operator.
In the special case, where each (diagonal) entry is square and non-singular,
the formulas can be written in closed form:

O11=(—a VoA +a*(1 — Z2V§)12Z)
% (AD + ADVE @a*)"voa®) 2, (3.12)
O =p*Z(I — ZoV*) "L+ (AD) 21 4 Vi (@a®) " 1vp) (3.13)

Orz=a*(I — ZV) A - (I + B A1) Y2 (3.14)
O =1+ B*U — ZVHAIB) - (1 + B A~ 1p)~ Y2 (3.15)

-1/2
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In that case the diagonal operatgtisandg, are defined by

1= (AYHD(AD 4 A(l)V;(W*)—lvo/l(l))—l/z’

q2 = —a_lvo/l(l) (A(l) +AD Vék(aa*)_lvo/l(l))

(3.16)

-7z, (3.17)

The Redheffer transform @ e %22 with an invertible block entry»,, is defined
by

5 _ (211 212> _ (011 — 012(022) 1021 —@12(@22)_1> (3.18)
= = -1 1 . .
221 222 (022 7021 (022)

We note that € #2*? and is unitary if@ € .«/.
Proposition 3.3. Let ® be the block operator matrix with block entries given by
(3.12—(3.15), let wa™ be non-singular and let

V= ViA+ 5. (3.19)

Thenly < 1, and the Redheffer transfrom 6fis given by

Su=q+a*(A+pp) Az - vZ)THATY2Dgy, (3.20)
1= —a* (A + Bt — AZVE) B, (3.21)
Ian=I+p ARz - vZ) LAY Dy, (3.22)
o=+ B APV (I — B*(A+ Bp* — AZVE)'B). (3.23)

Proof. We first prove thaty < 1. Because of state equivalence, it is enough to
verify that

A dgf. (Al/Z)(l)Vék(A _’_‘3/3*)71/11/2 <1
This is done as follows:

[ — A4 =1 — AY2V§ (A + ") Vg AD VoA + pB*) "1 AY2
= AY2(A+ BB (A + BBHATHA + ) — VoA D V)
x(A+ ppH) A
= AY2(A + BB LA+ 2B8* + BB ATIB* — (A + BB* — aat))
x(A+ ppH) A
= A2 (A + BBH) Haa + BU + BFATIB)BY) (A + BB A2,

from which we conclude that has the operator norm strictly less than 1, sinaé
and hence

(@a* + B(I + B*A)BY)
is assumed invertible.



400 D. Alpay et al. / Linear Algebra and its Applications 343-344 (2002) 389-418

The fact that” is unitary follows then from the fact th& is J-unitary. O

We note that we can write

X=Ds+CsZ(I — AsZ) 1By, (3.24)
where
AZ BZ
Cs Ds
is given by
AY2DVE U+ ppH1AY? g1 —(AYHD VAU + A7)t
o (A + pp*)~1A? q2 —a* AR + pF A7) :
I+ IB*A—llB)—l/ZIB*A—l/Z 0 (I +,3*A_1ﬂ)_1/2

(3.25)

whereg1 and g2 are defined as above by (3.16) and (3.17), and is unitary. From
these follows a more general expression for the entriestbfin given in the propo-
sition.

3.2. The Zadeh extension

The main point to be exploited in the sequel is thamakes sense even when
¢y =1, provided the operator
A= AYHDyEA+ ppry~tal/? (3.26)

is such that, < 1. To define a corresponding operator matixone cannot use
anymore formulas (3.9), and one uses a device firstintroduced for bounded operators.

Definition 3.4. Le; S € % and letSy, be the diagonal operators such that for all
neN,(S—>082Z/S;) e z" 1. The Zadeh extension &is defined by

o
S(t) =Y t"Z"Spu). (3.27)
0

Lemma3.5. LetS € % andr € D. ThenS(¢) € % and
SHNW) = S W) (3.28)
foreveryW € Z with ¢y < 1.

Dym and Freydin made extensive use of this extension; see [12,13]. They prove
in particular the following theorem.
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Theorem 3.6. ForU,V € %,
UV)@) =U@nV@) and [UDOI < IUI, teD.

The following proposition will be used in the proof of Theorem 5.2 on the extrac-
tion of non-stationary Brune sections at points of local losslessness.

Proposition 3.7. Leto, be a sequence of upper triangular contractions converging
weakly too for r — 1. Theno is also upper triangular and
lim o, (1) = o (t)
r—1
for everyr € (0, 1), where the limit is meant in the weak sense.
Proof. Let (0,)k and(o)kj be the matrix representationsq)f ando, respectively.
Then the matrix representations @f(¢) and o (¢) are t"—f(o,)kj and rk—J (@)kj
respectively. We have
lim (0, (t)e;, ex) = t*=7 lim (o, e}, ex)
r—1 r—1 ’
=i (oej, &)
= (o (t)ej, ex).
Since|lo, ()| < 1 and|o(?)] < 1, the proposition follows. [

We note the following: given a (not necessarily uniformly bounded) sequence of
diagonal operator® = (D,)3> we can sometimes define

D(t) =) 1"Z"D, (3.29)
0

for r € [0, 1). In generalD(z) is not the Zadeh extension &f(1), which need not
exist as an operator . Take for instanc®,, = I orD, =n - I.
We will also define the Zadeh extension for eleménts #2*? by

U@ C W) j-12.

Itis not difficult to see that Theorem 3.6 still holds in this case. In particular we have
the following proposition.

Proposition 3.8. The operator®@ defined by(3.12)—(3.15) satisfies
OnJOM* <J, OW)*JOr)<J, teD. (3.30)
Proof. It suffices to notice that the Redheffer transform of the analytic functien

O(t) is contractive in the open unit disk, and the fact that the Redheffer transform is
contractive if and only if the original function &contractive. [



402 D. Alpay et al. / Linear Algebra and its Applications 343-344 (2002) 389-418

4. Brunesectionsand more
4.1. Brune sections in state space form

To extend the previous analysis to possibly unbour@gdge need only to assume
that the Stein equation (3.7) has a strictly positive and invertible solution. Then, the
operator

(Al/Z)(l) V5A71/2
a*A71/? (4.1)
ﬁ*/l_l/z
is J-isometric.
Define
a= A" DV5A+ pp*)~Y2,
c=a*(A+ BB Y2
Because of the Stein equation we have that

a*a+c*c=1.
Theorem 4.1. Letg1 andg, be diagonal operators such that

a q
¢ q2

form a unitary operator(notice that none of them is necessarily squaféhen the
matrix defined by

(Al/Z)(l)VO*A—l/Z q1 (Al/Z)(l) V(;kA—llB(I + '3*/1—1’3)—1/2

a*A71/2 g0 Ol*/lilﬁ(l + ,3*/171,3)71/2 (42)
,3*/1_1/2 0 I+ ;6*/1_1,8)1/2
is J-unitary.
Let
V =AY DyEa + gy tal2, (4.3)

Thenfy < 1as soon as the diagonal operator
(@a* + B(I + B* A7 B)B")

is boundedly invertible.

Proof. The proof that!y < 1 is as in the proof of Proposition 3.3. Nofy < 1
follows from the hypothesis made gac* + B(I + g*A718)4*).
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The second block-column is orthogonal to the first by definition, but it is also
orthogonal to the last because the two top blocks of the last column are actually
‘proportional’ to the first block column since they are given by

(Al/Z)(l) VékA—l/Z
a*/l—l/z

The corresponding realization for the Redheffer transform is the same as before,
and is given by utilizing the transformation described above
(AYAOVEA+ gt AYZ g1 —(AVHDVEATIBI + AT
a*(A+pEHTIAYE g —atATIBU 4 prATIE) T
I+ /3*/1_1,8)_1/2/3*/1_1/2 0 I+ 13*/1—113)—1/2
(4.5)
The corrersponding is inner (that is, a unitary and causal operator). Unfortunately,
Z(Al/z)(nvg/l—l/z =Ly, =1
and so we cannot in general defi@evia the operator matrix (4.2) as in (3.8)J
The forms obtained fo® are now more complex than in the previous section, for

they involve the two operatogg andg», for which there are no closed expressions
in general. We get:

Definition 4.2. The map — ©(r) for t such thatr| - £y, < 1 defined by

O11(1) = g2 + "1 Z(I — V51 2) L (A7 Y2) Dy, (4.6)
O12(t) = a* (I —1ZV{H AU + pra~1p) 12, 4.7)
O21(t) = B*Z(I — tV§Z) (A3 Dy, (4.8)
Ona(t) = (I + p*(I —tZVE) T ATIB) - (1 + pra~tp)~1/2 (4.9)

will be called a rationalJ-inner function (in the non-stationary setting). If
Ly, = 1, then the function — O(r) will be called ‘of Brune type’ or ‘exhibiting
Brune behaviour'.

Thus, the new ingredient is the parameteWe note that — ©(¢) is in fact
analytic in the circlgz| - £y, < 1. Whena is invertible the above formulas take the
simpler form

011 =(—a VoA +a* (I —1ZV§)12)
< (AD + ADVE @a) A D)2, (4.10)
Oz =a*(I —1ZVH) AU + pra71p) 12, (4.11)
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O =B*U — 12V 1z - (472D (1 4+ Vi (@a®) Vo) "Y2, (4.12)
O =+ *U —tZVH A7) - (1 + pra71p) Y2 (4.13)

We also note that in general—> @(¢) is a “mixed section”, which contains a Brune
and a Blaschke part; see Section 7 for more on this issue.

The terminology fational J-innef will be explained in the following section and
in Theorem 6.1, which is the non-stationary analogue of Theorem 2.2.

It seems difficult to extend the theory to the case of indefinite metrics (i.e. then
would be merely invertible self-adjoint, but not necessarily positive) because of the
square roots appearing in the formulas. This problem does not appear in the station-
ary case, where one can consider in a unified way the positive and non-positive cases.

4.2. The cas& e TZ

We study the special case where the entries are scalars and where, in the data de-
fining the Brune sectionya* = g* = I andVy € TZ. ThenA is a scalar diagonal
operator.

Proposition 4.3. Under the present assumptigrisrmulas(3.12)—(3.15) become

a(O()11— O)12(0(t)22) ~O(t)21 Vo
((O) 0(1)12(0(1)22) 1 O(1) ))A( )

A2+ 4
=@ - 1)Voﬁ+—t/l’ (4.14)
. p
(a@(f)lz@(f)zzl)A(VO) = m, (4.15)
“_I\A _ 1+4 B 1 & tA \" (1)
(O(1)35)" (Vo) =/ I (1 1+AX0:(1+A) B ,3). (4.16)

Proof. We prove only the previous formula. The proofs of the others are similar and
will be omitted. Under the present assumptions we have

1 1 © A \" .
(60122)" (Vor= 1+z("1+—Aﬂ* (Z<1I+A) z'vg" );e)

0

1 1 . / tA \"
= /1 il ) zn (n)*v["]*
+A( 1+A<20:<1+/1> Vo | P

1 1 e t4 Y
=1+ (1~ "V p g )
+A( 1+/120:(1+/1> o PP
(4.17)

Hence the result sinc\éo["]vé”]* =7. O
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In particular we have the interpolation property:

im | (@0wow) vo — 8|, =0 (4.18)

On the other hand it does not hold in general that
|im12(r)§2(vo) =
—

since, in general

o0 n
A ,B(n)*ﬂ
1 . . 4.19
#3(54) T (419
For instance, take

p=diag(....-1[1] -11...).

Theng@)g = I while @*+D g = —1, and (4.19) is easily shown to hold.

4.3. The stationary case

In this section, we check that formulg8.12)—(3.15) indeed reduce to the
Redheffer transform of a Brune factor in the stationary case: settiad,, 8, vo € T
and A being a strictly positive number and replacidgy the complex variable
we have

2@ = A(—vo+ (A + 11—z, (4.20)
B
2 = 4.21
12(2) A+ 1o (4.21)
1 z8*A4
2 =\/1+-—F— 4.22
21(2) = 4/ +/1/1+1—z/1v0 (4.22)
1 A1 - zvp)
2 =1+ 4.23
22(2) =/ +A/1+1—zv0/1 (4.23)
These are the entries of a Blaschke factor based on the point
voA
A+1

and the Redheffer transform of this factor is a Brune factor based on theygoint
Indeed, we know from general principles that the (inverse) Redheffer transform of
X(z) is aJ-inner rational function with a unique singularity. Sinc&»(z)) ! has a

pole atvg, this transform is a Brune section at the paigt We leave the details to

the reader.
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5. Points of local losslessness

In this section, we follow the strategy described in Section 2.2 in the non-station-
ary case. We defined Brune sections as functions ©(¢) to avoid dealing with
unbounded operators. In this spirit, we will find a representatiof ef.¥ of the
form

S(t) = (01110 (1) + O(1)12) (O(1) 210 (1) + O(1)22) Y,

whereo € &, t — O(¢) is a rationalJ-inner function, andS() ando (r) are the
Zadeh extensions &ando.

Definition 5.1. Let S € & anda € 2 with aa™ non-singular. A diagonal operator
Vo with £y, = 1 will be called a point of local losslessness in the directiafhthe
following conditions hold:

1. BothA andA~1 are strictly positive diagonal operators, where

A= sup A, (5.1)
0<r<1
with
o0
4, = (Zrz" VI (@ — (@8)" (Vo) @) (r Vo)*) ™ vA”'*) . (5.2)
0

2. The limitg = lim,_,1(aS)" (r Vp) exists in the operator topology.

We note that1 is a solution of
A= VodVV§ = aa* — pB*. (5.3)
Whenq is scalar (i.e. for each diagonal enttyk of the formey I with o scalar)
and whenVj is unitary, 4, can be rewritten as

aa*

T 32 (@) (r Vo) (@8)" (r Voy*) ™.
0

If moreover(aS)" (rVp) is a scalar diagonal operator, we get back to the stationary

formula

I — (@9 Vo) ((@S)"(rVo))
1—72

*

Ay =

Theorem 5.2. LetS € . and letVy a point of local losslessness for S in the direc-
tion «. Then there exists a Brune section> (), 0 <t < 1, and ao € ¥ such
that

S(t) = To (0 (1)). (5.4)

Converselyif S(z) is given by(5.4) in which ®(z) is a Brune sectionthen S has a
PLL in the directionx.
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In (5.4), we note thaf(z) ando () are the Zadeh extensions $a&ndo, respec-
tively, but @(¢) is not the Zadeh extension of a bounded operator.

Proof of Theorem 5.2. Theorem 3.2 appliedt6 = rVpandg = B, = (@S)"(rV)
implies that for every there exists &, € ¥ such thatS = Ty, (6,), where®, is
obtained from formulas (3.2) with the present choic&/otr, 8. By Theorem (3.6),
S@t) = To, (o (2)), Wwhere

(O)11(1) = gor + &*1 Z(I — V3 Z) 24,5 Vgy,, (5.5)
(@)12(1) = o«* (1 —trZV) P A B (1 + Br A B Y2, (5.6)
(O)21(1) = B1Z(TI —trZVE) 1A 5 Dgy,, (5.7)
(@)22(t) = (I + BT —ZVE) A B - (1 + AT )2, (5.8)

and in whichgy, andga, have to be chosen in such a way that the block diagonal
operator

A HOrVg U + BB g
o (A, + B B7) 2 q2r
is unitary (it suffices for this that the respective diagonals of indéxform unitary
matrices). For the remaining argument it will be important thatandg,, be chosen
in such a way that their (diagonally pointwise) limits exist and are equg{ &nd
g2, whereg; andgz are the values af,1 andg,» for r = 1, which certainly exist due
to the hypothesis th&has a PLL at the diagonal poil in the directionx. In fact,
g1 andgz are such that the block diagonal operator

(AYHDVEUA+ Y2 a
a* (A + pp)L? q2

(5.9)

(5.10)

is unitary. Leta,, = (A7) DrVEA, + B,87)7Y2, andbyy = a*(A, + B, 1) Y2
anda, c the corresponding values for= 1. Clearly lim-_1 a,x = ax and lim._. 1 ¢«
= ¢ for eachk, the question is whether the same can be asserted forsh8ince
(¢} is isometric,

Crk
a
P =1 — (cﬂi) (af ) (5.11)

will be a projection operator, and there will be (for eagltontinuity, lim._. 1 Pk =
Pi. A Gram—Schmidt decomposition Bfx produces

qirk *
P = . 5.12
k ( q2rk) (91 q2rk) (5.12)

The continuity ofgirk, i = 1, 2, is an easy property of the Gram—Schmidt orthogo-
nalization procedure, well documented in the numerical literature. Entrywise con-
vergence of a sequence of diagonal operators is equivalent to weak convergence (by
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the dominated convergence theorem). Now@ett) be the chain scattering matrix
corresponding to the realization

1/2 —-1/2 1/2 _ _ _
A/ Bvea; Zogn —UHOVEAT( + AR
Mo,= O‘*Ar_l/z 4r2 AT+ BEATB)TY?
Y 0 (I + A B)Y?

(5.13)

in which we have used the continuogs andg,,. This realization corresponds to
the formulas given above and which have been obtained from applying Theorem 3.2.
From the above, we can now ascertain weak convergence:

|iml(@r)11(t) =g+ a*Z( —1VEZ) LA Y2HD, (5.14)
lim (©)12() = &* (I =t ZVG) AT + B AT B T2, (5.15)
im (©)21(0) = p*1Z2(1 — Vg Z)HATH Dy, (5.16)

|iml(@r)22(z) =4I —1zZVH A7) - (1 + a7 Y2 (5.17)

We set@(r);; = lim,_,1(0,)jj(t) where the limit has to be interpreted in the weak
operator sense.

Now, may be via a subsequence, the weak limit w-limo, exists (and is equal
to o, say). By Proposition 3.4, (t) converges weakly te (¢) for everyr € (0, 1).
We have

o (1) = (S)(Op)21(1) — (@r)ll(t))_l( — 8(1)(Or)22(1) + (O,)12(1)),
and so

(S1)(O)21(1) — (O)11(1)) 0, (1) = (= S)(Or)22(1) + (O,)12(1)).
Hence, taking weak limits on both sides, we obtain

(S(1)(O) ()21 — O()11)0 (1) = (— S()O(t)22+ O(1)12).

Since forr € (0, 1) we have tha® (¢) is J-contractive (see Proposition 3.8), the map
(O(1)210 (1) + O(1)22) is invertible in% and hence

S(t) = To (0 (1)).

The converse of the theorem is obtained from a direct evaluatisiizpin function
of @(¢) ando (r). From the bilinear expression we have

—=S(t) = (O11()5 (1) + O12(1)) (O21(1)o (1) + @22(1))_1~ (5.18)

Subtractin@lz(t)@z_j(t) and remarking tha®11(¢) — @12@2_210)@210) = 211(1),
we find for—S(z)

—5(t) = O12(1) 053 (1) + Z11(1)a (1) (O21()o (1) + @22(0)71- (5.19)
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In these expressions, all inverses are causal and bounded. From the realization for
¥ and using the normalized quantitieg = (12O Vir~Y2, o = a*47Y/2 and
B = p*A~Y2, we find
_ —1\—1

In=qa+ayd+B.8)" I = ZViU + BB ) Zqa. (5.20)

Using Vo, Vg, + anay = 1 + Buf;; anda, g2 + Vg1 = O we obtain
11

anZ11=(Z = Vo) (I = Vg, + BB 2) 1, (5.21)
or, denormalizing,

aXn = (Z - Vo)(I — (AYHDV5 (4 + 89Z) "qu. (5.22)
Letm = 0 (@210 + Ox) tandZis = —@126521. Then, from (5.19) we have

oS = aZ1p— (Z = Vo) (I — (A2 DVE U + B892Z) “qum, (5.23)

where the Zadeh extension ‘(t)’ can be dropped because all the operators involved
are bounded. It follows from the concatenation rule for the W-transform

STHNV) = (SNV)IT)YN(V)
that
Iiml(ozS)A(rVo) = Iiml(ale)A(rVo) —A=-n[-1=8, (5.24)

where[. - -] stands for a uniformily bounded diagonal. Let néu8)” (r Vo) = B
Then by the Nevanlinna—Pick theorem we have that there existsach that

S(t) = To, (o (1),

where@, is given by (5.5) (from the existence 6ffollows the existence aofl, as a
bounded invertible operator). Proceeding as before on the{ Ugjta, B}, we find

-1
aEp=aZ = Vo)1 = WD DrVEU, +DZ] au.  (5:25)

Hence ((2;)11)"(rVo) = 0 and it follows, again by the concatenation rule for
W-transforms
(@) (rVo) = (To, (0:))"(rVo) = (@Z12)" (r Vo).
That (aS)*(r Vo) = (@X12)"(rVp) satisfies the definition for a PLL now follows
easily by direct evaluation using the realizationfp. O
In the stationary case, Eq. (5.2) reduces to

1—|S(rVo)l?
b=—"737

and one gets back the results of [7].
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6. Reproducing kernel spaces associated to J-inner rational sections

We prove the analogue of Theorem 2.2 in the present setting. To simplify the
exposition, we assume also here thas invertible.

Theorem 6.1. Letew, 8, Vo € Z with « invertible andly, = 1 and let

F(t) = (Z) (I—1ZVH ™t teD. (6.1)
We assume that fab € 2,
FO)D=0 = D=0

(controllability hypothesisand that Eq.(5.3) has a strictly positive and invertible
solutionA. Then for W € 2 with ey < 1,

FOAYH(FO W) = (J — 01T (@) W)*) (I —2zw*)~?
if A is a solution of the E((3.7).

Corollary 6.2. The linear span# of functions of the fornF () D with D € 95,
endowed with the inner product

[F(t)D, F(t)D] , = D*AD
is a reproducing kernel space with reproducing kernel
(J — 00 J (O (W)U —2ZW*) L,
This theorem is proved foVp with £y, < 1 in [8, Theorem 4.1, pp. 177-179].
Therer = 1 since there is no need of the Zadeh extension. The analysis of [8] remains
valid when one considers Zadeh extensions.

For the following lemma in the setting of diagonal operators with< 1, see
[8, Theorem 4.1, p.177].

Lemma6.3. Let
A B
CcC D
be given by3.9) and let

G(t)=C(U —1tZA)™, (6.2)

where t is in a small enough neighbourhood of the origin. THen W € & with
EW < 1,

G@) (G W) = (J —ewmJ ((em"W))") (I - tZZW*)*l. (6.3)
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Proof. With the present notation, we ha@(r) = D + G(¢)tZB. We taket such
that(I —tZA) is invertible in%. Then

O©1)" (W)= D + (G)}Z) (W)B
=D+ ((G@)"(W)z)" (W)B
=D+ (26w W) )8
=D +1W(GH) " (W)YB.
Thus,
0T (0" (W)* = (D +GOZB) J (D* + Bt (G (W) w*)
= DJD* + G()ZtBID* + DIB*t (G (1) (W)) P* w*
+ GOZBIB (G (1) (W)) D" w
=J — CC* — 1G(1)ZAC* — tCA* (G (W)) P w*

+GWPZ (G (W)P* — G)iPzAK (G1)
—J-1-2-3+4-5

(1)*

where we follow the strategy and notation of [8]. But it is easily seen that

1+2=G()C*,
3+5=1G(HA* (G)") (W) P*w*

and so

OMJOM) (W)Y =J — G(t)C* —tG)A*G(1) (W) D*w*
+12G (1) ZG (1) (W) D*w*,
To conclude we use the fact that
G (W) =C+tWG@t) W)V A.
This is proved for = 1 in [8, p. 179] and the proof is the same fog (0,1). O

The proof of Theorem 6.1 follows exactly, up to the Zadeh extension, the argu-
ments of [8, pp. 177-178].
7. Separation of Brune and Blaschke parts

We start out this section by giving some simple but rather general unicity and
factorization theorems. Next, we specialize the theory to the so called ‘IVI-case’, that
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is the case where the system is linear time-invariant bothda and +oo regions
(possibly different).

Lemma7.1l. If M1 and M, are two minimalJ-unitary realizations of the same
Brune section®(¢) and if the corresponding Redheffer transform is ugesl the
A operator ha¥ 4 < 1), then M1 and M» are unitarily equivalent in the sense that
there exists a sequence of unitary state transformat@pns. - Q,:jl such that

Ok Ot
1 M7 1 = M>.
1 1

Proof. Corresponding to a Brune secti@(¢) there is a unique inner scattering
operatorX with realization given by the Redheffer transformation on realizations.
Let these transformed realizations ¢, i = {1, 2}, be given bymn;, and let

Alil plil
mi = (C[i] D[”)'
By the realization theory for bounded operators (see [9]) the block rows of
(I — Al1z)~1Bli form, for eachk, an orthonormal basis for the finite dimensional

observability or controllability space af. Hence these bases are unitarily equivalent,
i.e. there exists a sequence of unitary matriges} such that, withQ = diag Q]

(1 —ARZ)™B1d = o(1 — AWIZ) g1,
Hence
AP = 0aAMort and B = kB
The propert)C,EZ] = C,El] Qk‘jl follows readily from minimality. That the same state

transformation now applies to the realizations of dhanitary representation is also
immediate from the Redheffer transform(_

Given a specifid-unitary realization
A B
v=(e 5)
of a causal-inner operator possibly exhibiting ‘Brune behaviour’ (i.e. such that for
its transition operatof, £4 = 1) and with the Zadeh extension
O@) =D+ CtZ(I — AtZ)"'B

one may wonder how to decompo@kt) in a product of sections with lower state
space dimensions, keeping ténner property. In particular, we may attempt to
factor@(¢) as

(1) = 01(1)O2(1)O3(1)
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in which ®1(¢t) and @3(¢) are of ‘Brune type’ while®,(¢) is of Blaschke type. We

shall see in the following section that at least in one important special case, such a
factorization is indeed possible. In the present section, we show how the realization
can be factored in elementary sections. We follow and extend the treatment given in
[9]. For numerical reasons and without impairing generality, we always use sections
in which D21 = 0, and hence we assume the realization

Do . (7.1)

Furthermore, we taki®l to beJ-unitary, in the sense that
M*I1M=J,, MJIM*=J,

for appropriate/;’s of the form

where the dimensions of the individual blocks may be different. So in gerigeal
J2. The local operators

Ar | Bix  Ba
My = | Crr | Dirk D12k
Cox 0 D22y

at stagek are such that the submatrices

A, det (Ax | Bik
k Cik | D11k

and Dy, are square.
Finally, we assume that the transition operatatecomposes as

A1 A1
(4 ) 2
in which the entries are (of course) diagonal operators, or, dually, a (diagonal block)
lower form, according to some recipe (for motivation see the following proposi-
tion). In [9, Chapter 14], it is shown that there always exist state transformations

Ok~ Q1<_+11 that put eactd; in upper echelon form. With the transition operator of
a @ in such a formM now takes the form

A1 A1p | Bix B
0 A | By B
7.3
Ci1n Ci2 | D11 D12 (7:3)
C1 Cx2| 0O Dy
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andM is J-unitary as well, for theJ;, i = 1, 2, defined earlier in this section. Let now
A1 B/ll Biz
1 0 0
My = Cip. O D/11 D/12
C»x O 0 D/22

be aJ-unitary completion of the first block-column of (7.1)—which is always pos-
sible to manufacture, e.g., through Jacobi and hyperbolic rotations, see in particular
[9, Chapter 9], Then we can also find doubly accented quantities sudi tlaators

asM = M1 M> with

1 0 0

Mo — 0 Ay | Ba1r B
2=|o cp, [y D,
0 ng 0 D’Z’2

alsoJ-unitary for the appropriat& This amounts to a sketch for the proposition.

Proposition 7.2. Suppose

is a realization of a causal J-inner operatér(z). Then M can be factored a8(z) =
O1(1)O2(1), where®1(t) and @»(¢) have realizations

(A1 Bj (A2 B2
Ml_<C1 p) M=\c; py)

D = D3 D} is a non-singular factorization of D
B; = By(Dj)~*
Cy = (Dp~'Ca

and the realizationg/; and M are J-unitary.
The proof of the proposition is classical [9].
7.1. The IVI case

An important special case is when the system is time-invariant both in the region
wherek — —oo andk — oo (for possibly different systems), while being time-
varying in between, the so-called 1VI case, for ‘invariant-varying-invariant’. For this
case, we can give a strong factorization theorem, which also applies to LTI systems
as a special instance.
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Proposition 7.3. Suppose that M is a J-unitary realization for a causainner
O(r) which is such that

U AlZ,oo *
My = 0 A2 oo | *

in whichU, is a square matrix with all its eigenvalues on the unit circle. TB&Rn)
exhibits Brune behaviour. Likewise@¥(¢) is such that

U_so 0 *
M_=]A21-0 A22-00 | *
k k ‘ k

in which U_, has all its eigenvalues of magnitude orleen @(¢) exhibits Brune
behaviour.

Proof. The proof is similar for the two cases, we suffice with case 1. We have to
show that{4 = 1 for the A belonging to the realization fo®(¢). Looking at the
transitional product for an arbitrary

A{n} — AA(—l) . A(—'H-l)
and specializing t& so large that it lays in the-oco-LTI zone of ©(¢), we find

ur  x
= b= (%)
and hence|A™ || > 1. Thereforets = lim,_ o JJA™ |7 = 1, since alsas < 1
by the causality assumption]

In the case that the transition operatby, in M., has eigenvalues on the unit
circle, we are entitled to say thét(r) exhibits Brune behaviour atoo. Similarly,
if A_ has eigenvalues on the unit circl®(r) will exhibit Brune behaviour at
—o0. The following theorem shows, among other things, that a locally finite chain
scattering operator of 1VI type, which does not exhibit Brune behaviour neither at
400 nor —oo, must necessarily be of Blaschke type. We are now ready for the main
factorization theorem of this section.

Theorem 7.4. Let®(¢) be a causal J-inner operator of the IVI-type. Thery) can
be factored as
O() = 01(t) - O2(1) - O3(1),

where @1(¢) is of Brune type attoo, @»(¢) is of Blaschke-typeand @s(¢) is of
Brune type at-co.

Proof. Starting out with a/-unitary realization foi®(r), we may find an orthonor-
mal transformationQ - - - gol such that the transition matrix in the transformed
realization has the form
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(Uoo AlZoo)

0 A2200

in which U has all its eigenvalues of magnitude one, and thosésef , are all
strictly less than one in magnitude. Furthermore, we can determine state transfor-
mationsQy - - - Qk*jl for all k such that the block upper triangular Jordan form is
maintained for alk. This is achieved, in a stable numerical manner, by recursively
determiningQy, assuming knowledge @1, so thatQy+1 - Ak Q,jjl is upper tri-

angular (upper echelon form). Using the factorization theorem given above we can
now produce

O(t) = O1(1) 04 (1)

in which @1(t) hasU, as transition matrix at+oo, and the transition matrix of
O’ (1) is A2z . Proceeding dually o® (1) but now with respect te-oo, we find

1) = O2()O3(1),

where @3(¢) exhibits Brune behaviour, but now atoo. @2(¢) has realizations at
—oo and+oo whose transition matrices have eigenvalues strictly less that one. It
follows now immediately from the sprectral radius formula that this is the realization
of a bounded/-inner operato®sz. Hence it is of Blaschke type.[]

Looking at the details of the factorization, the remark that a large collection of
factorizations should be possible seems obvious. The theorem just given provides
only one of the possibilities, a more refined study might indicate in which cases left
and right Brune sections could be combined.

8. Conclusions

The present paper completes the representation thealmofer operators, the
J-unitary operators that correspond to inner operators via a Redheffer transform.
These operators can be unbounded, corresponding to what is known classically as
Brune sectionslt turns out that numerically, theskinner sections can be realized
much in the same way as is the case with the classical Blaschke sections, yet they
represent unbounded operators. Essential in the computation is the existence of a
positive definite solution to the Lyapunov—Stein equation. This equation, as well as
the realizations can be recursively solved, which amounts in finite calculations when
the original system is finitely specified. The trick that allows for the representation
of the unbounded operators is the Zadeh extension, here generalized to the linear
time-varying context.

A major application of the present theory is in time-varyifig, control, i.e. con-
trol for least sensitivity. Following the methodology of Kimura [14] one is given a
‘chain operatorG (¢) depending on a gain parameteand one wishes to know nec-
essary and sufficient condition for factorization@f= @G into a general/-inner
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operator® and an outer operat@ro. While the extraction of a Brune section would

not impact on the outerness 6fy, it would greatly enhance the chances tliqt

would be boundedly invertible, since the resulti®@gould take care of the unbound-
edness. This would then result in a much more attractive structure for least-sensitivity
feedback, because actually the Redheffer transformatiof &f actually used in

the feedback structure, and it will be uniformily exponentially stable, as shown in
the paper. The theory would then lead to a much stronger factorization theorem for
least-sensitivity feedback purposes. This part of the theory lies outside the scope of
the present paper and remains to be done.
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