
Linear Algebra and its Applications 343–344 (2002) 389–418
www.elsevier.com/locate/laa

Brune sections in the non-stationary case

Daniel Alpaya,∗, Vladimir Bolotnikovb, Patrick Dewildec,1,
Aad Dijksmad

aDepartment of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653,
84105 Beer-Sheva, Israel

bDepartment of Mathematics, College of William and Mary, Williamsburg, VA, USA
cDepartment of Electrical Engineering, Delft University of Technology, P.O. Box 5031, 2600 GA Delft,

Netherlands
dDepartment of Mathematics, Groningen University, P.O. Box 800, 9700 AV Groningen, Netherlands

Received 13 September 2000; accepted 19 June 2001

Submitted by V. Olshevsky

Abstract

RationalJ-inner-valued functions which areJ-inner with respect to the unit circle (J being
a matrix which is both self-adjoint and unitary) play an important role in interpolation theory
and are extensively utilized in signal processing for filtering purposes and in control for min-
imal sensitivity (H∞ feedback). Any such function is a product of three kinds of elementary
factors, each of them having a unique singularity outside the unit disk, inside the unit disk
and on the unit circle, respectively. Counterparts of the first kind have already been studied
in the context of non-stationary systems, when analytic functions are replaced by upper tri-
angular operators. The purpose of the present work is to study the non-stationary analogues
of the factors of the third kind. One main difficulty is that one leaves the realm of bounded
upper triangular operators and considers unbounded operators. Yet, as is the case for a number
of special clases of non-stationary systems, all the systems under consideration are finitely
specified, and the computations are done recursively on a finite set of state space data. We
consider the particular case, where the operator given is of the IVI type (that is, it is time-
invariant both for small and large indices, and is time-varying in between). The theory results
in a rather general factorization theorem that generalizes the time-invariant case to finitely
specified, time-varying systems. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let us first recall that the classical inverse scattering problem consists in finding
all representations

s := T�(σ ) = (θ11σ + θ12)(θ21σ + θ22)
−1

of a given functions analytic and contractive in the open unit diskD (a Schur func-
tion), whereσ is still a Schur function and where

� =
(
θ11 θ12
θ21 θ22

)
is meromorphic inD andJ-contractive:�(z)J�(z)∗ � J for all z in D, where� is
analytic, with

J =
(

1 0
0 −1

)
.

The inequality means that the differenceJ − �(z)J�(z)∗ is a positive semidefinite
matrix. If it also holds that�(z)J�(z)∗ = J a.e. onT, it is called J-inner. The
inverse scattering problem is closely related to the theory of linear time-invariant
dissipative systems, and has numerous ramifications (see [1] for a survey). Two key-
stones in obtaining such� are the works of Schur in 1917 (the celebrated Schur
algorithm; see [18]) and of Brune in 1930s (see [6, p. 14]). The resulting elementary
(that is, of McMillan degree 1)�’s are of the form

�(z) =
(

1 0
0 1

)
− (1 − z)

ε · (1 − za∗)(1 − a)

(
1 −k

k∗ −1

)
. (1.1)

In the case of the sections introduced by Schur (and later more generally by Nevanl-
inna), we have

a ∈ D, k ∈ D, ε = 1 − |k|2
1 − |a|2 ,

while in the case of Brune sections,a andk are of modulus 1 (witha 
= 1) andε is
a strictly positive number. In the first case,� is also called a Blaschke factor (the
matrix analogue of(z − a)/(1 − za∗)) and its entries are bounded functions in the
open unit disk. This boundedness property does not hold whena is on or outside
the unit circle. In particular, Brune factors are not bounded in the open unit disk.

When one considers non-stationary systems, Schur functions are replaced by up-
per (or lower, depending on the convention) doubly infinite contractive matrices; see
e.g., [4]. The analogue of the Blaschke factor is known (see e.g., [4]), but up to now,
there was no known analogue of the Brune section. This is the problem we address
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in this paper. One of the main difficulties is that the definition of an upper triangular
unbounded operator is not so clear in the present setting. For instance, ifej is the
canonical basis of�2(Z) andZ is the bilateral shift on�2(Z): Zen = en+1, then one
has (in the weak topology and for allj)( ∞∑

0

Zn

)
(ej − ej−1) = −

−1∑
−∞

Zn(ej − ej−1),

where the operator on the left is unbounded and “upper triangular” while the operator
on the right is unbounded and “lower triangular”. These operators are of course the
analogues of the two Laurent expansions of 1/(1−z) centred at the origin. To remedy
that difficulty, we will use the Zadeh extension (for the definition, see Section 3).

The outline of the paper is as follows: the paper consists of eight sections includ-
ing this introduction. We review in Section 2, the notions of Blaschke and Brune
factors in the case of analytic functions. A common formula defines both factors,
although some of their properties are fundamentaly different. In Section 3, we review
the non-stationary setting and recall the notion of Blaschke factor. The formula we
use is taken from [8]. In contrast with the discrete case, this formula cannot be used
right away to define Brune sections and we first introduce the Zadeh extension. Brune
sections are studied in Section 4, and the non-stationary counterparts of points of
local losslessness are studied in Section 5. Section 6 is devoted to a reproducing
kernel approach to these problems. Section 7 deals with the question of factorization
of the non-stationary (unbounded)J-inner functions and some concluding remarks
are given in Section 8.

Part of the results presented in this paper has been announced in [2].

2. The stationary case

In this section, we recall how Blaschke factors and Brune sections appear in the in-
verse scattering problem. The section is given to provide motivation for the analysis
in the non-stationary setting.

2.1. J-inner rational functions

For simplicity we first focus on the scalar case and recall the following one-dimen-
sional version of a general structure theorem. The general case is given in Theorem
2.2.

Theorem 2.1. Let a, k ∈ C and letκ be a strictly positive number. LetM be the
one-dimensional Hilbert space spanned by the function

F(z) =
(

1
k∗
)/

(1 − za∗), (2.1)
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endowed with the norm‖F‖M = √
κ. Then the reproducing kernel ofM is of the

form

J − �(z)J�(w)∗

1 − zw∗ (2.2)

for some J-inner rational function� if and only if

κ(1 − |a|2) = 1 − |k|2. (2.3)

The function� is defined uniquely up to a multiplicative J-unitary constant on the
right.

It follows from (2.3) thatκ can be chosen arbitrarily ifa is on the unit circle and
it has to be equal to(1 − |k|2)/(1 − |a|2) otherwise.

The function� can be chosen to be normalized such that

�(µ) =
(

1 0
0 1

)
at any pre-assigned pointµ /= a on T. Then

�(z) =
(

1 0
0 1

)
+ µ − z

(1 − za∗)(µ − a)κ

(
1 k

k∗ 1

)
, (2.4)

whereκ is a solution of (2.3).
Note that formula (2.4) follows from

J − �(z)J�(w)∗

1 − zw∗ =

(
1
k∗
)
(1 k)

κ(1 − za∗)(1 − w∗a)
= F(z)F (w)∗

κ
(2.5)

with w = µ and�(µ) = I2.
Let us briefly discuss Eq. (2.3) and formula (2.4). Ifa 
∈ T, κ is uniquely defined

and is equal to(1 − |k|2)/(1 − |a|2). Whena ∈ D, we also havek ∈ D (sinceκ > 0)
and� is a Blaschke factor (also called the Potapov factor of the first kind) and, after
multiplication by an appropriateJ-unitary constant on the right, it can also be written
in the more familar form

�a(z) = 1√
1 − |k|2

(
1 k∗
k 1

)( z−a
1−za∗ 0

0 1

)
.

On the other hand, whena ∈ T, Eq. (2.3) has a solution if and only ifk ∈ T. Then
any κ > 0 is a solution (in fact, anyκ ∈ C but these are not relevant for our
exposition), and the corresponding� is a Brune section (also called Potapov
factor of the third kind; the factors of the second kind correspond to the case, where
|a| > 1).

A general characterization of rationalJ-inner functions has been given in [5]. In
the statement and throughout the paperIn stands for the identityn × n matrix.
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Theorem 2.2. Let (C,A) ∈ C2m×n × Cn×n be an observable pair:⋂∞
0 kerCAj =

{0}, and letP be a strictly positive matrix. LetF(z) = C(In − zA)−1 and letM be
the vector space spanned by the columns of F with the inner product[

F(z)c, F (z)d
]
M

= d∗Pc.

ThenM is a reproducing kernel Hilbert space and its reproducing kernel is of the
form

J − �(z)J�(w)∗

1 − zw∗ , J =
(
Im 0
0 −Im

)
for a J-inner rational function� if and only ifP is a solution of the Stein equation

P − A∗PA = C∗JC. (2.6)

In the latter case� may be chosen to be normalized toI2n at a pre-assigned point
µ /= a on T :

�(z) = I2m − (1 − µ∗z)C(In − zA)−1P−1(In − µA)−∗C∗J (2.7)

and is defined uniquely up to a right J-unitary factor.

This result is the finite-dimensional version of a theorem of de Branges. We
present an analogue of this theorem in the non-stationary setting in the sequel; see
Theorem 6.1.

We have the formulas:

C(In − zA)−1P−1(In − wA)−∗C∗ = J − �(z)J�(w)∗

1 − zw∗ (2.8)

and

�(z)=I − CP−1(In − µA)−1C∗J
+ zC(µ∗In − A)(In − zA)−1P−1(In − µA)−∗C∗J. (2.9)

Furthermore, the matrix(
A P−1(In − µA)−∗C∗J

C(µ∗In − A) I − CP−1(In − µA)−1C∗J

)
(2.10)

is (
P 0
0 J

)
-unitary.

So, the reproducing kernel Hilbert space with reproducing kernel of the form (2.2) is
really determined by the first block column of the matrix (2.10).

2.2. Points of local losslessness

We recall the following theorem:



394 D. Alpay et al. / Linear Algebra and its Applications 343–344 (2002) 389–418

Theorem 2.3. Let a, k ∈ D and let� be the corresponding Blaschke factor. The
formula s = T�(σ ) describes the set of all Schur functions s such thats(a) = k

whenσ runs through the family of all Schur functions.

For the non-stationary analogue of this result, see Theorem 3.2.
Theorem 2.3 shows that it is possible to “extract” a Blaschke factor at any interior

point (at least in the scalar case). A main difference with Brune sections is that it is
not possible to extract a Brune section at any boundary point. One obvious reason for
that is that the given Schur function need not have a non-tangential limit at a given
point onT, but the whole story is more subtle, as we now recall. Let us start with a
Schur functions, fix a (|a| = 1) and apply Theorem 2.3 to the pointρa ∈ D and to
k = s(ρa) with 0 � ρ < 1. The Blaschke section is equal to(

1 0
0 1

)
− (1 − z)

1−|s(ρa)|2
1−ρ2 · (1 − zρa∗)(1 − ρa)

(
1 −s(ρa)

s(ρa)∗ −1

)
. (2.11)

Proposition 2.4. The pointwise limitlimρ→1 �(ρ, z) exists for allz ∈ D and is not
identically equal to the identity if and only if the following two conditions hold:
1. The limit limρ→1 s(ρa) exists and is unitary.(We will denote the limit bys(a).)
2. The limit limρ→1 (1 − |s(ρa)|2)/(1 − ρ2) exists and is strictly positive.

Definition 2.5. Let s be a Schur function. A pointa ∈ T for which the conditions
of the previous proposition hold is called apoint of local losslessnessfor s.

The main problem we address in this paper is, as already mentioned, the study of
the analogues of Brune sections in the non-stationary case.

2.3. The interpolation problem associated to a Brune section

There is no straightforward analogue of Theorem 2.3 for Brune section.

Theorem 2.6. Letµ, a, k ∈ T, letp > 0 and let�(z) be a Brune section defined in
(2.4) and normalized toI2 at the pointµ /= a. Then the formulas = T�(σ ) describes
the set of all Schur functions s such that

lim
ρ→1

s(ρa) = k and lim
ρ→1

1 − |s(ρa)|2
1 − ρ2

� p. (2.12)

Proof. It was shown in [17] thats is a Schur function and satisfies conditions (2.12)
if and only if the following inequality p

1−s(z)k∗
1−za∗

1−ks(z)∗
1−az∗

1−|s(z)|2
1−|z|2

 � 0
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holds at every pointz ∈ D. Using the Schur complement one can conclude that the
last inequality is equivalent to

1 − |s(z)|2 − (1 − |z|2) |1 − s(z)k∗|2
|1 − za∗|2p � 0.

Representing the latter inequality in the form

(1,−s(z))J
(
1 s(z)∗

)− (1,−s(z))
(1 − |z|2)

|1 − za∗|2p
(

1
k

)
(1, k∗)

(
1

−s(z)∗
)

� 0

and taking (2.5) (withz = w) into account, we obtain

(1,−s(z))�(z)J�(z)∗
(

1
−s(z)∗

)
� 0. (2.13)

Thus,s is a Schur function and satisfies conditions (2.12) if and only if (2.13) holds
at every pointz ∈ D. Since� is J-inner, the latter is equivalent (for the proof see
e.g., [11]) to a representations = T�(σ ) of s for some Schur functionσ . �

Note that Theorem 2.6 was proven in [17] for matrix valued Schur functions and
a point of local losslessness of higher order. For further tangential and multipoint
generalizations see [15,16]. The proof of Theorem 2.7 is in much the same as the
proof of Theorem 2.6. In what follows the set of allp × q Schur functions is denoted
bySp×q .

Theorem 2.7. Letµ, a ∈ T, let P ∈ Cn×n be a strictly positive matrix, let

C =
(
C1
C2

)
∈
(

Cp×n

Cq×n

)
be such that C∗JC = C∗

1C1 − C∗
2C2 = 0 (2.14)

and let�(z) be a Brune section defined in(2.7) and normalized toI2 at the point
µ /= a. Then the formulaS = T�(σ )(σ ∈ Sp×q) describes the set of all Schur func-
tionsS ∈ Sp×q such that

C̃ := lim
ρ→1

C∗
1S(ρa) = C∗

2 and P̃ := lim
ρ→1

C∗
1
Ip − S(ρa)S(ρa)∗

1 − ρ2
C1 � P.

(2.15)

Let S ∈ Sp×q be a given Schur function and leta ∈ T andC1 ∈ Cp×n. We
shall say that� of the form (2.7) (for some choice ofP andC2) is a (C1, a)-
solution of the lossless inverse scattering problem ifS = T�(σ ) for some choice of
σ ∈ Sp×q .

Theorem 2.8. LetS ∈ Sp×q, let a ∈ T and letC1 ∈ Cp×n with rankC1 = p � n.
Then the function� of the form(2.7) is a (C1, a)-solution of the lossless inverse
scattering problem if and only if the limits̃C andP̃ in (2.15) exist and the parameters
C2 andP in the definition of� meet the conditionsC2 = C̃∗ andP � P̃.
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3. Some preliminaries

3.1. The non-stationary stationary setting

For the setting described here, we refer to [4,9]. We denote byN = {Ni} a
sequence of separable Hilbert spaces indexed by the integers, and byX(�2

N) the set
of bounded linear operators from the space�2

N of square summable sequences with
jth component inNj into itself. We shall often drop the dependence onN and write
X. The space�2

N is taken with the standard inner product. LetZN be the bilateral
backward shift operator

(ZNf )i = fi+1, i = . . . ,−1, 0, 1, . . . ,

wheref = (. . . , f−1, f0, f1, . . .) ∈ �2
N. The operatorZN is unitary on�2

N, i.e.,
ZNZ∗

N = Z∗
NZN = IN, and

π∗
0Z

j
Nπ0 =

{
IN0 if j = 0,
0Nj if j /= 0,

whereπ0 denotes the injection map

π0 : u ∈ N0 → f ∈ �2
N, where

{
f0 = u,

fi = 0, i /= 0.

We define the space of upper triangular operators by

U
(
�2
N

) =
{
A ∈ X

(
�2
N

) ∣∣∣π∗
NZi

NAZ
∗j
NπN = 0 for i > j

}
and the space of lower triangular operators by

L
(
�2
N

) =
{
A ∈ X

(
�2
N

) ∣∣∣π∗
NZi

NAZ
∗j
NπN = 0 for i < j

}
.

The space of diagonal operatorsD(�2
N) consists by definition of the operators which

are both upper and lower triangular. We denote these spaces byU, L andD. Simi-
larly, we writeZ instead ofZN andI instead ofIN.

LettingA(j) = Z∗jAZj for A ∈ X andj ∈ Z, note that(A(j))st = As−j,t−j and
that the mapsA �→ A(j) take the spacesL, D, U into themselves. In [4] it was
shown that for everyF ∈ U, there exists a unique sequence of operatorsF[j ] ∈ D
(j � 0) such that

F −
n−1∑
j=0

ZjF[j ] ∈ ZnU.

In fact, (F[j ])ii = Fi−j,i and we can formally representF ∈ U as the sum of its
diagonals

F =
∞∑
n=0

ZF[n].
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We now define the left W-transform

F∧(W) =
∞∑
n=0

W [n]F[n] =
∞∑
n=0

(WZ∗)nZnF[n]

with

W [0] = I and W [j+1] = W(W [j ])(1) for (j � 0)

for anyW ∈ X for which

�W = lim
n↑∞

∥∥W [n]∥∥1/n
< 1,

where the last limit is the spectral radiusrsp(WZ∗) of WZ∗. This transform was
introduced in [3].

We recall thatF∧(W) is the unique diagonal operatorD such that

(Z − W)−1(F − D) ∈ U.

The following theorem is proved in [8, Theorem 7.3, p. 212]. Before stating the
theorem we recall that in [8, p. 160] the following class was introduced.

Definition 3.1. The operator matrix� = (�ij ) with �ij ∈ U belongs to the classA
if �22 is invertible inU and if� is J-unitary, where

J =
(
I 0
0 −I

)
.

Theorem 3.2. LetV0 ∈ D and such that�V0 < 1. Moreover, let α, β ∈ D be such
that the sum

� =
∞∑
0

V
[n]
0 (αα∗ − ββ∗)(n)V [n]∗

0 (3.1)

converges in the operator norm to a strictly positive and invertible diagonal operator
�. Then there exist diagonal operatorsq1 and q2 and an operator� = (�)ij=1,2
defined by

�11 = q2 + α∗Z(I − V ∗
0 Z)

−1(�−1/2)(1)q1, (3.2)

�12 = α∗(I − ZV ∗
0 )

−1�−1β(I + β∗�−1β)−1/2, (3.3)

�21 = β∗Z(I − V ∗
0 Z)

−1(�−1/2)(1)q1, (3.4)

�22 = (I + β∗(I − ZV ∗
0 )

−1�−1β) · (I + β∗�−1β)−1/2 (3.5)

such that� ∈ A and the linear fractional transformation

S = (�11σ + �12)(�21σ + �22)
−1 (3.6)

describes the set of all contractiveS ∈ U such that(αS)∧(V0) = β.
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The operator block matrix� defined by (3.12)–(3.15) is the analogue of the
Blaschke factors (Potapov factor of the first kind). The operator� satisfies the
equation

� − V0�
(1)V ∗

0 = αα∗ − ββ∗. (3.7)

We note that we can write

� = D + CZ(I − ZA)−1B, (3.8)

where(
A B

C D

)
is given by(�

1/2)(1)V ∗
0 �−1/2 q1 (�1/2)(1)V ∗

0 �−1β(I + β∗�−1β)−1/2

α∗�−1/2 q2 α∗�−1β(I + β∗�−1β)−1/2

β∗�−1/2 0 (I + β∗�−1β)1/2

 (3.9)

with
(
q1
q2

)
a vector of two block diagonals, whose columns form an orthonormal basis

complementary, for each diagonal indexk, k, to the space spanned by the columns
of the block diagonal entries in(

(�1/2)(1)V ∗
0 �−1/2

α∗�−1/2

)
(3.10)

at the same diagonal index.
We also note that the operator block matrix (3.9) isJ̃ -unitary, where

J̃ =
I 0 0

0 I 0
0 0 −I

 . (3.11)

It is tempting to putV0 ∈ D with �V0 = 1 in these formulas and call the result a
Brune section with� being a solution of (3.7). Unfortunately, the operatorI − ZV ∗

0
is then non-invertible (note that it has a dense range). We will deal with this problem
in the next section using the Zadeh extension of an operator.

In the special case, where each (diagonal) entry inα is square and non-singular,
the formulas can be written in closed form:

�11 = (− α−1V0�
(1) + α∗(I − ZV ∗

0 )
−1Z

)
×(�(1) + �(1)V ∗

0 (αα
∗)−1V0�

(1))−1/2
, (3.12)

�21 = β∗Z(I − Z0V
∗)−1 · (�(1))−1/2(

I + V ∗
0 (αα

∗)−1V0
)−1/2

, (3.13)

�12 = α∗(I − ZV ∗)−1�−1β · (I + β∗�−1β)−1/2, (3.14)

�22 = (I + β∗(I − ZV ∗)−1�−1β) · (I + β∗�−1β)−1/2. (3.15)
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In that case the diagonal operatorsq1 andq2 are defined by

q1 = (�1/2)(1)
(
�(1) + �(1)V ∗

0 (αα
∗)−1V0�

(1))−1/2
, (3.16)

q2 = −α−1V0�
(1)(�(1) + �(1)V ∗

0 (αα
∗)−1V0�

(1))−1/2
. (3.17)

The Redheffer transform of� ∈ U2×2 with an invertible block entry�22 is defined
by

� =
(

�11 �12
�21 �22

)
=
(

�11 − �12(�22)
−1�21 −�12(�22)

−1

(�22)
−1�21 (�22)

−1

)
. (3.18)

We note that� ∈ U2×2 and is unitary if� ∈ A.

Proposition 3.3. Let � be the block operator matrix with block entries given by
(3.12)–(3.15), let αα∗ be non-singular and let

V = V ∗
0 (� + ββ∗)−1�. (3.19)

Then�V < 1, and the Redheffer transfrom of� is given by

�11 = q2 + α∗(� + ββ∗)−1�Z(I − VZ)−1(�−1/2)(1)q1, (3.20)

�12 = −α∗(� + ββ∗ − �ZV ∗
0 )

−1β, (3.21)

�21 = (I + β∗�−1β)−1/2β∗Z(I − VZ)−1(�−1/2)(1)q1, (3.22)

�22 = (I + β∗�−1β)1/2 · (I − β∗(� + ββ∗ − �ZV ∗
0 )

−1β). (3.23)

Proof. We first prove that�V < 1. Because of state equivalence, it is enough to
verify that

�
def.= (�1/2)(1)V ∗

0 (� + ββ∗)−1�1/2 < 1.

This is done as follows:

I − �∗� = I − �1/2V ∗
0 (� + ββ∗)−1V ∗

0 �(1)V0(� + ββ∗)−1�1/2

= �1/2(� + ββ∗)−1((� + ββ∗)�−1(� + ββ∗) − V0�
(1)V ∗

0

)
×(� + ββ∗)−1�1/2

= �1/2(� + ββ∗)−1(� + 2ββ∗ + ββ∗�−1ββ∗− (� + ββ∗− αα∗)
)

×(� + ββ∗)−1�1/2

= �1/2(� + ββ∗)−1(αα∗ + β(I + β∗�−1β)β∗)(� + ββ∗)−1�1/2,

from which we conclude that� has the operator norm strictly less than 1, sinceαα∗
and hence

(αα∗ + β(I + β∗�−1β)β∗)

is assumed invertible.
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The fact that� is unitary follows then from the fact that� is J-unitary. �

We note that we can write

� = D� + C�Z(I − A�Z)
−1B�, (3.24)

where(
A� B�

C� D�

)
is given by(�

1/2)(1)V ∗
0 (� + ββ∗)−1�1/2 q1 −(�1/2)(1)V ∗

0 �−1β(I + β∗�−1β)−1

α∗(� + ββ∗)−1�1/2 q2 −α∗�−1β(I + β∗�−1β)−1

(I + β∗�−1β)−1/2β∗�−1/2 0 (I + β∗�−1β)−1/2

,
(3.25)

whereq1 and q2 are defined as above by (3.16) and (3.17), and is unitary. From
these follows a more general expression for the entries of� than given in the propo-
sition.

3.2. The Zadeh extension

The main point to be exploited in the sequel is that� makes sense even when
�V = 1, provided the operator

� = (�1/2)(1)V ∗
0 (� + ββ∗)−1�1/2 (3.26)

is such that�� < 1. To define a corresponding operator matrix�, one cannot use
anymore formulas (3.9), and one uses a device first introduced for bounded operators.

Definition 3.4. Let S ∈ U and letS[n] be the diagonal operators such that for all
n ∈ N, (S −∑n

0 Z
jS[j ]) ∈ Zn+1U. The Zadeh extension ofS is defined by

S(t) =
∞∑
0

tnZnS[n]. (3.27)

Lemma 3.5. LetS ∈ U andt ∈ D. ThenS(t) ∈ U and

S(t)∧(W) = S∧(tW) (3.28)

for everyW ∈ D with �W < 1.

Dym and Freydin made extensive use of this extension; see [12,13]. They prove
in particular the following theorem.
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Theorem 3.6. For U,V ∈ U,

(UV)(t) = U(t)V (t) and ‖U(t)‖ � ‖U‖, t ∈ D.

The following proposition will be used in the proof of Theorem 5.2 on the extrac-
tion of non-stationary Brune sections at points of local losslessness.

Proposition 3.7. Letσr be a sequence of upper triangular contractions converging
weakly toσ for r → 1. Thenσ is also upper triangular and

lim
r→1

σr(t) = σ(t)

for everyt ∈ (0, 1), where the limit is meant in the weak sense.

Proof. Let (σr)kj and(σ )kj be the matrix representations ofσr andσ , respectively.
Then the matrix representations ofσr(t) and σ(t) are tk−j (σr)kj and tk−j (σ )kj ,
respectively. We have

lim
r→1

〈σr(t)ej , ek〉 = tk−j lim
r→1

〈σrej , ek〉
= tk−j 〈σej , ek〉
= 〈σ(t)ej , ek〉.

Since‖σr(t)‖ � 1 and‖σ(t)‖ � 1, the proposition follows. �

We note the following: given a (not necessarily uniformly bounded) sequence of
diagonal operatorsD = (Dn)

∞
0 we can sometimes define

D(t) =
∞∑
0

tnZnDn (3.29)

for t ∈ [0, 1). In generalD(t) is not the Zadeh extension ofD(1), which need not
exist as an operator inU. Take for instanceDn = I orDn = n · I .

We will also define the Zadeh extension for elementsU ∈ U2×2 by

U(t)
def.= (Uij (t))i,j=1,2.

It is not difficult to see that Theorem 3.6 still holds in this case. In particular we have
the following proposition.

Proposition 3.8. The operator� defined by(3.12)–(3.15) satisfies

�(t)J�(t)∗ � J, �(t)∗J�(t) � J, t ∈ D. (3.30)

Proof. It suffices to notice that the Redheffer transform of the analytic functiont �→
�(t) is contractive in the open unit disk, and the fact that the Redheffer transform is
contractive if and only if the original function isJ-contractive. �
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4. Brune sections and more

4.1. Brune sections in state space form

To extend the previous analysis to possibly unbounded�, we need only to assume
that the Stein equation (3.7) has a strictly positive and invertible solution. Then, the
operator(�

1/2)(1)V ∗
0 �−1/2

α∗�−1/2

β∗�−1/2

 (4.1)

is J̃ -isometric.
Define

a = (�1/2)(1)V ∗
0 (� + ββ∗)−1/2,

c = α∗(� + ββ∗)−1/2.

Because of the Stein equation we have that

a∗a + c∗c = 1.

Theorem 4.1. Letq1 andq2 be diagonal operators such that(
a q1
c q2

)
form a unitary operator(notice that none of them is necessarily square). Then the
matrix defined by(�

1/2)(1)V ∗
0 �−1/2 q1 (�1/2)(1)V ∗

0 �−1β(I + β∗�−1β)−1/2

α∗�−1/2 q2 α∗�−1β(I + β∗�−1β)−1/2

β∗�−1/2 0 (I + β∗�−1β)1/2

 (4.2)

is J̃ -unitary.
Let

V = (�1/2)(1)V ∗
0 (� + ββ∗)−1�1/2. (4.3)

Then�V < 1 as soon as the diagonal operator

(αα∗ + β(I + β∗�−1β)β∗)

is boundedly invertible.

Proof. The proof that�V < 1 is as in the proof of Proposition 3.3. Now�V < 1
follows from the hypothesis made on(αα∗ + β(I + β∗�−1β)β∗).
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The second block-column is orthogonal to the first by definition, but it is also
orthogonal to the last because the two top blocks of the last column are actually
‘proportional’ to the first block column since they are given by(

(�1/2)(1)V ∗
0 �−1/2

α∗�−1/2

)
�−1/2β(I + β∗�−1β)−1/2. (4.4)

The corresponding realization for the Redheffer transform is the same as before,
and is given by utilizing the transformation described above(�

1/2)(1)V ∗
0 (� + ββ∗)−1�1/2 q1 −(�1/2)(1)V ∗

0 �−1β(I + β∗�−1β)−1

α∗(� + ββ∗)−1�1/2 q2 −α∗�−1β(I + β∗�−1β)−1

(I + β∗�−1β)−1/2β∗�−1/2 0 (I + β∗�−1β)−1/2

.
(4.5)

The corrersponding� is inner (that is, a unitary and causal operator). Unfortunately,

�(�1/2)(1)V ∗
0 �−1/2 = �V0 = 1

and so we cannot in general define� via the operator matrix (4.2) as in (3.8).�

The forms obtained for� are now more complex than in the previous section, for
they involve the two operatorsq1 andq2, for which there are no closed expressions
in general. We get:

Definition 4.2. The mapt �→ �(t) for t such that|t | · �V0 < 1 defined by

�11(t)= q2 + α∗tZ(I − V ∗
0 tZ)

−1(�−1/2)(1)q1, (4.6)

�12(t)= α∗(I − tZV ∗
0 )

−1�−1β(I + β∗�−1β)−1/2, (4.7)

�21(t)= β∗tZ(I − tV ∗
0 Z)

−1(�−1/2)(1)q1, (4.8)

�22(t)= (I + β∗(I − tZV ∗
0 )

−1�−1β) · (I + β∗�−1β)−1/2 (4.9)

will be called a rationalJ-inner function (in the non-stationary setting). If
�V0 = 1, then the functiont �→ �(t) will be called ‘of Brune type’ or ‘exhibiting
Brune behaviour’.

Thus, the new ingredient is the parametert. We note thatt �→ �(t) is in fact
analytic in the circle|t | · �V0 < 1. Whenα is invertible the above formulas take the
simpler form

�(t)11 = (− α−1V0�
(1) + α∗(I − tZV ∗

0 )
−1tZ

)
×(�(1) + �(1)V ∗

0 (αα
∗)−1V0�

(1))−1/2
, (4.10)

�(t)12 = α∗(I − tZV ∗
0 )

−1�−1β(I + β∗�−1β)−1/2, (4.11)
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�(t)21 = β∗(I − tZV ∗
0 )

−1tZ · (�−1/2)(1) · (I + V ∗
0 (αα

∗)−1V0)
−1/2, (4.12)

�(t)22 = (I + β∗(I − tZV ∗
0 )

−1�−1β) · (I + β∗�−1β)−1/2. (4.13)

We also note that in generalt �→ �(t) is a “mixed section”, which contains a Brune
and a Blaschke part; see Section 7 for more on this issue.

The terminology “rational J-inner” will be explained in the following section and
in Theorem 6.1, which is the non-stationary analogue of Theorem 2.2.

It seems difficult to extend the theory to the case of indefinite metrics (i.e. when�
would be merely invertible self-adjoint, but not necessarily positive) because of the
square roots appearing in the formulas. This problem does not appear in the station-
ary case, where one can consider in a unified way the positive and non-positive cases.

4.2. The caseV0 ∈ TZ

We study the special case where the entries are scalars and where, in the data de-
fining the Brune section,αα∗ = ββ∗ = I andV0 ∈ TZ. Then� is a scalar diagonal
operator.

Proposition 4.3. Under the present assumptions, formulas(3.12)–(3.15) become(
α(�(t)11 − �(t)12(�(t)22)

−1�(t)21)
)∧
(V0)

= (t − 1)V0
�2 + �

� + 1 − t�
, (4.14)(

α�(t)12�(t)−1
22

)∧
(V0) = β

1 + (1 − t)�
, (4.15)

(
�(t)−1

22

)∧
(V0) =

√
1 + �

�

(
1 − 1

1 + �

∞∑
0

(
t�

1 + �

)n
β(n)∗β

)
. (4.16)

Proof. We prove only the previous formula. The proofs of the others are similar and
will be omitted. Under the present assumptions we have

(
�(t)−1

22

)∧
(V0)=

√
1 + 1

�

(
I − 1

1 + �
β∗
( ∞∑

0

(
t�

1 + �

)n
ZnV

[n]∗
0

)
β

)

=
√

1 + 1

�

(
I − 1

1 + �

( ∞∑
0

(
t�

1 + �

)n
Znβ(n)∗V [n]∗

0

)
β

)

=
√

1 + 1

�

(
I − 1

1 + �

∞∑
0

(
t�

1 + �

)n
ZnV

[n]∗
0 β(n)∗β

)
.

(4.17)

Hence the result sinceV [n]
0 V

[n]∗
0 = I . �
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In particular we have the interpolation property:

lim
t→1

∥∥∥(α�(t)12�(t)−1
22

)∧
(V0) − β

∥∥∥
�2(Z)

= 0. (4.18)

On the other hand it does not hold in general that

lim
t→1

�(t)∧22(V0) = 0

since, in general

I 
=
∞∑
0

(
�

1 + �

)n
· β

(n)∗β
1 + �

. (4.19)

For instance, take

β = diag
(
. . . ,−1, 1 ,−1, 1, . . .

)
.

Thenβ(2n)β = I while β(2n+1)β = −I , and (4.19) is easily shown to hold.

4.3. The stationary case

In this section, we check that formulas(3.12)–(3.15) indeed reduce to the
Redheffer transform of a Brune factor in the stationary case: settingα = 1,β, v0 ∈ T

and� being a strictly positive number and replacingZ by the complex variablez
we have

�11(z)= �
(− v0 + (� + 1 − zv∗

0�)−1), (4.20)

�12(z)= β

� + 1 − zv∗
0�

, (4.21)

�21(z)=
√

1 + 1

�

zβ∗�
� + 1 − z�v∗

0
, (4.22)

�22(z)=
√

1 + 1

�

�(1 − zv∗
0)

� + 1 − zv∗
0�

. (4.23)

These are the entries of a Blaschke factor based on the point

v0�

� + 1

and the Redheffer transform of this factor is a Brune factor based on the pointv∗
0.

Indeed, we know from general principles that the (inverse) Redheffer transform of
�(z) is aJ-inner rational function with a unique singularity. Since(�22(z))

−1 has a
pole atv0, this transform is a Brune section at the pointv0. We leave the details to
the reader.
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5. Points of local losslessness

In this section, we follow the strategy described in Section 2.2 in the non-station-
ary case. We defined Brune sections as functionst �→ �(t) to avoid dealing with
unbounded operators. In this spirit, we will find a representation ofS ∈ S of the
form

S(t) = (
�(t)11σ(t) + �(t)12

)(
�(t)21σ(t) + �(t)22

)−1
,

whereσ ∈ S, t �→ �(t) is a rationalJ-inner function, andS(t) andσ(t) are the
Zadeh extensions ofSandσ .

Definition 5.1. Let S ∈ S andα ∈ D with αα∗ non-singular. A diagonal operator
V0 with �V0 = 1 will be called a point of local losslessness in the directionα if the
following conditions hold:
1. Both� and�−1 are strictly positive diagonal operators, where

� = sup
0�r<1

�r (5.1)

with

�r =
( ∞∑

0

r2nV
[n]
0

(
αα∗ − (αS)∧(rV0)(αS)

∧(rV0)
∗)(n) V [n]∗

0

)
. (5.2)

2. The limitβ = limr→1(αS)
∧(rV0) exists in the operator topology.

We note that� is a solution of

� − V0�
(1)V ∗

0 = αα∗ − ββ∗. (5.3)

Whenα is scalar (i.e. for each diagonal entryk, k of the formαkI with αk scalar)
and whenV0 is unitary,�r can be rewritten as

αα∗

1 − r2
−

∞∑
0

r2n((αS)∧(rV0)(αS)
∧(rV0)

∗)(n).
If moreover(αS)∧(rV0) is a scalar diagonal operator, we get back to the stationary
formula

�r = I − (
(αS)∧(rV0)

) (
(αS)∧(rV0)

)∗
1 − r2

.

Theorem 5.2. LetS ∈ S and letV0 a point of local losslessness for S in the direc-
tion α. Then there exists a Brune sectiont �→ �(t), 0 � t < 1, and aσ ∈ S such
that

S(t) = T�(t)(σ (t)). (5.4)

Conversely, if S(t) is given by(5.4) in which�(t) is a Brune section, then S has a
PLL in the directionα.
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In (5.4), we note thatS(t) andσ(t) are the Zadeh extensions ofSandσ , respec-
tively, but�(t) is not the Zadeh extension of a bounded operator.

Proof of Theorem 5.2. Theorem 3.2 applied toV = rV0 andβ = βr = (αS)∧(rV )
implies that for everyr there exists aσr ∈ S such thatS = T�r (σr ), where�r is
obtained from formulas (3.2) with the present choice ofV, α, β. By Theorem (3.6),
S(t) = T�r (t)(σr (t)), where

(�r )11(t)= q2r + α∗tZ(I − trV ∗
0 Z)

−1(�−1/2
r )(1)q1r , (5.5)

(�r )12(t)= α∗(I − trZV ∗
0 )

−1�−1
r βr (I + β∗

r �
−1
r βr )

−1/2, (5.6)

(�r )21(t)= β∗
r tZ(I − trZV ∗

0 )
−1(�−1/2

r )(1)q1r , (5.7)

(�r )22(t)= (I + β∗
r (I − trZV ∗

0 )
−1�−1

r βr ) · (I + β∗
r �

−1
r βr )

−1/2, (5.8)

and in whichq1r andq2r have to be chosen in such a way that the block diagonal
operator(

(�1/2
r )(1)rV ∗

0 (�r + βrβ
∗
r )

−1/2 q1r

α∗(�r + βrβ
∗
r )

−1/2 q2r

)
(5.9)

is unitary (it suffices for this that the respective diagonals of indexk, k form unitary
matrices). For the remaining argument it will be important thatq1r andq2r be chosen
in such a way that their (diagonally pointwise) limits exist and are equal toq1 and
q2, whereq1 andq2 are the values ofqr1 andqr2 for r = 1, which certainly exist due
to the hypothesis thatShas a PLL at the diagonal pointV0 in the directionα. In fact,
q1 andq2 are such that the block diagonal operator(

(�1/2)(1)V ∗
0 (� + ββ∗)−1/2 q1

α∗(� + ββ∗)−1/2 q2

)
(5.10)

is unitary. Letark = (�1/2
r )(1)rV ∗

0 (�r + βrβ
∗
r )

−1/2, andbrk = α∗(�r + βrβ
∗
r )

−1/2

anda, c the corresponding values forr = 1. Clearly limr→1 ark = ak and limr→1 crk
= c for eachk, the question is whether the same can be asserted for theq ’s. Since(
ark
crk

)
is isometric,

Prk = I −
(
ark

crk

) (
a∗

rk c∗
rk

)
(5.11)

will be a projection operator, and there will be (for eachk) continuity, limr→1 Prk =
Pk. A Gram–Schmidt decomposition ofPrk produces

Prk =
(
q1rk
q2rk

) (
q∗

1rk q2rk
)
. (5.12)

The continuity ofqirk , i = 1, 2, is an easy property of the Gram–Schmidt orthogo-
nalization procedure, well documented in the numerical literature. Entrywise con-
vergence of a sequence of diagonal operators is equivalent to weak convergence (by
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the dominated convergence theorem). Now, let�r (t) be the chain scattering matrix
corresponding to the realization

M�r=
(�

1/2
r )(1)V ∗

r �−1/2
r qr1 −(�1/2

r )(1)V ∗
r �−1

r βr (I + β∗
r �

−1βr)
−1

α∗�−1/2
r qr2 α∗�−1

r βr (I + β∗
r �

−1
r βr )

−1/2

β∗
r �

−1/2
r 0 (I + β∗

r �
−1
r βr )

1/2

,
(5.13)

in which we have used the continuousq1r andq2r . This realization corresponds to
the formulas given above and which have been obtained from applying Theorem 3.2.

From the above, we can now ascertain weak convergence:

lim
r→1

(�r )11(t)= q2 + α∗Z(I − tV ∗
0 Z)

−1(�−1/2)(1), (5.14)

lim
r→1

(�r )12(t)= α∗(I − tZV ∗
0 )

−1�−1β(I + β∗�−1β)−1/2, (5.15)

lim
r→1

(�r )21(t)= β∗tZ(I − tV ∗
0 Z)

−1(�−1/2)(1)q1, (5.16)

lim
r→1

(�r )22(t)= (I + β∗(I − tZV ∗
0 )

−1�−1β) · (I + β∗�−1β)−1/2. (5.17)

We set�(t)ij = limr→1(�r )ij (t) where the limit has to be interpreted in the weak
operator sense.

Now, may be via a subsequence, the weak limit w-limr→1 σr exists (and is equal
to σ , say). By Proposition 3.7,σr(t) converges weakly toσ(t) for everyt ∈ (0, 1).
We have

σr(t) = (
S(t)(�r )21(t) − (�r )11(t)

)−1(− S(t)(�r )22(t) + (�r )12(t)
)
,

and so(
S(t)(�r )21(t) − (�r )11(t)

)
σr(t) = (− S(t)(�r )22(t) + (�r )12(t)

)
.

Hence, taking weak limits on both sides, we obtain(
S(t)(�)(t)21 − �(t)11

)
σ(t) = (− S(t)�(t)22 + �(t)12

)
.

Since fort ∈ (0, 1) we have that�(t) is J-contractive (see Proposition 3.8), the map
(�(t)21σ(t) + �(t)22) is invertible inU and hence

S(t) = T�(t)(σ (t)).

The converse of the theorem is obtained from a direct evaluation ofS(t) in function
of �(t) andσ(t). From the bilinear expression we have

−S(t) = (
�11(t)σ (t) + �12(t)

)(
�21(t)σ (t) + �22(t)

)−1
. (5.18)

Subtracting�12(t)�
−1
22 (t) and remarking that�11(t) − �12�

−1
22 (t)�21(t) = �11(t),

we find for−S(t)

−S(t) = �12(t)�
−1
22 (t) + �11(t)σ (t)

(
�21(t)σ (t) + �22(t)

)−1
. (5.19)
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In these expressions, all inverses are causal and bounded. From the realization for
� and using the normalized quantitiesV ∗

0n = (�1/2)(1)V ∗
0 λ

−1/2, α∗
n = α∗�−1/2 and

β∗
n = β∗�−1/2, we find

�11 = q2 + α∗
n(I + βnβ

∗
n)

−1(I − ZV ∗
n (I + βnβ

∗
n)

−1)−1
Zq1. (5.20)

UsingV0nV
∗
0n + αnα

∗
n = I + βnβ

∗
n andαnq2 + Vnq1 = 0 we obtain

αn�11 = (Z − V0n)
(
I − V ∗

0n(I + βnβ
∗
n)

−1Z
)−1

q1, (5.21)

or, denormalizing,

α�11 = (Z − V0)
(
I − (�1/2)(1)V ∗

0 (� + ββ∗)Z
)−1

q1. (5.22)

Letm = σ(�21σ + �22)
−1 and�12 = −�12�

−1
22 . Then, from (5.19) we have

αS = α�12 − (Z − V0)
(
I − (�1/2)(1)V ∗

0 (� + ββ∗)Z
)−1

q1m, (5.23)

where the Zadeh extension ‘(t)’ can be dropped because all the operators involved
are bounded. It follows from the concatenation rule for the W-transform

(ST )∧(V ) = (S∧(V )T )∧(V )

that

lim
r→1

(αS)∧(rV0) = lim
r→1

(α�12)
∧(rV0) − (1 − r)[· · ·] = β, (5.24)

where[· · ·] stands for a uniformily bounded diagonal. Let now(αS)∧(rV0) = βr .
Then by the Nevanlinna–Pick theorem we have that there exists aσr such that

S(t) = T�r (t)(σr (t)),

where�r is given by (5.5) (from the existence of� follows the existence of�r as a
bounded invertible operator). Proceeding as before on the data{V ∗

0r , α, βr}, we find

α(�r )11 = α(Z − rV0)
[
I − (�1/2

r )(1)rV ∗
0 (�r + βrβ

∗
r )Z

]−1
q1r . (5.25)

Hence ((�r )11)
∧(rV0) = 0 and it follows, again by the concatenation rule for

W-transforms

(αS)∧(rV0) = (T�r (σr ))
∧(rV0) = (α�12)

∧(rV0).

That (αS)∧(rV0) = (α�12)
∧(rV0) satisfies the definition for a PLL now follows

easily by direct evaluation using the realization for�12. �

In the stationary case, Eq. (5.2) reduces to

�r = 1 − |S(rV0)|2
1 − r2

and one gets back the results of [7].
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6. Reproducing kernel spaces associated to J-inner rational sections

We prove the analogue of Theorem 2.2 in the present setting. To simplify the
exposition, we assume also here thatα is invertible.

Theorem 6.1. Letα, β, V0 ∈ D with α invertible and�V0 = 1 and let

F(t) =
(
α∗
β∗
)
(I − tZV ∗

0 )
−1, t ∈ D. (6.1)

We assume that forD ∈ D,

F (t)D ≡ 0 �⇒ D = 0

(controllability hypothesis) and that Eq.(5.3) has a strictly positive and invertible
solution�. Then, for W ∈ D with �W < 1,

F (t)�−1 (F(t)∧(W)
)∗ = (

J − �(t)J (�(t))∧ (W)∗
)
(I − t2ZW ∗)−1

if � is a solution of the Eq.(3.7).

Corollary 6.2. The linear spanM of functions of the formF(t)D with D ∈ D2,

endowed with the inner product[
F(t)D, F (t)D

]
M

= D∗�D

is a reproducing kernel space with reproducing kernel(
J − �(t)J (�(t))∧ (W)∗

)
(I − t2ZW ∗)−1.

This theorem is proved forV0 with �V0 < 1 in [8, Theorem 4.1, pp. 177–179].
Theret = 1 since there is no need of the Zadeh extension. The analysis of [8] remains
valid when one considers Zadeh extensions.

For the following lemma in the setting of diagonal operators with�V < 1, see
[8, Theorem 4.1, p.177].

Lemma 6.3. Let(
A B

C D

)
be given by(3.9) and let

G(t) = C(I − tZA)−1, (6.2)

where t is in a small enough neighbourhood of the origin. Then, for W ∈ D with
�W < 1,

G(t)
(
(G(t))∧ (W)

)∗ = (
J − �(t)J

((
�(t)∧(W)

)∗)) (
I − t2ZW ∗)−1

. (6.3)
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Proof. With the present notation, we have�(t) = D + G(t)tZB. We taket such
that(I − tZA) is invertible inU. Then

(�(t))∧ (W)= D + (G(t)tZ)∧(W)B

= D + (
(G(t))∧(W)tZ

)∧
(W)B

= D +
(
Z((G(t))∧(W))(1)

)∧
(W)B

= D + tW(G(t)∧(W))(1)B.

Thus,

�(t)J (�(t))∧ (W)∗ = (D + G(t)tZB) J
(
D∗ + B∗t

(
G(t)∧(W)

)(1)∗
W ∗)

= DJD∗ + G(t)ZtBJD∗ + DJB∗t
(
G(t)∧(W)

)(1)∗
W ∗

+G(t)tZBJB∗t
(
G(t)∧(W)

)(1)∗
W ∗

= J − CC∗ − tG(t)ZAC∗ − tCA∗ (G∧(W)
)(1)∗

W ∗

+G(t)t2Z
(
G∧(W)

)(1)∗ − G(t)t2ZAA∗ (G∧)(1)∗ W ∗

= J − 1 − 2 − 3 + 4 − 5,

where we follow the strategy and notation of [8]. But it is easily seen that

1 + 2=G(t)C∗,
3 + 5= tG(t)A∗ (G(t)∧) (W)(1)∗W ∗

and so

�(t)J�(t)∧(W)∗ =J − G(t)C∗ − tG(t)A∗G(t)∧(W)(1)∗W ∗

+t2G(t)ZG(t)∧(W)(1)∗W ∗.

To conclude we use the fact that

G(t)∧(W) = C + tWG(t)∧(W)(1)A.

This is proved fort = 1 in [8, p. 179] and the proof is the same fort ∈ (0, 1). �

The proof of Theorem 6.1 follows exactly, up to the Zadeh extension, the argu-
ments of [8, pp. 177–178].

7. Separation of Brune and Blaschke parts

We start out this section by giving some simple but rather general unicity and
factorization theorems. Next, we specialize the theory to the so called ‘IVI-case’, that
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is the case where the system is linear time-invariant both in−∞ and+∞ regions
(possibly different).

Lemma 7.1. If M1 and M2 are two minimalJ -unitary realizations of the same
Brune section�(t) and if the corresponding Redheffer transform is used(i.e. the
A operator has�A < 1), thenM1 andM2 are unitarily equivalent in the sense that
there exists a sequence of unitary state transformationsQk · · ·Q−1

k+1 such thatQk

I

I

M1

Q−1
k+1

I

I

 = M2.

Proof. Corresponding to a Brune section�(t) there is a unique inner scattering
operator� with realization given by the Redheffer transformation on realizations.
Let these transformed realizations forMi, i = {1, 2}, be given bymi , and let

mi =
(
A[i] B[i]
C[i] D[i]

)
.

By the realization theory for bounded operators (see [9]) the block rows of
(I − A[i]Z)−1B[i] form, for eachk, an orthonormal basis for the finite dimensional
observability or controllability space of�. Hence these bases are unitarily equivalent,
i.e. there exists a sequence of unitary matrices{Qk} such that, withQ = diag[Qk](

I − A[2]Z
)−1

B[2] = Q
(
I − A[1]Z

)−1
B[1].

Hence

A
[2]
k = QkA

[1]
k Q−1

k+1 and B
[2]
k = QkB

[1]
k .

The propertyC[2]
k = C

[1]
k Q−1

k+1 follows readily from minimality. That the same state
transformation now applies to the realizations of theJ-unitary representation is also
immediate from the Redheffer transform.�

Given a specificJ-unitary realization

M =
(
A B

C D

)
of a causalJ-inner operator possibly exhibiting ‘Brune behaviour’ (i.e. such that for
its transition operatorA, �A = 1) and with the Zadeh extension

�(t) = D + CtZ(I − AtZ)−1B

one may wonder how to decompose�(t) in a product of sections with lower state
space dimensions, keeping theJ-inner property. In particular, we may attempt to
factor�(t) as

�(t) = �1(t)�2(t)�3(t)
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in which �1(t) and�3(t) are of ‘Brune type’ while�2(t) is of Blaschke type. We
shall see in the following section that at least in one important special case, such a
factorization is indeed possible. In the present section, we show how the realization
can be factored in elementary sections. We follow and extend the treatment given in
[9]. For numerical reasons and without impairing generality, we always use sections
in whichD21 = 0, and hence we assume the realization

M =
A B1 B2

C1 D11 D12
C2 0 D22

 . (7.1)

Furthermore, we takeM to beJ-unitary, in the sense that

M∗J1M = J2, MJ2M
∗ = J1

for appropriateJi ’s of the form

Ji =
I I

−I

 ,

where the dimensions of the individual blocks may be different. So in generalJ1 /=
J2. The local operators

Mk =
 Ak B1,k B2,k

C1,k D11,k D12,k
C2,k 0 D22,k


at stagek are such that the submatrices

Ak
def.=
(
Ak B1,k

C1,k D11,k

)
andD22,k are square.

Finally, we assume that the transition operatorA decomposes as(
A1 A12
0 A2

)
(7.2)

in which the entries are (of course) diagonal operators, or, dually, a (diagonal block)
lower form, according to some recipe (for motivation see the following proposi-
tion). In [9, Chapter 14], it is shown that there always exist state transformations
Qk · · ·Q−1

k+1 that put eachAk in upper echelon form. With the transition operator of
a� in such a form,M now takes the form

A1 A12 B11 B12
0 A2 B21 B22

C11 C12 D11 D12
C21 C22 0 D22

 (7.3)
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andM is J-unitary as well, for theJi, i = 1, 2, defined earlier in this section. Let now

M1 =


A1 B ′

11 B ′
12

I 0 0
C11 0 D′

11 D′
12

C21 0 0 D′
22


be aJ-unitary completion of the first block-column of (7.1)—which is always pos-
sible to manufacture, e.g., through Jacobi and hyperbolic rotations, see in particular
[9, Chapter 9], Then we can also find doubly accented quantities such thatM factors
asM = M1M2 with

M2 =


I 0 0
0 A2 B21 B22

0 C′′
12 D′′

11 D′′
12

0 C′′
22 0 D′′

22


alsoJ-unitary for the appropriateJ. This amounts to a sketch for the proposition.

Proposition 7.2. Suppose

M =
A1 A12 B1

0 A2 B2

C1 C2 D


is a realization of a causal J-inner operator�(t). Then M can be factored as�(t) =
�1(t)�2(t), where�1(t) and�2(t) have realizations

M1 =
(
A1 B ′

1
C1 D′

1

)
, M2 =

(
A2 B2

C′′
2 D′′

2

)
,

D = D′
1D

′′
2 is a non-singular factorization of D,

B ′
1 = B1(D

′′
2)

−1

C′′
2 = (D′

1)
−1C2.

and the realizationsM1 andM2 are J-unitary.

The proof of the proposition is classical [9].

7.1. The IVI case

An important special case is when the system is time-invariant both in the region
wherek → −∞ and k → ∞ (for possibly different systems), while being time-
varying in between, the so-called IVI case, for ‘invariant-varying-invariant’. For this
case, we can give a strong factorization theorem, which also applies to LTI systems
as a special instance.
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Proposition 7.3. Suppose that M is a J-unitary realization for a causal, J-inner
�(t) which is such that

M∞ =
U∞ A12,∞ ∗

0 A22,∞ ∗
∗ ∗ ∗


in whichU∞ is a square matrix with all its eigenvalues on the unit circle. Then�(t)

exhibits Brune behaviour. Likewise if�(t) is such that

M−∞ =
 U−∞ 0 ∗
A21,−∞ A22,−∞ ∗

∗ ∗ ∗


in whichU−∞ has all its eigenvalues of magnitude one, then�(t) exhibits Brune
behaviour.

Proof. The proof is similar for the two cases, we suffice with case 1. We have to
show that�A = 1 for the A belonging to the realization for�(t). Looking at the
transitional product for an arbitraryn

A{n} = AA(−1) · · ·A(−n+1)

and specializing tok so large that it lays in the+∞-LTI zone of�(t), we find

A
{n}
k = Ak · · ·Ak+n−1 =

(
Un∞ ∗
0 ∗

)
and hence‖A{n}‖ � 1. Therefore�A = limn→∞ ‖A{n}‖1/n = 1, since also�A � 1
by the causality assumption.�

In the case that the transition operatorA∞ in M∞ has eigenvalues on the unit
circle, we are entitled to say that�(t) exhibits Brune behaviour at+∞. Similarly,
if A−∞ has eigenvalues on the unit circle,�(t) will exhibit Brune behaviour at
−∞. The following theorem shows, among other things, that a locally finite chain
scattering operator of IVI type, which does not exhibit Brune behaviour neither at
+∞ nor−∞, must necessarily be of Blaschke type. We are now ready for the main
factorization theorem of this section.

Theorem 7.4. Let�(t) be a causal J-inner operator of the IVI-type. Then�(t) can
be factored as

�(t) = �1(t) · �2(t) · �3(t),

where�1(t) is of Brune type at+∞, �2(t) is of Blaschke-type, and �3(t) is of
Brune type at−∞.

Proof. Starting out with aJ -unitary realization for�(t), we may find an orthonor-
mal transformationQ∞ · · ·Q−1∞ such that the transition matrix in the transformed
realization has the form
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U∞ A12,∞
0 A22,∞

)
in whichU∞ has all its eigenvalues of magnitude one, and those ofA22,−∞ are all
strictly less than one in magnitude. Furthermore, we can determine state transfor-
mationsQk · · ·Q−1

k+1 for all k such that the block upper triangular Jordan form is
maintained for allk. This is achieved, in a stable numerical manner, by recursively
determiningQk, assuming knowledge ofQk+1, so thatQk+1 · AkQ

−1
k+1 is upper tri-

angular (upper echelon form). Using the factorization theorem given above we can
now produce

�(t) = �1(t)�
′
1(t)

in which �1(t) hasU∞ as transition matrix at+∞, and the transition matrix of
�′

1(t) isA22,∞. Proceeding dually on�′
1(t) but now with respect to−∞, we find

�′
1(t) = �2(t)�3(t),

where�3(t) exhibits Brune behaviour, but now at−∞. �2(t) has realizations at
−∞ and+∞ whose transition matrices have eigenvalues strictly less that one. It
follows now immediately from the sprectral radius formula that this is the realization
of a bounded,J -inner operator�3. Hence it is of Blaschke type.�

Looking at the details of the factorization, the remark that a large collection of
factorizations should be possible seems obvious. The theorem just given provides
only one of the possibilities, a more refined study might indicate in which cases left
and right Brune sections could be combined.

8. Conclusions

The present paper completes the representation theory ofJ-inner operators, the
J-unitary operators that correspond to inner operators via a Redheffer transform.
These operators can be unbounded, corresponding to what is known classically as
Brune sections. It turns out that numerically, theseJ-inner sections can be realized
much in the same way as is the case with the classical Blaschke sections, yet they
represent unbounded operators. Essential in the computation is the existence of a
positive definite solution to the Lyapunov–Stein equation. This equation, as well as
the realizations can be recursively solved, which amounts in finite calculations when
the original system is finitely specified. The trick that allows for the representation
of the unbounded operators is the Zadeh extension, here generalized to the linear
time-varying context.

A major application of the present theory is in time-varyingH∞ control, i.e. con-
trol for least sensitivity. Following the methodology of Kimura [14] one is given a
‘chain operator’G(ε) depending on a gain parameterε, and one wishes to know nec-
essary and sufficient condition for factorization ofG = �G0 into a generalJ -inner
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operator� and an outer operatorG0. While the extraction of a Brune section would
not impact on the outerness ofG0, it would greatly enhance the chances thatG0
would be boundedly invertible, since the resulting� could take care of the unbound-
edness. This would then result in a much more attractive structure for least-sensitivity
feedback, because actually the Redheffer transformation of� is actually used in
the feedback structure, and it will be uniformily exponentially stable, as shown in
the paper. The theory would then lead to a much stronger factorization theorem for
least-sensitivity feedback purposes. This part of the theory lies outside the scope of
the present paper and remains to be done.
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