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Double Turbo Equalization of Continuous Phase
Modulation with Frequency Domain Processing

Barış Özgül, Member, IEEE, Mutlu Koca, Member, IEEE, and Hakan Deliç, Senior Member, IEEE

Abstract—In this paper, a doubly-iterative linear receiver,
equipped with a soft-information aided frequency domain mini-
mum mean-squared error (MMSE) equalizer, is proposed for the
combined equalization and decoding of coded continuous phase
modulation (CPM) signals over long multipath fading channels.
In the proposed receiver architecture, the front-end frequency
domain equalizer (FDE) is followed by the soft-input, soft-
output (SISO) CPM demodulator and channel decoder modules.
The receiver employs double turbo processing by performing
back-end demodulation/decoding iterations per each equalization
iteration to improve the a priori information for the front-end
FDE. As presented by the computational complexity analysis and
simulations, this process provides not only a significant reduction
in the overall computational complexity, but also a performance
improvement over the previously proposed iterative and non-
iterative MMSE receivers.

Index Terms—Continuous phase modulation, double turbo
processing, frequency domain equalization, intersymbol interfer-
ence.

I. INTRODUCTION

CONTINUOUS phase modulation (CPM) is a feasible
transmission scheme for power- and bandwidth-limited

wireless applications owing to its constant envelope prop-
erty and spectral efficiency [1]. However, optimal detection
of CPM signals under frequency-selective multipath fading
encounters complexity issues due to the intensive search
performed over a single super-trellis for the combined equal-
ization/demodulation (CED) operation [2]. The suboptimal
reduced-state soft-input soft-output (SISO) trellis-search al-
gorithms offer lower complexity solutions for CED of CPM
as presented in [3] and [4], but the computational load is still
exponentially constrained with the modulation and/or channel
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memory. To alleviate this problem and motivated by the near-
optimum error performance of the iterative receivers, an alter-
native CPM receiver is proposed in [5], where the equaliza-
tion, CPM demodulation and channel decoding operations are
assigned to three separate SISO blocks and the central CPM
module is coupled with both the front-end equalizer and the
back-end decoder in a doubly-iterative architecture. The most
important feature of this receiver is that a soft-information-
aided minimum mean-squared error (MMSE) equalizer is used
at its front-end instead of a trellis-based algorithm, which
presents a low complexity alternative while still achieving
a performance close to the “no interference" bound. Notice
that computing the MMSE equalizer coefficients requires some
cumbersome matrix inversions causing the computational load
to be still relatively large. As presented in [6] and [7], by doing
the same computation in the frequency domain the complexity
can be reduced further while attaining the same and often
better performance.

The frequency domain equalization (FDE) approach has
also been extended to the equalization of CPM in [8], where
the FDE is not equipped with any SISO capability and thus
is not suitable for turbo processing. The advantages of fre-
quency domain processing and iterative information exchange
are combined in [9], where a turbo linear equalizer (TLE)
is presented in which a SISO block-form FDE (BFDE) is
followed by the SISO CPM demodulator and channel decoder
modules. Here, the soft CPM signal information to start the
subsequent equalization iterations are computed from the code
bit probabilities obtained from the back-end channel decoder.
However, this produces long error bursts due to the inherent
modulation memory and thus, the CPM signal probabilities
are delivered to BFDE only at certain epoches to break up
the error propagation at the expense of obtaining only a slight
turbo gain. Moreover, because the proposed FDE operates on
blocks of information, it still involves matrix inversions which
result in an increased computational cost. For this reason, we
propose herein a soft-information-aided FDE for CPM which
overcomes the disadvantages of that in [9] and which is used
in a doubly-iterative joint CPM equalization and demodulation
architecture similar to the one in [5], so as to achieve a
better error performance with lower computational complexity
compared to the methods in both [5] and [9] .

In the proposed receiver, the frequency domain processing
of CPM signals is made possible by inserting a cyclic guard
interval longer than the channel memory while maintaining
the phase continuity of CPM. The FDE is equipped with an
a priori soft interference canceller (SIC) and an a posteri-
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Fig. 1. Modulating sequence with the cyclic prefix.

ori probability mapper, similar to that presented for linear
modulations in [10], to generate soft information for the
central CPM demodulator. Because the modulator can be
represented by a trellis-diagram, a SISO trellis-based decoder
is used for demodulation where the decoder computes extrinsic
information at its output on both the discrete CPM signals
and the coded bits. Then, these two soft outputs are employed
in a doubly-iterative information exchange where the CPM
demodulator is coupled with both the front-end FDE and
the back-end decoder. Because the CPM signal probabilities
are not computed from the code bit probabilities, the error
bursts of [9] due to the modulation memory are not encoun-
tered, which results in a significant performance improvement.
Moreover, because its implementation does not involve any
matrix inversion, the proposed SISO FDE is computationally
less complex than the equalizers in [5] and [9]. The doubly-
iterative CPM receiver with the FDE is also more feasible
in attaining faster convergence to low bit-error rates (BERs)
because the number of equalization iterations are decreased by
performing several demodulation/decoding iterations per each
equalization iteration to improve the equalizer a priori infor-
mation. This behavior can be justified by a three dimensional
extrinsic information transfer (EXIT) chart analysis similar to
the one in [5] presented for the doubly-iterative receiver with
a time domain MMSE equalizer.

The rest of the paper is organized as follows. In Section
II, the CPM signal model is described followed by the
presentation of the proposed doubly-iterative CPM receiver
and the soft-information-aided FDE algorithm in Section III.
Here, we also present the computational complexity analysis
of the proposed equalizer and the doubly-iterative receiver, and
the comparisons with alternative receiver structures. We also
provide a similar comparison in terms of the BER simulations
in Section IV and end the paper with concluding remarks in
Section V.

II. SIGNAL MODEL

At the transmitter, a length-Ld data bit sequence with
elements di ∈ {0, 1}, i = 0, . . . , Ld − 1, is encoded by a
rate-Ld/Lb convolutional code to form bl ∈ {−1,+1}, where
l = 0, . . . , Lb − 1. Then, bl are interleaved to cl, which are
mapped onto M -ary symbols xn, xn ∈ {±1,±3, . . .±M−1},
and n = 0, . . . , N − 1, where N = Lb/ log2M . The M -ary
CPM signal with unit amplitude is

y(t) = ejϕ(t,xN−1
0 ), 0 < t < NT, (1)

where xN−1
0 denotes the symbol sequence {xn}N−1

0 ,
ϕ(t,xN−1

0 ) = 2πh
∑N−1
n=0 xnq(t − nT ) and T is the symbol

interval. Here, h is the modulation index and q(t) =
∫ t
0 g(τ)dτ

is the phase smoothing function such that q(t) = 0 for
t < 0 and q(t) = 1/2 for t ≥ LT , where L ≥ 1 denotes
memory length of CPM. Similar to the approach in [11],
the CPM modulator is represented as the combination of a
continuous phase encoder (CPE) with a time-invariant trellis
and a memoryless modulator. The CPE considers a tilted phase
ψ(t,xN−1

0 ) where

ψ(t,xN−1
0 ) = ϕ(t,xN−1

0 ) + πh(M − 1)t/T. (2)

The baseband tilted-phase CPM signal is denoted as

z(t) = ejψ(t,xN−1
0 ), 0 < t < NT, (3)

where the carrier frequency is adjusted as fc− h(M − 1)/2T
before the transmission to compensate for the frequency shift
in (2). Assuming that h = K/P is a fraction where K and
P are relatively prime integers, the number of all signals
generated by CPE trellis is found as Q = PML [11].

The receiver observes a noisy linear convolution of the
transmitted signals with the multipath fading channel. To make
frequency domain processing possible and to make the linear
and circular convolutions equivalent to each other, a cyclic
prefix needs to be appended to the transmitted signal sequence
at the expense of an increased redundancy. Here the length
of the cyclic prefix, G, is chosen as the minimum number
of symbol periods to avoid interblock interference due to
the multipath channel effects. However, the transmission of
CPM signals also requires the preservation of phase conti-
nuity within each transmitted block and between consecutive
transmitted blocks. Observing the similarity of the CPE to
a recursive convolutional encoder, this phase continuity can
be attained by inserting two sets of tail symbols of lengths
le and lt after the first N − G + lt modulating symbols
and to the end of the whole symbol sequence, respectively.
Please notice that, choosing lt as the minimum number of
symbols to return to the initial state from any trellis state
and le ≥ lt as the number of symbols to return to and stay
at the initial state, this operation assures that the CPE trellis
path returns to the initial state at n = N − G + lt + le − 1
and n = N + lt + le − 1. The symbol sequence with tail
symbols becomes {xn}Ñ−1

0 where Ñ = N + lt + le. Then,
the length-G cyclic prefix, selected as the last G symbols, is
appended to the beginning of the symbol block as depicted in
Fig. 1 and the new symbol sequence becomes x̃n = x(n)Ñ

,

n = −G, . . . ,−1, 0, 1, . . . , Ñ − 1, where (·)Ñ stands for the
modulo-Ñ operation. By compensating for the frequency shift
in (2), the CPM signal in (1) produced by the new symbol
sequence x̃Ñ−1

−G = {x̃n}Ñ−1
−G is denoted as

y(t) = ejψ(t,x̃Ñ−1
−G )−jπh(M−1)t/T , −GT < t < ÑT. (4)
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Fig. 2. Receiver structure.

Note that this new sequence ensures that the CPE trellis
path for each packet begins and ends at the initial state and
therefore no phase discontinuities are encountered during the
transitions between consecutive packets. Furthermore, within
each packet, the trellis path returns to the initial state after
the first G symbols so that the cyclic guard interval does not
disrupt the phase continuity. When le is chosen properly such
that hÑ is an even integer, (4) yields y(t) = y(t + ÑT ) on
the interval −GT < t < 0, as also described in detail in [14].

The multipath channel is assumed to be time-invariant
throughout the one packet duration such that it can be mod-
elled as

h(t) =
Nc−1∑
m=0

ρmδ(t− τm) (5)

where ρm and τm are the time-invariant complex gain and the
propagation delay for the mth path, respectively, and Nc is
the number of the channel paths. For practical purposes, CPM
signal can be considered as band-limited to |f | ≤W/2. Then,
choosing a sampling period Ts such that Ts = T/ns ≤ 1/W
where ns ∈ Z

+, the path delays τm in (5) can be approximated
to the integer multiples of Ts. Accordingly, the fractionally
spaced channel impulse function can be written as

h(t) =
Lc−1∑
�=0

h�δ(t− �Ts) (6)

where Lc = τNc−1/Ts + 1 with τNc−1 being the maximum
path delay, and h� = ρm for � = τm/Ts and 0 for all other �
values. Then the received signal can be expressed as

r(t) =
Lc−1∑
�=0

h�y(t− �Ts) + v(t), −GT < t < ÑT, (7)

where v(t) is the zero-mean additive white Gaussian noise
(AWGN) term with variance σ2

v . After the removal of the
prefix and low-pass filtering with a two-sided bandwidth of
1/Ts Hertz, the discrete symbols are obtained by sampling the
filter output every Ts seconds as in [9] such that the additive
noise is still white and there is no aliasing. The corresponding
discrete-time signal is

rn =
Lc−1∑
�=0

h�y(n−�)N̄
+ vn, n = 0, . . . , N̄ − 1, (8)

where N̄ = nsÑ and rn
�
= r(nTs), yn

�
= y(nTs), vn

�
=

v(nTs). Notice that by defining hN̄−1
0

�
= {hn}N̄−1

0 that is
obtained through zero padding after the first Lc terms and

yN̄−1
0

�
= {yn}N̄−1

0 , (8) can be observed as a noisy circular
convolution and can be rewritten as

rn = [h 
 y]n + vn, n = 0, . . . , N̄ − 1. (9)

Here [h 
 y]n denotes the nth element of the circular convo-
lution of the sequences hN̄−1

0 and yN̄−1
0 whose indices are

dropped for notational simplicity.

III. DOUBLY-ITERATIVE CPM RECEIVER WITH

FREQUENCY DOMAIN EQUALIZATION

The proposed doubly-iterative CPM receiver is shown in
Fig. 2. Initially the FDE iteration starts with no a priori
information, and no interference cancellation takes place.
At the output of this process, within each symbol interval,
ns samples are mapped onto a Q-ary vector of extrinsic
probabilities so as to start the back-end iterations between
the CPM demodulator and the channel decoder. Both modules
are implemented by the log-domain a posteriori probability
(APP) algorithm ([12], pp. 570). The demodulator generates
extrinsic information on both the coded bits cn in the form of
log-likelihood ratios (LLRs) and the tilted-phase CPM signals
in the form of Q-ary vectors. The former is exchanged within
the back-end iterations, where the latter is used to compute
the expected values, ȳn, to start the next equalization iteration
after any number of back-end iterations. Both the log-domain
APP algorithm and its application to CPM demodulation are
well-known, and the interested reader is referred to [12] for
the former and [5] for the latter. Below, we describe only the
operation of the front-end FDE algorithm.

The front-end equalizer applies discrete Fourier transform
(DFT), SIC/FDE, and inverse DFT (IDFT) operations consec-
utively to obtain the outputs from which the soft information
to the demodulator is calculated by the probability mapper.
To describe the derivation of the SIC/FDE algorithm, we
first present its time domain equivalent and then obtain the
corresponding representation in the frequency domain. Let us

define w
�
= {wn}N̄−1

0 , ȳ
�
= {ȳn}N̄−1

0 , and v
�
= {vn}N̄−1

0 as
the length-N̄ sequences collecting the equalizer coeficients,
the mean values for the discrete-time CPM symbols and the
noise samples, respectively, and assume that yn, the sample
of y(t) taken at t = nTs, is the target symbol at the nth time
instant. In a conventional time domain SIC/MMSE equalizer
receiver, the discrete time signal observed at the output of the
equalizer after the SIC and equalization operations are applied
to the received signal in (9) is found as

ŷn = [w 
 h 
 y]n + [w 
 v]n − [w 
 h 
 ȳ]n + μȳn (10)

where μ =
∑N̄−1

�=0 w�hN̄−� is the total gain of the yn terms in
[w 
h 
 y]n and μȳn prevents the cancellation of the symbol
information at time n. This value can be computed in both the
time domain and frequency domain by employing Plancherel’s
Theorem, which leads to

μ =
N̄−1∑
�=0

w�hN̄−� =
1
N̄

N̄−1∑
k=0

WkHk (11)
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TABLE I
COMPLEXITY OF THE SISO MODULES USED BY THE PROPOSED RECEIVER, THE RECEIVERS IN [5] AND [9], AND TAE

FDE TDE [5] BFDE [9] CED [2] CPM Channel
Demodulator Decoder

Real O(B)+ O(L3
f )+ O(niB3)+ O(niBPML+Mc−1) O(niBPML) O(niB2mc+1)

multiplications O(niB log2 B)+ O(niBLf )+ O(niBPML)
and additions O(niBPML) O(niBPML)

B, ni, Lf , Mc, L, M , P , and mc denote the block length, number of Iterations, length of the TDE filter, length of the
multipath channel in terms of symbol intervals, memory length of CPM, modulation order, denominator of the modulation index, and the
memory length of the convolutional code, respectively.

where Wk and Hk, k = 0, 1, . . . , N̄−1, are the N̄ -point DFTs
of wn and hn, respectively. Notice that the computation of the
MSE-optimum equalizer coefficients in time domain requires
large matrix inversions causing a computational burden. That
is why the equalization method proposed in this paper is the
frequency domain equivalent of the time domain operation in
(10). In frequency domain, (10) corresponds to

Ŷk = WkRk −WkHkȲk + μȲk, k = 0, 1, . . . , N̄ − 1,
(12)

where Rk = HkYk + Vk and Yk, Ŷk, Ȳk, Rk, and Vk are
the N̄ -point DFTs of yn, ŷn, ȳn, rn, and vn, respectively.
Here, the frequency domain filter coefficients {Wk} having
the MMSE solution are computed by minimizing

E

[∣∣∣Yk − Ŷk

∣∣∣2] = E
[∣∣Yk −WkRk +WkHkȲk − μȲk

∣∣2] .
(13)

Notice that the Wk values need to be updated at each equalizer
iteration since different Ȳk values are delivered from the CPM
demodulator at each front-end iteration. This complexity can
be reduced by computing two different sets of equalizer coef-
ficients under either zero a priori information (ZAI) or full a
priori information (FAI) assumptions as in [13] and by starting
the initial front-end iterations with the ZAI coefficients and
then switching to the FAI coefficients after a few iterations.

The optimum coefficients minimizing (13) for the ZAI
and FAI cases which correspond to Ȳk = 0 and Ȳk = Yk
assumptions, respectively, can be computed as

WZAI
k =

E
[|Yk|2]H∗

k

N̄σ2
v + E [|Yk|2] |Hk|2 , (14)

WFAI
k =

(
1 − 1

N̄

∑N̄−1
�=0 W�H�

)
E

[|Yk|2]H∗
k

N̄2σ2
v

=
(1 − μ)E

[|Yk|2]H∗
k

N̄2σ2
v

, (15)

where ∗ denotes the complex conjugation. Notice that, for
simplicity, E

[|Yk|2] terms in (14) and (15) can be replaced
by the average

1
N̄

N̄−1∑
k=0

|Yk|2 =
1
N̄

N̄−1∑
k=0

N̄−1∑
n=0

N̄−1∑
�=0

yny
∗
� e

−j2π(n−�)k/N̄ = N̄ ,

(16)
which is independent of the index k and obtained through the
symmetry of the DFT operation and the unit-amplitude CPM
signals. Then, using this replacement and the joint solution of
(11) and (15) for μ together, the equalizer coefficients in (14)

and (15) for the ZAI and FAI cases simplify to

WZAI
k =

H∗
k

σ2
v + |Hk|2 , (17)

WFAI
k =

H∗
k

N̄σ2
v + (1/N̄)

∑N̄−1
�=0 |H�|2

, (18)

respectively.
The SIC exploits the mean values, ȳn, which are delivered

from the demodulator as follows. Denoting the mean value of
z(t) in (3) as z̄(t),

z̄n
�
= z̄(nTs) =

Q−1∑
m=0

p�,mZi,m, n = 0, 1, . . . , N̄ − 1,

(19)
where n = �ns + i, � = 0, . . . , Ñ − 1, i = 0, . . . , ns − 1,
p�,m is the probability generated by the demodulator at the
�th symbol interval for the mth tilted-phase CPM signal, and
Zi,m is the value of the mth signal at time instant iTs over the
symbol interval [0, T ]. Using the relation in (2), ȳn is obtained
as

ȳn = z̄ne
−jπh(M−1)n/ns , n = 0, 1, . . . , N̄ − 1. (20)

After performing the DFT operations on (9) and (20), and
computing the frequency domain outputs with (12) by either
using (17) or (18), the time domain outputs, ŷn, are found
by the IDFT operation. Then, the soft information for CPM
demodulator is computed by the probability mapper. For this
purpose, the equalizer output with the tilted-phase is found as
ẑn = ŷne

jπh(M−1)n/ns , n = 0, 1, . . . , N̄ − 1, which can be
viewed as ẑn = μzn + νn where μ is the symbol gain and νn
is the zero-mean complex Gaussian noise term with variance
σ2
ν [10], [13]. At each equalizer iteration, σ2

ν is estimated as

σ̂2
ν =

1
N̄

N̄−1∑
n=0

Q−1∑
m=0

p�,m |ẑn − μZi,m|2

for � = 0, . . . , Ñ − 1, i = 0, . . . , ns − 1, and n = �ns + i.
Here, p�,m are set to 1/Q under the ZAI assumption and
the probabilities delivered from CPM demodulator are taken

into account for the FAI scenario. Then, defining Γ�,m
�
=

−∑ns−1
i=0 |ẑn − μZi,m|2 /σ̂2

ν where � = 0, . . . , Ñ − 1, n =
�ns + i, and m = 0, 1, . . . , Q − 1, the probability mapper
generates

log [p(z�,m)] = Γ�,m − log

[
Q−1∑
m=0

e Γ�,m

]

where p(z�,m) is the probability of the mth signal to be fed
to CPM demodulator at the �th symbol interval.
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TABLE II
COMPUTATIONAL COMPLEXITY PER SIGNAL BLOCK FOR THE PROPOSED RECEIVER, THE TURBO RECEIVERS IN [5] AND [9], AND TAE

Receiver Computational Complexity

Turbo FDE with ni front-end O(nsÑ) + O(ninsÑ log2 nsÑ) + O(ninsÑPML) + O(niLbPML) + O(niLb2
mc+1)

and ni back-end iterations
Turbo FDE with nf front-end O(nsÑ) + O(nf nsÑ log2 nsÑ) + O(nf nsÑPML) + O(niLbPML) + O(niLb2

mc+1)
and ni back-end iterations

Turbo TDE [5] with ni front-end O(L3
f ) + O(ninsNLf ) + O(ninsNPML) + O(niLbPML) + O(niLb2

mc+1)

and ni back-end iterations
Turbo TDE [5] with nf front-end O(L3

f ) + O(nfnsNLf ) + O(nfnsNPML) + O(niLbPML) + O(niLb2
mc+1)

and ni back-end iterations
TLE [9] with ni O(nin

3
sÑ3) + O(ninsÑPML) + O(niLbPML) + O(niLb2

mc+1)
iterations

TAE with ni O(niNPML+Mc−1) + O(niLb2
mc+1)

iterations

N ,Ñ , ns, Lf , Mc, L, M , P , and mc denote the length of the modulation sequence, length of the modulation sequence with tail
symbols, number of samples per symbol period, length of the TDE filter, length of the multipath channel in terms of symbol intervals,
memory length of CPM, modulation order, denominator of the modulation index, and the memory length of the convolutional code,
respectively.

The computational complexity analysis for the proposed
FDE is presented in Table I, along with those of the TDE
in [5], the BFDE in [9] and the optimal CED in [2] using the
APP algorithm. Also included in the table are the complexities
of the SISO CPM demodulator and the channel decoder so that
complexity comparisons of different turbo architectures using
these blocks can be obtained. Here ni, Mc = �Lc/ns� + 1,
mc, and Lf denote the number of iterations, length of the
multipath channel in terms of symbol intervals with �.� being
the floor operator, the memory length of the convolutional
code, and the length of the TDE filter which depends on
Lc linearly, respectively. The example below presents the
approximate number of real multiplications and additions
required throughout a signal block by four different turbo
receivers: 1) the proposed turbo receiver with FDE (turbo
FDE) in Fig. 2, 2) the turbo receiver with TDE (turbo TDE)
in [5] replacing the front-end FDE in Fig. 2 by a TDE filter,
3) the TLE in [9] in which the BFDE is followed by the CPM
demodulator and the channel decoder modules, 4) a turbo
APP equalizer (TAE) exchanging soft information between
the optimal CED module and the channel decoder.

Example: It is assumed that Ld = 125 data bits are encoded
by a rate-1/2 convolutional code so that Lb = 250 code bits
are obtained, where the memory length of the convolutional
code is mc = 3. The parameters for the CPM scheme is
M = 2, L = 3 and h = 0.5 with P = 2. To apply
the proposed turbo FDE and the TLE in [9], a cyclic guard
interval is added to the transmitted block. For this purpose,
four tail symbols are inserted as shown in Fig. 1 where le = 3
and lt = 3, and the length of the modulating sequence is
Ñ = 256. The turbo receivers with time domain equalization
methods in [2] and [5] do not require tail symbols and cyclic
guard addition so that the length of the modulating sequence is
N = 250. For the multipath fading channel, it is assumed that
Lc = 11, the channel resolution is Ts = T/2 with ns = 2, and,
therefore, the maximum tap delay is 5T . After the addition of
the cyclic guard interval, the duration of the transmitted packet
is 261T with G = 5. Thus, the number of extra tail and
guard symbols employed by the frequency domain methods
is only le + lt + G = 11 compared to the time domain

methods. The computational load for the aforementioned turbo
receivers are presented in Table II by using the approximate
complexity values in Table I for the SISO modules deployed
by these receivers. At the first and third rows of Table II,
the complexity values for the turbo FDE and turbo TDE are
given, respectively, where each of the ni front-end iterations
is followed by one back-end demodulator/decoder iteration so
that ni front-end and ni back-end iterations are performed in
total. As in [5], the TDE filter length is Lf = 2Lc. Depending
on the doubly-iterative architecture of these receivers, it is
possible to attain the same performance by fewer equalizer
iterations where each front-end iteration is performed after im-
proving the a priori information by ni/nf back-end iterations
so that the total number of front-end and back-end iterations
are nf and ni, respectively, as shown at the second and fourth
rows of Table II. Because the TLE and TAE cannot perform
double iterations, all the SISO modules at these receivers are
employed throughout ni iterations, as presented at the fifth and
sixth rows of Table II, respectively. In this example, nf = 4
and ni = 12, which are the same as the values used in the
BER simulations in Section IV.

By using the aforementioned parameter values in Table II, it
is observed that the computations for the proposed turbo FDE
at the first and second rows are less than the ones for the turbo
TDE at the third and fourth rows, respectively, by adding only
nine extra symbols to the transmitted packet. This is because
of the cubic complexity that comes from the matrix inversion
operation for TDE and the dependency of the filter length
Lf on the channel length Lc. Note that the redundancy for
turbo FDE to add the cyclic prefix increases linearly in longer
channel impulse responses without any computational change
whereas the turbo TDE encounters higher cubic complexity.
The complexity of TLE does not depend on the length of
the channel impulse response. However it is computationally
more demanding compared to the proposed turbo FDE as
shown at the fifth row of Table II, depending on the matrix
inversions required by the BFDE at each iteration. Moreover,
it is not possible to perform double iterations at this receiver
to reduce the complexity for equalization. Last row of Table
II shows that the TAE is also more complex compared to
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the proposed method. Here the complexity of the optimal
CED in [2] applied by TAE increases exponentially with the
length of the channel impulse response. For the proposed turbo
FDE, the length of channel impulse response does not have
impact on the complexity at the expense of adding redundancy
which increases linearly with the channel memory length.
Furthermore, the performance of the turbo FDE is better
compared to the turbo TDE and TLE and is close to that
of TAE, as shown in Section IV.

IV. SIMULATION RESULTS

In this section, the BER performance of the proposed turbo
FDE is presented for different number of front- and back-
end iterations, and is also compared to those of the TAE
employing the CED in [2], the turbo TDE in [5], the TLE
in [9], and the performance in AWGN channel. The binary
three raised-cosine (3RC) CPM with L = 3 and h = 0.5 is
considered as in [1] with ns = 2, the two-sided bandwidth
of the low-pass filter is 2/T , and the channel resolution
is Ts = T/2, as in [9]. The rate-1/2 convolutional code
with generator polynomial (64, 74)8 is used, and random
interleaving is applied. First, the performance gap between
the optimal and the proposed receiver is observed in a mild
Proakis’ A channel with coefficients [0.04 -0.05 0.07 -0.21-0.5
0.72 0.36 0.00 0.21 0.03 0.07], where the delay of the mth
path is mTs for m = 0, 1, . . . , 10. The channel coefficients
are normalized to have unit total energy. The aforementioned
receivers are also compared in a more severe eleven-tap quasi-
static channel (channel I) environment with deep spectral
nulls, where the tap coefficients are zero-mean complex white
Gaussian random variables with exponentially decaying power
profile such that the variance of the mth path coefficient is
e−m/2/

(∑10
l=0 e

−l/2) and the corresponding path delay is
mTs for m = 0, 1, . . . , 10. Furthermore, the six-tap typical
urban channel (channel II) model in [8] is considered, where
the variances of the complex Gaussian path coefficients are
[0.189 0.379 0.255 0.090 0.055 0.032] and the corresponding
path delays are [0 Ts 2Ts 8Ts 12Ts 25Ts]. For all the scenarios
considered, the information packets start and terminate at
the zero state and consist of 256 symbols including the tail
coefficients with le = 3 and lt = 3. For channels I and II, the
duration of the cyclic guard intervals is G = 5 and G = 13
symbol periods, respectively.

The switching condition between ZAI and FAI coefficients
is determined by using the corresponding transfer charac-
teristic curves of the FDE. The method in [13] to obtain
the equalizer characteristic curves for linear modulations is
not applicable here since it relies on the independence of
the transmitted symbols, whereas CPM signals are correlated.
Thus, the average of the amplitudes of the mean values (A)
at the input and the average of the squared distances between
the equalizer outputs and the transmitted symbols (D) at the
output of the FDE are considered as the information measures
for the characteristic curves, which are computed as

A =
1
N̄

N̄−1∑
n=0

∣∣∣∣∣
Q−1∑
m=0

p�,mZi,m

∣∣∣∣∣ , D =
1
N̄

N̄−1∑
n=0

|zn − ẑn/μ|2 ,
(21)
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Fig. 3. Characteristic curves for the FDE (D is the average squared distance
between the equalizer outputs and the samples for the transmitted CPM signal
and A is the average of the amplitudes of the mean values used by SIC).

respectively, where n = �ns + i, � = 0, . . . , Ñ − 1, and i =
0, . . . , ns − 1. As described in [5], for CPM schemes where
P is an even integer, A is zero for the equally likely CPM
symbols, and assuming unit-amplitude symbols, it goes from
zero to one if any of the signal probabilities converges to one.
At the output of FDE, smallerD values are obtained with more
accurate equalizer outputs. In Fig. 3, the characteristic curves
of the equalizers using (17) and (18) are shown for channel
I at Eb/N0 = 3, 6, and 9 dB, by averaging the results for
eleven-tap quasi-static channels. The symbol probabilities p�,m
from CPM demodulator are generated artificially, where the
probability of the transmitted signal at each symbol interval is
set as pt, and the probabilities corresponding to the remaining
Q − 1 CPM signals are set as (1 − pt)/(Q − 1) for 1/Q ≤
pt ≤ 1. It is unnecessary to perform a front-end equalizer
iteration after each back-end demodulator/decoder iteration.
The delivery of the a priori information to the SIC/equalizer
after being improved by a few back-end iterations is adequate
for convergence, which is determined by a three dimensional
EXIT chart analysis, as in [5].

In Fig. 4, the BER performance of turbo FDE with respect
to TAE is depicted for Proakis’ A channel and channel
I. Moreover, the performance of turbo FDE in channel I
is compared to those of turbo TDE and TLE. Both turbo
FDE and TDE exploit double iterations where each front-end
iteration (FIT) is followed by one back-end iteration (BIT)
between the CPM demodulator and the channel decoder. For
TLE, the channel decoder feeds soft information to the front-
end at each iteration, where there is no significant turbo
gain after two iterations, as also described in [9]. The TAE
conducts twelve iterations between the optimal combined
equalizer/demodulator and the channel decoder. In AWGN
channel scenario, the demodulator and the decoder exchange
soft information by performing twelve iterations. The pro-
posed receiver yields very close performance compared to
TAE in the mild Proakis’ A channel. In more severe channels
with deep spectral nulls such as the ones in channel I scenario,
TAE performs much better at the expense of large complexity
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as shown by the last row of Table II. The turbo FDE performs
better than turbo TDE and TLE with less computation which
can be verified by comparing the computational load at the
first row with those at the third and fifth rows of Table II,
respectively, as also described by the example at the end of
Section III.

The complexity of the proposed receiver can be further
reduced by feeding a priori information to the SIC/equalizer
after a few back-end iterations, as shown in Fig. 5. For both
channel I and II, four FITs where each one is followed
by three BITs result in the same performance compared to

twelve FITs where each one is followed by one FIT, while
the equalizer complexity is three times less for the former
scenario. Moreover, by exploiting the SISO capability of
FDE, the performance gain of the aforementioned scenarios
compared to one FIT followed by twelve BITs is about 1 dB
after BER= 1 × 10−5 in both channels I and II.

V. CONCLUSION

In this paper, a doubly-iterative receiver with a SISO
frequency domain MMSE equalizer is proposed for CPM with

higher performance and less complexity than its counterparts
also employing linear equalizers in [5] and [9]. This effec-
tiveness of the new receiver is presented with comparisons in
terms of the overall computational complexity and the BER
simulations. The constant envelope and phase continuity of
CPM are maintained while appending the cyclic prefix to the
transmitted signal.
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