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It is quite common to see that classical periodic or Poisson packet traffic models are used
for evaluating the performance of wireless sensor networks (WSNs). However, these mod-
els may not be appropriate for modeling the data traffic resulting from a particular appli-
cation. Furthermore, they may be overestimating the performance of a WSN. In this paper,
we show the significance of using a realistic and application-specific packet traffic model
by comparing the performance of a well-known WSN protocol under the Surveillance
WSN packet traffic model (SPTM), as well as under periodic and binomial traffic models.
A packet traffic framework specific to surveillance applications is proposed which is then
used for deriving SPTM analytically. In order to be adaptable and flexible, SPTM incorpo-
rates a probabilistic and parametric sensor detection model. Simulation results show that
to employ an application-specific packet traffic model has significant impact on the perfor-
mance evaluation of the WSN and ordinary traffic models may overestimate the capacity of
the WSN.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Potential application areas of wireless sensor networks
(WSNs) show contrasting properties which prevent the
development of universal algorithms serving all purposes.
Military applications may require very fast response time,
whereas in agriculture, delay sensitivity may be traded
with energy conservation. Likewise, a communication pro-
tocol may perform in a very energy-efficient manner when
used for one application, and it may perform quite poorly
in another. One application-dependent characteristic of a
WSN is the type of data traffic generated by the nodes.
The model that represents the aggregate packet traffic in
the network or a cluster of the network can be used to
determine the maximum stable throughput, expected de-
lay and the packet loss characteristics. Furthermore, the ef-
fects of parameters such as node density and target
. All rights reserved.
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velocity can be investigated in depth once an appropriate
data traffic model is available.

When communication protocols are developed without
taking into account the properties of the data traffic, they
may behave inefficiently. In the WSN literature, the perfor-
mance evaluation of the protocols are generally carried out
with periodic data traffic as in [1–3], or using common data
traffic models such as Poisson point processes [4–6]. How-
ever, event-driven applications such as target detection
and tracking produce bursty traffic which cannot be mod-
eled as either periodic or Poisson [7]. Although there are
packet traffic models available for legacy communication
networks, the unique features and requirements of WSNs
call for the design and development of dedicated models.
For instance, the limited battery capacity necessitates the
use of sleep-listen periods and sensing intervals to extend
the lifetime of the network.

In this paper, we investigate the importance of using a
realistic packet traffic model by deriving a specific surveil-
lance WSN packet traffic model (SPTM) and comparing the
performance of a WSN medium access control (MAC)
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List of symbols

Symbol Definition
uðdÞ probability of detection of a target at distance d
a Elfes detection parameter
b Elfes detection parameter
h angular coordinate of the sensor when the pole

is set to the target location
c probability of detection for any one sensor

within the du-distance of the target
qmax maximum stable throughput
f probability of packet collision in a contention

period
W random variable of the index of the first occu-

pied slot
n probability that a slot assignment results in a

collisionless transmission
a Gauss–Markov mobility model randomness

parameter
Ci location of target at instance i
ci coverage degree at point Ci

cx;y coverage degree at point x,y, i.e. the number of
sensor nodes that have positive detection prob-
ability for a target at x,y

Di disk whose center is at Ci and whose radius is
du, i.e. the coverage area of a the sensor at loca-
tion Ci

du sensing range
dc certain detection range
E direction of the mobile in Gauss–Markov mobil-

ity model
F random variable that represents the index of

first occupied slot given that it is selected by
only one node

Ki random variable that represents the detection
degree of the event point Ci

ki detection degree at point Ci

kx;y detection degree at point x,y, i.e. the number of
sensor nodes that detects the target at x,y

L border length
M number of contending nodes
N number of sensors
p probability that a deployed node is within the

du-distance of the target point
r radial coordinate of the sensor when the pole is

set to the target location
S speed of the mobile in Gauss–Markov mobility

model
tcoll time spent for the collided packets’ transmis-

sions
tCW time spent for waiting the first occupied con-

tention slot
tlisten listen period in seconds
tX time needed for the transmission of a packet

type X where X is RTS, CTS, DATA or ACK.
ts sensing interval
tslot one slot duration
tstx time required for a successful packet transmis-

sion
vT target velocity
W border width
Xi number of sensor nodes that have non-zero

detection probability, i.e. the sensor nodes that
resides within the du-distance of the event
point Ci

Yi number of nodes that reside in Ai

Z number of contention slots in a contention win-
dow

z number of successive collisions
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protocol under different packet traffic models. We show
that the underlying packet traffic model can result in dis-
similar performance results for the same average packet
traffic loads. This observation is significant because the im-
proper packet traffic models may result in underestimated
or overestimated performance results and lead to ineffi-
cient protocol design and implementation.

In the WSN literature, the application-specific packet
traffic models are not studied extensively. In [8], the traffic
generated by a single WSN node connected to a body tem-
perature or an electrocardiogram sensor is investigated for
medical applications. The traffic traces of an intrusion
detection scenario are studied in [9], where numerical
function fitting is carried out for the total number of pack-
ets generated at any instance. However, no generalized
analytical model is derived. An analytical packet traffic
model for intrusion detecting WSN is investigated in [7]
in which binary sensor detection is assumed. However,
binary detection is an idealized model in which the detec-
tion probability is defined with only a single parameter. To
achieve a more configurable and potentially more realistic
packet traffic, a probabilistic detection model is employed
in this work which includes a set of parameters to define
the range-based detection probabilities. These detection
parameters can be set according to the physical properties
of the sensors deployed and of the potential targets. Based
on this probabilistic detection model, we introduce a
framework for the SPTM and derive the analytical formula
for its components. The derived SPTM model is used to cor-
roborate how a realistic packet traffic modeling makes a
difference.

In Section 2, we describe the packet traffic framework
that is used for the SPTM and present an analytical model
for the proposed framework. Then, in Section 3, we verify
the introduced analytical model with simulations. In Sec-
tion 4, packet traffic generation algorithms are presented
based on the proposed analytical packet traffic model.
The performance evaluation results of the well-known S-
MAC protocol [10] are compared for SPTM, as well as the
periodic and the binomial packet traffic models in Section
5. Finally, Section 6 includes the analytical derivations of
the maximum stable throughput to verify the simulation



Fig. 1. Illustration of the dependency between subsequent number of
detections where ts is the sensor sampling period.
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results. A list of symbols used in the mathematical equa-
tions are given at the end of the text.

2. Surveillance wireless sensor networks packet traffic
model

Surveillance wireless sensor networks (SWSN) repre-
sent the WSN applications in which the deployed sensor
nodes monitor an area such as border for potential intruder
entrance. When an intrusion is detected, the detecting sen-
sors send data packets to the sink so that the necessary ac-
tions can be taken. Such a network can be employed for
security applications, habitat monitoring, or disaster man-
agement applications. Because of the distinctive properties
of these applications, the generated data are bursty and re-
quire a specific packet traffic model.

2.1. SWSN packet traffic model (SPTM) framework

Packet traffic models can be represented by a Markov
process where the state ~s corresponds to the event that s
data packets are generated by the sensing nodes at a given
data generation instant which are mainly the sensor sam-
pling instances for surveillance networks. The state transi-
tion probability from state ~a to state ~b indicates the
probability of generating b data packets with the knowl-
edge of a data packets generated at the previous sampling
instant. The dependency between the number of packets
generated at the successive sampling instances determines
the order of the Markov process. The order is zero for
memoryless packet traffic models such as Poisson and
periodic data traffic, i.e. the probability of a transition to
state ~b is independent from the current state. For SPTM,
the order is a positive value depending on the properties
of the intruder movements and sensor node attributes
which is formulated in [7]. The dependency in subsequent
number of detections is represented in Fig. 1. The cross
shaded sensors in Fig. 1 detect the target in the two con-
secutive sampling instances, and hence, generate data
packets in both sampling instances. The subsequent set
of detecting sensors is determined by the target velocity
and the sensing interval of the sensors, ts.

Since radio communication and sensing are two sepa-
rate power consuming operations for sensors,1 each has
its own duty cycle. The duty cycles can be static or can be
increased dynamically in case of event presence. For either
case, assume that the sensing duty cycle interval is ts in
the presence of a target, which means that each node senses
the environment once in ts seconds. Hence, after the target is
detected by a sensor at location ðx; yÞ at time t, it will possi-
bly be detected by the same node again at location ðx0; y0Þ at
time t þ ts, where the Euclidian distance between ðx; yÞ and
ðx0; y0Þ is vT ts, with vT being the velocity of the target within
the ðt; t þ tsÞ period as illustrated in Fig. 1. When one data
packet is created at each target detection, assuming that
the sensing offset of all sensors are the same, the number
1 As a numerical example, Crossbow motes require 5 mA for the sensor
board operations whereas 8 mA and 12 mA are required by the radio board
for reception and transmission, respectively. However, when both boards
are in sleep mode, they require only a few lA’s [11].
of data packets generated at point ðx; yÞ is equal to the detec-
tion degree of that location, kx;y, which is defined as the num-
ber of sensor nodes that actually detect the event.2 Hence, a
realistic packet traffic model for an SWSN application should
provide the probability mass function (PMF) of the detection
degree given the previous detection degree.

The assumption of sensing offset synchronization is
acceptable since for successful communication of the
sleeping neighboring nodes, time synchronization between
them is always necessary. Time division multiple access
(TDMA) based protocols require strict synchronization,
however carrier sense multiple access (CSMA) based proto-
cols, such as S-MAC, require looser synchronization. Hence,
the sensing duty cycle can be synchronized using the com-
munication cycle. Moreover, even if the communication
and the sensing duty cycles are different, the correspond-
ing detection packets will be transmitted at the beginning
of the next communication duty cycle.

Different sensor detection models are proposed for sen-
sor nodes [12]. The detection probability of an event by a
sensor node is in general a function of the sensor-to-event
distance. According to the binary detection model, an event
occurring within a specific range (sensor range) of a sensor
node is detected by that node with probability 1, and it is
not detected, otherwise. In other words, for the binary
detection model, the probability of the target detection
by a sensor is

uðdÞ
1 if d 6 dc;

0 if dc < d;

�
ð1Þ

where d is the distance between the target and the sensor
node and dc is the threshold distance for detection, which
is also called the sensing range.

Zou et al. [13] proposed a more general, probabilistic
sensor detection model based on the Elfes’ work [14]. Here,
the dependency is parametric enabling the representation
of different sensor types. Specifically, in the Elfes sensor
detection model, the probability that a sensor detects an
event at distance d is
2 Since intrusion detection is investigated as the event-driven application,
the terms target detection and event are used interchangeably.
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Fig. 2. SWSN packet traffic model (SPTM) framework.
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uðdÞ ¼
1 if d 6 dc;

e�aðd�dcÞb if dc < d < du;

0 if du 6 d;

8><
>: ð2Þ

where dc; du define the certainty and uncertainty bound-
aries in detection, respectively. To clarify the term sensing
range, dc can be called the certain detection range and du

can be called sensing range, for the Elfes case. Hence, the
target is detected with probability 1, if the target is within
the certain detection range and it is detected with an expo-
nential probability, if it is outside of the certain detection
range but still within the sensing range. No detection oc-
curs by the sensors that are further than the sensing range.
The parameters a and b, as well as du; dc , reflect the phys-
ical properties of the sensors. In particular, a and b deter-
mine the rate and region of decay in uðdÞ. An alternative
detection model that incorporates false alarm rate and
additive white Gaussian noise is Neyman–Pearson detector
[15]. However, the Elfes model can accommodate the
Neyman–Pearson detector through proper parameter
matching as indicated in [16].

Calculation of the total number of detecting sensor
nodes, dx;y, requires the knowledge of the number of sensor
nodes that have positive detection probability, which is
called the coverage degree and represented as cx;y for the
detection point ðx; yÞ. For an event location, a subset of
the nodes with positive detection probability will detect
the event. Therefore, the coverage degree of a location is al-
ways greater than or equal to its detection degree. For the
Elfes model, the sensor nodes that have positive detection
probability are those within du distance of the event point,
and for the binary detection model, they are the nodes
within dc distance. In addition, with the Elfes model, the
locations of the sensor nodes determine the probabilities
of the number of detections, since the detection probability
is a function of the target distance for each sensor. Hence,

(1) The number of detecting sensor nodes (detection
degree) is always less than or equal to the number
of sensor nodes that have a positive detection prob-
ability (coverage degree), i.e. kx;y 6 cx;y.

(2) For the binary detection model, the detection degree
is always equal to the coverage degree, i.e. kx;y ¼ cx;y.

(3) The Elfes model reduces to the binary detection
model, if du ¼ dc , and as a result, it enables more
general and flexible sensor detection modeling.

The framework for SPTM is shown schematically in
Fig. 2 and described as follows. As the target crosses the
border, it can be detected by the sensor nodes deployed
to the border which sample the environment periodically,
i.e. once in ts seconds. Hence, to find the number of data
packets generated because of the target detections at the
location ðx; yÞ, we first need to know the number of nodes
that can detect the target at ðx; yÞwhich is the coverage de-
gree of that location, cx;y. Once we have the coverage de-
gree, we then need to calculate the detection degree, kx;y,
based on cx;y. Hence, for consecutive number of detections,
we have to know the dependency between the coverage
degrees of the target locations at consecutive sampling
times. The main components of the framework are (i) the
coverage degree, (ii) the detection degree, (iii) relation be-
tween the detection degree and the coverage degree (ar-
row 1), and (iv) the dependency of successive coverage
degrees (arrow 2). The analytical derivations of these com-
ponents are given in Section 2.2.

2.2. Analytical model of the SPTM framework

In the WSN literature, two types of deployment are as-
sumed in general: random deployment (e.g. [17,18]) and
grid deployment (e.g. [19,20]). In grid deployment, nodes
are placed deterministically along grid points, while in ran-
dom deployment they are placed randomly in the applica-
tion area. In this paper, we assume uniformly random
deployment. However, we use the probabilities of the
number of sensor nodes deployed within a specific area in-
stead of setting the individual locations randomly. That en-
ables the calculation of the coverage degree of the event
locations without generating the whole deployment map.

Since cx;y is defined as the number of sensor nodes that
has a positive probability to detect the target at ðx; yÞ, the
PMF of cx;y is determined by the probability of the total
number of sensors within the distance du of ðx; yÞ. How-
ever, as the surveillance area and the total number of sen-
sors deployed within its borders are known, for each
sensor node deployment, the event that the deployed node
is within the du-distance of the target point is a Bernoulli
trial with the probability of success p ¼ pd2

u=LW , where
ðL;WÞ is the length and width of the borders of the surveil-
lance area. Hence, the total number of sensor nodes within
distance du of a point forms a Binomial distribution. More-
over, for large number of retrials and small success proba-
bility, Binomial distribution can be approximated by a
Poisson distribution. This is generally the case for intrusion
detection applications, since the number of deployed sen-
sors, N, gives the number of retrials and the probability
that a deployed node resides within the du-distance of
the target point, p, is small because of the large deploy-
ment area. The mean of the equivalent Poisson distribution
is

k ¼ Np ¼ Npd2
u

LW
: ð3Þ

The coverage degree probabilities of area points, hence,
form a Poisson PMF. However, as illustrated in Fig. 1, be-
cause the number of sensor nodes within the sensing



Fig. 3. Geometric representation of successive target detection locations.
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ranges are similar, the coverage degree probabilities of two
nearby surveillance area points are not independent of
each other. If we are given the coverage degree of the tar-
get location at time t, we cannot use the Poisson distribu-
tion with the mean value given in (3) to estimate the
coverage degree of the target location at time t þ ts, which
will be the next detection point.3

Fig. 3 shows the reason for the degree-dependency be-
tween the successive points. Let C1 and C2 denote loca-
tions of the target at times t and t þ ts, respectively. If the
target velocity at time t is vT , then the distance between
C1 and C2 is equal to vT ts. In addition, the coverage degree
of point C1 ðC2Þ equals to the number of sensor nodes
residing on D1ðD2Þ, where Di is the disk whose center is
at Ci and whose radius is du. The dependency of the cover-
age degrees of points C1 and C2 is represented by the inter-
section of the two disks.

To investigate the dependency of the coverage degrees,
we have to first look into the deployment probabilities of
the crescent areas A1 and A2, and the intersection area
A3 which are defined as:

A3 ¼ D1 \D2; Ai ¼ Di �A3; i ¼ 1;2:

Let the random variable Yi denote the number of nodes
that reside in Ai. Then,

PðYi þY3 ¼ nÞ ¼ PðXi ¼ nÞ; i ¼ 1;2; ð4Þ

where the random variable Xi denotes the number of sen-
sor nodes that have non-zero detection probability, i.e. the
sensor nodes that resides within the du-distance of the
event point Ci.

Given that point C1 has coverage degree c1, the proba-
bility that point C2 has coverage degree c2 is found as fol-
lows. Define cmin ¼minðc1; c2Þ. Then,

PðX2 ¼ c2jX1 ¼ c1Þ

¼
Xcmin

i¼0

PðX2 ¼ c2jY3 ¼ iÞPðY3 ¼ ijX1 ¼ c1Þ: ð5Þ
3 The locations that the target resides at sampling times will be named
detection point or event point, even if the detection degree is zero for the
sake of readability.
If it is known that there exist c1 sensors on the first disk,
then the probability of having i of them inside A3 pos-
sesses a Binomial distribution, where the probability of
success is A3=pd2

u. Hence,

PðY3 ¼ ijX1 ¼ c1Þ ¼
c1

i

� �
A3

pd2
u

 !i

1� A3

pd2
u

 !c1�i

: ð6Þ

The probability of having c2 � i sensors within A2 again
possesses the Binomial distribution. However, c1 sensors
are known to be out of that area. Hence, we are left with
N � c1 sensors to be deployed in the entire surveillance
area minus D1. As a result,

PðX2 ¼ c2jY3 ¼ iÞ

¼ PðY2 ¼ c2 � iÞ ¼
N � c1

c2 � i

� �

� A2

LW � pd2
u

 !c2�i

1� A2

LW � pd2
u

 !N�c1�ðc2�iÞ

: ð7Þ

Therefore, given c1, the probability of having a coverage
degree of c2 in the next detection point can be calculated
by using (5)–(7). However, according to (2), even if the cov-
erage degree of a detection point is known, the number of
target detections, and hence, the number of data packets
generated are probabilistic. To calculate the detection de-
gree of an event point, we first have to find the probability
of event detection, uðdÞ, per sensor node within the sens-
ing range du. Then, a PMF for the number of detecting
nodes can be generated which is a function of coverage de-
gree cx;y. For that, we utilize the circle area element defini-
tion which is illustrated in Fig. 4. The circle area element
is defined as

dA ¼ rdrdh:

Assume that a sensor node resides within the sensing
range of the event location. Then, the probability of detec-
tion, c, is equal to the probability that the sensor resides in
any specific circle area element and detects the target from
that distance. For any sensor within du distance of the
target,



Fig. 4. Circle area element at distance r and with angle h.

Table 1
Parameters for the reference scenario.

Parameter Notation Value

Border length L 10,000 m
Border width W 1000 m
Number of sensors N 10,000
Sensing range du 20 m
Certain detection range dc 0 m
Sensing parameter a 0.1
Sensing parameter b 1
Target velocity vT 10 m/s
Sensing interval ts 1 s

4 As will be described in Section 4, any target trajectory with varying
direction and speed can be used as an input to generate successive coverage
and detection degrees, analytically.

I. Demirkol et al. / Computer Networks 53 (2009) 382–399 387
c ¼
Z 2p

0

Z du

0

dA

pd2
u

uðrÞ ¼
Z 2p

0

Z du

0

rdrdh

pd2
u

uðrÞ: ð8Þ

However, uðrÞ is a piecewise function and therefore the
integral in (8) can be divided into appropriate intervals as
in

c ¼
Z 2p

0

Z du

dc

rdrdh

pd2
u

e�aðr�dcÞb þ
Z 2p

0

Z dc

0

rdrdh

pd2
u

: ð9Þ

Eq. (9) can be integrated according to the Elfes parame-
ter values used. For b ¼ 1, the probability of detection is
found to be

c ¼ d2
c

d2
u

þ 2

a2d2
u

½1þ adc � eaðdc�duÞð1þ aduÞ�: ð10Þ

When all sensors are identical, which implies the same
c, and because sensor nodes are distributed uniformly, the
PMF of the detection degree of the event point is Binomial
with the probability of success, c.

If we define Ki to be the random variable that repre-
sents the detection degree of the event point Ci, then

PðKi ¼ kijXi ¼ ciÞ ¼
ci

ki

� �
cki ð1� cÞci�ki : ð11Þ

The probabilities of possible detection degrees of a
point can be calculated if the coverage degree of that point
is known. However, as (5) indicates, the coverage degrees
of successive detection points are not i.i.d., which means
that the numbers of successive data packet generations
are dependent. Given that Cj is the subsequent point of
detection point that comes right after Ci, and kj is the
detection degree of the detection point Cj, this dependency
can be formulated as

PðKj ¼ kjjXi ¼ ciÞ

¼
XN�ci

cj¼0

PðKj ¼ kjjXj ¼ cjÞPðXj ¼ cjjXi ¼ ciÞ:
ð12Þ
The accuracy of the analytical formulation derived for
the components of SPTM framework is verified in Section
3. Moreover, the packet traffic generation using these for-
mula is presented in Section 4.

3. Validation of SWSN packet traffic model (SPTM)
framework

As a reference scenario, we set the system parameter
values as specified in Table 1, and investigate the coverage
and the detection degrees of the area points under uni-
formly distributed random deployment. The value for the
parameter Number of Sensors is selected so that if regular
grid deployment is employed, that many nodes are re-
quired for a minimum coverage of 99% of the surveillance
area.

For evaluating the case with the Elfes detection model,
10,000 simulation runs are performed. At each run, N sen-
sors are randomly deployed to a rectangle surveillance
area that has length L and width W with uniform distribu-
tion. Then, one target crosses the area with the velocity vT .
While the target crosses the area, at each ts seconds, the
coverage degree of the target location and the number of
target detections generated are logged with the corre-
sponding time values to be able to extract the dependency
of successive target locations. Detection of the target by
the surrounding sensor nodes are determined probabilisti-
cally based on the sensor-target distance. The target uses
the shortest crossing path.4 As a result, at each simulation
run, bW=vT tsc ¼ 100 samples are taken in which the target
is possibly detected. At each sampling, the coverage and
detection degree values of the target locations are logged.
After all simulations are completed, the probability mass
functions are constructed based on the following histograms
of the logged data:

� Histogram of the detection degrees observed, ki, for the
target detection points with coverage degree ci, which is
denoted as HistðkijXi ¼ ciÞ,

� Histogram of the coverage degrees of the successor tar-
get detection points for the locations with coverage
degree ci, which is denoted as Histðciþ1jXi ¼ ciÞ.
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Fig. 5 depicts PðKi ¼ kjXi ¼ 5Þ, which is the detection
degree PMF for the points with coverage degree of 5. As
seen in the figure, the simulation results verify the analyt-
ical work presented for the probabilities of the number of
sensors detecting an event, given the number of sensors
within the sensing range. If the binary sensor detection
model was used instead, the resulting PMF would give
the probabilities of

PðKi ¼ kjXi ¼ 5Þ ¼
1 if k ¼ 5;
0 otherwise;

�
ð13Þ

which have very diverse values since the number of sensor
nodes within the sensing range of the target directly gives
the number of sensors detecting this target, i.e. if a sensor
is within the sensing range of the target, it detects the
target with probability 1. To show that the detection de-
gree PMF of an event point is determined by its coverage
degree regardless of the history of coverage degree values,
PðKi ¼ kjXi ¼ 4Þ is compared to PðKi ¼ kjðXi ¼ 4Þ
ðXi�1 ¼ jÞÞ in Fig. 6. As Figs. 5 and 6 show, the packet traffic
model presented in Section 2 provides a mathematical
framework for the packet traffic incurred by the SWSN.

To achieve accurate packet traffic model, Elfes parame-
ters should be set according to the detection characteris-
tics of the sensors deployed. Fig. 7 depicts the effect of
different certain detection ranges on the number of detec-
tions for a point with coverage degree of 5 where the
sensing range of the sensors is 20 m. The figure shows
the crucial effect of the sensing properties of the sensors
on the detection degree probabilities. Note that the binary
detection model is achieved for the special case where the
certain detection range parameter, dc is equal to the sens-
ing range parameter, du. As seen in Fig. 7, the packet traf-
fic based on the parametric detection model will be very
different from the one based on the idealized binary
detection model.

The significance of setting the Elfes parameters accu-
rately is also seen in Fig. 8 where the detection degrees
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for different values of the Elfes detection parameter a is
shown. As the figure depicts, given a point with a specific
coverage degree value, the detection degree probabilities
varies considerably depending on the detection parameter
value used. Hence, in addition to the use of a parametric
detection model, the use of sensor-specific parameter val-
ues is also very crucial. Note that, setting the a parameter
to zero yields the binary detection model which results in
substantially different detection degree probabilities for a
given coverage degree value.
4. Packet traffic generation using analytical SPTM
model

Based on the presented analytical work for the coverage
and the detection degree models, synthetic packet traffic
for an intrusion detection scenario can be generated as
follows.

4.1. SPTM packet traffic generation algorithm

Packet traffic starts with the entrance of the target to
the surveillance area. Since there is no coverage degree his-
tory at that time, the initial coverage degree is generated
according to the Poisson distribution with mean given in
(3). Based on the detection degree PMF for the generated
coverage degree value, a detection degree value is pro-
duced. Then, with the dependencies described in Section
2, subsequent coverage degrees and the corresponding
detection degree values are generated. Algorithm 1 pre-
sents the steps to create sample packet traffic streams con-
sidering the Elfes detection model for b ¼ 1 case.

Algorithm 1.

Packet traffic generation algorithm for the Elfes model
1:
 Set c0 to be a random value chosen from the Poisson
distribution with mean given in (3) {entrance point cov.
deg.}
2:
 Calculate As based on the vT , ts and du.

3:
 Calculate k0 based on the probabilities found in (10)

and (11) {entrance point detection deg.}j k

4:
 for t ¼ 1 to W

vT ts
assuming a shortest crossing path do
5:
 Choose a value for ct randomly, based on the
probabilities found in (5)–(7).
6:
 Calculate kt based on the probabilities found in (10)
and (11).
7:
 end for
Although Algorithm 1 assumes a shortest crossing path
for the target, any path with constant target speed can be
evaluated by changing the second term in Step 4 with
b‘=vT tsc, where ‘ represents the length of the target cross-
ing path. That is because all analytical work presented is
still applicable by dividing the path into piecewise linear
paths. In addition, if a target with varying speed and/or
varying direction is to be simulated, the target trajectory
can be used to generate the corresponding packet traffic
as follows: Assume that the target trajectory is given as
the vector C ¼ ½C1C2 � � �Cg�T where Ci stores the location
of the target at ith sampling and g here represents the last
sampling index before the target leaves the surveillance
area. The modified algorithm that utilizes the target trajec-
tory is given in Algorithm 2.
Algorithm 2.

Packet traffic generation algorithm for the Elfes model
using a target trajectory
1:
 Set c0 to be a random value chosen from the Poisson
distribution with mean given in (3) {entrance point cov.
deg}.
2:
 Calculate As based on the vT ; ts and du.

3:
 Calculate k0 based on the probabilities found in (10)

and (11) {entrance point detection deg.}

4:
 for t ¼ 1 to g {assuming a given target trajectory} do

5:
 Choose a value for ct randomly, based on the

probabilities found in (5)–(7) where vT ts is replaced by
the Euclidean distance between Ct and Ctþ1 in the area
calculations.
6:
 Calculate kt based on the probabilities found in (10)
and (11).
7:
 end for
4.2. Traffic characteristics

Data traffic streams generated with Algorithm 1 are
illustrated in Fig. 9 for varying number of sensor deploy-
ments, in other terms for varying sensor densities. If the
target uses the shortest crossing path, then the path takes
bW=vTc ¼ 100 seconds and the target is sensed for
bW=vT tsc ¼ 100 times by the sensors if ts ¼ 1 seconds.
Fig. 9 depicts that the probability of target detection, and
hence the data traffic rate increases as the sensor density
increases as expected.

The effect of the target velocity is investigated in Fig. 10.
As the target velocity decreases, the dependency between
the successive number of data packet generations in-
creases and the probability that similar number of data
packets are generated at consecutive detections increases.
However, as the target velocity increases, the PMF of the
number of data packets generated approaches the memory-
less Poisson distribution with the mean given in (3), which
results in sharper changes in the number of data packets
generated at consecutive detections.

The proposed packet traffic model enables the genera-
tion of sample data traffic streams or investigation of the
effect of system parameter settings as illustrated in Figs.
9 and 10. To expose the characteristics of the three packet
traffic models investigated, sample traffic traces with sim-
ilar average traffic loads are shown in Fig. 11. The average
load of the periodic packet traffic is adjusted by setting the
data generation interval of the nodes whereas the average
load of the Binomial packet traffic is adjusted by setting the
data generation probability of the sensor nodes. For each
traffic model, 50,000 nodes are deployed to the target area
and the target average load is set to the one achieved with
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Fig. 9. Effect of node density on data traffic.
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the SPTM traffic for the target speed of 1 m/s and the sens-
ing range of 20 m. As seen in Fig. 11, the number of consec-
utive SPTM packet generations are correlated. That is why
the interval of the total number of packets generated per sec-
ond is larger in the periodic and Binomial packet traffic
traces.

Although Figs. 9 and 10 show the traffic generated for
shortest crossing paths, different target mobility models
can be used in SPTM with Algorithm 2. The Gauss–Markov
mobility model [21] is widely utilized in ad hoc networks
where the speed and the direction of mobile node is as-
sumed to be correlated over time and modeled as a
Gauss–Markov stochastic process using the equations

Stþ1 ¼ aSt þ ð1� aÞSþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a2Þ

q
SXt ; ð14Þ

Etþ1 ¼ aEt þ ð1� aÞEþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� a2Þ

q
EXt ; ð15Þ

where St and Et are the new speed and direction of the
target at time interval t; �S and E are constants represent-
ing the mean value of speed and direction as t !1, and
SXt and EXt are zero-mean Gaussian distributed random
variables. The degree of randomness is adjusted by the a
parameter. As a increases, the current velocity is more
likely to be influenced by the previous velocity, whereas
setting a to zero yields the well-known Random Walk
model. Fig. 12a shows a sample target trajectory for border
crossing with mean speed of 10 m/s, mean direction of 90�
(to represent the aim of crossing the border perpendicu-
larly), the memory level parameter a ¼ 0:8 and setting
the Gaussian random variable variances to the one quarter
of the mean speed and direction, respectively.

The packet traffic trace for the target trajectory shown
in Fig. 12a is given in Fig. 12b. As seen in the figure, the
consecutive packet traffic is correlated. This is an expected
behavior since, for any target mobility model, the consecu-
tive target detection locations will have similar coverage
degrees. Gauss–Markov mobility model results in varying
speeds, however when vT ts < 2du, the consecutive cover-
age degrees will be correlated. For du ¼ 20 m and ts ¼ 1 s,
the speeds below 40 m/s will result in a dependency,
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Fig. 10. Effect of target velocity on data traffic.
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which actually corresponds to 144 km/h whereas the real-
istic target speeds are expected to be lower. For the rare
cases where the target goes faster than 144 km/h, for the
packet traffic creation, the Poisson distribution can be used
to generate the coverage degrees and (8)–(11) can be used
to generate the detection degrees based on these coverage
degrees.

5. Impact of a realistic packet traffic model

To investigate the effect of the underlying packet traffic
model, we conduct various simulations with three different
types of packet traffic generation: (i) periodic data genera-
tion (ii) binomial data generation achieved by Bernoulli tri-
als of the individual nodes, (iii) data generation by SPTM
which corresponds to the realistic packet traffic for SWSN.
We study the impact by examining the performance results
for the Sensor-MAC (S-MAC) protocol [10]. S-MAC is a
CSMA/CA-based MAC protocol that divides the network into
virtual clusters, where the cluster members have the same
sleep-listen schedules and the members at the intersection
of different clusters also wake up at listen periods’ of their
neighboring clusters. Although there are a number of
improvements on S-MAC such as Time-out-MAC (T-MAC)
[22] and Dynamic Sensor-MAC (DSMAC) [23], because our
goal is to show that using a realistic traffic model makes a
difference, we will focus on the basic S-MAC protocol.

The performance of S-MAC is evaluated with the three
different packet traffic models based on two performance
criteria. The first one is the average packet delay as used
in [24,25] which is a crucial performance metric for time-
critical applications such as disaster monitoring and target
tracking. For MAC protocols, packet delay is defined as the
time passed from the data packet’s reception by the sen-
der’s MAC layer to its arrival to the destination node’s
MAC layer which includes the queueing delay, collision de-
lays and the transmission delay. Selecting the average
packet delay as a performance metric also enables the
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Fig. 11. Packet traffic traces of different traffic models with similar mean packet loads.
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investigation of the maximum stable throughput of a sys-
tem by inspecting the traffic load that results in infinite
average delay.

The second performance criterion inspected is the pack-
et drop rate as in [26,27], which is described as the rate of
the packets dropped due to the limited buffer, or some
other system or environment effect such as protocol
time-outs. The packet drop rate is critical if the redundancy
of the information sent is low, in other words if the infor-
mation within each data packet is crucial for the
application.

We consider one of the virtual clusters formed in the
network separately to investigate the performance of the
S-MAC protocol without the influence of the overlaying
protocols such as the routing protocol. Within a virtual
cluster, all members that have a data packet to send con-
tend for the medium. S-MAC allocates contention slots
for election of the node that will be given access to the
medium. At the beginning of the contention slot period,
all pending nodes pick a slot randomly. If a node did not re-
ceive start of any transmission before its slot’s time arrives,
it starts to transmit a ready-to-send (RTS) packet. Once the
transmitted packet arrives at the destination node success-
fully, the destination node replies with a clear-to-send
(CTS) packet. On the other hand, if the first occupied slot
is actually selected by two or more nodes, then these nodes
start transmitting their RTS packets at the same time,
which results in a collision. These sender nodes realize
the collision when no CTS packet is returned by the desti-
nation node within a specified time. Once the CTS packet is
transmitted or the CTS time-out triggers, the contention
slot procedure is started again. S-MAC simulation parame-
ters and their values are listed in Table 2. Section 5.1 de-
scribes the three packet traffic patterns used in the
simulations. Then, Section 5.2 presents the results of the
comparison.

5.1. Packet traffic patterns

To evaluate the impact of the SPTM traffic pattern, two
other data traffic patterns with different data traffic loads
are used for comparison. The traffic load is defined as the
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Parameters of the packet traffic patterns.
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Fig. 12. SPTM traffic generation algorithm is used with Gauss–Markov
mobility model.

Table 2
Scenario parameters.

Parameter Value

Number of contending sensors 20
Bandwidth 20 Kbps
Data packet size 128 bit
RTS/CTS/ACK packet size 26 bit
Listen period 0.1 s
SYNC + Sleep period 0.9 s
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number of new packet arrivals to a system, i.e. the total
number of data packets created per unit time for WSN
applications.5 The periodic data traffic is achieved when
each sensor node generates data with a specific time inter-
5 Two types of traffic loads are defined in the literature, namely, the
offered traffic load and the carried traffic load. In this work, we study the
changes in the system performance according to the number of data
packets generated. Hence, we use the term traffic load to represent the
offered traffic load.
val. A common interval is used by all sensors; however, they
are allowed to choose a random offset. As a result, a period-
ically repeating packet traffic occurs. In this traffic model,
average packet traffic load can be varied by changing the
data generation interval defined in the system. To have a
simplistic and non-periodic packet traffic, probabilistic data
generation is used where the sensor nodes generate data
packet at each unit time based on a specific probability. Con-
sequently, the individual data traffic is a Bernoulli process
and the aggregate data traffic becomes a Binomial traffic.
Here, the traffic load is determined by the probability value
assigned to all sensor nodes for data generation. Both peri-
odic data traffic and Binomial packet traffic have the com-
mon property of being independent of external events
such as target detection. Moreover, in both types of traffic,
individual sensor data generation times are independent of
the other sensors’ data generations.

The SPTM traffic is composed of data packets generated
by the sensor nodes at target detections. Hence, there is a
dependency between data generations of the neighboring
sensors which results in a bursty packet traffic. SPTM pack-
et traffic scenario is generated as follows. Within the clus-
ter area in which sensor nodes are deployed uniformly
random, one target is assumed to move according to the
random waypoint mobility model, which is commonly
adopted in ad hoc networking research community
[28,29]. In this model, the mobile is assigned a destination
point (‘‘waypoint”) within the rectangular area defined,
and a speed uniformly in a given interval. When it reaches
the destination, it remains static for a predefined pause
time and then starts moving again according to the same
rule. With SPTM, different packet traffic loads are achieved
by altering the value of the sensing range parameter of the
detection degree model. The crucial parameters of the
packet traffic scenarios and their value ranges used for
the simulations are listed in Table 3.

Since we investigate the performance of the S-MAC and
try to isolate it from the other communication layers, in-
stead of simulating the whole border, we simulate just
one part of it in which all nodes are one-hop away and
are able to contend for the medium. Thus, we set a square
shaped area in which all nodes can hear each other.

5.2. Packet traffic model simulation results

S-MAC is implemented in OPNET Modeler simulator
[30] based on its ns-2 implementation [31]. Results pre-
sented in this section include the average delay and the
packet drop rate of the S-MAC protocol for the three differ-
Periodic Data generation interval 2.25–20 s
Binomial Data generation probability 0.05–0.4
SPTM Sensing range 15–40 m
SPTM Target speed 1 m/s
SPTM Pause time 0 s
SPTM Area length 100 m
SPTM Area width 100 m
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ent packet traffic patterns under various average traffic
loads. Each simulation run with a different seed generated
a slightly different average aggregate load. Therefore, each
simulation run is presented as a separate data point in the
figures. The simulated network execution durations are
limited to 12 h, which is sufficient for the convergence of
the performance values and to have realistic performance
results. For instance, within that duration, each sensor
node generates approximately 2000 packets when periodic
data traffic is selected with the packet interval parameter
equal to 20 s.

5.2.1. Unlimited buffer case
The S-MAC performance results of one-hop delay aver-

ages are shown in Fig. 13 for different packet traffic pat-
terns. As seen in the figure, except for very low data
loads where no contention occurs and for very high data
loads where the system is saturated, SPTM results in much
higher delays than the binomial and periodic data traffic.
The reason is that although the amount of data packets
generated are close, the packet traffic generated by SPTM
is bursty, which results in more contention compared to
the other traffic types. Note that these delays are only
one-hop link delays, and they must be accumulated until
the data packet reaches the sink node for the calculation
of the end-to-end delay. Hence, other traffic models over-
estimate the performance results of the S-MAC protocol
for the SWSN applications, which may result in an ineffi-
cient system design.

The effect of the number of contending nodes on the
performance results are investigated by comparing the
three packet traffic types for 10, 20 and 30 nodes. Fig. 14
depicts the comparison where for all three cases SPTM
packet traffic yields different performance results than
the other two models. As the number of contending nodes
increases, the average delays observed for a given load in-
crease. The reason is that more contending nodes result in
higher probability of collisions and hence, higher success-
ful medium access delays.
0 1 2 3 4 5 6 7 8 9
10−1

100

101

102

103

104

Average Packet Traffic Load (pkts/sec)

Av
er

ag
e 

D
el

ay
 (s

ec
)

Binomial
Periodic
SPTM

Fig. 13. Average delay vs. average load for the S-MAC protocol under
different packet traffic patterns (log graph).
In addition to the average packet delays, we also ex-
plore the variance of the packet delays which can be
important for the overlaying WSN application. We choose
sample runs from each type of packet traffic pattern that
has similar average traffic loads. Fig. 15 shows the delay
histogram for the sample runs with the average data traf-
fic load around 5 packets/s. The system is found to be sta-
ble in all of the traffic patterns under this average load.
However, as seen in Fig. 15, for similar average traffic
loads, the packets arrive with larger delays when SPTM
pattern is used.

The SPTM scenario parameter settings also shape the
MAC performance as shown in Fig. 16, where the average
delay results for two different target velocities are shown.
Hence, to have a realistic model, appropriate values of the
system parameters should also be determined.

5.2.2. Limited buffer case
An important limitation in sensor nodes that should be

considered is the limited memory capacity. That is why, in
the real life scenarios, certain protocol limits are defined
for the number of data packets to be buffered. In addition,
if the delay of the packets in the queue reaches to a certain
level, packet content can be useless for an application in
which case the packet should be dropped. If a new data
packet arrives from the application layer when the data
buffer is full, either this packet can be merged to the previ-
ous packets by data aggregation, or one of the old packets
or the new packet may be dropped. Since the packet drop
rate is an important indicator for the MAC protocol perfor-
mance, we study the limited buffer systems for this crite-
rion, setting the data packet buffer limit to be 10 or 50
packets.

The packet drop percentages for different packet traffic
patterns are shown in Figs. 17 and 18 for the buffer size of
10 and 50 packets, respectively. The SPTM resulted in
much higher packet drop rates for the traffic loads higher
than 3 and 5 packets/s, respectively. This is also an indica-
tion of burstiness of the packet traffic generated by the
SPTM, since similar traffic loads always result in more
packet drops for SPTM. Moreover, for the range of 3–7
packets/s, although there is no packet drops in the other
traffic types, SPTM packet traffic results in non-negligible
packet drop rates.

We investigate the average delay results for the three
packet traffic patterns for the case where the newly cre-
ated packets are dropped when the buffer is full. Assigning
a packet drop rate threshold of 10%, Figs. 19 and 20 show
the average packet delays encountered for the buffer size
of 10 and 50 packets, respectively. The SPTM packet traffic
still creates much higher average delays compared to the
two other packet traffic patterns.
6. Analytical verification of the maximum throughput
found by the SPTM packet traffic

The figures presented in Section 5 includes the perfor-
mance results of the S-MAC communication protocol
achieved by simulation for the three different packet traffic
models. To verify these results in part, we investigate the
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Fig. 14. Average delay vs. average load for the S-MAC protocol for different number of contending nodes (log graph).
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Fig. 15. Delay histogram of sample runs with similar average traffic loads.
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Fig. 16. Average delay vs. average load for the S-MAC protocol with
different system parameter values.
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Fig. 17. Packet drop rate vs. average load for the S-MAC protocol with the
buffer size of 10 packets.
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Fig. 18. Packet drop rate vs. average load for the S-MAC protocol with the
buffer size of 50 packets.
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Fig. 19. Average delay vs. average load for the S-MAC protocol with
allowable drop rates for the buffer size of 10 packets.
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Fig. 20. Average delay vs. average load for the S-MAC protocol with
allowable drop rates for the buffer size of 50 packets.
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maximum stable throughput by analytical derivations and
compare the outcome with the simulation results pre-
sented in Section 5.

In a multiple access system, offered load can be in-
creased up to a certain point after which the system will
be unstable, i.e. the expected delay will be unacceptable.
This value will result in the maximum stable throughput.
As the system approaches to an unstable point, every node
will have data packets to send, and hence if there are M

nodes within the investigated cluster, all M nodes will
contend for the medium. However, for a MAC protocol,
the maximum stable throughput is the maximum number
of data packets that can be sent successfully per unit time
in the steady state. Then for S-MAC, the maximum stable
throughput, qmax is calculated as

qmax ¼
tlisten

E½tstx�
; ð16Þ
where tlisten is the listen period in seconds and tstx is the
time required for a successful packet transmission includ-
ing the time lost with packet collisions and the duration of
wait timers. Note that qmax has the unit packets per listen-
sleep period. In (16), the expected value of the successful
packet transmission time is used instead of the shortest
feasible transmission time, since the steady state is consid-
ered when the maximum throughput is investigated.

S-MAC utilizes contention slots and RTS/CTS mecha-
nism where the expected duration of a successful packet
transmission is calculated as

E½tstx� ¼ E½tcoll� þ E½tCW� þ tRTS þ tCTS þ tDATA þ tACK; ð17Þ

where tcoll represents the time spent for the collided pack-
ets’ transmissions, tCW represents the time spent for wait-
ing the first occupied contention slot and all other tX

represent the time needed for the transmission of a packet
of type X.



Table 4
Simulation parameters used in analytical formula.

Parameter Value

Number of contention slots 63
Number of contending nodes 20
Slot time 0.001 s
Sleep period 0.9 s
Listen period 0.1 s
Bandwidth 20 Kbps
Data packet size 128 bit
RTS/CTS/ACK packet size 26 bit

Table 5
Numerical results found by analysis.

Parameter Calculated value

n 0.8492
f 0.1508
E½tCW� 0.0025 s
E½tcoll� 0.0011 s
E½tstx� 0.0139 s
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Since S-MAC is 1-persistent CSMA and collision is
understood by the CTS time-out triggered when no CTS
packet is received after tCTS, the expected time spent for
collisions is calculated as

E½tcoll� ¼
X1
z¼0

zðE½tCW� þ tRTS þ tCTSÞfz; ð18Þ

where z is the number of successive collisions and f is the
probability of packet collision in a contention period. How-
ever, in a protocol with contention slots, a collision occurs
when the first occupied slot is selected by two or more
nodes. Therefore, the probability that a slot assignment re-
sults in a collisionless transmission is

n ¼ ð1� fÞ ¼
XZ�1

f¼1

PðF ¼ f jZ;MÞ; ð19Þ

where PðF ¼ f jZ;MÞ represents the probability that f is
the first occupied slot and it is selected by only one node
given that the contention window consists of Z contention
slots and there are M contending nodes. Thus,

PðF ¼ f jZ;MÞ ¼MðZ� f ÞM�1

ZM
; ð20Þ

because there are ZM different slot assignment possibili-
ties among which the following assignments results in col-
lisionless transmission: f is chosen by any of M nodes and
the slots f þ 1 to Z, i.e. Z� f slots, are chosen randomly by
M� 1 nodes. Incorporating (20) into (21) yields

n ¼
XZ�1

f¼1

PðF ¼ f jZ;MÞ

¼M
ð2M�1 þ � � � þ ðZ� 1ÞM�1Þ

ZM
: ð21Þ

The expected waiting time till the first occupied contention
slot is

E½tCW� ¼
XZ
w¼1

ðw� 1ÞPðW ¼ wÞtslot; ð22Þ

where tslot is one slot duration and W represents the ran-
dom variable of the index of the first occupied slot. There-
fore, PðW ¼ wÞ gives the probability that the wth slot is the
first occupied slot which can be defined as

PðW ¼ wÞ ¼ Pððsi P w; 8i ¼ 1::MÞ ^ ðsi ¼ w; 9i ¼ 1::MÞÞ;

where si represents the slot chosen by node i.
Consequently,

PðW ¼ wÞ ¼ Z� wþ 1
Z

� �M

� Z� w
Z

� �M

: ð23Þ

The maximum stable throughput of S-MAC under SPTM
packet traffic can be calculated analytically once the sys-
tem parameter values are given. To compare the maximum
stable throughput achieved at simulation results with the
analytically found throughput, the simulation parameters
values given in Table 4 are applied to (16)–(23), and the
maximum stable throughput formula components are cal-
culated to be as tabulated in Table 5. According to these
values, the maximum stable throughput is found to be
7.195 packets/s. The traffic load that results in instability
in Fig. 13 matches the analytical maximum stable through-
put result. Although the simulation results match the ana-
lytical results at the maximum stable throughput, the
intermediate throughput-delay value calculations remain
as an open issue.

Note that these calculations require the exact average
delay derivations for the given average traffic loads which
must consider the randomly deployed node locations, ran-
domly moving target’s trajectory, MAC collision probabili-
ties that depend on the number of data packets of the
nodes and individual packet delays that depend on the
packet queue size of the sensor nodes.

7. Conclusions

In this paper, a new packet traffic model framework is
devised for intrusion detection applications using the
Elfes sensor detection model. The system design parame-
ters considered in this framework are the number of sen-
sors deployed, the area size of the border, the detection
distance thresholds, the target velocity, the sampling
interval and the Elfes detection model parameters. Simu-
lation results support the analytical work presented for
the packet traffic model under this probabilistic detection
model.

To show the importance of using a realistic packet traf-
fic model for evaluating WSN communication protocols,
we investigate the performance of S-MAC for different
packet traffic models. Simulation results indicate that eval-
uating S-MAC with a packet traffic model other than the
one proposed may give misleading results for the intrusion
detection applications. The reason is revealed to be the
bursty nature of the SPTM packet traffic which is proven
analytically. Although, the effect of using a realistic packet
traffic model is demonstrated for a MAC protocol, it can
also be emphasized for other layers such as routing proto-
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cols. Moreover, the proposed model can be a baseline to
have separate analytical studies for event-based WSN.

As a future work, the presented packet traffic model can
be extended to include multiple target trajectories. In addi-
tion, the analytical traffic model can be updated by consid-
ering the relayed packets as part of the routing activity.
The impact of using a realistic packet traffic model can also
be investigated for the energy consumption metric. Using
the proposed packet traffic model, the performance of var-
ious kinds of applications can easily be investigated such as
the one in which the detecting nodes send their packets
with a certain probability.
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