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ABSTRACT

In this paper, we present a greedy sensor selection algorithm for

minimum variance distortionless response (MVDR) beamforming

under a modular budget constraint. In particular, we propose a

submodular set-function that can be maximized using a linear-time

greedy heuristic that is near optimal. Different from the convex for-

mulation that is typically used to solve the sensor selection problem,

the method in this paper neither involves computationally inten-

sive semidefinite programs nor convex relaxation of the Boolean

variables. While numerical experiments show a comparable perfor-

mance between the convex and submodular relaxations, in terms of

output signal-to-noise ratio, the latter finds a near-optimal solution

with a significantly reduced computational complexity.

Index Terms— submodularity, MVDR beamforming, greedy

algorithm, budget constraint, sensor selection

1. INTRODUCTION

Nowadays, advances in technology have allowed the deployment of

large-scale sensor networks for distributed data sampling. In this

setup, sensor nodes are deployed in different locations and are ca-

pable of autonomously processing the gathered data. As a whole,

the network aims to obtain relevant information from the process it

monitors. In this paper, we focus on spatial beamforming, where we

are interested in extracting the signal that impinges on an antenna

array from a particular direction, and filter out spatial signals which

are not of interest.

Large networks usually generate prohibitively large datasets

which are gathered at a central unit for further processing. Hence,

methods for optimally selecting the data, i.e., removing non-

informative measurements, are required to alleviate any possible

bottleneck in the processing chain. As a result, sensor selection for

large-scale networks is of great importance [1],[2], specially when

budget constraints are enforced by the system requirements. Particu-

larly for spatial beamforming applications, deploying new sensors in

the network incurs an additional cost. For example, a sensor incurs a

higher communications cost when it is deployed far from the central

unit as compared to a sensor that is deployed closer to the central

unit. In such cases, not only does the inference performance metric

have to be optimized, but also the cost incurred due to the sensor

placement has to be taken into account.

Typically, such sensor selection problems are combinatorial in

nature and are NP-hard. As a result they become intractable even

with a small number of candidate sensors. However, several meth-

ods are at our disposal for finding approximate solutions to the sen-
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sor selection problem. Popular solutions are based on convex opti-

mization techniques [3]-[5], which are extensively used within the

signal processing community. Most of these methods are expressed

as semidefinite programs [6] which can be efficiently solved with a

complexity that is cubic in the number of sensors. However, great

interest has arisen in sensor selection methods that optimize submod-

ular surrogates of the cost function to optimize [7]-[11]. This is due

to the near-optimality guarantee [12] of the solution provided by a

greedy heuristic which has a complexity that is linear in the number

of sensors. Such methods perfectly fit very large scale problems [13].

In this paper, we focus on a fast and scalable solution for the

sensor selection problem related to spatial minimum variance distor-

tionless response (MVDR) beamforming with a modular budget con-

straint. To achieve this, we propose a submodular relaxation of the

output signal-to-noise ratio, which can be solved through a greedy

heuristic and it also has a link with the common convex approach

for this problem. Due to the relation between the submodular and

convex relaxations, comparable results are achieved, in linear time,

through the usage of the submodular machinery.

2. PRELIMINARIES

2.1. Data Model

Assume that a signal of interest, e.g., speech signal, radiation of a

star, or a target reflection, impinges from a direction θ on an M -

element sensor array of arbitrary geometry. The received signal vec-

tor of the antenna array can then be expressed as
x = a(θ)s+ n ∈ C

M×1, (1)

where a(θ) ∈ C
M×1 is the array manifold vector. The signal of

interest s ∼ CN (0, σ2
s) and the noise vector n ∼ CN (0,Rn) are

considered to be zero-mean complex Gaussian distributed. The co-

variance matrix Rx = E{xxH} of the received data is given by

Rx = σ2
sa(θ)aH(θ) + Rn ∈ C

M×M , (2)

where E{·} denotes the expectation operation. In (2), it is implied

that the signal and noise are mutually uncorrelated.

2.2. MVDR Beamforming

When the direction θ0 of the signal of interest is known, one can

apply a spatial filter z to remove the noise, and possibly the interfer-

ence, to obtain an estimate of the desired signal s, i.e.,

ŝ = z
H

x ∈ C. (3)

A widely used filter option is the so-called MVDR beamformer. It

aims to minimize the average output power with the constraint that

the signal at the direction of interest is undistorted. Mathematically,

the MVDR beamformer is given by the solution to

minimize
z∈CM

zHRxz, s.t. zHa(θ0) = 1. (4)

A closed form solution to the above problem can be given in terms

of the noise covariance matrix:

z
∗ =

R−1
n a(θ0)

aH(θ0)R−1
n a(θ0)

. (5)
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A sparse variation of the MVDR might be achieved by enforcing a

ℓ1-norm constraint [18][18], i.e., ‖z‖1 ≤ K, in problem (4) or by its

LASSO formulation. However, these approaches neither guarantee

a fixed cardinality of the selected subset nor provide a straightfor-

ward way to enforce a budget constraint. In addition, despite that the

LASSO solution meets the MVDR property, after thresholding the

solution’s low-valued coefficients this might not be true anymore.

3. PROBLEM STATEMENT

Despite the fact that using all the M available sensors provides the

best performance in terms of the problem (4), in many cases, budget

constraints, e.g., cost of deployment, processing power, etc., do not

allow to use them all. Hence, it is of interest to obtain the subset of

sensors that meets all the budget constraints as well as achieves the

best performance among all possible selections. Unfortunately, this

problem is in general NP-hard, i.e., no polynomial time algorithm

can provide the optimal solution. As a result, one is required to settle

with approximate solutions through surrogate cost functions which

are much simpler to optimize.

To select the best subset of K sensors out of M candidate sen-

sors under a budget constraint, the MVDR beamforming problem

in (4) can be written in terms of a cost set-function with an addi-

tional budget constraint:

minimize
A

zHARx,AzA

subject to zHAaA(θ0) = 1, B(A) ≤ β, |A| = K,
(6)

where zA denotes a column vector which consists only of the en-

tries of z indexed by the set A, Rx,A denotes the matrix generated

by selecting only the rows and columns of Rx indexed by the set

A, and B(A) is a budget function. The set A represents the sub-

set of selected sensors, where A ⊆ V with V = {1, 2, . . . ,M}
being the underlying finite ground set. For example, a typical bud-

get set-function B(A), representing the transmission costs incurred

for transmitting data from sensors to the central unit in a distributed

setup, can be expressed as

B(A) =
∑

i∈A

bi, (7)

where each bi is the cost related to the ith sensor in the subset of

sensors A. In general, set-functions of the form (7) are known as

modular set-functions. By applying the optimal solution for the fil-

ter coefficients in (5) to the problem (6) it can be shown that (6) is

equivalent to

maximize
A

aH
A(θ0)R

−1
n,AaA(θ0)

subject to B(A) ≤ β, |A| = K,
(8)

which implies that we aim to maximize the output signal-to-noise

ratio, given that the constraints are met. In this work in particular,

we focus on instances of the problem (8) where it is of interest to find

a subset of sensors of size K ≪ M when the budget set-function is

modular. In (8) the set-function has been defined in terms of the

noise covariance matrix, however the methods here proposed do not

change when Rx,A is used instead. Here, we focus on the case in

which Rn is known beforehand e.g., known interferers covariance

matrices, or it is has been estimated a priori, e.g., environmental

noise capture by a microphone array.

4. CONVEX OPTIMIZATION BASED DESIGN

A classical convex relaxation for problem (8) can be constructed

starting from expressing the cost function using a linear sampling

scheme, i.e.,
f(w) := a

T (θ0)Φ
T (w)[Φ(w)RnΦ

T (w)]−1
Φ(w)a(θ0), (9)

where Φ(w) ∈ {0, 1}K×M is a selection matrix whose entries are

determined by the Boolean selection vector w ∈ {0, 1}M×1. Here,

[w]i = 1 indicates that the ith sensor element is selected. Consider-

ing that the noise covariance matrix can be expressed as

Rn = S + aI, for some S ≻ 0, (10)

for a ∈ R+. Using the matrix inversion lemma on (9) leads to

f(w) = a
H(θ0)[S

−1−

S
−1(S−1 + a−1

diag(w))−1
S
−1]a(θ0).

(11)

As only the second term of (11) depends on the selection variable w,

the problem (8) is equivalent to

minimize
w

aH(θ0)S
−1(S−1 + a−1diag(w))−1S−1a(θ0)

subject to wT b ≤ β, ‖w‖0 = K, w ∈ {0, 1}M×1,
(12)

where the vector b ∈ R
M contains the costs associated to the sensor

elements, i.e., b = [b1, . . . , bM ]T . Unfortunately, problem (12) is

not convex due to the ℓ0-norm constraint and the Boolean nature of

the selection variable. The convex relaxation for such a problem,

expressed using its epigraph form, can be stated as [1]

minimize
w,t

t

subject to wT b ≤ β, ‖w‖1 = K, w ∈ [0, 1]M×1
[

S−1 + a−1diag(w) S−1a(θ0)
aH(θ0)S

−1 t

]

� 0,

(13)

which involves the addition of the auxiliary variable t ∈ R, the sub-

stitution of the ℓ0-norm by the convex ℓ1-norm, and the relaxation

to the box [0, 1] for the elements of w. At this point, any off-the-

shelf solver can be used to compute the solution of the convex prob-

lem (13). After the non-Boolean solution is obtained, a Boolean

approximate solution that satisfies the constraints can be retrieved

by thresholding methods or randomization techniques [20]. Note

that the obtained solution will always satisfy the minimum variance

distortionless property.

5. PROPOSED SUBMODULAR OPTIMIZATION

Instead of solving the semidefinite program (13), which only pro-

vides a non-Boolean approximate of the solution to (8), we now ad-

dress the sensor selection problem using a submodular set-function

and a greedy heuristic.

5.1. Submodularity

Formally, a set function f : 2V 7→ R, for a finite ground set V ,

is called submodular, if for all sets A ⊆ B ⊆ V and all i 6∈ B it

holds that f(A∪{i})− f(A) ≥ f(B∪{i})− f(B). This property

holds for set-functions that commonly appear in operation research

and machine learning, and provides a notion of diminishing returns.

Similar to convex functions, submodular set-functions have certain

properties that allow for an efficient optimization [14]. It has been

shown by Nemhauser et al. [12] that for the maximization of a non-

decreasing submodular set-function, f , with f(∅) = 0, a simple

greedy heuristic finds a solution that is at least a constant fraction of

1− 1/e ≈ 63% of the optimal value. In this context, a set-function

f is considered non-decreasing, if and only if, f(B) ≥ f(A) holds

for all sets A ⊆ B ⊆ V .

Inspired by this result, Algorithm 1 presents the greedy heuristic

for maximizing a non-decreasing submodular set-function, subject

to modular constraints [15]. The set A returned from Algorithm 1

obtains the near-optimality guarantee given in [12] when the cost

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 2036



Algorithm 1: COST-BENEFIT GREEDY ALGORITHM.

Result: A : |A| = K
1 initialization A = ∅, k = 0;

2 while k < K do

3 a∗ = arg max
a∈V

f(A∪{a})−f(A)
ba

;

4 if B(A∪ {a∗}) ≤ β then

5 A = A∪ {a∗};

6 k = k + 1;

7 end

8 V = V \ a∗;

9 end

of all elements are equal, i.e., bi = bj , ∀i, j, and no budget con-

straint is active. However, interesting instances of problem (8) arise

when each sensor has a different cost, and hence a knapsack con-

straint is active. For these instances a modified version of Algo-

rithm 1 can be employed. First, (i) the cost-benefit solution Acb

using Algorithm 1 is computed. Then, (ii) a second solution is

obtained by employing Algorithm 1 with the line 3 modified as:

a∗ = arg maxa∈Vf(A∪{a})−f(A). This is known as the uniform

cost solution Auc. Finally, the solution with the greatest set-function

value among the two available solutions is selected as the final out-

put. This modification provides the following near-optimality guar-

antee [16]

max{f(Auc), f(Adc)} ≥
1

2
(1− e−1)f(Aopt), (14)

where Aopt is the subset that attains the optimal set-function value.

5.2. Submodular Relaxation

To make use of these existing results with respect to the greedy opti-

mization of submodular functions, in the following we derive a sub-

modular set-function surrogate for approximating the sensor selec-

tion problem (8). First, let us recall the non-negative property of the

output signal-to-noise ratio, i.e., f(w) ≥ 0. It is possible to express

this condition using a linear matrix inequality (LMI) in w (or equiv-

alently in A) similar to the one found in the convex relaxed problem

[cf. (13)]. That is,

MA =

[

S−1 + a−1IA S−1a(θ0)
aH(θ0)S

−1 aH(θ0)S
−1a(θ0)

]

� 0, (15)

where instead of the additional variable t, the first term of (11) ap-

pears in the expression. In (15), IA is a diagonal matrix with ones

in the entries (i, i), i ∈ A entries. It can be easily shown that the

determinant of the above matrix can be expressed as

det
(

MA

)

= det
(

S
−1 + a−1

IA
)

f(A) = g(A)f(A), (16)

where the fact that w and A can be used interchangeably has been

used for clarity. From (16) we can observe that the determinant of

MA consists of the product of two terms. The second term is the

output signal-to-noise ratio f(A), while the first is a determinant that

is inversely proportional to the loss in signal-to-noise ratio in (11).

Although g(A) does not depend on the array steering vector a(θ0),
we can consider the following optimization problem as an alternative

for approximating the solution of (8):

maximize
A

ln det
(

MA

)

, s.t. B(A) ≤ β, |A| = K. (17)

The cost set-function in problem (17) requires to satisfy the con-

ditions of monotonicity and submodularity in order to be able to
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Fig. 1: Comparison of output SNR for different sensor selection

schemes for M = 20 sensors. The budget constraint is set to 80%
of the total sensor cost.

claim the near-optimality guarantees discussed before. In the fol-

lowing, we present two propositions that are required to provide

the guarantees for near-optimality when the problem (17) is solved

greedily.

Proposition 1. (Monotonicity of Cost Set-Function) The cost

function from (17) is a monotone non-decreasing set-function.

Proof. See Appendix A

Proposition 2. (Submodularity of Cost Set-Function) The cost

set-function from (17) is a submodular set-function.

Proof. See Appendix B

In the following section, we provide numerical results to demon-

strate the developed theory.

6. NUMERICAL EXPERIMENTS

This section presents numerical results for the MVDR sensor selec-

tion performance of three different schemes: (i) semidefinite pro-

gram on the convex relaxation (13), (ii) greedy solution to the sub-

modular relaxation (17), and (iii) the greedy solution to problem (8)

(where the fact that the output SNR is not submodular is ignored). In

all greedy methods, we use the modification of Algorithm 1 which

obtains the sets {Auc,Adc} and selects the one that obtains the great-

est output SNR. The method (iii) is further on referred to as Output

SNR Greedy. For illustration purposes, first we consider a half wave-

length linear array consisting of M = 20 elements. Furthermore, to

each array element a random non-negative cost bi is assigned. In

this example, a MVDR beamformer is desired for an angular direc-

tion θ0 = −20o. The noise covariance matrix is assumed to consist

of an interference at θi = −10o and white Gaussian noise at −10dB.

In Fig. 1, a comparison between the methods with respect to the ex-

haustive search is shown. In this example the budget constraint β is

selected to be equal to 0.8B(V), i.e., 80% of the total sensor cost.

The output SNR is normalized with respect to the maximum output

SNR, i.e., output SNR when all the elements of the array are consid-

ered. From Fig. 1, it can be observed that the three schemes perform

close to each other, and that they are not far from the exhaustive

search. Notice that even without any performance guarantees the

Output SNR Greedy method performs close to the exhaustive search

solution. However, we should be cautious when using it as it could
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Fig. 2: Output signal-to-noise ratio comparison of the three methods

for different subset sizes. The budget constraint is set to 80% of the

total cost.

get stuck in some cases. For the second scenario, we consider the

same setup as before, but increase the number of available sensors to

M = 50. In this instance it is not possible to perform an exhaustive

search, and therefore only a comparison among the three methods is

possible. This comparison, in terms of the normalized output SNR,

is shown in Fig. 2. As expected, the performance of the submodular

method and the convex relaxation are close to each other. This is due

to the fact that the cost functions that both methods try to optimize

are related through the Schur complement. The best output SNR is

obtained by the Output SNR Greedy. However, as mentioned before

one should be careful when using its result due to the fact that it can

perform arbitrary bad for a given problem. Despite this, when the

solution of the submodular problem is obtained it could be straight-

forward to compare it with the one from the Output SNR Greedy

method and select the best. Both solutions are computed in linear

time and can be scaled easily to very large instances of the sensor

selection problem. Finally, an illustration of the beam pattern for the

solution based on K = 21 is shown in Fig. 3. It it clear from this

figure that all the beamformers have a narrow main lobe centered at

−200, and a null at −10o, however they present different sidelobe

characteristics.

7. CONCLUSIONS

In this paper, we have linked a submodular set-function to the com-

mon convex relaxation approach for sensor selection. By means of

the Schur complement, the log-determinant of a positive semidefi-

nite matrix can be used to optimize the output SNR of an MVDR

beamformer. It has been shown that using a modified greedy heuris-

tic, which has linear complexity, a near-optimal solution can be ob-

tained. Even though the theoretical bounds for submodular opti-

mization are not tight, the experimental results show that the greedy

heuristic provides a performance that is comparable to the one based

on convex relaxation at a significantly reduced complexity.

A. PROOF OF PROPOSITION 1

Let us define the following:

T =

[

S−1 S−1
a(θ0)

aH(θ0)S
−1 a(θ0)S

−1a(θ0)

]

, LA =

[

a−1IA 0

0 0

]

.

We can express the cost set-function from (17) as f(A) = ln det(T+
LA), where we recall that MA := T + LA. To prove that the set-
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Fig. 3: Beam pattern comparison for the different sensor selection

strategies when K = 21 sensors are selected out of M = 50 avail-

able elements.

function is monotone, we need to show that

f(A ∪ {i})− f(A) = ln det(MA + Li)− ln det(MA) ≥ 0.

In other words, we should prove that det(MA + Li) ≥ det(MA).
This implies that MA + Li � MA, which is always true as we

choose a ≥ 0.

B. PROOF OF PROPOSITION 2

Let us consider the previous definitions for T and LA. Then, we can

evaluate the cost set-function in the following sets:

f(A) = ln det(MA), f(A ∪ {i}) = ln det(MA + Li),
f(A ∪ {i, j}) = ln det(MA + Li + Lj).

We need to prove that the following expression is always positive

f(A∪ {i})− f(A)− f(A ∪ {i, j}) + f(A ∪ {j}) =

ln
det(MA + Li) det(MA + Lj)

det(MA) det(MA + Li + Lj)
≥ 0.

The above inequality is equivalent to

det(MA + Li) det(MA + Lj) ≥ det(MA) det(MA + Li + Lj).

Noticing that Li = a−1eie
T
i is a dyadic product, and that MA and

MA +Lj are invertible by definition, we can apply the matrix deter-

minant lemma and rewrite the previous expression as

det(MA) det(MA + Lj)(1 + a−1eTi M−1
A ei)

det(MA) det(MA + Lj)(1 + a−1eTi (MA + Lj)−1ei)
≥ 1,

leading to

1 + a−1eTi M−1
A ei

1 + a−1ei(MA + Mj)−1ei
≥ 1.

The above inequality is equivalent to eTi M−1
A ei ≥ ei(MA +

Mj)
−1ei. This can be proven using the following property of posi-

tive definite matrices. As MA + Mi � MA, is always true, we have

that M−1
A � (MA+Li)

−1. Therefore, eTi (M
−1
A −(MAMi)

−1)ei ≥
0, and the result is proven.
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