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Abstract—For comprehensive understanding of how neurons
communicate with each other, new tools need to be developed
that can accurately mimic the behaviour of such neurons and
neuron networks under ‘real-time’ constraints. In this paper,
we propose an easily customisable, highly pipelined, neuron
network design, which executes optimally scheduled floating-
point operations for maximal amount of biophysically plausible
neurons per FPGA family type. To reduce the required amount
of resources without adverse effect on the calculation latency, a
single exponent instance is used for multiple neuron calculation
operations. Experimental results indicate that the proposed
network design allows the simulation of up to 1188 neurons
on Virtex7 (XC7VX550T) device in brain real-time yielding a
speed-up of x12.4 compared to the state-of-the art.

I. INTRODUCTION

Various parts of the human brain have particular areas of
focus. The Neuron Network of the Inferior Olive discussed
in this paper deals with the brain responses to reflexes, or,
more directly, how the brain processes signals that reflect
complex movements and motor-coordination [1]. Neuron
networks consist of thousands/millions of neurons, which are
highly interconnected via synapses used to transmit signals
to individual target cells. Several neuron network models
have been proposed [2]–[6], which replicate cell and network
behaviour in various degrees of complexity, accuracy [7] and
characteristics, e.g. spike-train amplitude, frequency, precise
arrival times. Multi-core software designs [8], [9] have
proved to be capable of simulating large neuron networks
within a given time. Due to the high level of parallelism in
neuron networks, reconfigurable hardware, such as a Field
Programmable Gate Arrays (FPGA), however, provide the
means for real-time and even hyper-real-time simulation of
these intricate and highly parallel networks [10]. Addition-
ally, the reconfiguration property of FPGAs provides the
flexibility to emulate the plasticity of neuron networks and
to modify the brain models on demand. The behaviour of a
highly parallel cognitive system, such as the Inferior Olive,
can be accurately simulated with a mathematical model that
closely resembles the biological responses in the human
brain [11]. The extended Hodgkin-Huxley model describes
the relation between the electric current to a single neuron
membrane, and its capacitance. This relation is translated
into nonlinear differential gap functions [12] that describe the
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responses of three main parts of a neuron: the dendrite, the
soma and the axon hillock. These functions rely a great deal
on accurate floating point operations1and, in particular, on
the exponent operation. Within the Hodgkin-Huxley model
equations, the exponent operation needs to be executed
30 times per neuron calculation. Compared to standard
operations, the exponent operations require relatively more
resources and cycles to complete.

In this paper, in order to efficiently solve these problems,
we propose a new approach based on the use of a single
exponent instance over multiple neuron calculations in a
Kahn process network [13]. Hence, the required amount of
resources is reduced without having an effect on the calcula-
tion latency. Furthermore, if the computational requirements
were to increase, more exponent instances can be added
to meet this requirement. The contributions of the work
presented in this paper can be summarised as follows:

• the design and implementation of a scalable, real-
time2 and biophysically meaningful neuron network
using both single and double floating-point preci-
sion;

• the application of an open source floating-point IP
block, increasing the portability of the design to
multiple FPGA targets.

II. THE HYBRID NEURON NETWORK FOR HIGHLY
PARALLEL COGNITIVE SYSTEMS

Through the Hodgkin-Huxley model, each Inferior Olive
neuron in the neuron network receives a coupling effect from
its neighbouring neurons (Fig. 1). From the coupling effect,
a possible impulse, and the current Inferior Olive neuron
states, new state voltages are generated [14]. We refer to
each (neuron) node in the neuron network as a Simulated Cell
(SimC), whereas we refer to the hardware used to simulate
the cells as a Physical Cell (PhyC). The idea is to partition
the cells in optimised clusters, called Physical Cell Clusters,
where a number of cells shares a certain amount of resources.
In the physical cell clusters, configurable routing tables are
responsible for how the simulated cells are arranged within
the neuron network. By attaching each physical cell cluster

1In [7], it is shown that using 32-bit floating-point precision instead of
64-bit floating-point precision does introduce a small error, although it does
not seem to affect the overall behaviour of the neuron and its response.

2The ‘real-time’ constraint, with a step time of 50 µs is given by [14].
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Fig. 1: Simple Inferior Olive neuron archi-
tecture.
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Fig. 2: A configured Inferior Olive design,
mapped to a desired network topology.
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Fig. 3: Physical cell Cluster configured with 2 physical
cell’s and 1 Exponent Coprocessor

to a binary tree network, responses between simulated cells
are shared. Furthermore, through the top node of the tree
network, a current impulse can be applied to the simulated
cells, and all output results of the neuron network are
streamed. The design can be tuned using 4 parameters: the
number of physical cell clusters, the number of physical cells
in each cluster, the amount of shared Exponent Coprocessors
within each physical cell cluster, and the Time Sharing Factor
(TSF ) for each physical cell. If a physical cell can calculate
multiple responses within a given Time Step (TStep), the
TSF will be larger than one. Fig. 2 illustrates a configured
Inferior Olive design, mapped to the desired neuron network
topology3.

A. Optimised design
In the Inferior Olive design, one or several physical cell
cluster’s are interconnected by a tree network and imple-
mented on an FPGA. In Fig. 3 the main parts of the physical
cell cluster are shown. A physical cell cluster consists of
three main elements: Cluster Control, physical cell, and
the exponent coprocessor. The cluster control can initialise
the physical cells, stores the neighbouring neuron states,
controls the communication inside and outside the physical
cell cluster, and distributes the needed data to the physical
cells through several smaller controllers. The physical cells
compute the next axon hillock and dendrite potentials from
the current simulated cell states, and neighbouring cells
dendrite potential. An important element is a coprocessor,
based on an open source core (FloPoCo) [15], that computes
the exponent calculations for its connected physical cells.
As all calculations are pipelined within the coprocessor, any
Inferior Olive network topology independent scheduled cal-
culations are grouped in order, and also pipelined through an
Application Specific Coprocessor to save resources within the
physical cell. Communication to and from the coprocessor
are handled by high and low priority in- and output FIFO
buffers. Via a read scheduler, the input signals are given
to the FloPoCo, after which a write controller retrieves the
calculated exponent and writes it back to the output FIFO
buffer, respectively.

B. Schedule
After a Start signal is sent to the neuron network, each
physical cell will calculate the next states for a certain
set of simulated cells, before sending a Calc Done sig-

3In the current configuration, each simulated cell neighbours 8 other
simulated cells.
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nal back. Within the physical cell, the topology dependent
Dendrite Calculation and topology independent Axon+Soma
Calculation run in parallel (Fig. 4). Internally, the dendrite
calculation is dependent on the result of the axon+soma
calculation to calculate the new dendrite state. Externally,
both calculations use the same exponent coprocessor. As
the axon+soma calculation has a longer critical path and
is not dependent on the topology, it is scheduled with a
higher priority over the dendrite calculation by the read
scheduler in the exponent coprocessor. Furthermore, each
axon+soma calculation within a physical cell cluster is
synchronised, resulting in axon hillock potentials being
calculated at predictable times. The dendrite calculation is
however, not synchronised, giving it more flexibility over
the exponent coprocessor. By keeping the critical path within
the dendrite calculation to a minimum, and by allowing it to
start processing new network neighbours before the current
exponent is known, each simulated cell can quickly be scaled
up to allow more connections within the neuron network.
The exponent coprocessor is thus constantly being given new
values to calculate, with high priority tasks arriving after a
deterministic amount of cycles.

C. Communication

When a physical cell has calculated a new axon or dendrite
potential for a given simulated cell, it is sent through the
tree network by the cluster control. The axon potentials are
only directed to the I/O of the FPGA, while the dendrite
values are sent to all of the other physical cell clusters.
If, during this time a simulated cell needs to be released
from/receive an impulse, or afterwards a dendrite value needs
to be overwritten, a signal can be injected into the tree
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network. When all responses have been streamed to the I/O
of the FPGA and received by the clusters, respectively, the
design is ready to start calculating the new simulated cell
states.

III. DESIGN CONFIGURATION

Our main goal is to optimise and maximise the use of hard-
ware resources in the FPGA to be able to increase the size
of the simulated neuron network. To find an optimal design,
first a limit is given to the total amount of implementable
physical cells (#TotPhyC) in the FPGA, based on the critical
resources. By dividing this value by the grouping factor (φ),
the amount of physical cell clusters (#PCC) is determined

#TotPhyC <
#Crit Resources

#Resources,PhyC
(1)

#PCC =

⌊
#TotPhyC ×

1

φ

⌋
(2)

To simulate the biological behaviour of a cell, each physical
cell requires a certain number of cycles (Cphyc), which is
determined by the topology dependent (Cdend) and indepen-
dent (Ca+s) computation time (in cycles), respectively,

Cphyc = max(Cdend, Ca+s). (3)

Each neuron response is governed by combination of the
results of the topology dependent and independent calcula-
tions. By describing the latency of the topology dependent
calculation, the Cphyc can be written as function of Cdend

4

Cdend = max(Cdin, Ca+s) + τ. (4)

The topology dependent calculation, as a function of the
latency of the dendrite calculation to process network inputs
(Cdin), can be split in three sections

Cdin = δ(φ) + max(Cblock, α×ND) + ω ×ND,

ND =

⌈
N

#Dend

⌉
, ω ≥

⌈
#PhyC ×#Dend

#ExpC

⌉
.

(5)

Cblock ≤
⌈
22×

#PhyC

#ExpC

⌉
+

⌊
#DendClus − 1)

#ExpC

⌋
+ ρ,

#DendClus = #PhyC ×#Dend.

(6)

Firstly, we calculate the start-up delay δ, which is partly
dependent on the amount of dendrite calculations that share
a memory core. Next, we find the amount of cycles α that
take place before each (low priority) exponent calculation
and, finally we calculate the number of cycles ω after the
result of the exponent calculation is known. The calculation
of the exponent itself is being carried out by the exponent
coprocessor with pipeline depth ρ. If the exponent calculation
is being blocked by another task after all α calculations
are performed, an extra blocking time has to be taken into
account (6). #Dend are the amount of DendNet operations
housed in each physical cell5. Increasing the number of
exponent coprocessors per physical cell cluster (#ExpC)
(together with the #Dend) with a fixed amount of neigh-
bouring cells (N) in (5) and (6), linearly decreases the Cdin.
However, it also increases the number of required resources;
the inverse is also true. By optimising the #ExpC, the
computation of the model is lower bounded by the topology
independent Ca+s. Finally, we have to determine the time

4Within the dendrite calculation, DendComb combines the 2 results after
τ cycles.

5If an increase of the amount of DendNet operations were to coincide
with the increase of exponent coprocessors, (5) would give the upper limit.

sharing factor, i.e. how many times a physical cell will be
reused within a given time step (Tstep). An upper bound
for the time sharing factor can be calculated by taking into
consideration the communication cycles (Ccom) needed to
send all dendrite and axon potential values through the tree
network

TSF <


Cstep−Ccom

Cphyc
Ccom < Cphyc

Cstep−Cphyc

Ccom
otherwise

,

Cstep =
Tstep

Clkperiod
.

(7)

IV. EXPERIMENTAL SETUP AND RESULTS

To verify the Inferior Olive architecture, multiple designs
were implemented for multiple FPGA targets6, based on (1)-
(7). Firstly, the effects of the grouping factor are examined.
The amount of physical cells is varied, each having its
own exponent coprocessor. Grouping factors larger than four
would result in poorer timing results, compared to smaller
physical cell clusters that where placed in a larger tree
network. However, as each physical cell cluster shares a
single memory core, the amount of used BRAMs is reduced
as well and, consequently, larger clusters could be routed
more easily. By sharing each exponent coprocessor over
2 physical cells, resources were spared without having a
large impact on the final timing delay. After the design
is configured with the desired accuracy (32/64-bit), it is
synthesised through the Vivado HLS tool to generate VHDL
code, and test bench files7. To evaluate the proposed design,
the synthesisable VHDL code is compiled with Modelsim,
and the simulated axon voltages are then compared to the
reference C model [7]. The optimal implementable hardware
design timing to meet the 50µs ‘real-time’ constraint [14] for
a single physical cell cluster are shown in Fig. 5. Given that
the amount of computational cycles is fixed within a physical
cell cluster for a given topology, the hardware designs closest
to real-time timing constraint are scaled up by increasing the
number of physical cell clusters in the tree network (Fig.
6). However, without routing tables in the tree network, all
resulting potentials are sent in an all-2-all type fashion. The
limit to the number of neurons that can give an output with
an unbounded tree network can be calculated based on the
number of output values that can be streamed within a certain
time step. In the current design each output is given every
2 clock cycles (∆). The theoretical maximum amount of
outputs is found as

#Ouputmax =
Cstep − Cphyc

∆
− Ω(#Clusters) (8)

where Ω is the amount of cycles it takes to deliver the
first cluster output through the tree network to the I/O of
the FPGA. By optimising the tree network with routing
tables similar to those within the cluster control of the
physical cell cluster, less cycles are used for communication,
resulting in a stable time for increasing simulated cells.
Finally, by combining the results from Fig. 6 with certain
hardware limitations of the Virtex’s and Spartan FPGAs,

6The used FPGA targets are, the Virtex7: xc7vx550tffg1927-2 [16], the
Virtex6: xc6vlx240tff1156-3 [17] and the Spartan6: xc6slx150tfgg676-3
[18].

7The test bench starts by initialising each cluster with a certain ID, each
simulated cell with 19 neuron parameters followed by the initial state of
each dendrite. Then after the topology of the NN is configured, the test
bench pulses the start signal at TStep time intervals.
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TABLE I: Implementable cells on single FPGA with critical resources underlined.

Implementation Resources (Absolute) Resources (Total Utilisation) Results
FPGA Accuracy Clusters PhyC TSF ExpC LUT FF DSP BRAM LUT FF DSP BRAM SimC Cost/SimCb

[10]a 64b NA 8 6 NA 240217 209153 1384 42 69.35% 30.19% 48.06% 1.78% 48 $ 144.00
Virtex7 64b 9 2 23 1 324670 202277 1215 233 93.72% 29.19% 42.18% 19.74% 414 $ 15.48
Virtex6 64b 1 7 20 2 124882 77712 634 122 82.86% 25.78% 82.55% 14.66% 140 $ 20.09
Spartan6 64b 1 1 8 1 23507 21297 113 27 25.51% 11.56% 62.78% 10.07% 8 $ 29.55

[7] 32b NA 8 12 NA 251485 162217 1600 804 83% 27% 57% 78% 96 $ 51.22
Virtex7 32b 18 2 33 1 311808 190797 1008 557 90.01% 27.53% 35.00% 23.60% 1188 $ 5.39
Virtex6 32b 4 4 29 2 128670 85754 480 192 85.37% 28.48% 62.50% 23.08% 464 $ 6.06
Spartan6 32b 1 4 18 2 36772 23620 152 33 39.90% 12.82% 84.44% 12.31% 72 $ 3.28
a Only estimates are given in the previous design, built on the same Virtex7 FPGA as the current design.
b Reference costs were taken from [19].
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Table I compares the results of the proposed design to
previous designs [7], [10] for double and single floating-
point precision. Each implementation has resulted in a more
optimal use of critical resources, and a larger amount of
simulated cells per FPGA. While, for 64-bit calculations, a
modern FPGA seems desirable, Spartan6 has shown to be
capable of cost-effectively running the Inferior Olive neuron
calculations in 32-bit.

V. CONCLUSION

In this paper, we presented a ‘real-time’ hardware imple-
mentable set of inferior olive neurons. By modelling the
design around a single coprocessor, the total number of
cycles that each physical cell needs to simulate is bounded
independently of the neuron network topology. Furthermore,
by employing an open source floating-point exponent IP
block, the design architecture can be used on more cost-
effective FPGA targets. Finally, by applying the set of
equations (1)-(7), future designs can be quickly optimised.
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