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Abstract—In this paper we develop statistical detection theory
for graph signals. In particular, given two graphs, namely, a
background graph that represents an usual activity and an
alternative graph that represents some unusual activity, we are
interested in answering the following question: To which of the
two graphs does the observed graph signal fit the best? To begin
with, we assume both the graphs are known, and derive an
optimal Neyman-Pearson detector. Next, we derive a suboptimal
detector for the case when the alternative graph is not known.
The developed theory is illustrated with numerical experiments.

Index Terms—Graph signal processing, subgraph detection,
hypothesis testing, quadratic detector, locally most powerful test.

I. INTRODUCTION

GRAPHS are mathematical objects that may be used to
explain relationships among datasets. Vertices of the

graph represent different elements of the dataset, whereas the
edges of the graph explain the dependence between these ele-
ments. Some examples of such graph-structured data include
transportation networks, gene networks, brain networks, social
networks, to name a few. Processing signals supported on
graphs is an emerging area of research [1], [2] that has recently
received a lot of attention.

In this paper, we are interested in extending some of the
classical tools used in statistical detection theory to graph
signals. Detection theory for graph-structured data will be
powerful for a wide range of applications within cyber se-
curity, traffic management, and network/data science applica-
tions, in general. For example, it is crucial for detecting and
neutralizing malicious activity within a network.

Given two graphs, namely, a background graph that repre-
sents a typical activity and an alternative graph that represents
some unusual activity, the focus in this paper is on answering
the question: To which of the above two graphs does the
observed graph data fit the best? To answer this question, we
first model the graph signal as the output of a graph filter
whose input is white noise. Thus, the intrinsic structure of the
graph is incorporated in the observed signal. To begin with, we
formulate a binary hypothesis testing problem assuming that
both the graphs are perfectly known. The optimal Neyman-
Pearson detector for this case is the well-known quadratic
detector. Next, we derive a suboptimal detector for the case
when the alternative graph is not known. The detector for
this case is obtained using the locally most powerful test. The
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test statistic for both cases are simple in nature, and thus the
hypothesis testing problem scales well for large datasets.

Given the graph signals, the problem of identifying the
underlying topology [3] or learning a graph [4], [5] that
explains the observed data is called topology inference. The
proposed framework can be used to quantify the performance
of two different topology inference algorithms that infer two
different graphs.

Detection theory for graphs has been considered in the
past [6], [7]. In [6], the focus is on detecting changes in
random graphs, however, without taking the graph signals into
account. That is, the graph itself forms the observations, and
the discrimination is based on the properties of the adjacency
matrices of the two graphs under test. The problem studied
in [7] is similar to that of this paper. However, the detectors
are developed under the assumption that the graph signal is
smooth with respect to the supported graph. In contrast, the
proposed framework doesn’t impose any restrictions on the
smoothness of the signal, however, we assume that the graph
signal is stochastic in nature.

Notation: Upper (lower) bold face letters are used for
matrices (column vectors). (·)T denotes transposition. diag(·)
refers to a diagonal matrix with its argument on the main
diagonal. SN denotes the set of symmetric matrices of size
N×N . The (i, j)th entry of the matrix A is denoted as [A]i,j .
The ℓ0-(quasi) norm refers to the number of non-zero entries
in w, i.e., ∥w∥

0
:= |{n : wn ̸= 0}|.

II. PRELIMINARIES

Consider a dataset with N elements defined on the vertices
of an undirected graph G = (V , E). Here, the vertex set V =
{v1, · · · , vN} denotes the set of nodes and the edge set E
represents the relationship between the elements of the dataset.
Therefore, such datasets are referred to as signals on graphs.

Let us introduce a symmetric matrix S ∈ SN that is related
to the graph G, where [S]i,j can be nonzero only if i = j
or (i, j) ∈ E . The sparsity pattern of S captures the local
structure of the graph, and such a matrix is often referred to
as the graph-shift operator [1], [8]. Possible candidates for S
are the graph Laplacian L, the adjacency matrix A, or their
variants.

The graph-shift operator S can be used to define graph
filters of the form [1], [8]

H =
L−1∑

l=0

hlS
l = U

(
L−1∑

l=0

hlΛ
l

)

UH , (1)
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where the filter H is of degree L − 1 with filter coefficients
h = [h0, h1, . . . , hL−1]T ∈ RL and the diagonal matrix∑L−1

l=0
hlΛ

l = diag(V Lh) can be viewed as the frequency
response of the graph filter. Here, Λ collects the graph fre-
quencies on its diagonal, i.e., Λ = diag([λ1,λ2, · · · ,λN ]T ),
and V L is an N × L Vandermonde matrix with entries
[V ]i,j = λj−1

i . So when a graph signal, w ∈ RN , is filtered
using the graph filter H , then the frequency content of the
filter output, x = Hw, is modified according to the frequency
response of the graph filter.

III. PROBLEM STATEMENT

In this paper, the focus is on detecting topological changes
in a graph using concepts from statistical detection theory. In
particular, given the graph signal, the aim is to detect any
changes to the known graph, e.g., the changes could be due to
newly added edges between a subset of nodes. We pose this
subgraph detection as a binary hypothesis testing problem. To
do so, we first provide the following definitions.

Let us denote the background graph as G0 = (V , E0) with
the graph-shift operator S0 ∈ SN . Let us denote an alternative
graph as G1 = (V , E1). That is, the graphs G0 and G1 share
the same vertex set, while the edge set E1 differs from E0.
The graph G1 may be regarded as an atypical graph, with
some edges added to the set E0 or removed from the set E0,
representing some malicious network activity, for example.
Therefore, we can express the graph-shift operator related to
the graph G1 as S0+S1 ∈ SN , where the (i, j)th entry of the
matrix S1 denoted as [S1]i,j contains a non-zero entry only
if (i, j) ∈ E1 and (i, j) /∈ E0 or vice versa (i.e., at locations
corresponding to the newly added or deleted edges).

Let us denote the graph signal as x ∈ RN . We model the
graph signal x as the output of a graph filter with zero-mean
unit-variance white Gaussian noise as input, which is denoted
as w ∈ RN . In other words, in this work, we assume that
the graph signal is stochastic in nature. The observations are
related to the state of nature H, where the random variable H is
drawn from a binary alphabet set {H0,H1}. That is to say, the
hypotheses H0 and H1 denote the background and alternative
graphs, respectively. We are interested in estimating the state
of nature, and we denote the estimate of H as Ĥ.

Suppose the graph signal follows the model

H0 : x =
L−1∑

l=0

h0,lS
l
0w = H0w (2a)

H1 : x =
L−1∑

l=0

h1,l[S0 + S1]
lw = (H0 +H1)w, (2b)

where

H1 =
L−1∑

l=0

h1,l[S0 + S1]
l −

L−1∑

l=0

h0,lS
l
0.

Here, the graph filter coefficients {hi,l}
L−1

l=0
for i = 0, 1 as

well as the length of the filter L are assumed to be known
or estimated. It might be also reasonable to assume that the
graph filter coefficients are the same for both hypotheses
(i.e., h0,l = h1,l, for l = 1, 2, . . . , L), particularly, when the

subgraph S1 is sparse. The graph filter is then estimated only
for the background graph, which typically occurs.

Having described the observation model, we can now for-
mally state the problem. In this paper, the questions of interest
are, (i) given S0 and S1, i.e., given both graphs, decide on
either H0 or H1 based on the observations x (this is the subject
of Section IV); (ii) is it possible to solve the hypothesis testing
problem if the alternative graph S1 is not known (this is the
subject of Section V).

IV. BOTH THE GRAPHS ARE KNOWN

In this section, we will derive the detector that solves the
hypothesis testing problem (2) when the graphs under both
hypotheses are perfectly known. In other words, the aim is to
determine: to which of the two graphs does the graph signal

fit the best?

Suppose the graphs under both hypotheses are known per-
fectly. That is to say, the matrices H0 and H1 are known.
For this case, the binary hypothesis testing problem (2) can
be expressed as

H0 : x ∼ N (0,R0); (3a)

H1 : x ∼ N (0,R1), (3b)

where the N ×N covariances matrices are given by

R0 = E[xxT ] = H0H
T
0

and

R1 = E[xxT ] = (H0 +H1)(H0 +H1)
T .

This is due to the assumption is that the seed signal w ∼

N (0, I).
In what follows, we provide the Neyman-Pearson detector

for the above problem, in which the probability of false alarm,
denoted by

Pf = Pr(Ĥ = H1|H0),

is fixed while the probability of detection, denoted by

Pd = Pr(Ĥ = H1|H1),

is maximized. More specifically, the decision is based upon
the log-likelihood ratio test

l(x) = log
p(x| H1)

p(x| H0)

H0

≶
H1

λ, (4)

where the probability density function of x under H0 and H1

is denoted by p(x| H0) and p(x| H1), respectively. Here, λ is
the threshold obtained by fixing the probability of false alarm.

The Neyman-Pearson detector for testing two known co-
variance matrices is the well-known quadratic detector with
the log likelihood ratio test statistic [9]:

l(x) = xT (R−1

0 −R−1

1 )x, (5)

where we decide on hypothesis H1 if l(x) > λ, and λ
is chosen such that a fixed false alarm rate is achieved.
The threshold, however, has to be computed numerically,
by inverting the χ2 probability density function of the test
statistic; see [9] for more details.
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(a) Background graph. (b) Alternative graph.

Fig. 1: Subgraph detection problem. Community graph with four dominant communities and N = 50 vertices. (a) Background
graph G0 does not have direct connections between all the communities. (b) Alternative graph G1 has direct connections between
all the communities.

The quadratic detector is very simple to implement, and
scales well for large datasets. A further reduction in the
processing costs may be achieved by observing only a subset
of graph vertices as discussed in the following remark.

Remark 1 (Graph sampling). In case of large-scale graphs,
it is advantageous to observe only a subset of graph nodes

that results in a desired detection performance. Suppose we
model the graph sampling operation through a binary vector

z ∈ {0, 1}N , where the nth entry of z is denoted as zn and

zn = 0 indicates that the nth graph node is not observed, and
it is observed when zn = 1.

For the hypothesis testing problem (3), the sampling vector

may be designed by optimizing the so-called J-divergence
measure given by [10]

D(z) =
1

2
tr{R−1

0 (z)R1(z)}+
1

2
tr{R−1

1 (z)R0(z)},

where for i = 0, 1 the notation Ri(z) denotes the submatrix of

Ri that includes only the entries corresponding to the selected
measurements. Maximizing D(z) subject to a cardinality con-

straint on z ∈ {0, 1}N as

arg max
z∈{0,1}N

D(z) s.to. ∥z∥0 = K,

then results in the desired graph sampling scheme that subsam-

ples K graph nodes. This optimization problem can be relaxed

and solved using convex optimization techniques; see [10] for
details.

Although the quadratic detector (5) is optimal in the
Neyman-Pearson sense, we need to know the alternative
graph G1. So if both graphs are known, then one should
solve the quadratic detector. In what follows, we will seek
suboptimal detectors when the alternative graph is not known.

V. GRAPH G1 IS NOT KNOWN

Suppose the alternative graph is not known, then we have
to solve a composite hypothesis testing problem, where the
unknowns are replaced by their estimates to obtain the test
statistic. Such tests are referred to as generalized likelihood

ratio tests (GLRTs). In this case, to solve a GLRT we need
to estimate S1 from the observations under H1. The shift-
operator S1 can be estimated, e.g., using techniques proposed
in [3]–[5], but this requires training data. Next, we will derive
a one-sided parameter test for the subgraph detection problem
that allows us to approximate the test statistic such that it
depends only on the graph G0.

By defining
x = (H0 + µH1)w,

the binary hypothesis testing problem (2) can be recast as a
scalar one-sided parameter test as

H0 : µ = 0;

H1 : µ > 0.
(6)

For such one-sided scalar parameter tests, the so-called
locally most powerful (LMP) detector can be used. The LMP
test constrains the Pf and minimizes the Pm for all µ close
to zero with µ > 0. For cases when µ is not around 0, the
GLRT should also be tried. Nevertheless, H1 can always be
constructed such that µ is around zero.

The probability density function under Hi for i = 0, 1 is
parameterized by µ and is given by p(x, µ). The test statistic
for the LMP test is given by [11]

TLMP(x) =
∂ ln p(x;µ)

∂µ

∣∣∣∣
µ=0

(7)

That is, we decide on hypothesis H1 if TLMP(x) > λ′, for
some threshold λ′ that leads to a fixed false alarm rate.

To derive the LMP test, we express the probability density
function of the observations as

p(x;µ) =
1

(2π)N/2|C(µ)|1/2
exp

{
−
1

2
xTC−1(µ)x

}
,

where the covariance matrix depends on µ and is given by

C(µ) = H0H
T
0 + µ2H1H

T
1 + µH0H

T
1 + µH1H

T
0 .

It can be shown that the derivate of the log-likelihood
function for µ = 0 that depends on the data (and hence the
test statistic) will be

TLMP(x) =
1

2
xTR−1

0 [H0H
T
1 +H1H

T
0 ]R

−1

0 x. (8)
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The test statistic is a weighted energy detector, and it has a
similar quadratic form as the Neyman-Pearson detector derived
in Section IV. As before, the threshold λ′ has to be computed
numerically, by inverting the χ2 probability density function
of the test statistic TLMP(x).

The test statistic TLMP(x) in (8) still depends on H1, but
as a weight term H0H

T
1 + H1H

T
0 . Suppose we drop this

weight term. Then we arrive at a suboptimal detector with the
test statistic given by

T (x) =
1

2
xTR−2

0 x. (9)

Letting y = R−1

0 x, i.e., by pre-whitening x, we obtain the
simple quadratic test statistic

T (y) = yTy,

which essentially tests how smooth the signal y is with respect
to the background graph. However, there is no general answer
to the question, how suboptimal is the detector (9) as compared
to the LMP detector or quadratic detector, and this has to be
verified through numerical experiments.

VI. NUMERICAL EXPERIMENTS

In this section we will provide numerical results that demon-
strate the performance of the developed detectors. For our
experiments, we use a community graph with N = 50 vertices
and four dominant communities as shown in Figure 1.

We use the Laplacian matrix as the graph-shift operator. We
model the graph signal by filtering zero-mean white Gaussian
noise with a graph filter that has L = 4 coefficients and we
use h0,l = h1,l, for l = 1, 2, . . . , L. For the background graph
G0, i.e., the graph under hypothesis H0, we use a community
graph that does not have direct connections between all
the communities; see Figure 1a. This graph may represent
the usual activity between the nodes, for instance. For the
alternative graph G1, i.e., the graph under hypothesis H1, we
use a community graph that has direct connections between
all the dominant communities; see Figure 1b.

The performance of the proposed detectors is illustrated
via a receiver operating characteristics curve (i.e., a curve
of Pd vs. Pf ). This is computed numerically by varying the
decision thresholds. The experiments are averaged over 2000
independent Monte-Carlo trials.

In Figure 2, we show the performance of the three proposed
detectors. Recall that the quadratic detector is optimal in the
Neyman-Pearson sense, and this detector assumes that both
the graphs are perfectly known. This detector is the uniformly
most powerful test and it provides an upper bound for the
performance of any suboptimal detector (including the detector
based on the generalized likelihood ratio test). We also show
the performance of the locally most powerful detector in Fig-
ure 2, where we simply assume µ = 1 to illustrate the worst-
case performance. Using a smaller value for µ (i.e., scaling
the entries of H1 accordingly) may improve the performance
of the LMP detector. Finally, we show the performance of the

Software and datasets to produce results of this paper can be downloaded
from http://cas.et.tudelft.nl/∼sundeep/sw/asilomar16Gdet.zip
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Fig. 2: Performance of the detectors.

suboptimal detector in Figure 2. Recall that the suboptimal
detector is also based on the LMP test, however, using an
approximate test statistic that doesn’t depend on the alternative
graph G1. Not knowing the alternative graph comes at a loss
in performance as can be seen in Figure 2.

VII. CONCLUSIONS

In this work have provided some initial results on statistical
detection theory applied to graph-structured data. In particular,
we have formulated a binary hypothesis testing problem to de-
tect changes in the graph topology based on the observed graph
signals. In other words, suppose we have two graphs, e.g., a
background graph that represents some usual activity and an
alternative graph that represents a malicious activity. Based
on the observed graph signals, the developed detector decides
whether the underlying graph was the background graph or the
alternative graph. To this end, we have developed a Neyman-
Pearson optimal detector. Further, we have also developed a
suboptimal detector for the case when the alternative graph
might not be known.
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