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Abstract: The ISIS is an ultra-fast image sensor with in-pixel storage. The evolution of the 
ISIS in the past and in the near future is reviewed and forecasted. To cover the storage area 
with a light shield, the conventional frontside illuminated ISIS has a limited fill factor. To 
achieve higher sensitivity, a BSI ISIS was developed. To avoid direct intrusion of light and 
migration of signal electrons to the storage area on the frontside, a cross-sectional sensor 
structure with thick pnpn layers was developed, and named “Tetratified structure”. By 
folding and looping in-pixel storage CCDs, an image signal accumulation sensor, ISAS, is 
proposed. The ISAS has a new function, the in-pixel signal accumulation, in addition to  
the ultra-high-speed imaging. To achieve much higher frame rate, a multi-collection-gate 
(MCG) BSI image sensor architecture is proposed. The photoreceptive area forms a 
honeycomb-like shape. Performance of a hexagonal CCD-type MCG BSI sensor is 
examined by simulations. The highest frame rate is theoretically more than 1Gfps. For the 
near future, a stacked hybrid CCD/CMOS MCG image sensor seems most promising. The 
associated problems are discussed. A fine TSV process is the key technology to realize  
the structure. 
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1. Introduction 

Application of high-speed video cameras is expanding to various fields of sciences, including  
bio-medical sciences and engineering. To meet the ever-growing performance demands for improved 
sensitivity, frame rate, and pixel count, the image sensors for high-speed imaging have introduced 
several innovations. Very high sensitivity has been achieved by single-photon imaging technologies [1]. 
Even in 2000, imaging at 40,500 frames per second (fps) was applied to capturing cavitation bubbles 
released by a snapping shrimp [2]. The standard frame rate of the camera was 4,500 fps for  
256 × 256 pixels, and the sensitivity was enhanced by directly attaching an image intensifier with a  
micro-channel plate to the image sensor [3]. By increasing the frame rate with partial readout of only 
64 × 64 pixels, the motion of the cavitation cloud was successfully captured.  

While the highest frame rate of video cameras is continuously being renewed, there are still many 
important phenomena that cannot be imaged even with the most advanced high-speed video cameras. 
For example, in biology, microscopic imaging of signal transfer on a nerve cord requires more than  
10 Mega fps (frame interval: 100 ns); in scientific instrumentation, fluorescence life-time microscopy 
(FLIM) requires a temporal resolution of 100 ps [4,5]. The paper reviews the evolution of the  
ultra-high-speed image sensors in the past, and forecasts future evolutions. 

Since the development of a digital-recording high-speed video camera in 1991, Etoh and his 
colleagues have been updating the highest frame rate of high-speed video cameras: 4,500 frames per 
second (fps) in 1991 [3], one million fps (1 Mfps) in 2001 [6], and 16 Mfps in 2011 [7]. The color 
version with 300 kpixel was developed in 2006 [8]. The latest version has achieved 16.7 Mfps for  
300 kpixels [9]. The past evolution has been documented in the series of their previous review  
papers [10–13]. New image sensor structures have been developed to achieve much higher frame rate 
and higher sensitivity, and to introduce additional useful functions [14]. A simulation study shows that 
it is possible to achieve one Giga fps (1 Gfps) with silicon semiconductor technology [15].  

Image signals generated in an image sensor with a global shutter are read out of the sensor through 
the following process:  

[a. Generation of an electron-hole pair] 
[b. Travel of the photoelectron to a collection element in each pixel] 
[c. Transfer of a packet of the photo-electrons, i.e., an image signal, to a neighboring storage area 
simultaneously at all pixels] 
[d. Transfer of the image signal to a readout circuit on the periphery of the image sensor chip]  
[e. Readout of the image signals to a buffer memory outside the chip] 

The delay of image capturing is associated with the signal transfer process. For example, the first 
photo-chemical reaction in human eyes completes in less than one hundred femtoseconds. However, 
the subsequent signal transfer process to the brain takes more than 1 ms, and the final image 
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recognition takes about 100 ms. To compensate for the delay, some insects have in situ signal 
processors in their eyes, and even some dinosaurs were equipped with a local signal processor in their 
loins. The development history of high-speed video cameras has been making the signal recording 
devices closer to the signal generation site. 

Conventional high-speed video cameras with continuous readout increase the frame rate by utilizing 
the parallel and partial readout [e. from the image sensors to the outside memory] with the increased 
number of readout wires [3]. 

The in situ storage image sensor, ISIS, has a local signal storage area with more than 100 memory 
elements attached to each pixel. During image-capturing, image signals are stored in the in situ storage 
without being read out. The frame interval, the inverse of the frame rate, can be decreased down to  
[c. the transfer time of an image signal to the in situ storage.] The ISIS chip achieved 1 Mfps [6].  

However, the fill factor of the front-side illuminated ISIS was only about 15% due to the light 
shield covering the in situ storage area. To increase the fill factor to nearly 100%, a backside 
illuminated ISIS (BSI ISIS) was developed. To prevent direct intrusion of incident light and migration 
of generated photoelectrons into the memory on the front side, a BSI sensor structure consisting of 
pnpn layers was developed [16]. The frame rate was also drastically increased to 16 Mfps for  
165 kpixels by additional wiring on the front side without decrease of the fill factor and violation of 
pixel uniformity [7].  

The transfer of collected photoelectrons to a neighboring storage area takes much longer time than 
the travel time of photoelectrons to a collection element. Therefore, an image sensor with multiple 
collection gates placed in a circular geometry in the center of each pixel can achieve a much higher 
frame rate by collecting generated photoelectrons at one of the in-pixel collection gates and by 
transferring a signal charge packet from the collection gate to the attached in situ storage during 
collection of photoelectrons at other collection gates. The multi-collection-gate image sensor can 
reduce the frame interval down to [b. the time for a photoelectron to travel to one of the in-pixel 
collection elements] [15]. The travelling time can be reduced to less than 1 ns. Therefore, the  
multi-collection-gate image sensor can achieve theoretically 1 Gfps. 

If the signals of a sequence of images are recorded [a. exactly at their generation sites], the ultimate 
ultra-high-speed imaging can be achieved. Innovative technologies in this category have been 
proposed [17–19]. Frame intervals of several picoseconds [18] to hundreds of femtoseconds [19] have 
been achieved. However, silicon image sensors have the significant advantage of providing compact 
and user-friendly imaging systems. 

One of the important additional functions introduced by the authors is in-pixel image signal 
accumulation. In image capturing of repetitive phenomena under very weak incident light, the S/N 
ratio can be improved by summing up image signals obtained by repeated capturing. The ISIS chip 
with folded and looped in-situ CCD storage provides a practical ultra-high-speed image sensor with 
the in-pixel signal accumulation. For its internal structure, the sensor was called “the image signal 
accumulation sensor” or ISAS [14]. An ISIS with the CCD memory and the CMOS readout has been 
reported [20,21]. A pure CMOS version with pixel-based recording has also been developed, and is 
now a product [22,23]. The sensor has the storage areas attached to each pixel on the periphery of  
the chip. 
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2. ISIS  

2.1. ISIS with Slanted Linear CCD Storage 

Kosonocky developed the CCD ISIS for the first time [24]. However, the Series-Parallel-Series 
(SPS) CCD was used for the in situ storage, which was difficult to fabricate due to the complexity, 
resulting in a very low yield rate. Lazovsky developed a CCD ISIS with linear in-situ CCD storage, 
which achieved 100 Mfps [25]. However, the fill factor, the pixel count and the total number of frames 
were only 1%, 64 × 64, and 16, which are far below users’ requirements. Therefore, both of them were 
employed by a very limited number of the users. 

The first practical CCD ISIS was developed by Etoh et al. [6]. Figure 1 shows the ISIS with slanted 
linear storage CCDs. The collection gates in the figure were the photogates of the original  
frontside-illuminated (FSI) ISIS. An image signal, a charge packet, generated in a photogate is 
transferred along a memory CCD, extending linearly in a slightly slanted direction to the pixel grid. 

Figure 1. Plane structure of ISIS with slanted linear storage CCDs [7,16]. 

 

During the image capturing operation, the image signals are continuously transferred downward on 
the linear storage CCD, and drained out of the sensor from the drain attached at the end. Therefore, the 
image signals are continuously updated and the latest ones are always stored on the storage CCD. The 
simple memory structure of the linear CCD maximizes the number of storage elements or minimizes 
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the pixel size for a given number of storage elements. The ISIS achieved 1 Mfps. However, the storage 
area in each pixel covered with a light shield reduced the fill factor to 15%. 

Another problem was very high power consumption, compared with CMOS image sensors.  
Etoh et al. predicted the resurrection of the Kosonocky’s SPS CCD ISIS [26], since it consumes much 
less power than ISIS with the slanted linear CCD storage, and can be produced easily by using an 
existing fine CMOS process. Crooks et al. has since made it [21]. 

2.2. BSI ISIS 

To improve fill factor, a BSI ISIS structure was developed as shown in Figure 2. To prevent direct 
intrusion of incident light into the storage area on the front side, the thickness of the sensor was 
increased to more than 30 µm. For the 30 µm thickness, 0.1% of the 700 nm incident light still reaches 
the front side. Technology to produce a thicker and low-concentration epi-layer with fewer defects  
is awaited. 

Figure 2. BSI ISIS with a “Tetratified” structure (A-A’ cross section of Figure 1) [7,16]. 

 

To avoid migration of the generated electrons to the storage area of each pixel, a p-well embracing 
the n+ CCD storage channels is formed in the n− epi-layer grown on a p− epi-layer. The structure with  
n−/p− double epi-layers reduces the backside bias voltage to deplete the photoelectron generation layer; 
this reduces the electric field and thus dark current during the image capturing operation. The 
photogate for the FSI ISIS in Figure 1 was modified to the collection gate; generated photoelectrons 
travelling around the p-well to the collection gate are collected there. The structure consisting of the  
p−/n−/p/n+ layers was named a “tetratified” BSI image sensor structure, where “tetratified” is an 
abbreviated expression of “tetra-stratified”. 

Figure 3 shows an example of potential profiles in the BSI ISIS with the slanted linear storage 
CCDs on the front side. 

The BSI ISIS achieved 16 Mfps for 165 kpixels and very high sensitivity together with the  
EM-CCD installed in the readout horizontal CCD. An image taken at 16 Mfps is shown in Figure 4. 

The sensor is currently being modified for a higher frame rate and a higher pixel count. Arai et al. 
has achieved 16.7 Mfps for 300 kpixels [9]. In the p-well, various functional circuits other than the  
in situ storage can be installed. 
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Figure 3. An example ptential profile and an electron path. 

 

Figure 4. A laser chopper rotating at 6,000 rpm taken by the BSI ISIS at 16 Mfps [7]. 

 

A BSI structure partially forming the tetratified structure in a pixel was presented by other scientists 
and it is known as “quadruple well structure” [27]. Image sensors with various useful functions are 
being developed, for example, for advanced imaging mas-spectrometry [28]. 

Silicon-on-insulator (SOI) technology is another option to separate the photo-charge generation 
layer from the circuit layer [29]. Through a hole in the insulation oxide layer of each pixel, signal holes 
are transferred to frontside circuits. It is worth comparing the tetratified structure, the quadruple well 
structure and the SOI separation technologies. A combination of these technologies is also to  
be considered. 

3. ISAS 

The in-pixel image signal accumulation was introduced to the ISIS concept by folding and looping 
the in situ storage CCDs as shown in Figure 5 [14]. The last element of the looped CCD is connected 
to the first element to achieve charge circulation in multiple image capturing trials. After all the CCD 
memory elements are filled with the image signals of the first image capturing trial, those of the second 
trial are automatically added to the stored image signals transferred downward from the storage CCD. 
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Figure 5. Layout of 2 × 2 pixels in ISAS with folded and looped storage CCDs [14]. 

 

It was difficult to make a multi-folded CCD with fine elements by using the conventional CCD 
technology with double poly-silicon electrodes. The current CMOS process provides a single silicon 
electrode layer with the spaces down to 0.1 µm, which is narrow enough to transfer charge packets on 
a CCD channel with sufficiently high transfer efficiency. As shown in Figure 6, the Z-shaped 
electrodes nicely change the transfer direction [24]. 

Figure 6. A zoom of the CCD/CMOS ISAS in Figure 5. Z-shaped electrodes enable a 
folded CCD channel. Those electrodes facing each other across the channel stop 
automatically change the transfer directions as well [26]. 

 

The ISAS was invented to meet the requirements of scientists in the field of pulse neutron 
radiography. The flight speed of a neutron is nearly proportional to its energy; interaction of the 
neutron to materials is dependent of the energy and the atoms or their states in the specimen through 
which the neutron passes. Therefore, the spatial distributions of the atoms in the specimen can be 
detected by measuring the attenuation and the arriving time of neutrons to the pixels [30]. The ISAS 
provides time-resolved imaging with sufficient time resolution for this purpose. 
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The time-of-flight (TOF) imaging by the ISAS can also be applied to mass spectrometry, called in 
this case “Imaging TOF MS”. Since the sensor is BSI, electron or ion bombardment is applicable. The 
electron energy 8 keV for the direct bombardment is recommended in [31]. 

4. Hybrid CCD/CMOS ISIS 

A hybrid CCD/CMOS ISIS was also developed. Each pixel is equipped with a linear storage CCD 
and a CMOS readout circuit [20]. The main advantage of the structure is that it enables both  
ultra-high-speed imaging and high-speed readout. An issue inherent to the structure is the thickness of 
the insulation layer. CCDs can operate effectively for an oxide thickness of more than 20 nm, desirably 
50 nm. The oxide thickness of the current CMOS process is less than 8 nm, thus a better compromise 
should be sought. The latest version of the hybrid CCD/CMOS ISIS achieved 2 Mfps for 700 kpixels 
and 180 consecutive frames [21].  

5. CMOS Image Sensor with Pixel-Based Recording  

In the past, many CMOS based ISIS type sensors were experimentally designed and fabricated.  
El-Desouki et al. listed up high-speed imagers to show superiority of their CMOS in situ memory 
image sensor [32,33]. However, it was difficult to yield successful products for practical applications. 
The main reason lies in the working principle of CMOS image sensors: an image signal generated in a 
photodiode is amplified to compensate for kTC noise and leakage before being transferred to memory. 
Since the signal at the memory element is much larger than the original one, larger memory elements 
are required: this results in a smaller number of the in situ storage elements, i.e., the number of the 
consecutive frames.  

To solve the problem, Kleinfelder et al. employed PIP capacitors, which comprise a polysilicon 
electrode, an insulation layer, and another polysilicon electrode, for in situ frame storage [34,35]. 
Oxidation of the surface of the bottom polysilicon electrode provides a very thin dielectric insulation 
layer, and, thus, high capacitance. Akahane, Sugawa et al. combined the PIP capacitor with a 
conventional MOS capacitor to create a compact analogue storage unit with higher capacitance to 
develop wide dynamic range image sensors [36].  

Tochigi et al. employed the capacitor for the pixel-based storage, and finally succeeded to develop a 
practical ultra-high-speed CMOS image sensor [22,23]. Another advantage of this implementation is 
the light shield performance, since the storage area is separated from the photo-receptive area and 
placed in the peripheral light-shielded area of the chip. The CMOS switching and multi-parallel signal 
transfer wires on each pixel column made the separation possible. The sensor is equipped with a current 
source in each pixel to eliminate shading due to attenuation of the driving power at the inner pixels. 

In the next stage, it is expected that stacking technology is applied to the in situ storage image 
sensors with the storage on the different tier connected to the sensor tier with CMOS amplification 
circuit in each pixel. An early example of the stacked CMOS ISIS is presented in [37]. 
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6. Multi-Collection-Gate Image Sensor 

6.1. Macro-Pixel Operation to Multi-Collection-Gate Sensors 

The frame rate can be quadrupled by grouping pixels of an ISIS type sensor to macro-pixels, each 
with independently operated 2 × 2 pixels, and by operating them in turn. Usually, the travelling time of 
a photoelectron to a collection site in a pixel is shorter than the transfer time of the collected image 
signal charge to the in situ storage. If the transfer time is less than three times the travelling time, an 
image signal collected at one of four pixels is transferred completely to the storage area during 
collection of image signals at the other three pixels in turn. 

The disadvantage is that, during the collection of photoelectrons in one pixel, photons incident to 
the other three pixels are lost, and therefore, the fill factor of the macro pixel becomes less than 25%. 
Namely, all four pixels in a group pixel receive practically the same number of incident photons in a 
frame interval. To temporally resolve the signals to four pixels, photoelectrons generated in one pixel 
must be collected, and those generated in the rest of three pixels must be drained out of the sensor.  

The tetratified BSI structure solves the problem. A conceptual model of the pixel is shown in  
Figure 7. Four collection gates of the pixels are centered, to each of which an in situ storage CCD is 
attached. They are protected from the migration of signal electrons by a p-well built with a couple of 
the masks similar to those shown in Figure 11 later. The p-well has an n-type hole at the center, and is 
thicker at the periphery of each pixel and thinner toward the center, which creates a potential gradient 
to the center and nicely accelerates electrons toward the center,  as  “an  electronic  microlens”. Electrons 
passing through the central hole to the front side are collected by a collection gate where a higher 
voltage is applied. The fill factor is thus 100%. 

Figure 7. A tetragonal CCD multi-collection-gate image sensor. 
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6.2. Honeycomb Multi-Collection-Gate Image Sensors 

When the number of collection gates in a pixel is eight or six, the shape of the pixel becomes 
octagonal or hexagonal as shown in Figure 8 or 9. When the imaging area is filled with pixels, the 
photo-receptive area is formed like a honeycomb. Figure 8 shows a model of the frontside circuit of a 
stacked hybrid CCD/CMOS architecture image sensor with octagonal pixels. Figure 9 shows a pure 
CCD sensor with hexagonal pixels. To make the pixel grid square, the hexagons are distorted. 

The BSI image sensor with the structure is named “Multi-Collection-Gate Backside-Illuminated 
image sensor (MCG BSI image sensor)”.  

Figure 8. An octagonal CMOS multi-collection-gate image sensor. 

 

6.3. Preliminary Simulation 

The core technology of the MCG BSI image sensor is selective collection of signal electrons by one 
specified collection gate, which is also the most difficult part in the design. To prove the validity of the 
technology, preliminary simulations were conducted for a hexagonal MCG BSI image sensor shown in 
Figures 9–11. By covering the frontside circuit with a deep p-well made with a couple of masks shown 
in Figure 11, signal electrons generated by incident photons to the square area shown in  
Figure 10 are collected by one of the collection gates. A collection gate consists of an entrance gate 
and a storage gate, followed by an exit barrier gate and a transfer gate. The structure of all the gates is 
the buried CCD. Direction of the second metal wires is parallel to that of the pixel boundary as shown 
in Figure 10. The pixel configuration is suitable for the interlace imaging. The chip can be rotated  
45 degrees when it is designed or mounted on a camera, if necessary. 
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Figure 9. A distorted hexagonal CCD multi-collection-gate BSI image sensor. 

 

Figure 10. Pixel size and metal wiring direction and pitch. 

 

Figure 11. Masks for the p-well creating an electronic microlens (Negative). 

 

The size of a pixel is 10.8 µm. Eighteen metal wires are necessary to deliver voltages to drive a 
pixel. For 0.13 µm process, the pitch of the second metal wires was fixed at 0.6 µm with some 
allowance, which determined the size of the pixel (0.6 µm × 18 = 10.8 µm). The thickness of the chip 
is 33 µm, which consists of an 11 µm n-epi and a 22 µm p-epi layers. 

During the image capturing operation, voltages of all storage gates are kept at a higher level. When 
the voltage of one of the entrance gates is raised, keeping the others at the low level, the signal 
electrons are collected by the collection gate through the raised entrance gate. 

The voltage of the exit barrier gate is kept at a middle level. When a voltage of a storage gate is 
lowered after a burst image capturing of six signals, a signal charge stored in the storage gate 
overflows over the exit gate to one of the transfer gate, and is read out downward through the transfer 
gates around the exit gates. 

Figure 12 shows potentials in the depth (z) direction at the center of a pixel. If the backside voltage 
is lower than −22 V, the signal electrons safely travel to the frontside; if it is higher than −10 V, the 
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signal electrons can no longer directly go to a collection gate, being blocked by a potential dip in the 
path, which implies possibility of a vertical drain electronic shutter. 

Figure 12. Potential profiles in z-direction at the center vs. backside voltage. 

 

Figures 13 and 14 show paths of an electron generated at the left or the right corner of a pixel. The 
voltage of the left-side entrance gate is at the high level. Figures 15 and 16 show the travelling time of 
an electron from a point of the backside to a collection gate. It depends on the backside voltage. For 
the backside voltage −32 V, more than 95% of signal electrons reach the collection gate in less than 
1ns, and, thus, practically, 1Gfps is achievable. However, an electron generated at the left or right 
corner of the pixel shown in Figure 13 or 14 takes more than 1.5 ns. The time can be reduced to less 
than 500 ps by collecting the incident light to the central area of a pixel with an optical microlens. 

For the backside voltage −22 V, the microlens is necessary to achieve 1Gfps. However, the dark 
current may significantly reduce for the less electric field from the backside to the frontside. 

Figure 13. Selective  collection  of  an  electron  generated  at   the  “left”  corner  by   the  “left”  
collection gate (0 < z < 6.9 µm). 
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Figure 14. Selective  collection  of  an  electron  generated  at  the  “right”  corner  by  the  “left”  
collection gate (0 < z < 6.9 µm). 

 

Figure 15. Traveling time of an electron from a point of the backside to 1 of 6 collection 
gates (ps) (Backside voltage −32 V). 

 

Figure 16. Traveling time of an electron from a point of the backside to 1 of 6 collection 
gates (ps) (Backside voltage −22 V). 
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7. Evolving Designs 

7.1. Image Signal Amplification 

When a very small number of incident photons are available, which is inherent to ultra-high-speed 
imaging, very high sensitivity with efficient signal amplification technologies, such as electron 
bombardment [31], EM-CCD [38], and SPAD [39], must be incorporated. These technologies are 
listed up and summarized elsewhere as single-photon imaging technologies [1]. 

7.2. Stacked Driver Chips 

Even if the pixel is itself fast, distributing control signals to it in a massive array is a challenge and 
may hinder further frame rate increase. It is difficult to operate multi-collection-gate image sensors at  
1 Gfps by using a driving system made with commercially available electronic components. It is 
challenging to distribute 1 GHz clocks over a massive pixel array with little skew. Thus, it is necessary 
to develop a dedicated driver system and to optimize it. The drivers should be placed as close as 
possible to each pixel or each pixel block. Only a stacked sensor structure makes it possible, whereas 
local oscillators synchronized among each other will provide high-speed clock. 

Stacking technology is being steadily improved [40]. An image sensor with three stacked chips has 
already been successfully fabricated in a trial to introduce higher functions to image sensor chips [41]. 
We believe that this technology will be mature for our applications in the near future. 

7.3. Continuous Digital Recording 

One digital memory chip can store image signals for a sufficient number of frames for practical 
ultra-high-speed imaging. Therefore, a stacked multi-collection-image sensor architecture will enable 
ultra-high-speed continuous-recording, which overcomes the limited number of frames, the major 
shortcoming of pixel-based recording image sensors, such as an ISIS. It takes a long time to read out 
image signals of many frames to the outside of the stacked image sensor. To keep the image signals for 
a long time on the image sensor chip, they must be stored in digital format. 

A crucial factor to realize the continuous digital recording at a very high frame rates is the 
throughput rate from an imaging chip to the attached memory chip. The throughput rate is defined by a 
product of the dynamic range (ADC resolution), the pixel count (spatial resolution), and the frame rate 
(temporal resolution), and is limited by the product of the throughput rate per TSV and the total 
number of the TSVs. 

Since a very small number of photons are available, a low-resolution ADC can be employed. A 
pixel-based 4-bit ADC operates at a sample rate of more than one hundred Mega samples per second 
(100 Msps). An octagonal multi-collection-gate image sensor multiplies the throughput eight times. 
Therefore, it may be possible to digitize image signals captured at more than 0.1 Gsps and transfer 
them at about 1 Gsps to a stacked memory chip. 

Consequently, the highest technical barrier is the shrinkage of TSVs and contact points between 
chips to increase the density. Their fine process is eagerly awaited to realize continuous imaging  
at 1 Gfps. 
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Timing control is another crucial problem. An advanced ring oscillator technology makes it 
possible to keep timing errors within 100 ps (<1 ns), independently of voltage and temperature shifts 
via continuous compensation, as in phase-locked loop.  

8. Concluding Remarks 

The ISIS is the ultra-fast image sensor with in-pixel storage. The evolution of the ISIS in the past 
and in the near future is reviewed and forecasted. The process is depicted in Figure 17.  

Figure 17. Evolution of ultra-high-speed video cameras: Frame rate vs. Pixel count. 

 
Fill Factor 

1 and 2: Targets of the MCG BSI image sensor proposed in this paper, BSI 
3:  Linear CCD, BSI, 144 frames [9]    
4:  Linear CCD, BSI, 107 frames with EM-CCD [7] 
5:  SPS CCD/CMOS Readout, FSI, 188 frames [21]    
6:  CMOS, FSI, 100 frames [22]  
7:  Linear CCD, FSI, 144 frames, Color [8]   
8:  Linear CCD, FSI, 103 frames [6] 
9:  CCD, 16 frames, FSI, (1%-fill factor), 16 frames [25]    
10:  SPS CCD, 30 frames [24] 
11: CMOS, FSI, most advanced continuous recording high-speed cameras; by partial 

readout, the frame rate distributes in a wide range. 
12: NMOS, FSI, the first commercialized digital-recording high-speed video camera [3] 
13: CMOS, FSI, 8 frames (The mark represents the experimental result. The paper claims 

possibility of 1.25 Gfps) [32] 
14: CMOS, 4Mfps for 32 frames with CDS; 12x12 pixels (the mark is below the range of 

the figure) [34] 

To cover the storage area with a light shield, the conventional frontside illuminated ISIS has a 
limited fill factor. To achieve higher sensitivity, a BSI ISIS was developed. To avoid direct intrusion of 
light and migration of signal electrons to the storage area on the frontside, a cross-sectional sensor 
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structure with thick pnpn layers was developed, and named “Tetratified structure”. The structure 
contributed to increase the frame rate as well as the sensitivity, with metal wiring on the frontside with 
higher freedom. The highest frame rate of the existing ISIS with this structure is 16.7 Mfps for  
300 kpixels. 

A different way to avoid the direct intrusion of light and the electron migration to the in situ storage 
is developed by Tochigi et al. The pixel-based storage is placed on the periphery covered with an 
efficient light shield.  

Another problem associated with the ISIS with the slanted linear CCD was very high power 
consumption, compared with CMOS image sensors. Etoh et al. suggested that the Kosonocky’s SPS 
CCD ISIS consumes much less power, and can be easily produced by using an existing fine CMOS 
process. Crooks et al. has revived the Kosonocky’s model. 

By folding and looping in-pixel storage CCDs, an image signal accumulation sensor, ISAS, is 
proposed. The ISAS has a new function, the in-pixel signal accumulation, in addition to the  
ultra-high-speed imaging.  

To achieve much higher frame rate, a multi-collection-gate (MCG) BSI image sensor architecture is 
proposed. Around the center of each pixel, plural of collection gates are placed and collect image 
signals in turn. A signal charge collected by a collection gate is transferred to a neighboring storage 
area during signal collection by other collection gates. The photoreceptive area forms a honeycomb-like 
shape. Performance of a hexagonal CCD-type MCG BSI sensor is examined by simulations. The 
highest frame rate is theoretically more than 1 Gfps. 

For the near future, a stacked hybrid CCD/CMOS MCG image sensor seems most promising. The 
associated problems are discussed. A fine TSV process is the key technology to realize the structure. 
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