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A programmable architecture called “quantum FPGA (field-programmable gate array)” (QFPGA) is presented
for quantum computing, which is a hybrid model combining the advantages of the qubus system and the
measurement-based quantum computation. There are two kinds of buses in QFPGA, the local bus and the global
bus, which generate the cluster states and general multiqubit rotations around the z axis, respectively. QFPGA
consists of quantum logic blocks (QLBs) and quantum routing channels (QRCs). The QLB is used to generate a
small quantum logic while the QRC is used to combine them properly for larger logic realization. Considering
the error accumulating on the qubus, the small logic is the general two-qubit quantum gate. However, for the
application such as n-qubit quantum Fourier transform, one QLB can be reconfigured for four-qubit quantum
Fourier transform. Although this is an implementation-independent architecture, we still make a rough analysis
of its performance based on the qubus system. In a word, QFPGA provides a general architecture to integrate
different quantum computing models for efficient quantum logic construction.
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I. INTRODUCTION

Quantum computers could outperform their classical coun-
terparts when solving many fundamental and complex prob-
lems such as integer factorization [1], database search [2],
global binary optimization [3], linear equation solving [4], and
so on [5]. In a quantum computer, these problems are solved by
using various quantum algorithms, which often require a large
number of qubits to obtain results. Therefore, how to design
programmable and scalable quantum computer architectures
is at the core of quantum computation research.

Quantum computation is executed under the framework of
quantum mechanics. There are several models for quantum
computation. The most widely used one is the quantum circuit
(QC) model [6]. The QC model is a quantum edition of “the
reversible classical circuit model.” Computation in the QC
model is run by a sequence of quantum gates and represented
by its circuit diagram, where the connecting wires stand
for the logical qubits, which carry the information, and the
information is processed by the sequence of quantum gates.
In the end, the result of the computation is read out by the
projective measurements on the qubits.

The measurement-based quantum computation (MBQC) is
another well-recognized model [6–9]. In MBQC a highly en-
tangled cluster state is generated, and then through single-qubit
measurements alone, any desired unitary can be implemented
only up to random but known Pauli transformations [10,11].
The MBQC methods enable one to simulate any quantum
circuit on a sufficiently large two-dimensional graph state
by arranging the spatial pattern of measurement bases for
the graph qubits according to the temporal order of required
quantum gates.

Recently, a number of hybrid quantum models have been
proposed, such as the hybrid quantum computational model
(HQCM) [12] and the ancilla-based computation (ABC) model
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[13]. The main idea behind these models is to use two or
more different types of quantum models or systems to perform
calculations simultaneously. In other words, HQCM combines
elements of both QC and MBQC models while ABC uses
a flying ancilla qubit that mediates between fixed qubits. In
fact, the ancilla-based model is among the most promising
for scalable chip-based quantum computer architectures as
it allows the interaction between distant qubits without SWAP

gates so as to offer individual addressability. For this reason, we
will concentrate on the qubus system [14,15]—an important
kind of ancilla-based model—which combines both matter
and optical elements. In this hybrid system, the quantum gates
among qubits of one type can be mediated by a shared bus of
the other type [16,17]. The disadvantage of hybrid systems is
that some specific types of error may be introduced, because
of the use of the mediating ancilla. In cases where the ancilla is
not destroyed after each gate, there is the additional possibility
of errors propagating through ancilla reuse.

In this paper, our goal is to realize universal quantum
computing by providing an array architecture that can be
appropriately programmed. Programmability means flexibil-
ity and universality, while the size and the design of the
architecture are fixed, but scalable. It was shown by Nielsen
and Chuang [18] that in a pure quantum computer no such
fixed quantum gate array architecture can be realized in a
deterministic fashion. This is because the dimension of the
program system has to be infinite as even for a single qubit
the set of operations is infinite. However, a quantum computer
can be aided by a classic control computer [19]. In essence,
one can choose classic bits as the program system to decide
which operations are carried out. Inspired by this concept, we
present a programmable architecture called “quantum FPGA”
(QFPGA) similar to classical field-programmable gate arrays
(FPGAs) in the area of traditional digital circuits.

As shown in Fig. 1, all commercial FPGA devices consist
of a large number of programmable logic blocks and pro-
grammable routing resources. Each block implements a small
digital logic and programmable routing resources allow the
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FIG. 1. A generic FPGA architecture [20].

logic block inputs and outputs to be connected to form larger
circuits.

In the traditional FPGA, three factors determine perfor-
mance: the quality of the computer-aided design (CAD) tools
used to map circuits into the FPGA, the quality of the FPGA
architecture, and the electrical (i.e., transistor-level) design of
the FPGA [20]. Similarly, quantum logic synthesis CAD tools,
programmable architecture, and quantum gates implementa-
tion are the three most important factors of the QFPGA.

Quantum logic synthesis has shown that any unitary
transformation can be exactly realized if the set of single-qubit
operation plus CNOT are allowed as elementary gates [21]. We
note that quantum gate arrays in the literature [22,23] are
generally based on some matrix decompositions such as QR

decompositions [24], CS decomposition [25], QS decompo-
sition, and some variety of these methods [26]. The purpose of
these works is to optimize the number of CNOT gates. However,
these methods are suitable to implement a quantum gate in a
custom style, rather than in a fixed programmable architecture.
Reference [27] presents a programmable quantum circuit
scheme to simulate any operator by setting the angle values
in the circuit; thus it can provide a fixed circuit but at the
cost of many multiqubit controlled gates (i.e., a programmable
two-qubit circuit needs sixteen five-qubit controlled-rotation-y
gates). Considering the current experimental limits of quantum
mechanics, it may not be feasible to realize a large quantum
circuit based on that scheme. In this paper, we use a method
based on CS and QS decompositions, which can decompose
an arbitrary n-qubit gate into a circuit containing m-qubit
gates (m < n) and multiqubit diagonal gates. Mathematically,
it means that any n-bit quantum gate from the group U(2n)
equals the product of several U(2m) matrices and diagonal
unitary matrices.

As we know, programmability is the key feature of the
MBQC. In a classical approach, implementing a circuit in a
traditional FPGA requires that hundreds of thousands or even
millions of programmable switches and configuration bits be
set to the proper states, on or off. The similar situation exists
in MBQC. Given a large enough two-dimensional cluster state
(lattice in most cases), configuration bits are the measurement
basis of every qubit. However, it would become much more
difficult to implement a large quantum circuit using a lattice
cluster state without a certain structure, as the placement of
the measurement is very complex. Worse still, a large cluster
state means a high probability of qubit errors, such as phase

flip and decoherence. Therefore, one of the most important
requirements for a QFPGA is that we develop a structural
architecture to use the MBQC in a certain predesigned way.

Our proposed architecture consists of two parts: The first
part is an array of static, long-lived quantum memories that can
interact with moving, short-lived quantum registers—flying
qubits—via a fixed interaction [28]. We call this part “quantum
routing channels” (QRCs), which are used as quantum routing
resources and to realize diagonal unitary operators. The
second part is the “quantum logic block” (QLB) to implement
a general two-qubit quantum gate. Theoretically, as any
U(2n)(n � 2) can be decomposed into U(4) and diagonal
unitary operators, thus the architecture consisting of QLBs
and QRCs is also universal. In contrast to the general MBQC,
here quantum logic inputs and outputs are restricted in QRCs.
Moreover, by using qubus to design an optimal scheme
for dynamic cluster-state generation, we will show that our
architecture is feasible as the error probability ε is below 10−2,
which is an accepted threshold of the MBQC.

This paper is organized as follows. In Sec. II, we review
CS and QS decompositions, which are the most fundamental
logic synthesis methods for QFPGA. In Secs. III and IV, we
give a brief review of the MBQC and element operators of
the qubus quantum computer, which are critical components
in our architecture. In Sec. V, we give a detailed description of
the QFPGA which consists of four parts. The first two parts are
the structures of the QRC and QLB, the third part is the error
analysis, and the fourth part describes the whole architecture
of QFPGA. Then in Sec. VI, based on QFPGA, we provide
two applications—the general quantum gates and quantum
Fourier transform to show some important advantages of
our architecture. Finally, we conclude our paper in Sec. VII
with a summary and outlook. The Appendix deals with the
decomposition of a CS gate.

II. QUANTUM LOGIC SYNTHESIS

In this section we will review the main results derived
in Ref. [26]. Two quantum circuits are equivalent if matrix
products of their corresponding gates are identical. In order to
synthesize a given unitary matrix, equivalent circuits may be
applied to reduce the circuit cost. To do this, various quantum
circuit identities have been proposed in recent years [26,29,30].

An arbitrary single-qubit gate U(2) can be decomposed
into Rz and Rx rotation gates (ZXZ decomposition) as shown
in Eq. (1). Hence, it can be implemented as a sequence of at
most three elementary gates,

U(2) = Rz(α)Rx(β)Rz(γ ), (1)

where α, β, and γ represent the angles of rotation.
For the n-qubit unitary matrix U(2n), cosine-sine decom-

position (CSD) can be expressed by Eq. (2) where A1, B1,
A2, and B2 are unitary 2n−1 × 2n−1 matrices and C and S are
unitary 2n−1 × 2n−1 diagonal matrices with real elements such
that C2 + S2 = In−1, where I is the identity operator.

U =
(

A1 0

0 B1

) (
C S

−S C

) (
A2 0

0 B2

)
. (2)

In Eq. (2) above, the left and right factors Aj ⊕ Bj are
quantum multiplexors controlled by the most significant qubit
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CS

FIG. 2. CS decomposition of a unitary matrix.

which determines whether Aj or Bj is to be applied to the
lower-order qubits. The central factor has the same structure
as the rotation-y gate Ry [26]. A closer inspection reveals that
it applies a different Ry gate to the most significant bit for
each classical configuration of the low-order bits. Thus, the
CSD of a unitary matrix can be seen in Fig. 2.

Since the left and the right matrices in Eq. (2) are block
diagonals, they can be further decomposed into two generic
unitary matrices and a specific block diagonal matrix, which
is called quantum Shannon decomposition (QSD) [26].(

Aj 0

0 Bj

)
=

(
V 0

0 V

) (
D 0

0 D†

) (
W 0

0 W

)
. (3)

From this expression, we obtain the relation AjB
†
j =

V D2V †. So, both V and D can be easily calculated through
the diagonalization of AjB

†
j . Furthermore, W = DV †Bj . It

should be noted that matrix D ⊕ D† of dimension 2n × 2n has
the diagonal form of Eq. (4), written as Dn(θ0,θ1, . . . ,θ2n−1 )
or Dn for short. The Dn gate is in fact a multiplexed Rz gate
acting on the most significant bit in the circuit. Because the
CS matrix is a controlled-Ry gate to the most significant qubit
according to the lower-order qubits, we can also apply QSD
as shown in Fig. 3.

Hence, any arbitrary n-qubit gate can be implemented by
a circuit containing three Dn gates and six generic (n − 1)-
qubit gates, which can be viewed as cofactors of the original
operator. For n � 2, by using CSD and QSD recursively, any
U(2n) can be decomposed into several U(4) and Dk gates
(2 � k � n).⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eiθ0

eiθ1

. . .

eiθ2n−1

e−iθ0

e−iθ1

. . .

e−iθ2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

DCS

FIG. 3. Decomposition of a CS gate.

III. MEASUREMENT-BASED MODEL

We give a brief review of the MBQC, including the
preparation of cluster states [8] and three examples which are
very important in our architecture. For a fuller presentation we
refer the reader to a tutorial [10] and Ref. [11] which use a
high-level diagrammatic language to understand cluster states
in a simple and fascinating way. Furthermore, we represent the
Pauli vector operator σ̄ by (X,Y,Z) and the identity operator
by I .

Cluster states can be realized in many physical systems by
first preparing all the qubits in the state |+〉 = (|0〉 + |1〉)/√2.
Then, entanglement between each pair of nearest-neighbor
qubits is established by the controlled-Z gate:

CZ(a,b) = |0〉a〈0| ⊗ I b + |1〉a〈1| ⊗ Zb. (5)

Here, the indices a and b stand for the qubits at lattice site a

and its nearest-neighbor lattice site b of graph G, respectively.
Once the cluster state resource is ready, then the logical

input qubits are attached to the resource via the same
entangling operations given by Eq. (5). Now the computation is
carried out by a sequence of single-qubit (adaptive) projective
measurements in a certain direction of the Bloch sphere and
in a certain temporal order. The choice of measurement basis
is characterized by the direction of measurement (θ,φ) in the
Bloch sphere, where it represents two kets,

|↑ (θ,φ)〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉, (6)

and

|↓ (θ,φ)〉 = cos
θ

2
|0〉 − eiφ sin

θ

2
|1〉, (7)

respectively.
Example 1. Rx(α)Rz(β) can be realized by the three-qubit

cluster states in Fig. 4 where the measurement direction is
in the XY plane, so α and β in the circle represent (π/2,α)
and (π/2,β), respectively. The following measurement pattern
implements the unitary transformation:

Xm2HRz(β)Xm1HRz(α) = Xm2HRz(β)HZm1Rz(α)

= Xm2Rx(β)Zm1Rz(α)

= Xm2Zm1Rx[(−1)m1β]Rz(α),

(8)

where we introduce a binary digit mi ∈ {0,1} to represent
a measurement outcome of (−1)mi of qubit i and use
the identities HRz(θ )H = Rx(θ ) and ZRx(−θ ) = Rx(θ )Z. It
should be noted that the two measurement outcomes m = 0,1
for every qubit of the cluster state are equally probable because
the reduced density matrix for each qubit is the completely
mixed state I/2. Due to this randomness introduced by the
measurements, temporal ordering among the measurements is
necessary as it can keep the computation deterministic. So in

Rz( ) Rx( ) 1)1( m

FIG. 4. The measurement pattern to realize Rx(α)Rz(β).
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0 0

input output

FIG. 5. The construction of an identity gate (quantum wire).

this case, to obtain the desired unitary, the measurement angle
of the second qubit must depend on the measurement value
m1 of the first qubit, that is, (−1)m1β. In other words, two
time steps are needed to accomplish this operator. By the way,
Rx(α) is realized when β = 0 and it also needs three-qubit
cluster states.

In principle we can correct by-product operators of each
gate step by step, but it is more convenient to let them pass
through the gates, and use the propagation relations to keep
track of the accumulated measurement outcomes to avoid logic
errors. For example, the propagation relation of the single-
qubit gate is

Rz(α)Rx(β)Rz(γ )(X)x(Z)z

= (X)x(Z)zRz((−1)xα)Rx((−1)zβ)Rz((−1)xγ ). (9)

Then we can change the corresponding measurement basis
of the current gate to obtain the correct results.

Example 2. Quantum wire (identity gate). The identity gate
can be used as a quantum wire to transport a qubit to a different
site of cluster state. For example, two cascaded gates might
not lie in the adjacent sites of the cluster state; then we should
use the identity gate to link them, so it is a very useful tool in
gate construction considering the flexibility and scalability.

The quantum wire can be easily realized in Fig. 5. The
unitary transformation is

Xm2HXm1H = Xm2Zm1 , (10)

so this is a quantum wire with by-product operators according
to the measurement outcomes. In the following text, we will
use arrows to represent quantum wires.

The propagation relation of the quantum wire is very easy,

I (X)x(Z)z = (X)x(Z)zI. (11)

Example 3. The unitary operation for the n-qubit rotation
around the z axis is

R12···n
zz···z (θ ) = exp(−iθZ⊗n). (12)

Here, we define θ as the interaction value among n qubits.
In MBQC, Eq. (12) can be easily implemented by performing
a single measurement on the ancilla qubit a in the (1 + n)-qubit
star graph state as shown in Fig. 6 [12].

Measuring qubit a in basis (−φ, −π/2) is equivalent
to performing [Rx(φ)]a and then measuring Za; hence it
implements the logical unitary R12···n

zz···z (φ) on the desired n

qubits with by-product Z⊗n according to the measurement
value ma of qubit a,

|ψout〉 = (Z⊗n)maR12···n
zz···z (θ )|ψin〉. (13)

The propagation relation of this rotation gate is

R12···n
zz···z (θ )(X)x(Z)z = (X)x(Z)zR12···n

zz···z ((−1)xθ ). (14)

FIG. 6. (Color online) (a) (1 + n)-star graph state |ψ〉1+n where
the ancilla qubit a is represented by the black diamond. (b) The
effect on the input state |�in(n)〉 when the qubit a is measured in an
appropriately chosen basis [12].

IV. THE QUBUS QUANTUM COMPUTER

We give a brief introduction to the qubus system; a more
detailed description is available in Refs. [14–16]. A qubus
quantum computer is a hybrid system of a processing unit made
of qubits and a continuous variable field “bus” that generates
interactions and transfers information between qubits [15]. We
focus on the qubus quantum computer because it can generate
cluster states as error free as possible, which is extremely
important for MBQC.

The element operators of interactions in the qubus system
can be written in the form

D(σzβ) = exp(σzβa† − σzβ
∗a), (15)

where β = χtei(θ− π
2 ); thus

β =
{

iχt, if θ = 0

χt, if θ = π/2
.

Here χ is nonlinearity strength, a (a†) are the field annihilation
(creation) operators, and θ = 0 (π /2) describes coupling of
the qubit to the position (momentum) quadrature of the field.
According to the following equation, if σ1 and σ2 commute,
then

D(σ1β1)D(σ2β2)

= exp

[
(β1β

∗
2 − β∗

1 β2)σ1σ2

2

]
D(σ1β1 + σ2β2). (16)

This expression gives us a phase factor if one of β1 and β2

is a real number and the other is an imaginary number. This
means that a phase factor is generated when we connect two
qubits to opposing quadratures of the bus, but that no phase
factor is generated when we connect two qubits to the same
quadrature of the bus.

From Eq. (16), if we apply the following sequence dis-
placement operator between qubits 1 and 2, then the sequence
performs a geometric phase gate U between them,

U = D(β1σz1)D(−iβ2σz2)D(−β1σz1)D(iβ2σz2)

= exp(iβ1β2σz1σz2)D(β1σz1 − iβ2σz2),

D (−β1σz1)D(iβ2σz2)

= exp(2iβ1β2σz1σz2)D(−iβ2σz2)D(iβ2σz2)

= exp(2iβ1β2σz1σz2). (17)
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When β1β2 = π/8, this provides a gate which is a local
equivalent to a CZ gate required for cluster-state construction:

[Rz,1(π/2)Rz,2(π/2)]U = CZ. (18)

As the local unitary is Rz(π/2), so all measurement basis
(θ,φ) obtained in Sec. III to drive the computation should be
modified as (θ,φ − dπ/2), where d is the degree of a vertex
in cluster states. For example, the ancilla qubit in the (1 + n)
star graph states has a degree n (see Fig. 6).

V. THE QUANTUM PROGRAMMABLE ARCHITECTURE

As described in Sec. II, any quantum circuits can be
decomposed recursively into a sequence of D gates and
two-qubit quantum gates. Correspondingly, our architecture
consists of two parts: quantum routing channels (QRCs) and
quantum logic blocks (QLBs). The main purpose of QRCs is
to realize D gates, and the QLBs are set to realize general
two-qubit quantum gates, respectively.

As shown in Fig. 7, a QRC consists of the memory qubits
(long-lived qubits) and channel qubits (ancilla qubits), while
QLBs are short-lived qubits that possess short coherence time.
The different choices of qubits are due to the fact that the
running time of a QRC is often longer than a QLB; i.e., much
more time is needed to realize a large Dn gate while a two-qubit
gate is comparatively easy to implement.

In electronics and especially synchronous digital circuits,
a clock signal is a particular type of signal that triggers and
synchronizes actions of circuits. A clock cycle is the minimum
time unit required to perform a basic operation. In some cases,
more than one clock cycle is required to perform a predictable
operation. Taking advantage of this concept, we suppose that in
QFPGA a bus operation can be implemented within one clock
cycle and so is a single-qubit measurement. The motivation
of this idea is that the timing performance of QFPGA can be
analyzed as the conventional digital circuits.

In next three parts, we will describe the details of QRCs,
QLBs, and how they are combined to build a programmable
architecture.

.

.

.

.

.

.

QRC

.

.

.

QLB

QLB

bu
s

QRC

.. ..

memroy
qubits

channel
qub�s

memroy
qubits

channel
qub�s

FIG. 7. Pictorial sketch of programmable quantum computing
architecture.

A. Quantum routing channel (QRC)

One of the advantages of qubus is that we can use the
bus for more efficient cluster-state construction, especially the
star graph state. Consider the following sequence of unitary
operators for n qubits provided that β = √

π/8:

n∏
l=1

D(βσz,l)D(−iβσz,a)
n∏

l=1

D(−βσz,l)D(iβσz,a)

= exp

[
2iβ2σz,a

(
n∑

l=1

σz,l

)]
. (19)

Then, we use this method to construct Dn gates. Obviously,
every Dn gate has 2n−1 independent variables from Eq. (4), it
can be written into the expression

Dn = ei(Z⊗I ···⊗Iα1+Z⊗I ···⊗Zα2+···+Z⊗Z···⊗Zα2n−1 ), (20)

where Z and I represent Pauli-Z matrix and identity matrix,
and α1,α2, . . . ,α2n−1 are 2n−1 independent variables. In other
words, each term in Eq. (20) is an n-qubit rotation operator that
is defined in Eq. (12). Therefore, 2n−1 − 1 multiqubit rotation
gates are enough to perform a Dn gate, as the first variable α1

is just a single-qubit rotation about the z axis. For example,
D2 gate can be realized by two rotation gates R12

zz (α0) and
R12

zI (α1). Since any rotation gate R12···n
zz···z (θ ) can be implemented

by performing a single measurement in the (1 + n)-qubit star
graph state, Dn gates can be realized.

Another advantage of the qubus system is that we can reuse
the bus [17], i.e., we can construct several star graph states
in one bus, because in each step we could couple a new
channel qubit and couple or decouple some memory qubits
to the opposition quadrature of the bus. The reader may easily
verify that if this method is used to implement an n-qubit D

gate where n>3, some memory qubits must be visited more
than once. For example, if n = 4 (see Fig. 8), star graph states
only from (i) to (v) can be generated in one bus if each qubit

(i) (ii) (iii)

1

2 3

4

3

1

2

4

4

1

2 3

2

1

2

1

1

3

7

1

3

4

6

(iv)

)iiv()iv(

1 4

5

(v)

FIG. 8. Construction of a general D4 gate in one bus. Square
and circle qubits represent channel qubits and memory qubits,
respectively.
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can be visited once only. To generate (vi) and (vii), qubit 3
must be coupled to the bus again.

The detailed steps of implementing a general Dn gate are
as follows:

(1) Prepare all required ancilla qubits in the state |+〉 as
channel qubits.

(2) Couple all n memory qubits to position (momentum)
quadrature of the bus and a channel qubit to momentum
(position) quadrature of the bus.

(3) Measure the channel qubit in certain basis [θ,

− (1+m)π
2 ], where m is the degree of this channel qubit.

(4) Decouple or recouple a certain memory qubit and
simultaneously couple a new channel qubit to the bus.

(5) Repeat steps 3 and 4 until all desired star graph states
are generated and measured.

An n-qubit Dn gate requires 2n−1 − 1 channel qubits at
most and each channel qubit connects m memory qubits where
m � n. In fact, only one channel qubit will connect n memory
qubits. In conclusion, as long as the required channel qubits
can be obtained, QRCs are efficient in implementing any Dn

gates.

B. Quantum logic block (QLB)

The main function of QLBs is to realize the simple quantum
logic: a general two-qubit quantum gate. To this end, consider
n = 2 in Sec. II; the decomposition of a general two-qubit
quantum gate is shown in Fig. 9(a), where we have used the
commutative of Rz and D gates and the QSD of a two-qubit CS

gate (see Appendix). Furthermore, from Eq. (20) any D2 gate
can be decomposed into a two-qubit Rzz gate and a single-qubit
Rz gate, thus leading to Fig. 9(b).

From the discussion in Sec. III, both Rx(α)Rz(β) and D2

gates can be realized by the certain measurement on three-qubit
cluster states and as Rz commutes with all D gates, the last
two Rz gates within the dotted square in Fig. 9(b) can be
absorbed in the next gate; then we could ignore it at the
moment. In principle, any two-qubit quantum gate can be
realized in certain cluster states via the traditional MBQC
method. However, as we use the qubus method to generate
entanglements between two qubits, a slightly modified cluster
state could be adopted. Recall Eq. (16), we can see that
any Rzz(θ ) gate can be efficiently realized as long as the
interaction value between two qubits, 1 and 2, is θ = 2β1β2.
In other words, using qubus to generate three Rzz gates
directly, three ancilla qubits can be saved which should be
used to form corresponding star graph states (see Fig. 6).

Rz

D D D
Rx Rz Rx

Rx

Rz Rx

Rz Rx

Rz Rx Rz

Rz Rx Rz Rx Rz Rx

Rz Rx

Rz Rx RzRz Rz Rz

Rz Rx RzRz Rz Rz

(a)

(b)

FIG. 9. (Color online) The general decomposition of a two-qubit
quantum gate.

1 2 4B 6B 8

4A 6A

3B 5B

3A 5A

7

FIG. 10. The cluster states needed to realize a general two-qubit
quantum gate, where the number in circles represent the order of
measurement. (Since some qubits will be measured at the same cycle,
a capital letter is appended after the numbers for discrimination.) The
dotted line means certain Rzz(θ ) gate between two qubits. Two gray
circles represent two output qubits.

Therefore, the final cluster states needed are shown in Fig. 10,
where three dotted lines mean three Rzz(θ ) gates between
two qubits and the numbers in circles represent the order
of measurements. In total, 14 qubits are needed to realize
a general two-qubit quantum gate. Because of the adaptive
measurements, theoretically it will take at least eight clock
cycles of measurements and three Rzz(θ ) gates to complete the
computation.

We now consider modifying the above cluster states to
constitute a more compact QLB. The idea is to ignore two
output qubits, as they can be memory qubits inside a QRC.
Then we focus on how to realize the rest of the 12-qubit cluster
states within a QLB. Suppose that these 12 qubits form a 4 ×
3 lattice and a local bus within it; we can use it to generate
the desired cluster states. This is because the displacement
operators on the qubus allow a qubit on one quadrature to
become entangled with all qubits on the other. For example
to generate the cluster states of Fig. 10, if qubits 1 and 3B
couple to the momentum quadrature of the bus, then qubit 2
should be coupled to the position quadrature and so on. To
avoid the unwanted entanglement in the QLB, four qubits at
most can remain on the bus: one position-quadrature qubit and
three momentum-quadrature qubits or vice versa. By using
this method properly, the desired cluster states of QLB can be
realized.

Of course, to obtain the results of the QLB, we should
link two memory qubits as outputs (see “ϕ1” and “ϕ2” in
Fig. 10). This step is made easy by extending the QLB bus
in the QRC, and no channel qubit is needed. Furthermore, we
can also directly link two or more QLBs without using any
memory qubits. This advantage will save a great number of
memory qubits if some QLBs are cascaded without any Dn

gates between them.
We should note that except for three qubits, operations

between other qubits and the bus are just D(βσz) or D(iβσz),
β = χt = √

π/8; i.e., the interaction time between these
qubits and the bus are the same. Thus in order to simplify the
analysis, provided that the QLB bus can interact with multiple
qubits for different displacement operators in one clock cycle,
then we will find that it should take at most 19 clock cycles to
complete the function of a QLB. For example, Fig. 11 shows
the cluster states of the QLB when the system is at clock cycles
4, 9, and 19 respectively, where “M” means the qubit has been
measured and “ON” means this qubit still stay on the bus. The
details of the procedure can be seen in Table I; for example,
the first row of the table means the qubit 1 is coupled to the
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FIG. 11. (Color online) The cluster states of the QLB when the
system is at clock 4, 9, and 19, here M means the qubit has been
measured and ON means this qubit still stay on the bus.

bus at the first clock cycle, then decoupled at the second clock
cycle, and measured at the third clock cycle in the end.

From this point of view, we can say that every qubit of
the QLB has a unique clock cycle as its characteristic value,
such as “1(2)”. As qubit 5B and ϕ1 in Fig. 10 must be visited
twice, thus at most 32 displacement operations are needed for
each QLB bus. Moreover, assuming that the measurement of
a qubit needs one clock cycle, we can roughly analyze the
performance of the QLB. From Table I we can see that to
output the result through adaptive measurements, 19 clock
cycles are necessary.

To make the QLB more physical senses, we consider a
special case of superconducting charge qubits [31,32]. We first
review the method of Ref. [31]: D(iβσz) operation (coupling
to the position quadrature) can be realized if a qubit is placed
in a microwave field at a position where there is a nonzero
electric field across it. On the other hand, D(βσz) operation
(coupling to the momentum quadrature) can be realized if such
a qubit is at a position where there is a nonzero magnetic field
normal to the plane of this qubit. Now consider red (dark gray)
qubits of the QLB in Fig. 12, which are positioned to couple
to the electric field antinode of a microwave mode and gray
qubits positioned to couple to the magnetic field antinode of

TABLE I. Performance of the QLB.

Measurement Operation cycle Measurement cycle
order index index

1 1(2) 3
2 1(2) 4
3A 5(6) 7
3B 1(6) 7
4A 5(8) 9
4B 3(4) 8
5A 7(12) 13
5B 3(4), 11(12) 13
6A 7(10) 14
6B 11(14) 15
7 13(16) 17
8 13(18) 19
ϕ1 9(10),15(16)
ϕ2 17(18)

QLB

bus

FIG. 12. (Color online) Schematic of the QLB (shadow). The
QLB consists of 12 qubits and one bus. Gray qubits are coupled to
position quadrature of the bus and red (dark gray) qubits are coupled
to momentum quadrature of the same bus. Arrows mean that the
corresponding CZ operations are taken by the QRC bus.

the same mode; then the desired displacement operator can be
applied through a single microwave bus.

However, Fig. 12 is just one QLB configuration only, as
it is the clock cycles of each qubit that decide the shape
of cluster states rather than its position of the lattice. So
the I/O (inputs/outputs) ports of a QLB are not necessarily
fixed, since they can be moved to any other positions by
changing the sequence of bus operations; i.e., the bus should be
programmable to any sequence of interactions with the qubits.
The only constraint is that the quadrature of each qubit cannot
be changed dynamically as it is biased by the external field. In
fact, the only requirement is that there are six qubits coupled
to position quadrature and six qubits coupled to momentum
quadrature of the bus. Thus any pair of qubits coupled to both
quadrature of the bus can be two inputs or outputs.

In summary, a complete QLB should contain 12 qubits and
one integrated local bus which can be programmable to interact
with these qubits in the suitable sequence.

C. Error analysis

In this part, we use the method reported in Ref. [17] to
calculate the dephasing error of our architecture. For N bus
operations, the probability of dephasing is

ε = 1
2 [1 − exp(−Nγ τ − 4Cηβ2)], (21)

where τ is the time to perform for one bus operation and γ

is the dephasing rate for qubits, C is the number of CZ gates
constructed per bus, and η is the loss parameter for the bus.
Consider the construction of the QLB in Fig. 12, then N =
32 and C = 15. If we take γ τ = 5 × 10−4 and η = 10−4 for
practice [17], then the error of dephasing is ε = 0.0091 which
is below the error threshold 10−2. On the other hand, coupling
17 qubits (N = 34) and creation of 20 CZ gate per bus are the
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limitation under the error threshold—thus we can efficiently
generate a 17-qubit star graph state, i.e., for a rotation gate
larger than 16 qubits, we might use two or more buses in the
QRC to generate a certain star graph state.

From Eq. (A2), we can see another potential reason for the
choice of our QLB architecture: If we use pure MBQC method
to implement the general two-qubit quantum gate and take only
one bus to generate whole cluster states (N = 36, C = 18),
it is likely to induce some uncorrectable errors (ε = 0.0103)
because it exceeds the threshold.

D. Quantum FPGA architecture

So far, we have proposed a simple architecture consisting
of QLBs and QRCs (see Fig. 7), and show how they are
implemented by the qubus system. Obviously, the most
important advantage is the scalability and flexibility: QLBs and
QRCs can be arranged in different kinds of array architectures
to implement the universal quantum computation. In other
words, the size and shape of the array can be made in
various types to meet the application requirements. For an
extreme example, in principle we can use many QLBs, which
connect with only one QRC to construct a universal gate array.
However, this will inevitably increase the length of the QRC
and thus become impractical.

Based on the above discussion, we extend to the QFPGA
architecture as in Fig. 13. Generally speaking, the FPGA-like
architecture provides more flexibility for layout. Since QLBs
can be placed in two dimensions, we can view this kind of
architecture as having a two-dimensional topology.

There are two kinds of buses in the QFPGA: the local bus
and the global bus. We have described how the local bus is
mainly used to generate the desired cluster states within a
QLB while the global bus is used to implement a general Dn

gate or to establish links between different parts. In a sense

QLB

I/O

QLB QLB

QLB QLB QLB

QLB QLB QLB

Memory Memory Memory MemoryCQ CQ CQ

I/O I/O

I/O I/O I/O

I/O

I/O

I/O

I/O

I/O

I/O

Memory CQ MemoryMemory CQ Memory

Memory CQ MemoryMemory CQ Memory CQ

CQ

CQ CQ CQ CQ

CQ CQ CQ CQ

Memory CQ MemoryMemory CQ Memory CQ

CQ CQ CQ CQ

QRC

FIG. 13. (Color online) Quantum FPGA architecture. CQ is short
for “channel qubits”. I/Os represent the inputs and outputs of the
QFPGA.

we may say that the local bus generates the local information
while the global bus entangles it.

Ideally, a global bus should be able to link QLBs in any
position. However, considering the physical limitation and the
fault-tolerant requirement, the length of a global bus should
be limited and only one bus can exist in a QRC. That means
if we want to use two global buses in a QRC at the same
time, one must be suspended until the other is over. Thus in
order to realize a large quantum circuit, one object of the QLB
placement is try to balance the lengths of global buses used and
their spatial distribution to avoid the congestion of the QRCs.

Inside a QRC, each memory contains one qubit as the input
or output of the corresponding QLB, and we can combine two
or more QLBs directly into a large cluster state to save the
number of memory qubits. In fact, this strategy depends on
the coherence time of a QLB, which means that the output
qubits exceeding the coherence time have to be registered in
the memory. On the other hand, we notice that in the QFPGA
all memory qubits are measured in the X basis; i.e., these
qubits are in the state |+〉 or |−〉 after measurements. Hence
they can be reused to form new cluster states in principle. This
is because if the memory qubit is in the state |−〉, then nothing
is changed but only the measurement value mi of the previous
qubit is set to mi ⊕ 1.

Last, but not least, provided that QLB can be regenerated
periodically after measurements, the size of the arrays can be
reduced to a great extent. A realization of the regenerable clus-
ter states can be seen in Ref. [33] and in general, the solid-state
systems such as charge qubits or flux qubits are regenerable
qubits, so we could reuse them in a fixed interval. Hence this
QLB feature may be not difficult to satisfy in the future.

In summary, the general features of the QFPGA are as
follows:

(1) Two kinds of components: QLBs and QRCs which have
the local bus and the global bus, respectively.

(2) The memory qubits can be reused immediately.
(3) The QLB qubits can be regenerated periodically.
Based on the above features, we will present two important

applications of the QFPGA in the next section.

VI. APPLICATIONS OF THE QFPGA

In this section, we will focus on two applications: con-
struction of the general quantum gates and stimulation of the
quantum Fourier transform (QFT). The purpose of the first
one is to give a direct way to realize any quantum gate in the
QFPGA, while the second one will show one of the important
advantages of our hybrid architecture.

A. The general n-qubit quantum gate

We first realize a general three-qubit quantum gate, then
extend to the n-qubit version. Using the synthesis method of
Sec. II, we can decompose a general three-qubit gate into six
two-qubit gates and three D4 gates (see Fig. 14).

Thus, six QLBs and three QRCs are needed. However, if
the QLB can be regenerated and memory can be reused, the
three-qubit gate can be realized in a smaller gate array, such
as 2 × 2 QLBs array (see Fig. 15). Here we roughly assume
that a QLB can be regenerated after t , where t represents the
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D D D

FIG. 14. The decomposition of a general three-qubit quantum gate.

running time of a QRC. As we have shown that any D3 gate
can be decomposed into three multiqubit rotation gates, so t

equals eight clock cycles at least (see Sec. V A). Moreover,
the local buses have been programmed in a different initial
sequence of cluster states. Hence the position of inputs and
outputs can be put properly to shorten bus paths, e.g., the two
red lines (the two short lines across the QRC in the middle)
in Fig. 15(a). As a result, we can see that the horizontal QRC
is only used to transport the qubits while the vertical QRC is
used to specialize in realizing D gates.

Three
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FIG. 15. (Color online) The instance of realizing a general three-
qubit gate in 2 × 2 QLB. White circles represent channel qubits. Gray
memory qubits are used as input or output qubits. Arrows denote
not only the corresponding CZ operations but also the directions of
the information flow. (a) The first three QLBs are used to get the
intermediate result. (b) Reusing three QLBs and memory qubits to
output the final result.
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FIG. 16. (a) Quantum circuit of QFT on four qubits, and (b) the
decomposition circuit of QFT-4. We exclude the necessary SWAP

operations for clarity, which reverse the order of the output qubits.

Evidently, the method of this instance can be extended to
realizing any n-qubit gate in a relative small-scale QFPGA
architecture. However, to implement a large quantum gate,
the QFPGA limitation is the requirement of a huge number of
channel qubits, because a Dn gate alone needs at most 2n−1 − 1
channel qubits. In a worst case of n-qubit gate (n � 3), the
number of channel qubits is

n−3∑
m=0

3 × 6m × Dn−m = 4

5
× 6n−2 − 2n−2 + 1

5
≈ θ (6n−2).

(22)

For example, if n = 10, then we need 1 343 437 channel
qubits under the worst-case condition. Some possible solutions
to solve this problem in the future are to use regenerable qubits
or integrate a more powerful system in the QRC which is good
for the construction of multiqubit rotations.

B. Quantum Fourier transform

Quantum Fourier transform [29] is the key of many
quantum algorithms such as Shor’s factoring algorithm [1]. To
realize QFT, firstly we simulate the quantum circuit of QFT-4
(QFT on four qubits) given in Fig. 16(a), where necessary
SWAP operations are excluded for clarity. Secondly we will
describe how to perform the quantum Fourier transform on
any number of qubits.

As can be seen from Fig. 16(a), the QFT-4 consists of H

gates and controlled-phase gates ∧Rm, where Rm = |0〉〈0| +
ei2π/2m |1〉〈1|, so, each ∧Rm is given by

∧Rm =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ei2π/2m

⎞
⎟⎟⎟⎠ . (23)
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Using the result of Eq. (20), we can decompose these
controlled-phase gates ∧Rm as follows:

∧Rm = R12
zz

(
π

2m+1

)
R1

z

(
− π

2m+1

)
R2

z

(
− π

2m+1

)
. (24)

The above equation means that one Rzz gate and two local
rotation-z gates are needed to realize a ∧Rm gate. As a result,
the decomposition of the QFT-4 is given in Fig. 16(b). It is easy
to find its MBQC version, as an H gate following an Rz gate
can be realized on the two-qubit cluster states while an Rz gate
alone can be realized on the three-qubit cluster states. Thus the
required cluster states are shown in Fig. 17(a), where inputs
and outputs should be memory qubits in the QRC. Thus 11
qubits are needed but at the cost of six additional Rzz(θ ) gates,
shown as dotted lines in Fig. 17(a). However, these two-qubit
rotation gates are not expected to be realized by measurements
because the qubus system is a better way to implement them;
hence the QLB which combines a local bus and cluster states
is an ideal candidate module for the QFT realization.

Therefore, the QLB-based realization of the QFT-4 is given
in Fig. 17(b). Compared to the standard configuration of a
QLB (see Fig. 12), one of the differences between them is that
here we have four input memory qubits and they also serve
as output qubits simultaneously, as the memory qubits can be
reused again. Another difference is that now eight qubits are
programmed to couple to the momentum quadrature of the bus
and four qubits couple to the position quadrature of the bus. In
order to realize additional Rzz gates efficiently, for example,
the first three Rzz gates in Fig. 16(b), we can simultaneously
couple the qubit |ϕ3〉 to the position quadrature of the bus by
operator D(iσz

π
4 ) and |ϕ2〉, |ϕ1〉, and |ϕ0〉 to the momentum

quadrature of the bus by operators D(−4σz), D(−2σz), and
D(−σz) respectively.

Based on the above analysis, we again roughly analyzed
the performance of the QFT-4 in Table II and shows that 21
clock cycles are needed to output the result.

We now show how to perform the necessary SWAP gates
to get the final outputs. One advantage of the QFPGA is
that we can freely choose the location of outputs, since the
output qubits of a QLB are only decided by the sequence of
bus operations, e.g., their characteristic values. As a result,
no explicit SWAP gates are needed. As shown in Fig. 17(a),
the output qubits of the QLB are qubits 3A, 4A, 5A, and

TABLE II. Performance of the QFT-4.

Measurement Operation cycle Measurement cycle
order index index

1 1(2) 3
2A 1(15) 14
3A 14(15) 15
2B 4(5) 6
3B 4(11),16(17) 18
4A 16(17) 19
3C 7(8) 9
4B 7(11),18(19) 20
5A 18(19) 21
4C 10(13) 14
5B 12(13) 15

1 3A

4A

5A

5B

3C

4C

2B

2A

3B

4B

(a)

(b)

(c)

FIG. 17. (Color online) (a) The required cluster states of the QFT-
4 where the number in circles represent the order of measurement
(a capital letter appended after the number is to discriminate qubits
which can be measured in the same time) and dotted lines represent
certain controlled-phase gates between two qubits. (b) Schematic of
the QLB-based realization of the QFT-4. Arrows toward the QLB
represent quantum wires at the stage of inputs. (c) Schematic of the
QLB-based realization of the QFT-4 where the order of outputs is not
reversed.
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FIG. 18. (Color online) (a) Block circuit diagram simulating a
general QFT-n. (b) The schematic of QFT-8 which is decomposed
into two QFT-4 blocks.

5B whose corresponding characteristic values are “14/15,”
“16/17,” “18/19,” and “12/13” (see Table II). Thus, as the
physical position of the output qubits of the QLB is fixed,
different patterns of four characteristic values mean a different
order of the outputs, such as Figs. 17(b) and 17(c) which
represent the right order and origin order of the outputs,
respectively. Next, we will see that the origin outputs order
will be useful to build a large QFT.

The above QLB-based method can be extended to the QFT
on more qubits, because it can be decomposed into a sequence
of QFT-4 and combination blocks which contains sixteen ∧Rm

gates (see Fig. 18). Thus, the QFT-n will need  n
4 � QFT-4 and

 n
4 � − 1 combination blocks. For example, the QFT-8 can be

decomposed into two cascaded QFT-4 blocks combined with
sixteen ∧Rm gates as shown in Fig. 18(b). In general if we
want to realize a large QFT circuit, we should generate sixteen
∧Rm gates in each QRC between any two QLBs which are
configured as QFT-4.

Now we show how to realize these combination blocks,
e.g., 16 controlled-phase gates, effectively. Recall that the
interaction value we have defined in Eq. (12), and from Eq. (17)
the interaction value between two qubits, 1 and 2, is θ12 =
2β1β2. The method introduced in Ref. [14] tells us that if θml

can be expressed as βmβl , where there is a single value of βm/βl

for every m/l, then each qubit is only required to couple to each
quadrature of bus once to generate the whole interaction among
n qubits. Consider the construction of QFT-n; if we want to
link two QFT-4 blocks which are in levels j and k, respectively
(j,k = 0,1, . . . ,n/4�), then we can simply set values of β in

the displacement operator of each qubit as follows:

βn =
{

2n, n = 0,1,2,3
2π

24(k−j−1)+n , n = 4,5,6,7
, (25)

where k > j .
Taking these values of β, we start by coupling qubits |ϕ0〉

through to |ϕ3〉 to the momentum qudarature of the bus and
qubits |ϕ4〉 through to |ϕ7〉 to the position quadrature of the
bus, and then decouple all of them (see Fig. 19). This will
generate all desired interacation values in Fig. 18 and require
16 bus operations only.

We can see some advantages of QFPGA. Firstly, compared
to the pure MBQC method, the construction of Rzz gates
between two QFT-4 blocks needs 16 star graph states and
16 ancilla qubits as well, while the qubus method has the
significant advantage of saving the number of bus operations
and no ancilla qubit is required. Secondly, compared to the pure
qubus method to stimulate the QFT [14,15], our QLB-based
method has the significant advantage of implementing the
local unitaries. This is due to the limitations of the qubus
architecture: Local unitaries cannot be created without per-
forming local corrections [14], so all H gates and single-qubit
rotation gates in Eq. (24) are difficult to create by the qubus
alone. Moreover, provided one can perform local corrections,
then another disadvantage of qubus is that local unitaries are
expensive, with each operations requiring 14 bus operations.
As a result, the authors in Ref. [15] assumed they have the
ability to perform arbitrary local unitaries, and in Ref. [14] they
resorted to a classical computer to perform a single correction
for each set of qubits. However, there are no such problems in
our architecture, as we use a “local” bus to generate the desired
QLB which is good at local unitaries but at the cost of many
ancilla qubits.

VII. CONCLUSION AND OUTLOOK

We have proposed a programmable architecture called
QFPGA for universal quantum computing, which consists of
QLBs and QRCs. As any large unitary gate can be decomposed
into a sequence of two-qubit gates and D gates, they will be
realized in QLBs and QRCs, respectively. The QLB consists
of short-lived qubits while the QRC has ancilla channel qubits
and memory qubits with long enough coherence time. The
reason for this choice is that for a Dn gate, it often requires
θ (2n−1) multiqubit rotation z gates which takes much more
time to realize for a large Dn gate. Compared with previously
published work related to MBQC, the QFPGA architecture
combines small blocks of cluster states by using global buses,

Bus z4 z5 z6 z7zi 0 zi 0zi 1 zi 1zi 2 zi 2zi 3 zi 3 z4 z5 z6 z7

7

6

5
4

3
2

1

0

FIG. 19. Only 16 displacement operators are needed to realize the 16 ∧Rm gates in the QFT.
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so as to make the overall structure more scalable, flexible,
and also clear. On the other hand, we not only take advantage
of the concept of quantum memory to drive the sequential
MBQC, but we also integrate small modules to simplify
the operation which is complex in the original paper [28].
Hence our model is more effective but at a cost of some
level of decoherence error. To guarantee an acceptable error,
we have described an efficient method for generating cluster
states in the QLB, each of which is generated with a single,
reused bus of the qubus system. As every QLB has 12 qubits,
our analysis shows that the error probability of both QLB
and QRC is below an acceptable threshold under certain
conditions. For multibus dynamic schemes, this means that the
QFPGA approach is feasible, as fully scalable operation can be
achieved. Furthermore, by realizing two scalable applications,
the general n-qubit quantum gate and the QFT-n, we have
shown the advantages of this architecture.

The main obstacle to wide adoption of QFPGAs is the need
for a large number of qubits to drive the computation. However,
in a solid-state quantum system, qubits should be able to
regenerate effectively in a fixed interval so as to overcome
this problem. It should be noted that the proposed QFPGAs do
not force one to use MBQC or qubus only; rather they provide
an architecture to integrate a number of quantum computing
models for efficient quantum logic construction. A QFPGA
only requires certain fault-tolerant quantum models to operate
as QLBs and QRCs. Thus, it promises to be extremely useful
for the many-qubit quantum computation in the future.

ACKNOWLEDGMENTS

This research is supported by National Natural Sci-
ence Foundation of China (Grants No. 61131001, No.

61171011) and National 863 Program of China (Grant No.
2009AA012201).

APPENDIX: QSD OF TWO-QUBIT C S GATE

The two-qubit CS gate has a general form,⎛
⎜⎜⎜⎝

cos θ0
2 0 sin θ0

2 0

0 cos θ1
2 0 sin θ1

2

−sin θ0
2 0 cos θ0

2 0

0 −sin θ1
2 0 cos θ1

2

⎞
⎟⎟⎟⎠ . (A1)

Then we can exchange the rule of two qubits, i.e., change
the matrix to the form Ry(θ0) ⊕ Ry(θ1),[

Ry(θ0) 0

0 Ry(θ1)

]
. (A2)

By the rule of Shannon decomposition (see Sec. II)
Ry(θ0 + θ1) = Ry(θ ) = V D2V †, then comparing this equa-
tion to the identity Rx(π/2)Rz(−θ)Rx(−π/2) = Ry(θ ),
we can easily get the relations V = Rx(π/2) and
D = Rz(−θ/2).

The “W” operator can also be extracted by the following
equation:

W = DV †Ry(θ1),

= Rz

(
−θ

2

)
Rx

(
−π

2

)
Rx

(
π

2

)
Rz(−θ1)Rx

(
−π

2

)
,

= Rz

(
−θ0 + 3θ1

2

)
Rx

(
−π

2

)
. (A3)

Commute Rz and D gate and we obtain the desired
decomposition of Fig. 3.
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