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Abstract: Single plane illumination microscopy based fluorescence
correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS
in 3D samples, providing diffusion coefficients, transport, flow velocities
and concentrations in an imaging mode. SPIM-FCS records correlation
functions over a whole plane in a sample, which requires array detectors
for recording the fluorescence signal. Several types of image sensors are
suitable for FCS. They differ in properties such as effective area per pixel,
quantum efficiency, noise level and read-out speed. Here we compare the
performance of several low light array detectors based on three different
technologies: (1) Single-photon avalanche diode (SPAD) arrays, (2)
passive-pixel electron multiplying charge coupled device (EMCCD) and
(3) active-pixel scientific-grade complementary metal oxide semiconductor
cameras (sCMOS). We discuss the influence of the detector characteristics
on the effective FCS observation volume, and demonstrate that light sheet
based SPIM-FCS provides absolute diffusion coefficients. This is verified
by parallel measurements with confocal FCS, single particle tracking
(SPT), and the determination of concentration gradients in space and time.
While EMCCD cameras have a temporal resolution in the millisecond
range, sCMOS cameras and SPAD arrays can extend the time resolution of
SPIM-FCS down to 10 µs or lower.
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1. Introduction

Fluorescence correlation spectroscopy (FCS) is widely used for measuring protein dynamics
in live cells [1–4] and organisms [5–8]. FCS measures the dynamic properties of particles
in a small laser focus by analyzing the emitted fluorescence fluctuations with a correlation
analysis [9]. Although initially introduced in the 1970s to measure chemical reaction kinetics
[9], it was soon realized that it can be used to great effect in biological measurements. FCS was
subsequently implemented in confocal microscopes (cf.Fig. 1(B)) combined with single-photon
avalanche diodes (SPADs) with high sensitivity and low dark counts [10]. Here, the focal
volume is created by a focused laser beam in conjunction with a pinhole, which rejects
out-of-focus light. In this configuration FCS measurements are limited to single or few widely
separated points [11–15] due to the crosstalk between adjacent foci. The distance between two
pinholes must be larger than 10 pinhole diameters [16–19], which precludes imaging FCS, i. e.



the parallel recording of temporal correlation functions at every image point. This problem was
circumvented in spinning disk confocal FCS by scanning widely separated pinholes over the
sample [20]. However, in this case the detection efficiency is reduced, since each pinhole resides
at each point only a fraction of the time, and the scanning process limits the time resolution.

Other approaches have been used to achieve multiplexed and spatio-temporal FCS. The first
approach was spatio-temporal image correlation spectroscopy (STICS) [21–23]. At the time
of that work, the time resolution was not sufficient to acquire temporal FCS functions at each
spot, but it was used to observe the temporal development of spatial correlations. Raster image
correlation spectroscopy (RICS) uses the temporal information inherent in a scanning confocal
microscope to allow the calculation of spatio-temporal correlations [24] and can be used to
derive diffusion and binding kinetics [25]. However, measurements are still not simultaneous
over the whole sample and require laser scanning, which illuminates the whole sample and thus
is more prone to bleaching and photodamage.

Multi-spot FCS approaches range from using stopped spinning disks [14] to spatial light
modulators [19, 26, 27]. However, all of these approaches allow the measurement of only a
limited number of widely separated spots, and thus cannot provide a contiguous image of
a sample. An interesting new variant of imaging fluctuation spectroscopy is time-integrated
multipoint moment analysis (TIMMA) a generalization of the number and brightness analysis
pioneered by Unruh and Gratton [28]. TIMMA decouples the time resolution from the read-out
speed of the camera and is instead dependent on the smallest exposure time which is typically
much faster than the read-out speed [29].

For true imaging FCS the imaging system has to be fast and suppress out-of-focus light.
The latter can be achieved by restricting the illumination profile to a plane orthogonal to
the optical axis of the detection system within. Total internal reflection fluorescence (TIRF)
provides a ⇠ 100 nm thin illuminated plane close to a cover slip and with fast and sensitive
cameras imaging TIR-FCS was demonstrated [30, 31]. To overcome the restriction of imaging
total internal refletion FCS (ITIR-FCS) to 2D samples, selective plane illumination microscopy
(SPIM) [32, 33] (cf. Fig. 1(A)) was combined with FCS to allow measurements inside 3D
samples, e. g., cells or small embryos [34,35]. SPIM uses a micrometer-thin light sheet to excite
fluorescence in a defined z-section. The detection is performed orthogonal to the illumination.
Since only the regions to be measured are illuminated, TIRF microscopy and SPIM limit
bleaching and photodamage. This allows to perform more measurements per sample, than in
e. g., confocal microscopy based FCS.

In both illumination modes, fast and sensitive cameras are necessary for FCS. In earlier
STICS studies [22, 36], mostly the temporal evolution of image correlation functions was
observed. Todays’ cameras are fast enough to also capture the temporal autocorrelation
generated by medium-sized and small fluorescent particles in each pixel. Even higher read-out
speeds may be achieved by limiting the measurement to single points or single lines on an
electron-multiplying charge coupled device (EMCCD) camera. By continuous rolling read-out
modes [37], which are limited only by the line shift speed, analog to digital conversion speed
and electronics bandwidths, line-read-out times as low as ⇠ 30 µs were achieved [18, 38].

These new imaging FCS approaches require new ways of recording and treating data. The
parallel measurement of thousands to millions of correlation functions needs appropriate data
processing. In a typical SPIM-FCS experiment with read-out rates on the order of 10,000
frames per second for ⇠ 1,000 pixels, data can be directly streamed to disk and software
correlators can calculate spatial and temporal correlation functions almost in real time [39].
However, with increasing read-out rates this approach is limited and several reports have
described the use of field programmable gate arrays (FPGA) to calculate all correlations in
real time [40–42]. Recently similar approaches have also been proposed for multi-parameter
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FCS [43, 44]. With the use of these hardware approaches, correlation functions may now be
calculated at read-out rates of 100,000 frames per second or more in real time.

In earlier work we have given the analytical expression for SPIM-FCS in the case of diffusion
and flow [34]. Here we extend the theory and provide an expression for the effective SPIM
detection volume. We then compare four different array detectors, including commercially
available EMCCD, sCMOS and CMOS devices as well as a SPAD array. We show that by
exploiting the known pixel size of the detectors, the PSF can be determined directly from
FCS measurements without using a reference sample of known diffusion coefficient. This
way absolute diffusion coefficients can be measured. Finally we will discuss concentration
measurements with the array detectors and compare the different devices. A complementary
study comparing several image detectors for single-molecule detection was recently published
by X. Michalet et al. [45].

2. Materials and methods

Details, including schematic sketches, of the different setups are given in the supplementary
information. We describe here the systems only briefly.

2.1. SPIM microscopes

Measurements were done on two SPIMs situated in Singapore (SPIM-1) and Heidelberg
(SPIM-2). Both are of the type as described in [33]. Both setups use a 60×/NA 1.0
detection objective and project the image onto different camera types using the tube lens
from the objective manufacturer. In SPIM-1 we mounted one out of four available cameras
(iXon X3 860, Andor Technology, Belfast, UK; Evolve 512, Photometrics, Tucson, United
States; ORCA-Flash4.0 sCMOS Camera, Hamamatsu, Hamamatsu City, Japan and SA-05
CMOS, Dynamic Analysis System Pte Ltd, Singapore). In SPIM-2 an Andor iXon X3 860
or a pco.edge sCMOS (PCO AG, Kehlheim, Germany) is mounted together with a Radhard2
SPAD array [46]. The SPAD array uses a tube lens of half the usual focal length to increase
the fluorescence intensity on the sensor. This decreases the magnification, but conserves the
numerical aperture of the detection objective. The light is split between both image sensors
using a 50:50 beam splitter plate. The light sheets are projected with NA 0.25 (SPIM-1) or
NA 0.3 (SPIM-2) air objectives through a No. 1 cover slip into a custom-built and water filled
sample chamber, sealed against the detection objective. In both cases the back-aperture is
overfilled with illumination light and the resulting light sheets differ only slightly in width



(1/e2-half widths: (1.42±0.05) µm in SPIM-1 and (1.2±0.20) µm in SPIM-2). The sample
is mounted on a motorized XYZ-stage that allows easy and automated translation.

The cameras yield an intensity time trace I(t) for every pixel. Then the autocorrelation
function

G(t) = hI(t) · I(t + t)i
hI(t)i2 (1)

is calculated in software. Here h·i denote time averaging. Finally a least-squares fit is performed,
using the following model function [34, 39]:
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where C is the average concentration of particles in the observation volume Veff from which the
average particle number N is C = N/Veff. The particular Veff for SPIM-FCS is given in Eq. (5)
and will be discussed below in section 2.2. The parameter a is the side length of a square pixel
in object space, D is the diffusion coefficient, and wxy and wz are the 1/e2 radii of the PSF in the
xy and the z-plane. G• is the convergence value for long correlation times, which is expected
to be 1 for the definition of G(t) in Eq. (1).

For the Radhard2 SPAD array, data was fitted with a standard Gaussian FCS model Eq. (6)
instead of the camera model Eq. (2). We chose this model because the array consists of 32⇥32
circular SPADs with 4 µm diameter of the active area and a grid spacing of 30 µm in both
directions (i. e. 133 nm diameter and 1 µm spacing in the object plane). Due to the round shape
and the small size, a rotationally symmetric Gaussian focal volume is a good approximation
(for details on the sensor and its detection volume, see also the supplementary information and
Refs. [40,46]). Fits were performed in one of our imaging FCS evaluation packages ImFCS [39]
or QuickFit 3.0 [47].

2.2. Determination of the observation volume

The molecule detection efficiency (MDE) in FCS describes the measurement volume [10, 48]:

MDE(~x) = CEF(~x) · Iill(~x), (3)

where ~x is position in object space, CEF(~x) is the collection efficiency function which
determines the amount of light from the sample registered by a detector element in the optical
system and Iill(~x) is the light intensity distribution of the excitation source, in our case the
light sheet. The CEF is the convolution of the pinhole, in our case the (binned) pixels on the
camera, with the PSF of the optical system. In previous publications we have already derived
the xy-extension of the CEF for pixels with sufficient size to detect the full light sheet thickness
[31, 39] and have provided a method to determine the PSF experimentally [49]. Here we extend

this to the case of light sheet illumination and pixel detection of any size, even for pixel sizes
which are small and lead to spatial filtering of the light sheet.

In the z-direction the light sheet has an approximately Gaussian profile with 1/e2-width will.
The CEF can also be approximated as a Gaussian function with 1/e2-width wdet. Then the
overall width wz of the MDE can be calculated as:

1
w2

z
=

1
w2

ill
+

1
w2

det
(4)



So the width of the MDE is either limited by the depth of focus of the pinhole CEF or by the
width of the light sheet profile. With this definition, the effective detection volume of a SPIM
pixel can be expressed as:

Veff :=
(
R

MDE(~x) dV )2
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This definition differs from the one used in our earlier publication [34]. It allows to compare
directly the focal volume of camera-based and confocal FCS. Note that this expression can be
derived from Eq. (2) by requiring that G(0) = G• +1/N.

An important advantage of spatio-temporal correlation methods on SPIM and TIRF
microscopes is that they require few calibrations over time. Confocal FCS methods need a
calibration of the microscope parameters before and after the measurements, to ensure that the
observation volume has not changed. De-alignment between laser and pinhole or changes in
the laser beam profile can happen due to temperature changes or drift within the optical system.

SPIM and TIRF microscopes overcome this problem by illuminating a large field of view
with an approximately homogeneous intensity, so the exact lateral position of the pixels is
non-critical. Second, the shape of the observation volume does not significantly depend on
the alignment and is mostly defined by the quality of the detection objective, which does not
typically vary over its lifetime. Third, array detectors introduce a ruler into the system, as the
distance between pixels is known accurately (the sensor dimensions are known with nanometer
precision and the magnification can be determined easily). This allows to determine the PSF
without having to rely on a calibration sample of known diffusion coefficient.

The calibration method described in [49] for a TIRF microscope can be extended to a
SPIM: The longitudinal width wz can either be measured by bead scans or is calculated from
Eq. (4). Then the diffusion coefficient D can be measured independently of the PSF width
wxy if a large pixel binning (i. e. a � wxy) is used. Finally wxy can be determined by a fit
without binning and a known D irrespective of pixel size a. A detailed protocol is given in the
supplementary information. For the SPAD array a different method was used, which is based on
pixel-pixel crosscorrelations and is also elaborated in the supplementary information. Typically
the calibration of SPIM and TIRF microscopes is stable over a year or more in our labs, cf. [49].
In SPIM the only variable is the width of the light sheet, which can routinely be checked. The
calibrated size of the PSF (cf. Tab. 1) in the SPIM setups was confirmed by bead scans (see
supplementary information).

2.3. Confocal FCS measurements

Confocal measurements were performed on customized instruments in both laboratories
(Confocal-1 in Singapore and Confocal-2 in Heidelberg) [50, 51]. Detailed descriptions are
provided in the supplementary information. In brief, both instruments were based on inverted
microscopes (Olympus IX 70/71). Fluorescence was excited with a 488-nm laser line, which
was focused by a water-immersion objective (60×, NA 1.2; Olympus, Tokyo, Japan) into the
sample. The laser power was set to 12 � 30 W/cm2 above the objective. The fluorescence
light emitted from the sample was collected by the same objective, was filtered spectrally by
a band-pass filter and spatially by a pinhole. The light from the pinhole was imaged onto an
avalanche photodiode, which operated in photon counting mode. The autocorrelation curves
were computed online by a hardware correlator. Data evaluation was performed on self-written
programs in IGOR Pro 6.2 (Wavemetrics, Lake Oswego, OR, USA) or QuickFit 3.0 [47] with



a simple one-component fit model:
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where G• is the convergence value for long correlation times, N is the number of particles
in the focal volume, D is the diffusion coefficient of the particles and K = wz/wxy is the
axial ratio of the Gaussian focal volume. The lateral focal 1/e2-half width wxy was calibrated
using a 10 nM Atto-488 solution on Confocal-1 (D20°C = (350±6) µm2/s [52]) and a 20 nM
Alexa-488 solution on Confocal-2 (D20°C = 407 µm2/s [53]). The axial ratio K was fixed to
5 or 8, depending on the microscope. The overall particle concentration in the sample can be
calculated using the effective focal volume V (confocal)

eff for the confocal case as:

c =
N

V (confocal)
eff

=
N

p3/2 ·w3
xy ·K

(7)

2.4. Sample preperation

Carboxylate-modified microspheres (0.1 µm and 0.2 µm, yellow-green fluorescent beads
505/515, 2.0% solids, Invitrogen, Singapore) were diluted in deionized water (DI) or a slightly
alkaline buffer (10 mM Tris-HCl, pH 8.5) to the desired working concentration (0.1-1.1 nM).
The diluted solution was sonicated for 15-30 minutes in a bath sonicator (FB15051 Model,
Fisher Scientific, Singapore) to disperse aggregates. The samples (typically 20-50 µl) were
mounted in transparent (UV-VIS-IR transparency: 90%), heat sealed plastic bags (fluorinated
polyethylene propylene films, thickness 13.0 µm, refractive index 1.341� 1.347, Katco Ltd.,
United Kingdom, or Lumox Folie 25 M, thickness 25 µm, Sarstedt AG & Co, Nümbrecht,
Germany). Measurements in different laboratories were performed at different temperatures
(20°C or 25°C) . For comparison all diffusion coefficients were recalculated to their value at
20°C.

2.5. Microchannel fabrication

Silicone curing agent and prepolymer polydimethylsiloxane (PDMS, Sylgard 184, Dow
Corning, Singapore) were mixed in a 1:10 ratio by weight. The mixture was degassed and
then poured into a master mold (A = 300⇥380 µm2) with two inlets and one outlet. Overnight
heating at 65°C in an oven cured the PDMS gel to hardened PDMS, which was peeled off from
the master mold. The PDMS channel was treated in an oxygen plasma cleaner (PDC-32 G,
Harrick) for one minute after which it was bonded to a glass cover slide (24⇥ 75 mm2, No-1,
Fisher Scientific, Singapore). Sample mounting is described in the supplementary information.

3. Results and discussion

3.1. Light sheet characterization

The area over which SPIM-FCS can provide accurate and consistent correlation functions
depends on the properties and quality of the light sheet, which is determined mostly by the
optical quality of the beam forming components (cylindrical lens and low NA projection
objective). The height of the light sheet can be adjusted by apertures in the setup. While
light sheets of better quality can be created by a digital scanned laser light sheet microscope
(DSLM) [54], this scanning process interferes with the recording of correlation functions at
similar or faster time scales as the scanning process. In addition, each point is illuminated only
part of the time of every scan. This reduces the signal strength, rendering an unscanned light
sheet the better illumination alternative.
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Fig. 2. Exemplary light sheet characterization of SPIM1: [A] illustrates the scanning of a 45� mirror to
image the light sheet. [B] The intensity profile of the light sheet (blue line) at the central region of the
field of view and a Gaussian fit to the profile (red dashed line). [C] The light sheet intensity profile at
different regions of the camera along the illumination direction. [D] Thickness variation (obtained from
the Gaussian fit) along the illumination axis. The grey box marks the central region (⇠ 8 µm wide) with
approximately constant light sheet thickness.

For the measurement of absolute diffusion coefficients the extension of the light sheet has to
be known and the contribution of the side lobes of the light sheet have to be minimized [34].
Therefore, we record the light sheet extension before measurements and use only that part of the
light sheet, which shows a consistent width and low side lobes. The light sheet is visualized by a
mirror aligned at 45° to the optical axis of the illumination objective (see Fig. 2(A)). The mirror
can be scanned using the motorized sample holder. In Fig. 2 we show light sheet cross sections
of SPIM-1 at different positions over a range of 26 µm along this axis. The 1/e2 radius in the
center of the light sheet is (1.42±0.05) µm with side lobe contribution of 8-10% (area under
the curve). In our measurements we use the central 8 µm (shown as a grey box Fig. 2D) of the
light sheet over which the 1/e2 radius does not vary significantly and the side lobes are small.
The second SPIM setup showed slightly different light sheet characteristics. It was typically
(1.2±0.2) µm thick in the central 8 µm of the field of view. At the choosen magnification of
60x this corresponds to 20 pixels for the iXon X3 860, 24 pixels for the SA-05 CMOS, 30 pixels
for the Evolve 512 and 74 pixels for the ORCA-Flash4.0 and the pco.edge. From the SPAD
array 8 pixels were used due to the lower magnification of 30x.

3.2. Array detectors

Here we evaluate the FCS performance of various array detectors with different effective pixel
sizes, quantum efficiencies, and read-out speeds, by measuring the diffusion coefficient of
0.1 µm diameter fluorescent microspheres. For each camera a subregion of the sensor was
chosen that is not larger than the area of approximately constant light sheet thickness (region
of interest, ROI). Then the fastest possible read-out speed for this region was selected. For
comparison the same sample was measured on a confocal microscope. Table 1 summarizes the
results for the different cameras and the camera specifications. Example correlation curves of
all sensors are shown in Fig. 3. As can be seen, the theoretical diffusion coefficient at 20�C for
0.1 µm beads in water D(theo) = 4.29 µm2/s can be determined within the margins of error by
all cameras.
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diameter fluorescent microspheres at fastest read-out speed: [A] SPAD array detector with minimal lag
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EMCCD: tmin = 2380 µs. All curves are normalized for the zero-lag amplitude obtained from the fits.

3.3. Absolute diffusion coefficients

The determination of absolute diffusion coefficients was tested by measuring the diffusion
coefficients of fluorescent polystyrene beads of 0.2 µm diameter in aqueous solution
(theoretical value D(theo)

20°C = (2.04±0.1) µm2/s, errors estimated from the given size distribution
of the beads) with SPIM-FCS and three other, but independent methods. The iXon X3 860
EMCCD has been used for SPIM based mesurements in this section. The results are
summarized in Tab. 2 and Fig. 4. For the SPIM-FCS measurement we obtained D = (1.91±
0.7) µm2/s. FCS measurements in a standard confocal microscope (Confocal-1, see section 2.3
and supplementary information) gave D = (2.10± 0.05) µm2/s. A single particle tracking
(SPT) analysis with a Matlab based particle tracking code [55] gave D = (2.05±0.11) µm2/s
(see Fig. 4(C)). Lastly, we exploited the diffusion-driven concentration gradient profile in
a Y-shaped micro-channel [56–58] with a cross-section of H ⇥W = 300 ⇥ 380 µm2 (see
Fig. 4(D-E) and supplementary information). A solution with fluorescent beads is introduced
into one inlet while the pure buffer is introduced into the other. Due to laminar flow in our
experimental conditions (Reynolds number Re < 1) [59], mixing between the two adjacent
streams happens only by diffusion. With increasing length of the channel the streams have
more time to interact and one can observe the development of a concentration profile at the
interface between the streams over time. By fitting this concentration profile to its analytic
solution [57, 60] one can determine the diffusion coefficient D, if the exact time t over which
diffusion took place is known. In the micro-channel this time t is given by the flow speed of
the solution v and the distance d of the measurement position from the first contact of the two
buffer streams (d = t · v). The analytic solution for one-dimensional diffusion across a plane
with concentration c(x > x0) = c0 at one side and concentration c(x  x0) = 0 on the other side
is given by:

c(x) = b+ c0 · erf
✓

x� x0p
4Dt

◆
(8)



Table 1. Summary of the results obtained with all types of array detectors for a sample of 0.1 µm fluorescent latex beads in water. All
diffusion coefficients are renormalized to 20�C and average ± standard deviation over the specified number of pixels are given. The
table also contains the camera specifications (as provided by the manufacturers) and focus parameters.

Radhard2 SA-05 ORCA-Flash4.0 pco.edge iXon X3 860 Evolve 512 confocal FCS
technology SPAD array CMOS sCMOS sCMOS EMCCD EMCCD SPAD

quantum efficiency†

@ 525 nm
35% 35% 70% 54% 95% 95% 55%

pixel size [µm] 4 20 6.5 6.5 24 16 —
pixel pitch [µm] 30 20 6.5 6.5 24 16 —

exposure time [µs] 16.6 38.80 486 450 2000 —
cycle time [µs] 3 16.8 38.95 495 489 2380 —

lat. size wxy[ nm] 523±59 620±62.8 445±32.5 382±64 620±200 574±61.4 232±4
long. size wz[ nm] 857±95 1395±45 850±58 810±230 1115±100 1370±37 1856±32
obs. volume Veff[ fl] 1.31 3.28 0.96 0.67 2.72 2.69 0.56

acquired frames 6,291,456 165,400 85,000 50,000 60,000 20,000 —
ROI [pixels] 8⇥12 20⇥20 6⇥100 32⇥32 20⇥20 20⇥20 6 runs
measured D [ µm2/s] 4.23±0.46 4.43±1.92 4.16±1.84 4.93±1.69 4.20±1.10 3.84±0.78 4.10±0.05

† Technically in SPADs the quantum efficiency (QE) is slightly higher than indicated and the probability of a photoelectron triggering an avalanche is < 1.
However, for simplicity, we prefer to equate QE to the photon detection probability (PDP) in this paper.
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[D].

Here b is an offset value, and c0, x0 and D are fitting parameters. The solutions were injected into
the microchannel using syringe pumps. As the flow speed created by these pumps is not known
precisely, we determined it by SPIM-FCS measurements using a model that also incorporates
the flow speed (for the fit model, see Ref. [39]), which yielded v = (100± 21.2) µm/s (see
Fig. 4(E)). We then used the intensity profile in the center of the channel, to avoid wall effects,
and fitted the profile to Eq. (8) to determine D. Measurements at two positions (d1 = 11 mm
and d2 = 15 mm) yielded D(d1) = (2.20± 0.25) µm2/s and D(d2) = (2.40± 0.20) µm2/s.
All determinations of the diffusion coefficients agreed within the margins of error (cf. Tab. 2),
confirming the capability of SPIM-FCS to determine absolute diffusion coefficients.

Table 2. Diffusion coefficient D of 0.2 µm microsphere determined with SPIM-FCS, Confocal FCS,
single particle tracking (SPIM-SPT) and measuring the lateral diffusive mixing in a Y-shaped
microchannel (“SPIM-FCS”).

SPIM-FCS Confocal FCS SPIM-SPT SPIM-Flow

D[µm2/s] 1.9 ± 0.70 2.10 ± 0.05 2.05 ± 0.11 2.2 ± 0.25, 2.4 ± 0.20

3.4. Concentrations

Concentration measurements in FCS rely on the fact that the autocorrelation function at a lag
time of 0 s represents the variance of the photon counts determined by the number of particles
in the observation volume, which follow a Poisson distribution with the variance being equal to
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the mean [61]. The amplitude of the ACF is thus given by:

G(0)�G• =

⌦
d I2(t)

↵

hI(t)i2 =
N
N2 =

1
N

=
Veff

C
, (9)

where N is the average particle number in the observation volume Veff, C = N/Veff is the
average concentration and the background-corrected intensity I(t) = hI(t)i+d I(t) is split into a
constant offset hI(t)i and the fluctuations d I(t) with hd I(t)i= 0. When the observation volume
is known one can then calculate absolute concentrations from FCS measurements [62]. In our
measurements we could only get a linear relation

Cmeasured(Cset) =C0 +a ·Cset (10)

between the set concentration Cset and measured concentration Cmeasured. The results of such
a dilution series of 0.1 µm fluorescent microspheres with different image sensors is shown in
Fig. 5. The intercept C0 = 0 nM was still obtained with all tested cameras, as it mostly depends
on the background signal and camera offset that were corrected before the fit [63]. But the slope
a differed for all measurements and was also different from the expected value a = 1. Several
factors might lead to this overestimation of the concentration: In the confocal case it is well
known that after pulsing of the SPADs constitutes a background that cannot be easily removed
and will lead to an increase in apparent particle number of a factor 2�3 as seen here, but which
can be corrected by fluorescence lifetime correlation spectroscopy (FLCS) [64]. Similarly, Oh
et al. demonstrated that for an EMCCD the noise can be corrected by splitting the image on two
halves of the detector and then cross-correlating corresponding pixels which detect the same
volume [29]. This correction is similar to the one used to correct for afterpulsing of APDs in
confocal FCS [76]. A further factor of 1.2�1.3 stems from the non-vanishing size of the beads
in relation to the focus size, as the used models assume point-like fluorophores [65]. Another
problem is that Eq. (2) is valid for a 3D Gaussian PSF and is therfore only an approximation of
the real PSF. Bead scans show that the lateral PSF size wxy is not independent of the position z



on the optical axis (an assumption for Eq. (2)) and that low-intensity sidelobes are sometimes
visible (see supplementary information). We performed simulations on these effects (also see
supplementary information) and found an expected overestimation of the concentration by not
more than a factor 1.4 � 1.5. It should be noted that the simulations show that despite the
influence of the side lobes on the concentrations the measured diffusion coefficient does not
change and is recovered accurately. Eq. (2) could be replaced by a model taking at least the
z-dependence of wxy into account, but at the cost of having to solve numerical integrals in every
evaluation [13, 75]. A third factor influencing the measured particle number is a biasing of the
fits, if the plateau of the correlation function is not captured due to the low framerate of the
sensors. This effect can be seen in Fig. 3(C-F), where the fits (dashed lines) are systematically
below the data (red line) for small lag times.

We think the remaining overestimation by a factor of ⇠ 2 � 5 can only be explained by
detector artifacts: For the photon counting Radhard2 the overestimation might be explained by
a certain clipping of the correlation functions (i. e. an artificially lower correlation amplitude
and thus higher particle number) due to the fact that per read-out cycle only 0 or 1 photons
can be counted. If two or more photons are detected by the SPAD, they are still counted as 1
photon only. In addition, all the cameras used in this paper are analog detectors and their grey
values I(t) do not follow a Poisson distribution (as the photon counting SPADs do), where mean
equals variance [66]. Nevertheless all fit models in this paper assume a Poisson photon counting
statistics and therefore we can not expect to measure the absolute concentration with the
cameras used here. This fact has already been reported by Unruh and Gratton for the Number
& Brightness analysis [28] and was also described recently by Kloster-Landsberg et al. [19].
Similar to these publications, we still see a linear dependence between the measured and set
concentration. So a definite answer to the question of why the concentration is overestimated in
camera-based FCS will require a much deeper analysis of the detectors, which is out of scope
for this paper. Therefore relative concentration measurements are possible in camera FCS and
especially imaging FCS. An absolute measurement is possible if one possesses a standardized
calibration solution.

4. Camera comparison

At the time of writing, the most suitable array detectors for SPIM-FCS are EMCCD cameras
with their high quantum efficiencies (>90%), fill factors of nearly 100% and reduction of
read-out noise by on chip amplification. They reach frame rates of ⇠ 3,000 fps for reasonable
subregions of around 10 lines and approx 20 pixels each. Frame rates of up to 70,000 fps are
possible when only a single line is used [18, 38], but this sacrifices the imaging capability and
is thus not a viable alternative for SPIM-FCS. The physical size of the pixels is well adapted to
the typical magnification (60-100×) and numerical apertures (NA 0.8-1.2) used in SPIM-FCS
and corresponds to about half the size of the PSF. This is a good compromise between light
collection efficiency and spatial resolution for SPIM-FCS. The size of the detection volume
obtained with the EMCCD pixels and our NA 1.0 objectives (cf. Tab. 1) is well suited for
the 1.2� 1.4 µm thick light sheets used in our setups. This lateral and longitudinal resolution
is also well suited for measurements in single cells. However, EMCCDs have also distinct
disadvantages. Their read-out speed is limited to a couple of thousand frames per second and
thus is just a bit too slow to capture freely diffusing small molecules in solution. It is also at the
limit of detecting free fluorescent proteins in the cytoplasm of cells.

On the other hand, sCMOS cameras already provide read-out speeds of more than 25,000 fps
(< 40 µs per frame) which is fast enough to capture also the fast dynamics of fluorescent
proteins in cells (correlation decay times on the order of 100 µs and less). The high frame
rates of sCMOS cameras can be sustained over many more pixels compared to EMCCDs. The



smaller pixel size of the sCMOS cameras (typically ⇠ 3.5�6.5 µm) leads to a stronger pinhole
effect and thus longitudinally and also laterally to a smaller detection volume. These cameras
oversample the PSF by 5–15 times but also collect fewer photons for each pixel. The latter
effect can be circumvented by pixel binning and thus opens the possibility to perfrom FCS,
with larger and binned pixels, with super-resolution techniques such as super-resolution optical
fluctuation imaging (SOFI) [67] and single-molecule localization microscopy [68]. Active-pixel
sensors (like CMOS cameras and SPAD arrays) are pixel-adressable, so each pixel can be read
individually and no shifting is necessary. This makes them more versatile than passive-pixel
sensors (like EMCCDs), as e. g., the frame rate of subregions does not depend on the position
of the subregion. Because there is no need for a shift operation, no additional noise is created.

Even faster read-out speeds can be achieved routinely with SPAD arrays, which can reach
between 300,000 fps (for a 32×32 pixel frame) and 2,400,000 fps (for a 4×32 pixel ROI), at
present and thus are truly fast enough to capture also small fluorescent molecules (e. g., free
dyes) diffusing in solution. In addition, SPAD arrays are true single-photon counting devices
and online-data processing hardware for SPIM-FCS has already been designed and tested [40].
The disadvantages of SPAD arrays at the time of writing are their lower quantum efficiency
(~35%) as compared to EMCCDs, overall smaller number of pixels, especially when compared
to sCMOS cameras, and their small fill factor (~2-4%) which compromises the collection
efficiency of the device. This can be addressed in the future by back-illuminated sensors and
microlens arrays [69–73]. Also larger SPADs and thus a larger sensitive area per pixel become
possible with newer microchip production processes that reduce the size of the electronics in
each pixel, leaving more room for the SPAD [27, 74]. These developments could give SPAD
arrays the edge over other devices.

5. Conclusion

In this work we tested several array detectors for their suitability for imaging FCS. SPAD
arrays perform fastest (~300,000 fps) and have the best precision (standard deviation ~10%)
for diffusion coefficient measurements. They would be ideal detectors since they can operate in
photon counting mode, but their restricted sensitivity (quantum efficiency: ~35%) and fill factor
(⇠ 2-4%) still limits their usability. The second fastest detectors are sCMOS cameras have
high frame rates of atleast (~25,000 fps). They have a higher quantum efficiency (~50-70%)
than SPAD arrays but they can also reach frame rates in the microsecond range, similar to
SPADs in the microsecond range. The CMOS used here has similar properties to the sCMOS
with high frame rates of atleats (50,000 fps) but lower QE (~35%) and similar precission.
However, they show the worst precision (standard deviation ~30%) in this comparison. The
slowest detectors (~3,000 fps), EMCCD cameras, have the highest quantum efficiency (>90%)
and intermediate precision for diffusion coefficients (~20%). Their time resolution is at the
limit for detecting freely diffusing molecules for which only the tail of the correlation function
can be captured, and an accurate determination of diffusion coefficient and concentration is not
possible. However, to date they have been the detectors of choice and they are the only devices
for which single molecules resolution has consistently been shown in in vivo measurements.
We demonstrated that all cameras can measure absolute diffusion coefficients in accord with
several independent techniques. The large amount of data created by these fast recording
devices poses new problems for data treatment. First solutions are already available and further
developments are expected in the near future, leading to faster correlation and data fitting.
To date, especially reconfigurable hardware (FPGAs) seems to be a promising approach for
real-time image processing, e. g., correlations. With these developments imaging FCS should
become a valueable tool for biophysical research.
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