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Abstract

Recently we have proposed a new image device called
the gigavision camera. The main feature of this camera is
that the pixels have a binary response. The response func-
tion of a gigavision sensor is non-linear and similar to a
logarithmic function, which makes the camera suitable for
high dynamic range imaging. Since the sensor can detect a
single photon, the camera is very sensitive and can be used
for night vision and astronomical imaging.

One important aspect of the gigavision camera is how
to estimate the light intensity through binary observations.
We model the light intensity field as 2D piecewise con-
stant and use Maximum Penalized Likelihood Estimation
(MPLE) to recover it. Dynamic programming is used to
solve the optimization problem. Due to the complex com-
putation of dynamic programming, greedy algorithm and
pruning quadtrees are proposed. They show acceptable re-
construction performance with low computational complex-
ity. Experimental results with synthesized images and real
images taken by a single-photon avalanche diode (SPAD)
camera are given.

1. Introduction
In conventional cameras, a lens focuses the incident light

onto the image sensor. The optical signal is then converted
to an electrical signal, which is amplified and A/D con-
verted. The different gray-levels represent different light
intensities.

One drawback of a conventional camera is that the dy-
namic range is limited by the sensor technology and smaller
than that of the human eye [8]. To solve this problem, sev-
eral approaches have been proposed. One way is to combine
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several pictures with different exposure times [4, 6, 11, 13].
The disadvantages of this method are the increased overall
exposure time, inability to capture motion, and extra com-
putational complexity. Another way is to use sensors with
logarithmic response [10]. The main shortcoming of this
method is an increased fixed pattern noise (FPN) and po-
tentially lower yield.

In [17], we proposed a new image sensor called gigavi-
sion. This sensor’s pixel value is binary and has high spatial
resolution, exceeding that in a conventional camera by or-
ders of magnitude. A conventional gray level image can be
obtained by low-pass filtering the binary image and sam-
pling, similar to the oversampling techniques applied in
A/D converters [2]. The response function of the gigavision
sensor is non-linear and similar to a logarithmic function,
and thus capable of capturing high dynamic range scenes.

Another drawback of a conventional camera is that the
camera is not sensitive at low illumination level. To over-
come this, many photon limited imaging systems [19] have
been proposed. These imagers have a lot of applications
in three dimensional imaging [18], infrared and thermal
imaging [12], single photon emission computed tomogra-
phy (SPECT) [9], confocal microscopy [15] and astronom-
ical imaging [1]. Many algorithms are proposed to estimate
the original image from photon-limited images, for example
maximum-likelihood estimation [7], bayesian maximum-
probable [5], low-pass filtering with improvement by his-
togram specification [16], and multiscale modeling and es-
timation [20].

Since the photon counting system with high performance
is very expensive, it prevents a lot of applications. In [14],
a new single-photon avalanche diode (SPAD) camera based
on CMOS technology is proposed, which achieves high
speed with low cost but low spatial resolution. Our pro-
posed gigavision camera, which can be implemented using
standard memory chip technology is fast and has low cost.
Different from the pixel value in a photon counting system,
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in the gigavision camera, the pixel value is binary and there
is a threshold T that determines how many photon-electrons
are needed to switch the value of the binary pixel from “0”
to “1”. The statistics of the pixel value in the gigavision
camera is different from that in a photon counting system,
so new estimation methods on how to retrieve the 2D light
intensity field needed to be developed for this new camera.
In this paper, the light intensity is modeled as piecewise
constant and MPLE is used for reconstruction. Dynamic
programming, greedy algorithm, and pruning binary tree or
quadtrees are used to find the optimal solution. Dynamic
programming can find the optimal solution for 1D signals,
but with high complexity, O(N3) for 1D signals and O(N9)
for 2D images with resolution N × N . Greedy algorithm
and Pruning binary tree or quadtrees can achieve a subopti-
mal solution, but with low complexity. The complexity of
greedy algorithm is O(N2) for 1D signals and is O(N3) for
2D images with resolution N ×N . Pruning binary tree and
quadtrees’ complexity is O(N) for 1D signals and O(N2)
for 2D images with resolution N ×N .

This paper is organized as follows. Section 2 shows the
system architecture of a gigavision camera. Section 3 fo-
cuses on estimating light intensity from binary observations
when the light intensity is 1D piecewise constant. Section
4 deals with the 2D case. Experimental results with synthe-
sized images and the SPAD camera are in Section 5, and the
conclusion is in Section 6.

2. The gigavision camera
2.1. Camera architecture

The architecture of a gigavision camera is shown in Fig-
ure 1. The incident light is concentrated on the image sensor
through a single lens and converted into an electrical signal.
Different from a conventional camera, the sensor is binary.
A conventional gray level image can be obtained by MPLE
or low-pass filtering and sampling.

Figure 1. Simplified architecture of a gigavision Camera. The in-
cident light is focused by the lens and then impinges on the image
sensor.

2.2. Sensor model

A 1D sensor is considered for simplification. Figure 2
shows the model of a gigavision sensor. The gigavision

pixel is similar to a conventional camera pixel except that
the quantizers Q′ are binary with threshold T . The num-
ber of photons impinging on the pixel can be modeled as a
Poisson process with intensity λ(x), where x is the position
parameter. Suppose there are N pixels and neglect the inte-
gration for simplicity, then the light intensity for every pixel
is λi, i = 1 . . . N , respectively. The response of each binary
pixel Ki, i = 1, . . . , N is obtained by comparing the num-
ber of arrivals Si, i.e. the electrons due to detected photons,
with the threshold T . The quantities Ki are binary random
variables with parameter

pλi = P[Si ≥ T ] =
∞∑

k=T

e(−λi)
(λi)k

k!
, i = 1, . . . , N.

Suppose T = 1, and λ(x) is a constant func-
tion, i.e. λ(x) = λ, then if the pixel value ~K =
[K1,K2, · · · ,KN−1, KN ] and the reconstruction method is
maximum likelihood estimation, so pλ = 1− e−λ, and

λ̂ = arg max
λ

P( ~K;λ)

= arg max
λ

(1− e−λ)C(e−λ)N−C

=
{ − ln

(
1− C

N

)
, C 6= N

λmax, C = N
, (1)

where C is the number of “1”s in the N pixels, and λmax is
equal to ln N , which is used to avoid the estimation value
going to ∞.
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Figure 2. Simplified block diagram of a gigavision sensor. The
light intensity function is λ(x). There are N pixels in the sensor.
The light intensity on each pixel is λi, i = 1, . . . , N . The elec-
trical signal Si is quantized by a one-bit quantizer with threshold
T and an estimation method is implemented to obtain the recon-
structed light intensity function λ̂(x).

3. Estimating 1D light intensity function
through binary observations

We assume that the model of light intensity is 1D
piecewise constant, i.e. λ(x) is a piecewise constant
function. The threshold T is set to “1”. Let ~λ =
[λ1, λ2, · · · , λN−1, λN ]. The maximum likelihood estima-



tor for this problem is

−̂→
λ = arg max

−→
λ

P
(−→
K ;

−→
λ

)

= arg max
−→
λ

N∏

i=1

(
(1− ki)e−λi + ki(1− e−λi)

)

= arg max
−→
λ

ln
N∏

i=1

(
(1− ki)e−λi + ki(1− e−λi)

)

= arg max
−→
λ

N∑

i=1

ln
(
(1− ki)e−λi + ki(1− e−λi)

)
,

where ki is the realization of the random variable Ki, i.e.
the pixel value, i = 1, 2, · · · , N . If there is no constraint
on λi, then the optimal solution is λi = 0 when ki = 0,
and λi = λmax when ki = 1. The problem is that the esti-
mation variance is high when exactly one point is used for
estimating λi. We can gain from using neighboring pixels to
estimate λi, since natural scenes have some structure. Here,
we assume the light intensity function λ(x) to be piecewise
constant. If the position of each segment of the function is
known in advance, then the pixels in this region can be used
to estimate the light intensity value. The estimation vari-
ance and bias will be smaller in this case. If too many pixels
are used for estimating one segment, for example pixels not
belonging to the segment are used, then the estimation bias
will be larger. If the number of segments of the light in-
tensity function is known, an algorithm that determines the
segment position can be designed. Unfortunately, usually
we do not know the number of segments. Hence, a tunable
penalization term −γ#P is added to the likelihood func-
tion, where P is a set containing all the segments from a
segmentation of the 1D light intensity function, #P is the
number of segments and γ is a parameter that can be set ac-
cording to different scenes. Large γ means that the scene
has few segments. The MPLE for this problem is

−̂→
λ = arg max

−→
λ

N∑

i=1

ln
(
(1− ki)e−λi + ki(1− e−λi)

)− γ#P.

In the estimation, the pixels are divided into #P seg-
ments, the light intensity function in each segment is as-
sumed to be constant. Let Nj be the number of pixels
in jth segment, Cj is the number of “1”s in this segment,
j = 1, 2, · · · , #P . λ̂ for this segment can be obtained us-
ing equation (1). The MPLE can be written in another form

P̂ = arg max
P

#P∑
j=1

Nj∑
i=1

ln
(
(1− kj,i)(1− Cj

Nj
) + kj,i

Cj

Nj
)
)

−γ#P s.t. 1 ≤ #P ≤ N

P̂ ⇒ −̂→
λ ,

where kj,i is the value of ith pixel of jth segment.
Dynamic programming, greedy algorithm and pruning

binary tree are proposed to solve this optimization problem.

3.1. Dynamic programming

Let Cost(i, t), 1 ≤ i ≤ t ≤ N be the cost when there is
only one segment in the region [i, t] and F (j, i), j ≤ i, 1 ≤
i ≤ N be the maximum total cost when there are j segments
in [1, i]. Cost(i, t) is equal to

t−i+1∑
s=1

ln
(

(1− ki−1+s)(1− Cit

t− i + 1
) + ki−1+s

Cit

t− i + 1

)
−γ,

where Cit is the number of “1”s in the segment [i, t] and ki

is the binary pixel value at position i. Then, F (j, i), j ≤
i, 1 ≤ i ≤ N is computed using the following iteration
equations.





F (1, i) = Cost(1, i), 1 ≤ i ≤ N
F (j, i) = max

2≤s≤i
{F (j − 1, s− 1) + Cost(s, i)},

2 ≤ j ≤ i, 1 ≤ i ≤ N

The optimal segmentation

Poptimal = arg max
P

F (#P, N), s.t.1 ≤ #P ≤ N.

According to all the segments in Poptimal, ~̂λ is com-
puted using equation (1). The complexity of this algorithm
is O(N3).

3.2. Greedy algorithm

Since the dynamic programming’s complexity is
O

(
N3

)
, a simple greedy algorithm can be employed to in-

crease the speed. Let Cost(i, t), 1 ≤ i ≤ t ≤ N be the
cost value for the segment [i, t]. The same cost function
Cost(i, t) as in dynamic programming is used here. In the
greedy algorithm, the total cost is first set to be Cost(1, N).
Then, we decide whether to divide the segment [1, N ] into
two segments [1, s− 1] and [s,N ], where

s = arg max
2≤i≤N

{Cost(1, i− 1) + Cost(i, N)}.

If Cost(1, N) < Cost(1, s−1)+Cost(s,N), we make the
division, otherwise not. If the segment is cut into two seg-
ments, then we consider if the two segments can still be cut
to gain in the total cost. This is done iteratively until no seg-
ment can be cut. The procedure gives sub-optimal solution.
~̂λ can be computed as the method in dynamic programming.
The complexity for this algorithm is O(N2), which is faster
than dynamic programming. The pseudocode for this algo-
rithm is shown in Table 1.



Initialize: Cut = {[1, N ]}, Not Cut = null,
Cut is the set which contains the segments to be divided,
Not Cut is the segments which can not be divided.
Loop:
while #Cut 6= 0, #Cut is the number of elements in Cut

for i = 1 to #Cut
suppose Cut{i} = [m,n]
s = arg max

m+1≤t≤n
Cost(m, t− 1) + Cost(t, n)

if Cost(m, s− 1) + Cost(s, n) > Cost(m,n)
put [m,s-1] and [s,n] into a set Cut temp
delete [m,n] from set Cut

else
put [m,n] into the set Not cut

end if
end for i
Cut = Cut temp

end while
Estimate:
~̂λ can be computed similar to that in dynamic
programming according to the segments in Not cut.

Table 1. Pseudocode for 1D greedy algorithm

Initialize:
Calculate Cost value(Sj,i)
Loop:
for j = log(N)-1 to 0

for i = 1:2j

if child nodes of Sj,i has no child node that
is unpruned

if Cost value(Sj,i) > Cost value(Sj+1,2i−1)
+Cost value(Sj+1,2i)
prune the two child nodes

end if
end if

end for i
end for j
Estimate:
~̂λ can be computed similar to that in dynamic
programming according to the segmentation
denoted by the leaf nodes.

Table 2. Pseudocode for pruning binary tree algorithm

3.3. Pruning binary tree

To further reduce complexity, a binary tree is first con-
structed. The tree is denoted as Sj,i, 0 ≤ j ≤ log(N), i =
1, · · · , 2j . Each node Sj,i means that the light intensity
λs, s ∈ [(i − 1)2(log(N)−j) + 1, i × 2(log(N)−j)] is con-
stant. We remark that this choice restricts the number of
allowed partitions with respect to the previous models. The

cost function Cost(i, t) is the same as in the greedy algo-
rithm. Each node has a cost value Cost value(Sj,i) =
Cost

(
(i− 1)2(log(N)−j) + 1, i× 2(log(N)−j)

)
. We prune

this tree from the leaf nodes. If the cost value of the parent
node is larger than the summation of two child nodes, then
we prune two child nodes. If the parent node has a child
node that has unpruned child nodes, then the parent will not
be considered for pruning. The pruning process is imple-
mented iteratively until no node can be pruned. All the leaf
nodes in the pruned tree denote the segmentation of the N

pixels. ~̂λ can be computed as in dynamic programming, ac-
cording to this segmentation. The time complexity of this
algorithm is O(N). The pseudocode for this algorithm is
shown in Table 2.

4. Estimating 2D light intensity through binary
observations

We assume that the model of the light intensity function
λ(x, y) is 2D piecewise constant, i.e. the definition region
of λ(x, y) can be divided into a lot of blocks with different
size, in which λ(x, y) is constant. The threshold T of the
gigavision camera is set to “1”. Let K = {kij}N×N be the
pixel value captured by the gigavision camera and

Mλ =




λ11 λ12 · · · λ1N

λ21 λ22 · · · λ2N

...
...

. . .
...

λN1 λN2 · · · λNN




be the light intensity on each pixel. Then the maximum
likelihood estimator for this problem is

Mλ̂ = arg max
Mλ

P (K; Mλ)

= arg max
Mλ

N∏

i=1

N∏

j=1

(
(1− kij)e−λij + kij(1− e−λij )

)

= arg max
Mλ

ln
N∏

i=1

N∏

j=1

(
(1− kij)e−λij + kij(1− e−λij )

)

= arg max
Mλ

N∑

i=1

N∑

j=1

ln
(
(1− kij)e−λij + kij(1− e−λij )

)
,

If there is no constraint on λij , then the optimal solution
is λij = 0 when kij = 0, and λij = λmax when kij =
1. As with the 1D case, the problem is that the estimation
variance is high when only one point is used for estimating
λij . We can gain from using neighboring pixels to estimate
λij , since natural scenes have some structures. Here, we
assume the light intensity function λ(x, y) is 2D piecewise
constant. Similar to the 1D case, the maximum penalized



likelihood estimator for this problem is

Mλ̂ = arg max
Mλ

N∑
i=1

N∑
j=1

ln
(
(1− kij)e−λij + kij(1− e−λij )

)

−γ#P,

where P is a set containing all the blocks from a segmen-
tation of the 2D light intensity function, #P is the num-
ber of the blocks and γ is a parameter that can be set ac-
cording to different scenes. In the estimation, the pixels are
divided into #P blocks and the light intensity function in
each block is assumed to be constant. Let Njm × Njn is
the size of jth block, Cj is the number of “1”s in this block,
j = 1, 2, · · · , #P . λ̂ for this block can be obtained using
equation (1). The MPLE can be written in another form

P̂ = arg max
P

#P∑
j=1

Njm∑
m=1

Njn∑
n=1

ln
(
(1− kj,mn)(1− Cj

NjmNjn
) + kj,mn

Cj

NjmNjn
)
)

−γ#P s.t. 1 ≤ #P ≤ N

P̂ ⇒ Mλ̂,

where kj,mn is the pixel value at position (m,n) of jth
block.

Dynamic programming, greedy algorithm and pruning
quadtrees are proposed to solve this optimization problem.

4.1. Dynamic programming

Let Cost(s, t,m, n), 1 ≤ s ≤ m ≤ N, 1 ≤ t ≤ n ≤
N be the cost when there is only one block in the region
[s, m] × [t, n] and F (j, s, t, m, n), 1 ≤ s ≤ m ≤ N, 1 ≤
t ≤ n ≤ N is the maximum total cost when there are j
blocks in the [s,m]× [t, n]. Cost(s, t, m, n) is equal to

m∑
a=s

n∑
b=t

ln((1− kab)(1− C
(m−s+1)(n−t+1) )

+kab
C

(m−s+1)(n−t+1) )− γ,

where C is the number of “1”s in the block, kab is the binary
pixel value at position (a, b). Then, F (j, s, t, m, n), 1 ≤
s ≤ m ≤ N, 1 ≤ t ≤ n ≤ N is computed using the
following iteration equations.





F (1, s, t, m, n) = Cost(s, t, m, n),
1 ≤ s ≤ m ≤ N, 1 ≤ t ≤ n ≤ N

F (j, s, t,m, n) = max{h cut, v cut},
2 ≤ j ≤ (m− s + 1)× (n− t + 1),
1 ≤ s ≤ m ≤ N, 1 ≤ t ≤ n ≤ N

h cut = max
s+1≤w≤m

max
1≤a≤j−1

{F (a, s, t, w − 1, n)

+F (j − a,w, t, m, n)},
v cut = max

t+1≤v≤n
max

1≤a≤j−1
{F (a, s, t, m, v − 1)

+F (j − a, s, v, m, n)},

The optimal segmentation is

Poptimal = arg max
P

F (#P, 1, 1, N,N), s.t.1 ≤ #P ≤ N2.

According to all the blocks in Poptimal, Mλ̂ is computed
using equation (1). The time complexity of this algorithm
is O(N9).

4.2. Greedy algorithm

The same cost function Cost(s, t,m, n) as in dynamic
programming is used here. In the greedy algorithm, the total
cost is first set to Cost(1, 1, N,N). After that, we decide
whether to divide the block [1, N ]× [1, N ] into two blocks
[1, N ]× [1, s− 1] and [1, N ]× [s,N ] or [1, t− 1]× [1, N ]
and [t, N ]× [1, N ],

s = arg max
2≤i≤N

{Cost(1, 1, N, i− 1) + Cost(1, i, N,N)}.
t = arg max

2≤i≤N
{Cost(1, 1, i− 1, N) + Cost(i, 1, N, N)}.

If Cost(1, 1, N,N) < max{Cost(1, 1, N, s − 1) +
Cost(1, s,N,N), Cost(1, 1, t−1, N)+Cost(t, 1, N,N)},
we make the division, otherwise not. If the block is cut into
two blocks, then we consider whether the two blocks can
still be cut to gain in the total cost. This is done iteratively,
until a sub-optimal solution is reached. Mλ̂ can be com-
puted similarly as in dynamic programming. The complex-
ity of this algorithm is O(N3).

4.3. Pruning quadtrees

A quadtrees is constructed first. The tree is denoted
as Sj,m,n, 0 ≤ j ≤ log4 N,m = 1, · · · , 4j , n =
1, · · · , 4j . Each node Sj,m,n means that the light intensity
λab, (a, b) ∈ [(m − 1)4(log4 N−j) + 1,m × 4(log4 N)−j ] ×
[(n − 1)4(log4 N−j) + 1, n × 4(log4 N)−j ] is constant. The
cost function Cost(s, t,m, n) is the same as in greedy al-
gorithm. Each node has a cost value

Cost value(Sj,m,n) =
Cost((m− 1)4(log4 N−j) + 1, (n− 1)4(log4 N−j) + 1,
m× 4(log4 N−j), n× 4(log4 N−j)).

We prune this tree from the leaf nodes. If the cost value
of the parent node is larger than the summation of four child
nodes, we prune all the four child nodes. If the parent node
has a child node that has at least an unpruned child node, the
parent node will not be considered for pruning. The prun-
ing process is implemented iteratively until no node can be
pruned. All the leaf nodes in the pruned tree denote the seg-
mentation of the N ×N pixels. Mλ̂ is computed according
to equation (1). The complexity of this algorithm is O(N2).
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Figure 3. Estimation result using dynamic programming for the
optimization. The threshold of the gigavision camera is T = 1,
the number of pixels is N = 1024 and parameter γ = 5.
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Figure 4. Estimation result using greedy algorithm for the opti-
mization. The threshold of the gigavision camera is T = 1, the
number of pixels is N = 1024 and parameter γ = 5.
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Figure 5. Estimation result using the pruning binary tree for the
optimization. The threshold of the gigavision camera is T = 1,
the number of pixels is N = 1024 and parameter γ = 5.

5. Experiments
5.1. 1D synthesized signal

A 1D piecewise constant signal is generated. A gigavi-
sion camera with threshold T = 1 is simulated to take im-
ages of this signal and the number of pixels N is 1024. We
chose the parameter γ for MPLE to be 5 based on exper-
iments. The results are shown in Figure 3, Figure 4, and
Figure 5. The mean square error (MSE) for dynamic pro-
gramming, greedy algorithm, and pruning binary tree are
0.21, 1.0504, and 0.1583, respectively. The MSE of dy-
namic programming is larger than the pruning binary tree
algorithm. The reason is that although the penalization term
in the objective function for the optimization has some in-
fluence on the reconstruction error, there is no one-to-one
mapping. Even if dynamic programming gets the optimal
solution for the objective function, the MSE may be bigger
than that of pruning binary tree algorithm. The performance
of the two algorithms also depends on γ. We need to choose

this parameter based on our knowledge of the original sig-
nal. If the signal has many segments, γ is small, otherwise
large.

5.2. 2D synthesized image

In this section, we simulate the acquisition of an image
using the gigavision sensor. The diagram of this experiment
is shown in Figure 6. The input image is ‘building.bmp’
with resolution 512×512. Each image pixel has a gray level
in the range [0, 255]. In the gigavision camera, the sampling
frequency is higher than the bandwidth of the scene. To sim-
ulate this, the original image is low-pass filtered by a Gaus-
sian filter with size 20× 20 and σ = 20. The bandwidth of
this filter is about π

8 . The gray level is then scaled to [0, 5].
We assume that the gray level corresponds to the light in-
tensity, i.e. setting λ equal to the scaled gray level. For each
pixel, we generate the random number of detected photons
according to the Poisson distribution of parameter λ and we
simulate the behavior of the gigavision sensor. An approxi-
mation of the intensity Mλ is estimated using the algorithm
above with γ = 2. The final image is obtained through low-
pass filtering the estimated intensity, scaling to [0, 255] and
downsampling. The low-pass filter here is the same as the
previous low-pass filter. The downsampling factor is cho-
sen according to the bandwidth of the low-pass filter. If the
low-pass filter is an ideal low-pass filter with bandwidth B,
the downsampling factor should be 2π

B . But as the Gaussian
filter used here is not ideal, we use a smaller downsampling
factor 8 instead of 16 to reduce aliasing. The resolution of
the reconstructed image is 64×64. Since dynamic program-
ming for the 2D case is too complex, only greedy algorithm
and pruning quadtrees are used.
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Figure 6. The experimental diagram

Figure 7(a) and (b) show the original image and the
binary image captured by the gigavision camera. Fig-
ure 7(c) shows the downsampled image of the original low-
pass filtered image with resolution 64 × 64. Figure 7(d)
shows the reconstructed image using the greedy algorithm.
Figure 7(e) shows the reconstructed image using pruning
quadtrees. The PSNR for the greedy algorithm is 28.79dB
and 28.14dB for pruning quadtrees.

We then apply a Gaussian low-pass filter with size 40×
40, σ = 20 and bandwidth π

16 is used. The downsampling
factor is 16. Figure 8(a) and (b) show the low-pass filtered



(a) Original image (b) Binary image

(c) Original
downsampled

(d) Greedy (e) Quadtrees

Figure 7. Simulated images for the gigavision sensor. The image
‘building.bmp’ with resolution 512 × 512 is used to simulate the
number of photons at each pixel and MPLE is used for reconstruc-
tion. The parameter γ = 2. The Gaussian low-pass filtering’s
size is 20 × 20 and σ = 20. The downsampling factor is 8. The
resolution of the reconstructed image is 64× 64.

(a) Low-pass image (b) Binary image

(c) Original
downsampled

(d) Greedy (e) Quadtrees

Figure 8. Simulated images for the gigavision sensor. The image
‘building.bmp’ with resolution 512 × 512 is used to simulate the
number of photons at each pixel and MPLE is used for reconstruc-
tion. The parameter γ = 2. The Gaussian low-pass filtering’s size
is 40 × 40 and σ = 20. The downsampling factor is 16. The
resolution of the reconstructed image is 32× 32.

original image and the binary image captured by the gigav-
ision camera. Figure 8(c) shows the downsampled image of
the original low-pass filtered image with resolution 32×32.
Figure 8(d) shows the reconstructed image using the greedy
algorithm. Figure 8(e) shows the reconstructed image us-
ing pruning quadtrees. The PSNR for the greedy algorithm
is 32.58dB and 32.50dB for pruning quadtrees. Note that
with a higher downsampling factor, i.e., oversampling fac-
tor, better performance can be achieved.

5.3. Images taken by SPAD camera

We additionally do some experiments with SPAD cam-
era [3], shown in Figure 9. The resolution of the SPAD
camera is 32×32 pixels. The pixel value of the image taken
by the SPAD camera is “1”(at least one photon hitting the
pixel) or “0”(no photon hitting the pixel). The pixel value is
the same as in the gigavision camera except that the spatial
resolution is much smaller.

Figure 9. A SPAD camera with resolution 32×32 is fixed on a 2D
positioning system.

(a) Binary image (b) Estimated image
Figure 10. a) is one of the binary images taken by the SPAD cam-
era. b) is the estimated images with 256 binary images.

In the first experiment, the position of the object and the
SPAD camera are fixed and a set of pictures are taken. The
time for capturing each binary image is about 4µs. Since
the position is fixed, the light intensity value is constant and
we can estimate the light intensity using equation (1). We
use 256 binary images. One of them and the estimated light
intensity are shown in Figure 10(a) and (b). Although the
object is not recognizable in the binary image, it becomes
visible in the reconstructed image.

To get a larger resolution binary image with the SPAD
camera, we do a second experiment with a 2D positioning
system (Figure 9). The SPAD camera is fixed to the 2D po-
sitioning system and can be moved in the 2D plane. The
camera is moved to 32× 32 positions and 1024 images are
taken. By stitching 1024 binary images, we get a binary
image with resolution 1024 × 1024. The same reconstruc-
tion algorithm as for 2D synthesized images is implemented
for the binary image. The Gaussian low-pass filter’s size is
20 × 20 and σ = 20. The downsampling factor is 8. Thus,
the resolution of the reconstructed image is 128× 128. The
large resolution image generated by stitching 1024 binary
images taken by the SPAD camera is shown in Figure 11.



The greedy and the quadtrees algorithm are used to recon-
struct the image. Since in the reconstructed images most
of the pixels have values lower than 150, the image appears
dark. We change the pixel values by rescaling the values
below 150 in the range [0, 255] and saturating pixels with
value larger than 150. The reconstructed images are shown
in Figure 12(a) and (b), respectively.

Figure 11. The binary image generated by stitching 1024 binary
images taken by the SPAD camera.

(a) Greedy algorithm (b) Quadtrees
Figure 12. Reconstructed images.

6. Conclusion
In this paper, we model the light intensity as piece-

wise constant and propose MPLE for reconstructing orig-
inal light intensity from the binary images taken by the gi-
gavision camera. Dynamic programming is used to solve
the optimization problem. To increase the speed of recon-
struction, two other methods, greedy algorithm and prun-
ing binary tree or quadtrees are also proposed. Experiments
on synthesized images show the good performance of our
method. We additionally perform experiments with a SPAD
camera, which can detect single photons, but with low spa-
tial resolution. Future work will focus on using more com-
plex models like piecewise linear or piecewise smooth mod-
els to enhance the estimation performance and design a real
gigavision sensor.
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