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Abstract. We report on a device capable of imaging second-order spatio-
temporal correlations g(2)(x, τ ) between photons. The imager is based on a
monolithic array of single-photon avalanche diodes (SPADs) implemented in
CMOS technology and a simple algorithm to treat multiphoton time-of-arrival
distributions from different SPAD pairs. It is capable of 80 ps temporal resolution
with fluxes as low as 10 photons s−1 at room temperature. An important
application might be the local imaging of g(2) as a means of confirming the
presence of true Bose–Einstein macroscopic coherence (BEC) of cavity exciton
polaritons.

Recent experiments [1]–[4] have reported the Bose–Einstein condensation (BEC) phase
transition in a polariton system in a semiconductor microcavity. The macroscopic quantum
degeneracy is typically detected by probing the statistical properties of light emitted from a
microcavity, under the presumption that the statistics of the exciton polaritons are faithfully
transferred to the emanating photons.

It has been further assumed that observation of the interference fringes similar to those
in Michelson or Young interferometers (figure 1(a)) is sufficient to establish the fact of
6 Author to whom any correspondence should be addressed.

New Journal of Physics 11 (2009) 013001
1367-2630/09/013001+07$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft



2

Figure 1. Interference fringes (a) at λ = 770 nm wavelength used to verify the
BEC of polaritons in GaAs microcavity (reproduced from [4], reprinted with
permission from AAAS) and (b) at λ = 546 nm measured for the green line of
pulsed Hg–Ar discharge lamp.

Table 1. Values of first- and second-order correlation functions for incoherent,
coherent and thermal light states.

Function Incoherent Coherent Chaotic

g(1)(x, 0) 0 1 1
g(2)(x, 0) 1 1 2

macroscopic coherence in polariton systems [1, 4, 5]. Two points on the wave front separated
by a distance x12 produce an intensity pattern I1 + I2 + 2

√
I1 I2|g(1)(x12, τ )| cos(1ϕ12), such

that the fringe visibility measures the magnitude of the first-order correlation function. But
simply measuring this quantity alone is ambiguous because a coherent light source (e.g. a
photon laser or decaying polariton BEC) can exhibit the same first-order correlations as a
chaotic (or thermal) light source (e.g. Hg–Ar discharge lamp in figure 1(b)). Table 1 shows
that proper disambiguation of a coherent state also requires measurement of the second-order
correlation function g(2)(x12, τ ) =

〈I1(t) I2(t+τ)〉

〈I1(t)〉〈I2(t)〉
associated with intensity noise correlations. Here,

I1,2(t) is the light intensity at a point ±
1
2 x12 and time t . The minimal condition to confirm

the BEC phase transition in a polariton system then becomes g(1)(x, 0) = g(2)(x, 0) = 1 (third
column of table 1). So far, the very few theoretical and experimental studies of the second-order
correlations in a polariton system have been limited to the k = 0 point in the momentum space
(in the lateral cavity direction), reporting thus a spatially averaged value of g(2)(0) and ignoring
the fact that two-dimensional (2D) BEC can be achieved only in spatially confined systems.
As a consequence, the model of [6] predicts increasing correlation peak height g(2)(0) with
polariton number caused by the strong scattering effects above the critical threshold density.
Such behaviour for polaritons at k = 0 has been confirmed in [7], whereas the experimental
results of [8] disagree with such behaviour. To confirm the BEC phase transition in a polariton
system, one needs to distinguish the presence of both coherent condensate (g(1)

= g(2)
= 1) and

thermal noncondensate (g(1)
6= g(2)) fractions, which can be achieved by local measurement

of the first- and second-order correlations. However, the small dimensions of the polariton
distribution in the microcavity, mean that such measurements must be capable of resolving
a spatial dependence in g(2). All these requirements demand an integrated monolithic photon
detector, like a camera, but capable of imaging intensity noise correlations.
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Figure 2. Exploded micrograph of the 4 × 4 SPAD array.

In this paper, we present an imaging device allowing the second-order (intensity)
correlations of a field to be probed locally. The current implementation comprises a 4 × 4
silicon array of single-photon avalanche diodes (SPADs) implemented in 0.35 µm CMOS
technology [9]. The device incorporates on-chip high bandwidth I/O circuitry (figure 2) for
off-chip data processing of multiphoton arrivals. We demonstrate the operational performance
of our monolithic g(2)-imager in a miniature replication of the Hanbury Brown and Twiss (HBT)
stellar interferometer [10].

Each pixel in our SPAD array is based on an avalanche photodiode operating in the Geiger
mode. The 3.5 µm-diameter active region of a SPAD n-well pixel consists of a p+–n junction
reverse-biased above its breakdown voltage. When a photon is absorbed in the multiplication
region, an avalanche is triggered with a certain probability. The measured single photon
detection probability of such 0.35 µm-CMOS SPAD pixels is 25% at 546 nm wavelength and
4 V excess voltage above the breakdown threshold. (The detection probability is 40% at the
peak sensitivity wavelength 450 nm [9].) The avalanche breakdown is subsequently quenched
by an on-chip ballast resistor, which is used to read out the photodetection events. Its value
defines the dead time of the detector which is 15 ns for each SPAD pixel of the 4 × 4 array
considered here. The chip comprises built-in high-bandwidth electronics to convert Geiger
pulses into digital signals for off-chip data processing. This design drastically improves the
signal-to-noise ratio. At room temperature, the lowest detectable photon flux is set by the dark
count rate (DCR) of SPADs in the 5–10 Hz range. Such low DCR is achieved by using small
n-wells of diameter 3.5 µm. The lowest detectable photon flux density in our experiments is
∼108 photons s cm−2, well below the level in polariton BEC experiments. The array pitches are
30 µm horizontal and 43 µm vertical. All 16 detectors in the array have separate parallel outputs
so that

( 16
2

)
= 120 simultaneous pairwise measurements are possible at a temporal resolution

limited by the SPAD jitter characteristics (80 ps).
The pairwise intensity noise correlations g(2)(xi j , τ ) are computed using an external four-

channel 6 GHz bandwidth digital oscilloscope (Wavemaster 8600A, LeCroy) by programming
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Figure 3. Comparison of single-photon and multiphoton measurements.
(a) Traces from two detectors at 5 MHz count rate. Standard histogram of delayed
single-photon arrivals shows a large number of lost detections. (b) Computed g(2)

based on multiphoton arrivals (green) and the standard technique (red) showing
the impact of lost detections at count rates µ ∼ 2.5 MHz at each detector and the
width of measurement window N T = 100 ns.

it with an algorithmic version of equation (1):

g(2)(xi j , τ ) =

N M
M∑

m=0

(N/2)∑
n=−(N/2)

X (m)

i (n)X (m)

j (n + l)

M∑
m=0

(N/2)∑
n=−(N/2)

X (m)

i (n)
(N/2)∑

n′=−(N/2)

X (m)

j (n′ + l)

, (1)

where integers i, j (i 6= j) enumerate detector pixels, X i and X j are discrete random variables
whose values 0 (no event) or 1 (photon detection) correspond to the binary data stream
(figure 3(a)) emanating from any pair of detectors Di and D j , respectively. The spatial lag xi j

is set by the separation of the detector pair within the SPAD array. Time-lag increments τ = lT
are set by multiples of temporal resolution T , where N T is the width of measurement window
and M is the overall number of measurements series.

Unlike conventional detection methods based on start-stop timing histograms of delayed
single photon arrivals (figure 3(a)), our approach implements properly normalized multiphoton
distribution which is robust against missing detection events, the impact of Poisson-like
distribution decay ∝ exp(−µτ) at large τ and intensity modulation. Equation (1) permits
any count rates and temporal window of interest and does not require a statistical hypothesis
to normalize g(2). Figure 3(b) shows the benefits of our technique by comparing g(2)(τ )

measurements of incoherent broad-band light using multiphoton arrivals and the standard two-
photon histogram.
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In figure 3(b), for the standard approach based on time-delayed coincidence events, the
histogram was acquired and then normalized assuming that at the lag τ = 0 there should be
no correlations for incoherent light source (i.e. assuming that g(2)(0) = 1). We shall remind
readers that a probability distribution of time intervals between two consecutive photons is
p(0|τ) = µ exp(−µτ) for a Poisson process [11, 12] and that for a multi-mode Gaussian
(chaotic light) and a coherent (Poisson statistics) states these distributions are the same [13].
Therefore, when normalized in such way, the standard method shows the onset of Poisson
distribution g(2)(τ ) = p(0|τ)/µ ' 1 − µ|τ | for sufficiently large time lag |τ | ∼ 0.1 µ−1 but yet
small µ|τ | product. (For µ|τ | ∼ 1 and higher, the standard method shows the exponential decay
g(2)(τ ) = exp (−µ|τ |).) Thus in figure 3(b), the average count rate at detectors is µ = 2.5 MHz,
and for τ = 50 ns, the error is 1g(2)

∼ 0.13. The conventional procedure is thus limited to small
count rate and temporal window width product. At the same time, our approach produces
the correct correlations independent of the measurement interval N T and the photon flux
intensity.

The g(2)-imager was tested by measuring the statistical properties of an extended thermal
light source. As a model system for a quasi-monochromatic chaotic light source, we used a
Hg–Ar spectral wavelength calibration lamp (bulb CAL-2000-B, Ocean Optics) with U-folded
discharge and cold cathode. This lamp, designed for operation in the ac regime, also operated
well with a dc power supply (160 V @ 15 mA). To start the discharge, we used the original
ac power supply of CAL2000 source, which was connected in parallel with a dc source via a
filter (2H inductance) such that the ac supply was gradually turned off, whereas the dc source
was gradually turned on.

The light emitted by the lamp was transmitted through a 10 nm bandpass filter (FL543.5–
10, Thorlabs), which keeps only the emission at the green line of mercury (546 nm). The light
then was injected into a 1 m long multimode fiber (figure 4(a)) with core diameter w = 200 µm.
The other end of the fiber was used to illuminate the SPAD array placed in the far field zone of
the fiber end, at a distance L = 2 cm from the fiber (figure 4(a)). The numerical aperture of the
fiber (NA = 0.22) assumes that the whole 4 × 4 SPAD array is over illuminated. Such extended
thermal light source is of the angular width w/L = 10−2 rad and exhibits first-order correlations
g(1) (figure 1(b)), when the SPAD array is replaced by a Young double-pinhole interferometer
(not shown in the figure).

The second-order spatio-temporal correlations for a nonpolarized single-mode chaotic
light source are determined by the first-order correlations [11, 14, 15] with coherence time
τc = 2

√
2π ln 2/1ω due to the inhomogeneous broadening 1ω (FWHM) of the emission line

g(2)(xi j , τ ) = 1 +
1

2

∣∣g(1)(xi j , τ )
∣∣2

= 1 +
1

2
sinc2

(πw

λL
xi j

)
exp

(
−π

τ 2

τ 2
c

)
, (2)

where the second term in the right-hand side takes into account the decorrelation effects
due to unpolarized light (the coefficient 1/2), the zero-delay degree of spatial coherence and
the Gaussian profile of the delayed first-order correlation function for an inhomogeneously
broadened line.

To examine the temporal correlations, we used detector pairs in the middle of the array as
well pairs at diagonally opposite corners, thus providing correlations g(2)(xi j , τ ) between two
different regions separated by 30 and 158 µm, respectively. At small separation (figure 4(b)), the
data show an excess of coincidences g(2)(x5,9, 0) = 1.25. At large distance, detector counts are
uncorrelated (figure 4(c)).
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Figure 4. (a) SPAD array configured as miniature HBT interferometer for
measuring 200 µm (b) correlations between adjacent detectors (x5,6 = 30 µm)
and (c) extreme diagonal detectors (x0,15 = 158 µm). (d) Measured (points)
and calculated (curve) second-order in function of detector separation. The
micrograph inset shows the position of detectors within the array. (e) Imaged
second-order correlation maxima along the row of array in (d). It is assumed that
g(2)

= 2 along the diagonal.

At temporal resolution of the scope T = 1 ns, the measured coherence time τc is 5.2 ns
such that the impact of integration effects on measured correlation peak width and height is less
than 2% [16]. The corresponding linewidth of the source is 130 MHz (FWHM), which is less
than the Doppler width of the green line of Hg and can be attributed to the Dicke linewidth
narrowing due to the buffering effect of Ar in the lamp bulb.

The spatial oscillations of g(2)(xi j , 0) due to the spatial coherence factor in (2) were
measured by selecting detector pairs from a row of the array (D1–D13 row in figure 2) with
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detector separation 30, 60 and 90 µm. Figure 4(d) shows the correlation excess at zero-delay
is well fitted by the sinc function in equation (2), yielding the angular width of the source
0.9 × 10−2 rad, close to the estimated value.

Being limited by the number of acquisition channels, we were able to record simultaneous
correlations between four independent detectors. In figure 4(e), g(2)(xi j , 0) measured along the
array row is plotted as a pairwise correlation map g(2)(i, j). In this image map, the spatial
oscillations of the coherence factor are clearly visible.

In conclusion, we have presented a g(2)-imager built with conventional CMOS technology,
which is capable of measuring second-order spatio-temporal correlated photons and thereby
offers an important means for verifying the existence of a BEC state of cavity exciton polaritons.
Future work will include the development of larger arrays of SPADs, the integration of on-chip
data processing based on equation (1), and the extension to other g(2)-imaging applications.
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