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Abstract

In this paper the outer-J-lossless factorization for linear discrete
time-varying systems is treated. Lossless operators and its corre-
sponding J-lossless chain-scattering operators are studied. Then
the factorization is treated by first ‘taking out’ the anticausal part,
and then considering the outer-J-lossless factorization of the causal
part.

1 Introduction

In reality most physical and economical systems demonstrate a
time-varying and/or non-linear behavior. Taking into account the
fact that non-linear systems operating around a particular trajec-
tory within their operation envelope can adequately be described
as linear, time-varying (LTV) systems, the development of several
system theoretical concepts as exist for linear time-invariant sys-
tems can be motivated for linear time-varying systems.
In this paper we study the outer- � J1 � J2 � -lossless factorizations of
linear discrete time-varying systems. We use the setting of the
linear discrete time-varying system theory as is developed in e.g.
[2, 4]. We consider the scattering and chain-scattering operators
of a time-varying system, where the chain-scattering operator of a
system is a useful tool for the design of a controller for the orig-
inal system. In the time-invariant case we refer to [1], where the
J-lossless factorization is studied for chain-scattering representa-
tions for the purpose of H∞ control.
In Section 2 we treat the preliminaries and notation, as is reported
in e.g. [4]. Then in Section 3, we study lossless scattering opera-
tors and its corresponding J-lossless chain-scattering operators in
a time-varying setting. In Section 4 we continue with the develop-
ment of an outer-J-lossless factorization by separating the system
in a causal and anticausal part.

2 Preliminaries

In this section, we introduce the notation used in representing lin-
ear Time-Varying (LTV) systems. To be consistent with earlier lit-
erature in which this notation was defined, e.g. [4], we think of se-
quences as row vectors, and of operators as acting on the sequences
at the left, so that we will write uT rather than Tu, which is the usual
notation for time-invariant systems in the control literature.

A state space realization of the LTV system P to be controlled, is
denoted on a local time scale as:

xk � 1 � xkAk � ukBk

yk � xkCk � ukDk (1)

where xk � uk and yk are (finite dimensional) row vectors in re-
spectively |C Nk � |C Mk and |C Lk and the matrices {Ak � Bk � Ck � Dk} are
bounded matrices of appropriate dimensions. Remark that this no-
tation is compatible with the earlier work on LTV systems as re-
ported in e.g. [4].

To denote the state space representation more compactly, we in-
troduce as done in e.g. [4], the vector sequence space 	 (which
contains information on the dimensions), 	 � · · · × 	 0 × 	 1 × · · ·,

where 	 k � |C Nk and the square box identifies the space of the
0−th entry. In a similar way, we introduce the dimension space
sequence 
 and � from the integer sequences {Mk} and {Lk}.
It is allowed that some integers in these sequences are zero. The
space of sequences in 	 with finite 2-norm will be denoted by��

2 . Next we stack the sequence of state vectors xk , input vec-
tors uk and output vectors yk into ∞-dimensional row vectors x,
u and y; denoted explicitly for the state vector sequence as, x ��

· · · x−1 x0 x1 · · · � where the square identifies the posi-

tion of the 0-th entry. Let 	�� −1 � denote the shifted dimension space
sequence of 	 , i.e., 	�� −1 � � · · · × 	 1 × 	 2 × · · ·, and let ����
 � � �
denote the Hilbert space of bounded diagonal operators

���
2 →

���
2 ,

then we can stack the system operators Ak , Bk , Ck and Dk into the
diagonal operators A � B � C and D, as (denoted only explicitly for A):

A � diag
�

· · · A−1 A0 A1 · · · � ∈ ����	 � 	 � −1 � ���
C ∈ ����	 � � ��� B ∈ ����
 � 	 � −1 � ��� D ∈ ����
 � � ���

Let the causal bilateral shift operator on sequences be denoted by
Z, such that,�

· · · x−1 x0 x1 · · · � Z � �
· · · x−2 x−1 x0 · · · �

then a compact notation on a global time scale of the state space
representation (1) is:

xZ−1 � xA � uB
y � xC � uD

or P �! A C
B D " (2)

With this notation it is possible to represent a LTV system as an op-
erator. If the system is asymptotically stable, then the inverse of the



operator � I −AZ � exists and is in # and the operator representation
of the LTV system P becomes:

P � D � BZ � I − AZ � −1C (3)
This transfer operator is upper triangular and in general the Hilbert
space of bounded upper operators acting from

���
2 to

���
2 is de-

noted by #$��
 � � � or denoted in short by # . When the dimen-
sion Nk of the state vector is finite for all k then the operator rep-
resented as in Eq. (3) is locally finite. In the same way as # ,
we denote the space of bounded operators by %&��
 � � � and the
space of bounded lower triangular operators by '(��
 � � � . In ad-
dition to the bounded operator space, we denote by % 2 ��
 � � � the
Hilbert-Schmidt space which is in %)��
 � � � and which is addi-
tionally bounded in the Hilbert-Schmidt norm. Related spaces in% 2 are the upper, lower and diagonal Hilbert-Schmidt spaces given
by # 2 � % 2 ∩ # , ' 2 � % 2 ∩ ' , and � 2 � % 2 ∩ � . The projection
operators of these spaces, P, P *

2Z−1 , and P0 denote the projections
onto # 2, ' 2Z−1, and � , respectively.
Finally, by an outer operator To ∈ # we mean that # 2To � # 2,
where # 2To is the closure of # 2To. If an outer operator is invert-
ible, then its inverse is also upper.

3 Lossless and J-lossless operators

Lossless and J-lossless operators (functions) play an important role
in system and control engineering because of their many useful and
elegant properties. We consider lossless and J-lossless operators
and their properties in linear discrete time-varying context for the
purpose of H∞ control.

Definition 3.1 Σ ∈ % is an isometry if ΣΣ∗ � I, a coisometry if
Σ∗Σ � I and unitary if both ΣΣ∗ � I and Σ∗Σ � I. +
A special case for an isometric operator or a co-isometric operator
occurs when the operator is upper.

Definition 3.2 An isometric operator Σ is called lossless iff Σ ∈ # .
A coisometric operator Σ is called co-lossless iff Σ ∈ # . A unitary
operator Σ is called inner iff Σ ∈ # . In this case, Σ is both lossless
and co-lossless. +
The next theorem gives a characterization of isometric and co-
isometric operators.

Theorem 3.3 Let Σ ∈ # be a locally finite operator with a realiza-
tion {AΣ � BΣ � CΣ � DΣ} and

�
AΣ , 1. Σ � DΣ � BΣZ � I −AΣZ � −1CΣ. Σ

is an isometry iff there exists a Hermitian operator Q ∈ � such that AΣ CΣ
BΣ DΣ "  Q � −1 �

I "  AΣ CΣ
BΣ DΣ " ∗ �- Q

I " (4)

Σ is a coisometry iff there exists a Hermitian operator P ∈ � such
that: AΣ CΣ

BΣ DΣ " ∗  P
I "  AΣ CΣ

BΣ DΣ " �  P � −1 �
I " (5)

Σ is unitary iff both (4) and (5) are satisfied.
If {AΣ � BΣ � CΣ � DΣ} is a uniform realization, then Q . 0 and P . 0;
if Σ is also unitary, then P � Q−1.

Proof: Sufficiency: Let Σ ∈ # be a locally finite operator with a
realization {AΣ � BΣ � CΣ � DΣ} and

�
AΣ , 1. Assume that (4) is satis-

fied. Then ΣΣ∗ � I. With the expression of Σ we have

ΣΣ∗ �0/DΣ � BΣ � Z∗ − AΣ � −1CΣ 1 /D∗
Σ � C∗

Σ � Z − A∗
Σ � −1B∗

Σ 1
By expanding the right hand side of the above expression and with
the conditions given by (4), we can obtain that ΣΣ∗ � DΣD∗

Σ �
BΣQ � −1 � B∗

Σ � I. Σ∗Σ � I can be proved in a similar way.
Necessity: Let Σ ∈ # be a locally finite operator with a realization
{AΣ � BΣ � CΣ � DΣ} and

�
AΣ , 1. Assume that ΣΣ∗ � I. Then, condi-

tions given by (4) are satisfied. In particular we have P0 � ΣΣ∗ �2�
ΣΣ∗ � I. Define Fo � � I − AΣZ � −1CΣ, so that Σ � DΣ � BΣZFo.
Hence,

P0 � ΣΣ∗ �3� DΣD∗
Σ � BΣP0 � ZFoF∗

oZ∗ � B∗
Σ (6)

Let Q � P0 � FoF∗
o � , then ΣΣ∗ � I indicates DΣD∗

Σ � BΣQ � −1 � B∗
Σ � I

and Q satisfies the recursion Q � CΣC∗
Σ � AΣQ � −1 � A∗

Σ. Consider

P0 � Z−nΣΣ∗ �3� P0 � Z−nDΣD∗
Σ �4� P0 � Z−nDΣF∗

oZ∗B∗
Σ �� P0 � Z−nBΣZFoD∗

Σ �5� P0 � Z−nBΣZFoF∗
oZ∗B∗

Σ �
If n 6 0, the first and second terms on the right hand side of
the above equation are equal to zero. The third term yields
P0 � Z−nBΣZFoD∗

Σ �7� B � n �Σ A{n−1}
Σ CΣD∗

Σ and the fourth term results in

P0 � Z−nBΣZFoF∗
oZ∗B∗

Σ ��� B � n �Σ A{n−1}
Σ AΣQ � −1 � B∗

Σ. Substituting the
results of the third and fourth terms back into P0 � Z−nΣΣ∗ � , we ob-

tain: P0 � Z−nΣΣ∗ �3� B � n �Σ A{n−1}
Σ � CΣD∗

Σ � AΣQ � −1 � B∗
Σ � . Since ΣΣ∗ is

diagonal, P0 � Z−nΣΣ∗ ��� 0 for n 8� 0. Then CΣD∗
Σ � AΣQ � −1 � B∗

Σ � 0.
In a similar way, we can prove that if Σ∗Σ � I, then (5) is satisfied.
The rest of the proof follows immediately from the definitions of
uniform reachability and uniform observability. +
Referring to Figure 1 (a), let Σ be a known operator, mapping input/ a1 b2 1 to output / a2 b1 1 , i.e./ a2 b1 1 �9/ a1 b2 1 Σ �:/ a1 b2 1  Σ11 Σ12

Σ21 Σ22 " (7)

In the figure, the variable with a dot stands for an input of the map-
ping and without a dot stands for an output. If Σ22 is invertible, we
can derive the mapping from / a1 b1 1 to / a2 b2 1 , denoted by
Θ in Figure 1(b) from Σ as

Θ �  Θ11 Θ12
Θ21 Θ22 " �  Σ11 − Σ12Σ−1

22Σ21 −Σ12Σ−1
22

Σ−1
22Σ21 Σ−1

22 " (8)

Σ Θ

b 2

a 2

.

a

b

a1

1

2a
1

(a) (b)

. .

.
b 1 b 2

Figure 1: Scattering operator Σ, chain scattering operator Θ.

Σ is called a scattering operator and Θ is called the corresponding
chain scattering operator.
If we introduce a feedback relation b1 � a1S between b1 and a1,



then the closed loop mapping from b2 to a2, denoted by Φ, is given
by

Φ � Σ21 � Σ22 � I − SΣ12 � −1SΣ11 (9)� HM � Θ; S �;� � SΘ12 � Θ22 � −1 � SΘ11 � Θ21 � (10)

where HM stands for HoMographic transformation.
In Figure 1, we use a dot to indicate the variables of the input port.
The variables with arrows into the block are input variables and
with arrows out of the block are output variables.
Let J1 ∈ � be the input port signature and J2 ∈ � the output port
signature matri-

ces which are defined as Ji �
<======> . . .

ji ? −1
ji ? 0

ji ? 1
. . .

@BAAAAAAC for

i � 1 � 2, where the entry

ji ? k �D I � p �;� k
−I � p− � k " (k � −∞ � · · · �E� ∞) is determined by the

dimensions of the input and output of the ports at time instant k. For
a chain scattering operator, the dimension of input variables on the
input port is p � and the dimension of output variables on the input
port is p−. It is reversed on the output port.

Definition 3.4 Let J1 and J2 be the input and output signature op-
erators respectively of a known operator Θ ∈ % . Θ is a � J2 � J1 � -
isometry (sometimes shortly called a J-isometry) if ΘJ2Θ∗ � J1. Θ
is a � J1 � J2 � -coisometry (shortly a J-coisometry) if Θ∗J1Θ � J2 and
Θ is J-unitary if both ΘJ2Θ∗ � J1 and Θ∗J1Θ � J2. +
Theorem 3.5 Let J1 and J2 be the input and output signature op-
erators respectively of a known operator Θ ∈ % . Let the operator
Σ be isometric, coisometric or unitary. If the corresponding chain
scattering operator Θ exists, then it is J-isometric, J-coisometric or
J-unitary, respectively. If the corresponding dual chain scattering
operator exists, then it is J-isometric, J-coisometric or J-unitary,
respectively.

Proof: For the proof of the first statement we refer to [4]. The sec-
ond statement is proved in a similar way. +
If F is a locally finite � -invariant subspace, then it has some strong
basis representation F such that F � � 2F. Similar to the definition
of a Gramian operator by ΛF � P0 � FF∗ � , we define the J-Gramian
operator of this basis as the diagonal operator: ΛJ

F � P0 � FJF∗ � ∈����	 � 	 � . The operator F is J-orthonormal if ΛJ
F � J  , where J  is

some signature operator on 	 . We call F regular if the J-Gramian
operator of any strong basis of F is boundedly invertible. Note that
ΛJ

F boundedly invertible implies the same for ΛF , i.e., ΛF . 0.

Let T ∈ # have a uniformly minimal realization {A � B � C � D} with�
A , 1 and J1 and J2 be the input and output signature operators.

Then F∗ � BZ � I −AZ � −1 and Fo � � I −AZ � −1C are strong bases ofFG� T � and F o � T � , respectively. If P0 � FJ1F∗ � and P0 � FoJ1F∗
o � are

invertible, we say the realization {A � B � C � D} is regular. Regular
realizations of bounded lower operators or mixed operators are de-
fined in a similar way.

The chain scattering operator of a lossless scattering system is not
lossless itself, but has some special features.

Definition 3.6 If an operator Σ is lossless, then we call the corre-
sponding chain scattering operator Θ is J-lossless. +
It is easy to obtain a similar characterization of a chain-scattering
operator Θ ∈ # being a J isometry as is obtained for of Σ being
an isometry in Theorem 3.3. But, contrary to the scattering repre-
sentation, where lossless operators are always upper by definition,
the corresponding chain scattering representation can be lower or
mixed. Thus we also need the extension of Theorem 3.3 to lower
and mixed operators. It is well known that the cascade connection
of J-lossless operators results in a J-lossless operator. In particular,
the cascade connection of an upper J-lossless operator and a lower
J-lossless operator results in a J-lossless operator which is in gen-
eral not upper or lower anymore.

Theorem 3.7 Let Θ ∈ % be a locally finite
operator and {A1 � B1 � C1 � A2 � B2 � C2 � DΘ} be a regular realization
with

�
A1 , 1 and

�
A2 , 1 such that Θ � DΘ � B1Z � I −A1Z � −1C1 �

B2Z∗ � I − A2Z∗ � −1C2. Θ is (J2 � J1 � -isometric if there exists a Her-

mitian operator Q �  Q11 Q12
Q21 Q22 " ∈ � such that:<>

A1 | C1
I | C2

B1 | DΘ

@C <=> Q � −1 �
11 Q � −1 �

12 |
Q � −1 �

21 Q � −1 �
22 |

| J2

@BAC <>
A1 | C1

I | C2

B1 | DΘ

@C ∗

� <>
I |

A2 |
B2 | I

@C <>
Q11 Q12 |
Q21 Q22 |

| J1

@C <>
I |

A2 |
B2 | I

@C ∗

(11)

If Q . 0, then Θ is J-unitary.
Proof: The proof follows straightforwardly from writing out the
expressions for ΘJ2Θ∗, using (11), and reorganizing the expres-
sions. +
The next theorem reveals an important property of J-lossless oper-
ators, since it is a very useful if we want to design an H∞ controller
via the chain-scattering representation.

Theorem 3.8 Let an operator Θ ∈ % be � J2 � J1 � -lossless and have

a partitioning as Θ �  Θ11 Θ12
Θ21 Θ22 " and let an operator S ∈ # be

strictly contractive ( H S H ∞ , 1). Let

Φ � HM � Θ; S �;� � SΘ12 � Θ22 � −1 � SΘ11 � Θ21 � (12)

Then Φ is upper and H Φ H ∞ , 1.
Proof: First, we show the invertibility of � SΘ12 � Θ22 � . Since Θ
is � J2 � J1 � -lossless, the corresponding Σ ∈ # is lossless and has a

partitioning Σ �  Σ11 Σ12
Σ21 Σ22 " with Σ22 invertible. Under these

conditions, ||Σ12||∞ , 1 and � I − SΣ12 � is invertible. With the rela-
tion Σ12 � −Θ12Θ−1

22 , we have � I � SΘ12Θ−1
22 � invertible and then� Θ22 � SΘ12 � invertible.

Φ can be expressed with Σ and S as, Φ � Σ21 � Σ22 � I−SΣ12 � −1SΣ11.



Using the expansion of � I − SΣ12 � −1 yieldsΦ � Σ21 � Σ22SΣ11 �
Σ22SΣ12SΣ11 � · · ·. Under the given conditions, the Neumann se-
ries converges to an upper matrix, i.e. Φ is upper. Now, rewrite
equation (12) as� SΘ12 � Θ22 �2I Φ I J �KI S I J  Θ11 Θ12

Θ21 Θ22 " (13)

Denote ϕ � � SΘ12 � Θ22 � . Multiplying equation (13) on the right
side first with the J operator and then multiplying each side with
the conjugate transpose of themselves, we obtain, ϕ � ΦΦ∗ − I � ϕ∗ �
SS∗ −I. From the condition H S H ∞ , 1, we then have that H Φ H ∞ , 1.+
Finally, in this section we introduce some notions on spaces that
are of interest for the rest of the paper.

Definition 3.9 Let T ∈ # . Then we define the input null space
as LM� T �N� {U ∈ ' 2Z−1 : P � UT �O� 0} , the input state space
as FG� T �O� P *

2Z−1 �B# 2T∗ � , the output state space as F o � T �P�
P ��' 2Z−1T � , and the output null space as L o � T �O� {Y ∈ # 2 :
P *

2Z−1 � YT∗ �3� 0 . +
From the above definition it follows that FQ� T � ⊕ LR� T �2� ' 2Z−1,
and that F o � T � ⊕ L o � T �3� # 2.

A generalization of a theorem on J-unitary operators (see [4]) to� J2 � J1 � -isometries is given as follows:

Theorem 3.10 Let Θ ∈ # be a � J2 � J1 � -isometry, i.e., ΘJ2Θ∗ �
J1, then the output null space is given by L o � Θ �(� # 2 S J2 ⊕
Ker � �Θ∗ |T 2 � . +

4 J-lossless Factorization

Let us consider the factorization G � ToΘ ∈ % with To invertible
and outer, and Θ � J2 � J1 � -lossless in the discrete time-varying con-
text. This kind of factorization is called an outer–J,J’-lossless fac-
torization [1]. Here, we consider the case where the dimension se-
quence of the output of G is pointwise greater than or equal to the
dimension sequence of the input. With To invertible this means that
Θ should be of the same size as G.

Assume that an operator G ∈ % is specified by the representation,

G � D � BcZ � I − AcZ � −1Cc � BaZ∗ � I − AaZ∗ � −1Ca (14)

with
�

Ac , 1,
�

Aa , 1 and the dimension of the output of G is point-
wise greater than or equal to the dimension of the input. Suppose
that G admits a factorization:

G � G1Θa (15)

where the operator Θa ∈ ' is anticausal and J-lossless (the sub-
script ‘a’ stands for anticausal), and G1 is causal. Furthermore,
suppose that G1 admits a factorization as,

G1 � ToΘc (16)

where Θc ∈ # (the subscript ‘c’ stands for causal) is J-lossless and
To ∈ # is outer. Define

Θ � ΘcΘa (17)

then, G has an outer–J-lossless factorization G � ToΘ.
With this strategy, we consider the outer–J-lossless factorization of
G in two steps, first we take out the anticausal J-lossless part and
then the causal J-lossless part.

4.1 Anticausal J-lossless factorization
Let G ∈ % be a given chain scattering operator specified by (14)
with

�
Aa , 1 and

�
Ac , 1, with port signature matrices � J1 � J2 � , and

with (Aa � Ca) uniformly observable. Let us consider the factoriza-
tion in equation (15).

Proposition 4.1 Let G ∈ % be a given operator with port signa-
ture matrices � J1 � J2 � , specified by (14) with

�
Aa , 1,

�
Ac , 1 and

(Aa � Ca) uniformly observable. Let Fa
o � � I − AaZ∗ � −1Ca. Define a

J-unitary operator Θa ∈ ' with its anticausal output state spaceF a
o � Θa �U� � 2Fa

o. Assume that there is a Hermitian invertible op-
erator Q ∈ � such that

AaQA∗
a −CaJ2C∗

a � Q � −1 � (18)

is satisfied. Under this condition, we embed / Aa � Ca 1 with a pair/ BΘa � DΘa 1 such that: Aa Ca

BΘa DΘa "  Q
−J2 "  Aa Ca

BΘa DΘa " ∗ �  Q � −1 �
−J2 "

(19)
and Aa Ca

BΘa DΘa " ∗  P � −1 �
−J2 "  Aa Ca

BΘa DΘa " �  P
−J2 "

(20)
are satisfied. Define a J2-unitary operator Θa � DΘa � BΘa Z∗ � I −
AaZ∗ � −1Ca ∈ ' and let G1 � GJ2Θ∗

aJ2. Then, G1 is upper and has
a realization

G1 � Dg � BgZ � I − AgZ � −1Cg (21)
where Ag, Bg, Cg and Dg are equal to,

Ag �  Ac CcJ2C∗
a

A∗
a " � Cg �  CcJ2D∗

Θa
J2

B∗
Θa

J2 " (22)

Bg �0/ Bc DJ2C∗
a − BaQA∗

a 1 (23)

Dg � DJ2D∗
Θa

J2 − BaQB∗
Θa

J2 (24)

If Q . 0, then Θa is J2-lossless and G has a factorization G �
G1Θa with G1 upper and Θa lower and J2-lossless.
Proof: Rewrite equation (18) asI Aa Ca J  Q

−J2 " I Aa Ca J ∗ � Q � −1 �
For Q invertible, we embed I Aa Ca J with / BΘa DΘa 1 such
that (19) and (20) are satisfied. In this case, P � Q−1 and the re-
alization {Aa � BΘa � Ca � DΘa} is regular. We construct Θa � DΘa �
BΘa Z∗ � I − AaZ∗ � −1Ca. With the lower, and J-unitary version of
Theorem 3.3 we know that Θa is J2-unitary. Let G1 � GJ2Θ∗

aJ2,
then,

G1 � GJ2Θ∗
aJ2 � DJ2DΘa J2�V/D � BcZ � I − AcZ � −1Cc 1 J2C∗

a � I − ZA∗
a � −1ZB∗

Θa
J2� BcZ � I − AcZ � −1CcJ2D∗

Θa
J2 � BaZ∗ � I − AaZ∗ � −1CaJ2D∗

Θa
J2� BaZ∗ � I − AaZ∗ � −1CaJ2C∗

a � I − ZA∗
a � −1ZB∗

Θa
J2



The first three terms are obviously upper. We can rewrite the last
two terms as:

BaZ∗ � I − AaZ∗ � −1CaJ2D∗
Θa

J2� BaZ∗ � I − AaZ∗ � −1CaJ2C∗
a � I − ZA∗

a � −1ZB∗
Θa

J2 �
−BaQBΘa J2 − BaQA∗

aZ � I − A∗
aZ � −1B∗

Θa
J2

Now we see that this part is also upper. Then G1 is upper. By com-
bining the first three terms with the last two terms of G1, we derive
that G1 has the realization {Ag � Bg � Cg � Dg} of (22), (23), and (24).
Since Θ∗

aJ2Θa � J2, G admits a factorization G � G1Θa. If Q . 0,
then Θa is anticausal and J2-lossless as (15) requires. +
4.2 Causal J-lossless factorization
In this subsection we continue with the second step, the outer-J,J’-
lossless factorization of G1. We start with a result on the outer part.

Theorem 4.2 Let T ∈ # with port signature matrices � J1 � J2 � .
Suppose that there exists a Θ ∈ # which is (J2 � J1 � -isometric with
its realization regular, such that # 2TJ2 � # 2ΘJ2. Then T has a
factorization T � ToΘ with To ∈ # outer.
Proof: Define To � TJ2Θ∗J1. Then# 2To � # 2TJ2Θ∗J1 � # 2TJ2Θ∗J1 � # 2ΘJ2Θ∗J1 � # 2

so that To is outer. If Θ is J-unitary, Θ−1 � J2Θ∗J1, then it is al-
ways true that if To � TJ2Θ∗J1, then T � ToΘ. In the case that Θ is
only � J2 � J1 � -isometric but with its realization regular, there always
exists an Ω ∈ # which is the J-complement of Θ such that: Ω

Θ " J2 I Ω∗ Θ∗ J �! Jc

J1 " �I Ω∗ Θ∗ J  Jc

J1 "  Ω
Θ " � J2

(25)

where Jc is called the complement port signature matrix of J1. Then
we have: Ω∗JcΩ � Θ∗J1Θ � J2 or J2Ω∗JcΩ � I − J2Θ∗J1Θ and
ΘJ2Ω∗ � 0. On the other hand, because # 2TJ2Ω∗ ⊂ # 2ΘJ2Ω∗ � 0,
TJ2Ω∗ � 0. Hence T � TJ2Θ∗J1Θ � ToΘ iff there is an Ω such that
the equations of (25) are satisfied. In case of a regular realization
of Θ there always exists such an Ω. This proves the theorem. +
We have defined the input and output signature matrices J1 and J2
for a chain scattering operator. In general, their entries are time-
varying and the relation between J1 and J2 can not be given by a
simple expression. But in some special cases, J1 and J2 are explic-
itly related. Let us consider the relation of J1 and J2 in a special
case which is related to the problem we deal with.

Let a chain scattering operator T ∈ # . The factorization we are
interested in is T � ToΘ with To outer, Θ � J2 � J1 � -lossless and up-

per. Let Θ be partitioned as  Θ11 Θ12
Θ21 Θ22 " with Θ22 invertible.

Because Θ is upper, Θ22 is upper. On the other hand, the cor-
responding scattering operator, Σ, is lossless. Thus Θ−1

22 must be
upper as well. Let {AΘ � BΘ � CΘ � DΘ} be a realization of Θ. Sup-

pose DΘ is partitioned as  D11 D12
D21 D22 " following the partition-

ing of Θ. Since both Θ22 and Θ−1
22 are upper, D22 is invertible.

The invertibility of D22 implies that every entry of D22 is invert-
ible and thus square. The dimensions of the negative part of J1 and
J2 which correspond to the row and column dimensions of D22, are

thus equal to each other. This equality in addition with the condi-
tion that the dimension of the output is pointwise greater than or

equal to the dimension of the input implies that j2 ? i �W I
j1 ? i "

for i �0�X�X�Y� −1 � 0 �X����� In the global notation, we denote this as J2 � I
J1 " . For the rest of the paper we assume that this relation

holds. Note that then Jc in the proof of Theorem 4.2 equals the
identity operator.

Let Θ ∈ # be a � J2 � J1 � -isometric operator. Then L o � Θ �$�L[Zo � Θ � ⊕ L[Z Zo � Θ � , where L[Zo � Θ �\� # 2ΘJ2 and L[Z Zo � ker � �Θ∗ |T 2 �\�
{χ ∈ # 2 � χΘ∗ � 0}, and L o � Θ � ⊕ F o � Θ �U� # 2. Let T ∈ # be an
operator with port signature matrices � J1 � J2 � . If we find a Θ such
that L[Zo � Θ �3� # 2TJ2, then # 2TJ2 � # 2ΘJ2. We then have the fol-
lowing proposition.

Proposition 4.3 Let T ∈ # be an operator with port signature ma-
trices � J1 � J2 � . Let Θ be a � J2 � J1 � -isometric operator such thatL Zo � Θ �3� # 2TJ2. Then, F o � Θ � J2T∗ ⊂ FG� T � .
Proof: Since L]Zo � Θ �3� # 2TJ2 � # 2ΘJ2,# 2 S # 2TJ2 � # 2 S # 2ΘJ2 � F o � Θ � ⊕ L Z Zo (26)

where L Z Zo � Θ �7� ker � �Θ∗|T 2 � and hence, # 2TJ2 ⊥ F o � Θ � ⊕ L Z Zo. For
any χ ∈ / F o � Θ � ⊕ L]Z Zo 1 J2, Po �B# 2Tχ∗ �U� 0. So that χT∗ ∈ ' 2Z−1.
Together with # 2ΘJ2 ⊕ ker � �Θ∗|T 2 � ⊕ F o � Θ �3� # 2 we have:� F o � Θ � ⊕ L Z Zo � J2 � {χ ∈ # 2 � χT∗ ∈ ' 2Z−1} (27)

From the definition of FG� T � we have: χT∗ |χ∈ ^ _ o � Θ � ⊕ ` Z Zo a J2
∈FG� T � ⊂ FG� T � , which implies that F o � Θ � J2T ∗ ⊂ FG� T � +

Let T ∈ # be an operator with port signature matrices � J1 � J2 � . De-
fine a � J2 � J1 � -isometric operator Θ such that L[Zo � Θ �3� # 2TJ2. Let
Eo be a J-orthonormal basis representation of F o � Θ � : F o � Θ �b�� 2Eo and let F be a basis representation of FG� T � . BecauseF o � Θ � J2T∗ ⊂ FG� T � , we must have EoJ2T∗ � XF for some
bounded diagonal operator X which plays an instrumental role in
the derivation of a state realization of Θ.

Suppose that EoJ2 has a component in L Z Zo so that DEoJ2 ∈ L Z Zo for
some D ∈ � 2. Since L[Z Zo � ker � �Θ∗ |T 2 �3� ker � � T ∗|T 2 � � T∗ � Θ∗T∗

o
and ker � � T∗

o �U� 0), we have
DEoJ2T∗|DEo J2∈ ` Z Zo � DXF|DEo J2∈ ` Z Zo � 0 so that D ∈ ker � � X � .
Hence F o � Θ �c� � 2Eo can be described as the largest subspace� 2Eo (and then F o � Θ � J2 � � 2EoJ2 is also the largest subspace)
for which: EoJ2T∗ � XF with ker � � X �d� 0. The two conditions
EoJ2T∗ � XF and ker � � X �;� 0 in addition with the J-losslessnes de-
fine a realization of a J-lossless Θ such that # 2TJ2 � # 2ΘJ2. Then,
according to Theorem 4.2, the factorization T � ToΘ, where To is
outer and Θ � J2 � J1 � -lossless, exists.

Proposition 4.4 Let T ∈ # be a locally finite transfer operator

with port signature matrices � J1 � J2 � such that J2 �  I
J1 " and

a uniformly reachable realization {A � B � C � D} such that
�

A , 1 and� TJ2T∗ � −1 exists. T has a factorization T � ToΘ, where To is in-
vertible and outer, and Θ ∈ # is � J2 � J1 � -lossless iff there is a pair



{AΘ � CΘ} which corresponds to a J-orthonormal basis representa-
tion of F o � Θ � , the output state space of Θ, with

�
AΘ , 1, and a

diagonal operator X such that the following conditions are satis-
fied,
(i) AΘX � −1 � A∗ � CΘJ2C∗ � X
(ii) AΘX � −1 � B∗ � CΘJ2D∗ � 0
(iii) AΘA∗

Θ � CΘJ2C∗
Θ � I

(iv) Ker � � X �U� 0
If such an X exists, it is unique up to a left diagonal unitary factor,
i.e, X∗X is unique.
Proof: Let F � � I − Z∗A∗ � −1Z∗B∗ and Fo � � I − AZ � −1C. Suppose
that a pair {AΘ � CΘ} and a diagonal operator X fulfilling � i � − � iii �
exist and let EoJ2 � � I −AΘZ � −1CΘJ2, we have the following equa-
tions:

EoJ2 � CΘJ2 � AΘZEoJ2 (28)

ZF � B∗ � A∗F (29)

T∗ � D∗ � C∗F (30)

As analyzed before, T has a factorization T � ToΘ with To outer
and Θ � J2 � J1 � -lossless, iff the conditions that EoJ2T∗ � XF with
Ker � � X �U� 0 and Θ � J2 � J1 � -lossless are satisfied. Uniform reacha-
bility implies that FG� T �3� � 2F. According to Proposition 4.3, we
need to find a � J2 � J1 � -lossless operator Θ such that F o � Θ � J2T∗ ⊂FQ� T � . That is EoJ2T∗ � XF for some bounded X ∈ � . Because
F ∈ ' 2Z−1, P*

2Z−1 � EoJ2T∗ ��� XF. With P*
2Z−1 � EoJ2T∗ �d� XF

and equation (29), P*
2Z−1 � ZXF �e� X � −1 � P*

2Z−1 � ZF �2� X � −1 � A∗F.
On the other hand

AΘP*
2Z−1 � ZEoJ2T∗ �3� P* Z−1 � / AΘZEoJ2 1 T∗ �� P*

2Z−1 � EoJ2T∗ � − P* Z−1 � CΘJ2T∗ �3� XF −CΘJ2C∗F

Since P*
2Z−1 � ZEoJ2T∗ ��� P* Z−1 � ZXF � , we have AΘX � −1 � A∗F �

XF − CΘJ2C∗F. The uniform reachability yields AΘX � −1 � A∗ �
CΘJ2C∗ � X, i.e., condition (i).
Condition � ii � is derived from the condition that EoJ2T∗ � XF ∈' 2Z−1 as follows

P0 � EoJ2T∗ �U� CΘJ2D∗ � AΘP0 � ZEoJ2T∗ �3�
CΘJ2D∗ � AΘP0 � ZXF �U� CΘJ2D∗ � AΘX � −1 � B∗ � 0

Condition � iii � is given by the fact that EoJ2 is a J-orthonormal ba-
sis representation of the output state space of a J-lossless operator
and condition � iv � has been derived before.
Conversely, if the conditions � i � − � iv � are satisfied, then the con-
ditions for the existence of the outer– � J1 � J2 � -lossless factorization
T � ToΘ are satisfied. Substitution of the conditions � i � − � ii � into
EoJ2T∗ yields that EoJ2T∗ � XF and that the conditions � iii � − � iv �
are the same in both directions.
With the same strategy given by Theorem 3.28 in [4] we can prove
that �H∗

T � Po � � F∗
o � F. Hence P *

2Z−1 � EoJ2T∗ �P� Po � EoJ2F∗
o � F.

Since T is uniformly reachable, X � Po � EoJ2F∗
o � . X∗X is obtained

as:
X∗X � Po � FoJ2E∗

o � Po � EoJ2F∗
o �3� Po � Po � FoJ2E∗

o � EoJ2F∗
o �� Po � PJ2_ � Fo � J2F∗

o � � PJ2_ � �f�3� Po � � J2E∗
o � Eo �

This implies that X∗X is unique. +
In order to obtain X in a unique manner, we can choose Xk at every
step to be in an upper triangular form with all its diagonal entries
positive. If we have found X such that the conditions � i � − � iv � are
satisfied, then we have the pair {AΘ � CΘ} which corresponds to a

realization of a � J2 � J1 � -lossless operator Θ. Embedding {AΘ � CΘ}
with {BΘ � DΘ} such that, AΘ CΘ

BΘ DΘ "  I
J2 "  AΘ CΘ

BΘ DΘ " ∗ �! I
J1 "

then, Θ � DΘ � BΘZ � I − AΘZ � −1CΘ and ΘJ2Θ∗ � J1. With T �
ToΘ, the outer operator To is derived as follows

To � TJ2Θ∗J1 � DJ2D∗
ΘJ1 � BZ � I − AZ � −1CJ2D∗

ΘJ1 �
TJ2C∗

Θ � I − Z∗A∗
Θ � −1Z∗B∗

ΘJ1

(31)

After rewriting the third term of the above equation we get
TJ2C∗

Θ � I − Z∗A∗
Θ � −1Z∗B∗

ΘJ1 �
BX � −1 � ∗B∗

ΘJ1 � BZ � I − AZ � −1AX � −1 � ∗B∗
ΘJ1 �

By substituting into (31), we obtain the realization of To given by

To �- A | CJ2D∗
ΘJ1 � AX � −1 � ∗B∗

ΘJ1

B | DJ2D∗
ΘJ1 � BX � −1 � ∗B∗

ΘJ1 " (32)

The invertibility of To follows from condition of the invertibility of
TJ2T∗.

If we rewrite the above results together with a special case of
Lemma 5.16 in [4] in an algorithm, a problem that remains is the
initialization of X. For a finite operator the dimension of the states
after time instant 0 is zero, i.e., X0 �g/h� 1 . For a system which is
time-varying until time-instant 0, and time invariant after time in-
stant 0, the initial condition is determined by the solution of the
time invariant system. For a periodic system, the initial condition
is determined by the solution of the equivalent time invariant sys-
tem within one period. The time invariant system solution can be
obtained from an analysis of the eigen space of a corresponding
Riccati equation. See e.g. [5].

5 Concluding remarks

In this paper we have treated the outer-J-lossless factorization of
a linear discrete time-varying system mostly in an operator set-
ting, i.e., the characterization is given in terms of Lyapunov-type of
equations. The proposed strategy can be used as a tool for the de-
velopment of a solution to the H∞ control problem. This has been
done in [10].
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