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Abstract

In this paper the outer-J-lossless factorization for linear discrete
time-varying systemsiis treated. Lossless operators and its corre-
sponding Jlossless chain-scattering operators are studied. Then
the factorization is treated by first ‘taking out’ the anticausal part,
and then considering the outer-J-lossl essfactorization of the causal
part.

1 Introduction

In reality most physical and economical systems demonstrate a
time-varying and/or non-linear behavior. Taking into account the
fact that non-linear systems operating around a particular trajec-
tory within their operation envelope can adequately be described
aslinear, time-varying (LTV) systems, the development of severa
system theoretical concepts as exist for linear time-invariant sys-
tems can be motivated for linear time-varying systems.

In this paper we study the outer-(J;, Jp)-lossless factorizations of
linear discrete time-varying systems. We use the setting of the
linear discrete time-varying system theory asis developed in e.g.
[2, 4]. We consider the scattering and chain-scattering operators
of atime-varying system, where the chain-scattering operator of a
system is a useful tool for the design of a controller for the orig-
inal system. In the time-invariant case we refer to [1], where the
Jlossless factorization is studied for chain-scattering representa
tions for the purpose of H., contral.

In Section 2 we treat the preliminaries and notation, asis reported
ineg. [4]. Then in Section 3, we study |ossless scattering opera-
tors and its corresponding J-1ossless chain-scattering operators in
atime-varying setting. In Section 4 we continue with the develop-
ment of an outer-J-lossless factorization by separating the system
in a causal and anticausal part.

2 Preliminaries

In this section, we introduce the notation used in representing lin-
ear Time-Varying (LTV) systems. To be consistent with earlier lit-
erature in which this notation was defined, e.g. [4], wethink of se-
guences asrow vectors, and of operatorsasacting on the sequences
at theleft, sothat wewill writeuT rather than Tu, whichistheusual
notation for time-invariant systemsin the control literature.

A state space readlization of the LTV system P to be controlled, is
denoted on alocal time scaeas:

Xk+1 =
Yo =

XAy + Uk By
X<Ci + kD N

where x, Uy and yx are (finite dimensional) row vectors in re-
spectively C ™ € Mk and € and the matrices { A, By, Cy, Dy} are
bounded matrices of appropriate dimensions. Remark that this no-
tation is compatible with the earlier work on LTV systems as re-
portedin e.g. [4].

To denote the state space representation more compactly, we in-
troduce as done in e.g. [4], the vector sequence space 5 (which
contains information on the dimensions), 5 = ---><><B1 X
where By = C™ and the square box identifies the space of the
O-th entry. In a similar way, we introduce the dimension space
sequence M and A from the integer sequences { My} and {Ly}.
It is allowed that some integers in these sequences are zero. The
space of sequences in B with finite 2-norm will be denoted by
E?. Next we stack the sequence of state vectors X, input vec-
tors uyx and output vectors yi into co-dimensional row vectors X,
u and y; denoted explicitly for the state vector sequence as, x =
[ X Xp v ] where the square identifies the posi-
tion of the O-th entry. Let B2 denote the shifted dimension space
sequence of B, i.e, BCY = ...x[ By |x By x -, and let D(M, \)
denote the Hilbert space of bounded diagonal operators (31 — éfz‘/ ,
then we can stack the system operators Ay, Bk, Cx and Dy into the
diagonal operators A, B, Cand D, as(denoted only explicitly for A):

A:diag[--- Ay A ---]DD(B,B(_D),

COD(B,N), BOD(M,B™V), DODM,N).

Let the causal hilateral shift operator on sequences be denoted by
Z, such that,

[---X—1X1 ---]Z: [---X—zxo ]

then a compact notation on a global time scale of the state space
XA+ uB

representation (1) is:
A C
xC+uD P= [ B D ] (2)

Xz—l

y
With thisnotationitispossibleto represent aL. TV system as an op-
erator. |f thesystemisasymptotically stable, thentheinverseof the



operator (I -AZ) existsandisini/ and the operator representation
of the LTV system P becomes:

P=D+BZ(1-A2)'C (3)
Thistransfer operator isupper triangular and in general the Hilbert
space of bounded upper operators acting from ¢5! to E’ZV is de-
noted by ¢/ (M, .N') or denoted in short by &/. When the dimen-
sion N of the state vector isfinite for all k then the operator rep-
resented as in Eq. (3) is locally finite. In the same way as i,
we denote the space of bounded operators by X' (M, ) and the
space of bounded lower triangular operators by £( M, N). In ad-
dition to the bounded operator space, we denote by X’»(M, N) the
Hilbert-Schmidt space which isin X' (M, N') and which is addi-
tionally bounded in the Hilbert-Schmidt norm. Related spacesin
X arethe upper, lower and diagonal Hilbert-Schmidt spacesgiven
bylo =XonlU, Lr=Xon L,and Dy = Xpn D. The projection
operators of these spaces, P, P..,-1, and Py denotethe projections
onto Uy, £,Z71, and D, respectively.
Finally, by an outer operator T, 0 ¢/ we mean that /> To = Uo,
where I/, T, is the closure of U/, T,. If an outer operator is invert-
ible, then itsinverseis also upper.

3 Lossessand J-lossless operators

L osslessand J-lossless operators (functions) play animportant role
in system and control engineering because of their many useful and
elegant properties. We consider lossless and J-lossless operators
and their propertiesin linear discrete time-varying context for the
purpose of He control.

Definition 3.1 = 0 X isan isometry if ZXU = |, a coisometry if
™5 = I and unitary if both 2P =1 and "5 = I. o

A specia casefor an isometric operator or a co-isometric operator
occurs when the operator is upper.

Definition 3.2 Anisometric operator X iscalled losslessiff Z 0.
A coisometric operator X iscalled co-losslessiff Z (/. A unitary
operator X iscalled inner iff Z (0 I/. Inthis case,  isboth lossless
and co-lossless. O

The next theorem gives a characterization of isometric and co-
isometric operators.

Theorem 3.3 Let > (0 bealocallyfinite operator with arealiza-
tion{As,Bs,Cs,Ds} and fa; < 1. =D5+BsZ (1 -AsZ)*Cs. =
isanisometry iff thereexistsa Hermitian operator Q 0D such that

A G ][ QY A G ]7_TQ @
Bs Ds | Bs Ds - |
> isa coisometry iff there exists a Hermitian operator P 0 D such
that:

As Cs 1P As G| _ [P )
Bs Ds I B Ds | I
> isunitary iff both (4) and (5) are satisfied.

If{As,Bs,Cs, Ds} isauniformrealization, then Q> 0and P >> 0;
if = isalso unitary, then P = Q1.

Proof: SQufficiency: Let 2 O ¢/ be alocaly finite operator with a
realization { Az, By, Cs, D5} and £a; < 1. Assume that (4) is satis-
fied. Then =P=I. With the expression of X we have
337= Dy + B5(2"-As) C5][DF+ CH(Z - AD) U85

By expanding the right hand side of the above expression and with
the conditions given by (4), we can obtain that ¥3" = D;D¥ +
BsQYBY = 1. =M% = | can be proved in asimilar way.
Necessity: Let 2 [0/ bealocally finite operator with arealization
{As,Bs,Cs, D5} and £p; < 1. Assumethat 3= |. Then, condi-
tions given by (4) are satisfied. In particular we have Po(Z5") =
5= 1. Define Fo = (I -AsZ)™'Cs, so that = = D5 + BsZF,.
Hence,

Po(225) = DsDF + BsPo(ZFoF5Z1) BY (6)
Let Q = Po(FoF5), then =37 = | indicates DsDY + By QUYBY = |
and Q satisfiesthe recursion Q = CsC¥+ AsQUYAY. Consider

Po(Z"25Y) = Po(Z™"DsD¥) + Po(Z "D F5ZBY)
+Po(Z "Bz ZFoD¥) 4+ Po(Z "Bs ZFoF5ZBY)

If n> 0, the first and second terms on the right hand side of
the above equation are equal to zero. The third term yields
Po(Z"BsZF,DY) = B{"” ALY C; DY and the fourth term resultsin
Po(Z "BsZFoFLzBY) = BV A" A;QI-DBY. Substituting the
results of the third and fourth terms back into Po(Z"=5Y), we ob-
tain: Po(z"zz0) = B ALY (CsDY+ AsQUUBY). Since 3 Uis
diagonal, Po(Z =35 = 0forn# 0. ThenCsDY+ AsQUYBY = 0.
In asimilar way, we can provethat if 5 = |, then (5) is satisfied.
The rest of the proof follows immediately from the definitions of
uniform reachability and uniform observability. O

Referringto Figure 1 (a), let 2 be aknown operator, mapping input
[a; by Jtooutput[ a, by ],i.e
2 212

bz ]Z:[ ar bz ][ So1 Zo :| (7)

Inthe figure, the variablewith adot standsfor an input of the map-
ping and without adot standsfor an output. If 2o isinvertible, we
canderivethemappingfrom|[ & by Jto[ a by ], denoted by
©in Figure 1(b) from Z as

o-[ Qs Oz [miga ]
@21 @22 25%221 ZE:ZL

[a b ]=[a

a a, ap a

by b2 b1 b,

€Y (b)
Figure 1: Scattering operator 2, chain scattering operator ©.
> is caled a scattering operator and © is called the corresponding

chain scattering operator.
If we introduce a feedback relation b; = a; S between b; and ay,



then the closed loop mapping from b, to ay, denoted by @, isgiven
by

P So1+Zon(l -S0) Sy 9)

HM(©;S) = (9124 O2) (P11 4+ 0x)  (10)

where HM stands for HoM ographic transformation.

In Figure 1, we use adot to indicate the variables of the input port.
The variables with arrows into the block are input variables and
with arrows out of the block are output variables.

Let J; O D betheinput port signature and J, 0 D the output port
signature matri-

ces which are defined as J; = Jio for

i = 1,2, where the entry

jik= ot o (k= —o0, -+, +00) is determined by the

Pk
dimensionsof theinput and output of the portsat timeinstant k. For
a chain scattering operator, the dimension of input variables on the
input port is p+ and the dimension of output variables on the input

port is p—. Itisreversed on the output port.

Definition 3.4 Let J; and J, bethe input and output signature op-
erators respectively of a known operator © 0 X. ©isa (J,J1)-
isometry (sometimes shortly called a J-isometry) if ©3,0"= J;. ©
isa (Jp, Jo)-coisometry (shortly a J-coisometry) if 0,6 =J and
© is J-unitary if both ©3,0" = J, and 03,0 = J,. O

Theorem 3.5 Let J; and J, be the input and output signature op-
erators respectively of a known operator © [0 X'. Let the operator
> beisometric, coisometric or unitary. If the corresponding chain
scattering operator © exists, thenitisJ-isometric, J-coisometric or
J-unitary, respectively. If the corresponding dual chain scattering
operator exists, then it is J-isometric, J-coisometric or J-unitary,
respectively.

Proof: For the proof of thefirst statement we refer to [4]. The sec-
ond statement is proved in a similar way. O

If H isalocally finite D-invariant subspace, then it has some strong
basisrepresentation F such that H = D,F. Similar to the definition
of aGramian operator by Ar = Po(FFY), we define the 3-Gramian
operator of this basis as the diagonal operator: A} = Po(FJIFY) O
D(B, B). The operator F is J-orthonormal if Al = Js, where Js is
some signature operator on 5. We call H regular if the FGramian
operator of any strong basisof ‘H isboundedly invertible. Notethat
AL boundedly invertibleimplies the same for Ag, i.e,, Ag > 0.

Let T O have auniformly minimal realization { A, B,C, D} with
fa < 1and J; and J, be the input and output signature operators.
Then F- = BZ(1-AZ)™ and F, = (I ~AZ)~C are strong bases of
H(T) and Ho(T), respectively. If Po(FJFY) and Po(FoJiF5) are
invertible, we say the realization { A, B,C, D} is regular. Regular
realizations of bounded lower operatorsor mixed operators are de-
fined in asimilar way.

The chain scattering operator of alossless scattering system is not
losslessitself, but has some special features.

Definition 3.6 If an operator X islossless, then we call the corre-
sponding chain scattering operator © is J-lossless. O

It is easy to obtain a similar characterization of a chain-scattering
operator © [ ¢/ being a J isometry as is obtained for of X being
an isometry in Theorem 3.3. But, contrary to the scattering repre-
sentation, where lossless operators are always upper by definition,
the corresponding chain scattering representation can be lower or
mixed. Thus we also need the extension of Theorem 3.3 to lower
and mixed operators. Itiswell known that the cascade connection
of J-lossless operatorsresultsin a J-lossless operator. In particular,
the cascade connection of an upper J-lossless operator and alower
Jlossless operator resultsin a J-lossless operator which isin gen-
eral not upper or lower anymore.

Theorem37 Let © O X be a localy finite
operator and {A;, B1,C1, A, By,Cy, Do} be a regular realization
with s, < 1and £, < 1 suchthat © = Dg +B1Z (1 -A1Z)*Cy +
BoZH(I = A2ZD)71C,. @ is (&, Jy)-isometric if there exists a Her-

mitian operator Q = 8;'1 82 ] 0D such that:
[ A |G ] Q%fi QEE? | A |G ]
I Cy Q‘l Q_l'l I Cy
=2 1 2 =2
Bi |De [ | L Bi Do
L Qu Qul 1! | 1"
= A Qxn Qx| A | (11)
By |l N By |l

If Q> 0, then @ is J-unitary.

Proof: The proof follows straightforwardly from writing out the
expressions for ©3,0, using (11), and reorganizing the expres-
sions. O

The next theorem reveal s an important property of J-lossless oper-
ators, sinceit isavery useful if wewant to design an H., controller
viathe chain-scattering representation.

Theorem 3.8 Letanoperator © O X be (J,, J;)-losslessand have
On Op
Oy O
strictly contractive (|- < 1). Let
® =HM(Q;S) = (SO12+ Oz) }(O1 + O2)
Then ® isupper and ||P||o < 1.
Proof: First, we show the invertibility of (S912+ ©2). Since ©
is (Jp, J1)-lossless, the corresponding = O If is lossess and has a
251 21
201 22
conditions, ||Z12ll. < 1 and (I —SX12) isinvertible. With the rela-
tion 23, = —©1,05%, we have (I + S91,053) invertible and then
(O + S917) invertible.
® canbeexpressedwith = and Sas, ® = 351 + Z55(1 -S515) 1SS 3.

apartitioningas© = and let an operator SO U be

(12)

partitioning = = [ ] with 25, invertible. Under these



Using the expansion of (1 —S515)7! yields® = Sy + 5pS511 +
271511 + +--. Under the given conditions, the Neumann se-
ries converges to an upper matrix, i.e. ® is upper. Now, rewrite
equation (12) as

On O
S¢C) d I]=[S I 13
(S912+0O2) [ =1 ] [ O, Oy ] (13)
Denote ¢ = (012 + O). Multiplying equation (13) on the right

side first with the J operator and then multiplying each side with
the conjugate transpose of themselves, we obtain, ¢ (P -1)p =
SS™-1. Fromthe condition |||« < 1, wethen havethat || ®||e < 1.
O

Finally, in this section we introduce some notions on spaces that
are of interest for the rest of the paper.

Definition 3.9 Let T O #. Then we define the input null space
as K(T) = {U O £,Z71: P(UT) = 0}, the input state space
as H(T) = P71 (U2TH) , the output state space as Ho(T) =
P(£2Z271T), and the output null space as Ko(T) = {Y O U, :
Pr,z-1(YTH) =0. O

From the above definition it follows that  (T) O K (T)
and that Ho(T) O Ko(T) = Ua.

= ,sz_l,

A generalization of a theorem on J-unitary operators (see [4]) to
(J,J1)-isometriesis given asfollows:

Theorem 3.10 Let © O U be a (Jp, Jy)-isometry, i.e., 03,0 =
Ji, then the output null space is given by Ko(©) = U6 1 U
Ker(.0%,). O

4 J-lossless Factorization

Let us consider the factorization G = To® O X’ with Ty invertible
and outer, and © (Jp, J;)-lossless in the discrete time-varying con-
text. Thiskind of factorization is called an outer—J,J -lossless fac-
torization [1]. Here, we consider the case where the dimension se-
guence of the output of G is pointwise greater than or equal to the
dimension sequenceof theinput. With T, invertiblethismeansthat
© should be of the same size as G.

Assumethat an operator G O X is specified by the representation,
G =D+BZ(1-AZ)*Cc+Baz (1 -AZH) 1Cy (14)
with £a, < 1, £, < 1 and thedimension of the output of G is point-

wise greater than or equal to the dimension of the input. Suppose
that G admits a factorization:

G =G0, (15)

where the operator ©, [0 £ is anticausal and Jlossless (the sub-
script ‘@’ stands for anticausal), and G, is causal. Furthermore,
suppose that G; admits a factorization as,

Gl = To@c (16)

where O O U (the subscript ‘¢’ standsfor causal) is Jlosslessand
To O U isouter. Define

@ = @c@a
then, G has an outer—J-lossless factorization G = T,0.
With this strategy, we consider the outer—J-1osslessfactorization of
G in two steps, first we take out the anticausal Jlossless part and
then the causal J-lossless part.

(17)

4.1 Anticausal J-losslessfactorization

Let G 0 & be agiven chain scattering operator specified by (14)
with £a, < 1and ¢a, < 1, with port signature matrices (J;, Jp), and
with (A, Ca) uniformly observable. Let us consider the factoriza-
tion in equation (15).

Proposition 4.1 Let G 00 X be a given operator with port sigha-
ture matrices (J1, Jz), specified by (14) with £a, < 1, £a. < 1 and
(Aa, Ca) uniformly observable. Let F2 = (I -A.ZM)IC,. Define a
J-unitary operator @, [0 £ with its anticausal output state space
HE(©a) = DoFS. Assumethat there is a Hermitian invertible op-
erator Q 0 D such that

AQAT-CaJCl = Q™Y (18)

is satisfied. Under this condition, we embed [Aq, C4] With a pair
[B@a’ D@a] such that:

Ar Ci1[Q Ar Ca 17 Q™
Bo, Do, -% || Bo, Do, | ~ )
(19)

and

Aa Cy 17T PO A Ca ]l [P
Bo, De, -X Bo, Do, | -
(20)

are satisfied. Define a J,-unitary operator ©; = Dg, + B@aZD(I -
AZN1C, 0 £ and let G = GJLO5,. Then, Gy isupper and has

arealizalion G _ by 4 Bez(1-AZ) G, (21)
where Ag, By, Cg and Dy are equal to,
CeJ cD CeJ D J
we[* S e [] e
Bg=[Bc DXCy- BaQAE ] (239)
Dy = DJ,Dg, ) ~BaQBg, % (24)

If Q> 0, then ©, is J,-lossless and G has a factorization G =
G104 with G; upper and ©4 lower and J,-lossless.
Proof: Rewrite equation (18) as

[ Aa Ca][Q _JZ][Aa Ca ]7= QY

For Q invertible, weembed [ Ay C, | with[ Bg, Dg, ] such
that (19) and (20) are satisfied. In this case, P = Q! and the re-
alization { Aq, Bo,,Ca,Do,} isregular. We construct ©; = Dg, +
Bo,Z™(1 = AaZ")1Ca. With the lower, and J-unitary version of
Theorem 3.3 we know that @, is Jo-unitary. Let G; = G305,
then,

G; = G%L0OL%, = DLDe, )

+[D+BZ(1-AZ) 1cc]chD | —ZAE) “1zBg 2

+BcZ (| ~AZ)'CcoDg, Jo+ BaZ"( |—AazD) “CakDg Lk

+BaZH(1-AZD) 1cancD | -ZA) 1ZB@ )



The first three terms are obviously upper. We can rewrite the last
two terms as:

BaZM(I -~ AaZ")'CadoDg X

O — -1 iy 170 7, _

+BaZ(1 - AaZ) T CadoCy{1 -ZA5) ' ZBg Lo =

~BaQBo,J2~BaQAZ (1 -A3Z) 'Bg_ X
Now we seethat this part isalso upper. Then G, isupper. By com-
bining thefirst three termswith the last two terms of G,, we derive
that G; has the realization { Ay, By, Cg, Dg} of (22), (23), and (24).
Since 01,0, = J,, G admitsafactorization G = G10,. If Q> 0,
then @, is anticausal and J,-lossless as (15) requires. O

4.2 Causal J-losslessfactorization
In this subsection we continue with the second step, the outer-J,J -
losslessfactorization of G1. We start with aresult on the outer part.

Theorem 4.2 Let T O ¢/ with port signature matrices (J;,Jo).
Suppose that there exists a © 0 ¢/ whichis (Jz, J1)-isometric with
its realization regular, such that i/, TJ, = U,0J,. Then T has a
factorization T = To©® with T, 0 ¢/ outer.

Proof: Define T, = T1L0);. Then

UrTo = UsTHLOW, = UsTIHOH) = U,01,0M = U,
so that To is outer. If © is Junitary, @1 = 3,0, then it is al-
waystruethat if To = THLO,, then T = ToO. Inthecasethat O is

only (J, J1)-isometric but with itsrealization regular, there dways
existsan Q [0 ¢/ which isthe J-complement of © such that:

[g]JZ[QD o']=| % Jl]’

[ o @D][Jc Jl] g]ZJz

where J; iscalled the complement port signature matrix of J,. Then
we have: Q3.Q + 040 = J, or LQ.Q = | -3,03,0 and
©J,Q"= 0. Ontheother hand, because/, TLQ"01/,01,Q"= 0,
TJLQY=0. HenceT = TJ,0),0 = T,@ iff thereisan Q such that
the equations of (25) are satisfied. In case of a regular realization
of © there always exists such an Q. This provesthetheorem. O

(25)

We have defined the input and output signature matrices J; and J,
for a chain scattering operator. In general, their entries are time-
varying and the relation between J; and J, can not be given by a
simple expression. But in some specia cases, J; and J, are explic-
itly related. Let us consider the relation of J; and J, in a specia
case which isrelated to the problem we deal with.

Let a chain scattering operator T J /. The factorization we are
interested inis T = To® with T, outer, © (Jp, J1)-lossess and up-

" On Op
per. Let © be partitioned as [ On O
Because © is upper, © is upper. On the other hand, the cor-
responding scattering operator, £, is lossdess. Thus ©,3 must be
upper aswell. Let {Ag,Bo,Co, Do} be aredization of ©. Sup-
Du D2
D21 D2
ing of ®. Since both ® and @5% are upper, Dy, isinvertible.
The invertibility of Doy implies that every entry of Dy, isinvert-
ible and thus square. The dimensions of the negative part of J; and
J» which correspond to the row and column dimensionsof Dy, are

] with ©,, invertible.

pose Dg is partitioned as ] following the partition-

thus equal to each other. This equality in addition with the condi-
tion that the dimension of the output is pointwise greater than or

equal to the dimension of theinput impliesthat jo; = [ I j ]
1
fori=...,-1,0,...Inthe global notation, we denote thisas J, =
[ ! 3 ] For the rest of the paper we assume that this relation
1

holds. Note that then J; in the proof of Theorem 4.2 equals the
identity operator.

Let © O U be a (I, )-isometric operator. Then Ko(©) =
Ko(©)0Ky(©), where Ko(©) = U0, and Ky = ker(.0%,,) =
{X OUp,xO"= 0}, and Ko(©) O Ho(O) = Up. Let T O U bean
operator with port signature matrices (J;, J,). If wefind a ® such
that Ko(©) = UsTJy, then U; T, = U0J,. We then have the fol -

lowing proposition.

Proposition 4.3 Let T 0/ bean operator with port signature ma-
trices (Ji1,J). Let © be a (Jp,J;)-isometric operator such that
Ko(©) = UzTd,. Then, Ho(©) LTI O H(T).
Proof: Since K;(@) =UsTh =U0D,,

U 0T T, = U O U203, = Ho(@) DK, (26)

where Ko (©) = ker(.0%,,) and hence, /2T, OHo(©) O K. For
any X 0 [Ho(©) 0 Kold, Po(2TX") = 0. So that XTO 0 £,Z27L.
Together with 24,0, O ker (.0%,) 0 Ho(©) = Uy we have:

(Ho(@) DKo)L = {x Dl xT°0 L2} (27)
From the definition of 7£(T) We_have: XTD'XE[WO(G)DKZ] 5 U
H(T) OH(T), whichimpliesthat T, (©) LT 0 H(T) m

Let T O bean operator with port signature matrices (Ji, J;). De-
finea (J, J;)-isometric operator © such that K (©) = U, TJ,. Let
Eo be a Jorthonormal basis representation of H,(0): Ho(O) =
D,E, and let F be a basis representation of 7(T). Because
Ho(©)LTH O H(T), we must have Eol,TY = XF for some
bounded diagonal operator X which plays an instrumental rolein
the derivation of a state realization of ©.

Suppose that EoJ, has a component in K, so that DEoJ, 0 K, for
some D [ D,. Since K, = ker(.0%,) = ker(.TH,) (T9= ©TF
and ker(.T}) = 0), we have

DEokT e, g0k = DXFlpg, g, = 0 s0 that D [ ker(.X).

Hence H,(©) = D,E, can be described as the largest subspace
D2E, (and then Ho(©)J, = D2EqJ,; is aso the largest subspace)
for which: EoJ;T" = XF with ker(.X) = 0. The two conditions
EoJ T"= XF andker (.X) = Oinadditionwith the J- osslessnesde-
finearealization of aJlossless© suchthat i/5TJ, = 4/o0J,. Then,
according to Theorem 4.2, the factorization T = To©, where T, is
outer and O (J,, J;)-lossless, exists.

Proposition 4.4 Let T [0 U be a locally finite transfer operator

with port signature matrices (J1, J2) such that J, = and

J

a uniformly reachablerealization{ A, B,C, D} suchthat /4 < 1and
(THLTH ! exists. T has afactorization T = T,0, where T, isin-
vertible and outer, and © O ¥/ is (J,, J1)-losslessiff thereisa pair



{Ao,Co} which correspondsto a J-orthonormal basis representa-
tion of Ho(®), the output state space of ©, with fa, < 1, and a
diagonal operator X such that the following conditions are satis-
fied, ‘

(i) AoX' 1JAD+ CodC'=

(ii) Ao X"YB 4+ CoJ,D" = o

(iii) AoAg +CoXCq = |

(iv)Ker(.X) =0

If such an X exists, it isunique up to a left diagonal unitary factor,
i.e, XBX isunique.

Proof: Let F = (I-z"AY)™1zBYand F, = (I -AZ)™C. Suppose

that a pair { Ae,Co} and adiagonal operator X fqui'IIing (1) = (iii)
existand let EoJp = (1 —AoZ) 1CoJp, we have thefollowing equa-
tions:

Eok Cod2+AoZEo) (28)
ZF = BY+AF (29)
TY = DY+CF (30)

As analyzed before, T has a factorization T = T,® with T, outer
and O (J,,J;)-lossless, iff the conditions that EqJ, T™ = XF with
Ker(.X) = 0and © (J,,J;)-lossless are satisfied. Uniform reacha-
bility impliesthat H(T) = D,F. According to Proposition 4.3, we
need to find a (J, Jl)—losl&ss operator © such that 7‘1{_0(Q)JZTD O
H(T). That isEod,TY = XF for some bounded X 0 D. Because
FOLZ™ Ppz1(EodTH) = XF. With P,-1(EoJ,TH) = XF
and equatlon (29), Pp,7-1(ZXF) = XCUP, 4 (ZF) = XUVATF,
On the other hand

AoPr,7-1(ZEeR T = Prz1([AeZEod]TY)

= Pg,7-1(EodT) =Pz-1(CodTH) = XF-CoJ,CF

Since P.,;-1(ZEokTY) = P.,-1(ZXF), we have AgXHATF =
XF — CoJlCF. The uniform reachability yields AgX("DAD +
CoJCP= X, i.e., condition (i).

Condition (ii) is derived from the condition that EobTH=
£,Z7* asfollows

Po(EoJ2TH) = CodD"+ AePo(ZEoJLTH) =

C@JZDD+ AgPy(ZXF) = CoJD"+ AoX("UB =0
Condition (iii) is given by the fact that EqJ, isaJ-orthonormal ba-
sis representation of the output state space of a J-lossless operator
and condition (iv) has been derived before.
Conversely, if the conditions (i) — (iv) are satisfied, then the con-
ditions for the existence of the outer—(J;, J»)-lossless factorization
T = ToO are satisfied. Substitution of the conditions (i) — (i) into
EoJo THyieldsthat EqJ, ™= XF and that the conditions (iii) — (iv)
are the samein both directions.
With the same strategy given by Theorem 3.28in[4] we can prove
that .Hf = Po(.F5)F. Hence P, ;-1(Eol,TY) = Po(EokFg)F.
Since T is uniformly reachable, X = Po(EoJoF5). XX isobtained
as.

XF O

XX = Po(FohES)Po(EodaFL) = Po(Po(Fod2EL) EoJoF5)
= Po(P2(Fo)JF5) (P2(.) = Po(-LES)Eo)
Thisimpliesthat X=X is unique. O

In order to obtain X in aunigque manner, we can choose X at every
step to bein an upper triangular form with all its diagonal entries
positive. If we have found X such that the conditions (i) — (iv) are
satisfied, then we have the pair { Ag,Co} which corresponds to a

realization of a (Jp,J;)-lossless operator ©. Embedding { Ao, Co}
with { Bo, D@} such that,
Ao Co1"_TI
= 3

[9 6][| ] o Yo
Bo D Jo Bo D
Ji. With T =

then, © = Dg + BoZ (1 —AgZ)™*Co and 01,0 =
To®©, the outer operator To is derived as follows
To=TX0"% = DLDZJ +BZ(1 -AZ)*CLDg 1+
TLCo(1-Z"A5) 1ZEBDJ1
After rewriting the third term of the above equation we get
TXLCo(1-Z"A3)12BgJ =
BX(-UUBZJ; 4+ BZ(1 -AZ)*AX(VEBF ;.
By substituting into (31) we obtain the reallzanon of T, given by
o _ [ AI1C%RDExH + AXD0BZ 32)
°~ | B|DXDgJ;+BXBZy
Theinvertibility of T, followsfrom condition of theinvertibility of
TJLTH

(31)

If we rewrite the above results together with a special case of
Lemma5.16 in [4] in an algorithm, a problem that remainsis the
initialization of X. For afinite operator the dimension of the states
after time instant O is zero, i.e., Xo = [.]. For a system which is
time-varying until time-instant O, and time invariant after timein-
stant O, the initial condition is determined by the solution of the
time invariant system. For a periodic system, the initial condition
is determined by the solution of the equivalent time invariant sys-
tem within one period. The time invariant system solution can be
obtained from an analysis of the eigen space of a corresponding
Riccati equation. Seee.g. [5].

5 Concluding remarks

In this paper we have treated the outer-J-lossless factorization of
a linear discrete time-varying system mostly in an operator set-
ting, i.e., thecharacterizationisgiven intermsof Lyapunov-type of
equations. The proposed strategy can be used as atool for the de-
velopment of a solution to the Ho, control problem. This has been
donein [10].
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