Time-Varying System Theory for Computational Networks

Alle-Janvan der Veenand Patrick Dewilde

Many computationaschemesdn LinearAlgebracanbestudiedfrom thepoint of view of Time-
Varying Linear Systemstheory This approachnot only putsa variety of resultsin a unified
framework, but also generatesnew and unexpectedresults such as strong approximations
of operatorsor matricesby computationahetworksof low complexity and the embedding
of contractiveoperationsin orthogonalcomputations.In the presentpaperwe developthe
requiredTime-Varying SystemTheoryin a systematicway, and derive a Kroneckeror Ho-
Kalmantype realizationmethod.

1. INTRODUCTION

Considerthe computationsschematicallyrepresentedh figure 1. The unfoldedor expanded
versionis shownin fig. 1(a). At eachinstantof time thecomputatiortakesin someinputdata
from aninput sequencé) andcomputesnew outputdatawhich is partof the outputsequence
Y generatedby the processar To executethe computation,the processomwill use some
remainderof its pasthistory know as the state,which it had temporarilystoredin registers
indicatedby the symbolZ. We shall limit ourselvesto the casewherethe computationsare
indeedlinear — althoughit will becomeclearthatthe theorycriesfor extensions.

Characteristidor the computationf a reallife systemis thatit canuseonly a finite amount
of dataat any giventime in its history. This theneasilyleadsto a recursivemodel,which is
obtainedby folding the computationandfeedingbackthe state. This computationamodelis
graspedmathematicallyby introducinga statesequenceX with entriesX;, which are vector
guantities(the dimensionof eachvectorequalsthe numberof statevariablesandneednot be
constanin time). At time instanti, the mappingfrom the currentinput andstateto the output
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Figure 1. Time-varying state spacerepresentations(a) fully expandednetwork, (b) time-
varying network, (c) compactrepresentationvith diagonaloperators.

andnext stateis a linear “memoryless’mapping,T; say suchthat[ X1 Y] =[X Ui]T;i,
or written more explicitly,

X1 = XA + UB T = A Ci]

Yi = XG + UD I B Di|°
It is thus possibleto associatawvith the fully expandechetworkin figure 1(a) a time-varying
network, depictedin fig. 1(b), in which the parameterf the mappingcan be changedat
eachtime instant. This is the conventionalway in which time-varyingnetworksare treated.
We will, instead,pursuewhat we will call a network descriptioncorrespondingdo fig. 1(c),
in which the networkoperatesn the full sequence$) and X, andproduceghe outputY and
next stateXZ?, where

X = |- X4 @ Xy Xo  o---
XZt = [ X @ Xo Xg -] .

This definesZ asthe right-shift operatorfor sequencesit is thus possibleto write the state
spacedescriptionas

XZt = XA+UB c-[AC

Y = XC+UD B D

suchthatA =diad--- A m A; ---] is adiagonalthat operateson the sequenceX
asa direct (“instantaneous”jnultiplicator. B, C, D aredefinedlikewise. In effect, figure 1(c)
providesa compactoperatomotationfor the samecomputationsasin figure 1(a/b), anduses
only multiplicationsby diagonalsandthe shift operator

The purposeof the computationalschemedefinedso far is usually to perform a desired
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transformationon the input sequencdJ with the output sequenceY as the result. Because
of causality(we assumethat seriesare representedby rows and that operatorsact from left
to right), sucha transformatiorwill be representedy what we call an “upper’ operatorT.
An attractive(and physical) mathematicaframeworkis obtainedif the input sequencesre
constrainedo havefinite enegy, and T to be a boundedoperatoron suchsequencesHence
we focuson boundedupperoperatoramapping/,-sequences) to /,-sequencey via

Y=UT.

With U = [--- Uy [Up| U U, -], andY likewise, we will identify T with its
(doubly-infinite) matrix representation

Ta-1 Tao T-11 Taa2

T-= Too| Tor To2
Tir T2

0 Too

(The squareidentifiesthe 00-th entry of the matrix.) If T is viewed as the transferoperator
of a non-stationarycausallinear systemwith input U and correspondingputput Y then the
i-th row of T correspondso the impulseresponsef the systemwhenexcitedat time instant
i. For time-invariantsystems,all elementson the diagonalsof T are the same,and T is
said to have a Toeplitz structure. In the time-invariantcaseoften more is known aboutT
than just an operatorrepresentationnamelya descriptionas rational transferfunction or an
equivalentstatespacedescription.This thenallows to performapplicationsof T with afinite
numberof operations.It is the purposeof this paperto study thesekinds of representations
for time-varyingsystems.

The connectionbetweenthe I/0O operatorT : Y = UT and the statespacedescriptionfollows
from the expansion

Y=UD+UBZC+UB(ZA ZC+UB(ZA) (ZA) ZC+- - -
andcanbe written as
T=D+B(I-zZA1'ZzC.

providedthe inversein the formulais meaningful. As in the time-invariantcase,one might
wonderconverselywhetherthereexists,for a given transferoperatorT, a statespacerealiza-
tion T thatrealizesthe sametransfer yet hasthis advantageo be finitely computable.This
guestionis known asthe identificationproblem,andwill be thetopic of this paper A related
problemis the modelreductionproblem,in which to a given T an approximatingstatespace
descriptionof low complexityis pursued. Sincethe numberof statevariablesneednot be
constantin time, but canincreaseandshrink, it is seenthatin this respectthe time-varying
realizationtheoryis muchricher, andthat the approximationaccuracycan be variedin time
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Figure 2. Overviewof the cascadesynthesigoroblem

atwill. It is alsopossibleto choosethe numberof statevariablesto be zerooutsidea region
of interestin time, andto incorporaten this way uppertriangularmatricesof finite sizeinto
the time-varyingcontext.

Context

The presentpaperis basedon the researchpublishedin [1, 2, 3, 4], in which the theory
of a generalizationof the ztransformfor uppernon-commutativeoperators,called the W-
transform,was developedand the interpolatingpropertiesof losslesstime-varying(or non-
stationary)systemsrepresentedy theseoperatorswas investigated. Most notationin the
presentpaperis adoptedirom thesepapersalthoughit is generalizedo furnishtime-varying
statedimensions.

Startingin the 1950 (or evenearlier),time-varyingnetwork and statespacetheory and ex-
tensionsof importantsystemtheoreticnotionsto the time varying casehavebeendiscussed
by many authors. While most of the early work is on time-continuoudinear systemsand
differental equationswith time-varyingcoeficients (seee.g.,[5] for a 1960 survey),time-
discretesystemshave gradually comeinto favor. Someimportantmore recentapproaches
that parallelthe statespacerealizationpart of the presentpaperare the monographby Fein-
tuch/Saek$6], in which a Hilbert resolutionspacesettingis taken,andrecentwork by Kamen
et al.[7, 8], wheretime varying systemsare put into an algebraicframeworkof polynomial
rings. However manyresultsin particularon controllability, detectability stabilizability etc.
have beendiscussedy many authorswithout using thesespecializedmathematicaimneans
(seee.g., Anderson/Moorg9] andreferencegherein),by time-indexingthe statespacema-
trices {A,B,C,D} andderiving expressiongiterations)in termsof thesematrices. Thereis
usually a one-to-onecorrespondenceetweentheseexpressionsand their equivalentin our
notation.

A Tour of the Results

The resultsobtainedso far are depictedin Fig. 2 andsummarizedelow The presentpaper
dealswith item 1. Item 2 hasbeenpublishedin [10], while item 3 will be the subjectof a
separatdreatmentstill to be published.
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Figure 3. Cascadeealizationof the losslessembedding.

1. Identification. Properdefinitionsof shift-invariantinput and outputstatespacef the
systemT are possible.By selectinga (strong)basisin either of thesespacesminimal
{A,B,C,D}-realizationscan be computed. In addition, thesespacesdefinea Hankel
operatorthat mapsthe input state spaceto the output statespace. We shall prove a
Kronecker[11] or Ho-Kalman[12] type theoremwhich showsthat the systemorder
is equalto the rank of the Hankel operator Moreover a diagonalexpansionof the
Hankeloperatorevealsits relationto the givendatain T, which will in turnleadto an
identificationschemehat hasa closeresemblancéo subspacédentificationtechniques
for time-invariantsystemsandthatcanalsobe usedto find solutionsto modelreduction
problemsat a later stage.

2. Embedding. If T correspondso a systemthatis inner(respect.J-inner),thenselecting
a (J)-orthogonalbasisin eitherthe input or outputstatespacewill yield an orthogonal
(or losslessyealization. If, on the otherhand,the givenT is not inner but contractive,
we showthata realizationof T canbe extended by addingan extrainput and output,
andsupplementingtatesvhereneededjo yield anorthogonatealizationthat“embeds”
the given systemin the sensethat T will be the transferoperatorfrom oneinputto one
outputif the otherinputsareputto zero.

3. Factorization. Finally, it is possibleto factoran orthogonaimultiportrealizationmatrix
into a minimal numberof elementary(2 x 2) orthogonaloperations.Correspondingo
this factorizationis a networkstructurethat consistsof a cascadef elementaryossless
sections,asin figure 3. In this figure, the embeddedransferoperatorT is the transfer
from input U; to outputY,, whenthe extrainput U, is zero.

2. NOTATION, SETTING AND MATHEMA TICAL PRELIMINARIES

Spaces

We considera generalizatiorof /, sequences

X=1]--- X4 W Xy -],

in which eachof the entriesX; is an elementof a (row) vector spaceC™, with varying
dimensionsN; O N, and suchthat the total enegy || X||3 = %, || X ||3 is bounded. In
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the aboveexpressionthe squareidentifiesthe position of the 0-th entry. We denotethe set
(Z - N) of index sequencedy 7, andwith N [ Z say that the aboveX is an elementof
6,(CM), or CY for brevity. We adoptthe shorthand'.n” for the index sequenceN with all N;
equalto n. Hence,e.g.,C;' is the setof the usuall, sequences.

Let N,P O Z. Following [1], we denoteby X (CN,CP) the classof boundedoperators
(C) — €Y. E.g., a systemtransferoperatorwith n; input ports and n, output ports is
an operatorin X(V°1,P1), with ¥ = C™ and P = C™. An operatorA O X (C",c")
may be representedy a doubly infinite matrix with entriesA; : CV% - CY, and may as
well be representedby the shorthandAnxe. For example,with N =[--- 1|32 ---] and
P=[--- 2[1]3 ---], X O CY will havethe form

X:[--- O Qoo oo

andA O x(Cc",cP)

>

1
0Oo ooo g ---
DO Oboo O
0O O0oo O
0o Oooo 4d ...
00 O0oo Od
0O O0oo O

wherein this caseeachbox representa complexnumber We think of A asactingon row
inputs and producingrow outputs. The i-th row of A will bein £,(CY, C”) = (CH)N andwill
beboundedoy || A||. Theconversds certainlynottrue,ascanbe seernwhenA is Toeplitzand
uppertriangular for in that caseA will correspondo a classical/, system,andboundedness
in ¢, of the impulseresponsas known not to be a sufiicient condition for boundednessf
the systemtransferoperator

Shifts and Constructors

For everyindex sequenceN [0 7, N = [ N-g | No| N - | weindicatethe k-th
shift by

NK = [ Ny ‘ N

N_ys1 ] _
We will usethe shorthandX* for X®, andlikewise X~ = X1,
We definethe shift operatorZ : €N - CV as

(X2)i = Xi-1.

The shift operatoris of coursebounded.It is evenunitary, meaningthat Zyxn+ (Z9)n+xn = Insns
and (ZO)nexnZnxn = Inexne. We denoteby ZI the k-timesrepeatedapplicationof Z:

ZM = Znanr Znexn - -+ Ziteno -



(Notethatformally Z* is not well definedbecauselimensionsio not match. Nonethelesswe
will in the next sectionsusually suppresslimensioninformationin formulasand just write
Zk whenwe meanzZl¥.) The entriesz; of Z satisfy
Zi = lnxn j=i+1,
=0 otherwise

andhenceZ canbe picturedasthe infinite size matrix

O I N-1XN-1 O
m I NgxN
7 = Y] 0xNo
0 |N1XN1
0 0

Following [1], we definethe operators

7 uOc® . focy {:IOZ(‘)J 40

with adjoint
m: focN uoc™ : u=f,.

For theentry (i, j) of the matrix representationf an operatorA we may write
Ay = 720 Az,

anddefinean operatorsz’ = 7#Z11 to selectthe i-th row of its operantaccordingly Next, we
definethe k-th diagonalshift on A O X' (C,C") by

AW = ZOKAAK

which will bein x(C\,cP”). We adopt,aswith index sets, the shorthandA* for A¢D, A-
for ACD. Hence( A" )ij = Ai—1j1.

Spacesfor Upper, Lower and Diagonal Operators

As in [1] we definesubsetof upper lower anddiagonaloperatorsn X" as

U = {AOX: Aj=0,i>j}
£ = {AOX: A=0i<j}
D =UnL.
ForA D, “A” will serveasshorthandor the entry A;;, andwe shall write
A=diag|--- Ay [A| A | =diagA).
Let A X. We definethej-th diagonalA;; O D of A by
(Ap); = A -



HenceAy is the maindiagonalof the operatorA, andfor positivej, Ay is thej-th subdiagonal
aboveAy;. With this notation,A canformally be written in termsof its diagonalsas

A= Ay,
j=—0
althoughthis expressiomneednot convege at all. A classof operatorsthat do allow this

representatiomre the Hilbert-Schmid operatorq1]:
X ={ADX: [|Als= 2 |A]Z < oo}
lJ

alongwith inner product(A, B) = trac§AB"), andnorm || A||3s = (A,A) = tracdAAD).
A subsetH in X is aleft D-invariantsubspacen A if
AOH,BOH 0O DiA+D:BUOH all D1, 0D.

We candefineorthogonabprojectorsP, ontothesesubspacesccordingo the naturalHilbert-
Schmidtmetric. Standardsubspacesire

U, = UnN A,
»CZ = Ln Xo
D, = ,Cz N U,
andstandardprojectorsthat go with thesespacesarePy = Pp, andP = Py,:
Po . )(’2 — DZ . Po(A) = A[o] v
P: X - Uy P(A) = 522 ZVAy .

It is a fundamentafact (and provenin [1]) that
Xo =L, 0 D, 0 UZ,

where”[1” indicatesorthogonalcompositionof spaces.

Diagonal Inner Product

For A, B O X5, definethe “diagonal” or “brace” inner product{A,B} as

{A,B} = Po(AB")
It follows that, with A, B 0 X3, {A,B} O D,, andthat (A,B) = tracd A,B}. In particular we
havethat

A=0 - (AA=0 - {AA}=0

Di(AB)D,=0 (allD;,0D) = {AB}=0

sothatorthogonalityof left D-invariantsubspacess the samein eachof theseinner products.
The observatiorthat the diagonalinner productdoesnot rendera single numberbut rathera
full diagonalof rowwiseinnerproductswill be usefulin the determinatiorof projectionsonto

subspaces.The aboveexpressionshow that two left D-invariant subspacesre orthogonal
iff they are orthogonalrowwise.



Basis Representationsof Subspaces

Let H bealeft D-invariantsubspacén .t,. Becausef theleft D-invariance H falls naturally
apartinto “slices” ‘H; = #'H. Eachsuch’; is an ordinary subspaceén ¢,. If eachof these
subspacess finite dimensional say dim(;) = N;, thenwe shall saythat H is of local finite
dimension.EachH; hasa finite orthonormalbasis{ (¢i)1, - -+ , (G)n }, With (g)x O 2, and
henceis generatedy a sequence), 0 /,(C") whoserows arethe ()« (k= 1--- N;), such
that

H,={D;Q,: D;OC™N},
andQ;Q = Iyxy. Stackthe Q; to arrive at an operatorQ whosei-th row 7Q is Q;. This
Q is not necessarilya bounded(X, — X3) operatoy but with domainrestrictedto D it is a
boundedbperatoiin (D, — ) — in fact, anisometry— with rangeH: H = D,(C*, CV) .
In addition,Q is orthonormalin the sensethat Aq := Po(QQ") = Inxn.
(Remark.SinceQ neednot be a boundedY, operatoy butis knownto be a bounded D, -
X,)-operatoy the value of an expressiorlike Po(QQ") shouldbe interpretedas Po(DQQ") =
DP,(QQY), for all D O D,. Technicallyspeakinghe “Py” in Po(QQ") could be droppedas
Q": X, — D, already but thenthe notationwould leadto confusionand not be compatile
with the previouscasesgspeciallysincethe domainof Q canbe extended.In this respect|f
X 0 X, thenthe productXQV is interpretedas XQ" = 5~ ZIM Py(Zz*XQY), which is compatible
with the usualdefinitionwhenQ [0 X'.)
The aboveconstructionis summarizedn the following proposition:

Proposition 1. If a left D-invariant subspaceH in X’; hasfinite local dimensionN [ Z, then
there existsan operator Q, boundedin (D,(C*, C") - X3), with Ng = Po(QQY =1, such
that

H=D,(C* CcY) M.

Q is said to be an orthonormalbasisrepresentatiorof .

More generally let F be a bounded(D, - A5)-operatorsuchthat
H =D,(C*,CY) Fet,

andAr = Po(FFY) O D(C", €V) is uniformly positive(meaninghatAr is boundedlyinvertible
as well; we write Ar > 0). Then also F generatesH and is said to be a strong basis
representatiorof H. A Gram-Schmidiorthogonalizatioron eachof the rows F; will yield
F = RQ, whereQ is an orthonormalbasisrepresentatiorof H, and R O D(CY,C") is a
boundedlyinvertible positive factor of A, since/Ar = Po( FFY) = Po(RQ Q'RY) = RR’>> 0.

Projection onto Subspaces

Lemma 2. If H is a subspacan x>, generatedby an orthonormalbasisrepresentationQ,
then (for X 00 A7),

XOH - Po(XQY = 0.



PROOF Any Y in H canbe written asY = DQ, for someD O D,. ThenXOY < {X,Y} =
Po( XY?) = 0, and Po( XYY = Po( XQ"DY) = Po(XQD) DY. Sincethis is 0 for all D in Dy, it
follows that Po( XQY) = 0.

Lemma 3. Let H be a left D-invariant subspacen X, generatedby an orthonormalbasis
representatiorQ. Theprojectionof any X [0 X, ontoH is givenby
Px(X)=DQ,
with D = Po(XQP).
PROOF An operatorP is a projectoronto a subspacé- if it is idempotent:PP = P, and if

its rangeis H. This lastrequiremenis true becausePy (X) = D Q, with D = Po(XQ") O D5,
andall elementsan D, canbe reachedhis way.

Py is idempotent:if X [0 H, thenPx(X) = X. Indeed,by propositionl, X = D;Q for some
D, O X,, sinceQ is a basis. In fact D; is equalto Po(XQY): Po(XQY = Po(D:QQY =
D:Po(QQ") = Dy, hencePy(X) =DQ =D;Q = X.
Finally, the projectoris orthogonal:if X 0 X’,, then X — Px(X) O H" because

Po (X=Po(XQ9Q) Q") = Po(XQD) —Po (Po(XQY) QY
Po(XQ") = Po(XQ") Po(QQ")
Po(XQ") - Po(XQ") =0.

If F is astrongbasisrepresentatioigeneratingH, then
Pr(X) = Po(XF) A F

is alsoa projectiononto H. This can be derivedfrom the orthogonalprojectionby putting
F = RQ, where/Ar = RR' mustbe boundedlyinvertible.

3. NERODE STATE SPACE DEFINITIONS

Let be given a boundedlinear causaltime-varyingsystemwith n; input portsandng output
ports,andwith transferoperatoiT in 2/(N 1, P'1), where NV = C™ andP = C™. Wewill derive
a statespacedescriptionfor T, i.e., somerepresentationf T suchthatwhenu O ¢,(C*, A1)
is aninput sequencandy = uT is its correspondingutput, we canrecoverany entryyy of y
from knowledgeof ux anda compact(state)representatioof { u; : i <k-1}, the“past” of u
with respecto instantk. It is of coursenot enoughto consideronly onepair u,y andhopeto
recovera statespacedescriptionfrom it, or to consideronly onetime instantk. Oneapproach
is to let u rangeoverall /,, andto considey for eachtime instant,the relationbetweeninputs
applieduntil instantk — 1 (i.e., the projectionof /¢, onto this subspacepnd corresponding
outputsfrom instantk on (the projectionof y onto “the future”). This is akin to a Hilbert
resolutionspaceapproachandis describedn detailin a monograpton time-varyingsystem
theoryby FeintuchandSaekg6]. The approachwe takehereis (necessarilystronglyrelated
to this resolutionmethod,yet hasa few additionalmerits.
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We considerinputs and correspondingoutputsas elementsof X, i.e., an infinite collection
of /, input sequencesuchthat the enegy (Hilbert-Schmidtnorm) of the total collectionis
bounded. Sincethe operatorsin X, admit a decompositioninto diagonals,and projections
onto £,Z! andif, or evenif,Z arewell defined,we avoid muchof the problemsof causality
and strict causalityto which a major part of [6] is devoted. A secondadvantages that, in
orderto arrive at a statespacedescription,it is enoughto considerthe effect of inputsin
L,Z7 (the“past”) ontothe projectiononto/, (thefuture part) of their correspondingutputs,
i.e., to studyoperatorsP(UT) : U O £,Z2. In this way, the notion of time is avoidedalmost
completely and as a consequencéhe use of indicesrepresentingime is often not needed.
The resultingtheoryis elegantandin a naturalway almostlooks like a time invarianttheory
with non-commutativeperators.

Let begivenaboundedinearcausatime-varyingsystemwith transferoperatoiT in 2/ (N1, PY),
for A/, P somefinite-dimensionaHilbert spaces.Define the Hankel operatorH+ associated
to T to be

Hr : L2270 -~ Uy : UHr=PUT)
We considerthe effect of inputsin £,Z* onto outputsin 4, i.e., we study the rangeand
kernelof the operatorsHy and HY.
We say that an input U; is Nerode equivalentto U,, U; S U,, for U, O L£Z7, if
P((Up-UyT) = 0. Accordingly, U L 0if U O £,Z* and P(UT) =0, i.e.,, if U isin
the kernelof Hy. DefineM = {U: U X 0} = {U O £,Z*: P(UT) = 0}. M is calledthe
input null space.lt is a left D-invariantsubspacen £,Z*. Denotethe complemenbf M in
L>Z71 by ‘H (calledthe input statespace):

L,Zh=H O M.
Definethe naturaloutputspaceH, in U, to be the rangeof the operatorH+:

Ho={P(UT): U O L,Z1}.
'Ho is the left D-invariantsubspace&ontainingthe projectionin I/, of all outputsof the system
that canbe generatedrom inputsin £,Z. Denotethe complemenbf Hq in i/, by Mo:

Z/{Z = Ho ] Mo
From thesedefinitions,the relations

P(L,Z1T) P(HT) + P(MT)
= P(HT)
= Ho,
follow immediately and with slightly morework,
PrzalzT) = Prza(HoTH) + Prza(MoTH
Pﬁzz—l(/}'{oTED
= H.
The following shift invariancepropertiesare fundamentafrom the definitionsof the above
11



subspaces.

Theorem 4. The spacesH, M, Hy, Mo are left D-invariant subspacesatisfyingthe shift-
invarianceproperties:

ZiM O M ZMo O Mo

RH 0O H RHo O Ho
in which the restrictedshift operator R’ is definedby R'U = P,74(ZU) = ZU — Py(ZU) (for
U O £,Z7), and R on U, definedby RY = P(ZY),
PROOF

1. ZIM O M. If UO M, sothatP(UT) =0, thenUT O £,Z%, from which it follows
that Z1UT O £,Z7 also,and P(Z*UT) = 0.

2. R"H O 'H. This is a consequencef the shift invarianceof M in the following way.
If U O H, thenP,,z4(ZU) O £,Z by definition, and P,,z4(ZU) O M becausefor
all X O M, {P;,71(ZV), X} = {ZU, X} - {Py(ZV), X} = {U, Z1X}D. Since M is
shift-invariant,z*X 0 M, and {R'U, X} = 0.

3. RHO O HoZ

P(Z M) {P(Z*P(UT)) 1 U D £,Z7}
= {P(Z1UT):UDOL,Z1)

U Ho,

becaus&z?U O £,Z72.

4. ZMy OO My. SinceZMq O ZU, O U,, we only haveto prove that ZMg [0 Ho. For
anyY 0 Mo, X O Ho,

(ZY, X} = Po(ZYX)
Po ((YDX)YZ) = Po(Y IXZ)D

1Y, ZAX)ED = (Y, Z3HX - X) }D.

Useis madeof the fact thatZDZ = DY, Hy is left Z2-invariant: Z2(X = Xq) O Ho.
Hence,sinceY O Hy, {ZY, X} = 0. |

4. CANONICAL STATE SPACE REALIZA TIONS

Let T be a given boundedinear causaltime-varyingsystemtransferoperatorin /(N %, P1),
andassumehatits shift-invariantinput/outputstateand null spacesH, Ho, M and M,, are
known. H is suchthat P(£,ZT) = P(HT), hencethe effect of any input in the past(£,Z?)
onto the future outputin U/, is equivalentlydescribedby a (unique) representativeelement
X of 'H, calledthe state. The pointis that H is assumedo be a much smallerdimensional
spacethan £,Z7, sothatthe stateindeed“summarizes’the pastinput. A refinementf these

12



observationgeadsto the constructiorof a operatorstatespacemodel,in a way thatis already
familiar from a numberof othercontextsaswell. By choosinga basisin eithertheinput state
spaceor the outputstatespace the desiredresult,a minimal statespacerealizationinvolving

only diagonaloperatorsjs obtained.

4.1.“Canonical Controller” State SpaceRealization

ForagiveninputU in &% andinstantk, definethe pastinput Uy (with respecto instantk)
to be U_ = P.,z1(Z*U). Definethe stateXx 0 H at instantk to be the projectionof the
pastinput onto H: Xy = PH(U_(k)) = PH(Z_kU) 0 L£,Z72

Theorem 5. Given a boundedsystemtransfer operator T 0 Z/(N*%,P'1) with input state
space’H, then with the abovedefinition of Xy O H, we have the “operator state space”
realization

Y=UT OO l Xier = XA +UpgB

XC + U[k]D
whee A, B, C, D are boundedoperatorssatisfying
[ A C ] _ [ Pr(Z'D) Po(T) ]
B D Pr(Z') Po(M) |
ProoF RecallthatsinceU_g O £,Z?1 ="H O M, andPo(MT) = 0 by definition of M, we
havePo( U_(k)T) = PO ( PH(U_(k)) T+ PM(U_(k)) T) = Po(XkT).
1.Y=UT < Yy =Po(Z*Y)

= Po( Z*UT)
=Po(U-T) + Po(UyT)
= Po( XkT) + U[k] PoT.

=<
=
|

2. X1 = Pr(U—(s1))
= PH(Z""1U )
=Py(Z U + 2y )
= Py ( ZWPy(U-9) + ZPum(U-) ) + Pr(Z'U)

= PH( Z‘1Xk ) + PH( Z‘1U[k] ) ,
wherein making the last stepthe fact is usedthat M is shift-invariant(Ztm O M)
andthatH O M. O

It is clearthat|| A || < 1, andthatif thereexistsanX O H suchthatZX O H, then||A || = 1.
Let r(A) denotethe spectralradiusof A:

r(A) = lim || A" [[*"
Since|| A || < 1 we havethatr(A) < 1 also.

The abovestatespacedescriptionin termsof operatorss not yet very useful. By choosingan
orthogonalbasisQ in H, it is possibleto “precompute”the effect of the operatorsA, B and
T on Q, andarrive at a statespacedescriptionwith diagonaloperatorsA,B,C,D only. This

13



is demonstratedn the following theorem. Somecare mustbe takenif Q is an unbounded
operatoron X,. It canbe shownthatthis happen®only if r(A) = 1, andthatr(A) = 1 coincides
with /x = 1, wherela = r(ZA) is the spectralradiusof the operatorZA. NonethelessQ is

boundedasa (D, — A3) operatoy andthis propertyis sufficient to provethe theorem.

Theorem 6. Givena boundedsystentransferoperatorT O 2/(NV*1, P1), andassumehat the
input statespace™ of T is locally finite dimensional.Let N = dim(7), and let Q represent

an orthonormalN-dimensionabasisof H, suchthat Aq = Po(QQD =1I.
1. T admitsa statespacerealization

_ XZ1t = XA+UB
Y=ut HU Y = XC+UD '’ (1)
where
A=Py(QQzY) O p(ch,cY) C=Py(QT) O D(CN, Pl

B=Py(Q%z%) ODW-LcY) D=Py(T) ODWLPY.

2. Therealizationsatisfiesthe following relations:

Al =1,
QY = QYAZ+BZ @
T = Q«+D

A'A+BB = (3)

3. If {p =1(ZA) < 1, then

Q = [B1-zAZ @
T = D+B(I-2ZA)ZC

sothat Q is a boundedoperatorin £Z%, and X 0 X,(C*, CV).

PROOF
1. ExpandingX into its diagonals X = 5%, Z¥Xq, we will derivethe equivalentrelation

Xiel) = XA+ UyB

Y=UT OO
X C+UyD

=
=
|

ForagivenXy in H, it is possibleto write X in termsof the basisQ of H: Xy = X Q,
for someXyg O D,(C*, CN). Starting, for a certaink and X, with the realizationin
theorem5, write the new stateXy:1 as X1 = Xie1jQ. Then

Pr(Z'Up)
Po(Z'Upg QY)Q

Xie1 = Xpe1Q = Pr(Z2X4)
= Po(Z?XQ")Q
= Po(ZX1QQ")Q Po(Z U Q7)Q
= XigPol( Z*QQ"Q riq Po( Z*Q")Q
Xikep = Xig Po( Z'QQ") + Ujg Po( z1QY).
14
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Putting A* = Po(Z'QQ") and B* = Py(Z1QY), i.e., A = Py(QQ"z?) and B =
Po(Q"Z1), givesthe first part of the result. In the sameway, C = Po(QT) is derived
via

Po(XkT) = Po( Xy QT)
= Xy Po(QT).

. From the above formula we have that ||A]| = sup ||A|| = sup||QiQi,|| < 1 since
Q,Q-=1 for all i. Continuing,since

Po( XxQ")
Po(U-9Q")
Po(Z*UQ")

X

andX = 5" Z¥Xy, it follows that X = UQ". Combiningthis with the stateequationg(1)
yields

UQz* = UQ'A+UB
UT = UQC+UD '’
(for all U O &»), or
Qz* = Q'A+B
T = QTC+D

This proves(2). Equation(3) follows by usingthe expressioron Q" in the computation
of /\Q =1:

No = Po(QQ")
= Po([Z°AQ +ZB[Q"AZ+B2Z)
= Z'AP,(QQYAZ+ ZBBZ
= Z'"APAZ+Z7BBz =1

O A'A+BB = |

. Assuming{, < 1 so that (I - ZA) is bounded,equation(2) can be rewritten via
Q"= BZ(I - A2 into equation(4). This showsthat Q is a boundedoperatoy hence
X = UQ" is boundedn the Hilbert-Schmidtnorm. O

Definition 7. (Bounded State Equivalence) A realization {A;,B;,C;,D;} is said to be
boundedlystate-equivalento a given realization {A,B,C,D}, if there existsa boundedly
invertible statetransformationoperator R 0 D(C", CV), suchthat

R A

15



To seetherationalebehindthis definition, startwith the givenrealization

XZ1 XA+UB
Y XC+UD

and map X to an equivalentstate vector X; via X = X;R, with R a boundedlyinvertible
diagonaloperator Then

[ X;RZ! = X;RA + UB
Y = X;RC + UD

[ X;Zz1 = X;RAR™D + UBRD
Y = X;RC+ UD

[ Xzt = XA + UB;
i Y = X;C; + UDq

Theorem 8. Given a boundedsystemtransfer operator T [ 2/, and assumethat the input
statespaceH of T is finite dimensional.Let N = dim(7), and let F be the representatiorof
a strong N-dimensionaboundedbasisof H, suchthat A = Po(FF") > 0 and A < . Then
T admitsa statespacerealization

A = Po( FFTZ1) INZTY Cy=Po(FT)

By = Po( FiZ1) DNV D1 =Po(T)
and /,, < 1 andindependenbf the choiceof the strong basisin H. If /5, <1, then

FAR = [Bu(l-ZA)7Z|
T = Dy +By(l -ZA)ZC,

(5)

sothat F is a boundedoperatorin £z, and X 0 X,(C*,CV).

PrROOF The realizationfollows from theoremb in the sameway astherealizationin theorem
6 has beenderived, but now with the projector onto H written in termsof F: Py (D =
Po( (F) AZLF. (Restof proof omitted.) WhenF is written in termsof an orthonormalbasis
Q of H,

F=RQ

Ar = Po(FFY) = RR
(whereR O D(C,C") is a boundedlyinvertible positive factor of Ag), then the above
realizationon F canalso be derivedvia a statetransformationX — X;R of the realization
{A,B,C,D} onQ in theorem6, e.g.,

A =RARYD = RPy(QQZ1)RD
Po(RQQ'RZ1) RH-DRD
Po( FF'Z1) ALY
The otherrelationsmentionedin the theoremfollow from the applicationof this statetrans-
formationto the correspondingelationsin theorem6. Finally, thefactthat/ ,, is independent
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of the choiceof F (or of R), aslong asit is a strongbasis,is derivedfrom

IZAIM [ = | [ZRPARTY] |
= |[[RTD @A RTD |
= | RV [ZANREY |,
Forn - o andR,R™ both uniformly bounded,t follows that/s, = /a. O

4.2.“Canonical Observer’ State SpaceRealization

To obtainarealizationin the observerform, definethe stateXy to bein the outputstatespace
Ho: againwith U_(k) = Pczz-l(Z"‘U),

Xk = P(U_(k)T) O Ho .

Theorem 9. Givena boundedsystemtransfer operator T [1 2/ with output state spaceH,,
thenwith the abovedefinitionof Xy, we havethe “operator statespace” realization

X1 = XA+ UpB
v=ut HH lv[k] = XkC+UL;D
with
[A c] :[ P(Z D) Po([ﬂ]
B D P(Z100n)  Po(M)
PROOF

1. X1 = P(U-gaq) L)
= P( Pﬁzz—l(z_k_]'U) DT)
= P( [Z_lpﬁzz—l(z_ku) + Z‘1U[k] ] DT)

= P( Z‘1U_(k)T + Z‘1U[k]T)
=P( Z_1U_(k)T ) + P( Z_lu[k]T)
=P(ZP(UwT) + P(ZUyT)
= P( Z‘1Xk ) + P( Z‘1U[k]T) .

2. Y[k] = Po( Z_kUT)
=Po(U-T) + Po(UyT)
= Po(Xi) + UpgPo(T).
Theorem 10. Let be givena boundedsystemtransfer operator T [J 2/, and assumethat the
outputstatespaceH, of T is knownand of finite local dimension.Let N = dim(H,), and let

G representan orthogonalN-dimensionabasisof Hy, suchthat Po(GG") = 1.
1. A statespacerealizationof T is

XZ1 XA+UB

v=ur o Y = XC+UD ' ©)

whele

A=Py(GGZZ1) oD, cV) C=Py(G) ODCN,PY
B=Py(TGZ1) ODW-cV) D=Py(T) ODW"LPY.

17



2. Therealizationsatisfiesthe following relations:

Al =1,
G = C+AZG

7
T = BZG+D 0
AA"+CC =1, (8)

3. If {p =1(ZA) < 1, then

G=(- AZ)'1C (9)
T=D+B(l - ZA)_lzC,

sothat G is a boundedoperatorin ., and X 0 X,(C*,CV).

PROOF
1. ExpandingX into its diagonals X = 5%, Z¥Xq, we will derivethe equivalentrelation

XA+ U B

Y=UT oo Xﬁ]
- XiC+UyD

(10)

=<
=
|

The proof follows closelythat of theorem6. For a given Xy in Hg, put Xy = XiG, for
someXy O Do(C*, V). Then

X1 = X[k+1]G = P(Z_lxk) + P(Z_lu[k]T)
= Py (Z7X4) + Pyo(ZTUT)
= Pyo(ZXG) + Py (Z )

=Po(ZXGG )G + Po(ZUKTG")G
=X Po(Z?GG")G + UjyPo(Z*TG)G.

HenceA = Po(GG"Z1) andB = Po( TG"Z?). In the sameway,
Po(Xk) = Po(XG)
= Xy Po(G)
henceC = Py(G).

2. ||A]| = 1 follows asin theorem6. To showthatG = C + AZG, put Yig = P(U-T).
Thenon the one hand, Y,y = Xk = XiyG, on the other hand,it can be shown (using
(10)) that Y.y = XiqC+ XyAZG. HenceG = C+AZG. T = BZG+D thenfollows from
substitutingthis relation (in the form C = (I - A2)G) into equation(6):

XZ1
Y

XA+ UB
XC+UD

18



X(I - AZ) = UBZ
Y=X(I -A2G +UD

0 Y=U(BZG+D).

Finally, AA“+CC" = | follows by substitutingherelationG = C+AZG in the expression
NAcPo(GGH) = 1.

3. X O &, if ¢4 < 1 follows directly onceit hasbeenestablishedhat X = YG. The proof
of this propertyis dualto thatin theorem6 andis omitted here. 0o

Theorem 11. Givena boundedsystentransfer operator T [ /, and assumehat the output
state space’H, of T is finite dimensional. Let N = dim(H), and let Fo representa strong
N-dimensionabasis of H, suchthat Ag, = Po(FoF5) > 0 and Ag, < ©. ThenT admitsa
statespacerealization

Ac=Po( FoFGZ1) NSV Cr = Po(Fo)

B = Po( TFGZ1) NGV D1 =Po(T) =Ty
and/,, < 1 andindependenbf the choiceof the basis,as long as Ag, > 0. If {4, <1, then

Fo = (l - Alz)'lCl

T D, + By(l - ZA)™1ZC, .
PROOF The proof follows from theorem10 and goesalongthe lines of the proof of theorem
8, with statetransformationX = X;R, andorthogonalbasisG suchthatFy = RG. O

Theorem 12. Givena boundedsystentransferoperator T [J ¢/ with finite dimensionalkstate
spacesH and Hy. Let F be the representatiorof a strong basisin H. Let

Fo = P(FT)
and supposethat Fo representsa strong basis (As, > 0). Thenthe canonicalrealization
basedon F (theoem8) is identical to the canonicalrealizationbasedon F, (theoem11).
The Hankel operator Hr = P(LT) on £,Z* hasa decompositionin termsof F, Fy as
HT . Ezz_l — Z/IZ . Y=U HT = Po(UFED/\I_:l EFO
X Po( UFHAL
Y = XFo
PROOF Let X be the stateof the realizationon F, and X be that of Fo. We will provethat,

when Fo = P(FT), thesestatesare the same. The proof hingeson the fact that P(U-4T) =
P( Px(U-w) T) by definition of H. Let

Xk = Pr(U-) l&k
Xk = P(U_(k)T) ’ Xk

X F
XgqFo
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(accordingto the definitionsleadingto theorems3 and 11). Then
Xk = P(U-gT)
= P(Px(U-w)T)
P(X«T)
P(XFT)
= X P(FT)
= XwFo
If Fo is strong,then )z[k] = X
To provethatY = UHt = Po(U FP)ARF,, (Wherethis U O £,Z% playsthe role of any U_y of
the expressionsbove),notice that we definedX = Py (U) = Po( UFI)AZF = XF, andhence
X = Po( UFDAZL for the controllerrealizationsand Y = X = XF, for the observerealizations.
SincethesestatesX, X arethe samewhenFq = P(FT), the resultfollows. 0

The abovedecompositiorof the Hankeloperatorprovesto be essentiain the actualcompu-
tation of a realizationof a given transferoperatorT, asis shownin the next section.

5. FROM TRANSFER OPERATOR TO REALIZA TION

In this sectionwe shall considerhow a realizationcanactuallybe computedom the datain a
transferoperatorT. The HankeloperatorH+ will play animportantrole in the computations,
justasit did in the relatedgeneralized/NienerHopf theorydevelopedn [13] and[14)].

Diagonal Expansion of the Hankel Operator

If the operatorX [ ,, thenthe diagonalexpansiorof X is X, definedby

X = Xo+ZXg + 2%+ = X+ X"z +x5Pz22+ -

X o= o X P ]
X is an alternativerepresentatiomf X which we still will denoteas belongin~gto Uy. If the
operatorX O £,Z?, thenthe diagonalexpansionof X is also designatedby X, now defined

by

X ZWX + Z K+ = )(F_f%l)z-l + X{J_fg])z-z ...

X=X X ]

Herealsois X an alternativerepresentatioof X.

These definitions keep entries of X that are on the samei-th row 7X in X also on the
samerow 72X in X. This is seendirectly from the secondexpansionof X in Z, sincea

multiplication of a diagonalon the right by Z will only shift its columns. In addition, we
havethat Po( XX5) = XX".

Using diagonalexpansionsyve canassociatean operatorHy to the Hankel operatorHy of a
systemT, in the sensethat Hr mapsthe diagonalexpansionof U to the diagonalexpansion
of Y. This diagonalexpansiorof the operatorHt hasa matrix representationvith entriesin
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D andcanbe specifiedin termsof the entriesof T:

Theorem 13. Let T 0 ¢, and Y = UHt with U O £,Z*. The matrix representationof the
operator Hr suchthat Y = UH+ is givenby

T Tfé]i TR

T T

Tra)

T=

PROOF The multiplication UT can be brokendown into operationson diagonalsof U: Y =
urT=3> VA (U[k]T). It follows that

Ty Toy
— 1 2 _ 5 2
Yo [UE) U8R -] T |, vw= U ued ]| Te |
etc. Hence
-1) -2) _ (+1) +2) (+3) -
[Y[O] [1] S ] = [ - YU YU - ] Hr
with Hr asclaimed. ]

A nice connectionof T with Hy is obtainedby construct(infinite size) submatricedH; (o <
i < o) of Hr by selectingthe i-th entry of eachdiagonalin Hy. The H; can be viewed as
time-varyingHankel matrices. The entriesof H; areentriesof T, e.g.,

Tao T-11 Ta2
Too T-21

Hqf =
0 T30

Hencethe rows of H; are partsof therows of T, andin fact the H; are mirroredsubmatrices
of T, as seenin figure 4. The mirroring effect is introducedby definition of the diagonal
expansiorof operatorsn £,Z™.

Hankel Matrix Decompositions

We will needthe following resultsfrom the previouschapter Given a boundedsystem
transferoperatorT [0 ¢/, and assumethat the input/outputstatespacesH and Hy of T are
finite dimensional.Let F be the representationf a strongN-dimensionabasisof H, andFg
the representatioof a strongN-dimensionabasisof Hy. Thena statespacerealizationof T
basedon F is
A= Po( FFZZ1) NGV C=Py( FT)
B =Po( FZ) N D =Po(T)

and (assuming/ < 1) satisfiesA\='F” = B(I - ZA)™'Z
21
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T

Ty

i oy

Figure 4. Hankelmatricesare submatricesof T.

A secondrealizationthat is basedon F follows from the aboverealizationafter applyinga
statetransformatiorby Agt:

A= NPy FFZ1) C=AgPo(FT) (12)
B =Py FZ1) D=Py(T)

and (assuming/a < 1) satisfiesF" = B(l - ZA)1Z.

A third statespacerealizationof T is basedon Fg:
A=Po( FoFgZ?) INGY € =Po(Fo) 13)
B=Po(TFeZ?) N D =Po(T) =Ty

and (assuming/s < 1) satisfiesFy = (I - A2)™C.

Realization(11) is equalto realization(13) if Fo = P(FT) is taken,andif this Fg is a strong
basisrepresentationWith Fo = P(FT) we havea decompositiorof Hr as (theorem12)

Hr = Po( (FOAF [Fo

Switchingto diagonalexpansionsthis decompositiorturnsinto a decompositiorof the diag-
onal expansiorof Hy andleadsto an expressiorthatis familiar in the time-invariantcase:

Theorem 14. Let T O ¢/ be the transfer operator of a boundedsystem.If {A,B,C,D} is a
statespacerealizationof T, then Hr hasa decomposition

Hr =C 0
22



whee(C : L,Z71 - Dy, O : D, — U, are definedas
B+D

BHAAGHD
B3AGDACD O = [C ACTD AADCED L.

If therealizationis givenby equation(11), basedon a strongbasisrepresentatior generating
the input statespace,thenC" is equalto the diagonal expansionof AF'F.

If the realizationis given by equation(12), again basedon a strong basisrepresentationF
generatingthe input statespace,thenF = CF.

If the realizationis givenby (13), basedon a strong basisrepresentationF, generatingthe
outputstatespace,thenFy = O.

ProOOF FromT =D + B(I - ZA)~*ZC follows
Ty = B*DC TE]D = B*DAC-D
Ty = BF2AFDC Tf?_,]l) = B*2AFDACHD
Tig) = B*IAF2AFLC

Application of theoreml13 showsthat Hr hasthe claimeddecomposition (With slightly more
effort, the samecanbe shownin casels = 1.)

For /5 < 1, the secondpart of the theoremcan be inferred from the relationsA:F = [ B(l -
ZAZ]5 F =[B(I -ZA)™Z]" andF, = (1 - A2)"1C respectively The theoremis formally
verified by using the decompositiorof the Hankel operator(theorem12) andlooking at the
relation betweenthe ordinary and the diagonallyexpandedHankel operator For U O £,Z%,
realization(11) and (13) follow from

X Po(UFHAZL = UR)AL=0C
Y = Uk i szoéotﬁp (F)"Ag
Y = Y .
UHy Y = XFo=XO

showingthat AZLF = CE Fo = O. Realization(12) is slightly differentdueto a statetransfor
mationby A::

X = Po(UFY) = UFP=0
Y = UHr O(l_Jl ) = UP=le
V _ Gﬁ = Y = X/\F FO
- Y = XAZF=XO
showingthat, for this realization,F = C". |

C is the controllability matrix, O is the observabilitymatrix in the presentcontext. A real-
ization {A,B,C,D} is calleda controllablerealizationif C-C > 0, and uniformly controllable
if C°C > 0. In view of theorem14, it follows straightforwardlythat the secondrealization
on a strongbasisF in H asgiven by equation(12) is uniformly controllableby construction:
Ae = Po(FFD) = CTC and A > 0 yieldsCC > 0. If AZ > 0 (i.e., the statetransformation
connectingrealization(12) to realization(11) is boundedlyinvertible), then the realization
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(12) is alsouniformly controllable,sincefor this realizationit holdsthat AF* = C*C.

Along thesamélines,arealization{A,B,C, D} is calledobservabléf OO > 0, anduniformly
observabléf OO" > 0. A realizationbasedon a strongbasisF, generatingH, via equation
(13) is uniformly observableoy construction sinceAg, = Po(FoFg) = OO andAg, > 0. A
realizationis calledminimal if it is both controllableand observable.

The rank of the Hankel operatorHy is definedto be N 0 7 suchthat H; hasrank N;, for
i=...,-1,0,1,....SinceHo = (£2Z7) Hy it follows immediatelyfrom the relationsbetween
an operatorandits diagonalexpansiorthat rank(Hr) = dim(H,). SincerankHy) = rankH?),
it follows that rank(Hr) = dim(*), andhencedim(Ho) = dim(H).

Theorem 15. Let T be a boundedinear causaltime-varyingsystemransfer operatorin .

1. If Hy haslocal finite rank N 0 Z, thenthere exist minimal state spacerealizationsof
order N. Thisis a Kroneckertyperesult.

2. Theserealizationscan be obtainedfromany decompositiorf Hr into Hr = [0 , where
C hascolumnrank N, © hasrowrank N (i.e., with 0 < C*C < o, 0 < OO < ),
wheneverat leastone of theseproductsis takenuniformly positive,as follows

—If C%C > 0, thentakeF O £,Z* suchthat its diagonalexpansionF = C”. ThisF is
a strong basisrepresentatiorgeneratingthe input statespaceX of T. A realizationof
T is givenby equation(12) and is uniformly controllable by construction.

—If OO"» 0, thentakeF, [0 2/, suchthat its diagonalexpansiorfo =(0. Thiskgis
a strong basisrepresentatiorgeneratingthe output statespaceH, of T. A realization
of T is givenby (13) andis uniformly observableby construction.

3. Existenceof a realizationthat is uniformly controllable and uniformly observables a
systemproperty: it dependonly on T. If it existsthena realizationbasedon F is also
uniformly observable and a realizationbasedon Fy is also uniformly controllable.

PROOF
1. This will follow from the constructionin step2.

2. Thedecompositiortanbe constructedria decompositionsf theH;, whichis a standard
linear algebraproblem(typically using SVDs). The choicefor F and F, is motivated
by theorem14 andthe discussionfollowing it.

3. The condition for existenceof a realizationthat is both uniformly controllable and
uniformly observables that, given a strong basisF, thenFo = P(FT) shouldbe a
strongbasisin the output statespace: Ag, > 0. Becauseof the definition of input
and output state space,we have at least that Ar, > 0, but it need not necessarily
be uniformly positive. If it isn’'t, then no boundedlyinvertible state transformation
R appliedto the realizationon F (makingit a realizationbasedon RF) will makeit
uniformly positive: Ag; = RAg,R". Sinceall realizationsbasedon strongbasesF are
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connectedvia boundedlyinvertible statetransformationsandtheserealizationsare the
only onesthat are uniformly controllable,the conclusionis that there either exists a
realizationthatis uniformly observablan addition,or it doesnot exist, dependingon
T. O
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